JP3336691B2 - Alloy thin sheet for electronics with excellent etching processability - Google Patents

Alloy thin sheet for electronics with excellent etching processability

Info

Publication number
JP3336691B2
JP3336691B2 JP20187993A JP20187993A JP3336691B2 JP 3336691 B2 JP3336691 B2 JP 3336691B2 JP 20187993 A JP20187993 A JP 20187993A JP 20187993 A JP20187993 A JP 20187993A JP 3336691 B2 JP3336691 B2 JP 3336691B2
Authority
JP
Japan
Prior art keywords
integration
degree
less
crystal plane
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20187993A
Other languages
Japanese (ja)
Other versions
JPH0734201A (en
Inventor
正 井上
直次 山之内
清 鶴
義明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16448378&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3336691(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP20187993A priority Critical patent/JP3336691B2/en
Priority to US08/153,890 priority patent/US5605582A/en
Priority to CN93120826A priority patent/CN1035778C/en
Priority to KR1019930028313A priority patent/KR960008889B1/en
Publication of JPH0734201A publication Critical patent/JPH0734201A/en
Application granted granted Critical
Publication of JP3336691B2 publication Critical patent/JP3336691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシャドウマスクやICリ
ードフレームの材料として好適なエッチング加工性に優
れた電子用合金薄板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic alloy thin plate having excellent etching processability and suitable as a material for a shadow mask or an IC lead frame.

【従来の技術】近年、カラーテレビ受像管のシャドウマ
スクやICリードフレームの材料としてFe−Ni系合
金が使用されている。このFe−Ni系合金は、従来か
ら使用されている低炭素鋼に較べ熱膨張率が著しく小さ
く、このため、例えばFe−Ni系合金薄板を素材とす
るシャドウマスクは、電子ビームにより加熱されても熱
膨張による色ずれの問題は生じにくい。
2. Description of the Related Art In recent years, Fe—Ni alloys have been used as materials for shadow masks and IC lead frames of color television picture tubes. This Fe-Ni-based alloy has a significantly lower coefficient of thermal expansion than a conventionally used low-carbon steel. For this reason, for example, a shadow mask made of a Fe-Ni-based alloy thin plate is heated by an electron beam. Also, the problem of color shift due to thermal expansion hardly occurs.

【0002】シャドウマスクやICリードフレームに用
いられるFe−Ni系合金薄板にはフォトエッチング加
工が施されるが、従来のFe−Ni系合金薄板は低炭素
鋼の材料に較べてエッチング加工性が劣るという難点が
ある。すなわち、Fe−Ni系合金はエッチング液に対
する腐食性が低炭素鋼に較べて著しく小さく、且つ結晶
粒径も低炭素鋼に較べて大きいため、エッチングにより
穿孔した場合に孔径や孔形状のバラツキが大きくなる。
このため、シャドウマスク用材料として用いた場合、エ
ッチングにより穿孔された細孔部に光を透過させるとマ
スクに靄がかったようなむらを生じ、しかも、光を透過
させた際のマスクの明るさが低炭素鋼のマスクに較べ劣
るという欠点がある。特に、近年急増しているファイン
ピッチで孔径が小さい高精細マスクでは上述した問題が
生じやすく、カラーテレビ受像管の品位を著しく低下さ
せてしまう。また、最近では画面の明るさが強く求めら
れる傾向があり、このようなニーズに対してもマスクの
明るさが劣っていることは大きな不利となる。また、I
Cリードフレーム用材料に関しては、近年のICの高密
度化(高集積度化)によりリードフレームのピン間隔が
ファインピッチ化してきており、従来のFe−Ni系合
金では上記のようなエッチング加工性の問題からこのよ
うなピン間隔のファインピッチ化に十分対応できない。
また、従来のFe−Ni系合金は、エッチング後のメッ
キ性が劣るという問題もある。
[0002] Photo-etching is applied to Fe-Ni-based alloy thin plates used for shadow masks and IC lead frames. Conventional Fe-Ni-based alloy thin plates have etching workability as compared with low carbon steel materials. There is a disadvantage that it is inferior. That is, since the Fe-Ni-based alloy has significantly smaller corrosion resistance to the etching solution than the low-carbon steel and has a larger crystal grain size than the low-carbon steel, variations in the hole diameter and the hole shape when drilled by etching are caused. growing.
For this reason, when used as a material for a shadow mask, when light is transmitted through the pores formed by etching, the mask becomes uneven, and the brightness of the mask when transmitting light is increased. Has the disadvantage that it is inferior to low carbon steel masks. In particular, in the case of a high-definition mask having a small hole diameter and a fine pitch which has been rapidly increasing in recent years, the above-described problem is likely to occur, and the quality of a color television picture tube is remarkably deteriorated. Further, recently, there is a tendency that the brightness of the screen is strongly required, and it is a great disadvantage that the brightness of the mask is inferior to such needs. Also, I
With regard to C lead frame materials, the pin pitch of the lead frame is becoming finer due to the recent increase in the density (higher integration) of ICs. Due to the above problem, it is not possible to sufficiently cope with such a fine pin interval.
Further, the conventional Fe—Ni-based alloy also has a problem that the plating property after etching is inferior.

【0003】従来、Fe−Ni系合金のエッチング加工
性の問題を解決するため、次のような技術が提案されて
いる。 特公平2−9655号公報では、高精度で且つ均一
なエッチングを可能とするインバー合金薄板として、板
表面に{100}結晶面を35%以上集合させた合金薄
板が提案されている。 特開昭62−243782号公報では、エッチング
スピードを向上させ、且つむら品位を向上させために、
Fe−Ni系インバー合金の圧延面に{100}面を集
合させ、表面粗さをRa0.2〜0.7μmおよびSm
100μm以下とし、且つ結晶粒度を粒度番号8.0以
上とすることが提案されている。 特開平2−270941号公報では、エッチングス
ピードを向上させるため、Fe−Ni系インバー合金の
圧延面に{200}面を50%以上集積させ、且つC含
有量を0.007wt%以下、不純物元素のうちP:
0.005wt%以下、S:0.005wt%以下、そ
の他の不純物元素の含有量を0.10wt%以下とする
ことが提案されている。
Conventionally, the following techniques have been proposed in order to solve the problem of the etching workability of Fe-Ni-based alloys. Japanese Patent Publication No. 2-9655 proposes an invar alloy thin plate in which 35% or more of {100} crystal planes are gathered on the plate surface as an invar alloy thin plate capable of performing highly accurate and uniform etching. In Japanese Patent Application Laid-Open No. Sho 62-243782, in order to improve the etching speed and improve the uneven quality,
A {100} plane is gathered on the rolled surface of the Fe—Ni-based invar alloy, and the surface roughness is Ra 0.2 to 0.7 μm and Sm.
It has been proposed that the grain size be 100 μm or less and the grain size be 8.0 or more. Japanese Patent Application Laid-Open No. 2-270941 discloses that in order to improve the etching speed, a {200} plane is integrated on a rolled surface of an Fe—Ni-based invar alloy by 50% or more, a C content is 0.007 wt% or less, and an impurity element is added. P of:
It has been proposed to make the content of 0.005 wt% or less, S: 0.005 wt% or less, and the content of other impurity elements 0.10 wt% or less.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
の技術ではエッチングの精度および均一性は改善できる
ものの、シャドウマスクとした際の靄がかったむらの発
生を防止できず、また、マスクの明るさも低炭素鋼のマ
スクに較べて劣るという欠点がある。また、の技術で
はエッチングスピードが向上し、且つシャドウマスクと
した際のむら品位は改善されるものの、シャドウマスク
の明るさが低炭素鋼のマスクに較べて劣るという欠点が
ある。また、の技術によって得られるICリードフレ
ーム材はサイドエッチが大きく、リードフレームとして
加工する際に加工精度が劣るという問題がある。
However, the above technique can improve the accuracy and uniformity of etching, but cannot prevent the occurrence of haze and unevenness when used as a shadow mask, and the brightness of the mask is low. It has the disadvantage of being inferior to steel masks. In addition, although the etching speed is improved and the quality of unevenness when a shadow mask is used is improved, the brightness of the shadow mask is inferior to that of a low carbon steel mask. Further, there is a problem that the IC lead frame material obtained by the above technique has a large side etch, and the processing accuracy is poor when processing as a lead frame.

【0005】また、上記したいずれの技術においても、
エッチングにより加工されるICリードフレーム材のメ
ッキ性が劣るという問題がある。例えば、上記の技術
によって得られるICリードフレーム材にハンダメッキ
を施すと、ホイスカと呼ばれる針状結晶が異常に成長
し、品質上の問題を生じる。本発明は、以上のような従
来技術の問題に鑑みなされたもので、高精度で均一なエ
ッチングが可能であって、エッチングファクターが高
く、エッチング後のメッキ性にも優れ、また、シャドウ
マスクとした際のむら品位が優れ、しかもマスクの明る
さも極めて良好な電子用合金薄板を提供することをその
目的とする。
Further, in any of the above techniques,
There is a problem that the plating property of the IC lead frame material processed by etching is inferior. For example, if the IC lead frame material obtained by the above technique is subjected to solder plating, needle-like crystals called whiskers grow abnormally, causing a problem in quality. The present invention has been made in view of the above-described problems of the related art, and enables uniform etching with high accuracy, a high etching factor, excellent plating properties after etching, and a shadow mask. It is an object of the present invention to provide an electronic alloy thin plate which is excellent in uneven quality at the time of performing the method and has a very good mask brightness.

【0006】[0006]

【課題を解決するための手段】本発明者らは、Fe−N
i系合金薄板をエッチング穿孔する際に、材料の全面に
亘って大きさ及び形状が均一なエッチング孔を設けるた
めには、エッチング速度を材料の全面に亘って一定で且
つ十分に速くする必要があり、このためにはエッチング
ファクター(図5で定義される)を高めることが重要で
あること、そして、このエッチングファクターを高める
には、エッチング面(合金板表面)での特定の結晶面の
集積度の比率を制御すること、さらには合金板の板厚方
向の結晶粒径を制御することが極めて有効であることを
見出した。さらに、エッチング穿孔後のメッキ性および
シャドウマスクの明るさを優れたレベルとするために
は、エッチング端面(図5のa)の表面粗さ(Ra)を
特定値以下とすることが重要であること、そして、この
ようなエッチング端面の表面粗さはエッチング面(合金
板表面)での特定の結晶面の集積度を制御することによ
り得られることを見出した。
Means for Solving the Problems The present inventors have proposed Fe-N
In order to provide an etching hole having a uniform size and shape over the entire surface of the material when the i-type alloy thin plate is etched and punched, it is necessary to make the etching rate constant and sufficiently fast over the entire surface of the material. In order to achieve this, it is important to increase the etching factor (defined in FIG. 5), and to increase the etching factor, the integration of a specific crystal plane on the etching surface (alloy plate surface) It has been found that controlling the degree ratio and controlling the crystal grain size in the thickness direction of the alloy plate is extremely effective. Further, in order to obtain excellent levels of plating properties and the brightness of the shadow mask after etching perforation, it is important that the surface roughness (Ra) of the etched end face (a in FIG. 5) be equal to or less than a specific value. It has been found that such surface roughness of the etched end face can be obtained by controlling the degree of integration of a specific crystal face on the etched face (alloy plate surface).

【0007】本発明はこのような知見に基づきなされた
もので、その特徴とする構成は以下の通りである。 (1) Ni含有量が34〜38wt%のFe−Ni系
合金薄板であり、合金板表面での{331}、{21
0}および{211}の各結晶面の集積度が、{33
1}:14%以下、{210}:14%以下、{21
1}:14%以下であって、且つ下式を満足するエッチ
ング加工性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)(2) Ni含有量が38〜52wt%のFe−Ni系
合金薄板であり、合金板表面での{331}、{21
0}および{211}の各結晶面の集積度が、{33
1}:14%以下、{210}:14%以下、{21
1}:14%以下であって、且つ下式を満足するエッチ
ング加工性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
The present invention has been made based on such findings.
The characteristic configuration is as follows. (1)Fe-Ni system with Ni content of 34-38 wt%
Alloy thin plate,{331}, # 21 on alloy plate surface
The degree of integration of each crystal plane of {0} and {211} is {33}
1}: 14% or less, {210}: 14% or less, {21}
1}: Etch that is 14% or less and satisfies the following expression
Alloy sheet for electronics with excellent workability. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)(2) Fe-Ni based alloy having a Ni content of 38 to 52 wt%
Alloy thin plate, {331}, {21} on the surface of the alloy plate
The degree of integration of each crystal plane of {0} and {211} is {33}
1}: 14% or less, {210}: 14% or less, {21}
1}: Etch that is 14% or less and satisfies the following formula
Alloy thin sheet for electronics with excellent workability. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 However, {331}: Degree of integration of {331} crystal plane (%) {210}: Degree of integration of {210} crystal plane (%) {211}: degree of integration of {211} crystal plane (%)

【0008】(3) Ni含有量が28〜38wt%、
Co含有量が1wt%超7wt%以下のFe−Ni−C
o系合金薄板であり、合金板表面での{331}、{2
10}および{211}の各結晶面の集積度が、{33
1}:14%以下、{210}:14%以下、{21
1}:14%以下であって、且つ下式を満足するエッチ
ング加工性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)(4) Ni含有量が27〜32wt%、Co含有量が
1wt%超20wt%以下のFe−Ni−Co系合金薄
板であり、合金板表面での{331}、{210}およ
び{211}の各結晶面の集積度が、{331}:14
%以下、{210}:14%以下、{211}:14%
以下であって、且つ下式を満足するエッチング加工性に
優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
[0008](3) Ni content is 28-38 wt%,
Fe-Ni-C having a Co content of more than 1 wt% and 7 wt% or less
o-based alloy sheet,{331}, {2} on alloy plate surface
The degree of integration of each crystal plane of {10} and {211} is {33}
1}: 14% or less, {210}: 14% or less, {21}
1}: Etch that is 14% or less and satisfies the following expression
Alloy sheet for electronics with excellent workability. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)(4) Ni content is 27-32wt%, Co content is
Fe-Ni-Co-based alloy thin of more than 1 wt% and 20 wt% or less
Plate, {331}, {210} and
And the integration degree of each crystal plane of {211} is {331}: 14
% Or less, {210}: 14% or less, {211}: 14%
Etching workability that satisfies the following formula
Excellent electronic alloy sheet. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 However, {331}: Degree of integration of {331} crystal plane (%) {210}: Degree of integration of {210} crystal plane (%) {211}: degree of integration of {211} crystal plane (%)

【0009】(5) Ni含有量が34〜38wt%、
Cr含有量が3.0wt%以下のFe−Ni−Cr系合
金薄板であり、合金板表面での{331}、{210}
および{211}の各結晶面の集積度が、{331}:
14%以下、{210}:14%以下、{211}:1
4%以下であって、且つ下式を満足するエッチング加工
性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
(5) Ni content of 34 to 38 wt%,
Fe-Ni-Cr alloy with Cr content of 3.0 wt% or less
It is a thin gold plate, {331}, {210} on the alloy plate surface
And the integration degree of each crystal plane of {211} is {331}:
14% or less, {210}: 14% or less, {211}: 1
An electronic alloy thin plate having an etching processability of 4% or less and satisfying the following expression. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)

【0010】[0010]

【0011】(6) 上記(1)、(2)、(3)
(4)または(5)の合金薄板において、板厚方向での
平均結晶粒径が10μm以下であるエッチング加工性に
優れた電子用合金薄板。
(6) The above (1), (2), (3) ,
The alloy thin sheet according to (4) or (5) , wherein the average crystal grain size in the thickness direction is 10 μm or less and excellent in etching workability.

【0012】[0012]

【作用】以下、本発明の詳細をその限定理由とともに説
明する。本発明の合金薄板はFeおよびNiを主成分と
する成分組成、またはFeおよびNiとCoまたは/お
よびCrとを主成分とする成分組成からなるもので、こ
れら主成分元素の好ましい含有量およびその限定理由は
以下の通りである。まず、シャドウマスク用材料として
用いられる合金薄板の場合について説明する。
The details of the present invention will be described below, together with the reasons for its limitation. The alloy thin plate of the present invention is composed of a component composition containing Fe and Ni as main components, or a component composition containing Fe and Ni and Co or / and Cr as main components. The reasons for the limitation are as follows. First, the case of an alloy thin plate used as a shadow mask material will be described.

【0013】色ずれの発生を防止するためにシャドウマ
スク用Fe−Ni系合金薄板に要求される30〜100
℃の温度域における平均熱膨張係数の上限値は、2.0
×(1/106)/℃である。熱膨張係数は合金のNi
量に依存し、上記の平均熱膨張係数の条件を満たすNi
量は34〜38wt%である。このためNiは34〜3
8wt%の範囲とすることが好ましい。また、より低い
平均熱膨張係数を得るためにはNiを35〜37wt
%、さらに好ましくは35.5〜36.5wt%とする
ことが望ましい。通常、CoはFe−Ni系合金中に不
可避不純物としてある程度含まれており、Coが1wt
%以下では特性にほとんど影響を与えず、Ni量も上記
範囲でよい。一方、Coを1wt%超〜7wt%含有す
る場合には、上記の平均熱膨張係数の条件を満足するた
めのNi量の範囲は28〜38wt%である。このため
Coを1wt%超〜7wt%含有する場合には、Niは
28〜38wt%の範囲とすることが好ましい。また、
Coを3〜6wt%、Niを30〜33wt%とするこ
とにより、平均熱膨張係数がより低い優れた特性が得ら
れる。また、Coが7wt%を超えると逆に熱膨張係数
が劣化するため、Coの上限は7wt%とすることが好
ましい。
In order to prevent the occurrence of color misregistration, 30 to 100 required for Fe—Ni alloy thin plates for shadow masks
The upper limit of the average thermal expansion coefficient in the temperature range of 2.0 ° C. is 2.0
× (1/10 6 ) / ° C. Coefficient of thermal expansion is Ni
Ni that satisfies the above condition of the average thermal expansion coefficient
The amount is 34-38 wt%. For this reason, Ni is 34 to 3
It is preferable that the content be in the range of 8 wt%. To obtain a lower average coefficient of thermal expansion, Ni should be 35 to 37 wt.
%, More preferably 35.5 to 36.5 wt%. Usually, Co is contained to some extent as an unavoidable impurity in the Fe—Ni alloy, and 1 wt.
%, The characteristics are hardly affected, and the Ni content may be in the above range. On the other hand, when Co is contained in an amount exceeding 1 wt% to 7 wt%, the range of the amount of Ni for satisfying the above condition of the average thermal expansion coefficient is 28 to 38 wt%. Therefore, when the content of Co is more than 1 wt% to 7 wt%, the content of Ni is preferably in the range of 28 to 38 wt%. Also,
By setting Co to 3 to 6 wt% and Ni to 30 to 33 wt%, excellent characteristics having a lower average thermal expansion coefficient can be obtained. On the other hand, if Co exceeds 7 wt%, the coefficient of thermal expansion deteriorates conversely, so the upper limit of Co is preferably set to 7 wt%.

【0014】次に、ICリードフレーム用材料として用
いられる合金薄板の場合について説明すると、ICリー
ドフレーム用Fe−Ni系合金薄板に要求される平均熱
膨張係数の条件を満たすNi量は38〜52wt%であ
る。Niが38wt%未満或いは52wt%超では合金
の平均熱膨張係数が大きくなり過ぎ、半導体素子、ガラ
スおよびセラミックス等との整合性が保てなくなる。こ
のためNiは38〜52wt%の範囲とすることが好ま
しい。上述したようにCoはFe−Ni系合金中に不可
避不純物としてある程度含まれており、Coが1wt%
以下では特性にほとんど影響を与えず、Ni量も上記範
囲でよい。
Next, the case of the alloy thin plate used as the material for the IC lead frame will be described. The amount of Ni satisfying the condition of the average thermal expansion coefficient required for the Fe—Ni alloy thin plate for the IC lead frame is 38 to 52 wt. %. If the content of Ni is less than 38 wt% or more than 52 wt%, the average thermal expansion coefficient of the alloy becomes too large, so that the compatibility with semiconductor elements, glass, ceramics and the like cannot be maintained. Therefore, Ni is preferably in the range of 38 to 52% by weight. As described above, Co is contained to some extent as an unavoidable impurity in the Fe—Ni-based alloy, and 1 wt% of Co is contained.
In the following, the characteristics are hardly affected, and the Ni content may be in the above range.

【0015】一方、ICリードフレーム用の合金薄板で
は、Coを1wt%超〜20wt%の範囲で添加するこ
とにより半導体素子、ガラスおよびセラミックス等との
整合性をより高めることができる。Coが1wt%以下
或いは20wt%超では上記の効果が得られない。Co
を1wt%超〜20wt%含有する場合には、ICリー
ドフレーム用材料としての平均熱膨張係数の条件を満足
するためのNi量の範囲は27〜32wt%である。N
iが27wt%未満或いは32wt%超では熱膨張特性
が逆に劣化してしまう。このためCoを1wt%超〜2
0wt%含有する場合には、Niは27〜32wt%の
範囲とすることが好ましい。また、Crは機械的性質を
改善させることができる元素であるが、反面、熱膨張特
性を劣化させる元素でもある。本発明で意図する熱膨張
特性を得るためのCrの上限は3.0wt%であり、こ
のためCrは3.0wt%を上限として含有させること
ができる。
On the other hand, in an alloy thin plate for an IC lead frame, by adding Co in a range of more than 1 wt% to 20 wt%, the consistency with a semiconductor element, glass, ceramics and the like can be further improved. If Co is 1 wt% or less or exceeds 20 wt%, the above effects cannot be obtained. Co
More than 1 wt% to 20 wt%, the range of the amount of Ni for satisfying the condition of the average thermal expansion coefficient as the material for the IC lead frame is 27 to 32 wt%. N
If i is less than 27% by weight or more than 32% by weight, the thermal expansion characteristics will be degraded. Therefore, the content of Co is more than 1 wt% to 2
When 0 wt% is contained, it is preferable that Ni is in the range of 27 to 32 wt%. Cr is an element that can improve mechanical properties, but is also an element that deteriorates thermal expansion characteristics. The upper limit of Cr for obtaining the thermal expansion characteristic intended in the present invention is 3.0 wt%, and therefore, Cr can be contained with 3.0 wt% as the upper limit.

【0016】以上述べた主成分元素以外の元素について
は、シャドウマスク用材料或いはICリードフレーム用
材料として要求される諸特性を確保するという観点か
ら、C:0.0050wt%以下、Mn:0.50wt
%以下、Si:0.20wt%以下、N:0.0050
wt%以下、O:0.0050wt%以下、B:0.0
050wt%とすることが望ましい。
With respect to elements other than the main component elements described above, C: 0.0050 wt% or less, Mn: 0. 50wt
%, Si: 0.20 wt% or less, N: 0.0050
wt% or less, O: 0.0050 wt% or less, B: 0.0
It is desirable to be 050 wt%.

【0017】次に、本発明の最大の特徴である合金板表
面での結晶面の集積度およびその比率と合金板の板厚方
向での平均結晶粒径について説明する。本発明者らは、
上述した成分組成を有する合金薄板表面での{33
1}、{210}および{211}の各結晶面の集積度
とこれらの結晶面の集積度の比率を特定の範囲に制御す
ることにより、エッチングファクターを効果的に高める
ことができるとともに、図5のaで示されるエッチング
端面の表面粗さ(Ra)を小さくし、シャドウマスクの
明るさのレベル及びエッチング後のメッキ性を優れたも
のにできることを見出した。
Next, a description will be given of the degree of integration and the ratio of crystal planes on the alloy plate surface and the average crystal grain size in the thickness direction of the alloy plate, which are the most significant features of the present invention. We have:
# 33 on the surface of the alloy sheet having the above-mentioned composition
By controlling the degree of integration of each crystal plane of {1}, {210} and {211} and the ratio of the degree of integration of these crystal planes to a specific range, the etching factor can be effectively increased, and It has been found that the surface roughness (Ra) of the etched end face indicated by 5a can be reduced, and the brightness level of the shadow mask and the plating property after etching can be improved.

【0018】図1は、合金板表面での{331}、{2
10}および{211}の各結晶面の集積度が種々異な
るFe−Ni系合金薄板、Fe−Ni−Co系合金薄
板、Fe−Ni−Cr系合金薄板およびFe−Ni−C
o−Cr系合金薄板をフォトエッチングし、得られたフ
ラットマスク(エッチングにより穿孔されたままのシャ
ドウマスク用合金薄板)の光線透過率とエッチング端面
の表面粗さ(Ra)との関係を示したものである。ここ
で、フラットマスクの光線透過率は、フラットマスクの
光線透過量を測定し、この値を同寸法の低炭素鋼からな
るフラットマスクの光線透過量で割ることにより求め
た。また、エッチング端面の表面粗さは後述する実施例
に示す方法で測定した。
FIG. 1 shows {331}, {2} on the surface of the alloy plate.
Fe-Ni-based alloy sheets, Fe-Ni-Co-based alloy sheets, Fe-Ni-Cr-based alloy sheets, and Fe-Ni-C in which the degree of integration of the crystal planes of {10} and {211} are variously different
Photo-etching of an o-Cr alloy thin plate was performed, and the relationship between the light transmittance of the obtained flat mask (alloy thin plate for a shadow mask as perforated by etching) and the surface roughness (Ra) of the etched end face was shown. Things. Here, the light transmittance of the flat mask was determined by measuring the light transmittance of the flat mask and dividing the value by the light transmittance of a flat mask made of low carbon steel of the same dimensions. The surface roughness of the etched end face was measured by the method described in Examples described later.

【0019】なお、上述した各結晶面の集積度は、板表
面のX線回折により得られる(111)、(200)、
(220)、(311)、(331)、(420)およ
び(422)の各回折面のX線回折強度から求めること
ができる。例えば、{331}結晶面の集積度は(33
1)回折面の相対X線強度比を(111)、(20
0)、(220)、(311)、(331)、(42
0)および(422)の各回折面の相対X線強度比の和
で割ることにより求めることができる。また、{21
0}および{211}の各結晶面の集積度も同様にして
求めることができる。ここで、相対X線回折強度比とは
各回折面で測定されたX線回折強度をその回折面の理論
X線強度で割ったものである。例えば、(111)回折
面の相対X線回折強度比は(111)回折面のX線回折
強度を(111)回折面のX線回折理論強度で割ったも
のである。また、{210}、{211}の各結晶面の
集積度は、それぞれこれらの結晶面と方位的に等しい
(420)、(422)回折面の相対X線回折強度比を
上記の(111)から(422)までの7個の回折面の
相対X線回折強度比の和で割ることにより求めることが
できる。
The degree of integration of each crystal plane described above can be obtained by (111), (200),
(220), (311), (331), (420) and (422) can be obtained from the X-ray diffraction intensity of each diffraction surface. For example, the degree of integration of the {331} crystal plane is (33
1) The relative X-ray intensity ratio of the diffraction surface is (111), (20)
0), (220), (311), (331), (42)
It can be obtained by dividing by the sum of the relative X-ray intensity ratios of the diffraction planes of (0) and (422). Also, $ 21
The degree of integration of each crystal plane of {0} and {211} can be obtained in the same manner. Here, the relative X-ray diffraction intensity ratio is obtained by dividing the X-ray diffraction intensity measured on each diffraction surface by the theoretical X-ray intensity of the diffraction surface. For example, the relative X-ray diffraction intensity ratio of the (111) diffraction surface is obtained by dividing the X-ray diffraction intensity of the (111) diffraction surface by the theoretical X-ray diffraction intensity of the (111) diffraction surface. The degree of integration of each of the crystal planes {210} and {211} is azimuthally equal to these crystal planes (420), and the relative X-ray diffraction intensity ratio of the (422) diffraction plane is set to the above (111). To (422) by dividing by the sum of the relative X-ray diffraction intensity ratios of the seven diffraction planes.

【0020】図1によれば、{331}、{210}お
よび{211}の各結晶面の集積度が{331}:14
%以下、{210}:14%以下、{211}:14%
以下の場合には、エッチング端面の表面粗さがRa0.
90μm以下となってフラットマスクの光線透過率が
1.0以上となり、従来の低炭素鋼のフラットマスク以
上の明るさが得られることが判る。また、合金薄板をI
Cリードフレーム用材料に適用する場合のエッチング後
のメッキ性についても、上記の各結晶面の集積度を{3
31}:14%以下、{210}:14%以下、{21
1}:14%以下とすることでエッチング端面の表面粗
さがRa0.90μm以下となる結果、優れたハンダメ
ッキ性が得られることも確認できた。
According to FIG. 1, the degree of integration of each crystal plane of {331}, {210} and {211} is {331}: 14
% Or less, {210}: 14% or less, {211}: 14%
In the following cases, the surface roughness of the etched end face is Ra0.
The light transmittance of the flat mask becomes 90 μm or less, and the light transmittance of the flat mask becomes 1.0 or more, and it can be seen that brightness higher than that of the conventional low carbon steel flat mask can be obtained. In addition, the alloy sheet
Regarding the plating property after etching when applied to the material for C lead frame, the degree of integration of each of the above crystal planes is set at $ 3.
31: 14% or less, {210}: 14% or less, $ 21
It was also confirmed that when 1%: 14% or less, the surface roughness of the etched end face became Ra 0.90 μm or less, so that excellent solder plating property was obtained.

【0021】{331}、{210}および{211}
の各結晶面の集積度のいずれかが上記範囲から外れた場
合には、エッチング端面の表面粗さがRa0.9μm超
となり、上記したような特性が得られないが、このよう
な合金薄板のエッチング端面をミクロ的に観察すると微
細なピット(凹凸)が全面に生成していることから、エ
ッチング端面の表面粗さがRa0.9μm超となるの
は、このようなピットが生成されるためであると考えら
れる。なお、フラットマスクの明るさとエッチング端面
の表面粗さとの関係については、他の粗さパラメータと
の相関も調べたが、最も強い相関を示したものが中心線
平均粗さ(Ra)であった。以上の理由から本発明で
は、フラットマスクの明るさを優れたレベルとし、且つ
エッチング後のメッキ性を良好なものとするための条件
として、{331}、{210}および{211}の各
結晶面の集積度を、{331}:14%以下、{21
0}:14%以下、{211}:14%以下と規定す
る。
{331}, {210} and {211}
If any of the degrees of integration of the respective crystal planes deviates from the above range, the surface roughness of the etched end face exceeds Ra 0.9 μm, and the above characteristics cannot be obtained. When the etched end face is observed microscopically, fine pits (irregularities) are generated on the entire surface, and the surface roughness of the etched end face exceeds Ra 0.9 μm because such pits are generated. It is believed that there is. In addition, as for the relationship between the brightness of the flat mask and the surface roughness of the etched end face, the correlation with other roughness parameters was also examined, and the one showing the strongest correlation was the center line average roughness (Ra). . For the above reasons, according to the present invention, the conditions of {331}, {210} and {211} crystals are set as conditions for setting the brightness of the flat mask to an excellent level and improving the plating property after etching. The degree of integration of the surface is {331}: 14% or less,
0}: 14% or less, {211}: 14% or less.

【0022】次に、エッチングファクターを効果的に高
めるためには、合金板表面での{331}、{210}
および{211}の各結晶面の集積度の比率を制御する
ことが必要である。図2は、合金板表面での{33
1}、{210}および{211}の各結晶面の集積度
が本発明範囲内であって、これら結晶面の集積度の比
率:{210}/({331}+{211})が種々異
なるFe−Ni系合金薄板、Fe−Ni−Co系合金薄
板、Fe−Ni−Cr系合金薄板およびFe−Ni−C
o−Cr系合金薄板をフォトエッチングし、結晶面の集
積度の比率:{210}/({331}+{211})
とエッチングファクターおよびフラットマスクのむら品
位との関係を調べたものである。
Next, in order to effectively increase the etching factor, {331} and {210} on the surface of the alloy plate are required.
It is necessary to control the ratio of the degree of integration of each crystal plane of {211} and {211}. FIG. 2 shows the results of the # 33 on the alloy plate surface.
The degree of integration of each crystal plane of {1}, {210} and {211} is within the scope of the present invention, and the ratio of the degree of integration of these crystal planes: {210} / ({331} + {211}) varies. Different Fe-Ni-based alloy sheets, Fe-Ni-Co-based alloy sheets, Fe-Ni-Cr-based alloy sheets and Fe-Ni-C
Photo-etching the o-Cr alloy thin plate, the ratio of the degree of integration of the crystal plane: {210} / ({331} + {211})
And the relationship between the etching factor and the unevenness of the flat mask.

【0023】ここで、本発明では実用上問題のないエッ
チングファクターの値を1.8以上と定めた。なお、
{331}、{210}および{211}の各結晶面の
集積度は上述したX線回折法により求め、また、エッチ
ングファクターは後述する実施例に示したと同様の方法
で求めた。また、むら品位は肉眼観察により判定したも
ので、ムラのないものをA、ムラが激しく実用上問題の
あるものをEとし、B〜DはAとEとの間をランク付け
したものであり、A〜Cを実用上問題のないものとし
た。
Here, in the present invention, the value of the etching factor having no practical problem is set to 1.8 or more. In addition,
The degree of integration of each of the crystal planes of {331}, {210} and {211} was obtained by the above-mentioned X-ray diffraction method, and the etching factor was obtained by the same method as described in Examples described later. In addition, the uneven quality was determined by visual observation. A without unevenness was evaluated as A, and a sample with severe unevenness and having a practical problem was evaluated as E. BD was ranked between A and E. , A to C have no practical problems.

【0024】図2によれば、{210}/({331}
+{211})の値が高くなるにしたがいエッチングフ
ァクターの値が高くなり、{210}/({331}+
{211})の値が0.2以上でエッチングファクター
が1.8以上となる。一方、{210}/({331}
+{211})が1.0を超えるとむら品位が悪くなり
実用上問題がある。以上の理由から本発明では、むら品
位が良好で且つ本発明が目的とする高いエッチングファ
クターが得られる条件として、{210}/({33
1}+{211})の値を0.2〜1.0と規定する。
According to FIG. 2, {210} / ({331}).
+ {211}), the value of the etching factor increases, and {210} / ({331} +
When the value of {211} is 0.2 or more, the etching factor becomes 1.8 or more. On the other hand, {210} / ({331}
(+ {211}) exceeds 1.0, the uneven quality deteriorates and there is a practical problem. For the above reasons, in the present invention, {210} / ($ 33) is a condition for obtaining good etching quality and a high etching factor aimed at by the present invention.
1} + {211}) is defined as 0.2 to 1.0.

【0025】このように合金板表面での特定の結晶面の
集積度の比率を制御することによりエッチングファクタ
ーを効果的に高めることができるが、さらにエッチング
ファクターを向上させるためには、合金板の板厚方向の
平均結晶粒径を規制することが有効である。先に述べた
特開昭62−243782号公報(の従来技術)で
は、結晶粒度を粒度番号8.0以上とすることを条件と
しているが、これに開示されている結晶粒度は最も細粒
のものでも粒度番号で10.0、すなわち、〔結晶粒度
番号〕=16.6439−6.6439 log(〔平均結晶粒径〕/1.1
25)の式で計算すると結晶粒径11μmに過ぎない。こ
れに対して特定の結晶面の集積度とそれらの比率を規制
した本発明の合金薄板では、板厚方向での平均結晶粒径
を上記従来技術のレベルより小さい10μm以下(結晶
粒度番号で10.3以上)とすることにより、エッチン
グファクターをさらに向上させ得ることが判った。
The etching factor can be effectively increased by controlling the ratio of the degree of integration of a specific crystal plane on the surface of the alloy plate as described above. It is effective to regulate the average crystal grain size in the thickness direction. In the above-mentioned JP-A-62-243782 (prior art), the condition is that the crystal grain size is 8.0 or more, but the crystal grain size disclosed therein is the finest. The particle size is 10.0 in the particle size number, that is, [crystal grain size number] = 16.6439−6.6439 log ([average crystal grain size] /1.1
When calculated using the equation of 25), the crystal grain size is only 11 μm. On the other hand, in the alloy thin plate of the present invention in which the degree of integration of specific crystal planes and their ratio are regulated, the average crystal grain size in the sheet thickness direction is 10 μm or less (the crystal grain size number is 10 .3 or more), it was found that the etching factor could be further improved.

【0026】図3は、{331}、{210}および
{211}の各結晶面の集積度が{331}:14%以
下、{210}:14%以下、{211}:14%以下
であって、{210}/({331}+{211})の
値と板厚方向での平均結晶粒径が種々異なるFe−Ni
系合金薄板、Fe−Ni−Co系合金薄板、Fe−Ni
−Cr系合金薄板およびFe−Ni−Co−Cr系合金
薄板をフォトエッチングし、エッチングファクターに及
ぼす{210}/({331}+{211})の値と平
均結晶粒径の影響を調べたもので、同図によれば{21
0}/({331}+{211})の値が同じでも、平
均結晶粒径が小さいほどエッチングファクターが高くな
っている。そして、平均結晶粒径が10μmを超えると
{210}/({331}+{211}):0.2にお
いてエッチングファクターが1.8を下回るのに対し、
平均結晶粒径が10μm以下であれば{210}/
({331}+{211}):0.2においても1.8
を超えるエッチングファクターが得られている。以上の
理由から、エッチングファクターをより高めるために
は、合金板の板厚方向の平均結晶粒径を10μm以下と
することが好ましい。図4は、{210}/〔{33
1}+{211}〕:0.25と一定とした場合の合金
板の板厚方向の平均結晶粒径とエッチングファクターと
の関係を示している。
FIG. 3 shows that the degree of integration of each crystal plane of {331}, {210} and {211} is {331}: 14% or less, {210}: 14% or less, and {211}: 14% or less. In addition, the value of {210} / ({331} + {211}) and the average crystal grain size in the thickness direction are variously different from Fe-Ni.
Alloy thin plate, Fe-Ni-Co alloy thin plate, Fe-Ni
-Cr-based alloy thin plate and Fe-Ni-Co-Cr-based alloy thin plate were photo-etched, and the effect of {210} / ({331} + {211}) and average grain size on the etching factor was investigated. According to the figure, $ 21
Even if the value of 0 / ({331} + {211}) is the same, the etching factor increases as the average crystal grain size decreases. When the average crystal grain size exceeds 10 μm, the etching factor is less than 1.8 at {210} / ({331} + {211}): 0.2, whereas
If the average crystal grain size is 10 μm or less, {210} /
({331} + {211}): 1.8 even at 0.2
Is obtained. For the above reasons, in order to further increase the etching factor, it is preferable that the average crystal grain size in the thickness direction of the alloy plate be 10 μm or less. FIG. 4 shows that {210} / [{33
1 {+ {211}]: A relationship between the average crystal grain size in the thickness direction of the alloy plate and the etching factor when the constant is set to 0.25.

【0027】本発明が規定する{331}、{210}
および{211}の各結晶面の集積度を得るためには、
合金薄板の製造工程において極力これらの結晶面を形成
させない製造条件を採る必要があり、例えば、本発明の
合金薄板を、分塊圧延スラブまたは連続鋳造スラブを熱
間圧延して得られた熱延板、または合金を直接鋳造して
得られた薄鋳板若しくはこれを熱間圧延して得られた熱
延板を素材として製造する場合には、熱間圧延後に熱延
板焼鈍を実施し、且つその焼鈍温度を910〜990℃
の範囲内で適切な温度に制御することが上記各結晶面の
形成を抑制するために有効である。
{331}, {210} specified by the present invention
And {211} to obtain the degree of integration of each crystal plane,
In the manufacturing process of the alloy sheet, it is necessary to adopt manufacturing conditions that do not form these crystal planes as much as possible.For example, the alloy sheet of the present invention is hot rolled by hot rolling a slab or a continuously cast slab. In the case of manufacturing a sheet, or a thin cast sheet obtained by directly casting an alloy or a hot-rolled sheet obtained by hot-rolling this as a material, performing hot-rolled sheet annealing after hot rolling, And the annealing temperature is 910-990 ° C.
It is effective to control the temperature to an appropriate value within the range described above in order to suppress the formation of each crystal plane.

【0028】また、本発明が規定する{331}、{2
10}および{211}の各結晶面の集積度の比率を得
るためには、上記した熱延板焼鈍後の{331}、{2
10}および{211}の各結晶面の集積度に応じて、
熱延板焼鈍後の冷間圧延−再結晶焼鈍−仕上冷間圧延と
いう一連の工程において、冷間圧延率、再結晶焼鈍条件
(焼鈍温度、時間、加熱速度)、仕上冷間圧延条件の最
適化を行うことが有効である。なお、本発明が規定する
結晶面の集積度を得るには、合金薄板の製造工程におい
て分塊圧延後のスラブまたは連続鋳造スラブを均一化熱
処理することは好ましくない。例えば、この均一化熱処
理が1200℃以上、10時間以上の条件で行われた場
合、{331}、{210}および{211}の各結晶
面の集積度のうち1つ以上が本発明が規定する条件から
外れてしまうので、このような処理は避けなければなら
ない。本発明が規定する各結晶面の集積度は、上記した
方法以外にも急冷凝固法の採用、熱間加工での再結晶の
コントロールによる集合組織制御等により得ることがで
きる。
Also, {331}, {2} defined by the present invention
In order to obtain the ratio of the degree of integration of each of the crystal planes of {10} and {211}, {331}, {2}
According to the degree of integration of each crystal plane of {10} and {211},
Optimum cold rolling rate, recrystallization annealing conditions (annealing temperature, time, heating rate) and finish cold rolling conditions in a series of steps of cold rolling after hot-rolled sheet annealing-recrystallization annealing-finish cold rolling Is effective. In order to obtain the degree of integration of crystal planes specified by the present invention, it is not preferable to subject the slab after slab rolling or the continuously cast slab to a uniform heat treatment in the manufacturing process of the alloy sheet. For example, when the homogenizing heat treatment is performed at a temperature of 1200 ° C. or more and 10 hours or more, the present invention defines at least one of the degree of integration of each of {331}, {210} and {211} crystal planes. Therefore, such processing must be avoided because the condition is not satisfied. The degree of integration of each crystal plane defined by the present invention can be obtained by adopting a rapid solidification method, controlling texture by controlling recrystallization in hot working, and the like, in addition to the above-described method.

【0029】[0029]

【実施例】取鍋精錬によって表1および表3に示すA〜
C、JおよびLの化学成分の合金塊を得た。これらの合
金塊を手入れ後、分塊圧延、表面疵取り、熱間圧延(加
熱条件:1100℃×3hr)を経て熱延板とした。ま
た、表1〜表3に示すD〜IおよびKの化学成分を有す
る合金については、溶解後、炉外精錬して薄鋳板に直接
鋳造し、引き続き1350〜1000℃にて圧下率30
%で熱間圧延して750℃で巻き取り、熱延板とした。
上記各熱延板を910〜990℃で熱延板焼鈍した後、
冷間圧延、再結晶焼鈍および仕上冷間圧延を順次実施
し、表4および表5に示すような結晶面の集積度および
板厚方向の平均結晶粒径を有する材料No.1〜No.
31の合金薄板を得た。なお、{331}、{21
0}、{211}の各結晶面の集積度は先に述べたX線
回折法で求めた。
EXAMPLES A to A shown in Tables 1 and 3 by ladle refining
An alloy lump having chemical components of C, J and L was obtained. After treating these alloy ingots, they were subjected to bulk rolling, surface flaw removal, and hot rolling (heating conditions: 1100 ° C. × 3 hr) to obtain hot rolled sheets. For alloys having the chemical components of D to I and K shown in Tables 1 to 3, after melting, refining outside the furnace and casting directly on a thin cast plate, and subsequently, at 1350 to 1000 ° C., a rolling reduction of 30
% And hot-rolled at 750 ° C. to obtain a hot-rolled sheet.
After annealing each hot-rolled sheet at 910 to 990 ° C,
Cold rolling, recrystallization annealing and finish cold rolling were sequentially performed, and the material No. having the degree of crystal plane integration and the average crystal grain size in the thickness direction as shown in Tables 4 and 5 was obtained. 1 to No.
31 alloy thin plates were obtained. In addition, {331}, $ 21
The degree of integration of each crystal plane of {0} and {211} was determined by the X-ray diffraction method described above.

【0030】上記のようにして得られた各合金薄板の表
面にレジストパターンを設け、レジスト開口径135μ
mにおけるエッチングファクターを測定した。このエッ
チングファクターの測定は、上記試料を45ボーメ、塩
化第2鉄溶液、液温40℃、スプレー圧2.5kg/c
2にて50秒エッチングした後、図5に示す寸法を測
定し算出した。また、材料No.1〜No.24、N
o.29〜No.31の合金薄板をフォトエッチングに
よりフラットマスクに加工してその光線透過量を測定
し、この値を同寸法の低炭素鋼のフラットマスクの光線
透過量で割り、これをフラットマスクの光線透過率とし
た。また、これらのフラットマスクのエッチング端面の
表面粗さを非接触型のレーザー粗さ計で測定した。カッ
トオフ値は0.02mmであり、端面のテーパー形状部
分はうねり成分として除去することにより粗さ曲線を抽
出し、この曲線から中心線平均粗さ(Ra)を求めた。
また、フラットマスクのむら品位は肉眼観察して判定し
たものであり、図2と同じ基準にて求めた。また、材料
No.25〜No.28の各合金薄板については、フォ
トエッチング後のエッチング端面の表面粗さを前記した
と同じ方法で測定した。また、これら試料にはハンダメ
ッキを施し、ハンダメッキ性の良否を評価した。
A resist pattern was provided on the surface of each alloy thin plate obtained as described above, and the resist opening diameter was 135 μm.
The etching factor at m was measured. The measurement of the etching factor was performed by measuring the above sample at 45 Baume, a ferric chloride solution, a liquid temperature of 40 ° C., and a spray pressure of 2.5 kg / c.
After etching at m 2 for 50 seconds, the dimensions shown in FIG. 5 were measured and calculated. In addition, material No. 1 to No. 24, N
o. 29-No. The thin alloy plate of No. 31 was processed into a flat mask by photoetching, and its light transmission was measured. This value was divided by the light transmission of a low carbon steel flat mask of the same dimensions, and this was used as the light transmission of the flat mask. did. The surface roughness of the etching end face of each of these flat masks was measured by a non-contact type laser roughness meter. The cutoff value was 0.02 mm, and the roughness curve was extracted by removing the tapered portion of the end face as a waviness component, and the center line average roughness (Ra) was determined from this curve.
The uneven quality of the flat mask was determined by visual observation, and was determined based on the same standard as in FIG. In addition, material No. 25-No. For each of the alloy thin plates of No. 28, the surface roughness of the etched end face after photoetching was measured by the same method as described above. Further, these samples were subjected to solder plating, and the quality of solder plating was evaluated.

【0031】表3および表4に示される結果から明らか
なように、本発明範囲内の{331}、{210}およ
び{211}の各結晶面の集積度および{210}/
({331}+{211})の値を有する材料No.6
〜No.27、No.29〜No.31は、エッチング
端面の表面粗さがRa0.90μm以下であり、シャド
ウマスク用材料とした場合のフラットマスクの光線透過
率が1.0以上であって従来の低炭素鋼のフラットマス
ク以上の明るさが得られており、また、ICリードフレ
ーム用材料とした場合のハンダメッキ性にも優れてい
る。また、これらの材料のエッチングファクターはいず
れも1.8以上であり、また、材料No.6〜No.2
4によるフラットマスクのむら品位も実用上問題のない
レベルにある。
As apparent from the results shown in Tables 3 and 4, the degree of integration of each crystal plane of {331}, {210} and {211} and {210} /
({331} + {211}). 6
-No. 27, no. 29-No. Reference numeral 31 denotes a flat mask having a surface roughness Ra of 0.90 μm or less, a light transmittance of a flat mask of 1.0 or more when used as a shadow mask material, and a brightness higher than that of a conventional low carbon steel flat mask. , And also has excellent solder plating properties when used as an IC lead frame material. The etching factors of these materials are all 1.8 or more. 6-No. 2
The uneven quality of the flat mask according to No. 4 is also at a level where there is no practical problem.

【0032】また、材料No.6、No.9〜No.1
4の各合金薄板は、{210}/({331}+{21
1})の値が0.25〜0.26であるが、No.9〜
No.14の各合金薄板は板厚方向の平均結晶粒径が1
0μm以下であるため、板厚方向での平均結晶粒径が1
1.1μmであるNo.6に較べエッチングファクター
はより高い値を示し、エッチング性により優れているこ
とが判る。さらに、材料No.9〜No.14の各合金
薄板の中でも、板厚方向の平均結晶粒径が小さい材料ほ
どエッチングファクターが高くなっており、エッチング
ファクターを高めるには板厚方向の平均結晶粒径を小さ
くすることが有効であることが判る。
Further, the material No. 6, no. 9-No. 1
No. 4 is {210} / ({331} + $ 21)
1) is 0.25 to 0.26, 9 ~
No. Each alloy thin plate of No. 14 has an average crystal grain size of 1 in the thickness direction.
0 μm or less, the average crystal grain size in the thickness direction is 1
No. 1.1 μm. As compared with No. 6, the etching factor shows a higher value, which indicates that the etching property is more excellent. Further, the material No. 9-No. Among the alloy thin plates of No. 14, the material having a smaller average crystal grain size in the thickness direction has a higher etching factor, and in order to increase the etching factor, it is effective to reduce the average crystal grain size in the thickness direction. You can see that.

【0033】以上の本発明例に対し、材料No.1は
{331}結晶面の集積度が本発明の規定する上限値を
超えた比較例、No.2は{210}結晶面の集積度が
本発明の規定する上限値を超えた比較例、No.3は
{211}結晶面の集積度が本発明の規定する上限値を
超えた比較例であり、これらの比較例はいずれもエッチ
ング端面の表面粗さがRa0.90μmを超え、フラッ
トマスクの光線透過率は1.0未満であって本発明例に
較べてマスクの明るさが劣っている。材料No.4は
{210}/({331}+{211})の値が本発明
の規定する上限値を超えた比較例であり、フラットマス
クのむら品位が本発明例に較べて劣っている。また、材
料No.5は{210}/({331}+{211})
の値が本発明の規定する下限値未満の比較例であり、エ
ッチングファクターが1.80未満であって本発明が目
的とするエッチング性が得られていない。また、材料N
o.28は{210}結晶面および{211}結晶面の
各集積度が本発明の規定する上限値を超えた比較例であ
り、エッチング端面の表面粗さがRa0.90μmを超
え、エッチング後のハンダメッキ性が劣っている。
In contrast to the above examples of the present invention, the materials No. No. 1 is a comparative example in which the degree of integration of the {331} crystal plane exceeded the upper limit specified by the present invention. No. 2 is a comparative example in which the degree of integration of the {210} crystal plane exceeded the upper limit specified by the present invention; No. 3 is a comparative example in which the degree of integration of the {211} crystal plane exceeded the upper limit specified by the present invention. In each of these comparative examples, the surface roughness of the etched end face exceeded Ra 0.90 μm, The transmittance is less than 1.0, and the brightness of the mask is inferior to that of the example of the present invention. Material No. No. 4 is a comparative example in which the value of {210} / ({331} + {211}) exceeded the upper limit specified by the present invention, and the unevenness of the flat mask was inferior to that of the present invention. In addition, material No. 5 is {210} / ({331} + {211})
Is a comparative example in which the value is less than the lower limit specified by the present invention, and the etching factor is less than 1.80, and the etching property intended by the present invention is not obtained. The material N
o. Reference numeral 28 is a comparative example in which the degree of integration of the {210} crystal plane and the {211} crystal plane exceeded the upper limit specified by the present invention. The surface roughness of the etched end face exceeded Ra 0.90 μm, and the Poor plating properties.

【0034】以上の実施例から明らかなように、合金板
表面の{331}、{210}および{211}の各結
晶面の集積度を本発明が規定する範囲とすることによ
り、エッチング端面の表面粗さRaを適正化し、これに
よってフラットマスクの光線透過率を優れたレベルと
し、また、ハンダメッキ性も優れたものとすることがで
きる。さらに、各結晶面の集積度の比率:{210}/
({331}+{211})を本発明が規定する範囲内
とすることにより、エッチングファクターを効果的に高
め且つフラットマスクのむら品位を優れたものとするこ
とができ、また、これに加えて合金板の板厚方向での平
均結晶粒径を小さくすることにより、エッチングファク
ターをより高くすることが可能となる。
As is apparent from the above embodiment, by setting the degree of integration of each crystal plane of {331}, {210} and {211} on the surface of the alloy plate within the range defined by the present invention, the etching end face can be obtained. The surface roughness Ra is optimized, whereby the light transmittance of the flat mask can be set to an excellent level, and the solder plating property can also be made excellent. Furthermore, the ratio of the degree of integration of each crystal plane: {210} /
By making ({331} + {211}) within the range specified by the present invention, the etching factor can be effectively increased and the quality of the unevenness of the flat mask can be improved. The etching factor can be further increased by reducing the average crystal grain size in the thickness direction of the alloy plate.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【発明の効果】以上述べたように本発明の電子用合金薄
板は、エッチングファクターが高いため高精度で且つ均
一なエッチング穿孔が可能であり、また、シャドウマス
ク用材料とした場合のマスクの明るさも優れたレベルを
示し、しかも、マスクのむら品位にも優れている。ま
た、ICリードフレーム用材料とした場合のハンダメッ
キ性にも優れている。
As described above, the electronic alloy thin plate of the present invention has a high etching factor, so that it is possible to form holes with high precision and uniform etching. It also shows an excellent level, and also has excellent mask quality. Also, it has excellent solder plating properties when used as an IC lead frame material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】合金板表面での{331}、{210}および
{211}の各結晶面の集積度が異なる合金薄板につい
て、フラットマスクの光線透過率とエッチング端面の表
面粗さRaとの関係を示すグラフ
FIG. 1 shows the relationship between the light transmittance of a flat mask and the surface roughness Ra of an etched end face of alloy thin plates having different degrees of integration of {331}, {210}, and {211} crystal planes on the alloy plate surface. Graph showing

【図2】合金板表面での{331}、{210}および
{211}の各結晶面の集積度の比率:{210}/
({331}+{211})とエッチングファクターお
よびフラットマスクのむら品位との関係を示すグラフ
FIG. 2 shows the ratio of the degree of integration of each crystal plane of {331}, {210} and {211} on the surface of the alloy plate: {210} /
Graph showing the relationship between ({331} + {211}) and the etching factor and the unevenness of the flat mask.

【図3】合金板の板厚方向での平均結晶粒径と合金板表
面での{331}、{210}および{211}の各結
晶面の集積度の比率:{210}/({331}+{2
11})がエッチングファクターに及ぼす影響を示すグ
ラフ
FIG. 3 shows the ratio between the average grain size in the thickness direction of the alloy plate and the degree of integration of each crystal plane of {331}, {210} and {211} on the surface of the alloy plate: {210} / ({331} } + {2
Graph showing the effect of 11 影響) on the etching factor

【図4】{210}/〔{331}+{211}〕:
0.25とした時の合金板の板厚方向での平均結晶粒径
とエッチングファクターとの関係を示すグラフ
FIG. 4 {210} / [{331} + {211}]:
A graph showing the relationship between the average crystal grain size in the thickness direction of the alloy plate and the etching factor when the ratio is set to 0.25.

【図5】エッチングファクターの定義およびエッチング
端面を示す説明図
FIG. 5 is an explanatory view showing a definition of an etching factor and an etching end face.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 23/48 H01L 23/48 V (72)発明者 清水 義明 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平6−41688(JP,A) 特開 平3−97831(JP,A) 特開 昭62−174353(JP,A) 特開 昭62−149851(JP,A) 特開 平4−160112(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H01L 23/48 H01L 23/48 V (72) Inventor Yoshiaki Shimizu 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-6-41688 (JP, A) JP-A-3-97831 (JP, A) JP-A-62-174353 (JP, A) JP-A-62-149851 (JP, A) Kaihei 4-160112 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni含有量が34〜38wt%のFe−
Ni系合金薄板であり、合金板表面での{331}、
{210}および{211}の各結晶面の集積度が、
{331}:14%以下、{210}:14%以下、
{211}:14%以下であって、且つ下式を満足する
エッチング加工性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
1. A ferrous alloy having a Ni content of 34 to 38 wt%.
Ni-based alloy thin plate, {331} on the alloy plate surface,
The degree of integration of each crystal plane of {210} and {211} is
{331}: 14% or less, {210}: 14% or less,
{211}: An electronic alloy thin plate excellent in etching workability that is 14% or less and satisfies the following expression. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)
【請求項2】 Ni含有量が38〜52wt%のFe−2. An Fe-containing alloy having a Ni content of 38 to 52 wt%.
Ni系合金薄板であり、合金板表面での{331}、Ni-based alloy thin plate, {331} on the alloy plate surface,
{210}および{211}の各結晶面の集積度が、The degree of integration of each crystal plane of {210} and {211} is
{331}:14%以下、{210}:14%以下、{331}: 14% or less, {210}: 14% or less,
{211}:14%以下であって、且つ下式を満足する{211}: not more than 14% and satisfies the following expression
エッチング加工性に優れた電子用合金薄板。Alloy sheet for electronics with excellent etching processability. 0.2≦{210}/({331}+{211})≦1.00.2 ≦ {210} / ({331} + {211}) ≦ 1.0 但し {331}:{331}結晶面の集積度(%)However, {331}: Degree of integration of {331} crystal plane (%) {210}:{210}結晶面の集積度(%){210}: Degree of integration of {210} crystal plane (%) {211}:{211}結晶面の集積度(%){211}: degree of integration of {211} crystal plane (%)
【請求項3】 Ni含有量が28〜38wt%、Co含
有量が1wt%超7wt%以下のFe−Ni−Co系合
金薄板であり、 合金板表面での{331}、{210}
および{211}の各結晶面の集積度が、{331}:
14%以下、{210}:14%以下、{211}:1
4%以下であって、且つ下式を満足するエッチング加工
性に優れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
3. Ni content of 28 to 38 wt%, Co content
Fe-Ni-Co based alloy having a content of more than 1 wt% and 7 wt% or less
It is a thin gold plate, {331}, {210} on the alloy plate surface
And the integration degree of each crystal plane of {211} is {331}:
14% or less, {210}: 14% or less, {211}: 1
An electronic alloy thin plate having an etching processability of 4% or less and satisfying the following expression. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)
【請求項4】 Ni含有量が27〜32wt%、Co含4. Ni content of 27-32 wt%, Co content
有量が1wt%超20wt%以下のFe−Ni−Co系Fe-Ni-Co-based material having a content of more than 1 wt% and not more than 20 wt%
合金薄板であり、合金板表面での{331}、{21Alloy thin plate, {331}, {21} on the surface of the alloy plate
0}および{211}の各結晶面の集積度が、{33The degree of integration of each crystal plane of {0} and {211} is {33}
1}:14%以下、{1}: 14% or less, { 210}:14%以下、{21210: 14% or less, $ 21
1}:14%以下であって、且つ下式を満足するエッチ1}: Etch that is 14% or less and satisfies the following expression
ング加工性に優れた電子用合金薄板。Alloy sheet for electronics with excellent workability. 0.2≦{210}/({331}+{211})≦1.00.2 ≦ {210} / ({331} + {211}) ≦ 1.0 但し {331}:{331}結晶面の集積度(%)However, {331}: Degree of integration of {331} crystal plane (%) {210}:{210}結晶面の集積度(%){210}: Degree of integration of {210} crystal plane (%) {211}:{211}結晶面の集積度(%){211}: degree of integration of {211} crystal plane (%)
【請求項5】 Ni含有量が34〜38wt%、Cr含
有量が3.0wt%以下のFe−Ni−Cr系合金薄板
であり、合金板表面での{331}、{210}および
{211}の各結晶面の集積度が、{331}:14%
以下、{210}:14%以下、{211}:14%以
下であって、且つ下式を満足するエッチング加工性に優
れた電子用合金薄板。 0.2≦{210}/({331}+{211})≦1.0 但し {331}:{331}結晶面の集積度(%) {210}:{210}結晶面の集積度(%) {211}:{211}結晶面の集積度(%)
5. Ni content of 34 to 38 wt%, Cr content
Fe-Ni-Cr-based alloy sheet having a weight of 3.0 wt% or less
And the degree of integration of each crystal plane of {331}, {210} and {211} on the alloy plate surface is {331}: 14%
Hereafter, {210}: 14% or less, {211}: 14% or less, and an electronic alloy thin plate excellent in etching workability satisfying the following expression. 0.2 ≦ {210} / ({331} + {211}) ≦ 1.0 where {331}: degree of integration of {331} crystal plane (%) {210}: degree of integration of {210} crystal plane ( %) {211}: degree of integration of {211} crystal plane (%)
【請求項6】 板厚方向での平均結晶粒径が10μm以
下である請求項1、2、3、4または5に記載のエッチ
ング加工性に優れた電子用合金薄板。
6. The electronic alloy sheet average grain size in the thickness direction with excellent etching workability according to claim 1, 2, 3, 4 or 5 is 10μm or less.
JP20187993A 1992-01-24 1993-07-22 Alloy thin sheet for electronics with excellent etching processability Expired - Lifetime JP3336691B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20187993A JP3336691B2 (en) 1993-07-22 1993-07-22 Alloy thin sheet for electronics with excellent etching processability
US08/153,890 US5605582A (en) 1992-01-24 1993-11-17 Alloy sheet having high etching performance
CN93120826A CN1035778C (en) 1993-07-22 1993-12-15 An alloy sheet having high etching performance
KR1019930028313A KR960008889B1 (en) 1993-07-22 1993-12-17 Thin alloy sheet for electronic instrument having excellent etching workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20187993A JP3336691B2 (en) 1993-07-22 1993-07-22 Alloy thin sheet for electronics with excellent etching processability

Publications (2)

Publication Number Publication Date
JPH0734201A JPH0734201A (en) 1995-02-03
JP3336691B2 true JP3336691B2 (en) 2002-10-21

Family

ID=16448378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20187993A Expired - Lifetime JP3336691B2 (en) 1992-01-24 1993-07-22 Alloy thin sheet for electronics with excellent etching processability

Country Status (1)

Country Link
JP (1) JP3336691B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039228A1 (en) * 2009-08-28 2011-03-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device
JP5721691B2 (en) * 2012-11-20 2015-05-20 Jx日鉱日石金属株式会社 Metal mask material and metal mask

Also Published As

Publication number Publication date
JPH0734201A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US5252151A (en) Fe-Ni alloy sheet for shadow mask having a low silicon segregation and method for manufacturing same
KR100519520B1 (en) Invar alloy steel sheet material for shadow mask, method of production thereof, shadow mask, and color picture tube
US5605582A (en) Alloy sheet having high etching performance
WO2000077269A1 (en) Fe-Ni BASED MATERIAL FOR SHADOW MASK
JP3336691B2 (en) Alloy thin sheet for electronics with excellent etching processability
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP2929881B2 (en) Metal sheet for shadow mask with excellent etching processability
JPH0826437B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JP3327903B2 (en) Fe-Ni shadow mask material
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JPH0474850A (en) Fe-ni alloy thin sheet for shadow mask and its manufacture
JP2795028B2 (en) Metal sheet for shadow mask with excellent etching processability
KR100519615B1 (en) Thin Alloy Sheet of Low Thermal Expansion and Shadow Mask Using the Same
JPH0762495A (en) Thin alloy sheet for electronic instrument having excellent etching workability
JPH07116558B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
KR960008889B1 (en) Thin alloy sheet for electronic instrument having excellent etching workability
JP3288656B2 (en) Fe-Ni shadow mask material
JPH07116559B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JP3288655B2 (en) Fe-Ni shadow mask material
JP3327902B2 (en) Fe-Ni shadow mask material
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same
KR100407848B1 (en) Fe-Ni ALLOY FOR SHADOW MASK HAVING EXCELLENT PROPERTIES IN ETCHING WORKABILITY
JPH07268558A (en) Austenitic fe-ni alloy original sheet for shadow mask and its production
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask