WO2001020210A1 - Melangeur d'eau chaude et froide - Google Patents

Melangeur d'eau chaude et froide Download PDF

Info

Publication number
WO2001020210A1
WO2001020210A1 PCT/JP1999/004916 JP9904916W WO0120210A1 WO 2001020210 A1 WO2001020210 A1 WO 2001020210A1 JP 9904916 W JP9904916 W JP 9904916W WO 0120210 A1 WO0120210 A1 WO 0120210A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
temperature
bias
shaft
panel
Prior art date
Application number
PCT/JP1999/004916
Other languages
English (en)
French (fr)
Inventor
Michio Banno
Mamoru Hashimoto
Toshio Kawachi
Original Assignee
Inax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corporation filed Critical Inax Corporation
Priority to DE69939496T priority Critical patent/DE69939496D1/de
Priority to AU56487/99A priority patent/AU5648799A/en
Priority to ES99943248T priority patent/ES2251223T3/es
Priority to DE69927410T priority patent/DE69927410T2/de
Priority to CNB998099430A priority patent/CN1149345C/zh
Priority to EP05075211A priority patent/EP1542110B1/en
Priority to US09/582,106 priority patent/US6318638B1/en
Priority to PCT/JP1999/004916 priority patent/WO2001020210A1/ja
Priority to EP99943248A priority patent/EP1150054B1/en
Publication of WO2001020210A1 publication Critical patent/WO2001020210A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/134Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element measuring the temperature of mixed fluid
    • G05D23/1346Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element measuring the temperature of mixed fluid with manual temperature setting means

Definitions

  • the present invention relates to a hot water mixing apparatus, and more particularly to a thermostatic hot water mixing apparatus in which a valve body is biased from both sides by a bias panel and a temperature-sensitive panel made of a shape memory material.
  • the present invention in a low-temperature region where the panel constant of a temperature-sensitive panel using a shape memory alloy is extremely reduced, the operation of the bias spring acting on the valve body following the valve closing operation after the valve body is seated.
  • the tap water is urged in the valve closing direction of the hot water inlet by the adjusting member while using it as a member to relieve force, so that the hot water inlet can be forcibly shut off when only water is discharged.
  • the present invention relates to a control mechanism of a mixing device. Conventional technology
  • thermostat-type hot and cold water mixing device a device using a temperature-sensitive panel made of a shape memory material such as a shape memory alloy is known.
  • this type of hot and cold water mixing apparatus has a water valve and a hot water sheet provided in a cylindrical valve body.
  • a valve body that can move forward and backward in one axial direction is configured to be able to contact and separate from the water sheet and the hot water sheet, and a temperature-sensitive panel that urges the valve body in a direction to approach the hot water sheet;
  • a bias panel for urging in the sheet approach direction and a temperature control handle for moving the bias panel forward and backward are provided.
  • the bias spring moves back and forth in the axial direction, the biasing force of the valve body by the bias panel is changed, and the set water discharge temperature is changed.
  • the bias panel when the bias panel is moved backward, the urging force of the bias panel decreases, so that the valve element approaches the hot water sheet and separates from the water sheet, and the set temperature decreases.
  • the bias panel is moved forward, on the contrary, the biasing force of the bias panel increases, and the valve body moves away from the hot water sheet and approaches the water sheet, increasing the set temperature. Setting If the temperature of the mixed water deviates from the set temperature due to fluctuations in the hot water supply temperature or hot water supply pressure while the mixed water at the specified temperature is being discharged, the temperature-sensitive panel expands or contracts, and the valve body shifts and mixes. The water temperature automatically returns to the set temperature.
  • the relationship between the rotation angle of the temperature control handle and the amount of shift of the valve element is substantially linear as shown by the broken line in FIG. That is, for example, the temperature control handle was turned by a unit angle in a low temperature range of 30 ° C or lower, a medium temperature range of 30 to 50 ° C, and a high temperature range of 50 ° C or higher. The shift amount of the valve body at that time is almost the same. Therefore, between the low temperature range and the high temperature range, the rotation angle of the temperature control handle and the temperature of the discharge mixed water have a substantially linear relationship.
  • a first object is to provide a hot water mixing device.
  • a lumen 8002 for forming a flow path through the center of the valve case 800 is provided, and hot and cold water inlets 800 are provided on the peripheral surface of the valve case 800. 3 and 804 are formed. Then, at the positions of the hot water and water inlets 800 and 800, these inlets 800 A spool valve body 805 for controlling the opening area ratio of 3 and 804 to determine the amount of inflowing hot water and water is disposed slidably in the axial direction.
  • the spool valve element 800 has a hot-water valve element 800 a and a water-side valve element 805 which are integrally connected to each other, and has a temperature-sensitive spring 806 made of a shape memory alloy and a bias panel 800. It is urged in the opposite direction by 7 and is balanced. One end of the bias panel 807 is locked to the plug 808, and the biasing force of both springs 806 and 807 is changed by changing the axial position of the plug 808. By changing the balance position of the spool valve body 805, the inflow ratio of hot water is changed, and the temperature of the obtained hot water is changed.
  • the temperature-sensitive panel 806 detects this and reacts.
  • the temperature-sensitive spring 806 changes its urging force in accordance with the temperature of the hot water obtained by mixing, and moves the spool valve body 805 in a direction to correct the temperature change, thereby automatically adjusting the temperature. Has a function.
  • the control mechanism of the hot water mixing device using the temperature-sensitive spring 806 made of a shape memory alloy when the temperature of the hot and cold water to be mixed decreases, the panel constant of the temperature-sensitive panel 806 decreases, and the temperature-sensitive spring The bias generated at 806 becomes weaker. Therefore, when an operation is performed to discharge only water, the urging force for urging the spool valve body 805 is insufficient, and the hot water inlet 803 is not completely closed, so that the flow of hot water is reduced. There was a disadvantage that it was not possible to completely discharge only water.
  • the panel constant of the temperature-sensitive spring 806 is set to a large value in advance, when discharging only water, it is possible to overcome the biasing force of the bias panel 807 to make the hot water flow. Inlet 803 can be closed.
  • setting the spring constant of the temperature-sensitive spring 806 to a large value in advance has resulted in an increase in the size of the entire hot and cold water mixing apparatus, which has also caused a cost increase.
  • a member that adjusts the biasing force of the spring 807 may directly seat the spool valve body 805 on the hot water side valve seat. In the valve closing operation after the valve element 805 is seated, the disadvantage is that the operating force acts directly on the spool valve element 805 and receives the force that destroys the spool valve element 805. there were.
  • the present invention makes it possible to use a member that changes the biasing force of a bias panel in a low temperature range so that the hot water side valve body can be forcibly seated, and the seating is performed while buffering the force acting on the valve body with the bias panel. It is a second object of the present invention to provide a control mechanism of a hot and cold water mixing device which can be further urged in a valve closing direction. Disclosure of the invention
  • the hot and cold water mixing devices of claims 1 to 23 achieve the first object.
  • the hot and cold water mixing apparatus of the present invention wherein a water seat and a hot water seat are provided in a cylindrical valve body, and the water seat and the hot water can be moved back and forth in the axial direction of the valve body.
  • a water mixing device provided with a water discharge temperature setting member for moving the bias panel forward and backward in the axial direction of the valve body, wherein the valve element is located in a medium temperature discharge area;
  • An urging force switching means is provided for changing the urging force of the bias panel between when it is located in the high-temperature ejection region.
  • the biasing force of the bias spring is switched so that the temperature gradient in the middle temperature range becomes small.
  • a plurality of bias panels are provided as bias panels, and the switching means includes a part of the bias panel when the valve body is located in a low-temperature discharge region or a high-temperature discharge region.
  • the force is applied to the valve element, and when the valve element is located in the medium temperature discharge region, the urging forces of all the bias panels are applied to the valve element in series.
  • the set temperature of the mixed water is set to a low temperature range or a high temperature range.
  • the temperature is in the range, only the biasing force of a part of the bias panel acts on the valve body.
  • the bias temperature is set in the middle temperature range, the biasing force of the series connection of the first and second bias panels acts on the valve body.
  • the combined panel constants are a harmonic mean of the panel constants of each panel, and are smaller than the panel constants of the individual panels. Therefore, according to the hot and cold water mixing device of the present invention according to claim 2, the biasing force of the valve body by the bias spring becomes small in the middle temperature range, and the gradient of the shift amount of the valve body with respect to the rotation angle of the temperature control handle (accordingly, the water discharge temperature). And it is easy to fine-tune the temperature of the mixed water.
  • the bias of the bay spanner is stronger than in the middle temperature range, and this gradient becomes larger. Therefore, the discharge temperature of the mixed water in the middle temperature range can be set wide without increasing the rotation range of the temperature control handle.
  • the valve body is supported by a main shaft coaxially arranged with the valve body, and the axis of the valve body is A water discharge temperature setting member having a female screw on an inner peripheral surface, a rotating shaft arranged coaxially with the main shaft, and a male screw mating with the female screw; A cylindrical advancing / retreating shaft coaxially arranged with the main shaft, and a far-end side flange portion and a near-end side flange portion provided at an end farther from the valve body of the advance / retreat shaft and at an end closer to the valve body, respectively.
  • a hook which is movably fitted in the axial direction with respect to the advancing / retreating shaft, and which is restricted from moving in the valve body approaching direction by engaging with the proximal end; It is fitted to the main shaft so as to be movable in the axial direction, is disposed between the hook and the valve body, and is disposed in the longitudinal direction of the main shaft.
  • a sliding ring capable of abutting the hooked locking portion against the hook, a first bias panel is interposed between the sliding ring and the valve body in a storage state, and the hook The second bias panel is interposed between the and the far end side flange portion in a storage state.
  • the switching means includes: the main shaft protruding from the valve body; a flange-shaped locking portion provided at a tip of the main shaft; and the flange provided in the middle of the main shaft.
  • the flange-shaped locking portion and the stop ring When is located in the medium temperature discharge region, the flange-shaped locking portion and the stop ring are separated from each other, and the stopper ring is pressed against the distal end flange portion of the advance / retreat shaft by the second bias spring, and The flange-shaped locking portion and the slide ring are separated from each other, and the slide ring is pressed against the hook by the first bias spring.
  • the slide ring faces the slide ring. The movement of the hook in the valve body approaching direction is restricted by the engagement between the hook and the proximal end flange, and the urging force of the second bias panel is thereby adjusted.
  • the power is the valve and It may be made so as not to act on the retractable shaft.
  • the water discharge temperature setting member has a female screw on an inner peripheral surface, and is disposed coaxially with the valve body.
  • a clutch column whose movement in the valve body approach direction is restricted by contacting the valve body, wherein a first bias panel is interposed between the clutch column and the valve body in a storage state, and A second bias panel is interposed between the clutch column and the reciprocating shaft in a storage state.
  • the clutch column is engaged with the advance / retreat shaft to restrict the movement in the axial direction, or is engaged with the valve body to restrict the movement in the axial direction. It is preferred that this be done.
  • a hot water mixing apparatus is provided with a plurality of bias panels as bias panels, and the switching means is configured to detect a temperature when the valve body is located in a medium temperature discharge region.
  • a series biasing force of each bias panel is applied to the valve body in the direction opposite to the biasing force of the panel, and when the valve body is located in the low-temperature discharge area, the biasing force of some of the bias panel is biased in the same direction as the biasing force of the temperature-sensitive panel. It acts on the valve body.
  • the water discharge temperature setting member has a female screw on an inner peripheral surface, and is rotatably disposed around its axis.
  • the switching means of the bias panel includes: a protruding shaft protruding from the valve body toward the reciprocating shaft; a locking portion provided at a tip of the protruding shaft; and the second via.
  • a washer urged in a direction pressed against the advancing / retreating shaft by a spring; when the valve body is located in the high-temperature discharge region and the medium-temperature discharge region, the locking portion and the washer are separated from each other; Is pressed against the reciprocating shaft by a second bias spring.
  • the locking portion engages with the washer, and the valve portion of the clutch column approaches by the engaging portion.
  • the movement in the direction is regulated, whereby the urging force of the second bias panel is applied to the valve body via the washer and the protruding shaft in the same direction as the urging force of the temperature-sensitive panel.
  • the clutch column abuts on the valve body or the reciprocating shaft, and the movement of the clutch column in the axial direction is restricted.
  • the switching means comprises: a protruding shaft protruding from the valve body toward the reciprocating shaft; a first locking portion provided at a tip of the protruding shaft; A second locking portion provided in the middle of the protruding shaft, a first washer urged by the second bias panel in a direction pressed against the advance / retreat shaft, and pressed against the clutch column by the first bias panel A second washer urged in the direction, when the valve body is located in the medium temperature discharge region, the first locking portion and the first washer are separated from each other, and the first washer is The second biasing spring is pressed against the advancing / retracting shaft, and the second locking portion and the second washer are separated from each other, and the second washer is moved by the first bias panel.
  • the first locking portion engages with the first washer, and the engagement portion causes the clutch force ram to approach the valve body.
  • the biasing force of the second bias panel is applied to the valve body via the washer and the protruding shaft in the same direction as the biasing force of the temperature-sensitive panel, and the second bias panel is moved in the second direction.
  • the second locking portion may be engaged with the washer so that the biasing force of the first bias panel does not act on the valve element and the reciprocating shaft.
  • the switching means includes: a protruding shaft protruding from the reciprocating shaft toward the valve body; a locking portion provided at a tip of the protruding shaft; and the first bias panel. And a washer urged in a direction pressed against the valve body by the valve body.
  • the locking portion and the washer are separated from each other. The washer is pressed against the valve body by the first bias panel, and when the valve body is located in the low-temperature discharge area, the engaging portion engages with the washer, and the engaging column engages the clutch column.
  • the biasing force of the first bias panel is regulated in the same direction as the biasing force of the temperature-sensitive panel via the washer, the protruding shaft and the clutch column. It may be configured to be added. In this case, it is preferable that, when the valve body is located in the high-temperature discharge region, the clutch column abuts on the valve body or the advance / retreat shaft, and the movement of the clutch column in the axial direction is restricted.
  • the switching means comprises: a protruding shaft protruding from the reciprocating shaft toward the valve body; a first locking portion provided at a tip of the protruding shaft; A second locking portion provided in the middle, a first washer urged in a direction pressed against the valve body by the first bias panel, and pressed against the clutch column by the second bias spring A second washer urged in the direction, when the valve body is located in the medium temperature discharge region, the first locking portion and the first washer are separated from each other, and the first washer is The second biasing member is pressed against the valve body by the first bias spring, and the second locking portion and the second washer are separated from each other, and the second washer is pressed against the clutch column by the second bias spring.
  • the engaging portion engages with the washer, and
  • the engagement movement of the separating direction from the valve body of the clutch column is restricted by the engagement portion, by connexion urging force of the first Baiasupane is washer thereto, projecting shaft and click
  • the urging force of the temperature-sensitive panel is applied to the valve body via the latch column in the same direction as the urging force of the temperature-sensitive panel, and the second locking portion engages with the second washer, so that the urging force of the second bias panel is applied. It may be such that it does not act on the valve element and the reciprocating shaft.
  • a plurality of bias panels are provided as bias panels, and the switching means for switching the biasing force of the bias panel acting on the valve element includes the valve element.
  • the biasing force of all the bias panels is applied to the valve body in the opposite direction to the biasing force of the temperature-sensitive panel, and when the valve body is located in the medium-temperature discharge region, the biasing force of the temperature-sensitive panel is The biasing force of a part of the spanner is applied to the valve body in the opposite direction to the valve body, and when the valve body is located in the low-temperature discharge area, the valve body is directly advanced and retracted by the water discharge temperature setting member. is there.
  • the parallel biasing force of the plurality of bias panels presses the valve body in the opposite direction to the biasing force of the temperature-sensitive panel, so that the temperature control is performed.
  • the gradient of the shift amount of the valve body with respect to the rotation angle of the handle (and therefore the water discharge temperature) becomes large.
  • the valve body When the set temperature of mixed water is medium temperature, only a part of the bias panel pushes the valve body in the opposite direction to the biasing force of the temperature-sensitive panel, so the valve body shifts with respect to the rotation angle of the temperature control handle.
  • the gradient of the volume (and therefore the temperature of the spout) is small.
  • the valve body moves forward and backward together with the water discharge temperature setting member such as an advancing / retreating shaft. The gradient becomes large.
  • valve body is supported by a main shaft coaxially arranged with the valve body, and the main shaft is connected to one axis of the valve body.
  • the water discharge temperature setting member has a female screw on an inner peripheral surface thereof, and has a rotating shaft rotatably disposed around the axis thereof, and a male screw combined with the female screw.
  • a cylindrical reciprocating shaft disposed coaxially with the rotating shaft
  • the switching means comprises: a protruding shaft protruding from the main shaft toward the reciprocating shaft; A locking portion provided at the tip of the valve, and a washer that can be brought into contact with the locking portion from the valve body side, and a first bias panel is disposed between the washer and the valve body.
  • the first bias panel which has obtained a reaction force on the advancing / retracting axis, urges the valve body, and the valve body moves to the medium temperature discharge region.
  • the locking portion engages with the washer, whereby the urging force of the first bias panel to the valve body is released, and when the valve body is located in the low-temperature discharge region, the valve body moves forward and backward.
  • the shaft is engaged and both are integrally advanced and retracted.
  • a plurality of bias springs are provided as bias panels
  • the switching means for switching the biasing force of the bias panel acting on the valve body includes: When the valve element is located in the high-temperature discharge area, the parallel urging force of all the bias panels is applied to the valve element in a direction opposite to the urging force of the temperature-sensitive panel. The biasing force of a part of the spanner is applied to the valve body in the direction opposite to the biasing force.
  • the biasing force of another bayspane is applied in the same direction as the biasing force of the temperature-sensitive panel. It is characterized by acting on
  • the other bias panel urges the valve body in the same direction as the temperature-sensitive panel. Also in this case, the gradient of the shift amount of the valve body with respect to the rotation angle of the temperature control handle (therefore, the water discharge temperature) becomes large.
  • the water discharge temperature setting member has a female screw on the inner peripheral surface, and a rotation shaft arranged rotatably around the axis thereof, A cylindrical advance / retreat shaft coaxially disposed with the rotation shaft, wherein a second via spanner is disposed between the advance / retreat shaft and the valve body; First and second flanges provided on the column in the axial direction so as to be spaced apart from each other, and a first flange and a second flange respectively disposed on opposing surfaces of the first flange and the second flange. A first washer and a second washer, and a first bias bar interposed between the first washer and the second washer in a storage state.
  • first and second shafts are engaged with the first washer when the advancing and retreating shaft moves in a direction away from the valve body, and press the first washer in a direction away from the valve body.
  • a flange portion provided on the advance / retreat shaft engages with the second washer when the advance / retreat shaft moves in a direction approaching the valve body, and a direction in which the second washer approaches the valve body. It is preferable to provide a step portion that presses the surface.
  • the control mechanism of the hot and cold water mixing device is for achieving the second object, wherein a hot water and water inflow port is provided on a peripheral surface of the main body, and a valve disposed in a lumen of the main body.
  • An adjusting member is provided to urge the body with the temperature-sensitive panel and the bias panel, and to control the position of the valve body by changing the biasing force of the bias panel.
  • the valve body is provided at one end of the bias panel and the adjusting member is provided at the other end.
  • the bias panel By forming a contact portion that can directly or indirectly contact the surface, and by forming a contact portion that can directly or indirectly contact the valve body contact surface of the bias panel on the adjustment member, at least When the hot water inlet is closed, the bias panel turns the valve And it is characterized in that it is biased in the closing direction.
  • the panel constant of the temperature-sensitive spring is so small that it may not be able to adequately cope with the hot water supply pressure.
  • a cushioning member is provided to reduce the operating force applied to the valve body from the time the valve body is seated to the time after the valve body is seated.
  • the axial position of the valve body can be controlled via the adjustment member while using the valve.
  • the bias spring acts to bias the valve body in the valve closing direction.
  • FIG. 1 is a sectional view of a hot water mixing apparatus according to a first preferred embodiment.
  • FIG. 2 is a cross-sectional view of the hot and cold water mixing apparatus of FIG. 1 in a high-temperature water discharge state.
  • FIG. 3 is a cross-sectional view of the hot and cold water mixing apparatus of FIG. 1 in a low-temperature water discharge state.
  • FIG. 4 is an operation characteristic diagram of the hot water mixing apparatus of FIG.
  • FIG. 5a and 5b are explanatory views of the temperature control handle of the hot and cold water mixing device.
  • FIG. 6 is a sectional view of a hot and cold water mixing apparatus according to a second preferred embodiment.
  • FIG. 7 is a sectional view of a hot and cold water mixing apparatus according to a third preferred embodiment.
  • FIG. 8 is a sectional view of a hot water mixing apparatus according to a fourth preferred embodiment.
  • FIG. 9 is a sectional view of a hot water mixing apparatus according to a fifth preferred embodiment.
  • FIG. 10 is a sectional view of a hot water mixing apparatus according to a sixth preferred embodiment.
  • FIG. 11 is a sectional view of a hot water mixing apparatus according to a seventh preferred embodiment.
  • FIG. 12 is a sectional view of a hot water mixing apparatus according to an eighth preferred embodiment.
  • FIG. 13 is a sectional view of a hot water mixing apparatus according to a ninth preferred embodiment.
  • FIG. 14 is a cross-sectional plan view of a hot water mixing apparatus according to a tenth preferred embodiment.
  • FIG. 15A is a perspective view showing a flow channel dividing member of the hot water mixing apparatus according to the tenth preferred embodiment, and
  • FIG. 15B is a front view thereof.
  • FIG. 16H is a side view showing a water-side valve element of the hot water mixing apparatus according to the tenth preferred embodiment
  • FIG. 16B is a rear view thereof.
  • FIG. 17A is a rear view showing an adjusting member of the hot water mixing apparatus according to the tenth preferred embodiment
  • FIG. 17B is a side view thereof.
  • FIG. 18B is a side view showing a sliding connection member of the hot water mixing apparatus according to the tenth preferred embodiment, and FIG. 18B is a rear view thereof.
  • FIG. 19 is a cross-sectional plan view of the hot and cold water mixing apparatus according to the eleventh preferred embodiment.
  • FIG. 20 is a longitudinal sectional view showing a conventional hot and cold water mixing apparatus.
  • FIG. 1 is a cross-sectional view of a hot-water mixing device according to a first preferred embodiment (a preferred embodiment of the invention according to claims 1 to 5)
  • FIG. 2 is a cross-sectional view of the hot-water mixing device at the time of high-temperature water discharge
  • FIG. It is sectional drawing at the time of low temperature water discharge of a hot-water mixing apparatus.
  • left and right refer to the left and right in FIGS.
  • a water inlet 12 and a hot water inlet 14 are provided on the peripheral surface of the cylindrical valve body 110, and a mixed water outlet 16 is provided on the left end.
  • the hot water inlet 14 is located on the left end side of the water inlet 12.
  • Body between these inlets 1 2, 1 4 The protrusion 20 is provided by projecting the inner peripheral surface inward.
  • the end face of the protrusion 20 is a water sheet 22, and the left end face is a hot water sheet 24.
  • An annular water valve body 32 facing the water sheet 22 and an annular water valve body 34 facing the hot water sheet 24 are fitted into the cross-shaped portion 30a of the main shaft 30. .
  • the cross-shaped portion 30a has a cross-shaped cross section perpendicular to the axis of the main shaft 30.
  • the main shaft 30 can be pressed rightward by a temperature-sensitive panel 40 made of a shape memory alloy, and can be pressed leftward by a first bias spring 42 and a second bias spring 44. ing.
  • a rotary shaft 50, a reciprocating shaft 52, a hook 54 and a slide ring 56 are arranged so as to surround the main shaft 30.
  • the handle mounting portion 50a at the right end of the rotating shaft 50 protrudes rightward from the shaft hole 60 of the body 110, and a handle (not shown) is fixed thereto.
  • the E-ring 62 is fitted to the neck of the handle mounting portion 50a, so that the rotating shaft 50 cannot move forward or backward to the left.
  • 64 indicates an O-ring.
  • the left end side of the rotating shaft 50 has a cylindrical shape, and a female screw 50b is provided on an inner periphery thereof.
  • a male screw 52b provided on the outer periphery of the end of the cylindrical advance / retreat shaft 52 is engaged with the female screw 50b, and the rotation of the rotary shaft 50 causes the advance / retreat shaft 52 to move left and right. I do.
  • a flange (far end flange) 52 a protrudes inward from the right end of the reciprocating shaft 52, and a stopper ring 68 is locked to the flange 52 a.
  • the stopper 68 can slide in the left-right direction along the inner peripheral surface of the reciprocating shaft 52.
  • the tip of the second bias spring 44 is in contact with the stopper ring 68.
  • a flange portion (near end side flange portion) 50c is protruded outward, and a hook portion 54c at the right end of the hook 54 is formed on the flange portion 50c. It can be locked.
  • the left end of the hook 54 is a disk portion 54a perpendicular to the axis of the main shaft 30, and a plurality of leg portions 54b from the outer periphery of the disk portion 54a are connected to the main shaft 30. It extends rightward in a direction parallel to the axis. The tip of the leg portion 54b is bent inward to form the claw portion 54c.
  • the left end of the second bias panel 44 is in contact with the disk portion 54a.
  • the slide ring 56 overlaps the disk portion 54a, and the slide ring
  • the right end of the first bias spring 42 is in contact with the ring 56.
  • the left end of the first bias spring 42 is in contact with the inward flange 32 a of the water valve body 32.
  • Mizubentai 3 2 left side right end side of the c Yubentai 3 4 are fitted slidably in a cross-shaped portion 3 0 a main shaft 3 0 sliding in the cross saphenous unit 3 0 a Fits freely outside.
  • Seal rings 72 and 74 made of highly slidable fluororesin are fitted on the water valve body 32 and the hot water valve body 34, respectively. These seal rings 72, 74 are in contact with the inner peripheral surface of the body 10 in a watertight manner.
  • the right end of the main shaft 30 is provided with a flange 30 b (flange-shaped locking portion) large enough to enter the flange portion 52 a of the advance / retreat shaft 52 and come into contact with the stopper 68. .
  • a flange 30 c (flange-shaped locking portion) having a size capable of contacting the slide ring 56 is protruded from an intermediate portion of the main shaft 30.
  • the temperature-sensitive panel 40 shrinks, the main shaft 30 moves to the left, and the water sheet 22
  • the gap between the hot water and the water valve body 32 is narrowed, and the gap between the hot water sheet 24 and the hot water valve body 34 is widened, so that the mixed water temperature recovers (rises) to the set temperature.
  • the temperature-sensitive panel 40 extends, and the water valve body 32 and the hot water valve body 34 are located to the right along with the main shaft 30, and the water circulation is performed. The gap widens and the hot water flow gap narrows, and the mixed water temperature recovers (falls) to the set temperature.
  • the forward / backward shaft 52 moves to the left as the rotating shaft 50 rotates in the forward direction, and the stopper ring stops. 6 8 also moves to the left.
  • the bias bias panel 4 2, 4 4 The pressing force to the left becomes stronger, the valve bodies 32 and 34 shift to the left along with the main shaft 30, the hot water flow gap widens, the water flow gap narrows, and the temperature of the mixed water rises.
  • the rightward pressing force of the temperature sensing spring 40 and the leftward pressing force of the bias bias springs 42 and 44 are balanced.
  • the temperature-sensitive panel 40 expands and contracts to restore the temperature of the mixed water to the set temperature.
  • the reciprocating shaft 52 moves to the right with the rotation of the rotating shaft 50 in the reverse direction.
  • the stopper ring 68 also moves to the right.
  • the biasing force of the bias bias springs 4 2, 4 4 to the left decreases, and the valve bodies 3 2, 3 4 shift to the right along with the main shaft 30, narrowing the hot water flow gap and water flow. The gap widens and the temperature of the mixed water drops.
  • the rightward pressing force of the temperature sensing spring 40 and the leftward pressing force of the bias bias springs 42, 44 are balanced.
  • the temperature-sensitive spring 40 expands and contracts to restore the temperature of the mixed water to the set temperature.
  • both the bias bias springs 42 and 44 are effective as described above. Assuming that the spring constant of each bias bias panel 42 is ⁇ , k 2, the pressing force to the left of the spindle 30 is the combined spring force of the bias bias panels 42, 44, and the spring constant is 1
  • the ratio a ZA of the stroke amount (A) of the rotating shaft 50 and the reciprocating shaft 52 to the shift amount (a) of the valve elements 32 and 34 is relatively high. small.
  • the shift amount (a) of the valve bodies 32 and 34 when the rotary shaft 50 rotates by a unit angle is relatively small.
  • the reciprocating axis 52 moves largely to the left and the second The slide ring 56 pressed by the bias spring 44 directly contacts the right end face of the water valve body 32. Therefore, when the handle is turned to the high temperature side exceeding 50 ° C., as shown in FIG. 2, the reciprocating shaft 52 biases the main shaft 30 to the left only through the second bias spring 44. become.
  • the panel constant when only the second bias spring 44 presses is k 2, which is larger than the composite spring constant 1 / (1 / k! + 1 / k 2) in the middle temperature range.
  • the ratio a ZA between the stroke amount (A) of the reciprocating shaft 52 and the shift amount (a) of the valve elements 32 and 34 is larger than that in the middle temperature range. Therefore, the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the middle temperature range, and the temperature straight line in the graph of Fig. 4 has a larger gradient in the high temperature range than in the middle temperature range. . In other words, above 50 ° C, the water discharge temperature changes drastically with a slight turn of the handle.
  • the reciprocating shaft 52 moves largely to the right, and the flange 5 2 c of the reciprocating shaft 52 engages the claw 5 4 c of the hook 54. Then, the hook 54 moves rightward together with the reciprocating shaft 52. Then, the slide ring 56 hits the flange 30 c, and the first bias spring 42 projects between the water valve body 32 and the slide ring 56 (flange 30 c), and the first bias The pressing force of the spring 42 no longer acts on the main shaft 30.
  • the reciprocating shaft 52 moves further to the right and the flange 30b at the right end of the main shaft 30 stops. 6
  • the second bias spring 44 presses the main shaft 30 rightward through the stopper ring 68 and the flange 30 b, and the hot water valve body 34 rightward of the temperature-sensitive spring 40. It is pressed against the hot water sheet 24 by the urging force.
  • the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the middle temperature range
  • the temperature straight line in the graph of Fig. 4 shows that the gradient in the low temperature range is larger than that in the middle temperature range.
  • the stop ring 68 hits the flange 30b before the sliding ring 56 hits the flange 30c. You may comprise so that it may be.
  • one valve element 33 is configured to adjust both the water flow gap and the hot water flow gap.
  • the water inlet 12 is located on the left end side of the hot water inlet 22, contrary to FIGS. 1 to 3, and the water sheet 22 is also higher than the hot sheet 24. It is located on the left end side.
  • the valve body 33 includes a central shaft portion 33 C located on the axis of the cylindrical valve body 110 A, and flanges 33 provided on the left and right ends of the central shaft portion 33 C.
  • Body 1 OA seal ring 73 sliding on the inner surface of OA in a watertight manner, and flanges 3 3 A, 3 3 B,
  • the right end of the temperature sensing spring 40 is in contact with the flange 33A.
  • the left end of the first bias spring 42 is in contact with the flange 33B.
  • a clutch column 80 is provided between the valve element 33 and the reciprocating shaft 52.
  • the clutch column 80 can move back and forth in the left-right direction along the inner peripheral surface of the body 110A.
  • a flange portion 80a protrudes from the inner peripheral surface of the clutch column 80, and a first bias panel is provided between the flange portion 80a and the flange 33B of the valve body 33. 42 are interposed in the storage state.
  • a second bias panel is provided between the flange 80a and the flange 52a of the reciprocating shaft 52.
  • a collar is provided on the inner peripheral surface at the right end of the clutch column 80.
  • 80 b is protruded, and the flange 8 O b is engageable with a flange 52 c on the outer peripheral side of the left end of the reciprocating shaft 52.
  • FIG. 6 shows a state in which the water discharge temperature (mixed water temperature) of the hot and cold water mixing apparatus is set in a medium temperature range of, for example, 30 to 50.
  • the combined pressing force of the bias springs 4 2 and 4 4 arranged in series acts on the valve body 33 to the left, and the pressing force of the temperature sensing spring 40 moves to the right against the valve body 33. And the pressing forces of both are balanced. If the mixed water temperature falls below the set temperature due to fluctuations in the hot water supply temperature and hot water supply pressure in this medium temperature water discharge state, the temperature-sensitive panel 40 shrinks, the valve body 33 moves to the left, and the water The water flow gap between the valve 22 and the valve body 3 3 becomes narrower, and the hot water sheet 24 and the valve body
  • the hot water flow gap between 3 and 3 widens, and the mixed water temperature recovers (rises) to the set temperature. Conversely, when the temperature of the mixed water becomes higher than the set temperature, the temperature-sensitive panel 40 extends, the valve element 33 is positioned to the right, the water flow gap widens and the hot water flow gap narrows, and The water temperature recovers (reduces) to the set temperature.
  • the reciprocating shaft 52 moves to the right with the rotation of the rotating shaft 50 in the reverse direction.
  • the clutch column 80 also moves to the right.
  • the pressing force of the bias bias panels 42, 44 to the left decreases, the valve element 33 shifts to the right, and the hot water flow gap increases. 'The water flow gap widens as it narrows, and the temperature of the mixed water drops.
  • the rightward pressing force of the temperature sensing spring 40 and the leftward pressing force of the bias bias springs 42 and 44 are balanced.
  • the temperature-sensitive spring 40 expands and contracts to restore the temperature of the mixed water to the set temperature.
  • both the bias bias springs 42 and 44 arranged in series are effective, and the series composite panel constant 1Z to press the valve body 3 3 to the left by (1 / k! + 1 / k 2).
  • the temperature line in the graph of FIG. 4 has a small gradient in the middle temperature range, similarly to the hot and cold water mixing devices of FIGS.
  • the valve body 33 is only affected by the balance between the right pressing force of the temperature-sensitive spring 40 and the left pressing force of one of the bias springs 42 or 44. You will move forward and backward.
  • the spring constant of the bias spring 42 or 44 is k or k 2, both of which are larger than the composite spring constant 1Z (1 / k! + 1 / k 2 ) in the medium temperature range. Therefore, the ratio aZA between the stroke amount (A) of the reciprocating shaft 52 and the shift amount (a) of the valve body 33 is larger than that in the middle temperature range.
  • the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the middle temperature range, and the temperature straight line has a larger gradient in the high temperature range than in the middle temperature range as shown in the graph of Fig. 4. Obviously, the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the middle temperature range, and the temperature straight line has a larger gradient in the high temperature range than in the middle temperature range as shown in the graph of Fig. 4. Become.
  • the reciprocating shaft 52 moves largely to the right, and the flange 52 c of the reciprocating shaft 52 and the flange 80 b of the clutch column 80 are engaged. Accordingly, the pressing force of the second bias spring 44 does not act on the valve element 33.
  • the reciprocating axis 5 2 And the clutch column 80 is like an integral rigid body. Therefore, when the handle is turned to the low temperature side of less than 30 ° C., the clutch column 80 moves forward and backward integrally with the reciprocating shaft 52, and the stroke of the rotating shaft 50 and the reciprocating shaft 52.
  • the ratio a ZA between the quantity (A) and the shift quantity (a) of the valve element 33 is larger than in the case of the medium temperature range.
  • the amount of change in the set temperature when the handle is turned by a unit angle is larger than that in the middle temperature range, and the temperature straight line has a larger gradient in the low temperature range than in the middle temperature range as shown in the graph of Fig. 4.
  • a pair of flanges 33 1 and 33 2 are provided on the outer periphery of the flange 33 B of the valve element 133.
  • the flanges 331 and 332 are arranged at predetermined intervals in the axial direction of the valve element 133.
  • the other structure of the valve element 133 is the same as the valve element 33 of FIG. 6 described above.
  • the clutch column 8OA has an inward flange 80c on the left end side, and the flange 80c is arranged between the flanges 331 and 3332. Unlike the clutch column 80 of FIG. 6, the collar portion 80b is not provided. Further, unlike the reciprocating shaft 52 in FIG. 6, the reciprocating shaft 52 is not provided with a flange portion 52c.
  • the reciprocating shaft 52 is pressed against the clutch column 8 OA when the high temperature is set at 50 and the second bias panel 44 and the temperature-sensitive spring 4 are set.
  • the valve body 33 may be configured to advance and retreat according to the balance with zero.
  • a hot water mixing apparatus according to a fourth preferred embodiment (claims 12, 13, 14, 15) will be described with reference to FIG.
  • a protruding shaft 3 3 4 protrudes rightward from the valve body 2 3 3, and a flange (locking portion) 3 3 5 at the tip of the protruding shaft 3 3 4 Can be engaged with the advance / retreat shaft 52 via the washer 85.
  • the washer 85 is pressed against the left end face of the flange portion 52 a of the advance / retreat shaft 52 by the second bias spring 44.
  • the other configuration of the hot water mixing apparatus of FIG. 8 is the same as the hot water mixing apparatus of FIG. 6, except that the left end of the reciprocating shaft 52 is extended leftward.
  • valve element 2 3 3 is strongly urged rightward by the parallel urging force of the urging force of the temperature sensing spring 40 and the urging force of the second bias panel 44, while the valve element 2 3 3
  • the biasing force applied to the left is only the biasing force of the first bias spring 42.
  • the ratio a / A of the stroke amount (a) of the valve element 2 33 to the stroke amount (A) of the reciprocating shaft 52 becomes larger than in the case of the middle temperature range, and the gradient of the temperature line as shown in FIG. Increases in the low temperature range.
  • the flanges 80b and 52c may come into contact before the washer 85 and the flange 33 come into contact with each other. On the contrary, the contact may be made later or the contact may be made at the same time.
  • a hot water mixing apparatus according to a fifth preferred embodiment (claim 16) will be described with reference to FIG.
  • a first flange 33 5 as a first locking portion at the tip of a protruding shaft 3 34 advances and retreats through a first washer 85, similarly to the hot water mixing apparatus of FIG.
  • the washer 85 is pressed against the left end face of the flange 52 a of the shaft 52 by a second bias spring 44 so as to be able to engage with the shaft 52.
  • a second flange 334F as a second locking portion projects from the projecting shaft 334.
  • a second washer 85A which overlaps from the left side with respect to the flange portion 80a of the clutch column 80, is externally fitted to the projecting shaft 3334.
  • the second flange 3 3 4F freely passes through the inner hole of the flange portion 80a,
  • the inner hole of the second washer 85A has a size that cannot pass therethrough.
  • the first bias spring 42 is interposed between the second washer 85A and the flange 33B of the valve element 23 in a state of storage.
  • the clutch washer 80 moves to the right, so that the second washer 85A hits the second flange 3334F, and the first bias spring 42 has the flange 33B. , 3 3 4 F, and no biasing force in the left-right direction is applied to the valve element 2 33.
  • the ratio a ZA of the stroke amount (A) of the reciprocating shaft 52 to the stroke amount (a) of the valve element 233 becomes larger than that in the middle temperature range, and the gradient of the temperature line as shown in FIG. Increase in the low temperature range.
  • the first bias spring 42 is in a prone state sandwiched between the flanges 33 B and 33 F, and does not apply any biasing force to the reciprocating shaft 52. (Only the biasing force of the second bias spring 44 acts on the reciprocating shaft 52.) Therefore, the rotating shaft 50 can be smoothly rotated with low torque.
  • a protruding shaft 52 2 protrudes leftward from the forward / back shaft 52 in the hot water mixing apparatus of FIG. 7, and a flange (locking portion) 5 52 It is designed to be able to engage with the valve element 3 3 3 via the seat 8 7.
  • the washer 87 is pressed against the right end face of the flange 33 of the valve element 33 by the first bias spring 42.
  • the configuration of this valve element 33 33 is the same as that of the valve element 13 33 in FIG. 7 except that the position of the flange 33 B is slightly shifted to the left from the valve element 33 3.
  • the bias spring 42 is biased to the right by one of the bias springs 42 and 44.
  • a hot water mixing apparatus according to a seventh preferred embodiment (claim 19) will be described with reference to FIG.
  • This hot and cold water mixing device is similar to the hot and cold water mixing device of FIG.
  • the first washer 87 is firstly biased by a first biasing spring 42.
  • the protruding shaft 5222 is provided with a second flange 52F as a second locking portion. Further, a second washer 87 A is externally fitted to the protruding shaft 52 2, and the second washer 87 A is attached to the flange 80 a of the clutch column 8 OA from the right side by a second bias spring 44. It is imposed.
  • the second flange 522-2F is arranged on the left side of the second washer 87A.
  • the second flange 52 2 F freely passes through the inner hole of the flange 80 a, but has a size that the second washer 87 A cannot pass.
  • FIG. 11 Other configurations of the hot water mixing apparatus of FIG. 11 are the same as those of the hot water mixing apparatus of FIG. I.
  • the operation of the hot and cold water mixing device of Fig. 11 when the set water discharge temperature is set to the middle temperature range is exactly the same as that of the hot water and water mixing device of Fig. 10, and the valve body has a first bias spring 42 and a second bias spring.
  • the bias spring 44 biases the valve body 333 to the left in series, and the resultant spring constant of the biasing force is small, so that the gradient of the temperature line in the middle temperature range is small as shown in FIG.
  • a total (parallel) rightward biasing force of 40 and bias spring 42 acts.
  • the protruding shaft 52 2 moves to the right together with the reciprocating shaft 52, and the second flange portion 52 2 F comes into contact with the second washer 87 A, and the second washer 8 Separate 7 A to the right from the collar 80 a.
  • the second bias panel 44 is sandwiched between the flange portion 52 2 F and the flange portion 52 a, and no urging force is applied to the valve element 3 33.
  • valve body 33 33 is a temperature-sensitive spring 40 When, It moves forward and backward by the balance with one bias spring 42 or 44. Since the spring constant of one of the bias springs 42 or 44 is larger than the series spring constant of the bias springs 42 and 44, the temperature gradient at the time of setting the temperature higher than 50 ° C is large as shown in Fig. 4. Obviouslys, and the valve body 3 33 and the clutch column 80 A, or the reciprocating shaft 52 and the clutch column 80 A become as one unit, and the valve body 33 33 is a temperature-sensitive spring 40 When, It moves forward and backward by the balance with one bias spring 42 or 44. Since the spring constant of one of the bias springs 42 or 44 is larger than the series spring constant of the bias springs 42 and 44, the temperature gradient at the time of setting the temperature higher than 50 ° C is large as shown in Fig. 4. Becomes
  • the hot and cold water mixing device is one in which bias panels are installed in parallel.
  • a first bias spring 401 is interposed between the water valve body 32 and the flange 52a of the advance / retreat shaft 52 '.
  • the flange 30b on the right side of the main shaft 30 'penetrating the water valve body 32 is large enough to pass through the hole 521 of the flange 52a.
  • a washer 89 is locked to the flange 30 b, and a second bias panel 402 is interposed between the washer 89 and the water valve 32.
  • the washer 89 has a size that cannot pass through the hole 521, and is disposed on the left side of the flange portion 52a during medium-temperature water discharge as shown in the figure. From the right end face of the water valve element 32, a hook 310 is protruded to the right, and a claw part 302 as a locking part at the tip of the hook 301 advances and retreats. The hook can be engaged with the inward hook 5 222.
  • the hook 301 is cylindrical and the claw portion 302 is formed in an outward flange shape.
  • the claw portion 302 is arranged on the right side of the flange portion 522 as shown in the figure.
  • the water discharge temperature (mixed water temperature) of this water / water mixing device is set in the middle temperature range of, for example, 30 to 50 ° C. as shown in FIG. 12, only the pressing force of the first bias spring 401 is the water valve. Acting leftward on the main shaft 30 ′ via the body 32, the pressing force of the temperature-sensitive panel 40 acts rightward on the main shaft 30 ′ via the hot-water valve body 34, and pushing both of them. Pressure is balanced.
  • the pressing force of the second bias spring 402 acts remarkably left and right on the water valve body 32 and the main shaft 30 ′, and has no zero urging force on the valve bodies 32 and 34. It has become.
  • the temperature sensing spring 40 extends, and the water valve body 32 and the hot water valve body 34 move rightward together with the main shaft 30 ′, The water flow gap widens and the hot water flow gap narrows, and the mixed water temperature recovers (reduces) to the set temperature.
  • the advancing / retreating shaft 5 2 ′ When rotating the handle in the opposite direction to lower the set water discharge temperature within the middle temperature range, the advancing / retreating shaft 5 2 ′ is moved within the range where the flange 5 2 2 does not abut the claw 3 0 2. It moves to the right, and the valve discs 32 and 34 shift to the left along with the main shaft 30 ′, and the hot water flow gap widens, the water flow gap narrows, and the mixed water temperature rises. After the shift of the valve bodies 32 and 34, the rightward pressing force of the temperature sensing spring 40 and the leftward pressing force of the spring 44 are balanced. When the temperature of the mixed water deviates from the set temperature, the thermosensitive spring 40 expands and contracts, and recovers the temperature of the mixed water to the set temperature.
  • the first bias spring 401 is effective as described above. That is, assuming that the panel constants of the springs 40 1 and 40 2 are ki and k 2, the pressing force to the left of the main shaft 30 ′ is k 1 and the springs 40 1 and 40 2 are arranged in parallel. It is smaller than the spring constant (k + kz) of the resultant spring force. Therefore, the ratio a / A between the stroke amount (A) of the reciprocating shaft 52 'and the shift amount (a) of the valve discs 32, 34 when this set temperature is in the middle temperature range is relatively small.
  • the shift amount (a) of the valve bodies 32 and 34 when the rotary shaft 50 rotates by a unit angle is relatively small.
  • the amount of change in the set temperature when the handle is turned by a unit angle is small, and the temperature straight line in the graph of FIG. The gradient becomes small in the middle temperature range.
  • the reciprocating shaft 52 ′ moves largely to the left, and the flange 52a of the reciprocating shaft 52 ′ pushes the washer 89 to the left, and the washer 8 9 moves to the left from the flange 30 b of the main shaft 30 ′. Therefore, when the handle is turned to a high temperature side exceeding 50 ° C, the reciprocating shaft 52 ′ urges the main shaft 30 ′ to the left by the parallel pressing force of the two bias springs 401, 402. I will be.
  • the spring constant when these parallel bias springs 40 1 and 40 2 press is k! + k2, which is larger than the panel constant kI in the intermediate temperature range.
  • the ratio a / A between the stroke amount (A) of the reciprocating shaft 52 'and the shift amount (a) of the valve elements 32 and 34 is larger than that in the middle temperature range. For this reason, the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the medium temperature range, and the temperature straight line in the graph in Fig. 4 is higher in the high temperature range than in the middle temperature range. Become.
  • a ninth preferred embodiment (Claims 22 and 23) will be described with reference to Fig. 13.
  • This preferred embodiment is similar to Fig. 6 in that one valve element 43 3 is provided with a water flow gap and a hot water flow gap. It is configured to adjust both. .
  • the valve body 4 33 has a column 3 35 protruding rightward from the flange 3 3 B, and first and second flanges 3 3 6 and 3 3 7 protrude from the outer periphery of the column 3 3 5.
  • the second collar portion 337 is located at the right end of the column 335.
  • the first and second washers 91, 92 are disposed between the flanges 33, 33, 37, and the first bias panel 42 is in a storage state between the washers 91, 92. Intervened.
  • the first washer 91 has a size that can be engaged with a flange portion 526 described later.
  • the reciprocating shaft 520 has a tubular portion 525 extending leftward, and an inward flange 526 protrudes from the left end of the tubular portion 525.
  • the flange portion 526 is located to the left of the first flange portion 3336.
  • the inner diameter of the flange portion 526 is larger than the outer diameter of the flange portion 3336.
  • a step portion 527 is provided on the inner peripheral surface of the reciprocating shaft 520 on the right side of the flange portion 337.
  • the inner diameter of the reciprocating shaft 5 20 has a small diameter.
  • the second flange 3 3 7 has a smaller diameter than the small diameter portion. Do not touch 2 7
  • the washer 92, which overlaps the flange portion 337, has a size that can abut the step portion 527.
  • a second bias spring 44 is interposed between the flange 33 B of the valve element 43 and the flange 52 a of the reciprocating shaft 52.
  • FIG. 13 shows a state in which the water discharge temperature (mixed water temperature) of the hot and cold water mixing apparatus is set in a medium temperature range of, for example, 30 to 50 ° C.
  • the second bias spring 4 Only the pressing force acts leftward on the valve element 43, the pressing force of the temperature-sensitive spring 40 acts rightward on the valve element 43, and the two pressing forces are balanced.
  • the first bias panel 42 is disposed between the flanges 3336 and 3337, and does not apply an urging force to the valve element 4333.
  • the temperature sensing spring 40 contracts, and the valve body 4 33 3 moves to the left, The water flow gap between the water sheet 22 and the valve element 33 narrows and the water flow gap between the hot water sheet 24 and the valve element 43 increases, and the mixed water temperature recovers to the set temperature. Rise). Conversely, when the temperature of the mixed water becomes higher than the set temperature, the temperature-sensitive panel 40 extends, the valve element 433 is located on the right side, and the water flow gap widens and the hot water flow gap narrows. However, the mixed water temperature recovers (falls) to the set temperature.
  • the reciprocating shaft 520 moves to the left as far as the step 5 27 does not touch the washer 92.
  • the pressing force of the second bias spring 44 to the left increases, the valve element 433 shifts to the left, the hot water flow gap widens, the water flow gap narrows, and the temperature of the mixed water rises. .
  • the rightward pressing force of the temperature sensing spring 40 and the leftward pressing force of the second bias spring 44 are balanced.
  • the temperature-sensitive panel 40 expands and contracts, and recovers the temperature of the mixed water to the set temperature.
  • the reciprocating shaft 520 moves to the right as far as the flange 526 does not contact the washer 91.
  • the valve body 433 moves to the right together with the second bias panel 44 to narrow the hot water flow gap and widen the water flow gap, thereby lowering the mixed water temperature.
  • the rightward pressing force of the temperature-sensitive spring 40 and the leftward pressing force of the second bias spring 44 are balanced.
  • the temperature-sensitive panel 40 expands and contracts to restore the temperature of the mixed water to the set temperature.
  • the reciprocating shaft 520 moves largely to the left, the step portion 527 contacts the washer 92, and moves the washer 92 to the left.
  • the bias bias springs 42 and 44 press the valve body 433 to the left in parallel. Therefore, the ratio aZA between the stroke amount (A) of the reciprocating shaft 520 and the shift amount (a) of the valve body 433 is larger than that in the middle temperature range. For this reason, the amount of change in the set temperature when the angle is rotated by a unit angle is larger than that in the middle temperature range, and as shown in the graph of Fig. 4, the temperature line has a higher gradient in the high temperature range than in the middle temperature range. It will be.
  • the reciprocating shaft 520 moves largely rightward, and the flange 526 of the reciprocating shaft 520 pushes the washer 91 rightward.
  • the parallel (total) biasing force of the temperature sensing spring 40 and the first bias spring 42 is applied to the valve body 43 3 in the rightward direction, and the bias of the second bias panel 44 is applied. Power is added to the left.
  • the ratio of the stroke amount (A) of the rotating shaft 50 and the reciprocating shaft 52 when the handle is turned in a low temperature range of less than 30 ° C. to the shift amount (a) of the valve body 43 3 a / A is larger than in the medium temperature range.
  • the amount of change in the set temperature when the steering wheel is turned by a unit angle is larger than that in the middle temperature range, and the temperature straight line has a larger gradient in the low temperature range than in the middle temperature range as shown in the graph of Fig. 4. It will be.
  • the temperature control handle can be rotated without increasing the rotation range.
  • the temperature of the discharged mixed water can be set in a high temperature range.
  • the hot and cold water mixing device 809 has a main body case 814 in which two cylindrical members are screwed and fastened, and a valve body case 80
  • the hot water side valve faces the hot water inlet 8 0 3 of the valve case 8 0 1
  • the body 811a is fitted and mounted so as to be movable in the axial direction
  • the water-side valve body 811b is fitted and mounted so as to be movable in the axial direction in front of the water inlet 804.
  • the hot-side valve body 811a and the water-side valve body 811b are made of separate members, and can move independently in the axial direction.
  • the water-side valve element 8 lib has a cylindrical shape as a whole, and has semi-circular grooves 8 15 at the top and bottom.
  • a sliding connection member 813 shown in FIG. 18 is fitted into the groove 815.
  • a front-side enlarged diameter portion 816 of the cylindrical adjusting member 812 shown in FIGS. 17A and 17B is fitted and mounted.
  • the adjusting member 8 12 has a convex portion 8 17 for preventing rotation on the outer peripheral surface facing the distal end side, and is formed in the inner peripheral surface of the valve body case 8 01 in parallel with the axial direction. It is fitted and mounted in the rail groove 8 18 for rotation prevention.
  • a male screw portion 819 is formed on the rear end side of the adjusting member 812, and a female screw portion on the inner peripheral surface of the cylindrical portion provided on the front end side of the handle shaft 820 of the temperature control handle. 8 2 1 is screwed. Further, one end side of the bias spring 807 is attached to the inside of the cylinder of the adjusting member 8122 via a spring mounting member 8222. The other end of the bias panel 807 is mounted in the cylinder of the water-side valve element 811b.
  • the rotation operation force is transmitted from the female screw portion 8 21 of the handle shaft 8 20 to the adjustment member 8 12.
  • the adjusting member 812 moves in the axial direction because the rotation-preventing convex portion 817 is fitted into the rail groove 818 to prevent rotation. Therefore, the biasing force of the bias spring 807 changes, and the opening area of the water-side valve body 807 changes.
  • the hot-water-side valve element 811a has a cylindrical shape, and a cross-shaped channel dividing member 810 shown in FIGS. 15A and 15B is attached inside.
  • the flow path dividing member 8100 is provided between the hot water inlet 803 and the water inlet 804, and divides the flow path into four in the circumferential direction.
  • a corner forming member 823 is disposed at an inner corner near the center of the channel dividing member 810, and the length of one surface 823a is defined as a short side La, The length of the other surface 8 23 b is defined as a long side L b, and L a and L b.
  • the flow path (lumen 802) between the inlets 803 and 804 in the valve case 800 is surrounded.
  • the hot-water-side valve element 811a has a flow-path dividing member 810 mounted on the inner peripheral surface thereof, and a low-temperature operation is provided on the rear end side of the flow-path dividing member 8110.
  • the tip side of shaft 8 24 is attached.
  • a cooperating ring 825 is fitted.
  • the link ring 825 comes into contact with the rear end face of the panel mounting member 822, and in the temperature area other than the low-temperature area, The biasing force of the temperature-sensitive spring 806 allows the panel mounting member 812 to freely move in the axial direction away from the rear end face.
  • the operation mode of the hot water mixing apparatus 809 configured as described above will be described separately for a case where the temperature of the discharged hot water is in a low temperature region and a case where the temperature of the discharged hot water is outside the low temperature region.
  • the hot water side valve body 811a and the water side valve body 811b are each opened with a predetermined opening area, Hot water and water flow into the lumen 802 at a predetermined flow ratio from the hot water inlet 803 and the water inlet 804, and are mixed and discharged as hot water at a desired temperature. .
  • the temperature is adjusted by rotating the temperature control handle shaft 8200 to change the axial position of the adjusting member 812 and changing the biasing force of the bias panel 807 to change the temperature-sensitive spring 8 0. 6 biasing force and ba ', By changing the axial position of the hot water side valve element 811a and the water side valve element 811b, and changing the ratio of the opening area of the hot water inlets 80.3 and 80.4. I have to.
  • the temperature-sensitive panel 806 detects this and changes the spring constant to change the hot water side valve element 8 1 1
  • the automatic temperature control is performed by changing the ratio of the opening area of the hot water inlet 803 to the water inlet 804 by changing the axial position of the a and the water-side valve body 811b.
  • the panel constant of the temperature sensitive panel 806, which is a shape memory alloy is small, and it is not possible to sufficiently cope with the supply pressure of hot water. Therefore, when attempting to discharge only water, it is impossible to move the axial position of the hot-water-side valve element 811a to a position where the hot-water inlet 80.3 is completely closed. Therefore, in the hot and cold water mixing device 809, when the temperature range of the discharged hot water is in the low temperature range, the bias panel 807 is used as a cushioning member for reducing the operating force after the valve body is seated.
  • the axial position of the hot-water-side valve element 811a is directly controlled by operating the adjusting member 8112 while operating.
  • the adjustment member 812 moves to the right side in FIG. 14 and the opening area of the water inlet 804 becomes large.
  • the rear end face 8 1 2a of the adjusting member 8 1 2 comes into contact with the cooperating ring 8 25 of the low-temperature operation shaft 8 24, and thereafter it is connected to this low-temperature operation shaft 8 2 4
  • the hot water side valve body 8 11 1a moves in the right direction in FIG.
  • the axial position of the hot water side valve element 811a can be directly controlled via the adjustment member 812. This control can be performed until the hot water side valve element 811a abuts on the valve seat of the hot water inflow port 803 to shut off the flow of hot water and discharge only water.
  • the biasing force of the bias spring 807 acts so as to reduce the operating force after the hot-water-side valve element 811a is seated on the valve seat of the hot-water inlet 803, There will be no damage to the hot-side valve element 8 1 1a.
  • a valve closing operation to move the adjusting member 812 rightward in FIG.
  • the adjusting member 812 The water-side valve element 811a is moved rightward in the figure by engaging with the binding member 813, and the bias panel 807 is compressed. Accordingly, the valve closing operation after the valve element is seated does not damage the hot-water-side valve element 811a. In addition, the biasing force of the bias panel 807 after the hot-water-side valve element 811a is seated urges the hot-water-side valve element 811a in the closing direction.
  • the water / water mixing device 809 uses the bias spring 807 as a cushioning member in a low-temperature region as a cushioning member for alleviating the operating force acting on the valve body following the valve closing operation after the valve body is seated. It is possible to forcibly control the axial position of the hot-water-side valve element 811a via the adjusting member 812 while closing the hot-water inlet 803 to discharge only water. Then, after the hot-water-side valve element 811a is seated, the bias spring 807 biases this in the valve closing direction.
  • FIG. 19 is a schematic longitudinal sectional view showing a hot and cold water mixing device 826 according to the tenth preferred embodiment.
  • a spool valve 827 In this hot and cold water mixing device 826, a spool valve 827, an adjusting member 8122, and a handle shaft 8200 are disposed in a bore 8002 of a valve case 800. ing.
  • the spool valve element 827 has a large-diameter portion 827a and a small-diameter portion 827b, and the front and rear end faces of the large-diameter portion 827a are hot-water-side valve portions 828 and water-side.
  • the valve section is 8 2 9.
  • a concave portion 830 for mounting a bias spring 807 is formed on the inner peripheral surface of the small diameter portion 827b of the spool valve 827.
  • the distal end of the adjusting member 812 is axially slidably inserted into the small-diameter portion 827b of the spool valve element 827, and a bias panel 807 is formed on the outer peripheral surface of the communicating portion.
  • a recess 831 for attachment is formed.
  • the bias spring 807 It is fitted and fitted between 31 and the concave portion 830 of the small diameter portion 827, and rings 832 and 833 as spring seats are arranged on the front and rear sides thereof.
  • a convex portion 834 that fits into the detent rail groove 818 formed on the inner peripheral surface of the valve body case 81.
  • a male screw portion 819 formed on the outer peripheral surface thereof is attached to the female screw portion 821 of the handle shaft 820.
  • the spring of the bias panel 807 is used.
  • the seat ring 832 is engaged with the front end face of the recess 830 of the spool valve element 827, and forms a free space apart from the front end face of the recess 831 of the adjustment member 812.
  • the spring seat ring 833 on the rear end side is engaged with the rear end surface of the concave portion 831 of the adjusting member 812, and the rear end surface of the concave portion 8330 of the spool valve body 827 It forms a free space apart.
  • the hot-water-side valve portion 828 and the water-side valve portion 829 of the spool valve element 827 are each opened with a predetermined opening area. Hot water and water flow into the lumen 802 at a predetermined flow rate ratio from 804, and are mixed and discharged as hot water at a desired temperature.
  • the temperature setting is performed by rotating the temperature control handle shaft 820 to change the axial position of the adjusting member 812 so as to be within the free space of the panel seat rings 832 and 833.
  • the biasing force of the bias spring 807 is changed to balance the biasing force of the temperature sensing spring 806, and the axial positions of the hot water side valve section 828 and the water side valve section 829 are changed.
  • the automatic temperature control is performed by changing the axial position of the water-side valve portion 8229 to change the ratio of the opening area of the hot water inlet 803 to the water inlet 804.
  • the panel constant of the temperature-sensitive panel 806, which is a shape memory alloy, is small, and can sufficiently respond to the supply pressure of hot water. Will not be able to. Therefore, when attempting to discharge only water, the axial position of the hot water side valve portion 828 must be moved to a position where the hot water inlet 803 is completely closed (rightward direction in Fig. 19). Move to) becomes impossible. Therefore, in the hot water mixing device 826, when the temperature region of the discharged hot water is in the low temperature region, the bias panel 807 acts on the valve element accompanying the valve closing operation after the valve element is seated.
  • the spool valve body 827 is moved in the axial direction via the adjusting member 812 while being used as a buffer member for reducing the operating force. Is completely closed.
  • the adjusting member 812 moves to the right side in Fig. 19, and the spring seat ring 833 at the rear end eventually turns into the spool valve body.
  • the concave portion 827 is joined to the rear end surface of the concave portion 830 and locked.
  • the adjustment member 8 12 and the spool valve body 8 27 Will be linked together.
  • the subsequent movement of the adjusting member 812 to the right is performed by applying the biasing force of the bias spring 807 as a cushioning force for reducing the operating force received when the valve body is seated.
  • the spool valve 827 is moved through 833, and the large-diameter portion 827a of the hot water side valve portion 828 is seated gently on the valve seat of the hot water inlet 80.3. And exit. That is, the hot water inlet 803 is forcibly closed. As a result, the water inlet 804 is fully opened, and only water is discharged.
  • the spring seat ring 8 3 2 is moved by the front end face of the concave portion 8 3 1 of the adjusting member 8 12 as shown in FIG.
  • the biasing spring 807 is compressed to the right, and the valve member 827 is not damaged by the adjusting member 812. Further, the biasing force of the bias spring 807 after the hot-water-side valve portion 828 is seated urges the hot-water-side valve portion 828 in the closing direction.
  • the bias panel 807 serves as a buffer for alleviating the operating force acting on the valve element accompanying the valve closing operation after the valve element is seated. Functions as a member.
  • the spool valve element 827 is forcibly moved by the adjusting member 812 via the bias spring 807, and is moved to the hot-water side valve section 828. Therefore, the hot water inlet 803 is completely closed, and after the closing, the bias spring 807 urges the hot water side valve portion 828 in the closing direction. Therefore, the panel constant of the temperature-sensitive spring 806 can be reduced, and the overall size can be reduced and cost increases can be suppressed.
  • the present invention is not limited to the above-mentioned preferred embodiments, and appropriate changes can be made.
  • the water-side valve element 811 and the adjusting member 812 installed in the lumen 800 of the valve case may be integrally formed, or the adjusting member 812 and the sliding connection member 81 may be formed integrally. 3 and may be integrally formed.
  • the valve body is biased by the temperature-sensitive panel and the bias panel.
  • a contact portion is formed on the valve body that can directly or indirectly contact the adjustment member contact surface of the bias panel, and the adjustment member can directly or indirectly contact the valve panel contact surface of the bias panel. It has a contact part.
  • the valve body operates directly or indirectly in cooperation with the adjusting member that changes the biasing force of the bias panel.
  • the bias panel is used as a cushioning member to reduce the operating force applied to the valve element during the valve closing operation after the valve element is seated, and the adjustment member is used.
  • the valve body can be moved in the axial direction via this, and it is possible to forcibly close the hot water inlet to obtain discharge of only water.
  • the bias panel urges the valve body in the valve closing direction, and a stable valve closing operation is possible.
  • the panel constant of the temperature-sensitive panel can be made small, and the size of the faucet itself itself due to the increase in the size of the temperature-sensitive panel can be avoided. It is also possible to suppress the cost due to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

明細書 湯水混合装置 技術分野
本発明は、 湯水混合装置に係り、 特にバイアスパネと形状記憶材料よりなる感 温パネとによって弁体を両側から付勢するようにしたサーモスタツ 卜式の湯水混 合装置に関する。
また、 本発明は、 形状記憶合金を用いた感温パネのパネ定数が極端に低下する 低温領域においては、 バイアスバネを弁体着座時からそれ以降の閉弁操作に伴う 弁体に作用する操作力を緩和する部材として利用しながら、 調節部材によって、 弁体を湯流入口の閉弁方向へ付勢し、 水のみの吐出時に湯流入口を強制的に締め 切ることができるようにした湯水混合装置の制御機構に関するものである。 従来の技術
サーモスタツ 卜式の湯水混合装置として、 形状記憶合金等の形状記憶材料より なる感温パネを用いたものが公知である。 特開平 6 - 1 4 7 3 3 3号公報に記載 されているように、 このタイプの湯水混合装置は、 筒状のバルブボディー内に水 シ一トと湯シートとが設けられ、 該バルブボディ一の軸心線方向に進退可能な弁 体が該水シ一ト及び湯シートに接離可能とされ、 該弁体を湯シート接近方向に付 勢する感温パネと、 該弁体を水シート接近方向に付勢するバイアスパネと、 この バイアスパネを進退させるための温調ハンドルとが設置されている。
温調ハンドルを回すことによりこのバイアスバネがその軸心線方向に進退し、 バイアスパネによる弁体の付勢力が変更され、 設定吐水温度が変更される。
即ち、 このバイアスパネを退動させると、 該バイアスパネによる付勢力が低下 するので、 弁体は湯シートに接近すると共に水シートから離隔し、 設定温度が低 下する。 バイアスパネを前進させると、 逆にバイアスパネによる付勢力が増大し、 弁体は湯シートから離隔すると共に水シートに接近し、 設定温度が高くなる。 設 定した温度の混合水を吐出している状態において、 給湯温度や給湯圧の変動など により混合水温度が設定温度から乖離すると、 感温パネが伸長又は縮退し、 弁体 がシフ卜して混合水温度が自動的に設定温度に復帰する。
従来の湯水混合装置にあっては、 温調ハンドルの回転角度と弁体のシフ卜量と の関係が図 4の破線の如く、 ほぼ一直線状となっている。 即ち、 例えば、 3 0 °C 以下の低温度域、 3 0〜 5 0 °Cの中温度域及び 5 0 °C以上の高温度域のいずれに おいても、 温調ハンドルを単位角度回したときの弁体のシフト量はほぼ同等であ る。 従って、 低温度域〜高温度域において温調ハンドルの回転角度と吐出混合水 温度もほぼ一直線状の関係となっている。
一般に、 湯水混合装置を有した水栓においては、 図 5 aのように、 3 0〜 5 ◦ °Cとりわけ 3 5〜4 5 °Cの間で混合水温度を微調節できるように 3 0 °C〜 5 0 °Cの間の目盛範囲が広いことが望まれている。 このためには、 3 0〜 5 0 °Cの 中温度域における温調ハンドル回転角度に対する吐水温度との関係直線の勾配
(図 4の直線の勾配) を寝たものとする必要がある。 ところが、 単純にこの勾配 を寝かしてしまうと、 低温度域から高温度域まで温度調節させるためには温度ハ ンドルの回転範囲をかなり大きくとらなければならなくなる。 回転式の温調ハン ドルにあっては、 ハンドルの回転範囲 (C〜H : なお、 Cは給水管からの水だけ を吐出。 Hは給湯管からの湯だけを吐出。 ) は 3 6 0 ° 以内 (通常は 2 7 0 ° 以 内) に納める必要があるから、 上記の如く単純に勾配を寝かすことは実際には採 用できない。 (C〜Hの範囲が 3 6 0。 超となってしまう。 ) そのため、 従来例 にあっては図 5 の通り、 3 0 °C〜 5 0 °Cの間の中温吐水域の目盛範囲が狭いも のとなつていた。
本発明は、 かかる技術的課題に着目して創案されたものであり、 中温度域では 上記の勾配が小さく、 低温度及び高温度域では上記勾配が大きく、 従って中温吐 水域の目盛範囲が広い湯水混合装置を提供することを第 1の目的とする。
従来の湯水混合装置の制御機構について図 2 0を参照して説明する。 弁体ケー ス 8 0 1の中心部を貫通して流路を形成するための内腔 8 0 2が設けられており、 弁体ケース 8 0 1の周面に湯と水の流入口 8 0 3及び 8 0 4が形成されている。 そして、 この湯と水の流入口 8 0 3及び 8 0 4の位置に、 これらの各流入口 8 0 3及び 8 0 4の開口面積比を制御し、 流入する湯と水の量を決定するスプール弁 体 8 0 5が軸方向摺動自在に配設されている。 スプール弁体 8 0 5は、 湯側弁体 8 0 5 aと水側弁体 8 0 5 とが一体的に連結されており、 形状記憶合金からな る感温バネ 8 0 6及びバイアスパネ 8 0 7により相対する方向へ付勢され、 バラ ンスしている。 バイアスパネ 8 0 7の一端側は栓体 8 0 8に係止されており、 栓 体 8 0 8の軸方向位置を変更することにより.、 両バネ 8 0 6及び 8 0 7の付勢力 を変化させ、 スプール弁体 8 0 5のバランス位置を変えて湯水の流入比率を変化 させ、 得られる温水の温度を変更するようにしている。
今、 例えば、 ある設定位置でスプール弁体 8 0 5がバランスしている状態から 湯側又は水側の供給圧が変化し、 同一開口面積に対する湯と水の流入比率が変化 したとすると、 混合して得られる温水の温度が変化することになる。 感温パネ 8 0 6は、 これを検知して反応するようになる。 つまり、 感温バネ 8 0 6は、 混合 して得られる温水の温度に対応してその付勢力が変化し、 温度変化を是正する方 向へスプール弁体 8 0 5を移動させ、 自動温度調節機能を有している。
通常、 自動温度調節機能を備えた湯水混合装置で、 水のみの吐出を行うときに は、 スプール弁体 8 0 5を感温バネ 8 0 6とバイアスバネ 8 0 7との付勢力のバ ランスによってその軸方向位置を調節し、 スプール弁体 8 0 5の湯側弁体 8 0 5 aを湯側弁座へ着座させる必要がある。
ところが、 形状記憶合金からなる感温バネ 8 0 6を用いた湯水混合装置の制御 機構では、 混合する湯水の温度が低下すると、 感温パネ 8 0 6のパネ定数が小さ くなり、 感温バネ 8 0 6で発生する付勢力が弱くなる。 そのため、 水のみの吐出 にしようと操作したときに、 スプール弁体 8 0 5を付勢する付勢力が不足し、 湯 側流入口 8 0 3が完全に閉塞されない状態となって湯の流入があり、 完全に水の みの吐出が得られないという欠点があつた。
このような欠点を解決するためには、 感温バネ 8 0 6のパネ定数を予め大きく 設定しておけば、 水のみの吐出を行う場合に、 バイアスパネ 8 0 7の付勢力に勝 つて湯流入口 8 0 3を閉塞させることができる。 ところ力 感温バネ 8 0 6のバ ネ定数を予め大きく設定しておくことは、 結果として湯水混合装置の全体が大型 化し、 コストアップの原因にもなつていた。 また、 水のみの吐出のとき、 バイァ スバネ 8 0 7の付勢力を調節する部材で、 直接にスプール弁体 8 0 5を湯側弁座 に着座させることも考えられるが、 両者を直接に且つ機械的に連結した場合には, スプール弁体 8 0 5が着座した以降の閉弁操作では、 直接に操作力がスプール弁 体 8 0 5に作用し、 スプール弁体 8 0 5が破壊される力を受けることになるとい う欠点があった。
本発明は、 低い温度領域ではバイアスパネの付勢力を変化させる部材を利用し て湯側弁体を強制的に着座させることができるようにし、 なおかつバイアスパネ で弁体に作用する力を緩衝させながら着座させ、 更に閉弁方向へ付勢することが できるようにした湯水混合装置の制御機構を提供することを第 2の目的とする。 発明の開示
請求項 1〜 2 3の湯水混合装置は前記第 1の目的を達成するものである。
請求項 1に係る本発明の湯水混合装置は、 筒状のバルブボディー内に水シート と湯シートとが設けられ、 該バルブボディーの軸心線方向に進退可能であり、 該 水シー卜及び湯シートに接離可能な弁体が該バルブボディーと同軸的に配置され、 該弁体を湯シート接近方向に付勢する感温パネと、 該弁体を水シート接近方向に 付勢するバイアスパネと、 該バイアスパネをバルブボディー軸心線方向に進退さ せる吐水温度設定部材とが設けられている湯水混合装置において、 該弁体が中温 吐出域に位置するときと、 該弁体が低温吐出域又は高温吐出域に位置するときと で該バイアスパネによる付勢力を異ならせる付勢力切替手段を設けたことを特徴 とするものである。
かかる本発明の湯水混合装置にあっては、 バイアスバネの付勢力が切り替えら れることにより、 中温度域の温度勾配が小さなものとなる。
本発明の一態様 (請求項 2 ) は、 バイアスパネとして複数のバイアスパネが設 けられており、 前記切替手段は、 該弁体が低温吐出域又は高温吐出域に位置する ときには一部のバイアスパネの付勢力を弁体に作用させ、 弁体が中温吐出域に位 置するときには全てのバイアスパネの付勢力を直列に弁体に作用させるものであ る。
かかる湯水混合装置にあっては、 混合水の吐出設定温度が低温度域又は高温度 域にあるときには、 一部のバイアスパネの付勢力のみが弁体に作用し、 中温度域 に設定されているときには第 1及び第 2のバイアスパネの直列接続体の付勢力が 弁体に作用する。
周知の通り、 パネを直列に接続すると、 合成したパネ定数は各パネのパネ定数 の調和平均となり、 個々のパネのパネ定数よりも小さくなる。 従って、 請求項 2 に係る本発明の湯水混合装置によると、 中温度域ではバイァスバネによる弁体付 勢力が小さくなり、 温調ハンドルの回転角度に対する弁体のシフト量 (従って吐 水温度) の勾配が小さくなり、 混合水温度を微調節し易い。
低温度域又は高温度域では、 中温度域における場合よりもバイァスパネの付勢 力が強く、 この勾配が大きくなる。 従って、 温調ハンドルの回転範囲を増大させ ることなく、 中温度域の混合水吐出温度を広く設定することができる。
請求項 2の発明に係る湯水混合装置の一態様 (請求項 3 ) にあっては、 前記弁 体は、 該バルブボディーと同軸配置された主軸に支持されており、 該バルブボデ ィ一の軸心線方向に進退可能であり、 吐水温度設定部材は、 内周面に雌ネジを有 し、 前記主軸と同軸的に配置された回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該主軸と同軸的に配置された筒状の進退軸と、 該進退軸の弁体と遠い方の端部及 び近い方の端部にそれぞれ設けられた遠端側鍔部及び近端側鍔部と、 該進退軸に 対し軸心線方向に移動自在に嵌合しており、 該近端側端部に係合することによつ て弁体接近方向への移動が規制されるフックと、 該主軸に対して軸心線方向移動 可能に嵌合しており、 該フックと弁体との間に配置され、 該主軸の長手方向の途 中に設けられた鍔状係止部を前記フックに対し当接可能なスライ ドリングとを備 えてなり、 該スライ ドリングと弁体との間に第 1のバイアスパネが蓄カ状態で介 装され、 該フックと遠端側鍔部との間に前記第 2のバイアスパネが蓄カ状態で介 装されている。
請求項 4の通り、 この切替手段は、 前記弁体から突設された前記主軸と、 該主 軸の先端に設けられたフランジ状の係止部と、 該主軸の途中に設けられた前記鍔 状係止部と、 前記第 2のバイアスパネによって進退軸の遠端側鍔部に押し付けら れる方向に付勢されたストツパリングと、 前記第 1のバイアスパネによってフッ クに押し付けられる方向に付勢された前記スライ ドリングとを備えており、 弁体 が中温吐出域に位置するときには、 該フランジ状の係止部とストツノ リングとが 離反し、 該ストッパリングは第 2のバイアスバネによって進退軸の遠端側鍔部に 押し付けられており、 且つ該鍔状係止部とスライ ドリングとが離反し、 該スライ ドリングは第 1のバイアスバネによってフックに押し付けられており、 弁体が低 温吐出域に位置するときには該ス卜ッノ°リングに対し該フランジ状の係止部が係 合し、 且つ前記フックと近端側鍔部との係合によってフックの弁体接近方向への 移動が規制され、 これによつて第 2のバイアスパネの付勢力がス卜ッパリング及 び主軸を介して弁体に対し前記感温パネの付勢力と同方向に加えられると共に、 スライドリングに対し前記鍔状係止部が係合し、 第 1のバイアスパネの付勢力が 弁体及び進退軸に対し作用しないようになるものであっても良い。
請求項 2の発明に係る湯水混合装置の別の態様 (請求項 5 ) にあっては、 吐水 温度設定部材は、 内周面に雌ネジを有し、 前記バルブボディーと同軸的に配置さ れた回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置され た筒状の進退軸と、 該バルブボディーに対し軸心線方向に移動自在であり、 該弁 体に当接することによって弁体接近方向への移動が規制されるクラッチカラムと を備えてなり、 該クラツチカラムと弁体との間に第 1のバイアスパネが蓄カ状態 で介装され、 該クラッチカラムと進退軸との間に第 2のバイアスパネが蓄カ状態 で介装されている。
この場合、 クラッチカラムは前記進退軸と係合して前記軸心線方向への移動が 規制されるか、 又は弁体と係合して前記軸心線方向への移動が規制されるよう構 成されるのが好ましい。
本発明のさらに別の態様 (請求項 1 2 ) に係る湯水混合装置は、 バイアスパネ として複数個のバイアスパネが設けられており、 前記切替手段は、 該弁体が中温 吐出域に位置するときには感温パネの付勢力と反対方向に各バイアスパネの直列 の付勢力を弁体に作用させ、 弁体が低温吐出域に位置するときには感温パネの付 勢力と同方向に一部のバイァスパネの付勢力を弁体に作用させるものである。 この湯水混合装置においては、 混合水の吐出設定温度が中温のときには各バイ ァスパネが直列に弁体を感温パネと反対方向に付勢するのでこの直列のバイアス パネによる付勢力が弱くなり、 温調ハンドルの回転角度に対する弁体のシフ卜量 (従って吐水温度) の勾配が小さくなる。
混合水の吐出設定温度が低温のときは、 一部のバイァスパネが感温パネと同方 向に弁体を付勢する。 この場合も、 温調ハンドルの回転角度に対する弁体のシフ ト量 (従って吐水温度) の勾配が大きくなる。
この請求項 1 2の湯水混合装置の一態様 (請求項 1 3 ) においては、 前記吐水 温度設定部材は、 内周面に雌ネジを有し、 その軸心回りに回転可能に配置された 回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒 状の進退軸と、 該進退軸の軸心線方向に移動自在なクラッチカラムとを備えてな り、 該クラッチカラムと弁体との間に第 1のバイアスパネが配置され、 該クラッ チカラムと進退軸との間に第 2のバイアスパネが配置されている。
請求項 1 4の通り、 このバイアスパネの切替手段は、 弁体から前記進退軸に向 つて突設された突軸と、 該突軸の先端に設けられた係止部と、 前記第 2のバイァ スバネによって進退軸に押し付けられる方向に付勢された座金とを備えており、 弁体が高温吐出域及び中温吐出域に位置するときには、 該係止部と座金とが離反 しており、 該座金は第 2のバイアスバネによって進退軸に押し付けられており、 弁体が低温吐出域に位置するときには該座金に対し該係止部が係合し、 且つ前記 係合部によってクラッチカラムの弁体接近方向への移動が規制され、 これによつ て第 2のバイアスパネの付勢力が座金及び突軸を介して弁体に対し前記感温パネ の付勢力と同方向に加えられることが好ましい。 この場合、 請求項 1 5の通り、 弁体が高温吐出域に位置するときにはクラッチカラムが弁体又は進退軸に当接し、 クラツチカラムの軸心線方向への移動が規制されるのが好ましい。
また、 請求項 1 6の通り、 この切替手段は、 前記弁体から前記進退軸に向って 突設された突軸と、 該突軸の先端に設けられた第 1の係止部と、 該突軸の途中に 設けられた第 2の係止部と、 前記第 2のバイアスパネによって進退軸に押し付け られる方向に付勢された第 1の座金と、 前記第 1のバイアスパネによってクラッ チカラムに押し付けられる方向に付勢された第 2の座金とを備えており、 弁体が 中温吐出域に位置するときには、 該第 1の係止部と第 1の座金とが離反し、 該第 1の座金は第 2のバイアスバネによって進退軸に押し付けられており、 且つ第 2 の係止部と第 2の座金とが離反し、 該第 2の座金は第 1のバイアスパネによって クラッチカラムに押し付けられており、 弁体が低温吐出域に位置するときには該 第 1の座金に対し該第 1の係止部が係合し、 且つ前記係合部によってクラッチ力 ラムの弁体接近方向への移動が規制され、 これによつて第 2のバイアスパネの付 勢力が座金及び突軸を介して弁体に対し前記感温パネの付勢力と同方向に加えら れると共に、 第 2の座金に対し第 2の係止部が係合し、 第 1のバイアスパネの付 勢力が弁体及び進退軸に対し作用しないようになるものであっても良い。
さらに、 この切替手段は、 請求項 1 7の通り、 進退軸から前記弁体に向って突 設された突軸と、 該突軸の先端に設けられた係止部と、 前記第 1のバイアスパネ によって弁体に押し付けられる方向に付勢された座金とを備えており、 弁体が高 温吐出域及び中温吐出域に位置するときには、 該係止部と'座金とが離反しており、 該座金は第 1のバイアスパネによって弁体に押し付けられており、 弁体が低温吐 出域に位置するときには該座金に対し該係止部が係合し、 且つ前記係合部によつ てクラッチカラムの弁体からの離反方向の移動が規制され、 これによつて第 1の バイアスパネの付勢力が座金、 突軸及びクラッチカラムを介して弁体に対し前記 感温パネの付勢力と同方向に加えられるよう構成されていても良い。 この場合、 請求項 1 8の通り、 弁体が高温吐出域に位置するときにはクラッチカラムが弁体 又は進退軸に当接し、 クラッチカラムの軸心線方向への移動が規制されることが 好ましい。
請求項 1 9の通り、 この切替手段は、 進退軸から前記弁体に向って突設された 突軸と、 該突軸の先端に設けられた第 1の係止部と、 該突軸の途中に設けられた 第 2の係止部と、 前記第 1のバイアスパネによって弁体に押し付けられる方向に 付勢された第 1の座金と、 前記第 2のバイアスバネによってクラッチカラムに押 し付けられる方向に付勢された第 2の座金とを備えており、 弁体が中温吐出域に 位置するときには、 該第 1の係止部と第 1の座金とが離反し、 該第 1の座金は第 1のバイアスバネによって弁体に押し付けられており、 且つ第 2の係止部と第 2 の座金とが離反し、 該第 2の座金は第 2のバイアスバネによってクラッチカラム に押し付けられており、 弁体が低温吐出域に位置するときには該座金に対し該係 止部が係合し、 且つ前記係合部によってクラッチカラムの弁体からの離反方向の 移動が規制され、 これによつて第 1のバイアスパネの付勢力が座金、 突軸及びク ラッチカラムを介して弁体に対し前記感温パネの付勢力と同方向に加えられると 共に、 第 2の座金に対し第 2の係止部が係合し、 第 2のバイアスパネの付勢力が 弁体及び進退軸に対し作用しないようになるものであっても良い。
本発明の別の態様 (請求項 2 0 ) の湯水混合装置は、 バイアスパネとして複数 のバイアスパネが設けられ、 該弁体に作用するバイアスパネの付勢力を切り替え るための前記切替手段は、 該弁体が高温吐出域に位置するときには感温パネの付 勢力と反対方向に全てのバイアスパネの並列の付勢力を弁体に対し作用させ、 弁 体が中温吐出域に位置するときには感温パネの付勢力と反対方向に一部のバイァ スパネの付勢力を弁体に作用させ、 弁体が低温吐出域に位置するときには前記吐 水温度設定部材によって弁体を直接に進退させることを特徴とするものである。 この請求項 1 9の湯水混合装置において、 混合水の吐出設定温度が高温の場合、 複数のバイアスパネの並列の付勢力が弁体を感温パネの付勢力と反対方向に押圧 するため、 温調ハンドルの回転角度に対する弁体のシフト量 (従って吐水温度) の勾配が大きなものとなる。
混合水の吐出設定温度が中温の場合、 バイアスパネとしては一部のバイアスバ ネのみが弁体を感温パネの付勢力と反対方向に押圧するため、 温調ハンドルの回 転角度に対する弁体のシフト量 (従って吐水温度) の勾配が小さなものとなる。 混合水の吐出設定温度が低温の場合、 弁体は例えば進退軸などの吐水温度設定 部材と一体的に進退するため、 温調ハンドルの回転角度に対する弁体のシフ卜量 (従って吐水温度) の勾配が大きなものとなる。
この請求項 2 0の湯水混合装置にあっては、 請求項 2 1の通り、 弁体は前記バ ルブボディーと同軸配置された主軸に支持されており、 該主軸は該バルブボディ 一の軸心線方向に進退可能であり、 前記吐水温度設定部材は、 内周面に雌ネジを 有し、 その軸心回りに回転可能に配置された回転軸と、 該雌ネジに嚙合した雄ネ ジを有し、 該回転軸と同軸的に配置された筒状の進退軸とを備えてなり、 前記切 替手段は、 該主軸から前記進退軸に向って突設された突軸と、 該突軸の先端に設 けられた係止部と、 該係止部に対し弁体側から当接可能な座金とを備えており、 該座金と弁体との間に第 1のバイアスパネが配置され、 該進退軸と弁体との間に 第 2のバイアスパネが配置され、 弁体が高温吐出域に位置するときには、 該係止 部と座金とが離反すると共に座金と進退軸とが当接し、 これによつて進退軸に反 力を得た第 1のバイアスパネが弁体を付勢しており、 弁体が中温吐出域に位置す るときには該座金に対し該係止部が係合し、 これによつて第 1のバイァスパネの 弁体に対する付勢力が解消され、 弁体が低温吐出域に位置するときには弁体と進 退軸とが係合し、 両者が一体的に進退することが好ましい。
本発明のさらに別の態様 (請求項 2 2 ) の湯水混合装置は、 バイアスパネとし て複数個のバイアスバネが設けられ、 該弁体に作用するバイアスパネの付勢力を 切り替えるための前記切替手段は、 該弁体が高温吐出域に位置するときには感温 パネの付勢力と反対方向に全てのバイアスパネの並列の付勢力を弁体に作用させ、 弁体が中温吐出域に位置するときには感温パネの付勢力と反対方向に一部のバイ ァスパネの付勢力を弁体に作用させ、 弁体が低温吐出域に位置するときには感温 パネの付勢力と同方向に他のバイァスパネの付勢力を弁体に作用させることを特 徴とするものである。
この湯水混合装置にあっては、 混合水の吐出設定温度が高温の場合、 各バイァ スパネの並列の付勢力が弁体を感温パネと反対方向に押圧するため、 温調ハンド ルの回転角度に対する弁体のシフト量 (従って吐水温度) の勾配が大きい。
混合水の吐出設定温度が中温の場合、 一部のバイアスパネの付勢力のみが弁体 を感温パネと反対方向に押圧するため、 温調ハンドルの回転角度に対する弁体の シフ ト量 (従って吐水温度) の勾配が上記高温の場合に比べ小さくなる。
混合水の吐出設定温度が低温の場合、 他のバイアスパネが感温パネと同方向に 弁体を付勢する。 この場合も、 温調ハンドルの回転角度に対する弁体のシフト量 (従って吐水温度) の勾配は大きなものとなる。
この請求項 2 2の湯水混合装置の場合、 請求項 2 3の通り、 吐水温度設定部材 は、 内周面に雌ネジを有し、 その軸心回りに回転可能に配置された回転軸と、 該 雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒状の進退軸と を備えてなり、 該進退軸と弁体との間に第 2のバイァスパネが配置されており、 カラムに前記軸心線方向に離隔して設けられた第 1及び第 2の鍔部と、 該第 1の 鍔部と第 2の鍔部との対向面側にそれぞれ配置された第 1の座金及び第 2の座金 と、 該第 1の座金と第 2の座金との間に蓄カ状態で介在された第 1のバイアスバ ネと、 前記進退軸に設けられており、 進退軸が弁体から離反する方向に移動した ときに該第 1の座金に係合し、 該第 1の座金を弁体から離反する方向に押圧する 鍔部と、 該進退軸に設けられており、 該進退軸が弁体に接近する方向に移動した ときに第 2の座金に係合し、 該第 2の座金を弁体に接近する方向に押圧する段部 とを備えてなることが好ましい。
請求項 2 4の湯水混合装置の制御機構は、 前記第 2の目的を達成するためのも のであり、 本体の周面に湯と水の流入口を設け、 本体の内腔に配設した弁体を感 温パネとバイアスパネとで付勢し、 バイアスパネの付勢力を変化させて弁体の位 置を制御する調節部材を設け、 バイアスパネの一端に弁体を、 他端に調節部材を 直接又は間接的に当接させ、 調節部材を調節することにより湯と水の流入量を変 化させて所望する温度の温水を得るようにした湯水混合装置において、 弁体に、 バイアスパネの調節部材当接面と直接又は間接的に当接可能な当接部を形成し、 また調節部材に、 バイアスパネの弁体当接面と直接又は間接的に当接可能な当接 部を形成することにより、 少なくとも湯の流入口を閉じたとき、 バイアスパネが 弁体を湯の閉弁方向に付勢していることを特徴とするものである。
低 ゝ温度領域では感温バネのパネ定数が小さく、 湯の供給圧に対して十分に対 処できない場合があるが、 本発明の湯水混合装置では、 このような温度領域では 弁体を、 バイァスパネの付勢力を変化させる調節部材へ直接又は間接的に連携さ せることで、 バイアスパネを弁体着座時からそれ以降の閉弁操作に伴う弁体に作 用する操作力を緩和するための緩衝部材として利用しながら、 前記調節部材を介 して弁体の軸方向位置をコントロールできる。 しかも、 バイアスバネは弁体を閉 弁方向へ付勢するように作用している。 図面の簡単な説明
図 1は第 1の好ましい形態に係る湯水混合装置の断面図である。
図 2は図 1の湯水混合装置の高温吐水状態の断面図である。
図 3は図 1の湯水混合装置の低温吐水状態の断面図である。
図 4は図 1の湯水混合装置の作動特性図である。
図 5 a及び 5 bは湯水混合装置の温調ハンドルの説明図である。 図 6は第 2の好ましい形態に係る湯水混合装置の断面図である。
図 7は第 3の好ましい形態に係る湯水混合装置の断面図である。
図 8は第 4の好ましい形態に係る湯水混合装置の断面図である。
図 9は第 5の好ましい形態に係る湯水混合装置の断面図である。
図 1 0は第 6の好ましい形態に係る湯水混合装置の断面図である。
図 1 1は第 7の好ましい形態に係る湯水混合装置の断面図である。
図 1 2は第 8の好ましい形態に係る湯水混合装置の断面図である。
図 1 3は第 9の好ましい形態に係る湯水混合装置の断面図である。
図 1 4は第 1 0の好ましい形態に係る湯水混合装置の横断面平面図である。 図 1 5 Aは第 1 0の好ましい形態に係る湯水混合装置の流路分割部材を示す斜 視図、 図 1 5 Bはその正面図である。
図 1 6八は第 1 0の好ましい形態に係る湯水混合装置の水側弁体を示す側面図、 図 1 6 Bはその背面図である。
図 1 7 Aは第 1 0の好ましい形態に係る湯水混合装置の調節部材を示す背面図、 図 1 7 Bはその側面図である。
図 1 8八は第1 0の好ましい形態に係る湯水混合装置の摺動連結部材を示す側 面図、 図 1 8 Bはその背面図である。
図 1 9は第 1 1の好ましい形態に係る湯水混合装置の横断面平面図である。 図 2 0は従来の湯水混合装置を示す縦断面図である。 発明の好ましい形態
[第 1の好ましい形態]
図 1は第 1の好ましい形態 (請求項 1〜5の発明の好ましい形態) に係る湯水 混合装置の断面図、 図 2はこの湯水混合装置の高温吐水時の断面図、 図 3は、 こ の湯水混合装置の低温吐水時の断面図である。 なお、 以下の説明において、 左、 右は図 1〜3における左、 右を指称するものである。
筒状のバルブボディ一 1 0の周面に水の流入口 1 2と湯の流入口 1 4とが設け られ、 左端に混合水の流出口 1 6が設けられている。 湯の流入口 1 4は水の流入 口 1 2よりも左端側に位置している。 これらの流入口 1 2 , 1 4の間のボディー 内周面を内方に突出させることにより突部 2 0が設けられている。 この突部 2 0 のお端面が水シ一ト 2 2となっており、 左端面が湯シ一ト 2 4となっている。 この水シー卜 2 2と対峙する環状の水弁体 3 2と湯シー卜 2 4と対峙する環状 の湯弁体 3 4とが主軸 3 0の十字形状部 3 0 aに嵌合している。 この十字形状部 3 0 aは、 主軸 3 0の軸心線と垂直な断面が十字形状となっている。
この主軸 3 0は、 形状記憶合金製の感温パネ 4 0によって右方に押圧可能とさ れ、 第 1のバイアスバネ 4 2及び第 2のバイアスバネ 4 4によって左方に押圧可 能とされている。 このバイアスバイアスバネ 4 2, 4 4を左右方向に進退させる ために、 回転軸 5 0、 進退軸 5 2、 フック 5 4及びスライ ドリング 5 6が主軸 3 0を取り巻くように配置されている。
回転軸 5 0の右端のハンドル取付部 5 0 aは、 ボディ一 1 0の軸揷通孔 6 0か ら右方に突出し、 ハンドル (図示略) が固着される。 このハンドル取付部 5 0 a のネック部分に Eリング 6 2が嵌着されることにより、 回転軸 5 0は左おに進退 不能となっている。 6 4は Oリングを示す。
この回転軸 5 0の左端側は、 筒状となっており、 その内周に雌ネジ 5 0 bが設 けられている。 筒状の進退軸 5 2のお端側の外周に設けられた雄ネジ 5 2 bが該 雌ネジ 5 0 bに嚙合しており、 回転軸 5 0の回転により進退軸 5 2が左右に進退 する。
進退軸 5 2の右端から内方に鍔部 (遠端側鍔部) 5 2 aが突設され、 この鍔部 5 2 aにストッパリング 6 8が係止されている。 このストッノ 」ング 6 8は進退 軸 5 2の内周面に沿って左右方向にスライ ド可能となっている。 このス卜ッパリ ング 6 8に第 2のバイアスバネ 4 4の先端が当接している。
進退軸 5 2の左端には外方に鍔部 (近端側鍔部) 5 0 cが突設されており、 こ の鍔部 5 0 cにフック 5 4の右端の爪部 5 4 cが係止可能とされている。 このフ ック 5 4は、 左端側が主軸 3 0の軸心線と垂直な円盤部 5 4 aとされ、 この円盤 部 5 4 aの外周から複数の脚片部 5 4 bが主軸 3 0の軸心線と平行方向に右方に 延設されている。 脚片部 5 4 bの先端は内向きに折曲されて前記爪部 5 4 cとな つている。 円盤部 5 4 aには第 2のバイアスパネ 4 4の左端が当接している。 前記スライ ドリング 5 6はこの円盤部 5 4 aと重なっており、 このスライ ドリ ング 5 6に対し第 1のバイァスバネ 4 2の右端が当接している。 第 1のバイアス バネ 4 2の左端は水弁体 3 2の内向きの鍔部 3 2 aに当接している。
水弁体 3 2の左端側は主軸 3 0の十字形状部 3 0 aに摺動自在に外嵌している c 湯弁体 3 4の右端側は該十字形伏部 3 0 aに摺動自在に外嵌している。
水弁体 3 2及び湯弁体 3 4にはそれぞれ高摺動性のフッ素樹脂よりなるシール リング 7 2, 7 4が外嵌している。 これらの.シールリング 7 2, 7 4はボディー 1 0の内周面に水密的に摺接している。
主軸 3 0の右端には、 前記進退軸 5 2の鍔部 5 2 a内に入り込みストツパリン グ 6 8に当接しうる大きさのフランジ 3 0 b (フランジ状の係止部) が設けられ ている。 また、 この主軸 3 0の中間部には、 スライ ドリング 5 6に当接しうる大 きさの鍔部 3 0 c (鍔状の係止部) が突設されている。
このように構成された湯水混合装置の作動について次に説明する。
I . 吐出設定温度を 3 0〜 5 0 °Cの中温度域とした場合 (図 1参照)
図 1の如くこの湯水混合装置の吐水温度 (混合水温度) を例えば 3 0〜 5 0で の中温度域に設定した場合、 直列に配置されたバイアスバイアスパネ 4 2, 4 4 の合成の押圧力が水弁体 3 2を介して主軸 3 0に対し左方向に作用し、 感温パネ 4 0の押圧力が主軸 3 0に対し右方向に作用し、 両者の押圧力がバランスし、 主 軸 3 0及び弁体 3 2, 3 4は停止している。
この中温度吐水状態において、 給湯温度や給湯圧などの変動によって混合水温 度が設定温度よりも低下すると、 感温パネ 4 0が縮み、 主軸 3 0が左方に移動し、 水シー卜 2 2と水弁体 3 2との間の水流通間隙が狭まると共に湯シー卜 2 4と湯 弁体 3 4との間の湯流通間隙が広がり、 混合水温度が設定温度まで回復 (上昇) する。 逆に、 混合水温度が設定温度よりも高くなつたときには、 感温パネ 4 0が 伸長し、 主軸 3 0と共に水弁体 3 2及び湯弁体 3 4が右方に位置し、 該水流通間 隙が広がると共に湯流通間隙が狭まり、 混合水温度が設定温度まで回復 (低下) する。
吐水設定温度を中温度域の範囲内で高めるべくハンドルを正方向に回転操作し た場合、 回転軸 5 0の正方向への回転に伴って進退軸 5 2が左方に移動し、 スト ッパリング 6 8も左方に移動する。 この結果、 バイアスバイアスパネ 4 2 , 4 4 の左方への押圧力が強くなり、 主軸 3 0と共に弁体 3 2, 3 4が左方にシフトし、 湯流通間隙が広がると共に水流通間隙が狭まり、 混合水温度が上昇する。 なお、 弁体 3 2, 3 4のシフト後にあっては感温バネ 4 0の右方への押圧力とバイアス バイアスバネ 4 2 , 4 4による左方への押圧力とがバランスしている。 混合水温 度が設定温度からずれたときには、 感温パネ 4 0が伸縮し、 混合水温度を設定温 度にまで回復させる。
吐水設定温度を中温度域の範囲内で低下させるベくハンドルを逆方向に回転操 作した場合、 回転軸 5 0の該逆方向への回転に伴って進退軸 5 2が右方に移動し、 ストッパリング 6 8も右方に移動する。 この結果、 バイアスバイアスバネ 4 2 , 4 4の左方への押圧力が小さくなり、 主軸 3 0と共に弁体 3 2, 3 4が右方にシ フ卜し、 湯流通間隙が狭まると共に水流通間隙が広がり、 混合水温度が低下する。 弁体 3 2, 3 4のシフ卜後にあっては感温バネ 4 0の右方への押圧力とバイァス バイアスバネ 4 2, 4 4による左方への押圧力とがバランスしている。 混合水温 度が設定温度からずれたときには、 感温バネ 4 0が伸縮し、 混合水温度を設定温 度にまで回復させる。
吐出混合水の設定温度を 3 0〜 5 0 °Cの中温度域に設定した場合には、 上記の 通りバイアスバイアスバネ 4 2, 4 4の双方が効いている。 各バイアスバイアス パネ 4 2, のバネ定数を 丄、 k 2とした場合、 主軸 3 0の左方への押圧力 はバイアスバイアスパネ 4 2, 4 4の直列合成バネ力となり、 そのバネ定数は 1
/ ( 1 / k ! + 1 / k 2 ) と ぃ k 2のいずれよりも小さいものとなる。
従って、 この設定温度を中温度域とした場合における回転軸 5 0及び進退軸 5 2のストローク量 (A ) と弁体 3 2 , 3 4のシフト量 (a ) との比 a Z Aは比較 的小さい。 換言するならば、 回転軸 5 0が単位角度回転した場合の弁体 3 2, 3 4のシフト量 (a ) は比較的小さい。 この結果、 図 4に実線で示すように、 中温 度域に吐出温度を設定した場合においては、 ハンドルを単位角度回したときの設 定温度の変化量は小さく、 図 4のグラフにおける温度直線は中温度域において勾 配の小さなものとなる。
I I . 吐出設定温度を 5 0 °C超の高温度域とした場合 (図 2参照)
吐出設定温度を 5 0 °C超とした場合は、 進退軸 5 2が大きく左方に移動し第 2 のバイァスバネ 4 4によって押圧されたスライ ドリング 5 6が水弁体 3 2の右端 面に直に当接する。 従って、 5 0 °C超の高温側にハンドルを回した場合は、 図 2 のように進退軸 5 2は第 2のバイアスバネ 4 4のみを介して主軸 3 0を左方に付 勢するようになる。 この第 2のバイアスバネ 4 4だけが押圧するときのパネ定数 は k 2であり、 前記中温度域の合成バネ定数 1 / ( 1 / k ! + 1 / k 2 ) に比べ て大きい。 従って、 進退軸 5 2のストローク.量 (A) と弁体 3 2 , 3 4のシフト 量 (a ) との比 a Z Aは中温度域の場合に比べて大きい。 このため、 ハンドルを 単位角度回したときの設定温度の変化量は中温度域の場合に比べて大きく、 図 4 のグラフにおける温度直線は高温度域において中温度域よりも勾配が大きなもの となる。 即ち、 5 0 °C超では、 ハンドルを少し回すだけで吐水温度が大幅に変化 する。
I I I. 吐出設定温度を 3 0 °C未満の低温度域とした場合 (図 3参照)
吐出設定温度を 3 0 °C未満とした場合は、 進退軸 5 2が大きく右方に移動し、 進退軸 5 2の鍔部 5 2 cとフック 5 4の爪部 5 4 cとが係合し、 該フック 5 4が 進退軸 5 2と共に右方に移動する。 そして、 スライ ドリング 5 6が鍔部 3 0 cに 当り、 第 1のバイアスバネ 4 2が水弁体 3 2とスライ ドリング 5 6 (鍔部 3 0 c ) 間で突張り、 該第 1のバイアスバネ 4 2の押圧力が主軸 3 0に作用しなくな る。
また、 この場合、 吐出設定温度を著しく低くする (例えばハンドルを " C " 近 傍まで回す) と、 進退軸 5 2がさらに右方に移動し、 主軸 3 0の右端のフランジ 3 0 bがストツパリング 6 8に当り、 第 2のバイァスバネ 4 4がス卜ッパリング 6 8及びフランジ 3 0 bを介して主軸 3 0を右方に押圧し、 湯弁体 3 4は感温バ ネ 4 0の右方付勢力によって湯シ一ト 2 4に押し付けられる。
従って、 この 3 0 °C未満の低温側にハンドルを回した場合は、 バイアスバイァ スバネ 4 2, 4 4による左方付勢力が作用しなくなり、 湯弁体 3 4が感温パネ 4 0による右向き付勢力によって湯シート 2 4に接近すると共に、 吐出設定温度を 著しく低くしたときには第 2のバイアスパネ 4 4の付勢力が主軸 3 0に対し右向 きに作用し、 湯弁体 3 4は感温パネ 4 0によって湯シート 2 4に押し付けられる ようになる。 このため、 回転軸 5 0及び進退軸 5 2のストローク量 (A ) と弁体 3 2 , 3 4のシフト量 (a ) との比 a Z Aは中温度域の場合に比べて大きい。 即 ち、 ハンドルを単位角度回したときの設定温度の変化量は中温度域の場合に比べ て大きく、 図 4のグラフにおける温度直線は低温度域において中温度域よりも勾 配が大きなものとなる。 換言するならば、 3 0 °C未満ではハンドルを少し回した だけで吐水温度が大幅に変化する。
なお、 ハンドルを 3 0 °C未満の低温度域に回していった場合に、 スライ ドリン グ 5 6が鍔部 3 0 cに当るよりも先にストツノ^リング 6 8がフランジ 3 0 bに当 るように構成しても良い。
[第 2の好ましい形態]
図 6を参照して第 2の好ましい形態 (とくに請求項 6, 7 ) について説明する この好ましい形態は、 1個の弁体 3 3が水流通間隙及び湯流通間隙の双方を調節 するよう構成されている。 この好ましい形態では、 図 1〜 3とは逆に水の流入口 1 2が湯の流入口 2 2よりも左端側に位置しており、 水シ一ト 2 2も湯シー卜 2 4よりも左端側に位置している。
この弁体 3 3は、 筒状のバルブボディ一一 1 0 Aの軸心上に位置する中央軸部 3 3 Cと、 該中央軸部 3 3 Cの左端及び右端に設けられたフランジ 3 3 A、 3 3 Bと、 該中央軸部 3 3 Cの長手方向中間部に対しセンターフランジ 3 3 Dを介し て連結された筒部 3 3 Eと、 該筒部 3 3 Eの外周に装着されボディー 1 O Aの内 周面に水密的に摺接しているシールリング 7 3と、 各フランジ 3 3 A、 3 3 B、
3 3 Dに設けられた透口 3 3 a、 3 3 b , 3 3 dとを有している。
このフランジ 3 3 Aに感温バネ 4 0の右端が当接している。 フランジ 3 3 Bに 第 1のバイァスバネ 4 2の左端が当接している。 弁体 3 3と進退軸 5 2との間に クラッチカラム 8 0が設けられている。
このクラッチカラム 8 0はボディ一 1 0 Aの内周面に沿って左右方向に進退可 能となっている。 このクラッチカラム 8 0の内周面からは、 鍔部 8 0 aが突設さ れており、 この鍔部 8 0 aと弁体 3 3のフランジ 3 3 Bとの間に第 1のバイアス パネ 4 2が蓄カ状態で介在されている。
また、 この鍔部 8 0 aと進退軸 5 2の鍔部 5 2 aとの間に第 2のバイアスパネ
4 4が蓄カ状態で介在されている。 クラッチカラム 8 0の右端の内周面には鍔部 8 0 bが突設されており、 該鍔部 8 O bは、 進退軸 5 2の左端外周側の鍔部 5 2 cと係合可能となっている。
図 6の湯水混合装置のその他の構成は図 1〜 3の湯水混合装置と同様であり、 同一符号は同一部分を示している。
このように構成された図 6の湯水混合装置の作動について次に説明する。
I . 吐出設定温度を 3 0〜 5 0 °Cの中温度域とした場合
図 6は、 この湯水混合装置の吐水温度 (混合水温度) を例えば 3 0〜 5 0での 中温度域に設定した状態を示している。 この場合、 直列に配置されたバイアスバ ネ 4 2 , 4 4の合成の押圧力が弁体 3 3に対し左方向に作用し、 感温バネ 4 0の 押圧力が弁体 3 3に対し右方向に作用し、 両者の押圧力がバランスしている。 この中温度吐水状態において、 給湯温度や給湯圧などの変動によつて混合水温 度が設定温度よりも低下すると、 感温パネ 4 0が縮み、 弁体 3 3が左方に移動し、 水シー卜 2 2と弁体 3 3との間の水流通間隙が狭まると共に湯シート 2 4と弁体
3 3との間の湯流通間隙が広がり、 混合水温度が設定温度まで回復 (上昇) する。 逆に、 混合水温度が設定温度よりも高くなつたときには、 感温パネ 4 0が伸長し、 弁体 3 3が右方に位置し、 該水流通間隙が広がると共に湯流通間隙が狭まり、 混 合水温度が設定温度まで回復 (低下) する。
吐水設定温度を中温度域の範囲内で高めるべくハンドルを正方向に回転操作し た場合、 回転軸 5 0の正方向への回転に伴って進退軸 5 2が左方に移動し、 クラ ツチカラム 8 0も左方に移動する。 この結果、 バイアスバネ 4 2 , 4 4の左方へ の押圧力が強くなり、 弁体 3 3が左方にシフトし、 湯流通間隙が広がると共に水 流通間隙が狭まり、 混合水温度が上昇する。 なお、 弁体 3 3のシフト後にあって は感温バネ 4 0の右方への押圧力とバイアスパネ 4 2, 4 4による左方への押圧 力とがバランスしている。 混合水温度が設定温度からずれたときには、 感温バネ
4 0が伸縮し、 混合水温度を設定温度にまで回復させる。
吐水設定温度を中温度域の範囲内で低下させるベくハンドルを逆方向に回転操 作した場合、 回転軸 5 0の該逆方向への回転に伴って進退軸 5 2が右方に移動し、 クラッチカラム 8 0も右方に移動する。 この結果、 バイアスバイアスパネ 4 2, 4 4の左方への押圧力が小さくなり、 弁体 3 3が右方にシフトし、 湯流通間隙が '狭まると共に水流通間隙が広がり、 混合水温度が低下する。 弁体 3 3のシフト後 にあっては感温バネ 40の右方への押圧力とバイァスバイアスバネ 42 , 44に よる左方への押圧力とがバランスしている。 混合水温度が設定温度からずれたと きには、 感温バネ 40が伸縮し、 混合水温度を設定温度にまで回復させる。
吐出混合水の設定温度を 3 0〜 5 0°Cの中温度域に設定した場合には、 上記の 通り、 直列配置'されたバイアスバイアスバネ 42 , 44の双方が効き, 直列合成 パネ定数 1Z ( 1 /k ! + 1 /k 2) にて弁体 3 3を左方に押圧する。 このため、 図 1〜3の湯水混合装置と同様に、 図 4のグラフにおける温度直線は中温度域に おいて勾配の小さなものとなる。
II. 吐出設定温度を 5 0°C超の高温度域とした場合
吐出設定温度を 5 0°C超とした場合は、 進退軸 5 2が大きく左方に移動する。 そして、 次
① クラッチカラム 8 0の左端とフランジ 3 3 b、
② 進退軸 5 2の左端とクラッチカラム 8 0の鍔部 8 0 a、
③ 進退軸 5 2の雄ネジ 5 2 bの左端側の段部 5 2 sとクラッチカラム 8 0の右 w、
のいずれかが直に当接する。 従って、 5 0°C超の高温側にハンドルを回した場合 は、 弁体 3 3は感温バネ 40の右方押圧力と一方のバイアスバネ 42又は 44の 左方押圧力とのバランスによってのみ進退するようになる。 このバイアスバネ 4 2又は 44のバネ定数は k 又は k 2であり、 いずれも前記中温度域の合成バネ 定数 1Z ( 1/k ! + l/k 2) に比べて大きい。 従って、 進退軸 5 2のスト口 ーク量 (A) と弁体 3 3のシフト量 (a) との比 aZAは中温度域の場合に比べ て大きい。 このため、 ハンドルを単位角度回したときの設定温度の変化量は中温 度域の場合に比べて大きく、 図 4のグラフの通り温度直線は高温度域において中 温度域よりも勾配が大きなものとなる。
III. 吐出設定温度を 3 0°C未満の低温度域とした場合
吐出設定温度を 3 0°C未満とした場合は、 進退軸 5 2が大きく右方に移動し、 進退軸 5 2の鍔部 5 2 cとクラッチカラム 8 0の鍔部 8 0 bとが係合し、 第 2の バイアスバネ 44の押圧力が弁体 3 3に作用しなくなる。 この場合、 進退軸 5 2 及びクラッチカラム 8 0は一体の剛体の如きものとなる。 従って、 この 3 0 °C未 満の低温側にハンドルを回した場合は、 クラッチカラム 8 0は進退軸 5 2と一体 的に進退するようになり、 回転軸 5 0及び進退軸 5 2のストローク量 (A ) と弁 体 3 3のシフト量 (a ) との比 a Z Aは中温度域の場合に比べて大きい。 このた め、 ハンドルを単位角度回したときの設定温度の変化量は中温度域の場合に比べ て大きく、 図 4のグラフの通り温度直線は低温度域において中温度域よりも勾配 が大きなものとなる。
[第 3の好ましい形態]
図 7を参照して第 3の好ましい形態 (とくに請求項 8 ~ 1 1 ) に係る湯水混合 装置について説明する。
この好ましい形態にあっては、 弁体 1 3 3のフランジ 3 3 Bの外周に 1対のフ ランジ 3 3 1 , 3 3 2が設けられている。 各フランジ 3 3 1 , 3 3 2は弁体 1 3 3の軸心線方向に所定間隔をおいて配置されている。 この弁体 1 3 3のその他の 構成は上記の図 6の弁体 3 3と同じである。
クラッチカラム 8 O Aは、 左端側に内向きの鍔部 8 0 cを備えており、 この鍔 部 8 0 cがフランジ 3 3 1, 3 3 2間に配置されている。 図 6のクラッチカラム 8 0と異なり鍔部 8 0 bは設けられていない。 また、 図 6の進退軸 5 2と異なり 進退軸 5 2には鍔部 5 2 cが設けられていない。
この図 7の湯水混合装置のその他の構成は図 6の湯水混合装置と同様であり、 同一符号は同一部分を示している。
I . この図 7の湯水混合装置においては、 3 0〜 5 0 °Cの中温設定時には、 バ ィァスパネ 4 2, 4 4の双方が直列に効き、 弁体 1 3 3は直列に合成された低バ ネ定数にて左方に押圧される。 これにより、 図 4の通り、 中温吐水時の温度勾配 が小さくなる。
I I . 5 0 °C超の高温を設定した場合、 進退軸 5 2が大きく左方に移動し、 ラッ チカラム 8 O Aも左方に移動し、 その鍔部 8 0 cが左側のフランジ 3 3 1に押し 付けられ、 弁体 1 3 3とクラッチカラム 8 0とがあたかも一体の如くなり、 弁体 1 3 3は感温バネ 4 0と、 第 2のバイアスバネ 4 4とのバランスによって進退す るようになる。 この第 2のバイアスバネ 4 4のバネ定数がバイアスバネ 4 2 , 4 4の直列のバ ネ定数よりも大きいので、 図 4の通り 5 0 °C超の高温設定時の温度勾配が大きな ものとなる。
I I I. 3 0 °C未満の低温に設定した場合、 進退軸 5 2は大きく右方に移動し、 鍔 部 8 0 cが右側のフランジ 3 3 2に当接し、 弁体 1 3 3とクラッチカラム 8 O A とがあたかも一体の如くなり、 クラッチカラ—ム 8 0 A及び弁体 1 3 3は進退軸 5 2とほぼ一体的に進退するようになるため、 図 4の通り、 3 0 °C未満の低温設定 時の温度勾配が大きなものとなる。
なお、 この図 7の好ましい形態においては、 請求項 1 0の如く、 5 0で超の高 温設定時に進退軸 5 2をクラッチカラム 8 O Aに押し付け、 第 2のバイアスパネ 4 4と感温バネ 4 0とのバランスによって弁体 3 3を進退させるよう構成しても 良い。
[第 4の好ましい形態]
図 8を参照して第 4の好ましい形態 (請求項 1 2, 1 3, 1 4, 1 5 ) に係る 湯水混合装置について説明する。
この湯水混合装置は、 図 6の湯水混合装置において弁体 2 3 3から突軸 3 3 4 を右方に突設し、 この突軸 3 3 4の先端のフランジ (係止部) 3 3 5が座金 8 5 を介して進退軸 5 2と係合可能となるようにしたものである。 この座金 8 5は第 2のバイアスバネ 4 4によって進退軸 5 2の鍔部 5 2 aの左端面に押し付けられ ている。
図 8の湯水混合装置のその他の構成は、 進退軸 5 2の左端を左方に延長した他 は図 6の湯水混合装置と同一である。
I . この図 8の湯水混合装置の吐水設定温度を中温域とした場合の作動は図 6 の湯水混合装置と全く同一であり、 弁体は第 1のバイアスバネ 4 2と第 2のバイ ァスパネ 4 4との直列の低バネ定数にて左方に付勢されている。 なお、 この場合 フランジ 3 3 5は図示の通り座金 8 5から右方に離隔している。
I I. 吐水設定温度を 3 0 °C未満の低温にすると、 進退軸 5 2が図 8よりも右方 にシフトし、 鍔部 5 2 c、 8 0 b同士が係合しクラッチカラム 8 0が右方に引き 寄せられる。 また、 進退軸 5 2が右方にシフトすることにより座金 8 5がフラン ジ 3 3 5に当接し、 第 2のバイアスバネ 4 4の付勢力は突軸 3 3 4を介して弁体 2 3 3に右向きに作用する。 このため、 弁体 2 3 3は感温バネ 4 0の付勢力と第 2のバイアスパネ 4 4の付勢力との並列付勢力により強力に右方向に付勢される 一方、 弁体 2 3 3に左向きに加えられる付勢力は第 1のバイアスバネ 4 2の付勢 力のみとなる。 このため、 進退軸 5 2のストローク量 (A ) に対する弁体 2 3 3 のストローク量 (a ) との比 a / Aが中温域の場合よりも大きくなり、 図 4の如 く温度直線の勾配が低温域において大きくなる。
なお、 ハンドルを 3 0 °C未満の低温側に回していった場合、 鍔部 8 0 b、 5 2 cが座金 8 5とフランジ 3 3 5との当接よりも先に当接しても良く、 逆に後から 当接しても良く、 同時に当接しても良い。
I I I. 吐水設定温度を 5 0 °C超の高温とした場合、 進退軸 5 2は大きく左方に移 動する。 そして、 次
① クラッチカラム 8 0の左端とフランジ 3 3 B、
② 進退軸 5 2の左端とクラッチカラム 8 0の鍔部 8 0 a、
③ 進退軸 5 2の段部 5 2 s とクラッチカラム 8 0の右端面、
のいずれかが当接し、 一方のバイアスバネ 4 2又は 4 4の付勢力のみが弁体 2 3 3に左向きに加えられるようになる。 一方、 弁体 2 3 3に右向きに加えられる付 勢力は感温バネ 4 0の付勢力だけである。 このため、 図 4に示した通り温度直線 の勾配が高温域において大きなものとなる。
[第 5の好ましい形態]
図 9を参照して第 5の好ましい形態 (請求項 1 6 ) に係る湯水混合装置につい て説明する。
この湯水混合装置は、 図 8の湯水混合装置と同様に、 突軸 3 3 4の先端の第 1 の係止部としての第 1のフランジ 3 3 5が第 1の座金 8 5を介して進退軸 5 2と 係合可能となるようにし、 この座金 8 5は第 2のバイアスバネ 4 4によって進退 軸 5 2の鍔部 5 2 aの左端面に押し付けられている。 この図 9では、 突軸 3 3 4 から第 2の係止部としての第 2のフランジ 3 3 4 Fを突設している。 またクラッ チカラム 8 0の鍔部 8 0 aに対し左方から重なる第 2の座金 8 5 Aを突軸 3 3 4 に外嵌させている。 第 2のフランジ 3 3 4 Fは鍔部 8 0 aの内孔を自由に通過し、 且つ該第 2の座金 8 5 Aの内孔は通過しえない大きさとなっている。 第 1のバイ ァスバネ 4 2は、 該第 2の座金 8 5 Aと弁体 2 3 3のフランジ 3 3 Bとの間に蓄 力状態にて介在されている。
図 9の湯水混合装置のその他の構成は、 図 8の湯水混合装置と同一である。
I · この図 9の湯水混合装置の吐水設定温度を中温域とした場合の作動は図 8 の湯水混合装置と全く同一であり、 弁体は第 1のバイアスパネ 4 2と第 2のバイ ァスバネ 4 4との直列の低バネ定数にて左方に付勢されている。 なお、 この場合 フランジ 3 3 5は図示の通り座金 8 5から右方に離隔している。 また、 座金 8 5 Aは鍔部 8 0 aに押し付けられている。
I I . 吐水設定温度を 3 0 °C未満の低温にすると、 進退軸 5 2が図 8よりも右方 にシフトし、 鍔部 5 2 c、 8 0 b同士が係合しクラッチカラム 8 0が右方に引き 寄せられる。 また、 進退軸 5 2が右方にシフトすることにより第 1の座金 8 5が 第 1のフランジ 3 3 5に当接し、 第 2のバイアスバネ 4 4の付勢力は突軸 3 3 4 を介して弁体 2 3 3に右向きに作用する。 このため、 弁体 2 3 3は感温パネ 4 0 の付勢力と第 2のバイアスパネ 4 4の付勢力との並列付勢力により強力に右方向 に付勢される。 また、 この場合、 クラッチカラム 8 0が右方に移動することによ り第 2の座金 8 5 Aが第 2のフランジ 3 3 4 Fに当り、 第 1のバイアスバネ 4 2 はフランジ 3 3 B , 3 3 4 F間に挟持された状態となり、 弁体 2 3 3に対し左右 方向の付勢力を全く与えない。 このため、 進退軸 5 2のストローク量 (A ) に対 する弁体 2 3 3のストローク量 (a ) との比 a Z Aが中温域の場合よりも大きく なり、 図 4の如く温度直線の勾配が低温域において大きくなる。
なお、 この場合、 第 1のバイアスバネ 4 2はフランジ 3 3 B, 3 3 4 F間に挟 持された伏態となり、 進退軸 5 2に対しても付勢力を全く与えない。 (進退軸 5 2には第 2のバイアスバネ 4 4の付勢力のみが作用する。 ) このため、 回転軸 5 0を低トルクにてスムーズに回すことができる。
I I I. 吐水設定温度を 5 0 °C超の高温とした場合、 進退軸 5 2は大きく左方に移 動する。 そして、 突軸 3 3 4の第 2のフランジ部 3 3 4 Fが第 2の座金 8 5 Aに 当り、 第 1のバイアスバネ 4 2はフランジ 3 3 4 F , 3 3 B間に挟持された伏態 となり、 第 1のバイアスパネ 4 2は弁体 2 3 3に対し左右方向の付勢力を全く与 えないものとなり、 第 2のバイアスバネ 4 4の付勢力のみが弁体 2 3 3に左向き に加えられるようになる。 弁体 2 3 3に右向きに加えられる付勢力は感温バネ 4 0の付勢力だけである。 このため、 図 4に示した通り温度直線の勾配が高温域に おいて大きなものとなる。
[第 6の好ましい形態]
図 1 0を参照して第 6の好ましい形態 (請求項 1 2, 1 3, 1 7 , 1 8 ) に係 る湯水混合装置について説明する。
この湯水混合装置は、 図 7の湯水混合装置において進退軸 5 2から突軸 5 2 2 を左方に突設し、 この突軸 5 2 2の先端のフランジ (係止部) 5 5 2が座傘 8 7 を介して弁体 3 3 3と係合可能となるようにしたものである。 この座金 8 7は第 1のバイアスバネ 4 2によって弁体 3 3 3のフランジ 3 3 2の右端面に押し付け られている。 この弁体 3 3 3の構成は、 フランジ 3 3 Bの位置が弁体 3 3 3より も若干左にずれている他は図 7の弁体 1 3 3と同一である。
図 1 0の湯水混合装置のその他の構成は図 7の湯水混合装置と同一である。
I . この図 1 0の湯水混合装置の吐水設定温度を中温域とした場合の作動は図 7の湯水混合装置と全く同一であり、 第 1のバイアスバネ 4 2と第 2のバイアス パネ 4 4とが弁体 3 3 3を直列に左方に付勢し、 この付勢力の合成パネ定数が小 さいので、 図 4の如く中温度域の温度直線の勾配が小さなものとなる。
I I . 吐水設定温度を 3 0 °C未満の低温にすると、 進退軸 5 2が図 1 0よりも右 方にシフトし、 座金 8 7にフランジ 5 5 2が当接する。 また、 クラッチカラム 8 0 Aが右方に移動してその鍔部 8 0 cが弁体 3 3 3の右側のフランジ 3 3 2に当 接すると、 第 1のバイアスバネ 4 2の付勢力がクラッチカラム 8 0 Aを介して弁 体 3 3 3に右向きに付加されることになり、 弁体 3 3 3には、 感温バネ 4 0及び 第 1のバイアスパネ 4 2の合計 (並列) の右方付勢力と、 第 2のバイアスパネ 4 4の左方付勢力とが作用する。
このように吐水設定温度を低温とした場合、 感温バネ 4 0の右方付勢力に対し 第 1のバイアスバネ 4 2の右方付勢力が重畳する結果、 弁体 3 3 3に対して加え られる右方への付勢力が強大となり、 進退軸 5 2のストローク量 (A ) と弁体 3 3 3のストローク量 ( a ) との比 a Z Aが大きくなり、 図 4の通り 3 0 °C未満の 低温設定時の温度勾配が大きいものとなる。
I I I. 5 0 °C超の高温を設定した場合、 進退軸 5 2が大きく左方に移動する。 そ して、 次
① クラッチカラム 8 O Aの鍔部 8 0 cと弁体 3 3 3の左側のフランジ 3 3 1、
② 進退軸 5 2の左端とクラッチカラム 8 0の鍔部 8 0 a、
のいずれかが当接し、 弁体 3 3 3とクラッチ.カラム 8 0 A、 又は進退軸 5 2とク ラッチカラム 8 O Aとがあたかも一体の如くなり、 弁体 3 3 3は感温バネ 4 0に よって右方に付勢され、 一方のバイアスバネ 4 2又は 4 4によって左方に付勢さ れるようになる。
この一方のバイアスバネ 4 2又は 4 4のバネ定数がバイアスバネ 4 2 , 4 4の 直列のバネ定数よりも大きいので、 図 4の通り 5 0 °C超の高温設定時の温度勾配 が大きなものとなる。
[第 7の好ましい形態]
図 1 1を参照して第 7の好ましい形態 (請求項 1 9 ) に係る湯水混合装置につ いて説明する。
この湯水混合装置は、 図 1 0の湯水混合装置と同様に、 進退軸 5 2から突軸 5
2 2を左方に突設し、 この突軸 5 2 2の先端の第 1のフランジ (第 1の係止部) 5 5 2が第 1の座金 8 7を介して弁体 3 3 3と係合可能となるようにしており、 この第 1の座金 8 7は第 1のバイアスバネ 4 2によって弁体 3 3 3のフランジ 3
3 2の右端面に押し付けられている。
この図 1 1の好ましい形態では、 突軸 5 2 2に第 2の係止部としての第 2のフ ランジ 5 2 2 Fが設けられている。 また、 突軸 5 2 2に第 2の座金 8 7 Aが外嵌 し、 この第 2の座金 8 7 Aは第 2のバイアスバネ 4 4によってクラッチカラム 8 O Aの鍔部 8 0 aに右側から押し付けられている。
なお、 第 2のフランジ 5 2 2 Fは第 2の座金 8 7 Aよりも左側に配置されてい る。
この第 2のフランジ 5 2 2 Fは、 鍔部 8 0 aの内孔を自由に通過するが、 第 2 の座金 8 7 Aは通過しえない大きさとなっている。
図 1 1の湯水混合装置のその他の構成は、 図 1 0の湯水混合装置と同一である。 I . この図 1 1の湯水混合装置の吐水設定温度を中温域とした場合の作動は図 1 0の湯水混合装置と全く同一であり、 弁体は第 1のバイアスバネ 4 2と第 2の バイアスバネ 4 4とが弁体 3 3 3を直列に左方に付勢し、 この付勢力の合成バネ 定数が小さいので、 図 4の如く中温度域の温度直線の勾配が小さなものとなる。
I I . 吐水設定温度を 3 0 °C未満の低温にすると、 進退軸 5 2が図 1 1よりも右 方にシフトし、 第 1の座金 8 7に第 2のフランジ 5 5 2が当接し、 また、 クラッ チカラム 8 0 Aが右方に移動してその鍔部 8 0 cが弁体 3 3 3の右側のフランジ
3 3 2に当接すると、 第 1のバイアスバネ 4 2の付勢力がクラッチカラム 8 O A を介して弁体 2 3 3に右向きに付加されることになり、 弁体 3 3 3は、 感温バネ
4 0及びバイアスバネ 4 2の合計 (並列) の右方付勢力が作用する。
さらに、 この場合、 進退軸 5 2と共に突軸 5 2 2が右方に移動し、 第 2のフラ ンジ部 5 2 2 Fが第 2の座金 8 7 Aに当接し、 該第 2の座金 8 7 Aを鍔部 8 0 a から右方に離反させる。 この結果、 第 2のバイアスパネ 4 4はフランジ部 5 2 2 Fと鍔部 5 2 aとの間に挟持された状態となり、 弁体 3 3 3には付勢力を与えな い。
このように吐水設定温度を低温とした場合、 感温パネ 4 0の右方付勢力に対し 第 1のバイアスパネ 4 2の右方付勢力が重畳する結果、 弁体 3 3 3に対して加え られる右方への付勢力が強大となり、 さらに、 第 2のバイアスバネ 4 4の左方付 勢力が消滅するところから、 進退軸 5 2のストローク量 (A) と弁体 3 3 3のス トローク量 (a ) との比 a Z Aが大きくなり、 図 4の通り 3 0 °C未満の低温設定 時の温度勾配が大きいものとなる。
なお、 この場合、 第 2のバイアスバネ 4 4の付勢力が進退軸 5 2に作用しない ので、 回転軸 5 2を低トルクでスムーズに回すことができる。
I I I. 5 0 °C超の高温を設定した場合、 進退軸 5 2が大きく左方に移動する。 そ して、 次
① クラッチカラム 8 O Aの鍔部 8 0 cと弁体 3 3 3の左側のフランジ 3 3 1 、
② 進退軸 5 2の左端とクラッチカラム 8 0の鍔部 8 0 a、
のいずれかが当接し、 弁体 3 3 3とクラッチカラム 8 0 A、 又は進退軸 5 2とク ラッチカラム 8 0 Aとがあたかも一体の如くなり、 弁体 3 3 3は感温バネ 4 0と、 一方のバイアスバネ 4 2又は 4 4とのバランスによって進退するようになる。 この一方のバイアスバネ 4 2又は 4 4のバネ定数がバイアスバネ 4 2 , 4 4の 直列のバネ定数よりも大きいので、 図 4の通り 5 0 °C超の高温設定時の温度勾配 が大きなものとなる。
[第 8の好ましい形態]
図 1 2を参照して第 8の好ましい形態 (請求項 2 0 , 2 1 ) について説明する。 この好ましい形態に係る湯水混合装置は、 バイアスパネを並列状に設置したもの である。 この好ましい形態では、 水弁体 3 2と進退軸 5 2 ' の鍔部 5 2 aとの間 に第 1のバイアスバネ 4 0 1が介在されている。 この水弁体 3 2を貫通する主軸 3 0 ' の右側のフランジ 3 0 bは、 鍔部 5 2 aの孔 5 2 1を通過しうる大きさと なっている。 このフランジ 3 0 bに座金 8 9が係止されており、 この座金 8 9と 水弁体 3 2との間に第 2のバイアスパネ 4 0 2が介在されている。 この座金 8 9 は孔 5 2 1を通過し得ない大きさとなっており、 図示の通り中温吐水時には鍔部 5 2 aの左側に配置されている。 水弁体 3 2の右端面からは筒伏のフック 3 0 1 が右方に突設され、 このフック 3 0 1の先端の係止部としての爪部 3 0 2が進退 軸 5 2 ' の内向きフック 5 2 2と係合可能となっている。
なお、 この好ましい形態ではフック 3 0 1は円筒状であり、 爪部 3 0 2は外向 きの鍔状に形成されている。 この爪部 3 0 2は、 図示の通り、 鍔部 5 2 2よりも 右側に配置されている。
この湯水混合装置のその他の構成は図 1〜 3の湯水混合装置と同様であり、 同 一符号は同一部分を示している。
このように構成された図 1 2の湯水混合装置の作動について次に説明する。 に 吐出設定温度を 3 0〜 5 0 °Cの中温度域とした場合 (図 1 2参照)
図 1 2の如くこの湯水混合装置の吐水温度 (混合水温度) を例えば 3 0〜 5 0 °Cの中温度域に設定した場合、 第 1のバイアスバネ 4 0 1の押圧力のみが水弁 体 3 2を介して主軸 3 0 ' に対し左方向に作用し、 感温パネ 4 0の押圧力が湯弁 体 3 4を介して主軸 3 0 ' に対し右方向に作用し、 両者の押圧力がバランスして いる。 第 2のバイアスバネ 4 0 2の押圧力は、 水弁体 3 2及び主軸 3 0 ' に対し、 左右に著しく作用し、 弁体 3 2, 3 4に対する左右方向への付勢力としてはゼロ となっている。
この中温度吐水状態において、 給湯温度や給湯圧などの変動によつて混合水温 度が設定温度よりも低下すると、 感温バネ 4 0が縮み、 弁体 3 2, 3 4及び主軸 3 0 ' が左方に移動し、 水シ一卜 2 2と水弁体 3 2との間の水流通間隙が狭まる と共に湯シ一ト 2 4と湯弁体 3 4との間の湯流通間隙が広がり、 混合水温度が設 定温度まで回復 (上昇) する。 逆に、 混合水温度が設定温度よりも高くなつたと きには、 感温バネ 4 0が伸長し、 主軸 3 0 ' と共に水弁体 3 2及び湯弁体 3 4が 右方に移動し、 該水流通間隙が広がると共に湯流通間隙が狭まり、 混合水温度が 設定温度まで回復 (低下) する。
吐水設定温度を中温度域の範囲内で高めるべくハンドルを正方向に回転操作し た場合、 鍔部 5 2 aが座金 8 9に当接しない範囲で進退軸 5 2 ' が左方に移動し、 第 2のバイアスバネ 4 0 2の左方への押圧力が強くなり、 主軸 3 0 ' と共に弁体 3 2 , 3 4が左方にシフトし、 湯流通間隙が狭まると共に水流通間隙が広がり、 混合水温度が低下する。 弁体 3 2, 3 4のシフト後にあっては感温バネ 4 0の右 方への押圧力とバネ 4 4による左方への押圧力とがバランスしている。 混合水温 度が設定温度からずれたときには、 感温パネ 4 0が伸縮し、 混合水温度を設定温 度にまで回復させる。
吐水設定温度を中温度域の範囲内で低下させるベく八ンドルを逆方向に回転操 作した場合、 鍔部 5 2 2が爪部 3 0 2に当接しない範囲で進退軸 5 2 ' が右方に 移動し、 主軸 3 0 ' と共に弁体 3 2 , 3 4が左方にシフトし、 湯流通間隙が広が ると共に水流通間隙が狭まり、 混合水温度が上昇する。 なお、 弁体 3 2 , 3 4の シフト後にあっては感温バネ 4 0の右方への押圧力とバネ 4 4による左方への押 圧力とがバランスしている。 混合水温度が設定温度からずれたときには、 感温バ ネ 4 0が伸縮し、 混合水温度を設定温度にまで回復させる。
吐出混合水の設定温度を 3 0〜 5 0 °Cの中温度域に設定した場合には、 上記の 通り第 1のバイアスバネ 4 0 1のみが効いている。 即ち、 各バネ 4 0 1 , 4 0 2 のパネ定数を k i、 k 2とした場合、 主軸 3 0 ' の左方への押圧力は k 1であり、 バネ 4 0 1, 4 0 2の並列合成バネ力のバネ定数 (k + k z ) よりも小さいも のとなる。 従って、 この設定温度を中温度域とした場合における進退軸 5 2 ' のストロー ク量 (A) と弁体 3 2, 34のシフト量 (a) との比 a /Aは比較的小さい。 換 言するならば、 回転軸 5 0が単位角度回転した場合の弁体 3 2, 34のシフト量 (a) は比較的小さい。 この結果、 図 4に実線で示すように、 中温度域に吐出温 度を設定した場合においては、 ハンドルを単位角度回したときの設定温度の変化 量は小さく、 図 4のグラフにおける温度直線は中温度域において勾配の小さなも のとなる。
II. 吐出設定温度を 5 0°C超の高温度域とした場合
吐出設定温度を 5 0°C超とした場合は、 進退軸 5 2 ' が大きく左方に移動し、 進退軸 5 2 ' の鍔部 5 2 aが座金 8 9を左方に押圧し、 座金 8 9が主軸 3 0 ' の フランジ 3 0 bから左方に離反する。 従って、 5 0°C超の高温側にハンドルを回 した場合は、 進退軸 5 2 ' は 2個のバイアスバネ 40 1, 40 2の並列の押圧力 により主軸 3 0 ' を左方に付勢するようになる。 この並列のバイアスバネ 40 1 , 40 2が押圧するときのバネ定数は k ! + k 2であり、 前記中温度域のパネ定数 k Iに比べて大きい。 従って、 進退軸 5 2 ' のストローク量 (A) と弁体 32, 34のシフト量 (a) との比 a/Aは中温度域の場合に比べて大きい。 このため、 ハンドルを単位角度回したときの設定温度の変化量は中温度域の場合に比べて大 きく、 図 4のグラフにおける温度直線は高温度域において中温度域よりも勾配が 大きなものとなる。
III. 吐出設定温度を 3 0°C未満の低温度域とした場合
吐出設定温度を 3 0°C未満とした場合は、 進退軸 5 2 ' が大きく右方に移動し、 進退軸 5 2 ' の鍔部 5 2 2とフック 3 0 1の爪部 3 0 2とが係合し、 バイアスバ ネ 40 1の押圧力が水弁体 3 2に作用しなくなる。 この場合、 進退軸 5 2 ' 及び 水弁体 3 2は一体的に進退するようになり、 回転軸 5 0及び進退軸 5 2のスト口 —ク量 (A) と弁体 3 2, 34のシフト量 (a) との比 a /Aは中温度域の場合 に比べて大きい。 このため、 ハンドルを単位角度回したときの設定温度の変化量 は中温度域の場合に比べて大きく、 図 4のグラフにおける温度直線は低温度域に おいて中温度域よりも勾配が大きなものとなる。
なお、 湯弁体 34が湯シート 24に当接した後もさらにハンドルを低温側に回 すことにより進退軸 5 2 ' がさらに右方に移動した場合、 十字形状部 3 0 aと水 弁体 3 2とが離反する。
[第 9の好ましい形態]
図 1 3を参照して第 9の好ましい形態 (請求項 2 2 , 2 3 ) について説明する この好ましい形態は、 図 6と同じく 1個の弁体 4 3 3が水流通間隙及び湯流通間 隙の双方を調節するよう構成されている。 .
この弁体 4 3 3は、 フランジ 3 3 Bから右方にカラム 3 3 5が突設され、 この カラム 3 3 5の外周から第 1及び第 2の鍔部 3 3 6 , 3 3 7が突設されている。 第 2の鍔部 3 3 7はカラム 3 3 5の右端に位置している。 この鍔部 3 3 6 , 3 3 7の間に第 1及び第 2の座金 9 1, 9 2が配置され、 これらの座金 9 1, 9 2の 間に第 1のバイアスパネ 4 2が蓄カ状態で介在されている。 なお、 第 1の座金 9 1は、 後述の鍔部 5 2 6に係合可能な大きさのものとなっている。
進退軸 5 2 0は、 左方に延在する筒部 5 2 5を有しており、 この筒部 5 2 5の 左端に内向きの鍔部 5 2 6が突設されている。 この鍔部 5 2 6は上記の第 1の鍔 部 3 3 6よりも左方に位置している。 この鍔部 5 2 6の内径は鍔部 3 3 6の外径 よりも大きなものとなっている。
進退軸 5 2 0の内周面には、 上記の鍔部 3 3 7よりも右方に段部 5 2 7が設け られている。 この段部 5 2 7よりも右側では進退軸 5 2 0の内径は小径となって いる力 第 2の鍔部 3 3 7は、 この小径部分よりも小さな直径を有しておりこの 段部 5 2 7には当接しない。 この鍔部 3 3 7に重なっている座金 9 2は、 この段 部 5 2 7に当接しうる大きさのものとなっている。
弁体 4 3 3のフランジ 3 3 Bと進退軸 5 2 0の鍔部 5 2 aとの間に第 2のバイ ァスバネ 4 4が介在されている。
図 1 3の湯水混合装匱のその他の構成は図 6の湯水混合装置と同一であり、 同 一符号は同一部分を示している。
このように構成された図 1 3の湯水混合装置の作動について次に説明する。
I . 吐出設定温度を 3 0〜 5 0 °Cの中温度域とした場合
図 1 3は、 この湯水混合装置の吐水温度 (混合水温度) を例えば 3 0〜 5 0 °C の中温度域に設定した状態を示している。 この場合、 第 2のバイアスバネ 4 4の 押圧力のみが弁体 4 3 3に対し左方向に作用し、 感温バネ 4 0の押圧力が弁体 4 3 3に対し右方向に作用し、 両者の押圧力がバランスしている。 第 1のバイアス パネ 4 2は鍔部 3 3 6 , 3 3 7間に配置されており、 弁体 4 3 3には付勢力を与 えていない。
この中温度吐水伏態において、 給湯温度や給湯圧などの変動によつて混合水温 度が設定温度よりも低下すると、 感温バネ 4 0が縮み、 弁体 4 3 3が左方に移動 し、 水シート 2 2と弁体 3 3との間の水流通間隙が狭まると共に湯シー卜 2 4と 弁体 4 3 3との間の湯流通間隙が広がり、 混合水温度が設定温度まで回復 (上 昇) する。 逆に、 混合水温度が設定温度よりも高くなつたときには、 感温パネ 4 0が伸長し、 弁体 4 3 3が右方に位置し、 該水流通間隙が広がると共に湯流通間 隙が狭まり、 混合水温度が設定温度まで回復 (低下) する。
吐水設定温度を中温度域の範囲内で高めるべくハンドルを正方向に回転操作し た場合、 段部 5 2 7が座金 9 2に当接しない範囲で進退軸 5 2 0が左方に移動し、 第 2のバイアスバネ 4 4の左方への押圧力が強くなり、 弁体 4 3 3が左方にシフ トし、 湯流通間隙が広がると共に水流通間隙が狭まり、 混合水温度が上昇する。 なお、 弁体 4 3 3のシフト後にあっては感温バネ 4 0の右方への押圧力と第 2の バイアスバネ 4 4による左方への押圧力とがバランスしている。 混合水温度が設 定温度からずれたときには、 感温パネ 4 0が伸縮し、 混合水温度を設定温度にま で回復させる。
吐水設定温度を中温度域の範囲内で低下させるベくハンドルを逆方向に回転操 作した場合、 鍔部 5 2 6が座金 9 1に当接しない範囲で進退軸 5 2 0が右方に移 動し、 第 2のバイアスパネ 4 4と共に弁体 4 3 3が右方にシフトし、 湯流通間隙 が狭まると共に水流通間隙が広がり、 混合水温度が低下する。 弁体 4 3 3のシフ ト後にあっては感温バネ 4 0の右方への押圧力と第 2のバイアスバネ 4 4による 左方への押圧力とがバランスしている。 混合水温度が設定温度からずれたときに は、 感温パネ 4 0が伸縮し、 混合水温度を設定温度にまで回復させる。
吐出混合水の設定温度を 3 0〜 5 0 °Cの中温度域に設定した場合には、 上記の 通り 1個の第 2のバイアスバネ 4 4のみが効き、 バイアスバイアスバネ 4 2, 4 4の並列の場合よりも低いパネ定数にて弁体 4 3 3を左方に押圧する。 このため、 図 1〜 3の湯水混合装置と同様に、 図 4のグラフにおける温度直線は中温度域に おいて勾配の小さなものとなる。
I I . 吐出設定温度を 5 0 °C超の高温度域とした場合
吐出設定温度を 5 0 °C超とした場合は、 進退軸 5 2 0が大きく左方に移動し、 段部 5 2 7が座金 9 2に当接し、 座金 9 2を左方に移動させる。 この結果、 バイ ァスバイアスバネ 4 2, 4 4が並列して弁体 4 3 3を左方に押圧する。 従って、 進退軸 5 2 0のストローク量 (A ) と弁体 4 3 3のシフト量 (a ) との比 a Z A は中温度域の場合に比べて大きい。 このため、 八ンドルを単位角度回したときの 設定温度の変化量は中温度域の場合に比べて大きく、 図 4のグラフの通り温度直 線は高温度域において中温度域よりも勾配が大きなものとなる。
I I I. 吐出設定温度を 3 0 °C未満の低温度域とした場合
吐出設定温度を 3 0 °C未満とした場合は、 進退軸 5 2 0が大きく右方に移動し、 進退軸 5 2 0の鍔部 5 2 6が座金 9 1を右方に押す。 この結果、 弁体 4 3 3に対 しては感温バネ 4 0及び第 1のバイアスバネ 4 2の並列 (合計) の付勢力が右向 きに加えられ、 第 2のバイアスパネ 4 4の付勢力が左向きに加えられる。 この 3 0 °C未満の低温の範囲でハンドルを回したときの回転軸 5 0及び進退軸 5 2 0の ストローク量 (A ) と弁体 4 3 3のシフト量 (a ) との比 a / Aは中温度域の場 合に比べて大きい。 このため、 ハンドルを単位角度回したときの設定温度の変化 量は中温度域の場合に比べて大きく、 図 4のグラフの通り温度直線は低温度域に おいて中温度域よりも勾配が大きなものとなる。
以上の通り、 本発明によると、 吐出混合水温度を中温度域に設定する場合、 温 度目盛間隔を大きくとることができ、 設定温度を微調整することができる。 しか も、 本発明によると、 温調ハンドルの回転範囲を増大させることなく、 低温度域
〜高温度域において吐出混合水温度を設定することができる。
[第 1 0の好ましい形態]
図 1 4〜図 1 8を参照して第 1 0の好ましい形態に係る湯水混合装置 8 0 9の 制御機構について説明する。 図 1 4に示すように、 湯水混合装置 8 0 9は、 二つ の筒状部材を螺合締結した本体ケース 8 1 4を有し、 その内部に弁体ケース 8 0
1が嵌合装着されている。 弁体ケース 8 0 1の湯流入口 8 0 3に臨んでは湯側弁 体 8 1 1 aが軸方向移動自在に嵌合装着されており、 また水流入口 8 0 4に臨ん では水側弁体 8 1 1 bが軸方向移動自在に嵌合装着されている。 これらの湯側弁 体 8 1 1 aと水側弁体 8 1 1 bとは、 別々の部材からなり、 単独で軸方向移動で きるようになつている。
水側弁体 8 l i bは、 図 1 6 A, 1 6 Bに示すように、 全体形状は筒状を成し ており、 上下に半円弧状の溝 8 1 5が形成されている。 この溝 8 1 5には、 図 1 8に示す摺動連結部材 8 1 3が嵌合装着されるようになっている。 摺動連結部材 8 1 3の後端側には、 図 1 7 A , 1 7 Bに示す筒状の調節部材 8 1 2の先端側膨 大径部 8 1 6が嵌合装着されている。 この調節部材 8 1 2は、 先端側の対向する 外周面に回り止め用の凸部 8 1 7が形成されており、 弁体ケース 8 0 1の内周面 に軸方向と平行に穿設した回り止め用のレール溝 8 1 8へ嵌合装着されている。 また調節部材 8 1 2の後端側には雄螺子部 8 1 9が形成されており、 温度調節ハ ンドルのハンドル軸 8 2 0の先端側に設けられた筒状部内周面の雌螺子部 8 2 1 へ螺合装着されている。 更に調節部材 8 1 2の筒内にはバイアスバネ 8 0 7の一 端側がバネ装着部材 8 2 2を介して取り付けられている。 なお、 バイアスパネ 8 0 7の他端側は水側弁体 8 1 1 bの筒内に取り付けられている。
従って、 温調ハンドルを回転操作すると、 その回転操作力はハンドル軸 8 2 0 の雌螺子部 8 2 1から調節部材 8 1 2へ伝達される。 ところが、 調節部材 8 1 2 は、 回り止め用の凸部 8 1 7がレール溝 8 1 8へ嵌合しており、 回転が抑止され ているので、 軸方向へ移動するようになる。 そのため、 バイアスバネ 8 0 7の付 勢力が変化し、 水側弁体 8 0 7の開口面積を変化させるようになる。
一方、 湯側弁体 8 1 1 aは、 筒伏を成しており、 その内部に図 1 5 A, 1 5 B に示す十文字状の流路分割部材 8 1 0が取り付けられている。 この流路分割部材 8 1 0は、 湯流入口 8 0 3と水流入口 8 0 4との間に設けられており、 この流路 間を周方向に四分割している。 そして、 流路分割部材 8 1 0の中心寄りの内隅角 部には、 角形成部材 8 2 3を配設し、 その一つの面 8 2 3 aの長さを短辺 L aと し、 他方の面 8 2 3 bの長さを長辺 L bとし、 L aく L bとしている。 このよう に弁体ケース 8 0 1内の流入口 8 0 3及び 8 0 4の間の流路 (内腔 8 0 2 ) を周 方向に四分割することにより、 湯と水とがそれぞれ図 1 5 Bの矢符の如く、 各区 画内において回転しながら流れるようになり、 湯と水の混合が促進される。 つま り、 温度ムラの発生を防止することができる。
しかも、 湯と水の供給圧が低い場合には、 湯と水の流入口 8 0 3及び 8 0 4か ら流入する湯と水の勢いが弱く、 中心部まで入り込むことができないが、 角形成 部材 8 2 3を配設することにより、 上流側の.流入口 8 0 4から流入する水は、 角 形成部材 8 2 3の稜線によって流れが分散されるようになり、 水の流れの勢いの ある領域が、 図 1 5 Bの斜線で示すように、 aの面を流れる水の方向と bの面を 流れる水の方向とがその終端面側においてズレるようになり、 aの面を流れる水 が内側にもぐり込み、 全体の流れに矢符方向の回転を与える。 この回転は、 下流 側の流入口 8 0 3から流入する湯をも巻き込み、 弱い供給圧であっても十分に中 心まで入り込ませて混合攪拌できるようにしている。 つまり、 温度ムラの発生を 防止するようにしている。
一方、 湯側弁体 8 1 1 aは、 その内周面に流路分割部材 8 1 0がー体的に取り 付けられており、 流路分割部材 8 1 0の後端側に低温時操作軸 8 2 4の先端側が 取り付けられている。 低温時操作軸 8 2 4の後端側には、 連携リング 8 2 5が外 嵌装着されている。 この連携リング 8 2 5は、 湯と水との混合水の温度が低温領 域にある場合においてパネ装着部材 8 2 2の後端面と接触するようになっており、 低温領域以外の温度領域では感温バネ 8 0 6の付勢力によってパネ装着部材 8 1 2の後端面から離れて自由に軸方向移動ができるようになつている。
次に、 上述の如く構成された湯水混合装置 8 0 9の動作態様を、 吐出する温水 の温度が低温領域の場合と低温領域以外の場合とに分けて説明する。 先ず、 通常 の使用状態である低温領域以外の場合について説明すると、 この場合は湯側弁体 8 1 1 aと水側弁体 8 1 1 bとはそれぞれ所定の開口面積で開口しており、 湯流 入口 8 0 3と水流入口 8 0 4とから所定の流量比で内腔 8 0 2内へ湯と水とが流 入し、 混合されて所望する温度の温水となって吐出されている。 この場合の温度 設定は、 温調ハンドル軸 8 2 0を回動操作して調節部材 8 1 2の軸方向位置を変 化させ、 バイアスパネ 8 0 7の付勢力を変化させて感温バネ 8 0 6の付勢力とバ '、 湯側弁体 8 1 1 a及び水側弁体 8 1 1 bの軸方向位置を変化させ、 湯水の流入口 8 0 3及び 8 0 4の開口面積の比率を変化させることで行うように している。 そして、 供給圧の変動等によって吐出される温水の温度が設定した温 度から変化した場合には感温パネ 8 0 6がこれを検知してバネ定数を変化させ、 湯側弁体 8 1 1 a及び水側弁体 8 1 1 bの軸方向位置を変化させることで湯流入 口 8 0 3の水流入口 8 0 4に対する開口面積の比率を変化させることで自動温度 調節するようにしている。
一方、 吐出される温水の温度領域が低温領域の場合は、 形状記憶合金である感 温パネ 8 0 6のパネ定数が小さく、 湯の供給圧に対して十分に対応することがで きなくなる。 そのため、 水のみの吐出を行おうとする場合に、 湯側弁体 8 1 1 a の軸方向位置を、 完全に湯流入口 8 0 3が閉塞される位置まで移動させることが 不可能となる。 そこで、 この湯水混合装置 8 0 9では、 吐出される温水の温度頜 域が低温領域の場合には、 バイアスパネ 8 0 7を弁体着座時以降の操作力を緩和 するための緩衝部材として利用しながら調節部材 8 1 2を操作することによって 直接に湯側弁体 8 1 1 aの軸方向位置を制御するようにしている。 すなわち、 温 調ハンドル軸 8 2 0をこの低温領域で操作すると、 調節部材 8 1 2が図 1 4の右 側方向へ移動して水流入口 8 0 4の開口面積を大きくした状態となる。 そして、 調節部材 8 1 2の後端面 8 1 2 aが、 低温時操作軸 8 2 4の連携リング 8 2 5へ 当接するようになり、 以後はこの低温時操作軸 8 2 4とこれに連結された湯側弁 体 8 1 1 aとが連携して図 1 4の右側方向へ移動する。
それ故、 温調ハンドル軸 8 2 0を低温領域で回動操作すると、 調節部材 8 1 2 を介して直接に湯側弁体 8 1 1 aの軸方向位置を制御することができる。 この制 御は湯側弁体 8 1 1 aが湯流入口 8 0 3の弁座へ当接して湯の流入を遮断し、 水 のみの吐出が行われるまで行うことが可能である。 しかも、 この場合に、 バイァ スバネ 8 0 7の付勢力は、 湯側弁体 8 1 1 aが湯流入口 8 0 3の弁座へ着座した 以降の操作力を緩和するように作用するので、 湯側弁体 8 1 1 aが破損する等の ことはない。 しかも、 湯側弁体 8 1 1 aが着座した以後に、 調節部材 8 1 2を図 1 4の右方向へ移動させる閉弁操作があった場合には、 調節部材 8 1 2が摺動連 結部材 8 1 3と係合して水側弁体 8 1 1 aを同図の右方向へ移動させ、 バイアス パネ 8 0 7を圧縮する。 従って、 前記弁体が着座した以後の閉弁操作によって、 湯側弁体 8 1 1 aが破損するということもない。 それに加えて、 湯側弁体 8 1 1 aが着座した以後のバイアスパネ 8 0 7の付勢力は、 湯側弁体 8 1 1 aを閉じる 方向へ付勢することになる。 要するに、 この湯水混合装置 8 0 9は、 低温領域で はバイアスバネ 8 0 7を弁体着座時からそれ以降の閉弁操作に伴う弁体に作用す る操作力を緩和する緩衝部材として利用しながら調節部材 8 1 2を介して湯側弁 体 8 1 1 aの軸方向位置を強制的に制御し、 湯流入口 8 0 3を閉塞して水のみの 吐出を行うことが可能である。 そして、 湯側弁体 8 1 1 aが着座した後は、 バイ ァスバネ 8 0 7はこれを閉弁方向へ付勢することになる。
なお、 湯のみの吐出を行う場合は、 温調ハンドル軸 8 2 0を逆方向へ回動操作 し、 調節部材 8 1 2を図 1 4の左方向へ大きく移動させ、 バイアスパネ 8 0 7の 付勢力を変化させて水側弁体 8 1 1 bを水流入口 8 0 4の弁座へ当接させればよ い。
[第 1 1の好ましい形態]
図 1 9は、 第 1 0の好ましい形態に係る湯水混合装置 8 2 6を示す概略縦断面 図である。 この湯水混合装置 8 2 6は、 弁体ケース 8 0 1の内腔 8 0 2に、 スプ 一ル弁体 8 2 7と、 調節部材 8 1 2と、 ハンドル軸 8 2 0とが配設されている。 スプール弁体 8 2 7は、 大径部 8 2 7 aと小径部 8 2 7 bとを有しており、 大径 部 8 2 7 aの前後端面は湯側弁部 8 2 8及び水側弁部 8 2 9となっている。 なお、 この湯水混合装置 8 2 6の弁体ケース 8 0 1の周面に形成された湯流入口 8 0 3 と水流入口 8 0 4との位置関係は、 図 1 4に示す湯水混合装置 8 0 9とは逆にな つており、 湯流入口 8 0 3がハンドル軸 8 2 0寄り (図 1 9の右方向寄り) に形 成されている。 またスプール弁体 8 2 7の小径部 8 2 7 bの内周面には、 バイァ スバネ 8 0 7を装着するための凹部 8 3 0が形成されている。
調節部材 8 1 2はその先端側が、 スプール弁体 8 2 7の小径部 8 2 7 b内に軸 方向摺動自在に揷通されており、 該揷通部分の外周面にバイアスパネ 8 0 7を装 着するための凹部 8 3 1が形成されている。 バイアスバネ 8 0 7は、 この凹部 8 3 1と小径部 8 2 7 の凹部 8 3 0との間に嵌合装着されており、 その前後側に はバネ座としてのリング 8 3 2と 8 3 3とが配設されている。 また調節部材 8 1 2の中間部には、 弁体ケース 8 0 1の内周面に形成した回り止め用のレール溝 8 1 8へ嵌合する凸部 8 3 4が形成されている。 更に、 調節部材 8 1 2の後端側は、 その外周面に形成された雄螺子部 8 1 9がハンドル軸 8 2 0の雌螺子部 8 2 1へ 嫘着されている。
このように構成された湯水混合装置 8 2 6にあって、 吐出する温水の温度が通 常の使用状態である低温領域以外の場合は、 図 1 9に示すように、 バイアスパネ 8 0 7のバネ座リング 8 3 2がスプール弁体 8 2 7の凹部 8 3 0の前端面に係止 し、 調節部材 8 1 2の凹部 8 3 1の前端面からは離れて自由空間を形成している。 一方、 後端側のバネ座リング 8 3 3は、 調節部材 8 1 2の凹部 8 3 1の後端面に 係止しており、 スプール弁体 8 2 7の凹部 8 3 0の後端面からは離れて自由空間 を形成している。
そして、 この場合のスプール弁体 8 2 7の湯側弁部 8 2 8と水側弁部 8 2 9と は、 それぞれ所定の開口面積で開口しており、 湯流入口 8 0 3と水流入口 8 0 4 とから所定の流量比で内腔 8 0 2内へ湯と水とが流入し、 混合されて所望する温 度の温水となって吐出されている。 この場合の温度設定は、 温調ハンドル軸 8 2 0を回動操作して調節部材 8 1 2の軸方向位置を変化させ、 前記パネ座リング 8 3 2及び 8 3 3の自由空間の範囲内でバイアスバネ 8 0 7の付勢力を変化させて 感温バネ 8 0 6の付勢力とバランスさせ、 湯側弁部 8 2 8及び水側弁部 8 2 9の 軸方向位置を変化させ、 湯水の流入口 8 0 3及び 8 0 4の開口面積の比率を変化 させることで行うようにしている。 そして、 供給圧の変動等によって吐出される 温水の温度が設定した温度から変化した場合には感温バネ 8 0 6がこれを検知し てパネ定数を変化させ、 湯側弁部 8 2 8及び水側弁部 8 2 9の軸方向位置を変化 させることで湯流入口 8 0 3の水流入口 8 0 4に対する開口面積の比率を変化さ せることで自動温度調節するようにしている。
一方、 吐出される温水の温度領域が低温領域の場合は、 形状記憶合金である感 温パネ 8 0 6のパネ定数が小さく、 湯の供給圧に対して十分に対応することがで きなくなる。 そのため、 水のみの吐出を行おうとする場合に、 湯側弁部 8 2 8の 軸方向位置を、 完全に湯流入口 8 0 3が閉塞される位置まで移動させること (図 1 9の右側方向への移動) が不可能となる。 そこで、 この湯水混合装置 8 2 6で は、 吐出される温水の温度領域が低温領域の場合には、 バイアスパネ 8 0 7を弁 体着座時からそれ以後の閉弁操作に伴う弁体に作用する操作力を緩和するための 緩衝部材として利用しながら調節部材 8 1 2を介してスプール弁体 8 2 7の軸方 向位置を移動させ、 湯側弁部 8 2 8が湯流入口 8 0 3を完全に閉塞するようにし ている。 すなわち、 温調ハンドル軸 8 2 0をこの低温領域で操作すると、 調節部 材 8 1 2が図 1 9の右側方向へ移動し、 やがて後端側のバネ座リング 8 3 3がス プール弁体 8 2 7の凹部 8 3 0の後端面に接合して係止するようになる。 つまり、 調節部材 8 1 2の同図の右方向への移動に対しては、 調節部材 8 1 2とスプール 弁体 8 2 7とがバイアスバネ 8 0 7を中間に介在させた伏態で機械的に連携され ることになる。
従って、 その後の調節部材 8 1 2の右方向への移動は、 バイアスバネ 8 0 7の 付勢力を弁体が着座する時に受ける操作力を緩和するための緩衝力として作用さ せながらバネ座リング 8 3 3を介してスプール弁体 8 2 7を移動させるようにな り、 大径部 8 2 7 aの湯側弁部 8 2 8が湯流入口 8 0 3の弁座シートへ緩やかに 着座して終了する。 つまり、 湯流入口 8 0 3を強制的に閉塞する。 これにより、 水流入口 8 0 4は全開状態となり、 水のみの吐出が行われる。 更に、 湯側弁部 8 2 8が着座した以降に調節部材 8 1 2を閉弁方向へ操作すると、 調節部材 8 1 2 の凹部 8 3 1の前端面によってバネ座リング 8 3 2が図 6の右方向へ引き寄せら れ、 バイアスバネ 8 0 7を圧縮するようになり、 調節部材 8 1 2によって弁体 8 2 7が損傷するということはない。 また湯側弁部 8 2 8が着座した以降のバイァ スバネ 8 0 7の付勢力は、 湯側弁部 8 2 8を閉じる方向へ付勢することになる。 このように、 この第 2の好ましい形態の場合も、 低温領域では、 バイアスパネ 8 0 7が弁体着座時からそれ以後の閉弁操作に伴う弁体に作用する操作力を緩和す るための緩衝部材として機能する。 しかも、 このバイアスバネ 8 0 7を介して強 制的に調節部材 8 1 2でスプール弁体 8 2 7を移動させてその湯側弁部 8 2 8に よって湯流入口 8 0 3を完全に閉塞するようにしており、 閉塞後はバイアスバネ 8 0 7は湯側弁部 8 2 8を閉じる方向へ付勢する。 そのため、 感温バネ 8 0 6の パネ定数を小さくでき、 全体の小型化及びコストアツプを抑止することが可能で める。
ところで、 本発明は上述した好ましい形態に限定されるものではなく、 適宜の 変更が可能である。 例えば、 弁体ケースの内腔 8 0 2内へ設置する水側弁体 8 1 1 と調節部材 8 1 2とを一体形成してもよく、 また調節部材 8 1 2と摺動連結 部材 8 1 3とを一体形成してもよい。
以上説明したように、 弁体が感温パネとバイアスパネとで付勢されている。 弁 体に、 バイアスパネの調節部材当接面と直接又は間接的に当接可能な当接部が形 成され、 調節部材は、 バイアスパネの弁体当接面と直接又は間接的に当接可能な 当接部を備えている。 これにより、 弁体は、 バイアスパネの付勢力を変化させる 調節部材に対して直接又は間接的に連携動作する。 そのため、 吐出水の温度が低 温となる領域では、 バイアスパネを、 弁体着座時からそれ以後の閉弁操作に伴う 弁体に作用する操作力を緩和する緩衝部材として利用しながら、 調節部材を介し て弁体を軸方向移動させることができ、 強制的に湯流入口を閉塞して水のみの吐 出を得ることが可能である。 しかも、 弁体が着座した以降は、 バイアスパネはこ れを閉弁方向へ付勢することになり、 安定した閉弁動作が可能である。
従って、 感温パネのパネ定数を小さいものにすることができ、 感温パネの大型 化による水栓本体自体の大型化を避けることができる。 またこれによるコス卜ァ ップを抑制することも可能である。

Claims

請求の範囲
1 . 筒状のバルブボディ一内に水シートと湯シートとが設けられ、
該バルブボディ一の軸心線方向に進退可能であり、 該水シ一ト及び湯シー卜に 接離可能な弁体が該バルブボディーと同軸的に配置され、
該弁体を湯シート接近方向に付勢する感温パネと、 該弁体を水シート接近方向 に付勢するバイアスパネと、 該バイアスパネをバルブボディー軸心線方向に進退 させる吐水温度設定部材とが設けられている湯水混合装置において、
該弁体が中温吐出域に位置するときと、 該弁体が低温吐出域又は高温吐出域に 位置するときとで該バイアスパネによる付勢力を異ならせる付勢力切替手段を設 けたことを特徴とする湯水混合装置。
2 . 請求項 1において、 該バイアスバネとして複数のバイアスパネが設けられ ており、
前記切替手段は、 該弁体が低温吐出域又は高温吐出域に位匱するときには一部 のバイアスパネの付勢力を弁体に作用させ、 弁体が中温吐出域に位匱するときに は全てのバイアスパネの付勢力を直列に弁体に作用させることを特徴とする湯水
3 . 請求項 2において、 前記弁体は該バルブボディーと同軸配置された主軸に 支持されており、 該主軸は該バルブボディ一の軸心線方向に進退可能であり、 前記吐水温度設定部材は、
内周面に雌ネジを有し、 前記主軸と同軸的に配置された回転軸と、
該雌ネジに嚙合した雄ネジを有し、 該主軸と同軸的に配置された筒状の進退軸 と、
該進退軸の弁体と遠い方の端部及び近い方の端部にそれぞれ設けられた遠端側 鍔部及び近端側鍔部と、
該進退軸に対し軸心線方向に移動自在に嵌合しており、 該近端側端部に係合す ることによって弁体接近方向への移動が規制されるフックと、
該主軸に対して軸心線方向移動可能に嵌合しており、 該フックと弁体との間に 配置され、 該主軸の長手方向の途中に設けられた鍔状係止部と前記フックに対し それぞれ当接可能なスライドリングとを備えてなり、
該スライドリングと弁体との間に第 1のバイアスパネが蓄カ伏態で介装され、 該フックと遠端側鍔部との間に前記第 2のバイアスパネが蓄カ状態で介装され ていることを特徴とする湯水混合装置。
4 . 請求項 3において、 前記切替手段は、 _
前記弁体から突設された前記主軸と、
該主軸の先端に設けられたフランジ状の係止部と、
該主軸の途中に設けられた前記鍔状係止部と、
前記第 2のバイアスパネによって進退軸の遠端側鍔部に押し付けられる方向に 付勢されたストツノ \°リングと、
前記第 1のバイアスパネによってフックに押し付けられる方向に付勢された前 記スライドリングと
を備えており、
弁体が中温吐出域に位置するときには、 該フランジ状の係止部とストツパリン グとが離反し、 該ストツパリングは第 2のバイアスパネによって進退軸の遠端側 鍔部に押し付けられており、 且つ該鍔状係止部とスライ ドリングとが離反し、 該 スライ ドリングは第 1のバイアスバネによってフックに押し付けられており、 弁体が低温吐出域に位置するときには該ストツバリングに対し該フランジ状の 係止部が係合し、 且つ前記フックと近端側鍔部との係合によってフックの弁体接 近方向への移動が規制され、 これによつて第 2のバイアスパネの付勢力がストッ パリング及び主軸を介して弁体に対し前記感温パネの付勢力と同方向に加えられ ると共に、 スライ ドリングに対し前記鍔状係止部が係合し、 第 1のバイアスパネ の付勢力が弁体及び進退軸に対し作用しないようになることを特徴とする湯水混
5 . 請求項 2において、 前記吐水温度設定部材は、
内周面に雌ネジを有し、 前記バルブボディーと同軸的に配置された回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒状の進退 軸と、 該バルブボディ一の軸心線方向に移動自在なクラツチカラムとを備えてなり、 該クラッチカラムと弁体との間に第 1のバイアスパネが蓄カ状態で介装され、 該クラッチカラムと進退軸との間に第 2のバイアスパネが蓄カ状態で介装され ていることを特徴とする湯水混合装置。
6 . 請求項 5において、 弁体が低温吐出域に位置するときにはクラッチカラム と進退軸とが係合し、 クラッチカラムの弁体接近方向への移動が規制されること を特徴とする湯水混合装置。
7 . 請求項 5において、 弁体が高温吐出域に位置するときにはクラッチカラム が弁体又は進退軸に押し付けられ、 クラッチカラムの軸心線方向への移動が規制 されることを特徴とする湯水混合装置。
8 . 請求項 5において、 前記弁体に前記軸心線方向に離隔して 1対のフランジ が設けられており、
前記クラッチカラムには該フランジ同士の間に配置された鍔部が設けられてい ることを特徴とする湯水混合装置。
9 . 請求項 8において、 前記弁体を高温吐出域に位置させたときに弁体に近い 側の前記フランジにクラッチカラムの前記鍔部が押し付けられ、 クラッチカラム の軸心線方向の移動が規制されることを特徴とする湯水混合装置。
1 0 . 請求項 8において、 前記弁体を低温吐出域に位置させたときに弁体から 遠い側の前記フランジにクラッチカラムの前記鍔部が押し付けられ、 クラッチ力 ラムの軸心線方向の移動が規制されることを特徴とする湯水混合装置。
1 1 . 請求項 8において、 前記弁体を高温吐出域に位置させたときにクラッチ カラムが進退軸に押し付けられ、 クラッチカラムの軸心線方向の移動が規制され ることを特徴とする湯水混合装置。
1 2 . 請求項 1において、 該バイアスバネとして複数個のバイアスパネが設け られており、
前記切替手段は、
該弁体が中温吐出域に位置するときには感温パネの付勢力と反対方向に各バイ ァスパネの直列の付勢力を弁体に作用させ、
弁体が低温吐出域に位置するときには感温パネの付勢力と同方向に一部のバイ ァスパネの付勢力を弁体に作用させることを特徴とする湯水混合装置。
1 3 . 請求項 1 2において、
前記吐水温度設定部材は、
内周面に雌ネジを有し、 その軸心回りに回転可能に配置された回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒状の進退 軸と、
該進退軸の軸心線方向に移動自在なクラツチカラムとを備えてなり、
該クラッチカラムと弁体との間に第 1のバイアスパネが配置され、 該クラッチ カラムと進退軸との間に第 2のバイアスパネが配置されていることを特徴とする 湯水混合装置。
1 4 . 請求項 1 3において、 前記吐水温度設定部材によって低温を設定したと きに進退軸とクラッチカラムとを係合させる係合部が設けられており、
前記切替手段は、
前記弁体から前記進退軸に向って突設された突軸と、
該突軸の先端に設けられた係止部と、
前記第 2のバイアスパネによって進退軸に押し付けられる方向に付勢された座 金と
を備えており、
弁体が高温吐出域及び中温吐出域に位置するときには、 該係止部と座金とが離 反しており、 該座金は第 2のバイアスバネによって進退軸に押し付けられており、 弁体が低温吐出域に位置するときには該座金に対し該係止部が係合し、 且つ前 記係合部によってクラッチカラムの弁体接近方向への移動が規制され、 これによ つて第 2のバイアスパネの付勢力が座金及び突軸を介して弁体に対し前記感温バ ネの付勢力と同方向に加えられることを特徴とする湯水混合装置。
1 5 . 請求項 1 4において、 弁体が高温吐出域に位置するときにはクラッチ力 ラムが弁体又は進退軸に当接し、 クラッチカラムの軸心線方向への移動が規制さ れることを特徴とする湯水混合装置。
1 6 . 請求項 1 3において、 前記吐水温度設定部材によって低温を設定したと きに進退軸とクラッチカラムとを係合させる係合部が設けられており、 前記切替手段は、
前記弁体から前記進退軸に向って突設された突軸と、
該突軸の先端に設けられた第 1の係止部と、
該突軸の途中に設けられた第 2の係止部と、
前記第 2のバイアスパネによって進退軸に押し付けられる方向に付勢された第 1の座金と、
前記第 1のバイアスバネによってクラッチカラムに押し付けられる方向に付勢 された第 2の座金と
を備えており、
弁体が中温吐出域に位置するときには、 該第 1の係止部と第 1の座金とが離反 し、 該第 1の座金は第 2のバイアスバネによって進退軸に押し付けられており、 且つ第 2の係止部と第 2の座金とが離反し、 該第 2の座金は第 1のバイアスパネ によってクラッチカラムに押し付けられており、
弁体が低温吐出域に位置するときには該第 1の座金に対し該第 1の係止部が係 合し、 且つ前記係合部によってクラッチカラムの弁体接近方向への移動が規制さ れ、 これによつて第 2のバイアスパネの付勢力が座金及び突軸を介して弁体に対 し前記感温パネの付勢力と同方向に加えられると共に、 第 2の座金に対し第 2の 係止部が係合し、 第 1のバイアスパネの付勢力が弁体及び進退軸に対し作用しな いようになることを特徴とする湯水混合装置。
1 7 . 請求項 1 3において、 前記吐水温度設定部材によって低温を設定したと きにクラッチカラムと弁体とを係合させる係合部が設けられており、
前記切替手段は、
前記進退軸から前記弁体に向って突設された突軸と、
該突軸の先端に設けられた係止部と、
前記第 1のバイアスパネによって弁体に押し付けられる方向に付勢された座金 と
を備えており、
弁体が高温吐出域及び中温吐出域に位置するときには、 該係止部と座金とが離 反しており、 該座金は第 1のバイアスバネによって弁体に押し付けられており、 弁体が低温吐出域に位置するときには該座金に対し該係止部が係合し、 且つ前 記係合部によってクラッチカラムの弁体からの離反方向の移動が規制され、 これ によって第 1のバイアスパネの付勢力が座金、 突軸及びクラッチカラムを介して 弁体に対し前記感温パネの付勢力と同方向に加えられることを特徴とする湯水混 合装置。
1 8 . 請求項 1 7において、 弁体が高温吐出域に位置するときにはクラッチ力 ラムが弁体又は進退軸に当接し、 クラッチカラムの軸心線方向への移動が規制さ れることを特徴とする湯水混合装置。
1 9 . 請求項 1 3において、 前記吐水温度設定部材によって低温を設定したと きにクラッチカラムと弁体とを係合させる係合部が設けられており、
前記切替手段は、
前記進退軸から前記弁体に向って突設された突軸と、
該突軸の先端に設けられた第 1の係止部と、
該突軸の途中に設けられた第 2の係止部と、
前記第 1のバイアスパネによって弁体に押し付けられる方向に付勢された第 1 の座金と、
前記第 2のバイアスパネによってクラッチカラムに押し付けられる方向に付勢 された第 2の座金と
を備えており、
弁体が中温吐出域に位置するときには、 該第 1の係止部と第 1の座金とが離反 し、 該第 1の座金は第 1のバイアスバネによって弁体に押し付けられており、 且 つ第 2の係止部と第 2の座金とが離反し、 該第 2の座金は第 2のバイアスパネに よってクラッチカラムに押し付けられており、
弁体が低温吐出域に位置するときには該座金に対し該係止部が係合し、 且つ前 記係合部によってクラッチカラムの弁体からの離反方向の移動が規制され、 これ によって第 1のバイアスパネの付勢力が座金、 突軸及びクラッチカラムを介して 弁体に対し前記感温パネの付勢力と同方向に加えられると共に、 第 2の座金に対 し第 2の係止部が係合し、 第 2のバイアスパネの付勢力が弁体及び進退軸に対し 作用しないようになることを特徴とする湯水混合装置。
2 0 . 請求項 1において、 該バイアスバネとして複数のバイアスパネが設けら れ、
該弁体に作用するバイアスパネの付勢力を切り替えるための前記切替手段は、 該弁体が高温吐出域に位置するときには感温パネの付勢力と反対方向に全ての バイアスパネの並列の付勢力を弁体に対し作用させ、
弁体が中温吐出域に位置するときには感温パネの付勢力と反対方向に一部のバ ィァスパネの付勢力を弁体に作用させ、
弁体が低温吐出域に位置するときには前記吐水温度設定部材によって弁体を直 接に進退させることを特徴とする湯水混合装置。
2 1 . 請求項 2 0において、
前記弁体は前記バブルボディーと同軸配置された主軸に支持されており、 該主 軸は該バブルボディ一の軸心線方向に進退可能であり、
前記吐水温度設定部材は、
内周面に雌ネジを有し、 その軸心回りに回転可能に配置された回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒状の進退 軸とを備えてなり、
前記切替手段は、
該主軸から前記進退軸に向って突設された突軸と、
該突軸の先端に設けられた係止部と、
該係止部に対し弁体側から当接可能な座金と
を備えており、
該座金と弁体との間に第 1のバイアスパネが配置され、 該進退軸と弁体との間 に第 2のバイアスパネが配置され、
弁体が高温吐出域に位置するときには、 該係止部と座金とが離反すると共に座 金と進退軸とが当接し、 これによつて進退軸に反力を得た第 1のバイアスパネが 弁体を付勢しており、
弁体が中温吐出域に位置するときには該座金に対し該係止部が係合し、 これに よって第 1のバイアスパネの弁体に対する付勢力が解消され、
弁体が低温吐出域に位置するときには弁体と進退軸とが係合し、 両者が一体的 に進退することを特徴とする湯水混合装置。
2 2 . 請求項 1において、 該バイアスパネとして複数個のバイアスパネが設け られ、
該弁体に作用するバイアスパネの付勢力を切り替えるための前記切替手段は、 該弁体が高温吐出域に位置するときには感温パネの付勢力と反対方向に全ての バイアスパネの並列の付勢力を弁体に作用させ、
弁体が中温吐出域に位置するときには感温パネの付勢力と反対方向に一部のバ ィァスパネの付勢力を弁体に作用させ、
弁体が低温吐出域に位置するときには感温パネの付勢力と同方向に他のバイァ スパネの付勢力を弁体に作用させることを特徴とする湯水混合装置。
2 3 . 請求項 2 2において、
前記吐水温度設定部材は、
内周面に雌ネジを有し、 その軸心回りに回転可能に配置された回転軸と、 該雌ネジに嚙合した雄ネジを有し、 該回転軸と同軸的に配置された筒状の進退 軸とを備えてなり、
該進退軸と弁体との間に第 2のバイアスパネが配置されており、
該カラムに前記軸心線方向に離隔して設けられた第 1及び第 2の鍔部と、 該第 1の鍔部と第 2の鍔部との対向面側にそれぞれ配置された第 1の座金及び 第 2の座金と、
該第 1の座金と第 2の座金との間に蓄カ状態で介在された第 1のバイアスパネ と、
前記進退軸に設けられており、 進退軸が弁体から離反する方向に移動したとき に該第 1の座金に係合し、 該第 1の座金を弁体から離反する方向に押圧する鍔部 と、
該進退軸に設けられており、 該進退軸が弁体に接近する方向に移動したときに 第 2の座金に係合し、 該第 2の座金を弁体に接近する方向に押圧する段部と を備えてなることを特徴とする湯水混合装置。
2 4 . 本体の周面に湯と水の流入口を設け、 本体の内腔に配設した弁体を感温
-勢し、 バイアスパネの付勢力を変化させて弁体の位置 を制御する調節部材を設け、 バイアスパネの一端に弁体を、 他端に調節部材を直 接又は間接的に当接させ、 調節部材を調節することにより湯と水の流入量を変化 させて所望する温度の温水を得るようにした湯水混合装置において、 弁体に、 バ- イアスパネの調節部材当接面と直接又は間接的に当接可能な当接部を形成し、 ま た調節部材に、 バイアスパネの弁体当接面と直接又は間接的に当接可能な当接部 を形成することにより、 少なくとも湯の流入口を閉じたとき、 バイアスパネが弁 体を湯の閉弁方向に付勢していることを特徴とする湯水混合装置の制御機構。
PCT/JP1999/004916 1999-09-10 1999-09-10 Melangeur d'eau chaude et froide WO2001020210A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE69939496T DE69939496D1 (de) 1999-09-10 1999-09-10 Mischvorrichtung für Kalt- und Warmwasser
AU56487/99A AU5648799A (en) 1999-09-10 1999-09-10 Hot and cold water mixing device
ES99943248T ES2251223T3 (es) 1999-09-10 1999-09-10 Mezclador de agua caliente y fria.
DE69927410T DE69927410T2 (de) 1999-09-10 1999-09-10 Kalt- und heisswasser-mischvorrichtung
CNB998099430A CN1149345C (zh) 1999-09-10 1999-09-10 冷热水混合装置
EP05075211A EP1542110B1 (en) 1999-09-10 1999-09-10 Hot and cold water mixing device
US09/582,106 US6318638B1 (en) 1999-09-10 1999-09-10 Hot and cold water mixing device
PCT/JP1999/004916 WO2001020210A1 (fr) 1999-09-10 1999-09-10 Melangeur d'eau chaude et froide
EP99943248A EP1150054B1 (en) 1999-09-10 1999-09-10 Hot and cold water mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004916 WO2001020210A1 (fr) 1999-09-10 1999-09-10 Melangeur d'eau chaude et froide

Publications (1)

Publication Number Publication Date
WO2001020210A1 true WO2001020210A1 (fr) 2001-03-22

Family

ID=14236672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004916 WO2001020210A1 (fr) 1999-09-10 1999-09-10 Melangeur d'eau chaude et froide

Country Status (7)

Country Link
US (1) US6318638B1 (ja)
EP (2) EP1150054B1 (ja)
CN (1) CN1149345C (ja)
AU (1) AU5648799A (ja)
DE (2) DE69927410T2 (ja)
ES (1) ES2251223T3 (ja)
WO (1) WO2001020210A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843004A (zh) * 2017-10-11 2018-03-27 黄河科技学院 燃气锅炉恒温运行方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485268B1 (en) * 2000-10-17 2002-11-26 Scroll Technologies Oil utilized as motor protector trip for scroll compressor
US6848889B2 (en) * 2000-10-17 2005-02-01 Scroll Technologies Oil utilized as motor protector trip for scroll compressor
JP3747893B2 (ja) * 2002-02-06 2006-02-22 東陶機器株式会社 シャワー装置
US7744007B2 (en) * 2004-11-01 2010-06-29 Honeywell International Inc. Thermostatic mixing valves and systems
DE102006032018B4 (de) * 2006-07-10 2018-10-25 Grohe Ag Adapter und Thermostat-Mischventil zum Mischen von Kalt- und Warmwasser
JP4785203B2 (ja) * 2007-12-06 2011-10-05 Toto株式会社 湯水混合栓
US8074894B2 (en) 2008-11-18 2011-12-13 Honeywell International Inc. Secondary mixing valve hot port
US8733666B2 (en) 2008-11-18 2014-05-27 Honeywell International Inc. Thermostatic mixing valve with tamper resistant adjustment feature
DE102009021185B4 (de) * 2009-05-13 2013-03-07 Grohe Ag Drehgriff für Sanitärarmatur
FR3003046B1 (fr) * 2013-03-07 2015-04-03 Vernet Cartouche thermostatique de regulation de fluide chaud et froid a melanger
IT201700012614A1 (it) * 2017-02-06 2018-08-06 Artis S R L Valvola miscelatrice provvista di bilanciatore di pressione
CN110350375B (zh) * 2018-04-03 2020-12-29 深圳市默孚龙科技有限公司 滑环

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149545B2 (ja) * 1981-11-30 1986-10-30 Kitamura Gokin Seisakusho
JPH0216880U (ja) * 1988-07-18 1990-02-02
JPH02195085A (ja) * 1989-01-20 1990-08-01 Inax Corp サーモスタット付湯水混合水栓
JPH0520635B2 (ja) * 1984-05-25 1993-03-22 Matsushita Electric Ind Co Ltd
JPH06147333A (ja) * 1992-11-11 1994-05-27 Toto Ltd サーモスタットミキシングバルブ
JPH0736221Y2 (ja) * 1991-01-21 1995-08-16 株式会社三栄水栓製作所 湯水混合栓
JPH0842744A (ja) * 1994-07-27 1996-02-16 Toto Ltd 湯水混合装置
JP2511781Y2 (ja) * 1990-11-20 1996-09-25 愛三工業株式会社 湯水混合栓
JPH08285128A (ja) * 1995-04-18 1996-11-01 Matsushita Electric Ind Co Ltd 混合温度制御装置
JPH0921478A (ja) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd 湯水混合装置
JPH0942493A (ja) * 1995-07-28 1997-02-14 Matsushita Electric Ind Co Ltd 湯水混合装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW226429B (ja) * 1992-07-20 1994-07-11 Toto Ltd
DK0666442T3 (da) * 1992-12-25 2002-07-15 Toto Ltd Blandingsbatteri til blanding af varmt vand med koldt vand
US5803354A (en) * 1996-06-17 1998-09-08 Benedict; Charles E. Temperature responsive fluid flow controllers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149545B2 (ja) * 1981-11-30 1986-10-30 Kitamura Gokin Seisakusho
JPH0520635B2 (ja) * 1984-05-25 1993-03-22 Matsushita Electric Ind Co Ltd
JPH0216880U (ja) * 1988-07-18 1990-02-02
JPH02195085A (ja) * 1989-01-20 1990-08-01 Inax Corp サーモスタット付湯水混合水栓
JP2511781Y2 (ja) * 1990-11-20 1996-09-25 愛三工業株式会社 湯水混合栓
JPH0736221Y2 (ja) * 1991-01-21 1995-08-16 株式会社三栄水栓製作所 湯水混合栓
JPH06147333A (ja) * 1992-11-11 1994-05-27 Toto Ltd サーモスタットミキシングバルブ
JPH0842744A (ja) * 1994-07-27 1996-02-16 Toto Ltd 湯水混合装置
JPH08285128A (ja) * 1995-04-18 1996-11-01 Matsushita Electric Ind Co Ltd 混合温度制御装置
JPH0921478A (ja) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd 湯水混合装置
JPH0942493A (ja) * 1995-07-28 1997-02-14 Matsushita Electric Ind Co Ltd 湯水混合装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1150054A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843004A (zh) * 2017-10-11 2018-03-27 黄河科技学院 燃气锅炉恒温运行方法

Also Published As

Publication number Publication date
CN1149345C (zh) 2004-05-12
EP1150054B1 (en) 2005-09-21
ES2251223T3 (es) 2006-04-16
EP1542110A1 (en) 2005-06-15
DE69939496D1 (de) 2008-10-16
EP1542110B1 (en) 2008-09-03
AU5648799A (en) 2001-04-17
US6318638B1 (en) 2001-11-20
EP1150054A4 (en) 2004-04-28
CN1313938A (zh) 2001-09-19
DE69927410T2 (de) 2006-05-11
DE69927410D1 (de) 2006-02-02
EP1150054A1 (en) 2001-10-31

Similar Documents

Publication Publication Date Title
WO2001020210A1 (fr) Melangeur d'eau chaude et froide
CA1275280C (en) Thermostatic mixer tap
EP1376291A2 (en) Thermostatic mixing valves
US7344088B2 (en) Dual-function valve with pressure adjustment and temperature control functions
WO2009095968A1 (ja) 湯水混合栓
US4299354A (en) Mixing valves
WO2005031203A1 (ja) 流路切換バルブ及びシャワーシステム
JP4681945B2 (ja) 湯水混合栓
JP3395660B2 (ja) 湯水混合弁
JP3882192B2 (ja) 湯水混合装置及びそれを備えた湯水混合水栓
JP2008128277A (ja) 自動温度調節機能付の湯水混合弁
JP3018945B2 (ja) 湯水混合装置
WO2005043018A1 (ja) 湯水混合栓
JP2010096296A (ja) 湯水混合水栓用の温度調節弁装置及び湯水混合水栓
JP2005061530A (ja) 湯水混合水栓
KR100828160B1 (ko) 수도꼭지
US7121303B1 (en) Mixed water faucet
JP2001254868A (ja) 湯水混合水装置
JP2639905B2 (ja) ミキシングバルブ
JPH11257528A (ja) 湯水混合装置の制御機構
AU783187B2 (en) Mixing valve
JP3119989B2 (ja) 止水機能付流路切換水栓
JP3360989B2 (ja) 湯水混合栓
JP2514157Y2 (ja) 切換弁の自閉防止機構
JPH02195085A (ja) サーモスタット付湯水混合水栓

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809943.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 09582106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1200000585

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1999943248

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG CA CN HU ID KR NO NZ PL RO RU SG TR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999943248

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999943248

Country of ref document: EP