WO2001017900A1 - Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible - Google Patents

Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible Download PDF

Info

Publication number
WO2001017900A1
WO2001017900A1 PCT/JP2000/006199 JP0006199W WO0117900A1 WO 2001017900 A1 WO2001017900 A1 WO 2001017900A1 JP 0006199 W JP0006199 W JP 0006199W WO 0117900 A1 WO0117900 A1 WO 0117900A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
hydrogen storage
hydrogen
fullerene
carbon
Prior art date
Application number
PCT/JP2000/006199
Other languages
English (en)
French (fr)
Inventor
Masashi Shiraishi
Eisuke Negishi
Koichiro Hinokuma
Atsuo Yamada
Hisashi Kajiura
Koichi Tanaka
Masafumi Ata
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CA002384359A priority Critical patent/CA2384359A1/en
Priority to KR1020027003080A priority patent/KR20020042673A/ko
Priority to EP00957095A priority patent/EP1219567A1/en
Priority to AU68781/00A priority patent/AU6878100A/en
Priority to US09/803,813 priority patent/US20010016283A1/en
Publication of WO2001017900A1 publication Critical patent/WO2001017900A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbonaceous material for hydrogen storage, a method for manufacturing the same, and a battery.
  • Scenic technology For a long time since the Industrial Revolution, so-called fossil fuels such as coal and petroleum (main fuel products include gasoline, light oil, kerosene, and heavy oil) have been used as fuels for thermal power generation and heating, for example. It has been used as a power source for cars, cars, ships, and aircraft. It can be said that thanks to this fossil fuel, humanity has dramatically improved the standard of living and enjoyed the development of industry.
  • Hydrogen (gas) fuel is that. This hydrogen fuel is called “clean” because only water is generated during combustion and no air pollutants are generated. Hydrogen is a clean and inexhaustible ideal energy source because it contains a large amount of chemical energy per unit mass and does not emit harmful substances or global warming gases when used. In recent years, the recognition has been rapidly spreading. In particular, recently, fuel cells that can extract electric energy from hydrogen energy have been actively developed, from large-scale power generation to on-site in-house power generation, and as a power source for electric vehicles. Applications are expected.
  • the hydrogen gas storage methods developed so far can be broadly classified into the following three types. That is, (i) as high pressure gas A storage method, (ii) a method of liquefying and storing hydrogen gas, and (iii) a method of storing hydrogen gas in an alloy material or the like.
  • the method (i), which is often said, requires a very strong metal pressure vessel such as a cylinder to store hydrogen gas.
  • the weight is very bulky. Also, because of the high pressure, safety concerns cannot be ignored, and the density of the high-pressure gas, even at a density of approximately 12 mg / m1 (at 15 MPa), is extremely low. Small.
  • the hydrogen gas is temporarily liquefied and stored. Since the storage density of the liquefied hydrogen is about 7 Omg, the storage density is considerably higher than the method (i). is there. However, liquefaction of hydrogen gas is problematic in that it requires the installation of additional equipment to cool it down to about -250 ° C or less, which complicates the system and requires energy consumption for liquefaction.
  • the method (iii) uses a hydrogen storage material, and among them, a hydrogen storage alloy is known as the most effective material.
  • Hydrogen storage alloys include, for example, lanthanum nickel, vanadium, and magnesium, and their practical storage (occlusion) density is higher than that of liquid hydrogen despite being occluded in other substances. .
  • hydrogen can be stored and released at room temperature, and the storage state is controlled by equilibrium with the hydrogen partial pressure, making it easier to handle than high-pressure gas or liquid hydrogen.
  • Japanese Patent Application Laid-Open No. 5-270810 discloses a method of absorbing hydrogen by a reaction of adding hydrogen to fullerenes.
  • a covalent chemical bond is formed between the carbon atom and the hydrogen atom, and in this case, it should be called "hydrogenation" rather than "occluded".
  • the upper limit of the amount of hydrogen added by chemical bonding is basically limited to the number of unsaturated bonds of carbon, and it is not possible to store more hydrogen, so even if you want to increase the amount of hydrogen stored by this method There is a limit.
  • Japanese Patent Application Laid-Open No. H10-72201 similarly describes a method of using fullerenes and the like for storing hydrogen. This is because the surface of fullerene or the like is coated with a catalytic metal such as platinum using a technique such as vacuum evaporation or sputtering. And hydrogen is absorbed by this catalytic action. Most carbonaceous materials, including fullerenes, are considered to have little ability to dissociate hydrogen molecules and induce initial occlusion reactions by themselves, so this was made possible by the catalytic action of platinum or the like. .
  • hydrogen gas is stored in three ways: high-pressure storage, liquefied storage, and storage using a hydrogen storage alloy, as described above.
  • high-pressure storage liquefied storage
  • a hydrogen storage alloy as described above.
  • the weight of containers etc. is heavy, and handling and transportation
  • storage with storage alloys has not yet been commercialized today because of the problem of high cost in addition to weight problems.
  • the present invention has been made in order to improve the above circumstances, and its object is to provide a carbonaceous material for hydrogen storage that is safe in handling, inexpensive, lightweight, easy to transport, and has good hydrogen storage capacity, and a method for producing the same. As well as batteries and fuel cells.
  • the present invention firstly relates to a carbonaceous material for hydrogen storage that stores hydrogen in a proton state.
  • hydrogen composed of protons and electrons takes the form of protons by donating electrons to the carbonaceous material for hydrogen storage, which is a strong electron acceptor. .
  • the occupied volume is significantly reduced, and a larger amount of hydrogen can be stored in the carbonaceous material for hydrogen storage as compared with conventional storage by chemisorption of hydrogen atoms (i.e., hydrogen storage carbon material).
  • protons (H +) in charge in the form of protons separated from hydrogen molecules or hydrogen atoms, hydrogen can be stored in high density and in large quantities in the final proton state.
  • the hydrogen storage carbonaceous material of the present invention can release the stored hydrogen at a low temperature. Unlike high-pressure hydrogen and liquid hydrogen, hydrogen gas is confined within a small volume of carbonaceous material for hydrogen storage, so that even if the system is opened, the stored hydrogen is released at once. There is no safety in handling.
  • the present inventor has found that the mechanism of hydrogen storage of carbonaceous materials is essentially based on the behavior of protons.
  • the measurement of complex impedance or DC resistance is an accurate and simple method as an index for measuring hydrogen storage capacity, and the hydrogen storage material of the present invention must be provided using this index.
  • the requirements could be found. That is, in the hydrogen storage material of the present invention, the DC resistance in the hydrogen storage state is reduced by 50% or more as compared with the DC resistance in the hydrogen non-storage state, or the complex resistance component in the hydrogen storage state.
  • the real part in the cell is characterized in that the resistance is reduced by at least 5.0% as compared with the real part in the complex resistance component in a state where hydrogen is not absorbed.
  • both the DC resistance and the real part in the complex resistance component have a resistance lowering ratio of less than 50%, the hydrogen storage capacity will drop sharply, and it will be less practical.
  • the hydrogen storage material having a specified low resistivity can be preferably applied to the above-mentioned batteries (such as alkaline storage batteries and air batteries) and fuel cells.
  • the present invention relates to a method for producing a hydrogen storage material, which comprises applying a positive voltage to a material capable of storing hydrogen and treating the material in a gas atmosphere containing hydrogen.
  • Carbonaceous materials selected from the group consisting of fullerenes, carbon nanofibers, carbon nanotubes, carbon soot, nanocapsules, bucky onions, and carbon fibers have a large surface area and a structural curvature, and Based on the fact that the orthogonality of the 7 orbit and the orbit of the orbit disappears, both the HOMO level and the LUMO level are lower than those of the cr-7 ⁇ orthogonal system, and a strong electron receptor It is known to function as According to the study of the present inventors, these materials have a particularly high hydrogen storage capacity because, because these materials are strong electron acceptors, when hydrogen is supplied, It is presumed that this is because hydrogen can be stored in a unit volume compared to the case where hydrogen is stored in the form of tons, and as a result, more hydrogen can be stored per unit volume.
  • the hydrogen storage capacity is determined by the special properties of these materials. It has been found that it depends on the value of the work function due to the simple structure, in other words, on the position of the valance edge. Therefore, by applying an external electric field, the electron level is shifted as a whole, and both the HOMO level and the LUMO level are shifted relative to the vacuum level, so that the hydrogen absorption is performed. It becomes possible to control the electron-accepting properties of the possible materials, and thus the hydrogen storage capacity.
  • the present invention is based on this finding.
  • a positive voltage is applied to a material capable of storing hydrogen, A large amount of hydrogen is absorbed because a hydrogen-storable material is processed in a gas atmosphere containing hydrogen gas with the electron levels shifted as a whole and the hydrogen storage capacity is improved. Is possible.
  • the hydrogen to be occluded includes not only hydrogen molecules and hydrogen atoms but also protons, which are nuclei of hydrogen.
  • the object of the present invention is also to stop the release of hydrogen by applying a first positive voltage to a predetermined reference potential to the hydrogen storage material, and to apply a first positive voltage lower than the first positive voltage. This is achieved by a method for controlling hydrogen release of a hydrogen storage material, characterized in that hydrogen is released by applying a second positive voltage.
  • the hydrogen storage capacity of the hydrogen storage material can be increased, so that hydrogen release from the hydrogen storage material can be achieved.
  • a second positive voltage lower than the first positive voltage the hydrogen storage capacity of the hydrogen storage material is reduced, so that hydrogen is released from the hydrogen storage material. It is possible to control the release of hydrogen from the hydrogen storage material simply by controlling the voltage applied to the hydrogen storage material.
  • Another object of the present invention is to provide a hydrogen storage / release device comprising: a chamber capable of storing a hydrogen storage material; a voltage source capable of applying a positive voltage to the hydrogen storage material; and a controller capable of controlling the voltage source. Achieved by the system.
  • a hydrogen storage / release system includes a chamber capable of storing a hydrogen storage material, a voltage source capable of applying a positive voltage to the hydrogen storage material, and a controller capable of controlling the voltage source. From the con The controller controls the voltage source to apply a positive voltage to the hydrogen storage material housed in the chamber to increase the hydrogen storage capacity of the hydrogen storage material and stop the release of hydrogen from the hydrogen storage material. On the other hand, by controlling the voltage source by the controller and applying a lower positive voltage to the hydrogen storage material, the hydrogen storage capacity of the hydrogen storage material is reduced, and hydrogen is released from the hydrogen storage material. It is possible to control the release of hydrogen from the hydrogen storage material by simply controlling the voltage source by the controller and controlling the voltage applied to the hydrogen storage material. .
  • the present invention relates to a carbonaceous material for hydrogen storage using a specific carbonaceous material.
  • the carbonaceous material for hydrogen storage according to the present invention is characterized in that, first, the carbonaceous material for hydrogen storage generated by an arc discharge method using a carbon-based electrode is a main component.
  • the method for producing a carbonaceous material for hydrogen storage uses a carbon-based electrode as at least one of electrodes opposed to each other in a reaction chamber (vacuum chamber), and performs arc discharge in the reaction chamber.
  • a carbonaceous material having a hydrogen storage ability is generated.
  • the carbonaceous material for hydrogen storage which is a main component of the carbonaceous material for hydrogen storage, is produced by an arc discharge method using a carbon-based electrode. That is, according to the study of the present inventor, a carbon-based electrode is used for at least one of the electrodes arranged facing each other in the reaction chamber, and when these electrodes are energized to perform arc discharge, Fullerenes such as C60 and C70 containing at least carbon nanotubes are generated on the inner surface of the chamber and on the cathode, and this hydrogen storage carbonaceous material exhibits good hydrogen storage. It became clear for the first time.
  • Such a unique effect is mainly derived from the carbon nanotube as described later.
  • a transition metal is contained in the carbonaceous material for hydrogen storage, the effect becomes more remarkable. It was further found that when platinum or the like was carried on the surface of the carbonaceous material for hydrogen storage, it became even more remarkable.
  • the carbonaceous material for hydrogen storage can release the stored hydrogen at a low temperature. Unlike high-pressure hydrogen and liquid hydrogen, hydrogen gas is confined in a small volume of carbonaceous material for hydrogen storage, so that even if the system is opened, the stored hydrogen is released all at once. No, it is excellent in handling safety.
  • carbonaceous material for hydrogen storage is composed of carbon, so it is light in weight, convenient for handling and transportation, and in addition, its production cost is low, and resources and environmental protection are considered. No problem.
  • the carbonaceous material for hydrogen storage according to the present invention is characterized in that a fired body composed of a polymer of a fullerene molecule alone or a mixture thereof is a main component.
  • the method for producing such a carbonaceous material for hydrogen storage is characterized in that a single fullerene molecule or a mixture thereof is calcined in a non-oxidizing gas to be polymerized.
  • fullerene is used as the precursor of the fullerene polymer (fired body) in order to make use of the characteristics of the electron system that has a curvature in order to exert the hydrogen storage capacity, and that it has a more stable structure.
  • Research was carried out from these two angles, that is, reforming into a body, and the present invention was able to be achieved.
  • a metal or a compound thereof that promotes carbon ordering to fullerene as a raw material during the firing, and then fire the mixture.
  • a metal catalyst having a catalytic ability to separate hydrogen molecules into hydrogen atoms, or further into protons and electrons, on the surface thereof. It was clarified that, when particles (may be a layer) were supported, excellent hydrogen storage ability was exhibited even at room temperature.
  • an electrolytic polymer of fullerene molecules alone or a mixture thereof, and a polymer obtained by vibrating fullerene molecules alone or a mixture thereof can also be used as a carbonaceous material for hydrogen storage. .
  • a fullerene polymer containing at least a cycloaddition structure (polymer) is required to exert the hydrogen storage ability. Electropolymerization of fullerene molecules is effective as a method for producing it, and mechanical shaking and ultrasonic methods are effective.At the same time, such a polymer is not only excellent in hydrogen storage function, but also an object of the invention. With practicality suitable for Turned out to be.
  • the cycloaddition polymer which is difficult to obtain selectively by the conventional method such as the plasma polymerization method, particularly the 1,2-addition bond (fullerene molecules are added to the cyclohexatrienyl moiety thereof. ) Is indispensable to develop the hydrogen storage capacity, and it can be a good hydrogen storage material itself, or it can be used as a base material to contain metal ions and their classes. In the case of mixing evening and the like, the effect of charge separation is obtained, and when catalyst particles such as platinum are supported on the surface, the storage capacity can be increased.
  • the above-mentioned storage capacity is expressed not only in the C60 fullerene molecule cycloaddition polymer but also in the C70 fullerene and other higher fullerene molecule cycloaddition polymers. It is common to cycloaddition polymers having a relatively high degree of polymerization at the beginning.
  • the hydrogen storage material of the present invention is mainly composed of a cycloaddition polymer having such storage ability, and the fullerene electrolytic polymerization method proposed by the present inventors is suitable for producing this polymer.
  • a mechanical vibration method or an ultrasonic vibration method is also effective.
  • the above-mentioned electrolytic polymerization method is a method of dissolving fullerene molecules and a supporting electrolyte for promoting electrolysis in a nonaqueous solvent to prepare an electrolytic solution, and applying a DC potential to the electrode to obtain a fullerene polymer. That is.
  • a carbonaceous material derivative comprising a carbonaceous material containing carbon as a main component and a group capable of hydrogen bonding with protons introduced into the carbon atoms constituting the matrix is also preferable. It is. ,
  • a carbonaceous material serving as a base is used as a carbon material, and this carbon material can be hydrogen-bonded with protons. It is characterized in that the group is introduced into carbon atoms constituting the carbon raw material by firing in a gas atmosphere containing a group or by putting it into a liquid containing the group and treating.
  • fullerene molecules Of the carbon raw materials to be used as the base material of these carbonaceous materials for hydrogen storage, fullerene molecules, carbon nanotubes, and carbon class Yuichi (also called fullerene soot) having a partial structure of fullerene molecules are practically used. It is manufactured by an arc discharge method using a carbon-based electrode.
  • the above-mentioned substituent preferably means an atom such as an oxygen atom, a fluorine atom, a nitrogen atom, a sulfur atom or a chlorine atom, or a group containing at least one of these.
  • the carbonaceous material for hydrogen storage of the present invention contains at least one of the derivatives thus obtained as a main component, and is capable of storing and releasing hydrogen near room temperature, and is composed mainly of carbon. It is light in weight, convenient for handling and transportation, and easy to manufacture, and does not cause any problems in terms of resources and environment. Unlike high-pressure hydrogen and liquid hydrogen, they confine hydrogen gas in a small volume of carbon material. Therefore, even if the system is opened, the stored hydrogen is not released at once, and the handling is excellent.
  • the carbonaceous material for hydrogen storage of the present invention is characterized in that it is made of a carbonaceous material having a bent portion in its structure.
  • the production method of the present invention for producing such a carbonaceous material for hydrogen storage comprises thermally decomposing a carbon-containing material on a catalyst selected from the group consisting of the transition metal, its oxide and its carbide. Producing a carbonaceous material on the surface of the catalyst.
  • the inventor has made intensive research efforts over the years with the aim of developing an ideal hydrogen storage material.
  • a carbon-containing compound for example, toluene or acetone
  • a layer of graphite or the like is formed on the catalyst, and this layer has a good hydrogen storage capacity at room temperature. It was also found that not only can it exert its effect, but it can release the stored hydrogen at room temperature.
  • the carbonaceous material for hydrogen storage of the present invention is characterized in that metal particles having a catalytic ability to separate hydrogen molecules into hydrogen atoms or further into protons and electrons are carried on the carbonaceous material.
  • the production method of the present invention for producing such a carbonaceous material for hydrogen storage is characterized in that the metal fine particles having catalytic activity are brought into contact with at least the surface of the carbonaceous material and carried on the surface.
  • the carbon material for hydrogen storage uses a carbonaceous material containing carbon as a main component as a base material. At least on the surface thereof, metal fine particles having a catalytic function of separating hydrogen molecules into hydrogen atoms or protons into electrons, such as platinum-based fine particles, are supported. Therefore, good hydrogen storage ability can be exhibited near room temperature, and the stored hydrogen can be released near room temperature during use. Moreover, it is difficult for hydrogen gas to deteriorate even after repeated storage and release of hydrogen gas.
  • the carbonaceous material for hydrogen storage of the present invention traps hydrogen gas in a small-volume carbonaceous material. Is not released at once, and the handling is excellent. Further, the metal such as platinum having the catalytic function is supported in the form of fine particles on the surface of the carbonaceous material or the like, so that the content can be suppressed to the minimum necessary.
  • the carbon material for hydrogen storage of the present invention is mostly composed of carbon, it is light in weight, convenient for handling and transportation, and has low manufacturing costs and resources. There is no problem in terms of environmental protection.
  • each of the above-mentioned carbonaceous materials for hydrogen storage has unique features. Can be applied to specific components of certain batteries. That is, one aspect of the battery of the present invention is an alkaline storage battery or an air battery including a negative electrode, a positive electrode, and an electrolyte interposed therebetween, wherein the negative electrode and / or the positive electrode include the carbonaceous material for hydrogen storage. It is a battery.
  • the protons previously stored in the hydrogen electrode by charging or occlusion treatment pass through the polymer electrolyte membrane during discharge. Supplied to the air electrode.
  • each battery can extract power stably. As shown in the examples described later, each battery can basically maintain the discharge characteristics.
  • the carbonaceous material for storing hydrogen is applied to a fuel cell. That is, in a laminated structure of a negative electrode, a proton conductor, and a positive electrode, a hydrogen storage portion containing the carbonaceous material for hydrogen storage is arranged, and hydrogen is released and supplied from the hydrogen storage portion toward the negative electrode.
  • the released hydrogen generates protons due to the catalytic action at the negative electrode, and the protons move to the positive electrode together with the protons generated by the proton conductor, and combine with oxygen to form water. Generates electromotive force while generating. Therefore, in such a fuel cell, Hydrogen can be supplied more efficiently and the proton conductivity is higher than when a hydrogen storage unit is not provided.
  • the object of the present invention has, for example, a negative electrode, a positive electrode, and an electrolyte interposed therebetween, wherein the negative electrode and / or the positive electrode applies a positive voltage with respect to a predetermined reference potential. It is achieved by a battery comprising a hydrogen storage material that has been processed in a gas atmosphere containing hydrogen.
  • the proton moves from the positive electrode to the negative electrode via the alkaline aqueous solution, and
  • the positive-electrode heptone can be moved from the negative-electrode side through an alkaline aqueous solution, and in an air battery using a perfluorosulfonate polymer electrolyte membrane as the electrolyte, charging or discharging is not possible.
  • the protons previously stored in the hydrogen electrode by the occlusion treatment are supplied to the air electrode via the polymer electrolyte membrane during discharge. Therefore, according to the present invention, it is possible to provide a battery capable of stably extracting power.
  • the object of the present invention also has a laminated structure of a negative electrode, a proton conductor, and a positive electrode, and further includes a hydrogen storage material, configured to release hydrogen and supply the hydrogen to the negative electrode.
  • a fuel cell including a hydrogen supply unit, wherein the hydrogen supply unit includes a voltage application unit configured to apply a positive voltage to a predetermined reference potential to the hydrogen storage material. Achieved by a battery.
  • a hydrogen supply having a laminated structure of a negative electrode, a proton conductor, and a positive electrode, further including a hydrogen storage material, configured to release hydrogen and supply the hydrogen to the negative electrode
  • the hydrogen released from the hydrogen supply unit generates protons by the catalytic action of the negative electrode, and the generated protons, together with the protons generated by the proton conductor, are connected to the positive electrode. It moves and combines with oxygen to generate water and generate electromotive force. Therefore, according to the present invention, it is possible to provide a fuel cell that can supply hydrogen more efficiently and has a higher proton conductivity than when a hydrogen supply unit is not provided.
  • the hydrogen supply unit of the fuel cell is provided with a voltage applying means capable of applying a positive voltage with respect to a certain reference potential to the hydrogen storage material, the hydrogen storage means By controlling the positive voltage applied to the material, the amount of hydrogen released from the hydrogen supply unit can be controlled as desired, and the fuel cell can generate the desired electromotive force. Thus, it becomes possible to control.
  • the object of the present invention also has a laminated structure of a negative electrode, a proton conductor, and a positive electrode, and further includes a hydrogen storage material, configured to release hydrogen and supply the hydrogen to the negative electrode.
  • a hydrogen release control method for a fuel cell characterized by controlling a positive voltage applied to the hydrogen storage material of the fuel cell having a hydrogen supply unit with respect to a predetermined reference potential.
  • FIG. 1 is a configuration diagram of an arc discharge device using a carbon-based electrode.
  • Fig. 2 is a schematic diagram showing the structure of a carbonaceous material produced by an arc discharge device.
  • Fig. 2 (A) is a carbon nanotube
  • Fig. 2 (B) is a C60 fullerene molecule
  • Fig. 2 (C ) Is a carbon soot having a curvature.
  • FIG. 3 is a graph showing the characteristics of the complex impedance measurement of platinum-supported C60.
  • Figure 4 is a graph showing the characteristics (before hydrogen storage) of a single-walled carbon nanotube in a PEE (Phot 0 Electoron Emission) measurement method.
  • Fig. 5 is a graph showing the characteristics (after occlusion of hydrogen) of a single-walled carbon nanotube in the PEE (Phot 0 Electoron Emission) measurement method.
  • Figure 6 is a graph showing the characteristics (before storing hydrogen) of multi-walled carbon nanotubes in the PEE (Photo Electoron Emission) measurement method.
  • FIG. 7 is a schematic sectional view of the hydrogen storage / release system.
  • FIG. 8 is a configuration diagram of a C60 fullerene molecule.
  • FIG. 9 is a configuration diagram of a C70 fullerene molecule.
  • Figure 10 shows the structure of a polymer of C60 fullerene molecule (degree of polymerization 2).
  • Fig. 10 (A) shows the results of 1 and 2 obtained by the [2 + 2] cycloaddition reaction.
  • FIG. 11 is a schematic diagram showing the structure of a polymer of C70 fullerene molecule (degree of polymerization 2).
  • FIG. 12 is a schematic diagram showing the arrangement of C60 fullerene molecules.
  • FIG. 13 is a schematic diagram showing the polymerization state (degree of polymerization 3) of C60 fullerene molecules.
  • FIG. 14 is a schematic diagram showing a polymerization situation when C60 fullerene molecules are treated at a higher temperature.
  • Figure 15 shows the molecular structure of C120 (b), which is thought to occur during the structural relaxation process of 1,2- (C60) 2.
  • Figure 16 shows the molecular structure of C120 (c) that is thought to occur during the structural relaxation process.
  • Figure 17 shows the molecular structure of C120 (d) that is thought to occur during the structural relaxation process.
  • FIG. 18 is a schematic diagram showing the structure of a C118 molecule considered to be generated in the process of producing a fullerene polymer.
  • FIG. 19 is a schematic diagram showing the structure of a C116 molecule that is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 20 is a schematic diagram showing the structure of a polymer of C60 fullerene molecule (degree of polymerization 2), showing the structure of 1,2- (C60) 2 by a [2 + 2] cycloaddition reaction.
  • FIG. 21 is a schematic diagram showing an example of an apparatus for electropolymerizing fullerene molecules.
  • FIG. 22 is a schematic structural diagram of a polymer (tetramer) of a C60 fullerene molecule.
  • FIG. 23 is a diagram showing a dimer structure [C 140 (a)] of a C 70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 24 is a diagram showing another 2B structure [C140 (b)] of a C70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 25 is a diagram showing another dimer structure of the C70 molecule [C140 (c)] which is considered to be generated in the process of producing the fullerene polymer.
  • FIG. 26 is a diagram showing another dimer structure of the C70 molecule [C140 (d)] which is considered to be generated in the process of producing the fullerene polymer.
  • FIG. 27 is a diagram showing another dimer structure of the C70 molecule [C140 (e)] which is considered to be generated in the process of producing the fullerene polymer.
  • FIG. 24 is a diagram showing another 2B structure [C140 (b)] of a C70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 25 is a diagram showing another dimer structure of the C70 molecule [C
  • FIG. 28 is a diagram showing another dimer structure [C140 (f)] of a C70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 29 is a diagram showing another dimer structure [C140 (g)] of a C70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 30 is a diagram showing another dimer structure [C140 (h)] of a C70 molecule which is considered to be generated in the process of producing a fullerene polymer.
  • FIG. 31 is a diagram showing another dimer structure (C 140 (i): D2h symmetry) of a C70 molecule which is considered to be generated in the process of forming a fullerene polymer.
  • FIG. 32 is a diagram showing a C70 fullerene molecule numbering system.
  • FIG. 33 is a schematic diagram showing various examples of a carbon class as a base.
  • Fig. 34 is a schematic diagram showing another example of the Ripbon cluster (partial fullerene structure).
  • Fig. 35 is a schematic diagram showing another example (diamond structure) of the carbon class Yuichi.
  • Fig. 36 is a schematic diagram showing still another example of carbon class Yuichi (clusters are connected).
  • FIG. 37 is a cross-sectional view of a fuel cell using a carbonaceous material for hydrogen storage.
  • FIG. 38 is a schematic configuration diagram of an alkaline storage battery.
  • Fig. 39 is a graph showing an example of the charge / discharge cycle characteristics of an alkaline storage battery.
  • FIG. 40 is a schematic diagram of an air battery.
  • FIG. 41 is a graph showing an example of the discharge characteristics of the air battery.
  • FIG. 42 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 43 is a schematic diagram of a device for measuring complex impedance.
  • FIGS. 44A and 44B are diagrams showing a comparison of electrical equivalent circuits of the carbonaceous material pellet for hydrogen storage.
  • FIG. 45 is a graph showing the characteristics of the complex impedance measurement of platinum-supported C60.
  • FIG. 46 is a characteristic diagram showing how the resistance component decreases when hydrogen is absorbed in the MWCNT.
  • FIG. 47 is a schematic view of an apparatus used for a CVD (Chemical Vapor Deposition) method.
  • FIG. 48 is a schematic view of an apparatus used for the laser abrasion method.
  • FIG. 49 is a graph showing another example of the charge / discharge cycle characteristics of the battery.
  • FIG. 50 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 51 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 52 is a graph showing a change in hydrogen gas pressure when a voltage is applied to the sample.
  • FIG. 53 is a graph showing another example of the charge / discharge cycle characteristics of the battery.
  • FIG. 54 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 55 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 56 is a schematic configuration diagram showing an example of a baking apparatus that can be used for producing the carbonaceous material for hydrogen storage of the present invention.
  • Fig. 57 is a drawing of a micrograph of an example of the carbonaceous material for hydrogen storage.
  • FIG. 58 is a graph showing the relationship between the firing temperature and the hydrogen storage amount.
  • FIG. 59 is a graph showing another example of the charge / discharge cycle characteristics of the alkaline storage battery.
  • FIG. 60 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 61 is a graph showing another example of the discharge characteristics of the air battery.
  • Fig. 62 is a drawing of a micrograph of another example of the carbonaceous material for hydrogen storage.
  • FIG. 63 is a graph showing a redox potential curve during electrolysis.
  • FIG. 64 is a characteristic diagram showing an example of a hydrogen gas release temperature characteristic of the hydrogen storage material.
  • FIG. 65 is a characteristic diagram showing another example of the hydrogen gas release temperature characteristic of the hydrogen storage material.
  • FIG. 66 shows the T 0 F—MS spectrum of fullerene fluoride.
  • FIG. 67 is a graph showing another example of the charge / discharge cycle characteristics of the alkaline storage battery.
  • FIG. 68 is a graph illustrating another example of the discharge characteristics of the air battery.
  • FIG. 69 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 70 is a graph showing another example of the charge / discharge cycle characteristics of the alkaline storage battery.
  • FIG. 71 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 72 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 73 is a micrograph of another example of the carbonaceous material for hydrogen storage.
  • FIG. 74 is a graph showing another example of the charge / discharge cycle characteristics of the battery.
  • FIG. 75 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 76 is a graph showing another example of the discharge characteristics of the air battery.
  • FIG. 77 is a characteristic diagram showing the results of a power generation test in a fuel cell. BEST MODE FOR CARRYING OUT THE INVENTION
  • a carbonaceous material for hydrogen storage to which the present invention is applied, a method for producing the same, and a battery (including a fuel cell) using the same will be described with reference to the drawings. .
  • the first feature of the present invention is that the carbonaceous material for hydrogen storage stores hydrogen in a proton state. Therefore, first, a carbon material for hydrogen storage that stores this hydrogen in a proton state will be described.
  • Such a carbonaceous material for hydrogen storage can be produced, for example, by an arc discharge method using a carbon-based electrode.
  • FIG. 1 shows an example of an arc discharge device for producing a carbonaceous material.
  • a cathode 2 and an anode 3 each made of a carbon rod such as graphite are placed in a reaction chamber 1 also called a vacuum chamber.
  • a reaction chamber 1 also called a vacuum chamber.
  • the rear end of the anode 3 is connected to a linear motion introducing mechanism 4, and the respective poles are connected to current introducing terminals 5a and 5b, respectively.
  • reaction chamber 1 After the inside of the reaction chamber 1 is evacuated and filled with a rare gas such as helium, and a direct current is applied to each electrode, an arc discharge is generated between the cathode 2 and the anode 3, and the reaction chamber 1 is degassed.
  • the soot-like carbonaceous material for hydrogen storage is deposited on the inner surface, ie, the side wall surface, the ceiling surface, the bottom surface, and the cathode 2. If a small container is attached to the side wall or the like in advance, the hydrogen-absorbing carbonaceous material will accumulate in it.
  • the soot-like carbonaceous material for hydrogen storage recovered from the reaction chamber 1 includes carbon nanotubes as shown in Fig. 2 (A), C60 fullerenes as shown in Fig. 2 (B), and Although not included, it contains C70 fullerene and carbon soot as shown in Fig. 2 (C).
  • This carbon soot is soot that has not been able to grow into fullerene molecules or carbon nanotubes and has a curvature.
  • this soot-like carbonaceous material for hydrogen storage is used.
  • a typical composition of the material includes 10 to 20% of fullerenes such as C60 and C70, several% of carbon nanotubes, and a large amount of carbon soot.
  • the carbonaceous material for hydrogen storage can exhibit good hydrogen storage capacity due to the carbon nanotube contained therein. it can. Hydrocarbon storage materials with a curvature, including this carbon nanotube, lose the 7 ⁇ orbital and orthogonality of the orbitals of electrons, and the LUMO (minimum unoccupied orbital) level is lower than that of orthogonal materials. . This means that the carbonaceous material for hydrogen storage became a strong electron acceptor.
  • a fullerene molecule other than a carbon nanotube is represented by the general formula C n (where n is an even number of 20 or more capable of forming a spherical structure).
  • C 60 fullerene or C 70 fullerene each alone or a mixture thereof, or a higher fullerene of C 70 or more is contained.
  • the above-mentioned carbonaceous material for hydrogen storage intentionally contains a transition metal, preferably iron, a rare earth element, nickel, cobalt, palladium, rhodium, platinum, or an alloy thereof.
  • an arc discharge method may be performed using a carbon-based electrode containing a transition metal for at least one electrode.
  • the yield of carbon nanotubes is increased by the catalytic action of the transition metal, and the production of a carbon material for hydrogen storage having a curvature can be promoted.
  • the transition metal is known to act as a catalyst when producing carbon nanotubes by the laser-ablation method, and the carbon nanotubes produced by the method are collected and converted into a carbonaceous material for hydrogen storage. They may be added and mixed.
  • the hydrogen molecules are converted into hydrogen atoms, and further into protons and electrons, at least on the surface thereof. It is preferable to support a metal having a catalytic activity capable of separating from the catalyst by 10% by weight or less by a known method.
  • Preferable metals having such catalytic activity include, for example, platinum or a platinum alloy.
  • the hydrogen storage capacity can be further increased as compared with a case where the metal is not supported.
  • charge separation occurs more efficiently by mixing or binding an amine-based molecule such as fluorine-ammonia, which is an electron donor, with a carbonaceous material for hydrogen storage.
  • an amine-based molecule such as fluorine-ammonia, which is an electron donor
  • the carbonaceous material for hydrogen storage may be used as a mixture with an electron donor.
  • an amine molecule such as fluorine or ammonia may be used as the electron donor.
  • hydrogen can be stored in a temperature range of room temperature or higher.
  • the charge-separated hydrogen maintains its proton form in the carbonaceous material.
  • the occupied volume is significantly reduced, and a larger amount of hydrogen can be stored in the carbonaceous material for hydrogen storage as compared with conventional storage by chemisorption of hydrogen atoms. That is, the carbonaceous material for hydrogen absorption can finally store a large amount of charge-separated hydrogen in the state of protons.
  • the work function (unit eV) related to the hydrogen storage capacity is described.
  • the work function of graphite without hydrogen storage capacity was about 4.85 eV by the PEE (Photo Electron Emission) method.
  • Amorphous carbon without hydrogen storage capacity was also about 4.8 eV. In other words, it was thought that materials with a work function of 4.85 eV or less had no hydrogen storage capacity.
  • the measurement of the complex impedance was performed in the same manner as in Example 4 described later.
  • the sample was C 6 loaded with platinum. Fullerene.
  • Fig. 3 shows data obtained by measuring the resistance value of the sample before and after hydrogen storage.
  • (A) in the figure is during storage and (c) is before storage.
  • C 6 Fullerene is about one digit before and after storing hydrogen (Before occlusion: le 7 , after occlusion: 8 e 5 ).
  • This carbonaceous material has an occlusion capacity of about 2% by weight, but this DC resistance component is roughly estimated and is the reciprocal of the change in the number of charged particles due to charge transfer by hydrogen occlusion or valence electron generation.
  • a decrease in resistance is an increase in hydrogen storage capacity.
  • a change in resistance of 50% means an occlusion of about 1% by weight.
  • C has a semiconducting property
  • complex impedance is measured.
  • conductive materials such as general carbon materials
  • the change in DC resistance can be observed.
  • Fig. 3 shows such a system. This also shows that the resistance component decreases due to hydrogen absorption.
  • Such a charge transfer or generation of charged particles is not limited to a carbon-based material, but also in a system capable of exchanging charges with hydrogen molecules or hydrogen atoms.
  • the work function of the single-walled carbon nanotube is also 5.15 eV, and it has been experimentally confirmed that the carbon nanotube also has the hydrogen storage ability due to the mechanism described above.
  • Fig 5 As shown in the figure, after hydrogen storage, the work function drops to 4.86 eV.
  • the work function of the multi-walled carbon nanotube was 4.95 eV, and it was experimentally confirmed that the multi-walled carbon nanotube also had a hydrogen storage capacity.
  • Fullerenes such as C60, also have a work function of about 6.8 eV, and it has been found that this carbonaceous material for hydrogen storage also has a hydrogen storage capacity due to the mechanism described above. .
  • the hydrogen storage capacity is not governed by the specific structure of the carbonaceous material, but by the value of the work function of the carbonaceous material, in other words, the position of the balance edge. I have.
  • a carbonaceous material for hydrogen storage with a work function exceeding 4.9 eV efficiently maintains charge-separated hydrogen in the proton state, and ultimately has a high density of hydrogen in the proton state. And it can be stored in large quantities.
  • the carbonaceous material for storing hydrogen is not only an arc discharge method using a carbon-based electrode, but also a CVD (chemical vapor deposition) method, a laser-ablation method, or a high-temperature treatment of silicon carbide (SiC). It can be manufactured by a method. As shown in FIG. 2, the constituent elements of the carbonaceous material for hydrogen storage are fullerene, carbon nanotubes, carbon soots and the like. These are all carbonaceous materials for hydrogen storage having a structural curvature.
  • a major feature of the present invention is that hydrogen is stored in the carbonaceous material for hydrogen storage in the state of protons.
  • a positive voltage is applied to a material capable of storing hydrogen with respect to a predetermined reference potential, and the material is treated in a gas atmosphere containing hydrogen.
  • FIG. 7 is a schematic cross-sectional view of a hydrogen storage and release system for realizing the above processing.
  • the hydrogen storage / release system includes a pressure-resistant container 11 made of stainless steel and a lid member 12.
  • the pressure-resistant container 11 and the lid member 12 are composed of screws 13 and metal seals 14. It is connected so as to be able to seal.
  • An opening 15 is formed in the lid member 12, and a gas passage 16 is connected to the opening 15.
  • a valve 17 is provided in the gas passage 16, and a hydrogen gas supply source 19 is connected to the gas passage 16 via a switching valve 18, and a nitrogen gas is supplied via a switching valve 20.
  • Source 21 is connected to gas passage 16.
  • a pair of stainless steel plates 30 and 31 are provided in the pressure vessel 11 so as to face each other, and the stainless steel plate 30 has a stainless steel mesh with a peripheral wall portion.
  • a hydrogen storage material holder 34 formed of 32 and containing the hydrogen storage material 33.
  • an insulating plastic mesh plate 35 is arranged close to the other stainless steel plate 31.
  • carbon nanotubes are housed in the hydrogen storage material holder 34 as the hydrogen storage material 33 o
  • a pair of stainless steel plates 30 and 31 have The conductors 36 and 37 are connected, and the conductors 36 and 37 are connected to the power supply 38 via the metal seals 14 and 14.
  • the other stainless steel plate 31 is further connected to a pressure-resistant container 11 held at the ground potential by a conducting wire 39.
  • the power supply 38 is controlled by the controller 40, and is configured so that a desired pressure can be applied between the pair of stainless steel plates 30 and 31.
  • the hydrogen storage / release system according to the present embodiment configured as described above stores hydrogen in the hydrogen storage material 33 as follows. First, the switching valve 20 is opened together with the valve 17, and nitrogen gas is introduced from the nitrogen gas supply source 21 into the pressure vessel 11 via the gas passage 16, and the nitrogen gas is introduced into the pressure vessel 11. Is replaced by nitrogen gas.
  • the switching valve 20 is closed, the switching valve 18 is opened, and the hydrogen gas is supplied through the gas passage 16 to the hydrogen gas. From the source 19, it is introduced into the pressure vessel 11.
  • the hydrogen gas is the hydrogen storage material 33 stored in the hydrogen storage material holder 34.
  • the carbon nanotubes come into contact with the carbon nanotubes and are absorbed by the carbon nanotubes 33.
  • the positive voltage V1 is applied to the stainless steel plate 30 with respect to the stainless steel plate 31, the electron level of the carbon nanotube 33 is shifted, and the HOMO Since both the level and the LUMO level are low, more hydrogen is occluded in the carbon nanotubes 33.
  • the hydrogen occluded in the carbon nanotubes 33 is released from the carbon nanotubes 33 as follows. First, the valve 17 is opened, and then the controller 40 is operated to supply a positive voltage from the power source 38 to the stainless steel plate 30 with respect to the stainless steel plate 31, which is lower than the aforementioned V 1. V 2 is applied. As a result, the electron level of the carbon nanotube 33 is shifted, the HOMO level and the LUMO level are both increased, and the hydrogen storage capacity of the carbon nanotube 33 is reduced, so that the carbon nanotube 33 is absorbed in the carbon nanotube 33. The released hydrogen is released in the form of hydrogen gas, and the hydrogen gas is extracted via the gas passage 16.
  • the amount of hydrogen released can be arbitrarily controlled by controlling the voltage of the stainless steel plate 30 with respect to the stainless steel plate 31 by the controller 40.
  • the stainless steel plate 30 is based on the stainless steel plate 31. By applying a voltage V1 higher than V2, the release of hydrogen can be stopped.
  • more hydrogen is applied to the carbon nanotubes 33 simply by applying a positive voltage V 1 to the stainless steel plate 30 and the stainless steel plate 31 having the reference potential.
  • the carbon nanotubes 33 can be occluded, and the hydrogen storage capacity of the carbon nanotubes 33 can be improved by a very simple method so that more hydrogen can be occluded.
  • when hydrogen is absorbed in the carbon nanotube 33 only a positive voltage V2 lower than the voltage applied to the stainless steel plate 30 with respect to the stainless steel plate 31 is applied.
  • the hydrogen absorbed in the carbon nanotubes 33 can be released, and the controller 40 controls the voltage applied between the pair of stainless steel plates 30 and 31 to reduce the amount of water cables released. Control, and the release of hydrogen can be stopped by applying a positive voltage higher than the voltage V2 to the stainless steel plate 30 with reference to the stainless steel plate 31. It is possible to control the amount of hydrogen released and the release and stop of hydrogen release in a very simple manner.
  • the third feature of the present invention is to provide various carbonaceous materials capable of storing hydrogen.
  • examples of the carbonaceous material for hydrogen storage according to the present invention include a material obtained by calcining a fullerene molecule alone or a mixture thereof in a non-oxidizing gas to form a polymer.
  • Fullerene is a generic name for spherical carbon molecules such as C60 as shown in Fig. 8 and C70 as shown in Fig. 9.In 1998, mass spectroscopy of class 1 beam by laser ablation of carbon was performed. (Kroto, HW; Heath, JR; 0'Brien, SC; Curl, RF; Smalley, RE Nature 1985, 318, 162.).
  • fullerene molecules can be easily vaporized under vacuum or reduced pressure, they are materials that can easily form a deposited film.
  • a method for producing fullerene polymers (thin films) that polymerizes fullerene molecules has already been developed.
  • a photo-induced polymer production method is one example.
  • fullerene polymers can be produced by applying pressure or heat to fullerene molecules or by methods such as molecular collision.
  • a cycloadduct is first formed from C70 as shown in FIG. 11, which is a stable dimer structure (not shown), as in FIG. 10 (B). It is thought that it will transfer to
  • a metal or a compound thereof that promotes carbon ordering to fullerene as a raw material during the firing, and then fire the mixture.
  • a metal catalyst having a catalytic ability to separate hydrogen molecules into hydrogen atoms, or further into protons and electrons, on the surface thereof. It was clarified that, when particles (may be a layer) were supported, excellent hydrogen storage ability was exhibited even at room temperature.
  • Fullerene as the raw material can be represented by the general formula Cn, where n is an even number of 20 or more (for example, 60, 70, 78, 80, 82, 84, ...) capable of forming a spherical structure. is there. Typical examples are C60 and C70 fullerenes, each of which may be used alone or as a mixture. Also, this mixture or each simple substance contains higher fullerenes of C70 or higher. It may be used as it is. These fullerenes can be easily produced at low cost by the arc discharge method of a carbon electrode.
  • an inert gas, a nitrogen gas or a hydrogen gas may be used alone or in combination of two or more.
  • the partial pressure of hydrogen gas is clearly reflected in the effect of the etching on the deposited carbon, but in the present invention, the partial pressure of hydrogen may be any value within the range of 0 to 100%.
  • an organic compound gas it is generally preferable to add and mix a small amount of an organic compound gas to the non-oxidizing gas.
  • organic compounds include, for example, toluene and acetone.
  • the coordination of carbon atoms in the fired body is promoted, or carbon atoms are supplied, and the structure of the polymer and the carbonaceous film may be stabilized.
  • a metal or a compound thereof for promoting carbon ordering such as a metal oxide or a metal coordination compound, in advance. This is because a remarkable ordering effect can be obtained.
  • a transition metal such as iron, nickel, and vanadium, or a lanthanide metal is preferable.
  • transitional metals such as iron and nickel exhibit the highest catalytic ability for carbon ordering at a calcination temperature of around 1000 ° C.
  • the firing step can be performed using a known heating device provided with a non-oxidizing gas supply / discharge unit, for example, an electric furnace or a high-frequency furnace.
  • a non-oxidizing gas supply / discharge unit for example, an electric furnace or a high-frequency furnace.
  • Fullerene molecules are used as long as the firing temperature is sufficiently low during the firing process. Although the structure is maintained (a small amount of fullerene is vaporized even under normal pressure), when the calcination temperature is about 600 ° C, the molecular skeleton changes and a polymerized structure is formed, and between the molecule and the single molecule The dissociation equilibrium begins. When the temperature is further increased, it is considered that a polymer having a stable structure is produced.
  • FIG. 12, FIG. 13 and FIG. 14 schematically explain this based on an example of three C60 fullerene molecules. That is, FIG. 12 shows the crystal state of the C 60 fullerene molecule, and each single molecule maintains a distance of a Van der Waals radius (3.4 A) from each other.
  • a Van der Waals radius 3.4 A
  • the polymerized structure shown in Fig. 13 is generated due to the effect of heat (and the catalyst), and dissociation equilibrium starts between this and the simple structure shown in Fig. 12.
  • Fig. 14 a polymer structure with a bent graphite surface is generated.
  • the firing temperature in the range of 600 to 2000 ° C., particularly preferably in the range of 800 to 130 ° C.
  • the metal catalyst may be supported in a layered form, but is preferably in the form of fine particles. This is because the finer the metal catalyst, the more the catalytic reaction on the surface is promoted, and the amount of metal used can be significantly reduced as compared with the case of coarse particles.
  • the fine particles of the metal catalyst are preferably as fine as possible. Specifically, the average particle diameter is preferably 1 / m or less, particularly preferably 100 nm or less. When the fine particles of the metal catalyst are supported on the fired body, the content is desirably 10% by weight or less.
  • the metal catalyst platinum, palladium, magnesium, titanium, manganese, lanthanum, vanadium, zirconium, nickel lanthanum alloy, titanium iron alloy and the like are used.
  • Preferable are fine particles of a single metal such as platinum or palladium, or individual alloys thereof. Fine particles of a platinum-based alloy are particularly preferable.
  • a known method such as sputtering, vacuum deposition, a chemical method, and mixing may be used.
  • a chemical supporting method using a solution containing a platinum complex or an arc discharge method using an electrode containing platinum is applied.
  • an aqueous solution of chloroplatinic acid is treated with sodium hydrogen sulfite-hydrogen peroxide, and then the fired body is stirred in this solution.
  • This method is used when preparing a catalyst electrode for a fuel cell, and is also called a liquid-phase chemical loading method.
  • platinum or a platinum alloy is partially incorporated in the electrode portion of the arc discharge, and the platinum or platinum alloy is evaporated by arc discharge and adhered to the fired body housed in one chamber. .
  • a fired body containing a fullerene polymer having a specially stable structure is used as a base material, when catalyst fine particles such as platinum are supported on the surface of the polymer, hydrogen is more efficiently removed.
  • it can store a large amount of water, is lightweight and easy to transport, can be used repeatedly at room temperature without structural damage, and is safe in handling.
  • the carbonaceous material for hydrogen storage of the present invention is an electrolytic polymer of fullerene molecules alone or a mixture thereof.
  • the dense thin film structure effectively suppresses the diffusion of oxygen molecules and the like into the inside of the film.
  • the production of fullerene multimers that form a dense thin film by such a method can be known by time-of-flight mass spectrometry by the laser ablation method.
  • the electronic properties of the fullerene polymer film seem to largely depend on its polymerization form.
  • the mass spectrometry results of the C60 polymer film actually obtained by the microwave plasma method are similar to those of the argon plasma polymer film of C60 reported previously by the inventors, CAta,. Takahashi, N .; Nojima, KJPhys. Chem. 1994, 98, 9960. Ata, M .; Kurihara J .; Takahashi, J. Phys. Chem. B 1996, 101, 5.]
  • the fine structure of the fullerene polymer can be estimated by pulsed laser excitation time-of-flight mass spectrometry (TOF-MS).
  • TOF-MS pulsed laser excitation time-of-flight mass spectrometry
  • a matrix assist method is known as a method for non-destructively measuring a high molecular weight polymer.
  • LD ITOF mass evaluation by MS (Laser Desorption Ionization Time, of .Flight Mass Spectroscopy) also revealed that the matrix-assist method was used because of the absence of a suitable solvent and the reaction between C60 and matrix molecules. It is difficult to accurately evaluate the mass distribution of the actual fullerene polymer because it cannot be applied.
  • the structure of the C60 polymer can be estimated from the LDIT 0 F _MS multimer peak position and the dimer profile, which were observed with an abrasion with a laser power that does not cause polymerization of C60. it can.
  • LD IT OF-MS of a C60 polymer film obtained with a plasma power of 50 W shows that the process involving polymerization of C60 molecules with the loss of four carbons is most probable. I have. In other words, C 120 is a minor product in the dimer mass region, and C 116 is generated with the highest probability.
  • this C116 is considered to be a D2h symmetric C116 as shown in Fig. 10 (B). This is obtained by recombination of C58, but it has been reported that C58 is formed by the elimination of C2 from a highly electronically excited state including the ionized state of C60 (a) Fieber.Erdmann, M. et al. et al, Z. Phys. D1993, 26, 30 8. (b) Petrie, S. et al, nature 1993, 356, 426. (c) Eckhoff, WC; Scus eria, GE; Chem. Phys. Lett. 1993, 216 , 399.).
  • fullerene molecules undergo polymerization through an electronically excited state, similar to the microphone mouth-wave plasma polymerization method. Ions such as C58 and C56 are observed along with the photopolymer peak.
  • (C60) 2 proposes the process of structural relaxation and explains as follows: (a) Murry, RL et al, Nature 1993, 366, 665. (b) Strout, DL et al, Chem. Phys. Lett. 1993 , 214,576.0sawa, E. private communication]. In both cases, in the initial process of the structural relaxation of the 1,2— (C60) 2 shown in Fig. 10 (A), the 1,2—C—C bond with the largest strain at the crosslink site was cleaved. After C120 (b), Stone.Wales rearrangement (Stone, AJ; Wales, DJ Chem.Phys. Lett. 1986, 128,501. (B) Satio, R. Chem.Phys. Lett.
  • C 120 (d) in FIG. 17 is generated from C 120 (c) in FIG. 16 having a ladder-shaped cross link.
  • the dislocation from 1, 2— (C60) 2 in Fig. 10 (A) to C120 (b) in Fig. 15 becomes energetically unstable, and furthermore from C120 (c) in Fig. 16 to Fig. 17 It stabilizes again as it dislocates to C120 (d).
  • n C2 the loss of n C2 observed in the polymerization of C60 induced by the microphone mouth-wave plasma occurs directly from 1, 2— (C60) in Fig. 10 (A), which is considered to be the initial process, or Although it is not clear whether this occurs after some degree of structural relaxation, the observed C118 is due to the desorption of C2 from C120 (d) in Fig. 17 and recombination of dangling, as shown in Fig. 18. It is considered to have a simple structure. Also, two carbons of the ladder-type crosslink of C118 in Fig. 18 are desorbed and the dangling is recombined, resulting in C116 as shown in Fig. 19.
  • the cycloaddition polymer which is difficult to selectively obtain by the conventional method, such as the plasma polymerization method described above, especially the 1,2-addition bond (fullerene molecules are linked to each other in the cyclohexatrienyl moiety thereof)
  • the polymer bonded to each other is indispensable for exhibiting hydrogen storage capacity, and not only can itself be a good hydrogen storage material, but also the metal ion
  • the effect of charge separation can be obtained, and the storage capacity can be enhanced by supporting catalyst particles such as platinum on the surface.
  • the above-mentioned storage capacity is expressed not only in the C60 fullerene molecule cycloaddition polymer but also in the C70 fullerene and other higher fullerene molecule cycloaddition polymers. It is common to cycloaddition polymers having a relatively high degree of polymerization at the beginning.
  • the hydrogen storage material of the present invention is mainly composed of a cycloaddition polymer having such storage ability.
  • the electropolymerization method of fullerene recently proposed by the present inventors is suitable. Yes, mechanical vibration method or ultrasonic vibration method is also effective.
  • the electrolytic polymerization method described above refers to a method in which a fullerene polymer and a supporting electrolyte for promoting electrolysis are dissolved in a non-aqueous solvent to prepare an electrolytic solution, and a DC potential is applied to the electrode to convert the fullerene polymer. That's how you get it.
  • fullerene molecules used as a raw material are represented by the general formula C n (where n is an integer capable of geometrically forming a spherical compound), and may be a simple substance or a mixture of fullerenes. Preferred is C60 fullerene or C70 fullerene or a mixture thereof, but any of them may further contain higher fullerene (C78, C80, C82, C84-).
  • fullerene molecules can be easily manufactured at low cost by, for example, arc discharge of a carbon electrode as shown in FIG.
  • the soot obtained by the above apparatus contains various fullerene molecules including C60 and C70, and may contain about 10% or more of fullerene molecules under appropriate conditions.
  • Fullerenes such as C60 and C70 can be extracted from this soot using 7-electron solvents such as toluene, benzene, and carbon disulfide.
  • the fullerene obtained through this step is called crude fullerene. If it is further subjected to, for example, column chromatography, C60 and C70 can be separated and purified as a single substance.
  • the cycloaddition polymer indispensable for the present invention is a polymer of (C n) m wherein fullerene molecules are mutually polymerized by a 1,2-addition bond added to a cyclohexatrienyl site thereof.
  • n is the same as described above, and m is any natural number.
  • FIG. 20 shows the case where m is 2.
  • the counter ion supplied from the supporting electrolyte in the electrolytic solution may be directly contained in the electrolytic polymer. Including such counterions, the electrolytic polymer may exhibit structurally higher stability.
  • the counter ion is a metal ion selected from Li, Be, Na, Mg, Ca, K, Ce, Al, Mn, Fe, Co, or the like, or a cluster thereof. Is desirable.
  • the non-aqueous solvent required for preparing the electrolytic solution is preferably a mixed solvent of a first solvent for dissolving fullerene molecules and a second solvent for dissolving the supporting electrolyte.
  • the first solvent is preferably a 7-electron low-polarity solvent
  • the second solvent is preferably a polar solvent
  • the fullerene polymer having a cycloaddition polymerization structure in the present invention is not limited to the above-described electrolytic polymerization method, but a method of vibrating fullerene molecules, that is, a mechanical shaking method or an ultrasonic irradiation method is also effective. When performing, it is preferable to perform in an atmosphere of an inert gas to prevent oxidation.
  • a polymer having a cycloaddition polymerization structure indispensable for the present invention can also be obtained by vibrating fullerene molecules.
  • the fullerene molecule is mixed with the catalyst metal fine particles and vibrated.
  • the catalyst metal include alkali metals such as Li, Na, and K, Be, Mg, Ca, Ce, Al, Mn, Fe, and Co.
  • This vibration step is desirably performed in an inert gas such as argon or helium except for oxygen.
  • the vibration method include a method of mechanically shaking using a device such as shaker and the like and an ultrasonic irradiation.
  • the polymer obtained in this manner is also considered to have a structure in which metal atoms or ions are coordinated in the polymer, similar to the electrolytic polymer.
  • the polymer obtained by the shaking method using lithium powder is used. Since mer has a tendency to be oxidized more easily than electrolytic polymerization, it is desirable to handle it in an inert gas.
  • the polymer having the cycloaddition polymerization structure is used as a base material, and a metal (including alloys) having a catalytic function of separating hydrogen molecules into hydrogen atoms or further into protons and electrons is provided on the surface thereof. It is preferable to support a catalyst. Thereby, even if the amount of the metal catalyst is small, the hydrogen storage capacity is promoted.
  • the metal catalyst may be supported in a layered form, but is preferably in the form of fine particles. This is because the finer the metal catalyst, the more the catalytic reaction on its surface is promoted, and the amount of metal used can be significantly reduced as compared with the case of coarse particles.
  • the fine particles of the metal catalyst are preferably as fine as possible. Specifically, the average particle diameter is preferably 1 / m or less, particularly preferably 100 nm or less.
  • the metal catalyst include platinum, palladium, magnesium, and titanium. Manganese, lanthanum, vanadium, zirconium, nickel lanthanum alloy, titanium iron alloy, etc. are used. Preferred are fine particles of a simple metal such as platinum or palladium, or fine particles of each of these alloys, and particularly fine particles of a platinum-based alloy.
  • a known method such as sputtering, vacuum evaporation, a chemical method, and mixing may be used.
  • FIG. 21 merely shows a typical schematic configuration of an electropolymerization apparatus, and various variations are possible for performing electropolymerization.
  • an anode 61 and a cathode 62 connected to a potential start 60 are provided in the electrolytic cell 59 of the electrolytic polymerization apparatus shown in FIG. 21, an anode 61 and a cathode 62 connected to a potential start 60 are provided. Further, a reference electrode 63 is connected to the same potentiostat 60 so that a voltage value or a current value between these electrodes can be constant, and a predetermined electric potential is provided between the anode 61 and the cathode 62. The static potential is applied.
  • the electrolysis cell 59 is provided with a gas introduction pipe 65 for introducing an inert gas for removing oxygen gas or the like in the non-aqueous solvent 64. Further, a magnetic mixer 66 is provided below the electrolysis cell 59 so as to operate a stirrer (not shown) disposed in the electrolysis cell 59.
  • a fullerene molecule as a raw material, a supporting electrolyte, and a non-aqueous solvent 64 containing a first solvent and a second solvent as main components are charged into an electrolytic cell 59, and a potentiometer is used.
  • 60 When operated, a given electric energy is applied between the anode 61 and the cathode 62, most of the fullerene molecules are converted into negative radicals (anion radicals) in the electrolyte, and the polymer is formed on the cathode 62 as a thin film. And / or formed as a precipitate.
  • the spherical carbon polymer obtained as a precipitate can be easily recovered by means such as filtration and drying, and after recovery, it is hardened or kneaded into a resin, for example. It can be used as a thin film.
  • the anode 61 and the cathode 62 are desirably metal electrodes, but may be formed of another conductive material, or a material obtained by depositing a conductive material such as a metal on a substrate such as glass or silicon. May be used.
  • the type of the reference electrode 63 depends on the supporting electrolyte, but is not limited to a specific metal.
  • the supporting electrolyte is contained in the non-aqueous solvent.
  • the physical properties of the electrolytic polymer that can be formed on the electrode may vary slightly depending on the supporting electrolyte added to the non-aqueous solvent.
  • tert-butylammonium park mouth plate salt is selected as a supporting electrolyte, and a large positive ion such as an ammonium salt provided from this salt is used as a counter ion.
  • the resulting spherical carbon polymer When present in the liquid, the resulting spherical carbon polymer forms a coordination bond between the positive ion and the fullerene molecule, and is formed as a thin film or precipitate on the electrode in the form of a complex salt, and Tends to be brittle.
  • lithium perchlorate is selected as a supporting electrolyte, and when lithium ions provided from this compound are present in the electrolyte as counter ions, the resulting spherical carbon polymer is formed as a thin film on the electrode, for example. Formed, mechanically strong and stable, and mirror-like.
  • non-aqueous solvent it is preferable to use a mixed solvent of a first solvent that dissolves fullerene molecules and a second solvent that dissolves a supporting electrolyte.
  • the mixing ratio of the first solvent and the second solvent is preferably in a volume ratio of 1:10 to L0: 1.
  • carbon disulfide As described above, it is preferable to use carbon disulfide, toluene, and other low-polarity solvents having a 7-electron system as described above.
  • acetonitrile As described above, it is preferable to use acetonitrile, dimethylformamide, and other solvents having a high polarity and a large dielectric constant as described above. Of these, acetonitrile is particularly preferred.
  • fullerene molecules dissolve only in low-polarity solvents having a zeta-electron system such as carbon disulfide (CS 2 ), toluene, benzene, and orthodichlorobenzene, and aliphatic solvents such as n-hexane. Even the solubility for is extremely low. Naturally, it does not dissolve in polar solvents, and this is the biggest problem in performing the electropolymerization of fullerene molecules.
  • CS 2 carbon disulfide
  • water and other water-based solvents have a large dielectric constant and are excellent solvents for dissolving the supporting electrolyte, which is a salt.
  • water is carbon disulfide, which can dissolve fullerene molecules. It does not dissolve in low polarity solvents having a 7 electron system such as toluene and benzene.
  • degassing with an inert gas is generally performed by bubbling of a helium gas, but another inert gas such as nitrogen or argon may be used instead of the helium gas.
  • another inert gas such as nitrogen or argon may be used instead of the helium gas.
  • each solvent is dehydrated with a dehydrating agent in advance, and further degassed in a vacuum.
  • each solvent is stored in an ampoule, and when they are used, they are placed in an electrolytic cell 59 through a vacuum line. You may want to introduce it.
  • the temperature of the electrolytic solution during the electrolytic polymerization be less than 50 ° C. If the temperature at this time is 50 ° C. or higher, the ratio of the spherical carbon polymer obtained as a precipitate increases, and the solvent may even exceed the boiling point. Therefore, it is desirable to provide a heater and a cooler appropriately in ordinary electrolytic polymerization. For example, the magnets may also have a heater. With such a configuration, the temperature of the electrolytic solution can be appropriately controlled while the electric potential for forming the spherical carbon polymer is applied.
  • the electrolytic polymerization is desirably performed by applying a direct current, and is desirably performed under a constant voltage.
  • the electric potential (particularly the voltage) for the electropolymerization can be applied using, for example, a potentiometer, and this potential is applied in either the constant current mode or the constant voltage mode. can do.
  • a potential is applied in the constant current mode, a high resistance thin film is formed on the electrode, and the current value tends to decrease, and the voltage may become too high. In such a situation, the state of the polyanion of the fullerene molecule may become unstable, making it difficult to maintain a constant reaction.
  • electrolytic polymerization is performed simply under the condition of constant potential,
  • potentiometer sunset 60 shown in FIG. 21 instead of the potentiometer sunset 60 shown in FIG. 21, for example, a simple DC power supply combining a commercially available dry cell and a variable resistor can be used.
  • the spherical carbon polymer obtained by the legal method is a spherical carbon polymer comprising a cycloaddition polymer formed by an addition reaction between an anion radical of a fullerene molecule and an electrically neutral molecule or the like. It can be obtained as a thin film on the electrode and / or as a precipitate.
  • a dimer of C60 may be formed as a partial structure as described above. It is considered possible to form a trimer (see Fig. 13) and a tetramer of C60 (see Fig. 22). It is considered to be a coalesced and further a thin film made of this polymer. Of course, the possibility of forming a thin film containing spherical carbon polymers such as C120, C180, and C240 as fullerene molecules is also conceivable.
  • fullerene molecules easily undergo an addition reaction when a radical species is present, as represented by the term radical sponge, to form a radical adduct.
  • a radical species as represented by the term radical sponge.
  • This you due to the carbon atom in the fullerene molecule is in the middle of the valence state of the sp 2 and sp 3. That is, it is easy to form the valence state of sp 3 with the formation of the radical product between the fullerene molecules.
  • fullerene molecules dissolved in a non-aqueous solvent are electrically negative
  • the anion radicals are formed. Very delicate temperature or electrolytic potential control is required.
  • the non-aqueous solvent specified above it is relatively easy to dissolve the fullerene molecule and take charge, but when the polymerization occurs not in the electrode surface but in the solvent, Due to the low solubility of fullerene polymers, these polymers often precipitate. When the amount of the precipitate increases, the amount of the thin film deposited on the electrode surface may decrease.
  • a fullerene polymer that is, a spherical carbon polymer composed of a cycloaddition polymer
  • a strong and glossy thin film can be obtained when the reaction is carried out using lithium ions as a supporting electrolyte pair without performing heating for accelerating the reaction.
  • a counter ion such as lithium ion provided from the supporting electrolyte may be taken into the cycloaddition polymer.
  • the spherical carbon polymer including the cycloaddition polymer may be oxidized in the air, but the counter ion can be removed to some extent according to the purpose. .
  • the cycloaddition polymer containing the ion is immersed in a solution such as an aqueous solution, and the solution is heated and boiled simultaneously.
  • a potential opposite to the potential applied during the electrolytic polymerization the counter ion can be removed to some extent.
  • the above-described electropolymerization method of fullerene is a technique originally developed by the present inventors for the purpose of obtaining a fullerene polymer film composed of only a [2 + 2] cycloaddition bond of C60 fullerene. Cannot be obtained by the plasma polymerization method.
  • the lithium ion is a cross-linked structure of the C60 polymer.
  • the structure (C120.Li or C120.Li2) sandwiched between two fullerene molecules is the most stable.
  • the calculation of the system containing lithium in the compound was all performed by the unrestricted heart leaf ox method.
  • C60 is greatly stabilized by coordination of lithium. This is due to the fact that the lowest unoccupied orbit of C60 is much lower than that of free electrons.
  • Figure 32 shows the numbering system for carbon atoms of the C70 molecule, which is used for convenience.
  • Table 1 below shows the heat of reaction (AHf 0 (r)) during the formation process of C70 to C140 of two molecules at MNDO / AM-1 and PM-3 levels.
  • C140 (a) (Fig. 23) and C140 (b) (Fig. 24), C140 (c) (Fig. 25), C140 (d) (Fig. 26), C140 (e) (Fig. 2 7) and C140 (f) (Fig. 28) and C140 (g) (Fig. 29) and C140 (h) (Fig. 30) are C (2) -C (4) and C (5) -C (6 ), C (9) -C (10), C (10) -C (11) bonds of anti-syn isomer pairs.
  • ⁇ ° (r) AM-1 and AHf ° (r) PM-3 are the heat of reaction when using the parameterization of the MND 0 method, which is a semi-empirical molecular activation method by JJP Stewart. Is the calculated value of
  • the cross-link numbering system is shown in Fig. 32, which is based on the C70 numbering. Note that the “'” mark is for the next C70 with the same numbering.
  • the bond length is a bond distance between C_C atoms of the cyclobutane ring constituting the cross link, which is predicted from a calculated value of the heat of reaction based on the above-mentioned MNDO / AM-1 method.
  • the C (1)-C (2) bond is clearly a single bond, but the heat of reaction of the cycloaddition reaction between these bonds is +0.19 and _ 1. at the AM-1 and PM-3 levels, respectively. It is 88 kcal / mol, which is almost equal to the heat of reaction of C140 (g) and C140 (h) in Table 1. This suggests that the addition reaction between the C (10) -C (11) bond cannot also occur thermodynamically. Therefore, the addition polymerization reaction between C70 molecules occurs preferentially at C (2) -C (4) and C (5)-C (6) bonds, and the polymerization between C (9)-C (10) bonds is If so, the probability is considered low.
  • examples of the hydrogen storage material of the present invention include a carbonaceous material into which a group capable of hydrogen bonding with proton (H +) is introduced. Therefore, a carbonaceous material into which a group capable of hydrogen bonding with the proton (H +) is introduced will be described.
  • Such a hydrogen-absorbing carbonaceous material is basically made of a carbonaceous material containing carbon as a main component, into which a group capable of hydrogen bonding with protons has been introduced.
  • any material can be used as the base carbonaceous material as long as it is mainly composed of carbon.
  • the carbonaceous material serving as a matrix include a carbon cluster, which is an aggregate of carbon atoms, and a carbonaceous material containing tubular carbonaceous material (so-called carbon nanotube). It can.
  • carbon classes such as fullerenes, fullerene structures with at least partially open ends, and diamond structures are preferred.
  • the hydrogen storage carbonaceous material of this example contains a carbon cluster derivative (having a carbon atom constituting a carbon cluster into which a group capable of hydrogen bonding with protons is introduced) as a main component.
  • the above-mentioned class of the present invention generally refers to an aggregate formed by bonding or aggregating several to several hundred atoms, and a “cluster mainly composed of carbon”. Is an aggregate formed by bonding several to several hundred carbon atoms regardless of the type of carbon-carbon bond. However, it is not necessarily composed only of 100% carbon, and other atoms may be mixed. Including these cases, the aggregate occupying a large number of carbon atoms is called the carbon class Yuichi. This assembly is illustrated in the drawing (however, groups capable of hydrogen bonding with protons are not shown), as shown in FIGS. 33 to 36, and the range of choice as a raw material of the proton conductor is limited. It is wide.
  • Fig. 33 is a sphere or spheroid, which is composed of a large number of carbon atoms, or various kinds of carbon classes having a closed surface structure similar to these, except for molecules. Fullerenes are also shown).
  • Fig. 34 shows various carbon clusters in which a part of the sphere structure is missing. In this case, the structure is characterized by having an open end, and such structures are often found as by-products in the process of producing fullerene by arc discharge.
  • the carbon atoms of most of the carbon class evening one is SP 3 bond
  • the various classes evening one having the structure of the diamond as shown in FIG 5.
  • FIG. 36 shows various cases in which clusters are bonded to each other.
  • a structure can be applied to the present invention.
  • a carbonaceous material serving as a base is used as a carbon material, and the carbon material is fired in a gas atmosphere containing a group capable of hydrogen bonding with protons, or
  • the group may be introduced into a carbon atom constituting the carbon raw material by introducing the group into a liquid containing the group and treating.
  • the carbon raw material as a raw material can be produced by an arc discharge method using a carbon-based electrode as described above.
  • Substituents capable of hydrogen bonding to carbon atoms constituting the parent carbonaceous material such as the fullerene molecules C60, C70, etc., carbon nanotubes and fullerene soots, for example, oxygen atoms, fluorine atoms, nitrogen atoms, sulfur atoms or
  • a substituent containing an atom such as a chlorine atom
  • the resulting derivative can store and release hydrogen at around room temperature.
  • the reason for this has not been completely elucidated, but it is thought to be roughly due to the following mechanism. That is, in order to occlude hydrogen gas in a small volume, it is considered effective to decompose hydrogen molecules into hydrogen atoms and further into protons and electrons. However, their binding energies are usually too large to dissociate at room temperature.
  • the electronegativity (electron accepting) of some atoms is 4 for fluorine, 3.5 for oxygen, 2.5 for sulfur, and 3 for nitrogen.
  • the oxygen atom ⁇ fluorine atom present in the substituent is Hydrogen is converted into protons by the first atoms to form hydrogen bonds, and can exist in an energetically stable state.
  • the stabilization energy in the electron and proton states is large, hydrogen can be relatively easily ionized and decomposed even at a temperature near room temperature, and a large amount of hydrogen can be stored in the carbonaceous material. It becomes possible.
  • C m is an even number of 36 or more, preferably 36, 60, 70, 78, 82, and 84.
  • These are carbon cluster molecules represented by), and these can be used as a mixture of two or more.
  • the ratio of the number of carbon atoms of the former to the number of substituents of the latter should be (10: 1) to (1: 1). Is preferred.
  • each derivative obtained by introducing the above-mentioned substituent into the carbon atom of the carbon raw material ie, fullerene molecule, carbon nanotube, fullerene soot, etc.
  • the carbonaceous material for hydrogen storage according to the present invention As a method of introducing the substituent into a carbon atom of the carbon raw material, a method of firing the carbon raw material in a gas atmosphere containing a group capable of hydrogen bonding with protons, and a method of introducing the carbon raw material into a liquid containing the substituent Is effective.
  • a known sintering apparatus as described later may be used, and as the latter method, for example, when the substituent contains a sulfur atom, fuming sulfuric acid or benzene is used as a liquid. (Under nitrogen oxide gas publishing).
  • the carbonaceous material thus obtained has a hydrogen storage capacity, If fine particles of a metal having a catalytic function are brought into contact with at least the surface of the carbonaceous material and carried thereon, further hydrogen storage ability can be expected.
  • a carbonaceous material having a bent portion in its structure which is used as a carbonaceous material for hydrogen storage in the present invention, will be described.
  • Such a carbonaceous material for hydrogen storage is basically a carbonaceous material having a bent portion in its structure.
  • the carbonaceous material may be at least one selected from transition metals, oxides thereof, and carbides thereof. It is preferable that the surface of the catalyst is formed by thermal decomposition of a carbon-containing compound, and the same hydrogen absorbing ability can be exhibited by using the carbonaceous material alone or by using a composite on which the catalyst is attached. .
  • the most preferable structure of the carbonaceous material is graphite having a partially bent portion in the structure.
  • the catalyst includes iron, nickel, cobalt, copper, manganese, chromium, vanadium, titanium, zirconium, niobium, molybdenum, ruthenium, palladium, silver, gold, platinum, iridium, tungsten, and their oxides. And carbides. Of these, iron, nickel, cobalt, and oxides and carbides thereof are preferable.
  • the carbonaceous material for hydrogen storage of the present invention can be generated on the surface of the catalyst by thermally decomposing a carbon-containing compound on the catalyst.
  • the carbon-containing compound is not particularly limited as long as it is a compound containing a carbon atom, but is practically at least one selected from toluene, ethylene, acetone, methanol, ethanol, and the like, and preferably toluene. And acetone.
  • the thermal decomposition is performed on the catalyst while the carbon-containing compound is accompanied by a carrier gas (an inert gas such as helium / argon or nitrogen gas) in a gaseous state.
  • a carrier gas such as an inert gas sent from a cylinder in a liquid of a carbon-containing compound is bubbled by a pyrolyzer (described later in detail).
  • the carbon-containing compound is vaporized and sent to the reaction tube together with the carrier gas.
  • the carbon-containing compound is a gas at normal temperature and normal pressure, it may be sent to the reaction tube as it is or accompanied by a carrier gas.
  • a catalyst is set in the reaction tube in advance, and the heating device can heat the reaction tube to a desired temperature.
  • the carbon-containing compound Upon heating, the carbon-containing compound decomposes on the catalyst, producing a carbon material on its surface. After the reaction, the carbonaceous material is taken out together with the catalyst. This carbonaceous material may be used in a state containing a catalyst, or the catalyst may be removed by acid treatment or the like.
  • a reducing gas such as hydrogen
  • the carbonaceous material has an effect of improving the hydrogen storage capacity. This is probably because the reducing gas partially reacts with the reaction by-products such as amorphous carbon and the like, resulting in a higher production ratio of carbonaceous materials having high hydrogen storage capacity.
  • the ratio of the reducing gas to be added and mixed into the carrier gas may be 0 to 100%.
  • the pyrolysis temperature may be basically a temperature at which a carbonaceous material can be formed on the catalyst, but is preferably in the range of 900 to 130 ° C. If the temperature is lower than 900 ° C, a carbon layer structure is not formed and the carbon becomes amorphous, and if the temperature is higher than 130 ° C, it is stable at a high temperature. This is because a graphite structure without defects or bent portions grows, and a structure advantageous for the purpose of the present invention cannot be obtained.
  • the reason why the carbonaceous material thus obtained exhibits excellent hydrogen storage capacity has not yet been completely elucidated.
  • the carbonaceous material generated by the decomposition of the gas of the carbon-containing compound grows substantially along the bent surface of the catalyst particles, the layered structure such as graphite is also partially bent. At the bent portion, the condensation of the energy levels of the electrons melts, becoming semiconducting, and lowering to a deeper and more stable energy level. It is thought that the electrons in the hydrogen molecule are affected by this deep energy level, and the molecular bonds are likely to be dissociated.
  • Decomposing hydrogen molecules into hydrogen atoms is considered to be indispensable for storing a large amount of hydrogen.Therefore, having such a bent structure is an important condition for realizing hydrogen storage. Become. Alternatively, electrons move to this deep energy level, and hydrogen maintains a partially protonated state. In any case, it is a very important technology to reliably manufacture such a bent structure, and the originality and features of the present invention reside in that such a structure is efficiently realized.
  • the catalyst-functional metal fine particles supported on the carbonaceous material of the base material preferably have an average particle diameter of l / m or less, particularly preferably 100 nm or less.
  • This content is 10% by weight based on the carbonaceous material for the reason described below. % Or less.
  • the metal examples include platinum, a platinum alloy, palladium, magnesium, titanium, manganese, lanthanum, vanadium, zirconium, a nickel-lanthanum alloy, a titanium-iron alloy, and the like, with preference given to platinum and its alloys.
  • These metals have a catalytic ability to separate hydrogen molecules into hydrogen atoms or further into protons and electrons.
  • a catalytic reaction occurs. Not only can this be promoted significantly, but also the amount of expensive metals such as platinum can be significantly reduced.
  • the supporting means may be a chemical supporting method using a solution containing a platinum complex, or an arc discharging method using an electrode containing platinum.
  • a chemical supporting method for example, an aqueous solution of chloroplatinic acid is treated with sodium hydrogen sulfite / hydrogen peroxide, and then the carbonaceous material is stirred in this solution.
  • This method is used when preparing a catalyst electrode for a fuel cell, and is also called a liquid phase chemical loading method.
  • platinum or a platinum alloy is partially incorporated in the electrode portion of the arc discharge, which is vaporized by arc discharge and adheres to the carbonaceous material stored in one chamber. Let me do it.
  • the carbonaceous material used in the present invention includes a fullerene molecule, a polymer thereof, a carbon nanotube, a material having a partial fullerene structure, or a carbonaceous material obtained by introducing a group capable of forming a hydrogen bond with proton into the carbonaceous material. Derivatives and the like, and mixtures thereof are preferred.
  • the fullerene molecule has the general formula C n (where n is a geometrically spherical compound Is an even number of 20 or more that can form ) It is a substance consisting of only carbon atoms represented by and may be a simple substance or a mixture. Preferred are C60 fullerenes (see Fig. 8) or C70 fullerenes (see Fig. 9) or mixtures thereof, but all of them are higher fullerenes (C78, C80, C82, C84). ) May be included. These fullerene molecules can be easily and inexpensively produced by, for example, an arc discharge method using a carbon electrode.
  • the fullerene polymer used in the present invention does not need to be particularly limited to the degree of polymerization, but generally has a relatively small degree of polymerization due to the production process.
  • the structure has a structure as shown in FIGS. 10 (A) and (B), and a structure having a degree of polymerization of 3 is shown in FIG.
  • a C70 fullerene polymer generally has a relatively low degree of polymerization.
  • fullerene plasma polymerization examples include high-frequency plasma, DC plasma, ECR plasma, and microwave plasma polymerization.
  • high-frequency plasma method which is widely used, is described as follows.
  • An inert gas such as argon is supplied into an evacuated vacuum reactor, and the inside of the reactor is filled with the same gas, and then fullerene molecules are stored.
  • the container is energized and heated. This causes the fullerene molecules to evaporate.
  • a high-frequency voltage is applied from a high-frequency power source to generate high-frequency plasma between the opposed electrodes and irradiate the vaporized fullerene, fullerene molecules are excited and set in the vacuum reactor.
  • a film-like plasma polymer can be generated on a substrate or the like that has been damaged.
  • carbon nanotubes be contained in the fullerene molecule and / or a polymer thereof, and the carbon nanotubes are formed by soot generated together with fullerene molecules during arc discharge of a carbon electrode. Often contained in.
  • fullerene molecules or polymers thereof are preferably used because, when they are used as a base material, a considerably large amount of hydrogen can be absorbed.
  • Such an effect occurs because the carbon atoms constituting them have a relatively low LUMO (minimum unoccupied molecular structure) level, so that hydrogen atoms or protons generated by the action of the metal fine particles having the catalytic ability are used. Is likely to stabilize in the carbonaceous material, resulting in stable storage of large amounts of hydrogen.
  • LUMO minimum unoccupied molecular structure
  • Such an effect is considered to be a phenomenon common to not only the above-described fullerene molecule or its polymer but also other carbonaceous materials having a similar mechanism.
  • the above-described carbonaceous material for hydrogen storage can be applied to the configuration of a specific battery by taking advantage of its features.
  • the configuration of an alkaline storage battery and an air battery will be described later.
  • FIG. 37 the schematic configuration of the fuel cell will be described.
  • This fuel cell is composed of a negative electrode (fuel electrode or hydrogen electrode) 78 and a positive electrode (oxygen electrode) with terminals 78a and 79a facing each other and having catalysts 77a and 77b closely attached or dispersed, respectively. 7 and 9 between these two poles A proton conductor section 80 is sandwiched between them.
  • hydrogen is supplied from the inlet 81 and discharged from the outlet 82 (which may not be provided).
  • Proton is generated while the fuel (H2) 83 passes through the flow path 84, and the proton moves to the TF.
  • Pole 79 side together with the proton generated in the proton conductor section 80, where it enters through the inlet 85. It is supplied to the flow path 86 and reacts with oxygen (air) 88 going to the exhaust port 87, thereby extracting a desired electromotive force.
  • the hydrogen supply source 89 stores the carbonaceous material for hydrogen storage of the present invention in which hydrogen is stored here. Note that hydrogen may be stored in this material in advance, and this material may be stored in the hydrogen supply source 89.
  • the fuel cell having such a configuration has a feature that the proton supplied from the negative electrode 78 moves to the positive electrode 79 side while the proton is dissociated in the proton conduction section 80, so that the proton has a high conductivity.
  • the proton conductor disclosed in PCT / JP00 / 04864 is used, the humidifier, etc., which was required for the conduction of the proton, becomes unnecessary for the proton conduction section 80. Weight and weight can be reduced.
  • this sample was sufficiently dried, sealed in an ampule with a frit mesh stopper, and evaluated for hydrogen storage capacity.
  • the hydrogen storage capacity of the sample thus stored was evaluated using an integrating flow meter, a hydrogen storage capacity of 10 Oml / g was confirmed.
  • Example 2 an alkaline storage battery was manufactured as follows. ⁇ Preparation of positive electrode>
  • a paste was prepared by adding 3% of carboxymethylcellulose to 10 g of spherical nickel hydroxide having an average particle diameter of 30 m and lg of cobalt hydroxide, and kneading with water. The paste was filled into a porous nickel foam having a porosity of 95%, dried, pressurized, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm. ⁇ Preparation of negative electrode>
  • Example 2 5% of carboxymethylcellulose and water were added to the hydrogen-absorbing carbonaceous material (supporting platinum) produced in Example 1 to prepare a kneaded paste, and the porosity was 95%. % Foamed nickel porous material, dried and pressurized and punched out.
  • a negative electrode having a thickness of 0 mm and a thickness of 0.5 mm was produced.
  • an alkaline storage battery (secondary battery) as schematically shown in FIG. 38 was produced using the positive electrode and the negative electrode produced in the above-mentioned steps and using a 7 N aqueous hydroxide aqueous solution as an electrolytic solution.
  • a positive electrode 98 and a negative electrode 99 are built in a battery container 97 with an electrolytic solution 100 interposed therebetween, and a positive electrode lead 98 a and a negative electrode lead 99 a And are taken out of the battery container 97.
  • Example 3 an air battery was manufactured as follows.
  • Example 2 In the same manner as in Example 1, a carbon material for hydrogen storage supporting platinum was prepared. This hydrogen-absorbing carbonaceous material and an alcohol solution of a polymer electrolyte composed of perfluorosulfonic acid were mixed in n-butyl acetate. To prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 ⁇ m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and heated to 400 ° C., so that the carbon nonwoven fabric was subjected to a water repellent treatment. Subsequently, the carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry was applied to one surface thereof.
  • a 50 j-thick polymer electrolyte membrane made of perfluorosulfonic acid was bonded to the surface of the carbon nonwoven fabric coated on the catalyst layer, and then dried.
  • a paste was prepared by adding 5% of carboxymethylcellulose and water to the same carbonaceous material for hydrogen storage (supporting platinum) as used for the preparation of the above-mentioned air electrode, and the paste was prepared with a porosity of 95%.
  • % Foamed nickel porous material dried, pressurized, and cut into 4 cm x 4 cm to produce a 0.5 mm thick hydrogen electrode.
  • the hydrogen electrode was superimposed on the joined body of the air electrode and the perfluorosulfonic acid polymer electrolyte membrane obtained in each of the above steps, with this polymer electrolyte membrane as the center, and both sides of the hydrogen electrode were 3 mm thick And firmly fixed it with bolts.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • FIG. 40 shows a schematic structure of the air battery thus assembled.
  • the air battery illustrated here has a polymer electrolyte membrane 110a inside.
  • the hydrogen electrode 1 1 1 and the air electrode 1 1 4 are opposed to each other, and the outside is sandwiched between a Teflon plate 1 13 a and a Teflon plate 1 1 3 b provided with a number of air holes 1 1 4
  • the whole is fixed with bolts 115a and 115b, and the hydrogen electrode lead 111a and the air electrode lead 112a are taken out from each electrode.
  • a platinum-supported C60 sample 132 having a hydrogen storage capacity of about 11 Oml / g was used as the sample.
  • This sample 132 was formed into a pellet shape, and a sample sandwiched between aluminum electrodes 130 was sealed in a pressure-resistant chamber 112. Then, hydrogen is introduced and then exhausted through the valve 13 1.
  • the complex impedance was measured under the condition of an amplitude voltage of 0.1 V from the power supply 133 in a range of applied frequency from 0.1 Hz to 10 MHz.
  • all the measurements were performed in the same frequency domain.
  • the carbonaceous material composed of the pellet of this example electrically forms an equivalent circuit as shown in FIG.
  • the 44 (A) is represented by a parallel circuit of a resistor 204 and a capacitor 205. Including the carbonaceous material 201 to be formed, capacitances 206 are formed between the first electrode 202 and the second electrode 203, respectively.
  • the capacity 205 represents the delay effect when the charged particles move (phase delay at high frequency), and the resistance 204 represents the parameter of the difficulty of the movement of the charged particles.
  • the semicircular arc becomes large as shown in (e) immediately after that, as shown in (b), and 10 minutes after release, (c), the arc becomes Becomes very large (f).
  • the diameter of the arc on the real axis is This corresponds to the magnitude of the resistance 204 of the equivalent circuit, and can be regarded as the DC resistance component of the DUT. Therefore, the above results imply that the impedance of the measurement system increases with the release of hydrogen gas from the carbonaceous material.
  • the material according to the present invention has protons derived from hydrogen as charged particles.
  • the arc discharge method was used as a method for producing the carbonaceous material for hydrogen storage.
  • the reaction chamber 1 as shown in FIG. 1 as a helium atmosphere, and the pressure 1 0 0 T orr (1. 3 3 x 1 0 4 P a), carried out arc discharge a DC power source of about 3 0 minutes, the discharge
  • the carbonaceous soot material in the reaction chamber 1 and the carbonaceous material for hydrogen storage deposited and grown on the cathode 3 were collected. Then, this was ground in a mortar or the like, and then subjected to ultrasonic dispersion in sulfuric acid. This After adding potassium permanganate thereto, heat treatment was performed to oxidize and remove the amorphous carbon.
  • the sample was left under a hydrogen gas atmosphere at room temperature under a pressure of 100 atm for about one day, and the amount of absorbed hydrogen was measured.Then, it was found that the sample lg absorbed about 150 ml of hydrogen. became.
  • the occlusion capacity of this material is 4% by weight, and the reduction of the resistance component is about two orders of magnitude, consistent with the above results.
  • the change in the resistance component is almost unchanged. It has been experimentally confirmed that no turbulence occurs.
  • fullerene fluoride was prepared as a carbonaceous material for hydrogen storage. Fluorine gas and carbonaceous material were sealed in the ampoule and heated at 300 ° C for 3 hours. When the hydrogen storage capacity of this sample was measured, it was found that the sample had a hydrogen storage capacity of about 110 m1 per gram, and complex impedance measurement was performed on this sample. (Proton) signal was observed. As described above, it was found that even when fluorine as an electron donor was added to the hydrogen-absorbing carbonaceous material, the same occlusion ability as in the other examples was exhibited.
  • the N 2 gas 120 m 1 / min, and the C 2 H 2 gas 15 It was allowed to flow at a rate of ml / min.
  • the gas mixed by the masochist-controller 140 is heated to 700 ° C. in the heater 146 to prevent the thermal decomposition of the carbon molecules.
  • carbon molecules were trapped by contact with a water-cooled copper needle 144 installed in a pressure-resistant chamber 142 to produce a carbonaceous material.
  • the reaction time was about 1 hour.
  • the carbonaceous materials were collected, mixed with 10% by weight of platinum black, crushed in a mortar, and the hydrogen storage capacity was measured by the method described above. It was screamed that it had hydrogen storage capacity.
  • a graphite target 150 was set in a furnace 149 maintained at 1200 ° C. by a heater 147.
  • the excitation light source used was a Nd: YAG laser 148 (wavelength 532 nm, 300 mJ / 1 u1 se).
  • the furnace 149 was maintained at 500 Torr (6.65 ⁇ 10 4 Pa) while flowing argon.
  • the YAG laser 148 was used to strike a graph item evening gate 150, and carbon was collected by a water-cooled copper needle 151, which was cooled by water set on the downstream side, to produce a carbonaceous material. .
  • Example 11 an alkaline storage battery was manufactured as follows. ⁇ Preparation of positive electrode>
  • Carboxymethylcellulose 3% is added to 10 g of spherical nickel hydroxide having an average particle size of 30 / m and 10 g of cobalt hydroxide, and kneaded with water. Thus, a paste was prepared. This base was filled into a porous nickel foam having a porosity of 95%, dried, pressurized, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm.
  • Example 7 5% of carboxymethylcellulose and water were added to the carbonaceous material for hydrogen storage (supporting platinum) produced in Example 7 to prepare a kneaded paste, and the paste was mixed with a porosity of 95%.
  • an alkaline storage battery (secondary battery) as schematically shown in FIG. 38 was produced using the positive electrode and the negative electrode produced in the above steps and using a 7 N aqueous hydroxide aqueous solution as an electrolytic solution.
  • Example 12 an air battery was manufactured as follows.
  • a carbon material for hydrogen storage supporting platinum was prepared.
  • This carbonaceous material and an alcohol solution of a polymer electrolyte composed of perfluorosulfonic acid were dispersed in n-butyl acetate to prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 ⁇ m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and heated to 400 ° C., so that the carbon nonwoven fabric was subjected to a water repellent treatment. Subsequently, this carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry was applied to one surface thereof.
  • a polymer electrolyte membrane made of 50-perfluorosulfonic acid was bonded to the surface of the carbon nonwoven fabric coated on the catalyst layer, and then dried.
  • a paste was prepared by adding 5% of carboxymethylcellulose and water to the same carbonaceous material (supporting platinum) as used in the preparation of the air electrode, and foaming the paste with a porosity of 95%. After filling the porous nickel body, drying, pressing and cutting into 4 cm x 4 cm, a 0.5 mm thick hydrogen electrode was produced.
  • the hydrogen electrode was superimposed on the joined body of the air electrode and the perfluorosulfonic acid polymer electrolyte membrane obtained in each of the above steps, with this polymer electrolyte membrane as the center, and both sides of the hydrogen electrode were 3 mm thick And firmly fixed it with bolts.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • the assembled air battery is as shown in FIG.
  • hydrogen composed of protons (protons) and electrons takes the form of protons by donating electrons to the carbonaceous material for hydrogen storage, which is a strong electron acceptor.
  • the carbonaceous material for hydrogen storage keeps the protons separated from the hydrogen atoms in that state, and efficiently stores the protons in the carbonaceous material for hydrogen storage, thereby ultimately converting the hydrogen.
  • the collected carbon soot and carbonaceous material were ground in a mortar and then ultrasonically diffused in sulfuric acid.
  • the sample thus obtained was put into a sample chamber, 100 atmospheres of hydrogen was introduced, and the sample was left for one day.After calculating the amount of hydrogen occlusion based on the change in hydrogen gas pressure, It was found that 120 O ml of hydrogen had been absorbed.
  • FIG. 52 is a graph showing changes in hydrogen gas pressure when a voltage is applied to the sample.
  • Example 13 the sample was put on the basis of the grounded pressure vessel. By applying a lath voltage, the hydrogen storage capacity of the sample was improved, and it was found that the higher the applied voltage, the more remarkable it was.
  • Example 14 the hydrogen storage capacity of the sample was improved, and it was found that the higher the applied voltage, the more remarkable it was.
  • An alkaline storage battery was manufactured as follows.
  • a paste was prepared by adding 3% by weight of carboxymethylcellulose to 10 g of spherical nickel hydroxide having an average particle diameter of 30 ⁇ m and 1 g of cobalt hydroxide, and kneading with water. This paste was filled into a foamed nickel porous body having a porosity of 95%, dried, pressurized, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm.
  • a hydrogen storage carbonaceous sample was prepared according to Example 13 and a voltage of 3.0 V was applied as in Example 13 to absorb hydrogen to obtain a hydrogen storage carbonaceous material.
  • a 5% carboxymethyl cell opening and water were added to the hydrogen-absorbing carbonaceous material thus obtained, and a kneaded paste was prepared.
  • This paste was used as a foamed nickel porous material having a porosity of 95%. , Dried and pressed, and punched out to produce a negative electrode having a diameter of 20 mm and a thickness of 0.5 mm.
  • an alkaline storage battery (secondary battery) schematically shown in FIG. 38 was prepared using a 7 N aqueous hydroxide aqueous solution as an electrolyte.
  • An air battery was manufactured as follows.
  • Example 1 a hydrogen storage carbonaceous material was obtained by an arc discharge method.
  • the hydrogen storage carbonaceous material thus obtained and an alcohol solution of a polymer electrolyte composed of perfluorosulfonic acid were dispersed in n-butyl acetate to prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and then heated to 400 ° C to perform a water repellent treatment on the carbon nonwoven fabric. Subsequently, the carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry prepared as described above was applied to one surface thereof.
  • a 50 / m-thick polymer electrolyte membrane made of polyfluorosulfonic acid was bonded to the coated surface of the carbon nonwoven fabric coated with the catalyst layer, and then dried.
  • Example 13 a voltage of +3.0 V with respect to the reference potential was applied to the same hydrogen storage Was stored.
  • a paste is prepared by adding 5% of carboxymethyl cellulose and water to the carbonaceous material thus obtained, and the paste is filled into a foamed nickel porous body having a porosity of 95%, dried, and then added. It was pressed and cut into 4 cm x 4 cm to produce a 0.5 mm thick hydrogen electrode.
  • a hydrogen electrode is superposed on the joined body of the air electrode and the perfluorosulfonic acid polymer electrolyte membrane obtained as described above, with the polymer electrolyte membrane inside, and both sides are 3 mm thick. It was firmly sandwiched between teflon plates and fixed with bolts.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • the schematic structure of the air battery is as shown in FIG.
  • the discharge was performed at a current density of 1 mA / cm 2 .
  • discharge characteristics as shown in FIG. 54 were obtained, and it was confirmed that the battery functioned as an air battery.
  • the hydrogen electrode was previously energized in the charging direction at a current density of ImA / cm 2 to absorb hydrogen, and the hydrogen was absorbed at the current density of ImA / cm 2 as described above.
  • the discharge characteristics were measured, the discharge characteristics as shown in FIG. 55 were obtained.
  • the horizontal axis is the negative electrode utilization rate, so the discharge characteristics are almost the same as in Fig. 54, but the available time has been extended by the amount charged in advance. In any case, it was confirmed that this case also functioned as an air battery.
  • Example 16 an example of a fullerene baking apparatus will be described with reference to FIG.
  • This baking apparatus is a simple type organic solvent gas bubbler, a gas cylinder supplying a non-oxidizing carrier gas to it, and an organic solvent gas for ordering is thermally decomposed and the firing temperature is maintained.
  • the flow path between the gas cylinder 15 3 and the electric furnace 15 4 and the flow path between the gas cylinder 15 3 and the organic solvent gas bubbler 15 2 are provided with needle valves 1558a and 158b for adjusting the flow rate, respectively.
  • the electric furnace 154 has a core diameter of 30 mm, and a reaction tube (made of quartz, etc.) 155 is inserted into the electric heater 159, and the inside of the reaction tube 155 is external.
  • the thermocouple 156 connected to the electric heater temperature controller 160 and the ceramic boat 157 located directly above it are set so that the film forming temperature of the ceramic boat 157 can be accurately monitored. It is already.
  • the temperature control of the ceramic boat 157 was linked with the relay circuit of PID control.
  • the firing apparatus configured as described above can manufacture a fired body within a temperature error of 1 ° C or less.
  • the mixture containing the metal powder is fired using a firing apparatus as shown in FIG. First, this mixture was placed on a ceramic boat 157, set in a reaction tube 155 of a firing device, and fired under the following conditions. However, the use of the needle valve 158 b and the organic solvent gas bubbler 152 was omitted. Remove nitrogen gas from gas cylinder 1 5 3 The mixture was introduced into the reaction tube 155 at a flow rate of 50 ml / min, and the inside of the tube was filled with nitrogen gas. After firing, the fired body obtained on the ceramic boat 157 was taken out and ground in a mortar. Further, 10% by weight of platinum fine particles called platinum black were mixed and supported on the ground material.
  • a sample was prepared in the same manner as in Example 16 except that platinum particles were supported on the fired body by sputtering before the fired body was ground, and the addition of the platinum black was omitted. Was evaluated.
  • a sample was prepared in the same manner as in Example 16 except that platinum fine particles were supported by a chemical method instead of adding platinum black to the pulverized material of the fired body, and a hydrogen storage capacity was measured. An evaluation was performed. As a result, a hydrogen storage capacity of 98.6 ml / g was confirmed in the sample. After elementary analysis after this evaluation, the weight of platinum in the sample was 5.3%.
  • An iron phthalocyanine compound was mixed in the same fullerene mixture as in Example 16 as a hydrogen storage carbon material in a weight ratio of 7: 3, and baked at 950 ° C. for 3 hours.
  • a mixed gas of nitrogen gas and hydrogen gas at a volume ratio of 2: 1 was supplied from a gas cylinder 153 to the reaction tube 155 at a flow rate of 50 ml / min.
  • the fired body iron content: about 4%) was pulverized together with 10% of platinum black, and the hydrogen storage capacity was evaluated in the same manner as in Example 15.
  • a hydrogen storage capacity of 38.9 ml / g was confirmed in the sample.
  • this sample was observed with a microscope, it was found that a large amount of carbon nanotubes were generated as shown in FIG.
  • Example 19 After pulverizing the fired body obtained in Example 19, platinum was supported on the fired body using a chemical method. Thereafter, after sufficient drying, the hydrogen storage capacity was evaluated. As a result, the sample was confirmed to have a hydrogen storage capacity of 78. Oml / g. Elemental analysis was performed after the evaluation, and as a result, the weight of platinum was 4.3% of the total amount of the sample. The iron content of the fired body before carrying platinum was about 4%.
  • Example 21 Before the pulverization, the sintered body produced in Example 21 was loaded with platinum by means of a sputter and pulverized, and evaluated in the same manner as in Example 16. As a result, the sample was confirmed to have a hydrogen storage capacity of 1 16 m 1 / g. The weight ratio of platinum supported on the fired body by sputtering was 2.9%.
  • Example 21 After the fired body prepared in Example 21 was pulverized, platinum was supported on the fired body by a chemical method and sufficiently dried, and then evaluated in the same manner as in Example 16. As a result, the sample was confirmed to have a hydrogen storage capacity of 179.9 m 1 / g. The weight ratio of platinum supported on the fired body was 7.7% as a result of chemical analysis.
  • a gadolinium oxide powder equivalent to 30% by weight was mixed with the same fullerene mixture as in Example 16 as a carbonaceous material for hydrogen storage, and calcined at 950 ° C. for 3 hours.
  • the firing atmosphere was a mixed gas of hydrogen and argon in a volume ratio of 1: 1 and the flow rate was 50 m 1 / min.
  • Platinum is supported on the fired body obtained in this manner by a chemical method, and After partial drying, the hydrogen gas storage amount was evaluated in the same manner as in Example 15. As a result, the sample was confirmed to have a hydrogen storage capacity of 198.8 ml / g. As a result of elemental analysis, the platinum content in the sample was 6.6%.
  • Example 24 The calcination and platinum loading were performed in the same manner as in Example 24 except that scandium oxide powder was used instead of gadolinium oxide.
  • the hydrogen gas storage capacity was evaluated in the same manner as in Example 24, and as a result, the sample was confirmed to have a hydrogen storage capacity of 226.6 ml / g. As a result of elemental analysis of the sample, the platinum content was 7.9%.
  • Example 24 The calcination and the platinum loading were performed in the same manner as in Example 24 except that the titanium oxide powder was used instead of the gadolinium oxide.
  • the hydrogen gas storage capacity was evaluated in the same manner as in Example 24. As a result, the sample was confirmed to have a hydrogen storage capacity of 11.4 ml / g. As a result of elemental analysis of the sample, the platinum content was 8.5%.
  • Example 2 The hydrogen gas storage capacity was evaluated in the same manner as in 4. As a result, the sample was confirmed to have a hydrogen storage capacity of 173.0 m 1 / g. As a result of elemental analysis of the sample, the platinum content was 7.3%.
  • Example 24 The calcination and the loading of platinum were carried out in the same manner as in Example 24, except that the gadolinium oxide was replaced with a goethite powder.
  • the hydrogen gas storage capacity was evaluated in the same manner as in Example 24. As a result, the sample was confirmed to have a hydrogen storage capacity of 56.8 ml / g. As a result of elemental analysis of the sample, the platinum content was 9.2%.
  • the carbonaceous material for hydrogen storage undergoes a structural change unaffected by the metal catalyst during firing.
  • the hydrogen gas storage capacity was evaluated in the same manner as in Example 19, the sample showed a hydrogen storage capacity of 78.9 ml / g.
  • Platinum was carried on the fired body containing no metal catalyst prepared in Example 30 by a chemical method. As a result of chemical analysis, the weight of the supported platinum was 10.7%. The hydrogen storage capacity of the sample was 145.7 m 1 / g.
  • Example 16 The same fullerene mixture as in Example 16 was prepared as a carbonaceous material for hydrogen storage, and 30% of iron powder was added to the mixture and mixed uniformly.
  • the mixture containing the iron powder was placed on a ceramic boat 53 and set in a reaction tube of a firing apparatus shown in FIG.
  • gas cylinder A cylinder filled with a mixed gas of nitrogen gas and hydrogen gas at a volume ratio of 2: 1 was used, and toluene was charged into an organic solvent gas bubbler, and the mixed gas was bubbled into the toluene. Accordingly, toluene gas is supplied to the reaction tube along with the mixed gas as a carrier gas.
  • the firing was performed at a temperature of 950 ° C. for 3 hours.
  • the calcination and platinum loading were carried out in the same manner as in Example 31, except that acetone was charged into the organic solvent gas bubbler instead of the toluene.
  • the hydrogen storage capacity of the sample was 20.0 ml / g, and the supported amount of platinum was 7.0%.
  • Example 35 Except that the use of the organic solvent gas bubbler was omitted, firing and platinum loading were performed in the same manner as in Example 33. Therefore, the atmosphere in the reaction tube is only a mixed gas of nitrogen gas and hydrogen gas. The hydrogen storage capacity of the sample was 190.0 m, and the supported amount of platinum was 8.3%.
  • Example 35 The hydrogen storage capacity of the sample was 190.0 m, and the supported amount of platinum was 8.3%.
  • Example 36 30% iron powder was added to and mixed with the same fullerene mixture as in Example 16 as a hydrogen storage carbonaceous material, and the mixture was stored in a baking apparatus in the same manner as in Example 31. 700 ° C, 8 The temperature was set at 00 ° C, 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C, and 1300 ° C, and all were fired for 3 hours. After the fired body was cooled, 10% platinum black was added to each of the fired bodies, ground in a mortar, pelletized, and evaluated for hydrogen storage capacity in the same manner as in Example 13 with these pellets. went. Figure 58 shows the results.
  • Example 36 The temperature was set at 00 ° C, 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C, and 1300 ° C, and all were fired for 3 hours. After the fired body was cooled, 10% platinum black was added to each of the fired bodies, ground in a mortar, pelletized, and evaluated for hydrogen storage capacity in the same
  • Example 18 In the same manner as described in Examples 2 and 3 above, an alkaline storage battery and an air battery were produced, respectively. However, as the carbonaceous material used for the negative electrode and the hydrogen electrode, the fired body obtained in Example 18 was used.
  • the alkaline storage battery was subjected to a charge / discharge test at 0.1 C, an upper limit of 1.4 V, and a lower limit of 0.8 V.
  • Fig. 59 shows the cycle characteristics. As is clear from this, although the cycle life was not sufficient due to the battery structure, basic charge / discharge performance could be confirmed. The same result was obtained in the case where the fired bodies of the other examples described above were used.
  • the carbonaceous material used for the negative electrode and the hydrogen electrode was the fired body obtained in Example 17; however, each of Examples 16 and 17, and Examples 19 to 35 was used. Regarding the fired body, it was confirmed that it functions as an alkaline storage battery or an air battery, although there are differences in characteristics depending on the material.
  • Example 16 After commercially available carbon black was mixed with platinum black equivalent to 10% by weight, and sufficiently ground in a mortar, the same evaluation as in Example 16 was performed. As a result, the sample was confirmed to have an occlusion capacity of 4. Oml / g.
  • Platinum black was supported on commercially available carbon black by sputtering and sufficiently crushed in a mortar, and evaluated in the same manner as in Example 16. As a result, the storage capacity of the sample was confirmed to be 4.2 ml / g. As a result of elemental analysis, the carried amount of platinum was 2.9%.
  • Example 16 The same fullerene mixture as in Example 16 as a carbonaceous material for hydrogen storage was pelletized in a dry state, and the hydrogen storage ability was evaluated in the same manner as in Example 16. As a result, the hydrogen storage capacity of the sample was 3.7 ml / g.
  • 1460 cm- 1 and 1570 cm specific to fullerene polymers are used. It can be considered that the two Raman scattering lines of cm- 1 and the so-called Disorder Band, 1350cm- 1 and Graphitic Band, 1590cm- 1 of amorphous carbon containing the graphite structure overlap. It has been confirmed that almost no fullerene molecules remain in the fired body.
  • the graphitic rod of the positive electrode almost vaporized, and after obtaining soot containing fullerene, the polarity of the electrode was further reversed to further vaporize deposits such as carbon nanotubes deposited on the original negative electrode. It was soot.
  • the soot thus deposited in the water-cooled reaction chamber was then collected by a vacuum cleaner and extracted with toluene to obtain crude fullerene. Further, the crude fullerene was washed with hexane, dried, and then purified by vacuum sublimation.
  • the fullerene sample thus obtained was subjected to time-of-flight mass spectrometry (hereinafter sometimes referred to as TOF-MS), and as a result, this fullerene sample was composed mainly of C60 and C70 in a weight ratio of about 60%. 9: 1 was included in the ratio.
  • the crude fullerene was dissolved in a mixed solvent of toluene and hexane, and separation and extraction were carried out using a column of 200 cm in length and 5 cm in diameter filled with activated alumina to separate C60 and C70.
  • the separated C60 and C70 are each washed with hexane and then purified by sublimation in a high vacuum. I got it.
  • the sublimation temperature was 570 ° C for C60 and 580 ° C for C70. Purity was confirmed by a time-of-flight mass spectrometer, and it was confirmed that the presence of C70 for C60 or C60 for C70 was less than 1% in both samples.
  • the platinum electrode on which the electrolytic S1 composite film was attached was transferred to high-purity water, and lithium ions were removed by applying a potential opposite to that of the polymerization process.As a result, the nuclear magnetic resonance spectrum of the electrolytically polymerized film was measured. Was almost the same as before the transfer to high purity water. Therefore, it was found that the polarization structure between the lithium ion and C60 polymer present in such a thin film could not be easily removed from the thin film.
  • a fullerene polymer was deposited on a platinum electrode under the same electrolysis conditions as described above. This polymer film was transferred to a vacuum glove box, and after removing the solvent from the polymer, the inside of the box was kept in an argon atmosphere.
  • a micro balance is installed in the glove box in advance, and hydrogen gas is introduced into the sample chamber.
  • a hydrogen partial pressure gauge is installed in this sample chamber, and the hydrogen concentration can be monitored.
  • the temperature was raised while performing turbo evacuation, and the released gas was confirmed with a residual gas monitor having a quadrupole mass.
  • the optimum hydrogen generation temperature of the hydrogen storage material of this embodiment is in the range of about 300 to 600 ° C.
  • Example 3 8 A small paint sieve was placed in an argon glove box, and a mixture of 2 g of fullerene C60 powder and 1 g of helium powder was shaken together with zirconia beads (outer diameter 5 mm) for 1 hour. The hydrogen storage function was evaluated in the same manner as in Example 1 using the obtained polymer. The sample transferred to the microbalance was 2.888 g. this
  • the fullerene C60 alone was placed in an atmosphere of hydrogen gas, and the weight change was monitored.
  • the amount of hydrogen absorbed per gram of sample was only 2 m1 in terms of normal pressure.
  • Example 38 only lithium metal was shaken together with zirconium aviation, and the weight change was monitored in an atmosphere of hydrogen gas. As a result, the weight of the lithium powder was increased from 2.580 g to 2.699 g. This means that 4.40% by weight of hydrogen has been added.
  • a fullerene plasma polymer was formed on a silicon substrate at an rf plasma power of 50 W under an argon gas atmosphere. This polymer was recovered from the silicon substrate, and 0.52 g of the polymer was removed under a hydrogen atmosphere for 3 hours. I left it. However, the amount of stored hydrogen was only 1 m1 in normal pressure.
  • a fullerene powder containing C60 and C70 at a weight ratio of 85:15 was heated at 300 ° C in an argon atmosphere containing 5% of fluorine gas using a firing apparatus shown in Fig. 56. Fired for hours. As a result, a fluorinated fullerene (for example, C60Fx, X is about 30 to 50) was obtained. This is the sample of Example 39. The spectrum of TOF-MS of this fullerene fluoride is shown in FIG.
  • a fullerene powder containing # 60 and # 70 in a weight ratio of 85:15 is used as a sample of Comparative Example 9 as it is.
  • the mixture is used as a sample of Comparative Example 10.
  • the soot was synthesized by a carbon electrode arc discharge method, and the separated and purified nanotubes were fired at 300 ° C for 5 hours in an argon atmosphere containing 5% fluorine gas using a firing apparatus shown in Fig. 56. As a result, fluorinated nanotubes were obtained. This is used as a sample in Example 41.
  • Example 41 The sample purified in Example 41 is used as a sample in Comparative Example 11 as it is.
  • Nitrogen oxide gas generated by contact between concentrated nitric acid and a copper catalyst was introduced into a benzene solution of fullerene powder containing C60 and C70 in a weight ratio of 85:15, and reacted for 10 hours.
  • the product obtained by drying under reduced pressure was purified to obtain a nitrated fullerene. This is the sample of Example 44.
  • the effects of the present invention are exhibited only when a functional group containing a fluorine atom, an oxygen atom, or the like is directly bonded to a carbon atom of fullerene, nanotube, or fullerene soot.
  • a paste was prepared by adding 3% of carboxymethylcellulose to 10 g of spherical nickel hydroxide having an average particle diameter of 30 zm and 1 g of cobalt hydroxide, and kneading with water.
  • This base was filled in a foamed nickel porous material having a porosity of 95%, dried, pressed, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm.
  • Example 39 5% of carboxymethylcellulose and water were added to the fluorinated hydrogen storage material fullerene produced in Example 39 to prepare a kneaded paste, and this paste was used to form a foamed nickel porous material having a porosity of 95%. , Dried and pressurized and punched out to produce a negative electrode having a diameter of 20 mm and a thickness of 0.5 mm.
  • An alkaline storage battery (secondary battery) as schematically shown in Fig. 38 was fabricated using an aqueous solution of hydroxylating water as an electrolyte.
  • an air battery was manufactured as follows.
  • Example 39 a fluorinated fullerene was prepared.
  • This carbonaceous material and an alcohol solution of a perfluorocarbon sulfonic acid isotope polymer electrolyte were dispersed in n-butyl acetate to prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 ⁇ m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and heated to 400 ° C., so that the carbon nonwoven fabric was subjected to a water repellent treatment. Subsequently, the carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry was applied to one surface thereof.
  • a polymer electrolyte membrane made of perfluorocarbon sulfonic acid having a thickness of 50 was bonded to the surface of the carbon nonwoven fabric applied to the catalyst layer, and then dried.
  • the hydrogen electrode was superimposed on the joined body of the air electrode and the polymer electrolyte membrane obtained in each of the above steps, with the polymer electrolyte membrane in the middle, and both sides were firmly sandwiched between 3 mm thick teflon plates. And fixed with bolts.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • a carbonaceous material was obtained in the same manner as in Example 47 except that iron powder was used as the catalyst, and this was used as a sample in Example 48.
  • a carbonaceous material was obtained in the same manner as in Example 47 except that cobalt powder was used as the catalyst, and this was used as a sample in Example 49.
  • Example 5 1 A carbonaceous material was obtained in the same manner as in Example 47 except that a cobalt oxide powder was used as a catalyst, and this was used as a sample of Example 50.
  • Example 5 1 A carbonaceous material was obtained in the same manner as in Example 47 except that a cobalt oxide powder was used as a catalyst, and this was used as a sample of Example 50.
  • Example 5 1 A carbonaceous material was obtained in the same manner as in Example 47 except that a cobalt oxide powder was used as a catalyst, and this was used as a sample of Example 50.
  • a carbonaceous material was obtained in the same manner as in Example 47 except that the heating temperature was set to 110 ° C., and this was used as a sample of Example 51.
  • a carbonaceous material was obtained in the same manner as in Example 47 except that the heating temperature was set to 130 ° C., and this was used as a sample of Example 52.
  • a carbonaceous material was obtained in the same manner as in Example 47 except that the heating temperature was set at 850 ° C, and this was used as a sample of Example 53.
  • Example 5 4 A carbonaceous material was obtained in the same manner as in Example 47, except that only nitrogen gas (toluene gas was not added) was used as the carrier gas, and this was used as the sample of Example 54.
  • the sample of each example was set in a sample chamber in the evaluation apparatus, and the pressure was first reduced while heating to 150 ° C. to remove moisture and gas from the sample. This sample was returned to room temperature as it was, and 100 atm of hydrogen was introduced thereinto, and left at a constant pressure for 12 hours. After that, the hydrogen gas was taken out until the inside of the sample chamber reached 1 atm, the total amount of hydrogen gas taken out (volume under 1 atm) was measured, and the difference from the blank value when there was no sample was taken to occlude. The amount was determined. The results are shown in the table below.
  • Example 4 The same complex impedance measurement as described in detail in Example 4 was performed on each of the carbonaceous materials of Examples 47 to 54. Although there is a slight difference depending on the conditions, a semi-circular complex impedance similar to that in Fig. 3 was obtained. It was also observed that the DC resistance component was reduced to about one digit before the occlusion due to the occlusion of hydrogen.
  • a paste was prepared by adding 3% of carboxymethylcellulose to 10 g of spherical nickel hydroxide having an average particle diameter of 30 zm and 1 g of cobalt hydroxide, and kneading with water.
  • the paste was filled in a foamed nickel porous body having a porosity of 95%, dried, pressurized, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm.
  • Example 47 5% of carboxymethylcellulose and water were added to the carbonaceous material produced in Example 47 to prepare a kneaded paste, and the paste was filled in a foamed nickel porous material having a porosity of 95%. After drying and pressing, punching was performed to produce a negative electrode having a diameter of 20 mm and a thickness of 0.5 mm.
  • an alkaline storage battery (secondary battery) as schematically shown in FIG. 38 was produced using the positive electrode and the negative electrode produced in the above steps and using a 7 N aqueous solution of potassium hydroxide as an electrolytic solution.
  • the alkaline storage battery was subjected to a charge / discharge test at 0.1 C, an upper limit of 1.4 V, and a lower limit of 0.8 V.
  • the cycle characteristics are shown in FIG. As is clear from this, although the cycle life was not sufficient due to the battery structure, basic charge / discharge performance could be confirmed.
  • an air battery was manufactured as follows.
  • Example 47 The same carbonaceous material as in Example 47 and an alcohol solution of a perfluorosulfonic acid polymer electrolyte were dispersed in n-butyl acetate to prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and then heated to 400 ° C., thereby performing a water repellent treatment on the carbon nonwoven fabric. Subsequently, the carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry was applied to one surface thereof.
  • a 50 ⁇ m-thick polymer electrolyte membrane made of perfluorosulfonic acid was bonded to the surface of the nonwoven fabric coated on the catalyst layer, and then dried.
  • a paste is prepared by adding 5% of carboxymethylcellulose and water to the same carbonaceous material used for producing the air electrode, and the paste is converted into a foamed nickel porous body having a porosity of 95%. After filling and drying, pressurize and cut into 4 cm x 4 cm to produce a 0.5 mm thick hydrogen electrode.
  • 5% of carboxymethylcellulose and water is converted into a foamed nickel porous body having a porosity of 95%. After filling and drying, pressurize and cut into 4 cm x 4 cm to produce a 0.5 mm thick hydrogen electrode.
  • the hydrogen electrode was superimposed on the joined body of the air electrode and the polymer electrolyte membrane obtained in each of the above steps, with the polymer electrolyte membrane in the middle, and both sides were firmly sandwiched between 3 mm thick teflon plates. And fixed with bolts.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • FIG. 40 shows a schematic structure of the air battery thus assembled. Discharge Characteristics of Air Battery>
  • the carbonaceous material composed of 85% by weight of C60 fullerene and 15% by weight of C70 fullerene used in Example 57 was directly used as the carbonaceous material of Comparative Example 13.
  • an electrode As an electrode for arc discharge, an electrode was prepared with carbon at the tip and platinum at the bottom. At this time, the weight ratio of the carbon part at the tip and the platinum part under it was 9: 1. Helium gas 0 with the electrode. 1 atm (about 1. 0 X 1 0 4 P a), subjected to arc discharge with a constant current discharge 2 0 0 A, electrode area 0. Of 8 cm 2 condition, the carbon moiety Subsequently, the discharge was terminated when the platinum portion was completely evaporated by the discharge. This discharge first forms a carbonaceous material inside the chamber, but analysis has shown that these contain fullerenes and carbon nanotubes. Furthermore, the platinum that evaporated thereafter was deposited as fine particles on the surface of these carbonaceous materials, and it was clarified by TEM observation that the particle diameter was about 10 nm. This is used as the carbonaceous material of Example 58.
  • Example 57 From the results in Table 4, it can be seen that there is a remarkable difference in the amount of hydrogen absorbed between Example 57, in which platinum particles were supported by the chemical loading method, and Comparative Example 13, in which the same fullerene material was not used. You can see that there is. Also, when platinum particles are supported by the arc discharge method, it is clear that good hydrogen storage ability is exhibited at room temperature as shown in Example 58.
  • Example 57 and Example 58 also As a result of performing a complex impedance measurement similar to that described in detail in Example 4, a semi-circular complex impedance similar to that of FIG. 3 was obtained. It was also observed that the DC resistance component was reduced to about one digit before the occlusion due to the occlusion of hydrogen.
  • a carbonaceous material containing 85% by weight of C60 fullerene and 15% by weight of C70 fullerene mixed with platinum black powder at a weight ratio of 9: 1 was used as the carbonaceous material of Example 59.
  • a carbon material containing 85% by weight of C60 fullerene and 15% by weight of C70 fullerene was sputtered with platinum to form a platinum film having a thickness of about 20 nm.
  • the pulverized product was used as a sample of Example 60, and the hydrogen storage capacity was measured in the same manner as described above. The measured value was 10 Oml.
  • Example 61 an alkaline storage battery was manufactured as follows. ⁇ Preparation of positive electrode>
  • a paste was prepared by adding 3% of carboxymethylcellulose to 10 g of spherical nickel hydroxide having an average particle diameter of 30 / m and 1 g of cobalt hydroxide, and kneading with water.
  • This base was filled in a foamed nickel porous body having a porosity of 95%, dried, pressurized, and punched out to produce a positive electrode having a diameter of 20 mm and a thickness of 0.7 mm.
  • Example 57 (or 58) 5% of carboxymethylcellulose and water are added to the material (supporting platinum), and a kneaded paste is prepared.
  • the paste is filled into a foamed nickel porous material having a porosity of 95%, dried, and dried. Pressing was followed by punching out to produce a negative electrode having a diameter of 20 mm and a thickness of 0.5 mm.
  • an alkaline storage battery (secondary battery) as schematically shown in FIG. 38 was produced using the positive electrode and the negative electrode produced in the above steps and using a 7 N aqueous solution of potassium hydroxide as an electrolytic solution.
  • Example 62 an air battery was manufactured as follows.
  • Example 57 a carbonaceous material carrying platinum fine particles was prepared.
  • This carbonaceous material and an alcohol solution of a perfluorocarbon sulfonic acid isotope polymer electrolyte were dispersed in n-butyl acetate to prepare a catalyst layer slurry.
  • a carbon nonwoven fabric having a thickness of 250 ⁇ m was immersed in an emulsion liquid of a fluorine-based water repellent, dried, and heated to 400 ° C., so that the carbon nonwoven fabric was subjected to a water repellent treatment. Subsequently, the carbon nonwoven fabric was cut into 4 cm ⁇ 4 cm, and the catalyst layer slurry was applied to one surface thereof. ⁇ Joint between air electrode and polymer electrolyte membrane>
  • a polymer electrolyte membrane made of perfluorocarbon sulfonic acid and having a thickness of 50 jm was bonded to the surface of the carbon nonwoven fabric applied to the catalyst layer, and then dried.
  • a paste was prepared by adding 5% of carboxymethylcellulose and water to the same carbonaceous material (supporting platinum) as used in the preparation of the air electrode, and foaming the paste with a porosity of 95%. After filling in a porous nickel body, drying, pressing, and cutting into 4 cm x 4 cm, a hydrogen electrode having a thickness of 0.5 mm was produced.
  • the hydrogen electrode is superposed on the joined body of the air electrode and the polymer electrolyte membrane obtained in each of the above steps, with the polymer electrolyte membrane in the middle, and both sides thereof are firmly sandwiched between 3 mm thick Teflon plates, and And fixed.
  • the Teflon plate arranged on the air electrode side is provided with a large number of holes with a diameter of 1.5 mm in advance so that air can be smoothly supplied to the electrodes.
  • FIG. 40 shows a schematic structure of the air battery thus assembled. ⁇ Discharge characteristics of air battery>
  • the proton conductor portion 80 is sandwiched between these two electrodes.
  • hydrogen is supplied from the inlet 81 and discharged from the outlet 82 (this may not be provided).
  • Proton is generated while the fuel (H2) 83 passes through the flow path 84, and the proton moves together with the proton generated in the proton conductor 80 toward the positive electrode 79, where it flows from the inlet 85. It is supplied to the passage 86 and reacts with oxygen (air) 88 going to the exhaust port 87, whereby a desired electromotive force is extracted.
  • Example 1 the hydrogen storage carbonaceous material of Example 1 was stored in the hydrogen supply source 89.
  • a polyhedral fullerene hydroxide (common name: fullerenol), which is a proton conductor disclosed in PCT / JP00Z04864, was used.
  • the results are shown in FIG. 77.
  • the open circuit voltage was approximately 1.2 V, and the output characteristics were very good.
  • Example 1 the carbonaceous material for hydrogen storage of Example 1 was used was shown, but it was confirmed that the carbonaceous material for hydrogen storage of other examples could also be used as a hydrogen supply source for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Inert Electrodes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

明細書 水素吸蔵用炭素質材料及びその製造方法、 並びに電池、 燃料電池 技術分野 本発明は、 水素吸蔵用炭素質材料及びその製造方法、 並びに電池 に関するものである。 景技術 産業革命以後、 久しい間にわたって石炭や石油 (主な燃料製品と してはガソリン、 軽油、 灯油、 重油などがある。 ) などのいわゆる 化石燃料が、 たとえば火力発電や暖房用の燃料として、 かたや自動 車、 船舶、 航空機等の動力源として用いられてきた。 この化石燃料 のおかげで、 人類は生活水準を飛躍的に向上させ、 産業の発展を享 受してきたと言ってよい。
しかしその反面において、 近年、 地球は化石燃料の燃焼時に発生 する二酸化硫黄等の大気汚染物質や炭酸ガスにより深刻な環境破壊 の脅威にさらされ、 更にその化石燃料自身も、 長期的な安定供給に 疑問符が投げかけられている (資源枯渴の問題) 。
一方、 こうした化石燃料に代り得る代替クリーンエネルギー源が 昨今、 注目されている。 水素 (ガス) 燃料がそれである。 この水素 燃料が 「クリーン」 と呼ばれるのは、 燃焼時に水が生成されるのみ で、 大気汚染物質等は発生しないからである。 そして水素は、 単位質量あたりに含まれる化学エネルギー量が大 きく、 また使用に際して有害物質や地球温暖化ガスなどを放出しな いなどの理由から、 クリーンでかつ無尽蔵な理想的なエネルギー源 であるという認識が近年急速に広まりつつある。 そして、 特に最近 では、 水素エネルギーから電気工ネルギ一を取り出すことができる 燃料電池の開発が盛んに行われており、 大規模発電からオンサイ ト な自家発電、 更には電気自動車用の電源などとしての応用などが期 待されている。
しかしながら、 水素は、 常温常圧において気体状態をとるので、 液体や固体の場合と比べて取り扱いが比較的難しい。 またその密度 は液体や固体に比べて非常に希薄であるため、 体積あたりの化学ェ ネルギ一の密度は小さく、 保存や運搬時に問題となる。 更に、 漏洩 が起こりやすく、 また爆発の危険性さえ伴うと言う問題があるため、 水素ェネルギ一の有効利用をはかる上で大きな障害となっている。 そこで、 この水素ガスをどうしたら、 安全に多量にしかも運搬し 易い形に貯蔵できるかが問題であり、 その実用的な貯蔵技術の確立 をめぐって、 関連メーカは研究開発にしのぎを削っているのが現状 である。
すなわち、 気体状態の水素を如何にして効率的にしかも安全に小 体積中に蓄積するかが、 水素エネルギーを利用したシステムを真に 実用化するための最重要課題であり、 この水素ガスの実用的な蓄積 技術の確立こそ、 今日、 当分野の技術者や研究者に負わされた重い 使命に外ならない。
これまで開発された水素ガスの蓄積方法を挙げると、 大別して次 の三つに分類することができる。 すなわち、 ( i ) 高圧ガスとして 蓄える方法、 (ii) 水素ガスを液化して蓄える方法、 及び (iii) 水 素ガスを合金材料等に吸蔵させる方法である。
しかしながら、 いずれの方法もそれぞれ問題点が内在しているこ とが分かっている。
まず、 ( i ) の方法については、 これはよく言われていることだ が、 水素ガスの蓄積にボンベのような非常に強固な金属製耐圧容器 を必要とし、 何と言っても、 この容器自身、 重量が非常に嵩む。 そ して、 高圧であるが故に安全面での懸念も無視できないし、 更にそ の高圧ガスの密度にしても、 おおよそ 1 2 mg/m 1程度 ( 1 5 M P a時) と蓄積密度が非常に小さい。
また、 (ii) の方法は、 水素ガスをいつたん液化して蓄えるもの で、 液化水素の蓄積密度は約 7 Omgであるから、 前記 ( i ) の方 法と比べれば、 かなり大きな蓄積密度である。 しかしながら、 水素 ガスの液化には、 それを約— 2 50 °C以下に冷却する付加装置の配 設が必要となり、 システムが複雑化し、 液化のためエネルギー消費 を伴う点が、 問題である。
次に、 (iii) の方法は、 水素吸蔵材料を用いるもので、 中でも水 素吸蔵合金は最も有効な材料として知られている。 水素吸蔵合金は、 たとえば、 ランタンニッケル系、 バナジウム系、 マグネシウム系な どがあり、 実用的な蓄積 (吸蔵) 密度は、 他物質中への吸蔵である にもかかわらず液体水素の密度以上である。 しかも、 水素の吸蔵お よび放出が室温レベルで可能であり、 また水素分圧との平衡で吸蔵 状態がコントロールされるため、 高圧ガスや液体水素より取り扱い が容易である。
ところが、 水素吸蔵合金は、 その構成材料が金属合金であるため 重く、 重量あたりの吸蔵量は決して十分な量ではない。 また、 水素 ガスの吸蔵 ·放出の繰り返しにより徐々に構造が破壊され性能が劣 ィ匕してしまうという難点もあり、 更に、 合金組成によっては資源的 •環境的な問題もある。
一方、 比較的新しい水素吸蔵材料として、 最近、 フラーレンなど の炭素質材料が注目を集めている。 なぜ、 最近になってこの炭素質 材料の研究が盛んに行われているかというと、 この種の材料の特性 から前述した ( i ) 〜 (i i i ) 項に挙げた諸問題のかなりの部分が解 決できるのではないか、 と期待されているからである。
しかしながら、 その実現化となると、 現実はそう甘いものではな い。
たとえば、 特閧平 5— 2 7 0 8 0 1号公報には、 フラーレン類に 水素を付加する反応を以つて水素の吸蔵を行わせる方法が開示され ている。 しかし、 この方法では、 炭素原子と水素原子との間には共 有結合的な化学結合が形成されてしまうので、 この場合は 「吸蔵さ れた」 というより、 むしろ 「水素付加」 と呼ぶべきである。 つまり、 化学結合による水素の添加量の上限は、 基本的に炭素の不飽和結合 数に限定され、 それ以上の吸蔵は不可能であるから、 この方法で水 素の吸蔵量を増やしたくても限度がある。 そして、 水素を吸蔵した フラーレン類から水素を再び放出させるためには、 かなり高い温度 に加熱する必要があり、 従ってそれだけ余分なエネルギーを消費す ることになり、 水素の蓄積方法として必ずしも適当でない。
また、 特開平 1 0— 7 2 2 0 1号公報にも同様にフラーレン類等 を水素の吸蔵に用いる方法が記載されている。 これは、 真空蒸着や スパッ夕等の手法を用いてフラーレン等の表面を白金等の触媒金属 で被覆し、 この触媒作用により水素の吸蔵を行わせるものである。 フラーレン類も含め大部分の炭素質材料には、 それ自身、 水素分 子を解離させ吸蔵初期反応を誘起する能力は殆どないと考えられる ため、 それを白金等の触媒作用により可能にしたのである。
しかし、 その反面、 この方法は白金等の使用量を増やさないと水 素吸蔵能を十分にできず、 また使用量を増やすことによってコス ト や資源確保の面で問題が生じ、 とても実用的とは言えない。
上記の説明から明らかなように、 これまで公知の水素蓄積方法は どれも実用性を欠いた技術であると言わざるを得ない。 特に、 自動 車、 船舶、 一般家庭用電源、 それに各種小型電気機器と、 これらに 組み合わせて吸蔵水素を利用したい場合、 あるいは大量に水素を運 搬しなくてはならない場合などにおいて、 従来技術では重量や資源 的な問題のために、 適用が困難である。
通常、 水素ガスは前記のように高圧貯蔵、 液化貯蔵、 水素吸蔵合 金による貯蔵の三通りの方法で貯蔵されるが、 高圧又は液化貯蔵の 場合は、 容器等の重量が重く、 取扱いや運搬に不便であり、 また吸 蔵合金による貯蔵の場合は、 重量の問題に加えて価格が高くつく難 点があるため、 今日もなお商業化されるに至っていない。
以上、 結論としてまとめるに、 水素をもっと効率的に且つ大量に 蓄積できること、 軽量で運搬が容易であること、 室温レベルで反復 使用ができ、 しかも変質し難いこと、 取扱上、 安全であり、 資源や 環境的な問題も起こさないことなど、 これらの諸条件を円満に満足 させる新しい素材の出現こそ、 これから未来にかけて人類社会が必 要とし、 且つ望んで止まないものなのである。 発明の開示
本発明は上記事情を改善するためになされたもので、 その目的は- 取扱上安全であり、 安価で軽量で運搬し易く、 水素吸蔵能の良好な 水素吸蔵用炭素質材料及びその製造方法、 並びに電池、 燃料電池を 提供することにある。
本発明は、 第 1に、 水素をプロ トンの状態で貯蔵する水素吸蔵用 炭素質材料に係るものである。 本発明の水素吸蔵用炭素質材料によれば、 陽子と電子とからなる 水素は、 強い電子受容体である水素吸蔵用炭素質材料に電子を供与 することでプロ トン (陽子) の形態を取る。 そのため占有体積が大 幅に小さくなり、 従来の水素原子の化学吸着等による貯蔵に比して 多量の水素を水素吸蔵用炭素質材料中に貯蔵することが可能となる ( すなわち、 水素吸蔵用炭素質材料は、 水素分子若しくは水素原子か ら電荷分離したプロ トン (H + ) を、 その形態で維持することによ り、 水素を最終的にはプロ トンの状態で高密度かつ多量に貯蔵でき る
かかるメカニズムは、 本発明者の鋭意検討の結果、 初めて見出さ れた新規な知見であり、 炭素質材料による水素吸蔵能が水素原子に よるものでなく、 実はプロ トンの役割によることを解明した点にお いて、 きわめて重要である。
このような効果は、 力一ボンナノチューブ等に由来するものであ るが、 上記水素吸蔵用炭素質材料に遷移金属が含まれていると、 そ れが更に顕著になり、 また水素吸蔵用炭素質材料の表面に白金等が 担持されていると、 なお更顕著になることが見出された。 本発明の水素吸蔵用炭素質材料は、 吸蔵した水素を高くない温度 の下で放出することができる。 そして高圧水素や液体水素とは異な つて、 水素ガスを小体積の水素吸蔵用炭素質材料内に閉じ込めるも のであるから、 仮に系が開放されても吸蔵された水素が一挙に放出 されるようなことはなく、 取扱上の安全性に優れている。
それに、 この水素吸蔵用炭素質材料の大部分は炭素から構成され るので、 重量が軽く、 取扱いや運搬に便利であり、 その上、 製造コ ス トが安く、 資源的な面でも環境保全の点でも問題を生じない。
他方、 本発明者は既述した如く炭素質材料の水素吸蔵のメカニズ ムが、 本質的にプロ トンの挙動に基づくことを知見できたが、 炭素 材料に限らず、 水素分子又は水素原子と電荷のやり取りを行なう材 料なら、 水素吸蔵能を測る指標として、 複素インピーダンス又は直 流抵抗の測定が正確かつ簡易な手法であり、 この指標を用いて本発 明の水素吸蔵用材料が備えるべき必須要件を見出すことができた。 すなわち、 本発明の水素吸蔵用材料は、 水素吸蔵状態における直 流抵抗が、 水素未吸蔵状態における直流抵抗に比して 5 0 %以上低 抵抗化されるか、 又は水素吸蔵状態における複素抵抗成分中の実数 部分が、 水素未吸蔵状態の複素抵抗成分中の実数部分に比して、 5 . 0 %以上低抵抗化されることを特徴とする。
上記直流抵抗及び上記複素抵抗成分中の実数部分がいずれも 5 0 %を下回る低抵抗化率になると、 水素吸蔵能が箸しく低下し、 実用 性に欠けてくる。
ただし、 前記低抵抗化率の規定された水素吸蔵用材料、 とりわけ 水素吸蔵用炭素質材料は既述した電池 (アルカリ蓄電池、 空気電池 等) や燃料電池に好ましく適用できる。 本発明は、 第 2に、 水素吸蔵可能な材料に、 プラスの電圧を印加 し、 水素を含むガス雰囲気下で、 処理することを特徴とする水素吸 蔵材料の製造方法に係るものである。
フラーレン、 カーボンナノファイバー、 力一ボンナノチューブ、 炭素スス、 ナノカプセル、 バッキーオニオンおよび力一ボンフアイ バーよりなる群から選ばれる炭素質材料は、 表面積が大きく、 構造 的に曲率を有しており、 電子の 7Γ軌道とび軌道の直交性が消失する ことに基づいて、 H O M Oレベルおよび L U M Oレベルの双方が、 cr— 7Γ直交系の材料に比して、 低下するという性質を有し、 強い電 子受容体として機能することが知られている。 本発明者の研究によ れば、 これらの材料は、 とくに高い水素吸蔵能を有しており、 その 理由は、 これらの材料が強い電子受容体であるため、 水素を供与し た際、 プロ トンの形で、 水素を吸蔵し、 その結果、 水素分子を吸蔵 する場合に比し、 単位体積あたりに、 より多くの水素を吸蔵するこ とができるためであると推測される。 また、 本発明者の研究によれ ば、 これらの材料がとくに高い水素吸蔵能を有しているのは、 その 特殊な構造自体に起因するものではなく、 水素吸蔵能は、 これらの 材料の特殊な構造に起因する仕事関数の値、 換言すれば、 バレンス • ェッジの位置に依存するものであることが判明している。 したが つて、 外部電場を印加することによって、 電子準位を全体的にシフ 卜させ、 H O M Oレベルおよび L U M Oレベルの双方を、 真空準位 に対して、 相対的にシフ トさせることによって、 水素吸蔵可能な材 料の電子受容性、 したがって、 水素吸蔵能を制御することが可能に なる。 本発明はかかる知見に基づくものである。
本発明によれば、 水素吸蔵可能な材料にプラスの電圧を印加し、 電子準位を全体的にシフ 卜させて、 水素吸蔵能を向上させた状態で、 水素吸蔵可能な材料を水素ガスを含むガス雰囲気下で、 処理してい るので、 大量の水素を吸蔵させることが可能である。
本発明において、 吸蔵させる水素とは、 水素分子、 水素原子のみ ならず、 水素の原子核であるプロ トンを含んでいる。
本発明の前記 Θ的はまた、 水素吸蔵材料に、 ある所定の基準電位 に対する第一のプラスの電圧を印加することによって、 水素の放出 を停止させ、 前記第一のプラスの電圧よりも低い第二のプラスの電 圧を印加することによって、 水素を放出させることを特徴とする水 素吸蔵材料の水素放出制御方法によって達成される。
本発明によれば、 水素吸蔵材料に、 ある所定の基準電位に対する 第一のプラスの電圧を印加することによって、 水素吸蔵材料の水素 吸蔵能を高めることができるから、 水素吸蔵材料からの水素放出を 停止させることができ、 他方、 第一のプラスの電圧よりも低い第二 のプラスの電圧を印加することによって、 水素吸蔵材料の水素吸蔵 能が低下するから、 水素吸蔵材料から水素を放出させることができ、 単に、 水素吸蔵材料に印加する電圧を制御することによって、 水素 吸蔵材料からの水素の放出を制御することが可能になる。
本発明の前記目的はまた、 水素吸蔵材料を収容可能なチャンバと、 水素吸蔵材料にプラスの電圧を印加可能な電圧源と、 前記電圧源を 制御可能なコントロ一ラとを備えた水素吸蔵放出システムによって 達成される。
本発明によれば、 水素吸蔵放出システムは、 水素吸蔵材料を収容 可能なチャンバと、 水素吸蔵材料にプラスの電圧を印加可能な電圧 源と、 電圧源を制御可能なコン トローラとを備えているから、 コン トローラにより、 電圧源を制御して、 チャンバ内に収容した水素吸 蔵材料にプラスの電圧を印加させ、 水素吸蔵材料の水素吸蔵能を高 めて、 水素吸蔵材料からの水素放出を停止させ、 他方、 コン ト口一 ラにより、 電圧源を制御して、 水素吸蔵材料により低いプラスの電 圧を印加することによって、 水素吸蔵材料の水素吸蔵能を低下させ て、 水素吸蔵材料から水素を放出させることができ、 単に、 コン ト ローラによって、 電圧源を制御して、 水素吸蔵材料に印加される電 圧を制御することによって、 水素吸蔵材料からの水素の放出を制御 することが可能になる。
本発明は、 第 3に、 特定の炭素質材料を用いた水素吸蔵用炭素質 材料に係るものである。
即ち本発明の水素吸蔵用炭素質材料は、 先ず、 炭素系電極を用い るアーク放電法により生成される水素吸蔵用炭素質材料を主成分と する、 ことを特徴とする。
また、 水素吸蔵用炭素質材料の製造方法は、 反応室 (真空チャン バ) 内に対向配置される電極のうち、 少なく とも一方の電極として 炭素系電極を用い、 前記反応室内でアーク放電を行なうことにより、 水素吸蔵能のある炭素質材料を生成する、 ことを特徴とする。
水素吸蔵用炭素質材料の主な構成成分である水素吸蔵用炭素質材 料は、 炭素系電極を用いるアーク放電法により生成されるものであ る。 即ち、 本発明者の研究によれば、 反応室内に対向配置される電 極のうち、 少なく とも一方の電極に炭素系電極を用い、 これらの電 極に通電してアーク放電を行なうと、 反応室の内面や陰極上に少な く ともカーボンナノチューブを含む C 60、 C 70等のフラーレンが生 成され、 この水素吸蔵用炭素質材料が良好な水素吸蔵を発揮するこ とが初めて明らかとなった。
このような特異な効果は、 後述するように主として前記力一ボン ナノチューブに由来するものであるが、 上記水素吸蔵用炭素質材料 に遷移金属が含まれているとそれが更に顕著になり、 また前記水素 吸蔵用炭素質材料の表面に白金等が担持されていると、 なお更顕著 になることが兒出された。
水素吸蔵用炭素質材料は、 吸蔵した水素を高くない温度の下で放 出することができる。 そして高圧水素や液体水素とは異なって、 水 素ガスを小体積の水素吸蔵用炭素質材料に閉じ込めるものであるか ら、 仮に系が開放されても吸蔵水素が一挙に放出されるようなこと はなく、 取扱上の安全性に優れている。
それに、 この水素吸蔵用炭素質材料の大部分は炭素から構成され るので、 重量が軽く、 取扱や運搬に便利であり、 その上、 製造コス 卜が安く、 資源的にも環境保全の点でも問題を生じない。
又、 本発明の水素吸蔵用炭素質材料は、 フラーレン分子の単体又 はその混合物の重合体からなる焼成体を主成分とする、 ことを特徴 とする。
かかる水素吸蔵用炭素質材料の製造方法は、 フラーレン分子の単 体又はその混合物を、 非酸化性のガス中で焼成して重合体化する、 ことを特徴とする。
本発明者は、 長年、 フラーレンの研究開発にたずさわる一方で、 この物質の水素吸蔵能材料としての可能性についても鋭意検討を重 ねてきた。 その結果、 水素吸蔵能を発揮させるためには、 曲率をも つ 電子系の特性を生かすため、 フラーレン重合体 (焼成体) の前 駆体としてフラーレンを用いること、 しかもそれをより安定な構造 体に改質すること、 この 2点の角度から研究を進め、 本発明に到達 することができた。
本発明者の検討によると、 フラーレンの単体であれ、 フラーレン 同士の混合物であれ、 フラーレン分子を非酸化性雰囲気の下で適当 な温度で焼成すると、 少なく とも前述した安定な 2量体を含む重合 体で構成されている焼成体が得られ、 この安定な重合体を主成分と して含む焼成体が、 実は水素吸蔵能を発揮させる上で基本的な母材 になり得ることが判明した。
更なる研究の結果、 前記焼成時に、 原料となるフラーレンに炭素 のオーダリング (安定な構造にすること) を促進する金属又はその 化合物を添加しておき、 この混合物を焼成することが好ましい。 そ して、 これら添加物を含む焼成体又はそれを含まない焼成体でも、 それらの表面に対し、 特に水素分子を水素原子へ、 又は更にプロ ト ンと電子へ分離する触媒能を有する金属触媒粒子 (層でもよい) を 担持させれば、 室温下でも優れた水素吸蔵能が発現することが明ら かになつた。
フラーレンに関して言えば、 フラーレン分子の単体又はその混合 物の電解重合体や、 フラーレン分子の単体又はその混合物を振動さ せることによって得られた重合体も、 水素吸蔵用炭素質材料として 使用可能である。
水素吸蔵能を発揮させるためには、 少なくとも環状付加構造 (重 合体) を含むフラーレン重合体が必要である。 それを製造する手法 としてフラーレン分子の電解重合法が、 さらには機械的震とう法及 び超音波法が有効であり、 同時にかかる重合体は単に水素吸蔵機能 に優れるだけでなく、 前記発明の目的に適う実用性をも兼ね備えて いることが判明した。
本発明者の検討によると、 プラズマ重合法など従来法では選択的 に得るのが難しい前記環状付加重合体、 とくに 1 , 2—付加結合 (フラーレン分子同士がそのシクロへキサト リエニル部位に付加し た) により互いに結合した ®合体こそが、 水素吸蔵能を究揮させる のに不可欠であり、 それ自身、 良好な水素吸蔵材料になり得るばか りか、 それを母材としてその中に金属イオンやそのクラス夕一等を 混在させた場合は電荷分離の効果が出、 更にその表面に白金等の触 媒粒子を担持させると、 吸蔵能を高めることも可能である。
そして、 上記吸蔵能は C 60フラーレン分子の環状付加重合体に限 らず C 70フラーレンなど高次フラーレン分子の環状付加重合体にも 発現し、 またフラーレンの 2量体に留まらず 3量体を始め可成り重 合度の大きな環状付加重合体にも共通するのである。
本発明の水素吸蔵材料はこのような吸蔵能を有する環状付加重合 体を主成分とするもので、 この重合体を製造するには本発明者が提 唱するフラーレンの電解重合法が好適であり、 さらには機械的震と う法又は超音波法による振動法も有効である。 なお、 上記に言う電 解重合法とは、 非水溶媒にフラーレン分子と電解促進用支持電解質 とを溶解して電解液を調製し、 電極に直流のポテンシャルをかけて フラーレン重合体を得る方法のことである。
水素吸蔵用炭素質材料としては、 炭素を主成分とする炭素質材料 を母体とし、 これを構成する炭素原子に、 プロ トンと水素結合し得 る基が導入されてなる炭素質材料誘導体も好適である。 、
これらの水素吸蔵用炭素質材料の製造方法は、 母体となる炭素質 材料を炭素原料とし、 この炭素原料を、 プロ トンと水素結合し得る 基を含むガス雰囲気中で焼成するか、 或いは前記基を含む液体中に 投入して処理することにより、 前記炭素原料を構成する炭素原子に 前記基を導入することを特徴とする。
これら水素吸蔵用炭素質材料のいわば母材となるべき炭素原料の うち、 フラーレン分子、 カーボンナノチューブ、 それにフラーレン 分子の部分的構造を持つ炭素クラス夕一 (フラーレン煤ともいう) は、 実用的には炭素系電極を用いるアーク放電法により製造される ものである。
本発明者の研究によると、 これらいずれかの炭素原料を構成する 炭素原子に、 水素結合を起こし易い置換基を導入してやると、 得ら れた誘導体は常温近傍において良好な水素吸蔵能を発揮し、 また吸 蔵した水素も常温近傍で放出できることが見出された。
上記にいう置換基とは、 好ましくは酸素原子、 フッ素原子、 窒素 原子、 硫黄原子又は塩素原子などの原子、 又はこれらの少なくとも 1つを含む基のことをいう。
このような置換基を前記炭素原料の炭素原子に導入して誘導体を 生成する手法としては、 この炭素原料を、 プロ トンと水素結合し得 る基を含むガス雰囲気中で焼成する方法とか、 あるいは前記基を含 む液体中に投入して処理する方法が有効である。
本発明の水素吸蔵用炭素質材料はこうして得られた誘導体の 1種 以上を主成分とするものであり、 常温近傍において水素の吸蔵 ·放 出が可能であるばかりか、 大部分が炭素から構成されるので、 重量 が軽く、 取扱いや運搬に便利であり、 その上、 製造コス トが易く、 資源的にも環境的にも問題を生じない。 そして、 高圧水素や液体水 素と異なって、 水素ガスを小体積の炭素原料に閉じ込めるものであ るから、 仮に系が開放されても吸蔵水素が一挙に放出されるような ことはなく、 取扱上の安全性に優れている。
また、 本発明の水素吸蔵用炭素質材料は、 構造中に屈曲部を有す る炭素質材料からなる、 ことを特徴とする。
また、 かかる水素吸蔵用炭素質材料をつくるための本発明の製造 方法は、 前記遷移金属、 その酸化物及びその炭化物からなる群より 選ばれた触媒上で炭素含有物を熱分解することにより、 前記触媒の 表面に炭素質材料を生成する、 ことを特徴とする。
本発明者は長年にわたって理想的な水素吸蔵素材の開発を目標に 鋭意に研究努力を重ねてきた。 そして、 遷移金属の触媒上で炭素含 有化合物、 たとえばトルエンやアセ トン等を熱分解させると、 前記 触媒上にグラフアイ ト等の層が形成され、 この層は常温下で良好な 水素吸蔵能を発揮できるばかりか、 常温下で吸蔵水素を放出できる ことも知見された。
なぜ、 このような特異な効果が発現するのか、 その理由について は現時点で完全に解明されたわけではないが、 前記グラフアイ ト等 の層構造には部分的に特有の屈曲部が形成されており、 少なく とも この屈曲部の存在が、 常温下における水素の吸蔵及び放出を著しく 促進するものと思われる。
こうしたグラフアイ ト等の炭素質材料層を形成するには、 後述す るように触媒として遷移金属の他にその酸化物や炭化物も有効であ り、 これらの上で炭素含有化合物を熱分解させる方法が好ましい。 ただし、 前記の特異な発明の効果は、 グラフアイ 卜の層構造に限 らず、 前記屈曲部を有するグラフアイ ト類似層構造を持つ他の炭素 材料、 例えばカーボンファイバーにも共通するものと考えられる。 さらに、 本発明の水素吸蔵用炭素質材料は、 水素分子を水素原子 へ、 あるいは更にプロ トンと電子へと分離できる触媒能を有する金 属の微粒子を炭素質材料に担持させた、 ことを特徴とする。
かかる水素吸蔵用炭素質材料をつく るための本発明の製造方法は、 前記触媒能を有する金属の微粒子を炭素質材料の少なくとも表面に 接触させてその表面に担持させることを特徴とする。
上記水素吸蔵用炭素質材料は、 母材として炭素を主成分とする炭 素質材料を使用する。 そして、 少なく ともその表面に対し、 水素分 子を水素原子へ、 あるいは更にプロ トンを電子へと分離できる触媒 能を有する金属の微粒子、 たとえば白金系の微粒子を担持させたも のであり、 この構成の故に室温近傍において良好な水素吸蔵能を発 揮することができ、 又、 その吸蔵された水素も使用時に室温近傍に おいて放出できる。 しかも、 そうした水素ガスの吸蔵、 放出を繰り 返しても変質し難い。
このように本発明の水素吸蔵用炭素質材料は、 高圧水素や液体水 素とは異なって、 水素ガスを小体積の炭素質材料に閉じ込めるもの であるから、 仮に系が開放されても吸蔵水素が一挙に放出されるよ うなことはなく、 取扱上の安全性に優れている。 そして、 前記触媒 能を有する白金等の金属は、 前記炭素質材料の表面等に微粒子の形 で担持されるので、 その含有量を必要最低限度に抑えることができ る。
また、 本発明の水素吸蔵用炭素材料は、 その大部分が炭素から構 成されるので、 重量が軽く、 取扱や運搬に便利であり、 その上、 製 造コス トが安く、 資源的にも環境保全の点でも問題を生じない。 一方、 上述した各水素吸蔵用炭素質材料は、 そのユニークな特長 を生して、 ある種の電池の特定の構成部分に適用することができる。 すなわち、 本発明の電池の一は、 負極と、 正極と、 これらの間に 介在する電解質とを備えたアルカリ蓄電池又は空気電池において、 その負極及び/又は正極が前記水素吸蔵用炭素質材料を含む電池で ある。
これらの電池のうち、 電解質に水酸化力リゥム水溶液等のアル力 リ水溶液を用いたアル力リ蓄電池の場合は、 充電時には正極からァ ルカリ水溶液を介して負極へプロ トンが移動し、 そこに吸蔵され、 放電時には負極側からアル力リ水溶液を介して正極側へプロ トンが 移動できる。
また、 電解質にパーフルォロスルホン酸高分子電解質膜等を使用 した空気電池においては、 充電又は吸蔵処理により、 水素極にあら かじめ吸蔵されたプロ トンが、 放電時に高分子電解質膜を介して空 気極に供給される。
したがって、 これらの電池は安定して電力を取り出すことが可能 である。 後述する実施例に示すように基本的にそれぞれ電池として の放電特性を保持することができる。
また、 本発明の電池の二は、 前記水素吸蔵用炭素質材料を燃料電 池に適用したものである。 すなわち、 負極とプロ トン伝導体と正極 との積層構造において、 前記水素吸蔵用炭素質材料を含む水素吸蔵 部を配し、 ここから水素を前記負極に向かって放出、 供給する仕組 みとすると、 この放出された水素が負極における触媒作用によりプ 口 トンを生成し、 このプロ ドンが、 上記プロ トン伝導体にて生成さ れたプロ トンと共に上記正極に移動し、 酸素と化合して水を生成し つつ起電力を発生する。 したがって、 かかる燃料電池においては、 水素吸蔵部を設けない場合に比べ、 水素供給が効率良く行え、 また プロ トンの伝導率が高い特徴がある。
結果として、 次世代のクリーンエネルギー源である水素を貯蔵す るための軽量、 安価で安全、 そして水素を有効に貯蔵し、 発生させ、 かつ輸送他に優れた水素吸蔵用炭素質材料を提供することができる。 本発明の前記目的は、 例えば、 負極と、 正極と、 これらの間に介 在する電解質とを有し、 前記負極および/または前記正極が、 ある 所定の基準電位に対してプラスの電圧を印加した水素吸蔵可能な材 料を、 水素を含むガス雰囲気下で、 処理した水素吸蔵材料を含んだ ことを特徴とする電池によって達成される。
本発明によれば、 電解質に水酸化力リゥム水溶液などのアル力リ 水溶液を用いたアルカリ蓄電池の場合は、 充電時には、 正極からァ ルカリ水溶液を介して、 負極へプロ トンが移動して、 そこで吸蔵さ れ、 放電時には、 負極側からアルカリ水溶液を介して、 正極側ヘプ 口 トンを移動させることができ、 また、 電解質にパーフルォロスル ホン酸高分子電解質膜などを使用した空気電池においては、 充電ま たは吸蔵処理によって、 水素極にあらかじめ吸蔵されたプロ トンが、 放電時に、 高分子電解質膜を介して空気極に供給される。 したがつ て、 本発明によれば、 安定して電力を取り出すことのできる電池を 提供することが可能になる。
本発明の前記目的はまた、 負極と、 プロ トン伝導体と、 正極との 積層構造を有し、 さらに、 水素吸蔵材料を含み、 水素を放出して、 前記負極に供給するように構成された水素供給部を備えた燃料電池 であって、 前記水素供給部が、 前記水素吸蔵材料に、 ある所定の基 準電位に対してプラスの電圧を印加可能な電圧印加手段を備えた燃 料電池によって達成される。
本発明によれば、 負極と、 プロ トン伝導体と、 正極との積層構造 を有し、 さらに、 水素吸蔵材料を含み、 水素を放出して、 負極に供 給するように構成された水素供給部を備えているから、 水素供給部 から放出された水素が、 負極における触媒作用により、 プロ トンを 生成し、 生成されたプロ トンが、 プロ トン伝導体によって生成され たプロ トンとともに、 正極に移動し、 酸素と化合して、 水を生成し つつ、 起電力を発生する。 したがって、 本発明によれば、 水素供給 部を設けない場合に比べ、 効率良く、 水素を供給することができ、 かつ、 プロ トンの伝導率が高い燃料電池を提供することが可能とな る。
さらに、 本発明によれば、 燃料電池の水素供給部が、 水素吸蔵材 料に、 ある規準電位に対するプラスの電圧を印加可能な電圧印加手 段を備えているから、 電圧印加手段によって、 水素吸蔵材料に印加 される前記プラスの電圧を制御することによって、 水素供給部から 放出される水素の放出量を、 所望のように、 制御することができ、 燃料電池は発生する起電力を、 所望のように、 制御することが可能 になる。
本発明の前記目的はまた、 負極と、 プロ トン伝導体と、 正極との 積層構造を有し、 さらに、 水素吸蔵材料を含み、 水素を放出して、 前記負極に供給するように構成された水素供給部を備えた燃料電池 の前記水素吸蔵材料に印加される、 ある所定の規準電位に対するプ ラスの電圧を制御することを特徴とする燃料電池の水素放出制御方 法によって達成される。
本発明によれば、 水素吸蔵材料に印加されるプラスの電圧を制御 することによって、 水素吸蔵材料からの水素の放出量を制御して、 水素供給部から、 負極に供給される水素量を、 所望のように、 制御 することが可能になる。 図面の簡単な説明 図 1は、 炭素系電極を用いるアーク放電装置の構成図である。 図 2は、 アーク放電装置で製造される炭素質材料の構造を示す模 式図であり、 図 2 ( A ) は力一ボンナノチューブ、 図 2 ( B ) は C 60フラーレン分子、 図 2 ( C ) は曲率を有する炭素ススである。 図 3は、 白金を担持させた C 60の複素ィンピーダンス測定の特性 を示すグラフである。
図 4は、 シングルウォール力一ボンナノチューブの P E E ( Phot 0 Electoron Emission )測定法における特性 (水素吸蔵前) を示すグ ラフである。
図 5は、 シングルウォールカーボンナノチューブの P E E (Phot 0 Electoron Emission)測定法における特性 (水素吸蔵後) を示すグ ラフである。
図 6は、 マルチウォールカーボンナノチューブの P E E ( Photo Electoron Emission )測定法における特性 (水素吸蔵前) を示すグラ フである。
図 7は、 水素吸蔵放出システムの概略断面図である。
図 8は、 C 60フラーレン分子の構成図である。
図 9は、 C 70フラ一レン分子の構成図である。
図 1 0は、 C 60フラーレン分子の重合体 (重合度 2 ) の構造を示 す模式図であり、 図 1 0 (A) は 〔2 + 2〕 環状付加反応による 1 ,
2 - (C60) 2 の構造、 図 1 0 (B) は 〔2 + 2〕 環状付加反応に よる D2 h— S ym、 C116 の構造を示す。
図 1 1は、 C70フラーレン分子の重合体 (重合度 2 ) の構造を示 す模式図である。
図 1 2は、 C60フラーレン分子の配列状況を示す模式図である。 図 1 3は、 C60フラーレン分子の重合状態 (重合度 3 ) を示す模 式図である。
図 14は、 C60フラーレン分子が更に高温で処理されたときの重 合状況を示す模式図である。
図 1 5は、 1, 2— (C60) 2 の構造緩和過程に生じると考えら れる C120 (b) の分子構造である。
図 1 6は、 構造緩和過程に生じると考えられる C120 ( c) の分 子構造である。
図 1 7は、 構造緩和過程に生じると考えられる C120 (d) の分 子構造である。
図 1 8は、 フラーレン重合体の生成過程で生じるものと考えられ る C118 分子の構造を示す模式図である。
図 1 9は、 フラーレン重合体の生成過程で生じるものと考えられ る C116 分子の構造を示す模式図である。
図 20は、 C60フラーレン分子の重合体 (重合度 2 ) の構造を示 す模式図であり、 〔 2 + 2〕 環状付加反応による 1 , 2— (C60) 2 の構造を示す。
図 2 1は、 フラーレン分子の電解重合装置の一例を示す模式図で ある。 図 2 2は、 C 60フラーレン分子の重合体 ( 4量体) の模式的構造 図である。
図 2 3は、 フラーレン重合体の生成過程で生じるものと考えられ る C 70分子の 2量体構造 〔C 140 (a) 〕 を示す図である。
図 24は、 フラーレン重合体の生成過程で生じるものと考えられ る C70分子の他の 2 B体構造 〔C140 (b) 〕 を示す図である。 図 2 5は、 フラーレン重合体の生成過程で生じるものと考えられ る C70分子の他の 2量体構造 〔C140 ( c) 〕 を示す図である。 図 2 6は、 フラーレン重合体の生成過程で生じるものと考えられ る C70分子の他の 2量体構造 〔C140 (d) 〕 を示す図である。 図 2 7は、 フラーレン重合体の生成過程で生じるものと考えられ る C70分子の他の 2量体構造 〔C140 ( e ) 〕 を示す図である。 図 28は、 フラーレン重合体の生成過程で生じるものと考えられ る C70分子の他の 2量体構造 〔C140 (f ) 〕 を示す図である。 図 29は、 フラーレン重合体の生成過程で生じるものと考えられ る C 70分子の他の 2量体構造 〔C140 ( g) 〕 を示す図である。 図 30は、 フラーレン重合体の生成過程で生じるものと考えられ る C 70分子の他の 2量体構造 〔C140 (h) 〕 を示す図である。 図 3 1は、 フラーレン重合体の生成過程で生じるものと考えられ る C 70分子の他の 2量体構造 〔C 140 ( i ) : D2h対称) を示す図 である。
図 32は、 C 70フラーレン分子のナンパリングシステムを示す図 である。
図 33は、 母体となるカーボンクラス夕一の種々の例を示す模式 図である。 図 3 4、 力一ボンクラスターの他の例 (部分フラーレン構造) を 示す模式図である。
図 3 5は、 カーボンクラス夕一の他の例 (ダイヤモン ド構造) を 示す模式図である。
図 3 6は、 カーボンクラス夕一の更に他の例 (クラスター同士が 結合しているもの) を示す模式図である。
図 3 7は、 水素吸蔵用炭素質材料を用いた燃料電池の断面図であ る。
図 3 8は、 アルカリ畜電池の概略的構成図である。
図 3 9は、 アル力リ畜電池の充放電サイクル特性の一例を示すグ ラフである。
図 4 0は、 空気電池の概略図である。
図 4 1は、 空気電池の放電特性の一例を示すグラフである。 図 4 2は、 空気電池の放電特性の他の例を示すグラフである。 図 4 3は、 複素ィンピーダンス測定用機器の概略図である。
図 4 4 A及び図 4 4 Bは、 水素吸蔵用炭素質材料ペレツ 卜の電気 的な等価回路を比較して示す図である。
図 4 5は、 白金を担持させた C 60の複素ィンピ一ダンス測定の特 性を示すグラフである。
図 4 6は、 MW C N Tに水素を吸蔵させたときの抵抗成分の減少 の様子を示す特性図である。
図 4 7は、 C V D (Chemical Vapor Deposition)法に用いる装置 の概観図である。
図 4 8は、 レーザーアブレ一シヨン法に用いる装置の概観図であ る。 図 4 9は、 アル力リ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 5 0は、 空気電池の放電特性の他の例を示すグラフである。 図 5 1は、 空気電池の放電特性の他の例を示すグラフである。 図 5 2は、 試料に電圧を印加した際における水素ガス圧力変化を 示すグラフである。
図 5 3は、 アル力リ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 5 4は、 空気電池の放電特性の他の例を示すグラフである。 図 5 5は、 空気電池の放電特性の他の例を示すグラフである。 図 5 6は、 本発明の水素吸蔵用炭素質材料の製造に使用可能な焼 成装置の一例を示す概略的構成図である。
図 5 7は、 水素吸蔵用炭素質材料の一例の顕微鏡写真を図面化し たものである。
図 5 8は、 焼成温度と水素吸蔵量との関係を示すグラフである。 図 5 9は、 アルカリ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 6 0は、 空気電池の放電特性の他の例を示すグラフである。 図 6 1は、 空気電池の放電特性の他の例を示すグラフである。 図 6 2は、 水素吸蔵用炭素質材料の他の例の顕微鏡写真を図面化 したものである。
図 6 3は、 電解時のレ ドヅクスポテンシャルカーブを示すグラフ である。
図 6 4は、 水素吸蔵材料の水素ガス放出温度特性の一例を示す特 性図である。 図 6 5は、 水素吸蔵材料の水素ガス放出温度特性の他の例を示す 特性図である。
図 6 6は、 フッ化フラーレンの T 0 F— M Sスぺク トルである。 図 6 7は、 アルカリ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 6 8は、 空気電池の放電特性の他の例を示すグラフである。 図 6 9は、 空気電池の放電特性の他の例を示すグラフである。 図 7 0は、 アルカリ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 7 1は、 空気電池の放電特性の他の例を示すグラフである。 図 7 2は、 空気電池の放電特性の他の例を示すグラフである。 図 7 3は、 水素吸蔵用炭素質材料の他の例の顕微鏡写真である。 図 7 4は、 アル力リ畜電池の充放電サイクル特性の他の例を示す グラフである。
図 7 5は、 空気電池の放電特性の他の例を示すグラフである。 図 7 6は、 空気電池の放電特性の他の例を示すグラフである。 図 7 7は、 燃料電池のおける発電試験の結果を示す特性図である。 発明を実施するための最良の形態 以下、 本発明を適用した水素吸蔵用炭素質材料、 その製造方法、 さらにはそれを用いた電池 (燃料電池を含む。 ) について、 図面を 参照しながら説明する。
本発明は、 第 1に、 水素吸蔵用炭素質材料が水素をプロ トンの状 態で貯蔵するというのが大きな特徴である。 そこで、 先ず、 この水素をプロ トンの状態で貯蔵する水素吸蔵用 炭素質材料について説明する。
かかる水素吸蔵用炭素質材料は、 例えば、 炭素系電極を用いるァ ーク放電法により製造することができる。
図 1は、 炭素質材料を製造するためのアーク放電装置の一例を示 すもので、 これは真空チャンバとも呼ばれる反応室 1内にいずれも グラフアイ ト等の炭素棒からなる陰極 2 と陽極 3とが間隙 Gを介し て対向配置され、 陽極 3の後端は直線運動導入機構 4に連絡され、 各極はそれぞれ電流導入端子 5 a、 5 bに接続されている。
このような構成において、 反応室 1内を脱気したのち、 ヘリウム 等の希ガスで充満させ、 各電極に直流を通電すると、 陰極 2と陽極 3との間にアーク放電が生じ、 反応室 1の内面、 すなわち、 側壁面、 天井面、 底面及び陰極 2上にスス状の水素吸蔵用炭素質材料が堆積 する。 なお、 側壁面等に予め小容器を取付けておけば、 その中にも 水素吸蔵用炭素質材料が堆積する。
ただし、 上記は直流通電方式を採用した場合で、 それを交流通電 方式に切り換えたときは、 直流通電方式ほど多くの水素吸蔵用炭素 質材料が電極上に堆積することはないが、 反応室 1内には少量なが ら水素吸蔵用炭素質材料が生成する。
いずれにせよ、 反応室 1から回収されたスス状の水素吸蔵用炭素 質材料には、 図 2 ( A ) に示すような力一ボンナノチューブ、 図 2 ( B ) に示す C 60フラーレン、 及び図示はしないが C 70フラーレン、 それに図 2 ( C ) に示す炭素スス等が含有されている。 この炭素ス スは、 フラーレン分子や力一ボンナノチューブに成長し切れなかつ た曲率を有するススである。 なお、 このスス状の水素吸蔵用炭素質 材料の典型的な組成を挙げると、 C 60、 C 70等フラーレンが 1 0〜 2 0 %、 カーボンナノチューブが数%、 その外に多量の炭素スス等 が含まれる。
上記の如きアーク放電法により製造された前記水素吸蔵用炭素質 材料は、 メカニズムは定かではないがその中に含まれる力一ボンナ ノチューブに由来して、 良好な水素吸蔵能を発揮することができる。 このカーボンナノチューブも含め、 曲率を有する水素吸蔵用炭素 質材料は、 電子の 7Γ軌道とび軌道の直交性が消失し、 L U M O (最 低非占有軌道) レベルがび一 直交系の材料に比べ低下する。 この ことは、 上記水素吸蔵用炭素質材料が強い電子受容体になったこと を意味する。
即ち、 この水素吸蔵用炭素質材料に、 水素から電荷分離されたプ 口 トンが接触すると、 この炭素質材料の強い電子受容性のために、 プロ トンの状態が維持され、 最終的には水素がプロ トンの状態で水 素吸蔵用炭素質材料に高密度で多量に貯蔵される。
前記水素吸蔵用炭素質材料中には力一ボンナノチューブ以外にフ ラーレン分子として、 一般式 C n (但し、 nは球状構造を構成し得 る 2 0以上の偶数である。 ) で表わされるもの、 中でも C 60フラー レン又は C 70フラーレンのそれぞれ単体、 もしくはこれらの混合物、 さらには C 70以上の高次フラ一レンが含まれていることが望ましい。 上述の水素吸蔵用炭素質材料中には、 故意に遷移金属、 好ましく は鉄、 希土類元素、 ニッケル、 コバルト、 パラジウム、 ロジウム、 白金、 またはこれらの合金を含有させることが好ましい。
その手段としては、 少なく とも一方の電極に遷移金属を含む炭素 系電極を用いて、 アーク放電法を行なえばよい。 このようにアーク放電を行なうと、 遷移金属の触媒的作用により カーボンナノチューブの収率が高まり、 曲率を有する水素吸蔵用炭 素質材料の生成を促進させることができる。 なお、 遷移金属はレー ザ一アブレーシヨン法でカーボンナノチューブを生成する際、 触媒 的作用を行なうことで知られており、 その方法で生成したカーボン ナノチューブを収集し、 それを水素吸蔵用炭素質材料に添加混合し てもよい。
更に、 前記遷移金属を含有する水素吸蔵用炭素質材料、 あるいは それを含有しない水素吸蔵用炭素質材料でも、 それらの少なく とも 表面に対し、 水素分子を水素原子へ、 更にはプロ トンと電子へと分 離できる触媒能を有する金属を公知の方法で 1 0重量%以下、 担持 させることが好ましい。
そのような触媒能を有する好ましい金属としてたとえば白金もし くは白金合金を挙げることができる。
このような金属を担持させると、 それを担持させない場合に比べ、 水素吸蔵能をより高めることができる。
さらに、 電子供与体であるフヅ素ゃアンモニア等のアミン系分子 を水素吸蔵用炭素質材料と混合すること又は結合させることで、 電 荷分離がより能率的に生じることも明らかとなった。
したがって、 前記水素吸蔵用炭素質材料は電子供与体と混合させ て用いても良く、 この場合、 電子供与体としてフッ素又はアンモニ ァなどのアミン系分子を用いてよい。
いずれにしても、 常温以上の温度領域で水素の貯蔵が可能となる のが好ましい。
上記の水素吸蔵用炭素質材料によると、 先にも述べたようにこの 材料自体が強い電子受容体であるため、 電荷分離された水素は、 こ の炭素質材料の中ではプロ トンの形態を維持する。 そのため占有体 積が大幅に小さくなり、 従来の水素原子の化学吸着による貯蔵に比 して多量の水素を水素吸蔵用炭素質材料中に貯蔵することが可能と なる。 即ち、 水素吸蒇用炭素質材料は、 電荷分離された水素を最終 的にはプロ トン (陽子) の状態で高密度かつ多量に貯蔵できる。 次に水素吸蔵能に関わりのある仕事関数 (単位 e V) について説 明する。
過去の実験によると、 水素吸蔵能のないグラフアイ 卜の仕事関数 は P E E (Photo Electron Emission)法では約 4. 85 e Vであつ た。 また水素吸蔵能のないアモルファスカーボンも約 4. 8 e Vで あった。 すなわち仕事関数が 4. 8 5 e V以下の材料には水素吸蔵 能がないと考えられた。
一方、 構造的に曲率を有する炭素ススの仕事関数は 4. 9 e Vで あり、 図 3の測定結果から得られたメカニズムによると水素吸蔵能 を有することが実験から明らかとなつた。
この水素吸蔵能を測る指標となる複素インピーダンス又は直流抵 抗の測定について、 図 3を参照して説明する。
なお、 複素ィンピーダンスの測定は後述の実施例 4と同様にして 行なった。 試料は白金を担持した C 6。フラ一レンである。
図 3は、 水素吸蔵前後の試料の抵抗値を測定したデータを示すも ので、 図中の (a) が吸蔵中、 ( c) が吸蔵前である。 C6。は半導 体材料であるから複素ィンビーダンスの測定を行なう。 したがって 図中の水平軸が直流抵抗成分である。
この図 3によると、 C6。フラーレンは水素の吸蔵の前後で約 1桁 (吸蔵前: l e 7 、 吸蔵後 : 8 e 5 ) の変化が見られる。 この炭素質 材料は吸蔵能が約 2重量%であるが、 この直流抵抗成分は大雑把に 見積って、 水素吸蔵による電荷移動、 又は荷電子生成に伴なう荷電 粒子数の変化の逆数であるので、 抵抗の減少はすなわち水素吸蔵量 の増加である。 したがって、 5 0 %の抵抗成分の変化は約 1重量% の吸蔵を意味する。
C は半導体性を有するので複素ィンピーダンスの測定を行なう が、 一般の炭素材料を初めとする導電性材料については、 直流抵抗 の変化を観察すればよく、 たとえば図 3は、 そのような系において も同様に水素の吸蔵による抵抗成分の減少が見られることを示して いる。
このような電荷移動ないし荷電粒子の生成は、 炭素系材料に限ら ず、 水素分子又は水素原子と電荷のやりとりを可能にする系におい ても、 前記測定法は吸蔵能を測る良い指標となる。
とくに、 構造的に曲率を有する炭素系材料に関しては、 水素はプ 口 トンの形で吸蔵されるが、 このような場合は前記測定法はとくに 理解し易い指標となる。
なお、 構造的に曲率をもつ好ましい炭素系材料としては、 フラー レン C n ( n = 3 6、 6 0、 7 0、 7 2、 7 4 . - . ) で表わされる 球状炭素分子のこと) 、 カーボンナノファイバー、 カーボンナノチ ユーブ、 炭素スス、 ナノカプセル、 バヅキーオニオンなどが挙げら れる。
一方、 図 4によるとシングルウォール力一ボンナノチューブの仕 事関数も 5 . 1 5 e Vであり、 カーボンナノチューブにも前記のメ 力ニズムによる水素吸蔵能があることは実験的に確認された。 図 5 に示すように、 水素吸蔵後には、 仕事関数は 4 . 8 6 e Vに低下し ている。
図 6に示すように、 マルチウォールカーボンナノチューブの仕事 関数も 4 . 9 5 e Vであり、 同様に水素吸蔵能があることが実験的 に確認された。
またフラーレン類、 例えば C 60等も仕事関数が約 6 . 8 e Vであ ることが分かっており、 この水素吸蔵用炭素質材料も前記のメカ二 ズムによる水素吸蔵能を有することが判明した。
この事実によれば、 水素吸蔵能を司るのは炭素質材料が持つある 特殊な構造によるのではなく、 炭素質材料の仕事関数の値、 言いか えればバランスエツジの位置によることを示唆している。 すなわち、 仕事関数が 4 . 9 e Vを超える水素吸蔵用炭素質材料は、 電荷分離 した水素をプロ トンの状態に効率的に維持し、 最終的には水素をプ 口 トンの状態で高密度かつ多量に貯蔵できる。
さらに水素吸蔵用炭素質材料は、 炭素系電極を用いるアーク放電 法の他に、 C V D (化学的気相成長) 法、 レーザ一アブレ一シヨン 法又は S i C (シリコン力一バイ ド) 高温処理法等により製造する ことができる。 そして、 図 2に示すように水素吸蔵用炭素質材料の 構成要素はフラーレン (fullerene )、 カーボンナノチューブ (carb on nanotube )、 炭素スス (carbon soots ) 等である。 これらはいず れも構造上の曲率を有する水素吸蔵用炭素質材料である。
以上のように、 本発明においては、 水素吸蔵用炭素質材料に水素 をプロ トンの状態で貯蔵させることが大きな特徴である。
そこで次に、 水素吸蔵用材料にプロ トンの状態で水素を吸蔵させ るための処理方法について述べる。 これが本発明の第 2の特徴であ る o
水素吸蔵用材料にプロ トンの状態で水素を吸蔵させるためには、 水素吸蔵可能な材料に、 所定の基準電位に対してプラスの電圧を印 加し、 水素を含むガス雰囲気下で処理する。
図 7は、 上記処理を実現するための水素吸蔵放出システムの略断 面図である。
図 7に示されるように、 水素吸蔵放出システムは、 ステンレス製 の耐圧容器 1 1と、 蓋部材 1 2とを備え、 耐圧容器 1 1と蓋部材 1 2は、 ねじ 1 3およびメタルシール 1 4によって、 密閉可能に連結 されている。 蓋部材 1 2には、 開口部 1 5が形成され、 開口部 1 5 にはガス通路 1 6が接続されている。
ガス通路 1 6には、 バルブ 1 7が設けられ、 また、 切り換えバル ブ 1 8を介して、 水素ガス供給源 1 9がガス通路 1 6に接続され、 切り換えバルブ 2 0を介して、 窒素ガス供給源 2 1がガス通路 1 6 に接続されている。
図 7に示されるように、 耐圧容器 1 1内には、 互いに対向するよ うに、 一対のステンレス板 3 0、 3 1が設けられ、 一方のステンレ ス板 3 0には、 周壁部がステンレスメッシュ 3 2によって形成され、 水素吸蔵材料 3 3を収容する水素吸蔵材料ホルダー 3 4が設けられ ている。 一対のステンレス板 3 0、 3 1の間には、 他方のステンレ ス板 3 1に近接して、 絶縁性プラスチックメヅシュ板 3 5が配置さ れている。 本実施態様においては、 水素吸蔵材料 3 3として、 力一 ボンナノチューブが、 水素吸蔵材料ホルダー 3 4中に収容されてい る o
図 7に示されるように、 一対のステンレス板 3 0、 3 1には、 そ れそれ、 導線 3 6、 3 7が接続され、 導線 3 6、 3 7は、 メタルシ ール 1 4、 1 4を介して、 電源 3 8に接続されている。 他方のステ ンレス板 3 1には、 さらに、 導線 3 9によって、 接地電位に保持さ れた耐圧容器 1 1に接続されている。
電源 3 8は、 コン トローラ 4 0によって制御され、 一対のステン レス板 3 0、 3 1の間に、 所望の^圧が印加可能に構成されている。 以上のように構成された本実施態様にかかる水素吸蔵放出システ ムは、 以下のようにして、 水素吸蔵材料 3 3に水素を吸蔵する。 まず、 バルブ 1 7とともに、 切り換えバルブ 2 0が開かれ、 窒素 ガス供給源 2 1から、 窒素ガスが、 ガス通路 1 6を介して、 耐圧容 器 1 1内に導入され、 耐圧容器 1 1内が、 窒素ガスによって置換さ れる。
耐圧容器 1 1内が、 窒素ガスによって十分に置換された後、 切り 換えバルブ 2 0が閉じられ、 切り換えバルブ 1 8が開かれて、 水素 ガスが、 ガス通路 1 6を介して、 水素ガス供給源 1 9から、 耐圧容 器 1 1内に導入される。
その後、 切り換えバルブ 1 8およびバルブ 2 0が閉じられ、 コン トロ一ラ 4 0が操作されて、 電源 3 8から、 ステンレス板 3 0に、 耐圧容器 1 1の電気的に接続されたステンレス板 3 1を規準として、 プラスの電圧 V 1が印加される。
水素吸蔵材料 3 3を収容する水素吸蔵材料ホルダー 3 4の周壁部 がステンレスメッシュ 3 2によって形成されているため、 水素ガス は、 水素吸蔵材料ホルダー 3 4に収容された水素吸蔵材料 3 3であ るカーボンナノチューブと接触し、 カーボンナノチューブ 3 3に吸 蔵される。 ここに、 本実施態様においては、 ステンレス板 3 0にステンレス 板 3 1を基準として、 プラスの電圧 V 1が印加されているため、 力 一ボンナノチューブ 3 3の電子準位がシフ 卜され、 H O M Oレベル および L U M Oレベルの双方が低くなっているので、 より多くの水 素がカーボンナノチューブ 3 3に吸蔵される。
このようにして、 カーボンナノチューブ 3 3中に吸蔵された水素 は、 以下のようにして、 力一ボンナノチューブ 3 3から放出される。 まず、 バルブ 1 7が開かれ、 次いで、 コントローラ 4 0が操作さ れて、 電源 3 8から、 ステンレス板 3 0に、 ステンレス板 3 1を基 準として、 前述の V 1よりも低いプラスの電圧 V 2が印加される。 その結果、 力一ボンナノチューブ 3 3の電子準位がシフ 卜され、 H O M Oレベルおよび L U M Oレベルの双方が高くなり、 カーボン ナノチューブ 3 3の水素吸蔵能力が低下するため、 カーボンナノチ ユーブ 3 3中に吸蔵された水素が水素ガスの形で放出され、 水素ガ スは、 ガス通路 1 6を介して、 取り出される。
水素の放出量は、 コントローラ 4 0によって、 ステンレス板 3 0 のステンレス板 3 1に対する電圧を制御することによって、 任意に 制御することができ、 また、 ステンレス板 3 0に、 ステンレス板 3 1を基準として、 V 2よりも高い電圧 V 1を印加することによって、 水素の放出を停止させることができる。
本システムによれば、 ステンレス板 3 0に、 基準電位を有するス テンレス板 3 1に対して、 プラスの電圧 V 1を印加するのみで、 よ り多くの水素を力一ボンナノチューブ 3 3中に吸蔵させることがで き、 きわめて簡易な方法で、 カーボンナノチューブ 3 3の水素吸蔵 能力を向上させて、 より多くの水素を吸蔵させることが可能になる。 また、 本システムによれば、 力一ボンナノチューブ 33に水素を 吸蔵させる際に、 ステンレス板 3 1を基準としてステンレス板 30 に印加した電圧よりも低いプラスの電圧 V 2を印加するのみで、 力 —ボンナノチューブ 33中に吸蔵された水素を放出させることがで き、 また、 コントローラ 40によって、 一対のステンレス板 30、 3 1の間に印加する電圧を制御することによって、 水索の放出量を 制御することが可能になり、 さらに、 ステンレス板 3 1を基準とし て、 電圧 V 2よりも高いプラス電圧を、 ステンレス板 30に印加す ることによって、 水素の放出を停止させることができるから、 きわ めて簡易な方法で、 水素の放出量を制御するとともに、 水素の放出、 放出停止を制御することが可能になる。
本発明は、 第 3の特徴として、 水素を吸蔵し得る各種炭素質材料 を提供することを挙げることができる。
そこで、 以下、 これら炭素質材料について説明する。
先ず、 本発明の水素吸蔵用炭素質材料としては、 フラーレン分子 の単体又はその混合物を、 非酸化性ガス中で焼成し、 重合体化した ものを挙げることができる。
ここで、 フラーレンなる物質の開発の歴史について概略的に触れ ておく。
フラーレンは、 図 8に示すような C60、 図 9に示すような C70を 始めとする球状炭素分子の総称で、 1 9 85年に炭素のレーザアブ レーションによるクラス夕一ビームの質量分析スぺク トル中に発見 された (Kroto,H.W;Heath,J.R. ;0'Brien, S.C.; Curl,R.F.; Smalley, R.E. Nature 1985,318, 162. )。
実際にその製造方法が確立されるのはさらに 5年後のことで、 1 9 9 0年に炭素電極のアーク放電法による C60フラーレンの製造法 が見出され、 それ以来、 フラーレンは炭素系半導体材料等として注 目されてきた (Kratschmer, W.; Fostiropoulos, .; Huffman,D.R. C hem. Phys .Lett. 1990,170,167. Kratschmer, W.; Lamb,L.D. Fosti ropoulos ,K.; Huffman,D.R. Nature 1990,347,354. )0
フラーレン分子は真空下または減圧下で容易に気化できるので、 蒸着膜を形成し易い素材である。
しかしながら、 最も大量生産のきく C60や C70等のフラーレン分 子は、 双極子モーメントがゼロであることから、 分子間にはファン • デル · ワールスカしか働かず、 その蒸着膜は強度的に脆弱である。 さらに、 この蒸着膜はフラーレン分子間に酸素分子等が入り込み易 く、 拡散侵入したその酸素分子は常磁性中心を発現させるので、 薄 膜特性の安定性の面から問題が生じる。
こうした弱点を克服する手段の一つとして、 フラーレン分子同士 を重合する、 いわゆるフラーレン重合体 (薄膜) の製造方法が既に 開発されている。 たとえば、 光誘起による重合体の製造方法がその 一例である。 (a)Rao,A.M.;Zhou,P.; Wang, K.. A.; Hager,G.T.; Hold en,J.M.; Wang, Y.; Lee. W..T.; Βί,Χ.Χ. ;Eklund.P.C. ;Cornett,D. S.; Duncan, M. A.; Amster, I .J. Science 1993,256,955. (b)Cornett,D. C. ; Amster, I. J.; Duncan, M. A.; Rao, A.M.; Eklund, P. C. J.Phys.Chem.199 3,97,5036. (c)Li,J. ;0zawa,M.; Kino, N,; Yoshizawa,T.; Mitsuki,T. ; Horiuchi,H.; Tachikawa,0.; Kishio,K. ;Kitazawa,K.Chem.Phys.Let 1.1994,227,5720
さらに、 圧力や熱をフラーレン分子にかけるとか、 あるいは分子 衝突のような手法によってもフラーレン重合体を製造することがで
Figure imgf000039_0001
緞 ^鯽贓^¾屮屮f、
Ha J5¾
1rvfnv dd.-- ¾韆^ « ^Λ
^ S-?お ϊ τ) ίπυ — S ym. C116 転移すると考えられるので、 結果的には後者の方 が高い効率で生成される。
また、 C70の 2量体の場合も、 まず C70から図 1 1に示すような 環状付加体が生成され、 それが図 1 0 (B) と同様、 安定な 2量体 の構造 (図示せず) に転移していく と考えられる。
本発明者の検討によると、 フラーレンの単体であれ、 フラ一レン 同士の混合物であれ、 フラーレン分子を非酸化性雰囲気の下で適当 な温度で焼成すると、 少なく とも前述した安定な 2量体を含む重合 体で構成されている焼成体が得られ、 この安定な重合体を主成分と して含む焼成体が、 実は水素吸蔵能を発揮させる上で基本的な母材 になり得ることが判明した。
更なる研究の結果、 前記焼成時に、 原料となるフラーレンに炭素 のオーダリング (安定な構造にすること) を促進する金属又はその 化合物を添加しておき、 この混合物を焼成することが好ましい。 そ して、 これら添加物を含む焼成体又はそれを含まない焼成体でも、 それらの表面に対し、 特に水素分子を水素原子へ、 又は更にプロ ト ンと電子へ分離する触媒能を有する金属触媒粒子 (層でもよい) を 担持させれば、 室温下でも優れた水素吸蔵能が発現することが明ら かになつた。
前記原料としてのフラーレンは一般式 C nで表すことができ、 そ の nは球状構造を形成し得る 20以上の偶数 (たとえば 6 0、 70、 78、 80、 8 2、 84 · · · ) である。 代表的なのは C 60や C 70 フラーレンであり、 これらはそれぞれ単体として用いてもよいし、 また混合物にして用いてもよい。 また、 この混合物あるいはそれぞ れの単体は C70以上の高次フラーレン (Higher Fullerene) を含有 したまま用いてもよい。 これらのフラーレン類は、 炭素電極のァ一 ク放電法により低コス 卜で容易に製造することができる。
前記非酸化性ガスとしては、 不活性ガス、 窒素ガス又は水素ガス の、 それぞれ単独もしくは 2種以上の混合ガスが使用される。 この 際、 水素ガスの分圧は析出炭素に対するエッチングの効果に明瞭に 反映されるが、 本発明では水素の分圧は 0〜 1 0 0 %の範囲で任意 の値でよい。
なお、 非酸化性ガスには一般に小量の有機化合物のガスを添加混 合することが好ましい。 このような有機化合物の主な具体例として は、 たとえばトルエンやアセ トンなどを挙げることができる。 この ようにすると、 焼成体中の炭素原子の配位が促進され、 或いは炭素 原子が補給され、 重合体の構造や炭素質膜が安定化することがある。 前記フラーレン分子の単体又は混合物を焼成するとき、 一般に、 予めこれらに炭素のオーダリングを促進する金属又はその化合物、 たとえば金属酸化物や金属配位化合物を添加しておくことが好まし い。 これによつて、 顕著なオーダリング効果が得られるからである。 前記オーダリング用金属としては、 鉄、 ニッケル、 バナジウム等 の遷移金属又はラン夕ノィ ド金属が好ましい。 特に焼成温度が 1 0 0 0 °c付近の炭素のォ一ダリングに対しては、 鉄やニッケル等の遷 移金属が最も高い触媒能を示す。
前記焼成の工程は、 非酸化性ガスの供給、 排出手段を備えた公知 の加熱装置、 たとえば電気炉や高周波炉などを用いて実施すること ができる。 その場合、 特に焼成温度を 6 0 0〜 2 0 0 0 °C、 好まし くは 8 0 0〜 1 3 0 0 °Cに保つことが望ましい。
フラーレン分子はその焼成過程で焼成温度が十分低いうちは単体 構造を維持しているが (常圧下でも少量のフラーレンは気化する) 、 焼成温度が 6 0 0 °C前後になると、 分子の骨格が変化して重合構造 が生成され、 それと単体分子との間に解離平衡が始まる。 さらに昇 温すると、 安定な構造の重合体が生成されると考えられる。
これを、 C 60フラーレン分子 3個の例に基づいて模式的に説明し たのが、 図 1 2、 図 1 3及び図 1 4である。 即ち、 図 1 2は、 C 60 フラーレン分子の結晶状態を示しており、 各単体分子は互いにファ ンデルワールス半径 ( 3 . 4 A ) の距離を維持している。 これが昇 温すると、 熱 (及び触媒) の影響により図 1 3に示す重合構造が生 成され、 これと図 1 2に示した単体構造との間に解離平衡が始まり、 さらに昇温すると、 図 1 4に示すようにグラフアイ ト面が曲がった 重合構造が生成される。
C 60フラーレン分子が 2個の場合でも同様で、 焼成温度が 6 0 0 °C付近と低い場合に、 前記 2量体の重合構造と分子単体との間に解 離平衡が始まり、 このときは、 顕微鏡による観察でもグラフアイ ド 構造が組織化される現象は見られない。 それが、 更に昇温して 8 0 0 °C前後になると、 図 1 0に示すような安定な C 60フラーレンの 2 量体構造に転移する。
続いて、 9 0 0〜 1 0 0 0 °Cに昇温すると、 オーダリング用金属 が核となったグラフアイ トゃナノチューブが生成され、 顕微鏡によ る観察でも、 歪んだ不完全なグラフアイ ト等の構造を目視すること ができる。 なお、 金属が先に力一バイ ド化した場合には、 グラファ ィ 卜が力一バイ ド表面の構造を反映した形でオーダリングされる。 更に 1 0 0 0 °C以上に昇温すると、 金属カーバイ ドゃ金属を核と するグラフアイ トナノカプセル構造が増加することが、 顕微鏡でも 観測できる。 水素の吸蔵能を高めるためには、 このカプセル構造は 存在しない方が好ましく、 したがって機械的な粉砕等によりそれを 破壊することが好ましい。 なお、 更に 2 0 0 0 °Cを越えて著しく昇 温した場合は、 より平面性のよいグラフアイ 卜のオーダリングが閧 始され、 この構造は水素の吸蔵にとって不利に働く。
以上の理由により、 本発明では前記焼成温度を 6 0 0〜 2 0 0 0 °C、 とくに 8 0 0〜 1 3 0 0 °Cの範囲に維持するのが好ましい。 前記の焼成によって製造された、 前記オーダリング用添加物を含 む焼成体、 あるいはそれを含まない焼成体の表面に対し、 水素分子 を水素原子へ、 又は更にプロ トンと電子へと分離する触媒機能を有 する金属 (合金も含めた意味) 触媒を担持させることが特に好まし い。 これにより、 金属触媒量が少なくても、 水素の吸蔵能が室温下 でも促進されるからである。 この金属触媒の担持の形態は、 層状も 採用可能であるが、 通常は微粒子状が好ましい。 金属触媒が微細で あればあるほど、 その表面における触媒反応が促進され、 粗大粒子 の場合の比べ金属の使用量を大幅に削減することができるからであ る。
前記金属触媒の微粒子はできるだけ微細なものが好ましく、 具体 的には平均粒径 1 / m以下、 とくに 1 0 0 n m以下とするのがよい。 そして、 前記金属触媒の微粒子を前記焼成体に担持させるときは、 1 0重量%以下の含有量とすることが望ましい。 - 前記金属触媒としては、 白金、 パラジウム、 マグネシウム、 チタ ン、 マンガン、 ランタン、 バナジウム、 ジルコニウム、 ニッケルラ ン夕ン合金、 チタン鉄合金などが用いられる。 好ましいのは、 白金 又はパラジウム等の単体金属の微粒子、 或いはこれらの個々の合金 の微粒子で、 とくに白金系合金の微粒子が好ましい。
前記焼成体の表面に前記触媒金属又は粒子を担持させるには、 ス パッ夕、 真空蒸着、 化学的手法、 混合等の公知の手法を用いるとよ い。
そして、 前記白金又は白金系触媒の微粒子を前記焼成体に担持さ せるときは、 白金錯体を含む溶液を用いる化学的担持法か、 又は白 金を含む電極を用いるアーク放電法の手法を適用するとよい。 前者 の化学的担持法では、 たとえば塩化白金酸水溶液を亜硫酸水素ナト リウムゃ過酸化水素で処理し、 次にこの溶液に前記焼成体を攪拌す る。 この方法は燃料電池の触媒電極作製時に用いられるもので、 液 相化学担持方法とも呼ばれる。
後者のアーク放電法では、 アーク放電の電極部に白金や白金合金 を部分的に組み込んでおき、 それをアーク放電させることによって 蒸発させ、 チャンバ一内に収納してある前記焼成体上に付着させる。 以上、 説明した如く、 特殊に安定した構造のフラーレン重合体を 含む焼成体を母材とするので、 その重合体の表面に白金等の触媒微 粒子を担持した場合は、 水素をより効率的に且つより大量に吸蔵で き、 軽量で運搬が容易であり、 構造破壊を伴わずに室温レベルでの 反復使用が可能で、 取扱上も安全である。 そして、 白金等の金属触 媒の使用量も削減でき、 出発原料のフラーレンも低コス 卜で容易に 製造でき、 資源調達の面で問題がない上に、 使用時に環境破壊等の 問題も起こさないと言う、 優れた実用性を発揮することができる。 次に、 本発明の水素吸蔵用炭素質材料として挙げられるのが、 フ ラーレン分子の単体またはその混合物の電解重合体である。
そこで、 この電解重合体について説明する。 従来法に代わる工業的なフラーレン重合法 (又は製膜方法) とし て注目に値するのが、 本発明者が先に提唱したプラズマ重合法やマ イク口波 (プラズマ) 重合法である。 (たとえば Takahashi, N.; D ock, H.; Matsuza a, N.; Ata,M. J. Appl .Phys. 1993,74,5790. ) 。 このような方法で得られるフラーレン重合体 (図 1 0及び図 1 1 等) の膜は、 フラーレン分子が電子励起状態を経て重合してできた 薄膜であり、 フラーレン蒸着薄膜に比較して強度が格段に増加し、 緻密にしてかつ柔軟性に富む。 そして真空中でも大気中でもその電 子物性がほとんど変化しないことから、 その緻密な薄膜構造が酸素 分子等による膜内部への拡散進入を効果的に抑制しているのだと考 えられる。 事実、 このような方法で緻密な薄膜を構成するフラーレ ンの多量体が生成されることは、 レーザアブレ一ション法による飛 行時間型質量分析によって知ることができる。
プラズマ法の種類を問わず、 フラーレン重合体膜の電子物性はそ の重合形態に大きく依存するものと思われる。 実際にマイクロ波プ ラズマ法により得られた C60の重合体膜の質量分析結果は、 以前発 明者らが報告した C60のアルゴンプラズマ重合体薄膜のそれと、 酷 似している CAta, . Takahashi, N.; Nojima,K. J.Phys.Chem.1994, 98,9960.Ata,M.; KuriharaJ.; Takahashi, J.Phys.Chem.B 1996, 10 1,5.参照〕 o
フラーレン重合体の微細構造については、 パルスレーザ励起の飛 行時間型質量分析 (TO F— MS) によって推定することができる。 一般に高分子量のポリマーを非破壊的に測定する方法として、 マ ト リ ックスアシス ト法が知られている。
しかし、 フラーレン重合体を溶解する溶媒が存在しないことから、 重合体の実際の分子量分布を直接評価することは困難である。 LD I T O F— MS (Laser Desorption Ionization Time, of .Flight M ass Spectroscopy) による質量評価も、 適当な溶媒が無いことと、 C 60とマト リックス分子とが反応してしまうためマトリックスァシ ス ト法が適用できない等の理由により、 実際のフラーレン重合体の 質量分布を正確に評価することは困難である。
C 60重合体の構造は、 C 60が重合を起さない程度のレーザパワー のアブレ一シヨンで観測した L D I T 0 F _M Sの多量体のピーク 位置や 2量体のプロフィールから、 推定することができる。 たとえ ば 5 0Wのプラズマパワーで得られた C 60重合膜の LD I T OF— M Sは、 C 60分子間の重合が 4個の炭素のロスを伴う過程が最も確 率的に高いことを示している。 即ち、 2量体の質量領域において C 120 はマイナープロダク トであり、 最も高い確率で生成するのは C 116 である。
また半経験的レベルの C60の 2量体の計算によると、 この C116は 図 1 0 (B) に示すような D2h対称 C116 であると考えられる。 こ れは C 58の再結合によって得られるが、 この C58は C60のイオン化 状態を含む高い電子励起状態から C2 が脱離して生成されることが 報告されている (a)Fieber.Erdmann,M.et al, Z.Phys.D1993,26, 30 8.(b)Petrie,S.et al, ature 1993,356,426. (c)Eckhoff,W.C. ;Scus eria,G.E.; Chem.Phys. Lett.1993, 216, 399. ) 。
この開殻 C 58分子が 5員環 2個が隣接する構造へ転位する以前に 2分子で結合すれば、 図 1 0 (B) に示される C116 が得られる。 しかし本発明者は、 C60のプラズマ重合の初期の過程ではあくまで も励起 3重項メカニズムによる [ 2 + 2 ]環状付加反応 (反応生成 物は図 1 0 (A) に示す) が生じると考えている。 前記のように最 も高い確率で C116 が得られるのは、 C60の電子励起 3重項状態か ら [ 2 + 2 ]環状付加反応により (C60) 2 が生成され、 そのシク ロブタンを形成する 4個の s p3 炭素が脱離し、 2個の C58開殻分 子が再結合するためと考えられる。
例えば、 T 0 F— M Sのイオン化夕一ゲント上の C60微結晶に強 いパルスレーザ光を照射すると、 マイク口波プラズマ重合法と同様 にフラーレン分子が電子励起状態を経て重合が起こるが、 C60光重 合体のピークとともに C58, C56等のイオンも観測される。
しかし、 C 582 +あるいは C2+ 等のフラグメントイオンは観測され ないことから、 前記 Fieber.Erdmannらの文献に述べられているよう な C 603 +から直接 C 582+と C2 + へフラグメンテーションすること は、 この場合には考えられない。 また、 C2F4ガスプラズマ中で C 60を気化させて製膜した場合、 その LD I TO F— MSには C60の Fあるいは C2F4のフラグメントイオンの付加体のみが観測され、 C60重合体は観測されない。 このように C60重合体の観測されない LD I T O F— MSには、 C58, C 56等のイオンも観測されないと いう特徴がある。 これらの観測結果もまた、 C2 の損失が C60重合 体を経てから起こることを支持している。
それでは、 その C2 損失は、 プラズマ重合において果して図 1 0
(A) に示す [ 2 + 2 ]環状付加反応による 1 , 2— (C60) 2 か ら直接起こるのだろうか。 この問題をムーリーや大澤らは 1 , 2 _
(C60) 2 の構造緩和のプロセスを提唱して以下のように説明して いる (a)Murry,R.L.et al, Nature 1993,366,665. (b)Strout,D.L.e t al,Chem.Phys.Lett. 1993, 214,576.0sawa,E.私信〕 。 両者とも図 1 0 (A) に示す 1, 2— ( C60) 2 の構造緩和の初 期過程では、 クロスリンク部位の最も歪みの大きい 1 , 2— C— C 結合の開裂した図 1 0の C120 (b) を経て、 Stone. Wales 転位 (Stone, A. J.; Wales, D. J. Chem.Phys. Lett. 1986,128,501. (b) Satio, R. Chem.Phys. Lett.1992, 195, 537.)によるはしご型のクロス リンクを有する図 1 6の C 120 ( c) から、 図 1 7の C 120 (d) が生成されるとしている。 図 1 0 (A) の 1 , 2— ( C60) 2 から 図 1 5の C120 (b) へ転位するとエネルギー的に不安定化するが、 さらに図 1 6の C120 ( c) から図 1 7の C120 (d) と転位する につれて再度安定化する。
このようにマイク口波プラズマ誘起による C60の重合において観 測される n C2 の損失が、 その初期過程と考えられる図 1 0 (A) の 1, 2— ( C60) から直接起こるのか、 あるいはこれがある程度 構造緩和した後で起こるのか明確な知見は得られていないが、 観測 される C 118 は図 1 7の C120 ( d) からの C2 の脱離とダングリ ングの再結合によって図 1 8の様な構造をとるものと考えられる。 また、 図 1 8の C118 の梯子型クロスリンクの 2個の炭素が脱離 しダングリングが再結合することによって、 図 1 9に示すような C 116 が得られる。 2量体の T 0 F—M Sに奇数個のクラス夕一がほ とんど観測されないことや構造の安定さからすると、 C2 の損失が 1 , 2 - (C60) 2 から直接起こるよりも、 図 1 7の C120 (d) を経て起こると考えた方が、 理にかなつているように思われる。 また、 大澤らは前記文献に C 120 (a) から多段階の Stone. Wale s 転位による構造緩和を経て、 D5d対称 C120 構造が得られること を記述している。 この C120 の構造は C70分子のグラフアイ ト構造 が C 120 まで延びたもので、 C 60重合体からナノチューブが得られ ることを示唆する点で興味深い。 しかし、 プラズマ照射による重合 体の形成に際しては、 C 60重合体の T 0 F— M Sを見るかぎり、 こ のような多段階の転位反応による構造緩和よりも C 2 の損失を伴う 構造緩和の過程が優先すると考えられる。
本発明者の検討によると、 既述したプラズマ重合法など、 従来法 では選択的に得るのが難しい前記環状付加重合体、 とくに 1 , 2— 付加結合 (フラーレン分子同士がそのシクロへキサト リエニル部位 に付加した) により互いに結合した重合体こそが、 水素吸蔵能を発 揮させるのに不可欠であり、 それ自身、 良好な水素吸蔵材料になり 得るばかりか、 それを母材としてその中に金属イオンやそのクラス 夕一等を混在させた場合は電荷分離の効果が出、 更にその表面に白 金等の触媒粒子を担持させると、 吸蔵能を高めることも可能である。 そして、 上記吸蔵能は C 60フラーレン分子の環状付加重合体に限 らず C 70フラーレンなど高次フラーレン分子の環状付加重合体にも 発現し、 またフラーレンの 2量体に留まらず 3量体を始め可成り重 合度の大きな環状付加重合体にも共通するのである。
本発明の水素吸蔵材料はこのような吸蔵能を有する環状付加重合 体を主成分とするもので、 この重合体を製造するには本発明者が最 近提唱したフラーレンの電解重合法が好適であり、 さらには機械的 震とう法又は超音波法による振動法も有効である。 なお、 上記に言 う電解重合法とは、 非水溶媒にフラーレン分子と電解促進用支持電 解質とを溶解して電解液を調製し、 電極に直流のポテンシャルをか けてフラーレン重合体を得る方法のことである。
本発明において、 原料に用いられるフラーレン分子は、 一般式 C n (但し、 nは幾何学的に球状化合物を形成し得る整数である。 ) で表わされるもので、 単体であってもフラーレン同士の混合物であ つてもよい。 好ましいのは、 C 60フラーレン又は C 70フラーレン又 はこれらの混合物であるが、 いずれも更に高次フラーレン ( C 78、 C 80、 C 82、 C 84 - · · ) が含まれていてもよい。
このようなフラーレン分子は、 たとえば図 1に示すような炭素電 極のアーク放電によって低コス トで容易に製造することが可能であ る。
上記装置により得られる煤は、 C 60や C 70を始め種々のフラーレ ン分子を含有しており、 適当な条件の下では約 1 0 %以上ものフラ 一レン分子を含むことがある。
C 60や C 70などのフラーレンは、 この煤から トルエンやベンゼン、 二硫化炭素などの 7Γ電子系の溶媒を用いて抽出できる。 この段階を 経て得られるフラーレンは粗製フラーレンと呼ばれ、 さらにそれを 例えばカラムクロマトグラフィ一にかけると、 C 60及び C 70をそれ それ単体として分離精製することができる。
本発明に欠かせない前記環状付加重合体は、 図 2 0に示す如く、 フラーレン分子同志がそのシクロへキサトリエニル部位に付加した 1, 2—付加結合によって互いに重合した (C n ) m 〔但し、 nは 前述したのと同様であり、 mは任意の自然数である。 図 2 0は mが 2の場合を示す。 〕 で表わされる重合体であることが好ましい。 さらに、 本発明においては、 前記電解重合体に電解液中の支持電 解質から供された対イオンをそのまま含有させておいてもよい。 こ のように対イオンを含有させると、 電解重合体は構造的により高い 安定性を示すことがある。 この対イオンとしては、 L i、 B e、 N a、 M g、 C a、 K、 C e、 A l、 M n、 F e、 C o等から選ばれる金属イオン、 又はその クラスターであることが望ましい。
本発明において、 電解液の調製に必要な非水溶媒は、 フラーレン 分子を溶解する第 1溶媒と、 支持電解質を溶解する第 2溶媒との混 合溶媒であるのが好ましい。
その場合、 第 1溶媒としては、 7Γ電子系の低極性溶媒であり、 第 2溶媒としては極性溶媒であるのがよい。
これらの具体例を挙げると、 第 1溶媒としては、 二硫化炭素、 ト ルェン、 ベンゼン、 オルトジクロルベンゼンなどがあり、 第 2溶媒 としてはァセ 卜二ト リル、 ジメチルホルムアミ ド、 ジメチルスルホ キシ ド及びジメチルァセ トアミ ドなどがある。 両溶媒ともそれぞれ 単独 1種を、 あるいは 2種以上を組み合わせて用いることができる。 本発明における環状付加重合構造を含むフラーレン重合体は、 前 述した電解重合法以外にも、 フラーレン分子を振動させる方法、 つ まり機械的震とう法や超音波照射法も有効であり、 これらを実施す るときは、 酸化を防ぐため、 不活性ガスの雰囲気で行うのがよい。 すなわち、 本発明に不可欠な環状付加重合構造を持つ重合体は、 フラーレン分子を振動させることによつても得ることができる。 こ の場合、 フラーレン分子を触媒金属微粒子と混合して振動させるこ とが好ましい。 この触媒金属としては L i、 N a、 Kなどのアル力 リ金属、 B e、 M g、 C a、 C e、 A l、 M n、 F e、 C oなどが 挙げられる。 この振動工程は、 酸素をのぞいたアルゴン、 ヘリウム 等の不活性ガス中で行うのが望ましい。 振動法としては、 シェイカ 一等のような装置を用いて機械的に震とうを行う方法や超音波照射 があげられるが、 いずれもアルゴンやキセノン等の不活性ガス中で 行うことが望ましい。 得られる重合構造は前記フラーレンの電解重 合で述べたものとほぼ同じと考えられるが、 電解重合では、 薄膜状 に形成されるのにたいして、 振動法では 2量体、 3量体の様な比較 的重合度の小さい重合体が主流となる。 なお、 機械的に震盪しても 重合体構造を得るには、 ジルコ二アビ一ズのような震盪効果を助け るフイラ一とともに震盪することが望ましい。 またこのようなフィ ラーの混在は金属微粒子の粉砕、 あるいは拡散を助ける上でも効果 的である。 このようにして得られる重合体もまた、 電解重合体と同 じく、 ポリマー中に金属原子あるいはイオンが配位した構造を有す ると考えられるが、 例えばリチウム粉末を用いた震盪法によるポリ マーは、 電解重合に比べ、 容易に酸化される傾向を有することから、 不活性ガス中での取り扱いが望ましい。
また、 本発明では前記環状付加重合構造を有する重合体を母材と して、 その表面に水素分子を水素原子へ、 又は更にプロ トンと電子 へと分離する触媒機能を有する金属 (合金も含めた意味) 触媒を担 持させることが好ましい。 これにより、 金属触媒量が少なくても、 水素の吸蔵能が促進されるからである。 この金属触媒の担持の形態 は、 層状も採用可能であるが、 通常は微粒子状が好ましい。 金属触 媒が微細であればあるほど、 その表面における触媒反応が促進され、 粗大粒子の場合に比べ金属の使用量を大幅に削減することができる からである。
前記金属触媒の微粒子はできるだけ微細なものが好ましく、 具体 的には平均粒径 1 / m以下、 とくに 1 0 0 n m以下とするのがよい。 前記金属触媒としては、 白金、 パラジウム、 マグネシウム、 チタ ン、 マンガン、 ランタン、 バナジウム、 ジルコニウム、 ニッケルラ ン夕ン合金、 チタン鉄合金などが用いられる。 好ましいのは、 白金 又はパラジウム等の単体金属の微粒子、 あるいはこれらの個々の合 金の微粒子で、 とくに白金系合金の微粒子が好ましい。
なお、 前記触媒金属又は粒子を担持させるには、 スパッ夕、 真空 蒸着、 化学的手法、 混合等の公知の手法を用いるとよい。
上記の説明から明らかなように、 本発明の成立のきっかけはフラ 一レンの電解重合技術に負うところが大きいので、 以下、 それを更 に詳しく説明する。 なお、 図 2 1は電解重合装置の代表的な概略的 構成を示すに過ぎず、 電解重合の実施には様々のバリエーションが 可能である。
図 2 1に示す電解重合装置の電解セル 5 9には、 いずれもポテン シャルスタツ ト 6 0に接続された陽極 6 1 と陰極 6 2とが配されて いる。 また、 これらの電極間の電圧値或いは電流値が一定となり得 るように、 同じポテンシヨスタヅ ト 6 0に参照電極 6 3が接続され ていて、 陽極 6 1 と陰極 6 2との間に所定の電気的ポテンシャルが 印加されるようになされている。
さらに、 電解セル 5 9には、 非水溶媒 6 4中の酸素ガス等の除去 のために不活性ガスを導入するガス導入管 6 5が設けられている。 そして、 電解セル 5 9の下部には、 マグネチヅクス夕一ラー 6 6が 設けられており、 電解セル 5 9内に配された図示しない攪拌子を動 作できるように構成されている。
このような構成の電解重合装置において、 原料となるフラーレン 分子と、 支持電解質と、 第 1溶媒及び第 2溶媒を主成分とする非水 溶媒 6 4とを電解セル 5 9中に仕込み、 ポテンシヨス夕ッ ト 6 0を 動作させて、 陽極 6 1—陰極 6 2間に所定の電気エネルギーを作用 させると、 フラーレン分子の多くは電解液中で負ラジカル (ァニォ ンラジカル) となり、 その重合体は陰極 6 2上に薄膜として、 及び /又は、 沈殿物として形成される。 なお、 沈殿物として得られた球 状炭素重合体は、 濾過、 乾燥等の手段により容易に回収することが 可能であり、 回収後は、 それを固めたり、 樹脂に練り込んだり して、 例えば薄膜として使用することができる。
陽極 6 1及び陰極 6 2は金属電極であることが望ましいが、 他の 導電性材料で形成されていてもよく、 また、 ガラスやシリコン等の 基板上に金属等の導電性材料を蒸着したものを用いてもよい。 また、 参照電極 6 3の種類は支持電解質にも依存するが、 特定の金属に限 定されるものではない。
また、 前記支持電解質は、 一般に前記非水溶媒に含有させること が望ましい。 電極 (主に陰極) 上に形成され得る電解重合体の物性 は、 非水溶媒に添加する支持電解質により多少異なることがある。 例えば、 支持電解質として tert—プチルアンモニゥムパーク口レ 一ト塩を選択し、 この塩から供されるアンモニゥム塩のような大き な正イオンが対ィオン (カウン夕一イオン : counter ion ) として 電解液中に存在する場合、 得られる球状炭素重合体は、 この正ィォ ンとフラーレン分子とが配位結合を形成し、 錯塩の状態で電極上に 薄膜又は沈殿物として生成し、 力学的にもろい傾向がある。 それに 対して支持電解質として例えば過塩素酸リチウムを選択し、 この化 合物から供されるリチウムイオンが対イオンとして電解液中に存在 する場合は得られる球状炭素重合体は例えば電極上に薄膜として形 成され、 力学的に強固かつ安定であり、 鏡面を呈する。 上記の他に支持電解質として、 リチウムテトラフルォロボラート ( L i B F ) 、 リチウムへキサフルォロホスフェート (L i PF ) 、 過塩素酸ナト リウム (NaC 104 ) L i CF3S03、 リ チウムへキサフルォロアーセナイ ト (L iAs F6 ) ^ などを使用 すると、 球状炭素重合体は電解質溶液中で沈殿物として得られるこ とが多い。
また、 支持電解質として t e r t—プチルアンモニゥムパーク口 レート塩を用いると、 上記過塩素酸リチウム (L i C 104 ) と同 様の性状を示す球状炭素重合体を得ることができる。
また、 前記非水溶媒としては、 フラーレン分子を溶解する第 1溶 媒と、 支持電解質を溶解する第 2溶媒との混合溶媒を使用すること が望ましい。 その混合割合は、 容量比で第 1溶媒:第 2溶媒 = 1 : 10〜 : L 0 : 1が望ましい。
第 1溶媒としては、 既述したように二硫化炭素、 トルエン、 その 他の 7Γ電子系を有する極性の低い溶媒を使用することが好ましい。
また、 第 2溶媒としては、 既述したようにァセ トニト リル、 ジメ チルホルムアミ ド、 その他の極性が高く、 誘電率の大きい溶媒を使 用することが好ましい。 中でもァセ トニト リルが特に好ましい。 一般に、 フラーレン分子は、 二硫化炭素 (CS2 ) 、 トルエン、 ベンゼン、 オルトジクロルベンゼン等の Γ電子系を有する極性の低 い溶媒にしか溶解せず、 n—へキサン等の脂肪族系溶媒に対する溶 解度さえ極めて低い。 当然、 極性溶媒には溶解せず、 このことがフ ラーレン分子の電解重合を行う際の最大の問題点である。
• なぜならば、 通常、 電解重合で用いられる支持電解質は、 水など の極性溶媒にしか溶解しないからである。 従って、 フラーレン分子の電解重合を行うには、 フラーレン分子 及び支持電解質の両者を溶解させるような溶媒系を選択する必要が あるが、 このような要求を満たす溶媒は単体では存在しない。 この 要求を満たすためには、 フラーレン分子を溶解する溶媒と支持電解 質を溶解する溶媒との混合溶媒を用いるが、 単に、 このような溶媒 を用いただけでは、 フラーレン分子及び支持電解質の両方或いは一 方の溶解度が十分でないことが多い。
一般に、 水を始めとする水系の溶媒は誘電率が大きく、 塩である 支持電解質を溶解するためには優れた溶媒であるが、 水はフラーレ ン分子を溶解することが可能な二硫化炭素、 トルエン、 ベンゼン等 の 7Γ電子系を有する極性の低い溶媒とは溶解しない。
従って、 第 1溶媒と混合溶媒を調製する際に用いる第 2溶媒とし ては、 極性が高く、 かつ誘電率の大きい有機溶媒を選ぶ必要がある。 このような条件を満たす溶媒としては前述したとおりであるが、 最 も適切なのはァセ トァニリルである。 このァセ トニトリルは、 電解 セル中で支持電解質を用いて有機ラジカルを調製する際によく用い られる溶媒である。 ただし、 電解重合では第 2溶媒としてこのァセ トニ トリルに特に限定する必要はなく、 前記したようにジメチルホ ルムアミ ドやその他の溶媒も用いることができる。
また、 電解重合では、 前記非水溶媒中に不活性ガスを導入して十 分脱気することが望ましい。
たとえば、 図 2 1において、 不活性ガスによる脱気は、 一般にへ リゥムガスのバブリングによって行われることが多いが、 ヘリウム ガスの代わりに、 たとえば窒素やアルゴンなど他の不活性なガスを 用いてもよい。 なお、 酸素ガス等の除去を徹底させるには、 電解前 に、 あらかじめ脱水剤でそれぞれの溶媒を脱水処理し、 さらに真空 脱気を行って、 各溶媒をアンプルに保存しておき、 使用する段にな つて、 それらを真空ラインを通じて電解セル 5 9中に導入するとよ い。
このように電解液もしくは非水溶媒を脱気するのは酸素等がフラ 一レン重合体中に取り込まれるのを防ぎ、 常磁性中心の発現を抑制 し、 以つてフラーレン重合体の安定性を向上させるためである。 なお、 電解重合の際の電解液の温度は 5 0 °C未満とすることが望 ましい。 この際の温度が 5 0 °C以上になると、 球状炭素重合体は沈 殿物として得られる割合が多くなり、 また溶媒も沸点を越えてしま うことすらある。 そのため、 通常の電解重合ではヒー夕や冷却器を 適宜に設けることが望ましい。 たとえば、 前記マグネッ トス夕一ラ 一 6 6はヒーターを兼ね備えていてもよい。 かかる構成であれば、 球状炭素重合体を形成するための電気的ポテンシャルを印加してい る間、 電解液の温度を適宜コントロールすることができる。
また、 電解重合は、 直流電流を印加することによって行うことが 望ましく、 さらに、 電圧一定下で行うことが望ましい。
すなわち、 電解重合のための電気的ポテンシャル (特に電圧) は、 例えばポテンシヨス夕ッ トを用いて印加することができるが、 この ポテンシャルのかけ方は、 電流一定モード若しくは電圧一定モード のいずれかを選択することができる。 但し、 電流一定モードでポテ ンシャルをかけると、 電極上に高抵抗の薄膜が形成されて電流値が 低下する傾向があり、 電圧が高くなりすぎることがある。 このよう な状況では、 フラーレン分子のポリァニオンの状態が不安定になつ て、 一定の反応を維持するのが困難となることがある。 なお、 単にポテンシャル一定の条件下で電解重合を行う場合、 図
2 1に示したようなポテンシヨス夕ッ ト 6 0の代わりに、 例えば、 市販の乾電池と可変抵抗とを組み合わせた簡単な D C電源を用いる ことも可能である。
次に、 球状炭素重合体の構造例を説明する。
なお、 電解!]:合法により得られる球状炭素重合体は、 フラーレン 分子のァニオンラジカルと電気的に中性の分子等との間の付加反応 によって形成される環状付加重合体からなる球状炭素重合体であつ て、 電極上に薄膜として、 及び/又は、 沈殿物として得ることがで きる。
前記球状炭素重合体の構造を 2次元的に考えた場合、 既述したよ うに、 部分構造として C 60の 2量体 (図 2 0参照) の形成が考えら れるが、 さらに、 C 60の 3量体 (図 1 3参照) 及び C 60の 4量体 (図 2 2参照) の形成も可能であると考えられており、 平面的に或 いは立体的にこの部分構造が連なった重合体、 さらにはこの重合体 からなる薄膜であると考えられる。 もちろん、 フラーレン分子とし ての C 120 、 C 180 、 C 240 等の球状炭素重合体を含む薄膜形成の 可能性も考えられる。
一般に、 フラーレン分子はラジカルスポンジという言葉で代表さ れるように、 ラジカル種が存在する場合には、 容易に付加反応を起 こし、 ラジカルァダク トを形成する。 これはフラーレン分子中の炭 素原子が s p 2 と s p 3 との中間の原子価状態にあることに起因す る。 すなわち、 フラーレン分子同士のラジカルァダク ト形成に伴う s p 3 の原子価状態の形成が容易であるからである。
また、 非水溶媒に溶解したフラーレン分子が電気的に負のァニォ ンラジカルとなり、 さらにァニオンラジカル同士、 あるいはァニォ ンラジカルと電気的に中性のフラーレン分子とが反応して前記電極 上にフラーレン重合薄膜として形成されるためには、 上述した支持 電解質の選択に加えて、 極めて微妙な温度、 或いは電解ポテンシャ ルのコントロールが要求される。
すなわち、 前記に特定した非水溶媒を用いれば、 フラーレン分子 を溶解し電荷を帯びさせるようなことは比較的容易に達成できるが、 その重合が電極表面ではなく溶媒中で起きた場合には、 フラーレン 重合体の溶解度の低さから、 この重合体は沈殿することが多い。 こ の沈殿物が多くなると、 電極表面上での薄膜の付着量が少なくなる ことがある。
従って、 フラーレン重合体、 即ち、 環状付加重合体からなる球状 炭素重合体を薄膜として得ようとする場合は、 沈殿物が少なくなる ような条件下でその電解重合反応を行うことが望ましい。 特に、 反 応を加速するための加熱を行わず、 リチウムイオンを支持電解質の 対として前記反応を行う場合に、 強固で光沢のある薄膜を得ること ができる。
なお、 電解重合反応においては、 支持電解質から供されたリチウ ムイオンをはじめとする対イオンが前記環状付加重合体中に取り込 まれることがある。
このように、 対イオンが含まれたままでいると、 環状付加重合体 を含む球状炭素重合体は大気中において酸化されることがあるが、 目的に応じてこの対イオンをある程度除去することもできる。
その手段としてはたとえば、 前記対ィォンを含む環状付加重合体 を水溶液などの溶液中に浸潰し、 この溶液を加熱沸騰させると同時 に、 前記電解重合の際に印加するポテンシャルとは逆のポテンシャ ルを印加することによって前記対ィオンをある程度除去することが できる。
上述したフラーレンの電解重合法は、 もともと C60フラーレンの 〔2 + 2〕 シクロ付加結合のみからなるフラーレン重合体膜を得る ことを目的に、 本発明者が開発した技術であり、 このような重合体 はプラズマ重合法では得られないものである。
次に、 C60分子をモデルとし、 上述した電解重合反応が熱力学的 に可能かどうか、 半経験的レベルの分子軌道計算に基いて説明する。 なお、 ここで考える対イオンはリチウムイオンとする。
リチウム原子のパラメ一夕が設定されている MND 0 (半経験的 分子軌道法) 近似の計算結果によれば、 C60、 C60.Li 、 C 120. Li, C120.Li2 に対して以下のような生成熱の値が予測される。 計算結 果は次の通りである。
C60 : 8 64. 4 1 8 1 k c a 1/mo 1
C60.Li : 76 3. 00 1 k c a 1/mo 1 C 120. Li : 1 52 5. 7 1 6 k c a 1/mo 1 C120.Li2 : 1 479. 05 7 k c a 1/mo 1 ここで、 C120 は、 図 1 0 (A) に示したように環状付加した C 60の 2量体 〔 1 , 2— (C60) 2 〕 であり、 図示は省略するが、 リ チウムイオンは C60重合体のクロスリンク構造の 2つのフラーレン 分子に挟まれた構造 (C120.Li又は C120.Li2 ) が最も安定である。 なお、 前記化合物中のリチウムを含む系の計算はすべて非制限ハー ト リーフオック法により行った。
この計算結果から、 次の ( 1 ) 〜 ( 3 ) に示すような結果が導か れる。
( 1 ) C60は、 リチウムが配位することにより大きく安定化する。 これは、 C60の最低空軌道が自由電子に比べて著しく低い位置に存 在することによるものである。
( 2 ) ( C60) + ( C60.Li ) = ( C120.Li) +Qの反応熱 Qは、 — 1 0 6. 3 k c a 1 /m o 1と予測され、 発熱反応であり、 得ら れる C 120. Liは大きく安定化する。
( 3 ) 2 ( C60.Li ) = ( C120.Li2 ) + Qの反応熱は、 — 4 6.
9 4 5 k c a 1 /m o 1と予測され、 同じく発熱反応である。
これらの計算結果はあくまでも真空中での始状態と終状態とのェ ネルギ一差であり、 反応のポテンシャル障壁を求めるものではない。 しかしながら、 反応に際して立体障害等のェント口ピーの寄与が少 ない場合には系の自由エネルギーとの良好な関係を持つことから、 上記反応は容易に起こることがこの計算結果からも支持される。 以上、 C 60分子についてその生成熱に関するモデル計算を行った が、 次に、 図 2 3〜 3 1図を参照して C 70分子の場合を考える。
C70分子間の重合を理解することは、 C60分子の場合より容易で ない。 ここで便宜的に用いる C70分子の炭素原子のナンバリングシ ステムを図 3 2に示す。
C70の 1 0 5本の C— C結合は、 図 3 2に示すように C ( 1 ) — C ( 2 ) 、 C ( 2 ) - C (4 ) 、 C ( 4 ) — C ( 5) 、 C ( 5 ) - C ( 6 ) 、 C ( 5 ) - C ( 1 0 ) 、 C ( 9 ) — C ( 1 0 ) 、 C ( 1 0 ) — C ( 1 1 ) 、 C ( 1 1 ) — C ( 1 2 ) で代表される 8種類の C— C結合に分類され、 このうち C ( 2 ) — C (4) 、 C ( 5 ) — C ( 6 ) は C60の C = C結合と同程度の二重結合性を有している。 更に、 この分子の C ( 9 ) 、 C ( 1 0 ) 、 C ( 1 4) 、 C ( 1 5 ) を含む 6員環の 7Γ電子は非極在化し、 5員環を形成する C ( 9 ) 一 C ( 1 0) 結合が二重結合性を帯びると同時に、 C ( 1 1 ) 一 C ( 1 2) 結合が単結合性となる。
次に、 C70の重合プロセスを、 二重結合性の C ( 2 ) - C (4 ) 、 C ( 5 ) — C ( 6) 、 C ( 9 ) 一 C ( 1 0) 、 C ( 1 0 ) — C ( 1
1 ) について考える。 C ( 1 1 ) — C ( 1 2 ) 結合はほぼ単結合で あるが、 2つの 6員環にわたる結合 ( 6, 6 - ring fusion ) であ るので、 この結合の付加反応性についても吟味する。
まず、 C70の 〔2 + 2〕 環状付加反応を考える。 この 5種類の C — C結合 !; C ( 2) — C (4) 、 C ( 5 ) - C ( 6 ) 、 C ( 9 ) 一 C ( 1 0) 、 C ( 1 0) — C ( 1 1 ) 及び C ( 1 1 ) — C ( 1
2 ) 〕 の 〔2 + 2〕 環状付加反応からは 25種類の C 70の 2量体が 得られるが、 計算の便宜のために同じ C— C結合間の 9種の付加反 応のみを考える。
下記の表 1に MNDO/AM— 1及び PM— 3レベルの 2分子の C70から C140 の生成過程の反応熱 (AHf 0 (r) ) を示す。 表中、 C140 (a) (図 23 ) と C140 (b) (図 24) 、 C140 ( c ) (図 2 5) と C 140 (d) (図 2 6) 、 C 140 (e) (図 2 7 ) と C140 ( f ) (図 28) 及び C 140 ( g) (図 29 ) と C140 (h) (図 30) はそれぞれ C ( 2) — C (4) 、 C ( 5 ) — C ( 6 ) 、 C ( 9 ) — C ( 1 0 ) 、 C ( 1 0) —C ( 1 1 ) 結合の an ti.syn異性体のペアである。 C ( 1 1 ) — C ( 1 2 ) 結合間の付加 反応では D2h対称の C140 ( i ) (図 3 1 ) のみが得られる。 なお、 各図中、 上図は C140 分子の上面側から見たモデル図であり、 下図 は側面から見たモデル図である
Figure imgf000064_0001
ここで、 ΔΗί ° (r) AM- 1及び AHf ° (r) PM— 3とは、 J. J. P. Stewartによる半経験的分子起動法である MND 0法のパ ラメ夕リゼ一ションを用いる場合の反応熱の計算値である。
また、 クロスリンクのナンバーリングシステムは図 32に示し、 これは C70のナンバリングに準ずるものである。 なお、 「' 」 印は 同じナンバリングを有する隣の C70のものである。 更に、 結合長と は、 前述の MNDO/AM— 1法に基づく反応熱の計算値から予測 された前記クロスリンクを構成するシクロブタン環の C_C原子間 の結合距離である。
表 1から、 anti.syn異性体間のエネルギー差は認められない。 ま た、 C (2) — C (4) 及び C (5) — C (6) 結合間の付加反応 は、 C60の付加反応と同程度に発熱的であり、 逆に C ( 1 1 ) - C ( 1 2) 結合間の付加反応は大きく吸熱的である。
ところで、 C ( 1) — C (2) 結合は明らかに単結合であるが、 この結合間の環状付加反応の反応熱は AM— 1及び PM— 3レベル でそれぞれ +0. 19及び_ 1. 88kcal/molとなり、 表 1の C14 0 ( g) と C140 ( h) の反応熱とほぼ等しい。 このことは、 C ( 1 0) - C ( 1 1 ) 結合間の付加反応も熱力学的に起き得ないこ とを示唆している。 従って、 C70分子間の付加重合反応は C (2) -C (4) 及び C (5) — C (6) 結合で優先的に起き、 C (9) — C ( 10) 結合間の重合は起きたとしてもその確率は低いものと 考えられる。
なお、 単結合性である C ( 1 1) 一 C ( 12) 結合間の反応熱が C ( 1) 一 C (2) 結合間の反応熱より大きく吸熱的になるのは、 C140 ( i ) のシクロブ夕ン構造、 とりわけ C ( 1 1) _C ( 1 2 ) 結合の歪みが極めて大きいことによると考えられる。
また、 このような 〔2 + 2〕 環状付加体に際してのクロスリンク 結合に隣接する s p2 炭素の 2 PZローブ (電子雲) の重なりの効果 を評価するために、 C70の 2量体、 C70— C60重合体及び C70H2 の生成熱の比較を行った。 詳細な数値データは割愛するが、 この重 なりによる効果は C 140 (a) 〜 ( h ) にわたつてほぼ無視できる と思われる。
上述した計算結果は、 あくまでも MND◦近似レベルでの計算結 果であるが、 この結果からも、 電解重合法により、 C70分子の環状 付加重合体 (図 2 3〜図 3 1 ) からなる球状炭素重合体が容易に生 成されることが伺える。
本発明の水素吸蔵用材料としては、 次に、 プロ トン (H+ ) と水 素結合し得る基を導入してなる炭素質材料を挙げることができる。 そこで、 このプロ トン (H+ ) と水素結合し得る基を導入してな る炭素質材料について説明する。
かかる水素吸蔵炭素質材料は、 基本的には、 炭素を主成分とする 炭素質材料を母体とし、 これにプロ トンと水素結合し得る基が導入 されてなるものである。
母体となる炭素質材料には、 炭素を主成分とするものであれば任 意の材料を使用することができる。
ここで、 母体となる炭素質材料としては、 具体的には、 炭素原子 の集合体である炭素クラスタ一や、 チューブ状炭素質 (いわゆる力 —ボンナノチューブ) を含む炭素質材料等を挙げることができる。 炭素クラス夕一には、 種々のものがあり、 フラーレンや、 フラー レン構造の少なく とも一部に開放端を持つもの、 ダイヤモンド構造 を持つもの等が好適である。
本例の水素吸蔵炭素質材料は、 炭素クラスターを母体とする炭素 クラスター誘導体 (炭素クラスターを構成する炭素原子にプロ トン と水素結合し得る基を導入したもの) を主成分として含有している。 本発明の上記クラス夕一とは通常は、 数個から数百個の原子が結 合又は凝集して形成されている集合体のことであり、 また、 「炭素 を主成分とするクラスター」 とは、 炭素原子が、 炭素一炭素間結合 の種類は問わず数個から数百個結合して形成されている集合体のこ とである。 但し、 必ずしも 1 0 0 %炭素のみで構成されているとは 限らず、 他原子の混在もあり得る。 このような場合も含めて、 炭素 原子が多数を.占める集合体を炭素クラス夕一と呼ぶこととする。 こ の集合体を図面で説明すると (但し、 プロ トンと水素結合し得る基 は図示省略) 、 図 3 3〜図 3 6に示すとおりであり、 プロ トン伝導 体の原料としての選択の幅が広いものである。
まず、 図 3 3に示すものは、 炭素原子が多数個集合してなる、 球 体又は長球、 又はこれらに類似する閉じた面構造を有する種々の炭 素クラス夕一である (但し、 分子状のフラ一レンも併せて示す) 。 それに対して、 それらの球構造の一部が欠損した炭素クラスターを 図 3 4に種々示す。 この場合は、 構造中に開放端を有する点が特徴 的であり、 このような構造体は、 アーク放電によるフラーレンの製 造過程で副生成物として数多く見られるものである。 炭素クラス夕 一の大部分の炭素原子が S P 3 結合していると、 図 3 5に示すよう なダイヤモンドの構造を持つ種々のクラス夕一となる。
図 3 6は、 クラスター同士が結合した場合を種々示すものであり、 このような構造体でも、 本発明に適用できる。 本発明においては、 前記炭素クラスターを構成する炭素原子に、 上述したプロ トンと水素結合し得る基を導入することが必要である。 上記水素吸蔵用炭素質材料を製造するには、 母体となる炭素質材 料を炭素原料とし、 この炭素原料を、 プロ トンと水素結合し得る基 を含むガス雰囲気中で焼成するか、 或いは前記基を含む液体中に投 入して処理することにより、 前記炭素原料を構成する炭素原子に前 記基を導入すればよい。
原料となる炭素原料は、 前述したように炭素系電極を用いるァー ク放電法等により製造することができる。
前記フラーレン分子 C 60、 C 70等々、 カーボンナノチューブ及び フラーレン煤等、 母体となる炭素質材料を構成する炭素原子に水素 結合し得る置換基、 たとえば酸素原子、 フッ素原子、 窒素原子、 硫 黄原子又は塩素原子などの原子を含む置換基を導入すると、 得られ た誘導体は常温近傍において水素の良好な吸蔵放出が可能である。 その理由は完全に解明されたわけではないが、 おおよそ次のメ力 ニズムによると考えられる。 即ち、 水素ガスを小体積中に吸蔵する ためには、 水素分子を水素原子に、 さらにはプロ トンと電子にまで 分解することが有効であると考えられる。 しかし、 それらの結合ェ ネルギ一は、 通常、 室温下で解離させるには大きすぎる。
ところが、 前記誘導体の多くはその母体の炭素骨格が高い電子親 和性を有するため、 電子を引きつけ易く、 しかもその引き付けた電 子を安定化することができる。 因に、 いくつかの原子の電気陰性度 (電子受容性) を挙げると、 フッ素は 4、 酸素は 3 . 5、 硫黄は 2 . 5、 窒素は 3である。
更に一方では、 前記置換基中に存在する酸素原子ゃフッ素原子を 始めとする原子によって水素はプロ トン化して水素結合を起こし、 エネルギー的に安定した状態で存在することができる。 言い換えれ ば、 電子及びプロ トン状態での安定化エネルギーが大きいので、 室 温近傍の温度でも水素を比較的容易に電離 ·分解することができ、 炭素質材料中へ大量の水素を吸蔵することが可能となる。
本発明において、 前記置換基の導入対象となるべき炭素原料の 1 つであるフラーレン分子としては、 C m ( mは 3 6以上の偶数、 好 ましくは、 3 6、 6 0、 7 0、 7 8、 8 2、 8 4である。 ) で表わ される炭素クラスター分子であり、 これらは 2種以上を混合して用 いることもできる。
母体となる炭素質材料の炭素原子に前記置換基を導入するときは、 前者の炭素原子数の、 後者の置換基の数に対する比を ( 1 0 : 1 ) 〜 ( 1 : 1 ) にすることが好ましい。
このように炭素原料 (即ち、 フラーレン分子、 カーボンナノチュ ーブ、 フラーレン煤等) の炭素原子に前記置換基を導入して得られ る各誘導体は、 それぞれ単独はもちろんのこと、 それらを 2種以上 混合しても、 本発明に言う水素吸蔵用炭素質材料として有効である。 前記炭素原料の炭素原子に前記置換基を導入する手法としては、 この炭素原料を、 プロ トンと水素結合し得る基を含むガス雰囲気中 で焼成する方法と、 前記置換基を含む液体中に投入して処理する方 法が有効である。 具体的には前者の方法としては、 後述するような 公知の焼成装置を用いればよいし、 後者の方法としては、 たとえば 置換基が硫黄原子を含む場合であれば、 液体として発煙硫酸やベン ゼン (窒素酸化物ガスのパブリング下) を用いて処理するとよい。 このようにして得られた炭素質材料は水素吸蔵能を有するが、 触 媒能を有する金属の微粒子を、 上記炭素質材料の少なくとも表面に 接触させてそこに担持させれば、 一層の水素吸蔵能が期待できる。 次に、 本 ¾明において水素吸蔵用炭素質材料として用いられる、 構造中に屈曲部を有する炭素質材料について説明する。
かかる水素吸蔵用炭素質材料は、 基本的に屈曲部を構造中に有す る炭素質材料であり、 この炭素質材料としては、 遷移金属、 その酸 化物及びその炭化物から選ばれた 1種以上の触媒の表面に、 炭素含 有化合物の熱分解により生成されたものが好ましく、 この炭素質材 料単独でも、 またそれに前記触媒が被着した複合体でも、 同じよう な水素吸蔵能を発揮できる。 そして、 最も好ましい炭素質材料の構 造体は、 部分的に屈曲部を構造中に有するグラフアイ トである。 なお、 前記触媒としては、 鉄、 ニッケル、 コバルト、 銅、 マンガ ン、 クロム、 バナジウム、 チタン、 ジルコニウム、 ニオブ、 モリブ デン、 ルテニウム、 パラジウム、 銀、 金、 白金、 イ リジウム、 タン グステン及びこれらの酸化物や炭化物があるが、 中でも鉄、 ニッケ ル、 コバルト、 及びこれらの酸化物及び炭化物が好ましい。
本発明の水素吸蔵用炭素質材料は、 前記触媒上で炭素含有化合物 を熱分解することにより、 前記触媒の表面に生成することができる。 前記炭素含有化合物としては炭素原子を含む化合物であれば特に 種類を問わないが、 実用的にはトルエン、 エチレン、 アセ トン、 メ 夕ノール、 エタノール等から選ばれる 1種以上であり、 好ましくは トルエン及びァセ トンである。
通常、 前記熱分解は前記炭素含有化合物を気体状態のままキヤリ ァガス (ヘリウム · アルゴン等の不活性ガス、 窒素ガス) に随伴さ せたまま、 前記触媒上で行なわれる。 上記熱分解温度は通常、 9 0 0 ~ 1 3 0 0 °Cとするのが好ましい。 更にこの熱分解の工程を説明すると、 後述の熱分解装置 (詳細は 後述する。 ) により、 まず、 炭素含有化合物の液体中でボンベから 送られてくる不活性ガス等のキヤリアガスをたとえばバブリングさ せ、 炭素含有化合物を気化させて、 キャリアガスとともに反応管に 送る。 これ以外にも、 炭素含有化合物が常温常圧下で気体であるな らば、 これをそのまま、 あるいはキャリアガスに随伴させて反応管 に送ってもよい。
反応管内には予め触媒がセッ トしてあり、 加熱装置によって、 反 応管を所望の温度に加熱できるようになつている。
加熱すると、 炭素含有化合物は触媒上で分解し、 その表面に炭素 材料が生成される。 反応終了後は触媒とともに炭素質材料を外部に 取り出す。 この炭素質材料は触媒を含んだ状態で用いてもよいし、 また酸処理等により触媒を取り除いても構わない。
前記キヤリアガスには水素などの還元性ガスを添加、 混合するこ とが望ましい。 前記炭素質材料の水素吸蔵能を向上させる効果があ るからである。 還元性ガスと、 反応副生成物であるアモルファス力 一ボン等が部分的に反応し、 水素吸蔵能の高い炭素質材料の生成比 率が高くなるためと考えられる。
キヤリァガス中に添加混合する還元性ガスの比率は 0〜 1 0 0 % でよい。
熱分解温度については、 基本的に炭素質材料が触媒上に生成でき る温度でよいが、 9 0 0〜 1 3 0 0 °Cの範囲が好ましい。 9 0 0 °C 未満であると、 炭素の層状構造が形成されず、 アモルファス状にな つてしまい、 また 1 3 0 0 °Cより高い温度であると、 高温で安定な 欠陥や屈曲部のないグラフアイ ト構造が成長し、 本発明の目的に好 都合な構造が得られないからである。
こうして得られた炭素質材料が優れた水素吸蔵能を示す理由は現 時点で完全に解明されたわけではない。 しかし、 おおよそ以下のよ うな理由が考えられる。 炭素含有化合物のガスの分解によって生成 する炭素質材料は、 おおよそ触媒粒子の屈曲した表面に沿って成長 するため、 グラフアイ 卜のような層状構造も一部屈曲したものとな る。 この屈曲部においては、 電子のエネルギー準位の縮合がとけ、 半導体的になるとともに、 より深く安定したエネルギー準位へと低 下する。 この深いエネルギー準位に水素分子中の電子が影響をうけ、 分子結合が解離されやすくなるのではないかと考えられる。 水素分 子を水素原子へ分解することは、 大量の水素吸蔵を行なう上で、 必 須と考えられるため、 このような屈曲した構造をもつことが水素吸 蔵を実現するための重要な条件となる。 あるいは、 この深いエネル ギー準位へ電子が移動して、 水素は一部プロ トン化した状態を維持 している。 いずれにしても、 このような屈曲した構造を確実に製造 することが非常に重要な技術であり、 それを効率的に実現した点に 本発明の独創性と特長がある。
最後に、 水素分子を水素原子へ、 あるいは更にプロ トンと電子へ と分離できる触媒能を有する金属の微粒子を炭素質材料に担持させ た水素吸蔵用材料について説明する。
上記において、 母材の前記炭素質材料に担持させる触媒機能性の 金属微粒子としては、 平均粒径が l / m以下のものが好ましく、 特 に 1 0 0 n m以下が好ましい。
この含有量は後述する理由から前記炭素質材料に対し、 1 0重量 %以下と少量でよい。
前記金属としては、 白金、 白金合金、 パラジウム、 マグネシウム、 チタン、 マンガン、 ランタン、 バナジウム、 ジルコニウム、 ニヅケ ル一ランタン合金、 チタン一鉄合金などがあるが、 好ましいのは白 金及びその合金である。
これらの金属は水素分子を水素原子へ、 あるいは更にプロ トンと 電子へと分離できる触媒能を有しており、 これらを上述したように 微粒子の形で前記炭素質材料に担持させると、 触媒反応を顕著にし て促進させることができるだけでなく、 高価な白金等の金属の使用 量を大幅に節減することが可能である。
その担持手段としては、 白金錯体を含む溶液を用いる化学的担持 法か、 又は白金を含む電極を用いるアーク放電法の手法を適用する とよい。 前者の化学的担持法では、 たとえば塩化白金酸水溶液を亜 硫酸水素ナトリゥムゃ過酸化水素で処理し、 次にこの溶液に前記炭 素質材料を攪拌する。 この方法は燃料電池の触媒電極作製時に用い られるもので、 液相化学担持方法とも呼ばれる。
後者のアーク放電法では、 アーク放電の電極部に白金や白金合金 を部分的に組み込んでおき、 それをアーク放電させることによって 蒸発させ、 チャンバ一内に収納してある前記炭素質材料上に付着さ せる。
本発明に用いる炭素質材料としては、 フラーレン分子、 その重合 体、 カーボンナノチューブ、 部分的なフラーレン構造を有するもの、 若しくは炭素質材料にプロ トンと水素結合し得る基を導入してなる 炭素質材料誘導体等、 およびそれらの混合物が好ましい。
フラーレン分子は一般式 C n (但し、 nは幾何学的に球状化合物 を形成し得る 2 0以上の偶数である。 ) で表される炭素原子のみか らなる物質で、 単体であっても混合物であってもよい。 好ましいの は C 60フラーレン (図 8参照) 又は C 70フラーレン (図 9参照) 又 はこれらの混合物であるが、 いずれも更に高次フラーレン ( C 78、 C 80、 C 82、 C 84 - · · ) が含まれていてもよい。 これらのフラー レン分子は、 たとえば炭素電極のアーク放電法によって容易にかつ 低コス トで製造することができる。
本発明に用いるフラーレンの重合体としては、 とくに重合度に限 定する必要はないが、 製造工程に由来して一般に重合度の比較的小 さなものが多い。 その構造はたとえば C 60フラ一レンの重合度 2の プラズマ重合体の場合、 図 1 0 ( A ) 、 (B ) に示されるような構 造を有し、 重合度 3のものは図 1 3に示されるような構造を有する。 また、 C 70フラーレンの重合体も、 重合度の比較的小さいものが一 般的である。
フラーレンのプラズマ重合法としては、 高周波プラズマ法、 直流 プラズマ法、 E C Rプラズマ法、 マイクロ波プラズマ重合法などが ある。 これらのうち、 普及度の高い高周波プラズマ法の概略につい て説明すると、 排気した真空反応器内にアルゴン等の不活性ガスを 供給し、 器内を同ガスで満たしてから、 フラーレン分子を収納した 容器に通電し、 これを加熱する。 これによりフラーレン分子は気化 する。 そして高周波電源から高周波電圧を印加して、 対向配置され た電極間に高周波プラズマを発生させると共に、 気化したフラーレ ンに照射すると、 フラーレン分子は励起されて、 真空反応器内にセ ッ トされていた基板等の上に膜状のプラズマ重合体を生成すること ができる。 なお、 本発明においては、 前記フラーレン分子、 及び/又はその 重合体中にカーボンナノチューブが含有されている方が好ましく、 このカーボンナノチューブは、 炭素電極のアーク放電時にフラーレ ン分子と共に生成されるススの中に含まれていることが多い。
本発明において、 フラーレン分子又はその重合体が好ましく用い られるのは、 これらを母材とすると、 かなり多量の水素を吸蔵でき るからである。 このような効果が出るのは、 それらを構成する炭素 原子が比較的低い L U M O (最低非占有分子構造) レベルを有する ため、 前記触媒能をもつ金属微粒子の作用で生じた水素原子又はプ 口 トンが炭素質材料内で安定化し易く、 その結果、 多量の水素が安 定的に吸蔵されるからだと考えられる。
このような効果は、 前述したフラーレン分子又はその重合体に限 らず、 これらと同様なメカニズムを有する他の炭素質材料にも、 共 通する現象と考えられる。
上記各水素吸蔵用炭素質材料は、 その応用面は多岐にわたってお り、 たとえば自動車、 船舶、 一般家庭用電源各種小型電気機器など、 水素の供給を必要とするシステムに広く適用できる。
例えば、 上述した水素吸蔵用炭素質材料は、 その特長を生かして 特定の電池の構成に適用することができるが、 そうした電池のうち、 アル力リ蓄電池及び空気電池の構成の説明については、 後述の実施 例に譲るとして、 ここでは図 3 7を参照して燃料電池の概略的構成 について説明する。
この燃料電池は、 触媒 7 7 a及び 7 7 bをそれぞれ密着又は分散 させた互いに対向する、 端子 7 8 a及び 7 9 a付きの負極 (燃料極 又は水素極) 7 8及び正極 (酸素極) 7 9を有し、 これらの両極間 にプロ トン伝導体部 80が挟着されている。 使用時には、 負極 78 側では導入口 8 1から水素が供給され、 排出口 82 (これは設けな いこともある。 ) から排出される。 燃料 (H2 ) 83が流路 84を 通過する間にプロ トンを発生し、 このプロ トンはプロ トン伝導体部 80で発生したプロ トンと共に TF.極 79側へ移動し、 そこで導入口 85から流路 86に供給されて排気口 87へ向かう酸素 (空気) 8 8と反応し、 これにより所望の起電力が取り出される。
以上の構成において、 水素供給源 89に、 ここで水素を吸蔵した 本発明の水素吸蔵用炭素質材料が収納されている。 なお、 予めこの 材料に水素を吸蔵させておき、 このものを水素供給源 89に収納し てもよい。
なお、 かかる構成の燃料電池は、 プロ トン伝導部 80でプロ トン が解離しつつ負極 78側から供給されるプロ トンが正極 79側へ移 動するので、 プロ トンの伝導率が高い特長がある。 ここでプロ トン 伝導部 80は、 P C T/J P 00/04864において開示したプ 口 トン伝導体を用いれば、 これまでプロ トンの伝導に必要とされた 加湿装置等は不要となるので、 システムの簡略化、 軽量化を図るこ とができる。
以下、 実施例を挙げて、 本発明を更に具体的に説明する。
実施例 1
図 1に示すようなアーク放電装置の反応室内をヘリゥムガスの雰 囲気に保ち、 圧力を 100 To r r ( 1. 33 x l 04 Pa) に維 持した。 陽極炭素棒としては、 鉄とニッケルをいずれも 4% (重量 %以下、 同じ) 添加したものと、 白金を 2 %添加したものをそれぞ れ用意するとともに、 陰極 2には炭素 (グラフアイ ト) 棒を用いた。 これらの陽極炭素棒を順次用いてそれぞれ約 3 0分間、 直流電源 でアーク放電を行ない、 放電終了後、 反応室内よりスス状の水素吸 蔵用炭素質材料を収集するとともに、 陰極 2上に堆積したスス状の 水素吸蔵用炭素質材料も収集した。
次に、 これらのスス状の水素吸蔵用炭素質材料を乳鉢ですりつぶ し、 それに触媒として白金を担持させ、 試料 (水素吸蔵用炭素質材 料) を得た。
次に、 この試料を充分乾燥し、 フリッ トメッシュ栓の付いたアン プルに封入し、 水素吸蔵能の評価を行った。 まず、 測定容器に上記 アンプルを封入したのち、 1 5 0 °Cまで昇温させつつ真空引きを 3 0分間行い、 再び冷却してから、 1 0 0気圧の水素圧に保持し、 こ の状態でさらに 2 4時間放置した。 このように保存された試料の水 素吸蔵量を、 積算流量計を用いて評価したところ、 1 0 O m l / g の水素吸蔵能を確認することができた。
なお、 前記触媒として鉄、 ニッケル又は白金を担持させない試料 について同様の水素吸蔵量の測定を行なったところ、 約 5 m 1の水 素を吸蔵したことが明らかとなった。
実施例 2
この実施例 2では次のようにしてアル力リ蓄電池を作製した。 <正極の作製 >
平均粒径 3 0 mの球状水酸化二ッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3 %を加え、 水で混練 することにより、 ペース トを調製した。 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜いて、 直径 2 0 m m、 厚さ 0 . 7 mmの正極を作製した。 <負極の作製 >
前記実施例 1において製造した水素吸蔵用炭素質材料 (白金を担 持したもの) にカルボキシメチルセルロース 5 %と水とを加え、 混 練したペース トを調製し、 このペース トを空孔率 9 5 %の発泡式二 ッケル多孔体に充填し、 乾燥及び加圧したのち打ち抜いて、 直径 2
0 m m、 厚さ 0 . 5 m mの負極を作製した。
<ァルカリ蓄電池 >
次に、 前記工程で作製した正極及び負極を用いると共に、 7 Nの 水酸化力リゥム水溶液を電解液として、 図 3 8に概略的に示すよう なアルカリ蓄電池 (二次電池) を作製した。
なお、 このアルカリ電池は、 電池容器 9 7に正極 9 8と負極 9 9 とが電解液 1 0 0を挟んで内蔵され、 それぞれの極から、 正極リ一 ド 9 8 aと負極リード 9 9 aとが電池容器 9 7の外部へ取り出され ている。
ぐ充放電性能 >
前記アルカリ蓄電池につき、 0 . 1 C、 上限 1 . 4 V、 下限 0 .
8 Vで充放電試験を行った。 そのサイクル特性を図 3 9に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 実施例 3
この実施例 3では、 次のようにして空気電池を作製した。
<空気極の作製 >
前記実施例 1 と同様にして白金を担持した水素吸蔵用炭素質材料 を調製した。 この水素吸蔵用炭素質材料と、 パーフルォロスルホン 酸からなる高分子電解質のアルコール溶液とを、 n—酢酸ブチル中 に分散させて、 触媒層スラリーを調製した。
一方、 厚み 2 5 0〃mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち 4 0 0 °Cに加熱することにより、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不織布 を 4 c m x 4 c mに切断し、 その一方の面に前記触媒層スラ リ一を 塗布した。
ぐ空気極と高分子電解質膜との接合 >
触媒層に塗布した上記カーボン不織布の塗布面に、 厚み 5 0 j のパーフルォロスルホン酸からなる高分子電解質膜を接合し、 しか るのち乾燥した。
<水素極の作製 >
前記空気極の作製に用いたのと同じ水素吸蔵用炭素質材料 (白金 を担持したもの) にカルボキシメチルセルロース 5 %と水とを加え てペース トを調製し、 このペース トを空孔率 9 5 %の発泡式ニッケ ル多孔体に充填、 乾燥したのち加圧し、 4 c m x 4 c mに切断して、 厚み 0 . 5 m mの水素極を作製した。
<空気電池の作製 >
前記各工程で得た空気極とパーフルォロスルホン酸高分子電解質 膜との接合体に、 この高分子電解質膜を中にして前記水素極を重ね 合わせ、 その両面を厚み 3 m mのテフ口ン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1 . 5 m mの多数の孔が設けられ、 電極に空気がスムーズ に供給されるようにしてある。
こうして組み立てられた空気電池の概略的構造を図 4 0に示す。 ここに例示された空気電池は、 高分子電解質膜 1 1 0 aを中にし て水素極 1 1 1と空気極 1 1 4とが対向配置され、 これらの外側を、 テフロン板 1 1 3 aと、 多数の空気孔 1 1 4を設けたテフロン板 1 1 3 bとで挟み込み、 全体をボルト 1 1 5 a、 1 1 5 bにより固定 したもので、 各極から外部に水素極リ一ド 1 1 1 a、 空気極リ一ド 1 1 2 aがそれぞれ取り出されている。
<空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 I mA/cm2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 1 mA/c m2 で放電させた。 その結果、 図 4 1に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 1 0 0 k g /c m2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/c m2 で放電特性を測定したところ、 図 42に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。
実施例 4
以下に複素ィンピーダンス測定に関して説明する。 図 43に示す ように、 試料は 1 gあたり約 1 1 Omlの水素吸蔵能を有する白金 担持した C60試料 1 32を用いた。 この試料 1 3 2をペレツ ト状に 成形し、 アルミニウム電極 1 30で挟んだものを耐圧チャンバ一 1 2 2内に封入した。 そして、 水素を導入し、 その後、 バルブ 1 3 1 を通して排気する。 なお、 複素インピーダンスは印加周波数 0. 1 H zから 1 0 MH zの領域において電源 1 33より振幅電圧 0. 1 Vの条件下で測定した。 以下すベての測定を同様の周波数領域で行 つた。 ィンピーダンス測定に関し、 本実施例のペレツ 卜からなる炭素質 材料は、 電気的には図 44 (A) に示すような等価回路を構成して おり、 抵抗 204と容量 20 5の並列回路で表される炭素質材料 2 0 1も含めて、 第 1極 2 0 2と第 2極 203との間にそれぞれ容量 2 0 6を形成している。 なお、 容量 20 5は、 荷電粒子が移動する ときの遅延効果 (高周波のときの位相遅れ) を表し、 抵抗 2 04は 荷電粒子の動き難さのパラメ一夕を表す。
ここで、 測定インピーダンス Zは、 Z =R e ( Z ) + i · I m (Z ) で表され、 上記等価回路で示される炭素質材料の周波数依存 性を調べた。
まず耐圧チャンバ一 1 2 2に水素を導入後、 (a) 8 0気圧下で 2時間保った状態、 (b) その後、 大気圧下に水素を開放した直後 の状態、 (c) 大気圧へ水素を開放後、 1 0分経過した状態の 3例 について、 それぞれ複素インピーダンス測定を行った結果を図 4 5 に示す。 それで、 水素吸蔵能を有する炭素質材料である白金を担持 したフラーレン C60の複素ィンピーダンス測定の結果をみると、 ま ず水素を 80気圧下で 2時間保った状態の測定 (a) では、 荷電粒 子の移動に伴う信号が明瞭に観測された。 それは図 45によると、 高周波数部分に偏平ではあるが、 非常にきれいな単一の半円状円弧 ( d ) を見ることができる。 これは、 ペレツ ト 1 2 1の内部におい てなんらかの荷電粒子の伝導挙動が存在していることを示している。 ここで、 水素を大気圧下に開放すると、 その直後には (b) に示 すように半円弧が ( e) のように大きくなり、 さらに開放して 1 0 分後 ( c) では、 円弧が非常に大きくなること (f ) が見て取れた。 複素インピーダンスでは、 実軸における円弧の径は、 図 44 ( A) の等価回路の抵抗 2 0 4の大きさに相当し、 被測定体の直流抵抗成 分とみることができる。 したがって上記の結果は、 炭素質材料から の水素ガスの放出とともに測定系のィンピ一ダンスが大きくなつて いることを意味している。
これは、 開放されたことに伴い、 水素に由来する荷電粒子が時間 と共に減少したためと考察される。
このうち、 電子は、 その質量が非常に小さく、 測定した周波数領 域では観測できない (電子を観測するには、 数百 M H z以上の周波 数の交流電圧を印加する必要がある。 ) 。 それ以外の荷電粒子とし ては、 測定系の構成から、 プロ トン (H + ) 以外には考えられない。 比較として、 上記と同じサンプルを窒素雰囲気に置き、 同様に複 素ィンピ一ダンスの周波数特性を測定したところ、 上記のような半 円弧は見られず、 図 4 4 ( B ) に等価回路を示すような概ねキャパ シ夕単独と同様の挙動が観測された。
このことは、 本発明に基づく材料が、 水素に由来するプロ トンを 荷電粒子として有していることを示唆している。
したがって、 これらの実験結果は、 上記の材料が、 水素をプロ ト ンの形態で内部に貯蔵している事実を支持するものである。
実施例 5
水素吸蔵用炭素質材料の製造方法としてアーク放電法を用いた。 まず図 1に示すように反応室 1をヘリウム雰囲気とし、 圧力を 1 0 0 T o r r ( 1 . 3 3 x 1 0 4 P a ) にして、 約 3 0分間直流電源 でアーク放電を行い、 放電終了後に反応室 1内の炭素質スス材料や 陰極 3に堆積し成長した水素吸蔵用炭素質材料を収集した。 そして 乳鉢等でこれをすりつぶした後、 硫酸中で超音波分散を行った。 こ れに過マンガン酸カリゥムを加えた後、 加熱処理を行ってァモルフ ァスカーボンを酸化除去した。 この試料 (カーボンナノチューブ) について P E E (Photo Electron Emission) 法で仕事関数を測った ところ、 図 4に示すように 5. 1 5 eVを示した。 これを水素 1 0 0気圧下で常温時に約 1日放置したのちに水素吸蔵能を調べたとこ ろ、 試料 1 gあたり約 5 m lの水素を吸蔵することが明らかとなつ た。
実施例 6
実施例 5で得られた炭素質材料に触媒として白金を混合し、 同様 にして水素吸蔵能を調べた。
即ち、 試料を 1 0 0気圧下で常温下の水素ガス雰囲気に約 1日放 置し、 しかるのち水素の吸蔵量を測定したところ、 試料 l gにっき 約 1 50mlの水素を吸蔵したことが明らかとなった。
実施例 7
試料として、 半導体性材料である白金担持 C6。フラーレン (実施 例 4と同じ) を選び、 この試料の複素インピーダンスを実施例 4に 示す手法に従って測定した。 この複素ィンピ一ダンスを水素吸蔵 (水素の吸蔵は 80気圧下にて行なった) の前後で比較した結果は 図 3に示す通りである。 この材料は吸蔵能が 2重量%であり、 その 複素抵抗は図示の如くになり、 直流抵抗成分の差は約 1桁である。 次に、 導電性材料として MWCNT (マルチウォール力一ボンナ ノチューブ) を選んで、 同様に 80気圧の水素ガスの下で抵抗成分 の減少を調べた。 その結果を図 46に示す。 この材料の吸蔵能は 4 重量%であり、 抵抗成分の減少は約 2桁であって、 前記の結果と矛 盾しない。 なお、 水素吸蔵能がない場合には、 抵抗成分の変化が殆 どないことが、 実験的に確認されている。
実施例 8
次に、 水素吸蔵用炭素質材料としてフッ化フラーレンを作成した。 アンプル中にフッ素ガスと炭素質材料を封入し、 300°Cで 3時間 加熱を行うことで作成した。 この試料について水素吸蔵能を測った ところ、 1 gあたり約 1 10 m 1の水素吸蔵能を有することがわか り、 この試料に関して複素インピーダンス測定を行ったところ、 図 45と同様に明瞭なプロ トン (陽子) による信号が観測された。 このように、 水素吸蔵用炭素質材料に電子供与体としてのフッ素 を付加した場合も、 他の実施例と同様の吸蔵能を示すことが判明し た。
また、 遷移金属元素 (例えば白金) と水素吸蔵用炭素質材料と混 合させて用いることで、 その金属元素が触媒として機能し、 更に能 率的な水素吸蔵が可能であることも判明した。 同時に電子供与体で あるフッ素ゃアンモニア等のアミン系分子と水素吸蔵用炭素質材料 とを混合することで、 電荷分離をより能率的に生じさせることも明 らかになつた。
実施例 9
以下に、 CVD法による水素吸蔵用炭素質材料の作製について説 明する。
図 47に示すように、 耐圧チャンバ一 142内を 10— 3T 0 r r ( 0. 133 P a) に保った状態で、 N2 ガスを 120 m 1/m i n、 そして C2H2ガスを 15 ml/mi nの割合でフローさせた。 次に、 マスフ口一コント口一ラー 140によって混合されたガスを ヒ一夕一 146内で 700 °Cに加熱し、 炭素分子を加熱分解させな がら、 耐圧チャンバ一 142内に設置した水冷式銅製ニードル 1 4 4に接触させて炭素分子を トラップさせて、 炭素質材料を作製した。 反応時間は約 1時間とした。 反応後、 炭素質材料等を集め、 1 0重 量%の白金黒を混合して乳鉢でするつぶした後、 前記した方法で水 素吸蔵能を測定したところ、 1 g当たり約 1 0 Omlの水素吸蔵能 を有することが叫らかとなつた。
実施例 1 0
以下に、 レーザ一アブレーション法による水素吸蔵用炭素質材料 の作製について説明する。
図 48に示すように、 ヒー夕 1 47により 1 200°Cに保ったフ アーネス 1 49内にグラフアイ トターゲッ ト 1 50を設置した。 励 起光源は N d : Y A Gレーザ 1 48 (波長 532 n m、 30 0 m J / 1 u 1 s e ) を用いた。 ファーネス 149内はアルゴンをフロ —させながら 500 T o r r ( 6. 6 5 X 1 04 P a) に保った。 そして前記 Y AGレーザ 148でグラフアイ ト夕一ゲヅ ト 1 50を 叩き、 下流側にセッ トした水で冷やされた水冷式銅製ニードル 1 5 1に炭素を集めることで炭素質材料を作製した。 これを 1 0重量% の白金黒と混合して乳鉢でするつぶした後、 この炭素質材料につい て前記した方法で水素吸蔵能を測ったところ、 l g当たり約 9 5m 1の水素吸蔵能を有した。
実施例 1 1
この実施例 1 1では次のようにしてアル力リ蓄電池を作製した。 <正極の作製 >
平均粒径 30 /mの球状水酸化ニッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3 %を加え、 水で混練 することにより、 ペース トを調製した。 このべ一ス トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜いて、 直径 2 0 mm、 厚さ 0. 7 mmの正極を作製した。
く負極の作製 >
前記実施例 7において製造した水素吸蔵用炭素質材料 (白金を担 持したもの) にカルボキシメチルセルロース 5 %と水とを加え、 混 練したペース トを調製し、 このペース トを空孔率 9 5 %の発泡式二 ッケル多孔体に充填し、 乾燥及び加圧したのち打ち抜いて、 直径 2 0mm、 厚さ 0. 5mmの負極を作製した。
<ァルカリ蓄電池 >
次に、 前記工程で作製した正極及び負極を用いると共に、 7 Nの 水酸化力リゥム水溶液を電解液として、 図 38に概略的に示すよう なアルカリ蓄電池 (二次電池) を作製した。
ぐ充放電性能 >
前記アルカリ蓄電池につき、 0. 1 〇、 上限 1. 4 V、 下限 0.
8 Vで充放電試験を行った。 そのサイクル特性を図 49に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 実施例 1 2
この実施例 1 2では、 次のようにして空気電池を作製した。
<空気極の作製 >
前記実施例 7と同様にして白金を担持した水素吸蔵用炭素質材料 を調製した。 この炭素質材料と、 パーフルォロスルホン酸からなる 高分子電解質のアルコール溶液とを、 n—酢酸プチル中に分散させ て、 触媒層スラリーを調製した。 一方、 厚み 2 5 0〃mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち 4 0 0 °Cに加熱することにより、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不織布 を 4 c m x 4 c mに切断し、 その一方の面に前記触媒層スラ リ一を 塗布した。
<空気極と高分子電解質膜との接合 >
触媒層に塗布した上記カーボン不織布の塗布面に、 厚み 5 0 のパ一フルォロスルホン酸からなる高分子電解質膜を接合し、 しか るのち乾燥した。
<水素極の作製 >
前記空気極の作製に用いたのと同じ炭素質材料 (白金を担持した もの) にカルボキシメチルセルロース 5 %と水とを加えてペース ト を調製し、 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に 充填、 乾燥したのち加圧し、 4 c m x 4 c mに切断して、 厚み 0 . 5 m mの水素極を作製した。
ぐ空気電池の作製 >
前記各工程で得た空気極とパーフルォロスルホン酸高分子電解質 膜との接合体に、 この高分子電解質膜を中にして前記水素極を重ね 合わせ、 その両面を厚み 3 m mのテフ口ン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1 . 5 mmの多数の孔が設けられ、 電極に空気がスムーズ に供給されるようにしてある。
組み立てられた空気電池は、 図 4 0に示す通りである。
ぐ空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 ImA/cm2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 ImA/cm2 で放電させた。 その結果、 図 50に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 100 k g /cm2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/c m2 で放電特性を測定したところ、 図 5 1に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。
上記の実施例の結果より、 プロ トン (陽子) と電子とからなる水 素は、 強い電子受容体である水素吸蔵用炭素質材料に電子を供与す ることで、 プロ トンの形態を取る。 そのため占有体積が大幅に小さ くなり、 従来の水素原子の化学吸着による貯蔵に比して多量の水素 を水素吸蔵用炭素質材料中に貯蔵することが可能となる。 すなわち、 水素吸蔵用炭素質材料は、 水素原子から電荷分離したプロ トンをそ の状態に維持し、 水素吸蔵用炭素質材料中に効率的にプロ トンを貯 蔵することにより、 水素を最終的にはプロ トンの状態で高密度かつ 多量に貯蔵できる。 それで次世代のクリーンエネルギー源である水 素を貯蔵するための軽量、 安価で安全、 そして水素を有効に貯蔵、 発生させ、 容易に運搬できかつ輸送性に優れた水素吸蔵用炭素質材 料を提供できる。
実施例 1 3
図 1に示す合成容器内を、 ヘリウム雰囲気とし、 圧力を 100 T o r r ( 1. 33 104 Pa) に保持し、 直流電源を用いて、 3 0分間にわたって、 一対の炭素電極間に、 アーク放電を発生させ、 放電終了後、 合成容器内の炭素ススおよび陰極に堆積成長した炭素 質材料を回収した。
回収した炭素ススおよび炭素質材料を乳鉢ですりつぶした後、 硫 酸中で、 超音波拡散させた。
さらに、 過マンガン酸カリウムを加えた後、 加熱処理をし、 ァモ ルファス力一ボンを酸化させて、 除去した。
こうして得られた試料を、 試料室に入れて、 1 0 0気圧の水素を 導入し、 1 日間、 放置した後、 水素ガス圧力の変化に基づき、 水素 吸蔵量を算出したところ、 試料 1 gあたり、 1 2 0 O m lの水素が 吸蔵されていることが判明した。
試料を水素ガス雰囲気下に保持したまま、 接地した耐圧容器 (試 料室) を基準として、 + 1 . 5 Vの電圧を試料に印加したところ、 水素ガス圧力が低下し、 水素吸蔵量が増大したことが確認された。
6時間にわたって、 試料に 1 . 5 Vの電圧を印加した後、 電圧の 印加を停止したところ、 再び、 水素ガス圧力は上昇を開始し、 約 3 時間を経過したときに、 もとの値に戻った。
次いで、 接地した耐圧容器 (試料室) を基準として、 + 3 . 0 V の電圧を試料に印加したところ、 再び、 水素ガス圧力が低下し、 低 下量は、 1 . 5 Vの電圧を印加したときよりも大きく、 水素吸蔵量 がより増大したことが確認された。
6時間にわたって、 試料に 3 . 0 Vの電圧を印加した後、 電圧の 印加を停止したところ、 再び、 水素ガス圧力は上昇を開始し、 約 6 時間を経過したときに、 もとの値に戻った。
図 5 2は、 試料に電圧を印加した際における水素ガス圧力に変化 を示すグラフである。
実施例 1 3によれば、 接地した耐圧容器を基準として、 試料にプ ラスの電圧を印加することによって、 試料の水素吸蔵能力が向上し、 その程度は、 印加する電圧が高いほど、 顕著であることが判明した。 実施例 1 4
次のようにして、 アルカリ蓄電池を作製した。
<正極の作製 >
平均粒径 30〃mの球状水酸化ニッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3重量%を加え、 水で 混練することにより、 ペース トを調製した。 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜 いて、 直径 20 mm、 厚さ 0. 7mmの正極を作製した。
<負極の作製 >
実施例 1 3にしたがって、 水素吸蔵用炭素質試料を調製し、 実施 例 1 3で行ったように 3. 0Vの電圧を印加して、 水素を吸蔵させ、 水素吸蔵炭素質材料を得た。
こう して得られた水素吸蔵炭素質材料にカルボキシメチルセル口 —ス 5 %と水とを加え、 混練したペース トを調製し、 このペース ト を空孔率 9 5 %の発泡式ニッケル多孔体に充填し、 乾燥及び加圧し たのち、 打ち抜いて、 直径 20mm、 厚さ 0. 5mmの負極を作製 した。
<アル力リ蓄電池 >
次に、 上述のように作製した正極および負極を用い、 7 Nの水酸 化力リゥム水溶液を電解液として、 図 3 8に概略的に示されるアル カリ蓄電池 (二次電池) を作製した。
<充放電性能 >
このようにして作製したアルカリ蓄電池につき、 0. 1 C、 上限 1. 4 V, 下限 0. 8 Vで、 充放電試験を行った。 そのサイクル特 性を図 53に示す。
図 5 3から明らかなように、 電池構造的な理由から、 サイクル寿 命は十分とはいえないものの、 基本的な充放電性能を確認すること ができた。
実施例 1 5
次のようにして、 空気電池を作製した。
<空気極の作製 >
実施例 1にしたがって、 アーク放電法により、 水素吸蔵炭素質材 料を得た。
こう して得られた水素吸蔵炭素質材料と、 パーフルォロスルホン 酸からなる高分子電解質のアルコール溶液とを、 n—酢酸ブチル中 に分散させて、 触媒層スラリーを調製した。
一方、 厚み 250〃mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち、 400°Cに加熱することによ り、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不 織布を 4 cmx 4 cmに切断し、 その一方の面に上述のようにして 調製した触媒層スラリーを塗布した。
<空気極と高分子電解質膜との接合 >
触媒層を塗布したカーボン不織布の塗布面に、 厚み 50 /mのパ 一フルォロスルホン酸からなる高分子電解質膜を接合し、 しかるの ちに、 乾燥した。
く水素極の作製 >
空気極の作製に用いたのと同じ水素吸蔵炭素質材料に、 実施例 1 3にしたがい基準電位に対して + 3. 0 Vの電圧を印加して水素吸 蔵させた。 こうして得られた炭素質材料に、 カルボキシメチルセル ロース 5 %と水とを加えてペース トを調製し、 このペース トを空孔 率 95%の発泡式ニッケル多孔体に充填、 乾燥したのち、 加圧し、 4 c mx 4 c mに切断して、 厚み 0. 5 mmの水素極を作製した。
<空気電池の作製〉
上述のようにして得た空気極とパーフルォロスルホン酸高分子電 解質膜との接合体に、 高分子電解質膜を中にして、 水素極を重ね合 わせ、 その両面を厚み 3 mmのテフ口ン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1. 5 mmの多数の孔が設けられ、 電極に空気がスムーズ に供給されるようにしてある。
空気電池の概略的構造は図 40に示す通りである。
ぐ空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。
放電は、 電流密度 1mA/ cm2 で行った。 その結果、 図 54に 示すような放電特性が得られ、 空気電池として機能することが確認 された。
さらに、 放電試験を行う前に、 あらかじめ、 水素極に、 充電方向 に電流密度 ImA/cm2 で通電して水素を吸蔵させておき、 これ を、 上述のように、 電流密度 ImA/cm2 で、 放電特性を測定し たところ、 図 55に示すような放電特性が得られた。 図 55では横 軸は負極利用率で示したため、 放電特性は図 54と殆ど変わらない が、 利用できる時間は、 あらかじめ充電した分だけ長くなつた。 い ずれにせよ、 この場合も空気電池として機能することが確認できた。 実施例 16 次にフラーレン焼成装置の一例について、 図 5 6を参照しながら 説明する。
この焼成装置は、 簡易型の有機溶剤ガスバブラ一 1 5 2と、 これ に非酸化性のキヤリアガスを供給するガスボンベ 1 5 3と、 オーダ リング用の有機溶剤ガスを熱分解し、 且つ焼成温度を維持する簡易 型の電気炉 1 5 4とから構成され、 ガスボンベ 1 5 3と電気炉 1 5 4との間の流路、 及びガスボンベ 1 5 3と有機溶剤ガスバブラ一 1 5 2 との間の流路には、 それぞれ流量調節用のニードルバルブ 1 5 8 a、 1 5 8 bが取付けられてある。
電気炉 1 5 4は炉心の直径が 3 0 mmで、 電熱器 1 5 9の中に反 応管 (石英製など) 1 5 5が挿入され、 この反応管 1 5 5の内部に は、 外部の電熱器温度コントローラー 1 6 0と接続する熱電対 1 5 6と、 この直上に位置するセラミックボート 1 5 7とがセッ 卜され、 セラミックボート 1 5 7の製膜温度が正確にモニタ一できるように してある。 なお、 セラミックボート 1 5 7の温度制御には、 P I D 制御のリレ一回路を連動させるようにした。 このように構成された 焼成装置は、 1 °C以内の温度誤差内で焼成体の製造が可能である。 炭素原料として C 60フラーレン約 8 5 % (重量%、 以下同じ) と C 70フラーレン約 1 0 %と高次フラーレン残量とからなる混合物を 用意し、 これにニッケル粉末を 3 0 %添加して均一に混合した。 次に、 この金属粉を含む混合物を、 図 5 6に示すような焼成装置 を用いて焼成する。 まず、 この混合物をセラミックボート 1 5 7に 載せ、 焼成装置の反応管 1 5 5内にセッ 卜してから、 下記の条件で 焼成を行った。 ただし、 ニードルバルブ 1 5 8 bと有機溶剤ガスバ ブラ一 1 5 2の使用は省いた。 ガスボンベ 1 5 3から窒素ガスを反 応管 1 5 5に流量 5 0 ml/分で導いて同管内を窒素ガスで満たす とともに、 焼成温度を 9 50 °Cに維持したまま、 3時間焼成した。 焼成後、 セラミックボート 1 5 7上に得られた焼成体を外部に取 出し、 乳鉢で粉碎し、 さらにこの粉砕物に白金黒と呼ばれる白金の 微粒子を 1 0重量%混合し、 担持させた。
次に、 試料としてこの混合物 0. 47 gを充分乾燥し、 フリ ッ ト メッシュ栓の付いたアンプルに封入し、 水素吸蔵能の評価を行った。 まず、 測定容器に上記アンプルを封入したのち、 1 50°Cまで昇温 させつつ真空引きを 30分間行い、 再び冷却してから、 1 0 0気圧 の水素圧に保持し、 この状態でさらに 24時間放置した。 このよう に保存された試料の水素吸蔵量を、 積算流量計を用いて評価したと ころ、 1 0. 7m l/gの水素吸蔵能を確認することができた。 実施例 1 7
前記焼成体を粉碎する前に焼成体にスパッ夕で白金微粒子を担持 させたこと、 及び前記白金黒の添加を省いたこと、 以外は実施例 1 6と同様に試料を調製し、 水素吸蔵能の評価を行った。
その結果、 試料に 58. 6ml/gの水素吸蔵能を確認すること ができた。 なお、 この評価に続いて元素分析を行ったところ、 試料 に占める白金の重量は 5. 3%であった。
実施例 1 8
前記焼成体の粉砕物に白金黒を添加することに替えて、 化学的手 法により白金微粒子を担持させたこと以外は、 実施例 1 6と同様に して試料を調製し、 水素吸蔵能の評価を行った。 その結果、 試料に 9 8. 6ml/gの水素吸蔵能を確認することができた。 なお、 こ の評価の後に元素分析を行ったところ、 試料中に占める白金の重量 は 5. 3 %であった。
実施例 1 9
水素吸蔵用炭素材料として実施例 1 6と同じフラーレン混合物に 対し、 鉄フタロシアニン化合物を 7 : 3の重量比で混合し、 9 5 0 °Cで 3時間の焼成を行った。 ただし、 ガスボンベ 1 53から窒素ガ スと水素ガスの容量比 2 : 1の混合ガスを反応管 1 5 5へ 5 0 m l /分の流量で供給した。 この焼成の際には、 少量の鉄—フタロシア ニン化合物が気化した。 冷却後、 焼成体 (鉄含有量は約 4 %) を 1 0 %相当の白金黒と共に粉砕し、 以後、 実施例 1 5と同様にして水 素吸蔵能の評価を行った。 その結果、 試料に 38. 9 m l/gの水 素吸蔵能が確認された。 なお、 この試料を顕微鏡で観測したところ、 図 5 7に示すように、 カーボンナノチューブが大量に生成されてい ることが判明した。
実施例 20
実施例 1 9で得た焼成体を粉砕した後、 それに化学的手法を用い て白金を担持させた。 以後、 充分に乾燥を行った後、 水素吸蔵能の 評価を行った。 その結果、 試料は 78. Oml/gの水素吸蔵能が 確認された。 また、 評価後に元素分析を行った結果、 白金の重量は 試料全量の 4. 3 %であった。 なお、 白金担持以前の前記焼成体の 鉄含有量は約 4%であった。
実施例 2 1
実施例 1 9と同じフラーレン混合物にチタン力一バイ ドの粉末を 30 %重量混合し、 窒素と水素の容量比 2 : 1の混合ガスを用いて 焼成を行った。 焼成温度は 1 000°Cとし、 焼成時間は 5時間であ る。 冷却後、 焼成体の透過電子顕微鏡による観測を行った結果、 弱 くォ一ダリングされたグラフアイ ト構造がチタンカーバイ 卜の外側 をく るんだようなカプセル構造の存在が確認されたが、 4 0 0 K e Vの加速電圧下での観測では、 観測中に構造破壊される程度の弱い 構造であった。 このようにして得られた焼成体に白金黒を 1 0 %重 量混合して乳鉢で粉砕し、 以後、 実施例 1 6と同様に水素吸蔵能の 評価を行った。 その結果、 試料は 1 0 5 m 1 / gの水素吸蔵能が確 認された。
実施例 2 2
実施例 2 1により作製した焼成体に対し粉砕以前にスパッ夕によ り白金を担持させ、 粉砕した後、 実施例 1 6と同様に評価を行った。 その結果、 試料は 1 1 6 m 1 / gの水素吸蔵能が確認された。 なお、 前記焼成体にスパッ夕により担持された白金の重量比は 2 . 9 %で あった。
実施例 2 3
実施例 2 1により作製した焼成体を粉砕したのち、 これに化学的 手法で白金を担持させ、 充分に乾燥した後、 実施例 1 6と同様に評 価を行った。 その結果、 試料には 1 7 9 . 9 m 1 / gの水素吸蔵能 が確認された。 なお、 前記焼成体に担持された白金の重量比は化学 分析の結果 7 . 7 %であった。
実施例 2 4
水素吸蔵用炭素質材料として実施例 1 6と同じフラーレン混合物 に 3 0 %重量相当の酸化ガドリニュ一ムの粉末を混合し、 9 5 0 °C、 3時間の焼成を行った。 この際、 焼成雰囲気は水素とアルゴンの容 量比 1 : 1の混合ガスとし、 その流量は 5 0 m 1 /分とした。 この ようにして得られた焼成体に化学的手法により白金を担持させ、 充 分乾燥したのち、 実施例 1 5と同様に水素ガス吸蔵量の評価を行つ た。 その結果、 試料は 1 98. 8 m l/gの水素吸蔵能が確認され た。 なお、 元素分析の結果、 試料中の白金含有量は 6. 6 %であつ た。
実施例 2 5
酸化ガドリニュームの代わりに、 V 205型酸化バナジウム粉末を 用いたこと以外は実施例 24と同様にして焼成、 白金担持を行った。 実施例 24と同様に水素ガス吸蔵量の評価を行った結果、 試料は 2 23. 7 m l/gの水素吸蔵能が確認された。 なお、 前記試料の元 素分析の結果、 白金の含有量は 8. 3 %であった。
実施例 26
酸化ガドリニュームの代わりに、 酸化スカンジウム粉末を用いた こと以外は実施例 24と同様にして焼成、 白金担持を行った。 実施 例 24と同様に水素ガス吸蔵量の評価を行った結果、 試料は 2 2 6 6. 5 ml/gの水素吸蔵能が確認された。 なお、 前記試料の元素 分析の結果、 白金の含有量は 7. 9 %であった。
実施例 2 7
酸化ガドリニュ一ムの代わりに、 酸化チタン粉末を用いたこと以 外は実施例 24と同様にして焼成、 白金担持を行った。 実施例 24 と同様に水素ガス吸蔵量の評価を行った結果、 試料は 1 1. 4m l /gの水素吸蔵能が確認された。 なお、 前記試料の元素分析の結果、 白金の含有量は 8. 5 %であった。
実施例 28
酸化ガドリニュームの代わりに、 酸化コバルト粉末を用いたこと 以外は実施例 24と同様にして焼成、 白金担持を行った。 実施例 2 4と同様に水素ガス吸蔵量の評価を行った結果、 試料は 1 7 3. 0 m 1 /gの水素吸蔵能が確認された。 なお、 前記試料の元素分析の 結果、 白金の含有量は 7. 3 %であった。
実施例 29
酸化ガドリニュ一ムの代わりに、 ゲーサイ ト粉末を用いたこと以 外は実施例 24と同様にして焼成、 白金担持を行った。 実施例 24 と同様に水素ガス吸蔵量の評価を行った結果、 試料は 5 6. 8 m l /gの水素吸蔵能が確認された。 なお、 前記試料の元素分析の結果、 白金の含有量は 9. 2 %であった。
実施例 30
鉄フタロシアニン化合物の使用を省いたこと以外は実施例 1 9と 同様にして焼成、 白金担持を行った。 したがって、 この実施例では 焼成の際、 水素吸蔵用炭素質材料は金属触媒の影響を受けない構造 変化をする。 実施例 1 9と同様に水素ガス吸蔵量の評価を行ったと ころ、 試料は 7 8. 9 ml/gの水素吸蔵能を示した。
実施例 3 1
実施例 3 0で作製した金属触媒を含まない焼成体に、 化学的手法 により白金の担持を行った。 化学分析の結果、 担持された白金の重 量は 1 0. 7 %であった。 また、 試料の水素吸蔵能は 1 45. 7 m 1 / gであった。
実施例 32
水素吸蔵用炭素質材料として実施例 1 6と同じフラーレン混合物 を用意し、 この混合物に鉄の粉末 30%を添加して均一に混合した。 次に、 この鉄の粉末を含む混合物をセラミックボート 53に載せ、 図 5 6に示す焼成装置の反応管内にセッ トした。 また、 ガスボンベ として窒素ガスと水素ガスの容量比 2 : 1の混合ガスを充填したボ ンべを用いるとともに、 有機溶剤ガスバブラ一にはトルエンを仕込 み、 このトルエン中に上記混合ガスをバブリングさせた。 したがつ て、 反応管には、 同混合ガスをキャリアガスとして トルエンガスが 随伴、 供給されることになる。 なお、 焼成は温度 950°Cで 3時間 行った。
焼成後、 冷却したのち化学的手法により焼成体に白金黒を担持さ せ、 以後、 実施例 1 6と同様にして試料の水素吸蔵能の評価を行つ た。 その結果、 試料の水素吸蔵能は 230. 5 ml/gであった。 なお、 試料中の白金の担持量は、 化学分析の結果、 7. 2%であつ た。
実施例 33
前記トルエンの代わりにァセ トンを有機溶剤ガスバブラ一に仕込 んだことを除いて、 実施例 31と同様にして焼成、 白金担持を行つ た。 試料の水素吸蔵能は 200. 0 ml/g、 白金の担持量は 7. 0 %であった。
実施例 34
有機溶剤ガスバブラ一の使用を省いたこと以外は、 実施例 33と 同様にして焼成、 白金担持を行った。 したがって、 反応管内の雰囲 気は、 窒素ガスと水素ガスとの混合ガスのみである。 試料の水素吸 蔵能は 190. 0 m 白金の担持量は 8. 3%であった。 実施例 35
水素吸蔵用炭素質材料として実施例 1 6と同じフラーレン混合物 に鉄粉 30%を添加、 混合し、 この混合物を実施例 31と同様にし て焼成装置に収納し、 焼成温度をそれぞれ 600 °C、 700°C、 8 00°C、 900°C、 1000°C、 1 100 °C, 1200°C、 130 0°Cにセッ トして、 いずれも 3時間かけて焼成を行った。 この焼成 体を冷却したのち、 これに白金黒をそれぞれ 10 %ずつ添加し、 乳 鉢で粉碎、 ペレッ ト化し、 これらのペレッ トにっき実施例 1 3と同 様にして水素の吸蔵能の評価を行った。 その結果を図 58に示す。 実施例 36
上記した実施例 2及び 3で述べたと同様に、 アル力リ蓄電池及び 空気電池をそれぞれ作製した。 但し、 負極や水素極に用いる炭素質 材料としては、 実施例 18で得られた焼成体を使用した。
<充放電性能 >
前記アルカリ蓄電池につき、 0. 1 C、 上限 1. 4V、 下限 0. 8 Vで充放電試験を行った。 そのサイクル特性を図 59に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 このような結果は、 上記した他の実施例の焼成体を用いる場合も同 様であった。
ぐ空気電池の放電特性 >
次に、 前記空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 1 mA/cm2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 ImA/cm2 で放電させた。 その結果、 図 60に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 100 k g /cm2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/cm2 で放電特性を測定したところ、 図 6 1に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。 このよ うな結果は、 上記した他の実施例の焼成体を用いる場合も同様であ つた。
この実施例では、 負極や水素極に用いる炭素質材料を実施例 1 7 で得られた焼成体としたが、 実施例 1 6、 実施例 1 7及び実施例 1 9乃至実施例 3 5の各焼成体についても、 材料により特性の差は見 られるものの、 アル力リ蓄電池又は空気電池として機能することが 確認された。
比較例 1
市販の力一ボンブラックを乳鉢で充分に粉砕した後、 実施例 1 6 と全く同様に水素吸蔵能を評価した。 その結果、 試料の水素吸蔵能 は 3 m l/gと評価された。
比較例 2
市販のカーボンブラックに 1 0 %重量相当の白金黒を混合し、 乳 鉢で充分に粉碎した後、 実施例 1 6と同様に評価をおこなった。 そ の結果、 試料は 4. Om l/gの吸蔵能が確認された。
比較例 3
市販のカーボンブラックにスパッ夕により白金黒を担持させ、 乳 鉢で充分に粉砕した後、 実施例 1 6と同様に評価をおこなった。 そ の結果、 試料は 4. 2m l/gの吸蔵能が確認された。 元素分析の 結果、 白金担持量は、 2. 9 %であった。
比較例 4
市販の力一ボンブラックを粉砕した後、 化学的手法によりそれに 白金黒を担持させ、 実施例 1 6と同様に評価をおこなった。 その結 果、 試料は 5. 5ml/gの吸蔵能が確認された。 元素分析の結果、 白金担持量は、 7. 7 %であった。
比較例 5
水素吸蔵用炭素質材料として実施例 1 6と同じフラーレン混合物 を、 乾燥状態でペレッ ト化して、 実施例 1 6と同様に水素吸蔵能を 評価した。 その結果、 試料の水素吸蔵量は 3. 7ml/gであった。 なお、 実施例 1 6乃至実施例 3 5のフラーレン焼成体の構造は、 ラマン測定でも明確に特定することは非常に困難であるが、 フラー レン重合体に特有の 1460 cm— 1及び 1 5 70 cm— 1の二つのラ マン散乱線と、 グラフアイ ト構造を含むアモルファスカーボンの所 謂 Disorder Band, 1350cm— 1と Graphitic Band, 1590cm— 1の重なった ものであると見なすことができる。 なお、 この焼成体にはフラーレ ン分子そのものは殆ど残存していないことが確認されている。
上記のようにフラーレン重合体のラマンスぺク トル 〔P.Strasser, .Ata,J.Phys.Chem.B,Vol 102,P4131(1998)参照) 〕 の成分が残るこ とは、 フラーレン分子は残存しないが重合体の構造は存在している ことを意味している。 しかし、 この重合体は焼成温度 1 00 0 °C、 焼成時間 3時間以上の条件ではほぼ消失する。
また、 CuKひ一 X線回析の結果は、 広いグラフアイ ト ( 00 2 ) 線が観測され、 グラフアイ トオーダリングが充分でなく、 ドメ インが小さいことが確認された。 またバナジュ一ム、 ガドリニュ一 ム、 鉄等の金属を触媒とした場合には、 明暸に金属力一バイ ドに相 当する回折線が観測された。 このことは図 62に示すようなカーバ イ ドカプセル構造が形成された明瞭な根拠となるものである。
なお、 実施例 1 6乃至実施例 3 5のフラーレン焼成体についても、 実施例 4で詳細に述べたのと同様の複素イ ンピーダンス測定を行つ た結果、 焼成体の種類により差がみられるものの、 図 3と同様な半 円弧の複素ィンピ一ダンスが得られ、 また直流抵抗成分は水素の吸 蔵により吸蔵前の約 1桁に減少するのが観測された。
実施例 3 7
まず、 図 1に説明した装置を用いて、 C60分子や C70分子を含む 粗製フラーレンを次のようにして製造した。
原料である直径 1 0 mm、 長さ 3 5 c mのグラフアイ トロッ ド (カーボン棒) 3を電極 (正極と負極) とし、 l O O T o r r ( 1. 33 X 1 04 P a) のヘリゥムガスの雰囲気下に、 1 50アンペア の直流電流によるアーク放電を行った。
正極のグラフアイ トロッ ドはほとんど気化し、 フラーレンを含む 煤を得た後、 さらに電極の極性を逆にして、 本来の負極上に堆積し ていたカーボンナノチューブ等の堆積物をさらに気化させて、 煤と した。
こうして、 水冷反応室 (真空容器) 内に堆積したこれらの煤を、 次に掃除機で回収し、 これをトルエンで抽出して粗製フラーレンを 得た。 さらに、 この粗製フラーレンをへキサンで洗浄、 乾燥した後、 真空昇華によって精製した。 このようにして得られたフラーレンサ ンプルに飛行時間型質量分析 (以下、 T OF— MSと称することが ある) を行った結果、 このフラーレンサンプルには主として C60及 び C 70が重量比で約 9 : 1の割合で含まれていた。
次に前記粗製フラーレンをトルエン一へキサン混合溶媒に溶解さ せ、 活性アルミナを充填した長さ 200 cm、 直径 5 cmのカラム で分離抽出を行い、 C60と C70を分離した。 分離された C60、 C70 はそれぞれへキサンで洗浄した後、 高真空中に於いて昇華精製を行 つた。 昇華温度は C60の場合に 570 °C、 C70の場合には 580 °C とした。 飛行時間型質量分析計で純度の確認をおこなった結果、 両 サンプルともに、 C60に対する C70の、 あるいは C70に対する C60 の存在は 1 %以下であることが確認された。
次に、 トルエンとァセ 卜二ト リルの容量比 1 : 4の混合溶媒に支 持電解質の L i C 104 と C60フラーレンとを溶解することによつ て電解液を調製し、 この電解液と白金電極 (シリコン基板上に白金 をスパッ夕したもの) を用いて銀 (Ag) を参照電極として還元ポ テンシャルを測定した結果、 図 63に示すようなレ ドックスポテン シャルカーブを得、 第 1イオン化、 第 2イオン化等のポテンシャル を決定することができた。
次に、 第 1イオン化ポテンシャルで定電圧モードで電解を行い、 白金電極上にフラーレン電解重合膜を形成した。 電解重合の後、 フ —リェ変換赤外スぺク トル (すなわち FT I R) および13 C核磁気 共鳴スぺク トルを測定した。 F T I Rの結果は電解重合膜に C60が 本来の構造で存在しないことを示した。
また、 核磁気共鳴の測定に際しては C ros s . Po 1 ar i z at i onの手法が 用いることができないので、 単にマジックアングルスピニングのみ を用いる MA Sスペク トルの測定を行った。 ただし、 炭素核の磁化 を磁場に対して 90度フリップさせ、 感度を稼いだ。 しかし、 自由 誘導減衰が数マイクロ秒で収束し、 適切な窓関数の設定を行ってフ 一リェ変換した場合でも比較的ブロードな吸収となつたが、 スぺク トルに示すとおり、 明らかに C60の本来の吸収周波数 142 ppm から両方向にブロードな広がりをもつ吸収線と、 明らかに s p3 炭 素に帰属される吸収線とが明暸に観測された。 なお、 この観測にお ける急速な自由誘導減衰は、 リチウムイオンの残存に由来する、 C 60ポリマ一中での不対電子の存在によるものと考えられる。 すなわ ち、 ポリマー中の不対電子の存在が、 その大きな磁気的感受率から、 炭素核の磁気緩和、 とりわけ横緩和に対して大きく影響を与えてい ると考えられる。
なお、 前記電解 S1合膜の付着した白金電極を高純水中に移し、 重 合過程とは逆のポテンシャルをかけてリチウムイオンの除去を試み たところ、 電解重合膜の核磁気共鳴スペク トルの測定結果は、 高純 水中へ移さない前のそれと殆ど同じであった。 従って、 このような 薄膜中に存在するリチウムイオンと C 60ポリマーとの分極構造は、 薄膜から容易に取り除けないことがわかった。
次に、 窒素レーザ励起の飛行時間型質量分析計を用いてフラーレ ン電解重合薄膜の質量分析を行った。 これまでの検討から図 1 0 ( A ) に示したような重合体に対しては、 レーザ励起のアブレ一シ ヨンとイオン化を行うことはできない。 従って正確に重合構造を反 映した質量分析が可能かどうかは多少問題の残るところであるが、 少なく とも C 60のシーケンシャルピークが観測されるという事実か ら、 C 60分子はその構造を残したまま、 上記したような構造で 3次 元的に重合しているものと考えられる。 なお、 得られた薄膜の X線 回析を測定したが、 薄膜の中での周期的構造の存在は確認されなか つた。 この電解重合膜を構成するフラーレンポリマーの部分構造は、 図 2 0に示されるようなもので、 二つのフラーレン分子の間にカウ ン夕ーイオンとしてリチウムイオンを挟んでいる。 (この構造の詳 細(こつレヽて ίま論文 : Electrochemical Synthesis of Polymerized L iC60 F i lms Journal of Physical Chemistry, Volume 102, Number 21, page 4131 ( 1998) By Peter Strasser and Masafumi Ata を参 照 o )
一方、 前記と同じ電解条件でフラーレン重合体を白金電極上に析 出させた。 この重合体膜を真空状態のグローブボックスに移し、 こ の重合体から溶媒を除いてから同ボックス内をアルゴン雰囲気に保 つた。
グローブボックス内には予めマイクロ天秤が設置され、 そのサン プル室に水素ガスが導入される。 このサンプル室内には水素分圧計 が設置され、 水素濃度のモニターが可能である。
白金基板からフラーレン重合体 2 . 2 2 3 gをマイクロ天秤試料 室に移し、 水素ガス濃度 9 9 . 9 6 %の雰囲気下で 2時間放置した。 その結果、 フラ一レン重合体は水素を吸蔵し、 その重量は 2 . 3 9 0 gまで増えた。 6 . 9 8 %重量比の吸蔵である。
次にこの水素を吸蔵したフラーレン重合体 2 . 3 9 0 gをシリコ ンカーバイ ドの発熱体上に設置し、 加熱による水素の放出特性を観 測した。 その結果を図 6 4に示す。 なお、 観測に際しては P I D制 御により 5 0 Cずつの昇温を行い、 各温度で 3 0分保持した後、 重 量の測定を行った。
同じ実験をターボ排気を行いながら昇温し、 四重極マスを有する 残留ガスモニターで放出ガスの確認をおこなった。 その結果、 3 0 0 °Cから 5 0 0 °Cの重量変化では水素のみが放出され、 7 0 0度を 越えた場合には炭化水素の発生がみられた。 このことからこの実施 例の水素吸蔵材料の最適水素発生温度は約 3 0 0〜6 0 0 °Cの範囲 である。
実施例 3 8 小型のペイントシヱイ力一をアルゴングローブボックス内に設置 し、 フラーレン C60の粉末 2 gヒリチウム粉末 1 gとの混合物をジ ルコニァビーズ (外径 5 mm) と共に 1時間、 震盪した。 得られた 重合体を用いて、 実施例 1 と同様に水素吸蔵機能の評価を行った。 マイクロ天秤に移したサンプルは、 2. 8 8 8 gであった。 これを
9 9. 9 7 %の水素雰囲気の下に 3時間保存すると、 その重量は 3.
1 0 5 gとなった。 この場合の吸蔵水素量は 6. 8 8 %である。 次に昇温に伴う水素発生特性を観測した。 その結果を図 6 5に示 す。 なお、 観測に際しては、 同様に真空引きを行いながら行った残 留ガスモニターでは、 7 0 0 °C以上で明確な炭化水素の発生が確認 された。 この場合も水素ガス発生の最適温度は 2 5 0 °C付近から 6 0 0 °C付近の範囲である。
比較例 6
フラーレン C60の単体を水素ガスの雰囲気中に設置し、 重量変化 をモニタ一したが、 試料 1 gあたりの水素の吸蔵量は常圧に換算し て 2 m 1にすぎなかった。
比較例 7
実施例 3 8と同様に、 リチウム金属のみをジルコ二アビ一ズとと もに震盪し、 水素ガスの雰囲気下における重量変化をモニターした。 その結果、 リチウム粉末の重量が 2. 5 8 0 gから 2. 6 9 9 gに 増えた。 従って 4. 4 0 %重量の水素が付加したことになる。
比較例 8
アルゴンガスの雰囲気下で、 r f プラズマパヮ一 5 0 Wでシリコ ン基板上にフラーレンプラズマ重合体を製膜した。 この重合体をシ リコン基板から回収し、 その 0. 5 2 1 gを水素雰囲気下に 3時間 放置した。 しかし、 水素吸蔵量は常圧に換算して 1 m 1にすぎなか つた。
以上のことから、 実施例 3 7及び実施例 3 8のフラーレン重合体 は高い水素吸蔵能を持つことがわかる。
なお、 実施例 3 7乃び実施例 3 8のフラーレン重合体についても、 実施例 4で詳細に述べたのと同様の複素イ ンピーダンス測定を行つ た結果、 重合体の種類により若干の差はみられるものの、 図 3と同 様な半円弧の複素インピーダンスが得られた。 また、 直流抵抗成分 も、 水素の吸蔵により吸蔵前の約 1桁に減少するのが観測された。 また、 これらの実施例で得られた水素吸蔵材料を、 負極や水素極 に用いたアル力リ蓄電池および空気電池を構成したところ、 フラー レン重合体の種類により特性に若干差はみられるものの、 アル力リ 蓄電池又は空気電池として機能することが、 他の実施例と同様、 確 認された。
実施例 3 9
C 60と C 70を 8 5 : 1 5の重量比で含むフラーレン粉末を、 図 5 6に示す焼成装置を用い、 フッ素ガスを 5 %含有するアルゴン雰囲 気下で 3 0 0 °Cで 3時間焼成した。 これによつてフラ一レンのフッ 素化物 (例えば C 60 F x、 Xは 3 0〜5 0程度) を得た。 これを実 施例 3 9の試料とする。 なお、 このフヅ化フラーレンの T O F— M Sのスぺク トルを図 6 6に示す。
実施例 4 0
C 60と C 70を 8 5 : 1 5の重量比で含むフラーレン粉末を発煙硫 酸中にて 6 5 °Cで 3日間反応させた後、 反応後の分散液を水中へ少 量ずつ投入し、 遠心分離法によって固形物を分離した。 これにより フラーレンの硫酸水素化物 (例えば C60 (0 S Oa H) X (OH) y、 x= 5~20、 y= 5~20 ) ) を得た。 これを実施例 40の 試料とする。
比較例 9
〇60と〇70を 8 5 : 1 5の重量比で含むフラーレン粉末を、 その まま比較例 9の試料とする。
比較例 1 0
C 60と C 70を 8 5 : 1 5の重量比で含むフラーレン粉末と、 ポリ テ 卜ラフルォロエチレン (PT FE) 粉末とを、 C : F = 1 : 1と なるように混合し、 この混合物を比較例 1 0の試料とする。
実施例 4 1
炭素電極のアーク放電法によりススを合成し、 それから分離精製 したナノチューブを、 図 5 6に示す焼成装置を用い、 フッ素ガスを 5 %含有するアルゴン雰囲気下で 300°Cで 5時間焼成した。 これ により、 ナノチューブのフッ素化物を得た。 これを実施例 4 1の試 料とする。
比較例 1 1
実施例 4 1で精製したナノチューブをそのまま比較例 1 1の試料 とする。
実施例 42
炭素電極のアーク放電法によりチャンバ一内にできるフラーレン 煤を、 図 56に示す焼成装置を用い、 フッ素ガスを 5 %含有するァ ルゴン雰囲気で 30 0°Cで 3時間焼成した。 これによつてフラーレ ン煤のフッ素化物 (例えば C60Fx、 Xは 3 0〜 50程度) を得た。 これを実施例 42の試料とする。 実施例 43
炭素電極のアーク放電法によりチャンバ一内にできるフラーレン 煤を発煙硫酸中 6 5 °Cで 3日間反応させた後、 反応後の分散液を水 中へ少量ずつ投入し、 遠心分離法によって固形物を分離した。 これ によりフラーレン煤の硫酸水素化物 (例えば C60 (0 S 03 H) X (0 H) y、 X二 5〜20、 y= 5〜2 0 ) ) を得た。 これを実施 例 4 3の試料とする。
比較例 1 2
炭素電極のアーク放電法によりチャンバ一内に生成されたフラー レン煤を、 そのまま比較例 1 2の試料とする。
実施例 44
濃硝酸と銅触媒との接触によって生じさせた窒素酸化物ガスを、 C60と C70を 8 5 : 1 5の重量比で含むフラーレン粉末のベンゼン 溶液に導入して 1 0時間反応させた。 減圧乾燥させて得られたもの を精製し、 ニトロ化フラーレンを得た。 これを実施例 44の試料と する。
<水素吸蔵量の測定 >
以上の各実施例、 および各比較例で得た試料を評価装置内の試料 室にセッ トし、 まず 1 50°Cに加熱しながら減圧し、 試料中の水分 やガスを取り除いた。 次にこの試料をそのまま室温に戻し、 1 00 気圧の水素を導入してこの圧力で 1 2時間放置した。 その後、 試料 室内が 1気圧になるまで水素ガスを外部へ取り出し、 取り出せた水 素ガスの総量 ( 1気圧下での体積) を計測し、 試料のない時のブラ ンク値との差をとり吸蔵量を求めた。 その結果を以下の表 2に示す。 表 2
Figure imgf000111_0001
この表の結果から明らかなように、 フッ素化もしくは硫酸水素化 したフラーレン、 ナノチューブあるいはフラーレン煤は、 室温にお いても高い水素吸蔵能を持つことがわかった。 これは、 炭素原料の 炭素原子に結合した置換基の中にフッ素原子、 酸素原子、 硫黄原子 など水素結合を起こしゃすい元素が含まれているためであり、 この ような効果は他の水素結合を引き起こしゃすい元素を含む官能基を 導入した炭素原料においても同様にみられる。 しかし、 比較例 1 0 にみるように、 フッ素原子等を含む化合物だからといって、 それを 単にフラーレン等に混合しただけでは、 発明の効果が生じないこと が明らかである。 つまり、 フラーレン、 ナノチューブ、 フラーレン 煤の炭素原子にフッ素原子や酸素原子等を含む官能基が直接結合し ている場合にのみ発明の効果が発現する。
なお、 水素吸蔵能が認められた実施例 39乃至実施例 44の各炭 素質材料についても、 実施例 4で詳細に述べたのと同様の複素ィン ピーダンス測定を行った結果、 材料の種類により若干の差はみられ るものの、 図 3と同様な半円弧の複素ィンピーダンスが得られた。 また、 直流抵抗成分も、 水素の吸蔵により吸蔵前の約 1桁に減少す るのが観測された。
実施例 45
<正極の作製 >
平均粒径 30 zmの球状水酸化ニッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3 %を加え、 水で混練 することにより、 ペース トを調製した。 このべ一ス トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜いて、 直径 20mm、 厚さ 0. 7 mmの正極を作製した。
<負極の作製 >
前記実施例 39において製造した水素吸蔵材料フラーレンのフッ 素化物にカルボキシメチルセルロース 5 %と水とを加え、 混練した ペース トを調製し、 このペース トを空孔率 9 5%の発泡式ニッケル 多孔体に充填し、 乾燥及び加圧したのち打ち抜いて、 直径 2 0mm、 厚さ 0. 5mmの負極を作製した。
<ァルカリ蓄電池 >
次に、 前記工程で作製した正極及び負極を用いると共に、 7 Nの 水酸化力リゥム水溶液を電解液として、 図 3 8に概略的に示すよう なアルカリ蓄電池 (二次電池) を作製した。
<充放電性能 >
前記アルカリ蓄電池につき、 0 . 1 〇、 上限 1 . 4 V、 下限 0 .
8 Vで充放電試験を行った。 そのサイクル特性を図 6 7に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 実施例 4 6
この実施例では、 次のようにして空気電池を作製した。
<空気極の作製 >
前記実施例 3 9と同様にしてフラーレンのフッ素化物を調製した。 この炭素質材料と、 パーフルォロカ一ボンスルホン酸同体高分子電 解質のアルコール溶液とを、 n—酢酸ブチル中に分散させて、 触媒 層スラリーを調製した。
一方、 厚み 2 5 0〃mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち 4 0 0 °Cに加熱することにより、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不織布 を 4 c m x 4 c mに切断し、 その一方の面に前記触媒層スラリ一を 塗布した。
ぐ空気極と高分子電解質膜との接合 >
触媒層に塗布した上記カーボン不織布の塗布面に、 厚み 5 0 のパーフルォロカ一ボンスルホン酸からなる高分子電解質膜を接合 し、 しかるのち乾燥した。
<水素極の作製 >
前記空気極の作製に用いたのと同じ炭素質材料 (フラーレンのフ ッ化物) にカルボキシメチルセルロース 5 %と水とを加えてペース トを調製し、 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体 に充填、 乾燥したのち加圧し、 4 c mx 4 c mに切断して、 厚み 0. 5 mmの水素極を作製した。
<空気電池の作製 >
前記各工程で得た空気極と高分子電解質膜との接合体に、 この高 分子電解質膜を中にして前記水素極を重ね合わせ、 その両面を厚み 3 mmのテフ口ン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1. 5 mmの 多数の孔が設けられ、 電極に空気がスムーズに供給されるようにし てある。
こう して組み立てられた空気電池の概略的構造は、 図 40に示す 通りである。
<空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 I mA/cm2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 I mA/cm2 で放電させた。 その結果、 図 68に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 1 00 K g /c m2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/c m2 で放電特性を測定したところ、 図 69に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。
実施例 4 7
図 5 6に示す装置を熱分解装置として用い、 水素と窒素を 1 : 1 の容量比で混合したガスをキヤリァガスとして液体のトルエン中に バブリングさせ、 キヤリァガス中にトルエンを気化 ·混合せしめ、 反応管へ導入した。 この反応管内に予め触媒としてニッケルメタル 粉末の入ったるつぼを設置し、 反応管内を 9 6 0 °Cに加熱して、 触 媒上に炭素質材料を生成させた。 このようにして得られた炭素質材 料は触媒と分離することなく、 そのまま実施例 4 7の試料とする。 実施例 4 8
触媒として、 鉄粉末を用いたこと以外は、 実施例 4 7と同様にし て炭素質材料を得、 これを実施例 4 8の試料とする。
実施例 4 9
触媒として、 コバルト粉末を用いたこと以外は、 実施例 4 7と同 様にして炭素質材料を得、 これを実施例 4 9の試料とする。
実施例 5 0
触媒として、 酸化コバルト粉末を用いたこと以外は、 実施例 4 7 と同様にして炭素質材料を得、 これを実施例 5 0の試料とする。 実施例 5 1
加熱温度を 1 1 0 0 °Cとしたこと以外は、 実施例 4 7と同様にし て炭素質材料を得、 これを実施例 5 1の試料とする。
実施例 5 2
加熱温度を 1 3 0 0 °Cとしたこと以外は、 実施例 4 7と同様にし て炭素質材料を得、 これを実施例 5 2の試料とする。
実施例 5 3
加熱温度を 8 5 0 °Cとしたこと以外は、 実施例 4 7と同様にして 炭素質材料を得、 これを実施例 5 3の試料とする。
実施例 5 4 キヤリァガスとして窒素ガスのみ (これに トルエンガスは添加し ない) を用いたこと以外は、 実施例 4 7と同様にして炭素質材料を 得、 これを実施例 5 4の試料とする。
<水素吸蔵量の測定 >
各実施例の試料を評価装置内の試料室にセッ 卜し、 まず 1 5 0 °C に加熱しながら減圧し、 試料から水分やガスを取り除いた。 この試 料をそのまま室温に戻し、 1 0 0気圧の水素を導入して、 一定圧力 で 1 2時間放置した。 その後、 試料室内が 1気圧になるまで水素ガ スを外部へ取り出し、 取り出せた水素ガスの総量 ( 1気圧下での体 積) を計測し、 試料のない時のブランク値との差をとり吸蔵量を求 めた。 その結果を以下の表に示す。
表 3
Figure imgf000116_0001
表の結果からわかるように、 遷移金属等を触媒 し、 炭素含有化 合物のガスをその触媒上で熱分解して得られる炭素質材料を用いれ ば、 常温下において水素を吸蔵させることができる。
なお、 実施例 47乃至実施例 54の各炭素質材料についても、 実 施例 4で詳細に述べたのと同様の複素インピーダンス測定を行つた 結果、 炭素質材料作成時の触媒の酒類や加熱温度条件により若干の 差はみられるものの、 図 3と同様な半円弧の複素ィンピ一ダンスが 得られた。 また、 直流抵抗成分も、 水素の吸蔵により吸蔵前の約 1 桁に減少するのが観測された。
実施例 5 5
<正極の作製 >
平均粒径 30 zmの球状水酸化ニッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3 %を加え、 水で混練 することにより、 ペース トを調製した。 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜いて、 直径 20mm、 厚さ 0. 7mmの正極を作製した。
<負極の作製 >
前記実施例 47において製造した炭素質材料にカルボキシメチル セルロース 5 %と水とを加え、 混練したペース トを調製し、 このべ ース トを空孔率 9 5 %の発泡式ニッケル多孔体に充填し、 乾燥及び 加圧したのち打ち抜いて、 直径 20mm、 厚さ 0. 5mmの負極を 作製した。
<ァルカリ蓄電池 >
次に、 前記工程で作製した正極及び負極を用いると共に、 7 Nの 水酸化カリウム水溶液を電解液として、 図 38に概略的に示すよう なアルカリ蓄電池 (二次電池) を作製した。 ぐ充放電性能 >
前記アルカリ蓄電池につき、 0 . 1 C、 上限 1 . 4 V、 下限 0 . 8 Vで充放電試験を行った。 そのサイクル特性を図 7 0に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 実施例 5 6
この実施例では、 次のようにして空気電池を作製した。
<空気極の作製 >
前記実施例 4 7と同じ炭素質材料と、 パ一フルォロスルホン酸高 分子電解質のアルコール溶液とを、 n—酢酸ブチル中に分散させて、 触媒層スラリーを調製した。
一方、 厚み 2 5 0 mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち 4 0 0 °Cに加熱することにより、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不織布 を 4 c m x 4 c mに切断し、 その一方の面に前記触媒層スラリーを 塗布した。
<空気極と高分子電解質膜との接合〉
触媒層に塗布した上記力一ボン不織布の塗布面に、 厚み 5 0 u m のパ一フルォロスルホン酸からなる高分子電解質膜を接合し、 しか るのち乾燥した。
<水素極の作製 >
前記空気極の作製に用いたのと同じ炭素質材料にカルボキシメチ ルセルロース 5 %と水とを加えてペース トを調製し、 このペース ト を空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥したのち加圧 し、 4 c m x 4 c mに切断して、 厚み 0 . 5 m mの水素極を作製し た。
<空気電池の作製 >
前記各工程で得た空気極と高分子電解質膜との接合体に、 この高 分子電解質膜を中にして前記水素極を重ね合わせ、 その両面を厚み 3 mmのテフ口ン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1. 5 mmの 多数の孔が設けられ、 電極に空気がスムーズに供給されるようにし てある。
こうして組み立てられた空気電池の概略的構造を図 40に示す。 ぐ空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 I mA/cm2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 1 mA/c m2 で放電させた。 その結果、 図 7 1に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 1 0 0 K g /cm2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/c m2 で放電特性を測定したところ、 図 7 2に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。
実施例 5 7
塩化白金酸水溶液に亜硫酸水素ナトリウムを加え、 数時間攪拌し た後、 水酸化ナト リウムで pHを 5付近に保ちながら、 過酸化水素 水を徐々に加えて行った。 この溶液に C60フラーレン 8 5重量%、 C70フラーレン 1 5重量%の炭素質材料を加え、 激しく 6時間攪拌 した。 なお、 このとき加えた炭素質材料は、 炭素質 9に対し、 白金 が 1 となるようにした。 攪拌後、 溶液をろ過し、 ろ過物を洗浄、 減 圧乾燥を行ない、 実施例 5 7の炭素質材料を得た。 この材料中の白 金の担持量は、 元素分析の結果、 おおよそ仕込み値と等しい約 1 0 重量%であることがわかった。 また、 T E Mなどの観察により白金 はおおよそ 1 0 n m程度の微粒子として析出していることがわかつ た。 その顕微鏡写真を図 7 3に示す。
比較例 1 3
実施例 5 7で用いた C 60フラーレン 8 5重量%、 C 70フラーレン 1 5重量%からなる炭素質材料をそのまま比較例 1 3の炭素質材料 とした。
実施例 5 8
アーク放電用の電極として、 先端部が炭素、 その下部に白金が接 合されている電極を準備した。 この際、 先端の炭素部分とその下部 の白金部分は、 その重量比が 9 : 1となるようにした。 この電極を 用いてヘリウムガス 0 . 1気圧 (約 1 . 0 X 1 0 4 P a ) 、 定電流 放電 2 0 0 A、 電極面積 0 . 8 c m 2 の条件でアーク放電を行ない、 炭素部分に続いて白金部分が放電により蒸発完了するところで放電 を終了した。 この放電によって最初に炭素質材料がチャンバ一内に 形成されるが、 これらはフラーレン類やカーボンナノチューブを含 むことが解析により判明している。 さらにその後蒸発してく る白金 は、 これらの炭素質材料の表面上に微粒子として析出し、 これらの 粒径はおおよそ 1 0 n m程度であることが T E Mの観察によって明 らかとなつた。 これを実施例 5 8の炭素質材料とする。
<水素吸蔵量の測定 >
以上の実施例、 および比較例により得た炭素質材料を評価装置内 の試料室にセッ ト し、 まず 1 5 0 °Cに加熱しながら減圧し、 材料中 の水分やガスを取り除いた。 そのまま室温に戻し、 1 0 0気圧の水 素を導入して一定圧力で 1 2時間放置した。 その後、 試料室内が 1 気圧になるまで水素ガスを外部へ取り出し、 取り出せた水素ガスの 総量 ( 1気圧下での体積) を計測し、 試料のない時のプランク値と の差をとり吸蔵量を求めた。 その結果を表 4に示す。 表 4 . 各試料における水素吸蔵量
Figure imgf000121_0001
表 4の結果から、 同じフラーレン材料を用いながら、 化学的担持 法により白金の微粒子を担持させた実施例 5 7とそれを担持しない 比較例 1 3とでは、 水素の吸蔵量に顕著な差のあることが分かる。 また、 アーク放電法により白金の微粒子を担持させた場合も、 実 施例 5 8にみるように室温において良好な水素吸蔵能を示すことが 明らかである。
なお、 実施例 5 7乃び実施例 5 8の各水素吸蔵材料についても、 実施例 4で詳細に述べたのと同様の複素イ ンピーダンス測定を行つ た結果、 図 3と同様な半円弧の複素イ ンピーダンスが得られた。 ま た、 直流抵抗成分も、 水素の吸蔵により吸蔵前の約 1桁に減少する のが観測された。
実施例 59
C 60フラーレン 8 5重量%、 C 70フラーレン 1 5重量%を含む炭 素質材料に白金黒粉末を 9 : 1の重量比で混合したものを、 実施例 59の炭素質材料とした。
この試料につき、 前記と同様に水素の吸蔵能を測定したところ、 測定値は 8 0 m 1であった。
実施例 60
C60フラ一レン 8 5重量%、 C70フラーレン 1 5重量%を含む炭 素質材料に白金のスパッ夕を施し、 膜厚約 20 nmの白金膜を形成 した。 この粉砕物を実施例 60の試料とし、 前記と同様の水素吸蔵 能の測定を行ったところ、 測定値は 1 0 Omlであった。
実施例 6 1
この実施例 6 1では次のようにしてアル力リ蓄電池を作製した。 <正極の作製 >
平均粒径 30 /mの球状水酸化ニッケル 1 0 g、 水酸化コバルト l gに対して、 カルボキシメチルセルロース 3 %を加え、 水で混練 することにより、 ペース トを調製した。 このべ一ス トを空孔率 9 5 %の発泡式ニッケル多孔体に充填、 乾燥、 加圧した後、 打ち抜いて、 直径 20mm、 厚さ 0. 7mmの正極を作製した。
<負極の作製 >
前記実施例 5 7 (又は 58) において製造した水素吸蔵用炭素質 材料 (白金を担持したもの) にカルボキシメチルセルロース 5 %と 水とを加え、 混練したペース 卜を調製し、 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に充填し、 乾燥及び加圧したのち打ち 抜いて、 直径 2 0 m m、 厚さ 0 . 5 m mの負極を作製した。
くアル力リ稽電池 >
次に、 前記工程で作製した正極及び負極を用いると共に、 7 Nの 水酸化カリウム水溶液を電解液として、 図 3 8に概略的に示すよう なアルカリ蓄電池 (二次電池) を作製した。
ぐ充放電性能 >
前記アルカリ蓄電池につき、 0 . 1 C、 上限 1 . 4 V、 下限 0 . 8 Vで充放電試験を行った。 そのサイクル特性を図 7 4に示す。 こ れに明らかなように、 電池構造的な理由からサイクル寿命は十分と は言えないものの、 基本的な充放電性能を確認することができた。 実施例 6 2
この実施例 6 2では、 次のようにして空気電池を作製した。
<空気極の作製 >
前記実施例 5 7と同様にして白金微粒子を担持した炭素質材料を 調製した。 この炭素質材料と、 パーフルォロカーボンスルホン酸同 体高分子電解質のアルコール溶液とを、 n—酢酸ブチル中に分散さ せて、 触媒層スラリーを調製した。
一方、 厚み 2 5 0〃mのカーボン不織布をフッ素系撥水剤のエマ ルジョン液に浸潰し、 乾燥したのち 4 0 0 °Cに加熱することにより、 カーボン不織布に撥水処理を施した。 続いて、 このカーボン不織布 を 4 c m x 4 c mに切断し、 その一方の面に前記触媒層スラリーを 塗布した。 <空気極と高分子電解質膜との接合 >
触媒層に塗布した上記カーボン不織布の塗布面に、 厚み 5 0 j m のパーフルォロカ一ボンスルホン酸からなる高分子電解質膜を接合 し、 しかるのち乾燥した。
く水素極の作製 >
前記空気極の作製に用いたのと同じ炭素質材料 (白金を担持した もの) にカルボキシメチルセルロース 5 %と水とを加えてペース ト を調製し、 このペース トを空孔率 9 5 %の発泡式ニッケル多孔体に 充填、 乾燥したのち加圧し、 4 c mx 4 c mに切断して、 厚み 0. 5 mmの水素極を作製した。
<空気電池の作製 >
前記各工程で得た空気極と高分子電解質膜との接合体に、 この高 分子電解質膜を中にして前記水素極を重ね合わせ、 その両面を厚み 3 mmのテフロン板でしっかり挟み込んで、 ボルトにより固定した。 なお、 空気極側に配置したテフロン板には、 予め直径 1 . 5 mmの 多数の孔が設けられ、 電極に空気がスムーズに供給されるようにし てある。
こうして組み立てられた空気電池の概略的構造を図 4 0に示す。 <空気電池の放電特性 >
次に、 この空気電池の放電特性を調べた。 まず、 充電方向に電流 密度 1 mA/ c m2 で通電し、 水素極に水素を吸蔵させたのち、 電 流密度 I mA/c m2 で放電させた。 その結果、 図 7 5に示すよう な放電特性が得られ、 空気電池として機能することが確認された。 なお、 上記電池を組み立てる前に、 予め水素極に圧力 1 0 0 K g /c m2 で水素を吸蔵させておき、 これを前記接合体に重ね合わせ て空気電池を組み立て、 この電池について電流密度 1 mA/ cm2 で放電特性を測定したところ、 図 76に示すような放電特性が得ら れ、 この場合も空気電池として機能することが確認できた。
実施例 63
この実施例では、 図 3 7の構成の燃料電池を作製した。
この燃料電池は、 触媒 7 7 a及び 7 7 bをそれぞれ密着又は分散 させた互いに対向する、 端子 78 a及び 79 a付きの負極 (燃料極 又は水素極) 78及び正極 (酸素極) 7 9を有し、 これらの両極間 にプロ トン伝導体部 80が挟着されている。 使用時には、 負極 78 側では導入口 8 1から水素が供給され、 排出口 8 2 (これは設けな いこともある。 ) から排出される。 燃料 (H2 ) 83が流路 84を 通過する間にプロ トンを発生し、 このプロ トンはプロ トン伝導体部 80で発生したプロ トンと共に正極 79側へ移動し、 そこで導入口 8 5から流路 8 6に供給されて排気口 8 7へ向かう酸素 (空気) 8 8と反応し、 これにより所望の起電力が取り出される。
以上の構成において、 水素供給源 89に、 実施例 1の水素吸蔵用 炭素質材料を収納した。
プロ トン伝導体部 8 0には、 P CT/J P 0 0Z04864にお いて開示したプロ トン伝導体であるポリ水酸化フラーレン (通称 : フラレノ一ル) を用いた。
ポリ水酸化フラーレン (フラレノ一ル) 粉末 0. 5 gをテトラヒ ドロフラン 1 g中に混合し、 超音波振動器中に 1 0分間投入し、 完 全に溶解させた。 次に、 P t触媒付き電極を作製し、 さらに長方形 の穴を持つプラスチック製のマスクを触媒側を上にした上記電極の 上にのせ、 先に作製しておいた上記フラレノール溶液をたらし、 マ スクの穴の中で均一に広げた。 その後、 室温で乾燥させた後、 マス クを外した。 その上に、 同一の P t触媒付き電極を触媒面を下にし て重ね、 1平方センチメートル当たり約 5 トンの圧力でプレスし、 素子を完成させた。
これを図 3 7に示した如き燃料電池セル内に組み込み、 片面を水 素供給源 8 9から供給された水素ガスに、 もう片面を大気の開放し て、 発電試験を行った。
この結果を図 7 7に示すが、 開放電圧は、 およそ 1 . 2 Vを示し、 出力特性も非常に良好であった。
ここでは、 実施例 1の水素吸蔵用炭素質材料を使用した場合を示 したが、 他の実施例の水素吸蔵用炭素質材料も燃料電池の水素供給 源として使用できることが確認された。

Claims

請求の範囲
1 . 水素をプロ トンの形態で貯蔵することを特徴とする水素吸蔵用 炭素質材料。
2 . 構造的に曲率を有する、 請求の範囲第 1項記載の水素吸蔵用炭 素質材料。
3 . 仕事関数が 4 . 9 e Vより大きい炭素質材料である、 請求の範 囲第 1項記載の水素吸蔵用炭素質材料。
4 . 炭素系電極を用いたアーク放電法により生成される炭素質材料 を主成分とする、 請求の範囲第 3項記載の水素吸蔵用炭素質材料。
5 . 前記炭素質材料が、 前記炭素系電極を陽極とし、 直流又は交流 電源を用いる前記アーク放電法により陰極上に生成される炭素質材 料である、 請求の範囲第 4項記載の水素吸蔵用炭素質材料。
6 . 前記炭素質材料が、 前記アーク放電法により反応室の内面、 又 は同室内にセッ 卜された容器内に生成される炭素質材料である、 請 求の範囲第 4項記載の水素吸蔵用炭素質材料。
7 . 前記炭素質材料としてカーボンナノチューブを含む、 請求の範 囲第 3項記載の水素吸蔵用炭素質材料。
8 . 前記炭素質材料としてフラーレン分子 C n (但し、 nは球状構 造を構成し得る 2 0以上の偶数である。 )の単体又はその混合物を含 む、 請求の範囲第 3項記載の水素吸蔵用炭素質材料。
9 . 前記フラーレン分子の単体が C 6。フラーレン又は C τ。フラーレ ンであり、 前記フラーレン分子の混合物が C 6。フラ一レンと C 7 0又 はそれ以上の高次フラーレンとを含む、 請求の範囲第 8項記載の水 素吸蔵用炭素質材料。
10. 前記炭素質材料と遷移金属とを混合して用いる、 請求の範囲 第 3項記載の水素吸蔵用炭素質材料。
1 1. 前記遷移金属が、 鉄、 希土類元素、 ニッケル、 コバルト、 パ ラジウム、 ロジウム、 白金、 またはこれらの合金である、 請求の範 囲第 10項記載の水素吸蔵用炭素質材料。
12. 前記炭素質材料の少なく とも表面に、 水素分子を水素原子へ、 あるいは更にプロ トンと電子へと分離する触媒能を有する金属が担 持されている、 請求の範囲第 3項記載の水素吸蔵用炭素質材料。
13. 前記炭素質材料中の前記担持用金属の含有量が 10重量%以 下である、 請求の範囲第 12項記載の水素吸蔵用炭素質材料。
14. 前記担持用金属が白金又は白金系合金である、 請求の範囲第 12項記載の水素吸蔵用炭素質材料。
15. 前記炭素質材料と電子供与体とを混合又は結合して用いる、 請求の範囲第 3項記載の水素吸蔵用炭素質材料。
16. 前記電子供与体としてフッ素又はアミン系分子を用いる、 請 求の範囲第 15項記載の水素吸蔵用炭素質材料。
17. 常温以上の温度領城で水素の貯蔵が可能である、 請求の範囲 第 3項記載の水素吸蔵用炭素質材料。
18. 炭素質材料を原料としたアーク放電法、 化学的気相成長法 (CVD法) 、 レーザ一アブレーシヨン法又はシリコン力一バイ ド (S i C) 高温処理法によって、 水素をプロ トンの状態で貯蔵する 水素吸蔵用炭素質材料を生成する、 水素吸蔵用炭素質材料の製造方 法。
19. 構造的に曲率を有する前記水素吸蔵用炭素質材料を生成する、 請求の範囲第 18項記載の水素吸蔵用炭素質材料の製造方法。
2 0 . 仕事関数が 4 . 9 e Vより大きい前記水素吸蔵用炭素質材料 を生成する、 請求の範囲第 1 8項記載の水素吸蔵用炭素質材料の製 造方法。
2 1 . カーボンナノチューブを含む前記水素吸蔵用炭素質材料を生 成する、 請求の範囲第 2 0項記載の水素吸蔵用炭素質材料の製造方 法。
2 2 . 前記水素吸蔵用炭素質材料がフラーレン分子 C n (但し、 n は球状構造を構成し得る 2 0以上の偶数である。 )の単体又はその混 合物を含む、 請求の範囲第 2 0項記載の水素吸蔵用炭素質材料の製 造方法。
2 3 . 前記フラーレン分子の単体が C 6。フラーレン又は C 7。フラー レンであり、 前記フラーレン分子の混合物が C 6。フラーレンと C 7 ϋ 又はそれ以上の高次フラーレンとを含む、 請求の範囲第 2 2項記載 の水素吸蔵用炭素質材料の製造方法。
2 4 . 前記水素吸蔵用炭素質材料と遷移金属とを混合する、 請求の 範囲第 2 0項記載の水素吸蔵用炭素質材料の製造方法。
2 5 . 前記遷移金属として白金を用いる、 請求の範囲第 2 4項記載 の水素吸蔵材料の製造方法。
2 6 . 前記アーク放電法が、 反応室(真空チャンバ)内に対向配置さ れる電極のうち、 少なく とも一方の電極として、 炭素系電極を用い、 前記反応室内でアーク放電を行うことによるものである、 請求の範 囲第 1 8項記載の水素吸蔵用炭素質材料の製造方法。
2 7 . 前記少なく とも一方の電極に、 遷移金属を含有する炭素系電 極を用いる、 請求の範囲第 2 6項記載の水素吸蔵用炭素質材料の製 造方法。
2 8 . 前記遷移金属を、 鉄、 希土類元素、 ニッケル、 コバルト、 パ ラジウム、 ロジウム、 白金、 またはこれらの合金とする、 請求の範 囲第 2 6項記載の水素吸蔵用炭素質材料の製造方法。
2 9 . 直流又は交流電源を用いて前記アーク放電を行ない、 前記反 応室の内面もしくは同室内にセッ トした容器内に前記水素吸蔵用炭 質材料を生成させる、 請求の範囲第 2 6項記載の水素吸蔵用炭素 質材料の製造方法。
3 0 . 前記炭素系電極を陽極とし、 直流電源を用いて前記アーク放 電を行ない、 陰極上に前記水素吸蔵用炭素質材料を生成させる、 請 求の範囲第 2 6項記載の水素吸蔵用炭素質材料の製造方法。
3 1 . 前記アーク放電により遷移金属を含む水素吸蔵用炭素質材料 を生成したのち、 この水素吸蔵用炭素質材料の少なく ともその表面 に、 水素分子を水素原子へ、 あるいは更にプロ トンと電子へと分離 できる触媒能を有する金属を担持させる、 請求の範囲第 2 6項記載 の水素吸蔵用炭素質材料の製造方法。
3 2 . 前記水素吸蔵用炭素質材料中の前記担持用金属の含有量を 1 0重量%以下とする、 請求の範囲第 3 1項記載の水素吸蔵用炭素質 材料の製造方法。
3 3 . 前記金属を白金又は白金系合金とする、 請求の範囲第 3 1項 記載の水素吸蔵用炭素質材料の製造方法。
3 4 . 前記水素吸蔵用炭素質材料と電子供与体とを混合又は結合す る、 請求の範囲第 2 0項記載の水素吸蔵用炭素質材料の製造方法。
3 5 . 前記電子供与体としてフッ素又はアミン系分子を用いる、 請 求の範囲第 3 4項記載の水素吸蔵用炭素質材料の製造方法。
3 6 . 常温以上の温度領域で水素の貯蔵が可能である、 水素吸蔵用 炭素質材料を生成する、 請求の範囲第 2 0項記載の水素吸蔵用炭素 質材料の製造方法
3 7 . 負極と、 正極と、 これらの間に介在する電解質とを有し、 前 記負極及び/又は前記正極が、 水素をプロ トンの状態で貯蔵する水 素吸蔵用炭素質材料を含む、 電池。
3 8 . アルカリ蓄電池として構成された、 請求の範囲第 3 7項記載 の電池。
3 9 . 空気電池として構成された、 請求の範囲第 3 7項記載の電池。
4 0 . 負極と、 プロ トン伝導体と、 正極との積層構造からなる燃料 電池であって、 水素をプロ トンの状態で貯蔵する水素吸蔵用炭素質 材料を含む水素吸蔵部を配置し、 ここから水素を前記負極に供給す るように構成した、 燃料電池。
4 1 . 水素吸蔵状態における直流抵抗が、 水素未吸蔵状態における 直流抵抗に比して 5 0 %以上低抵抗化されるか、 或いは、 水素吸蔵 状態における複素抵抗成分中の実数部分が、 水素未吸蔵状態の復素 抵抗成分中の実数部分に比して、 5 0 %以上低抵抗化される、 水素 吸蔵用材料。
4 2 . 前記低抵抗化の比が 1桁以上である、 請求の範囲第 4 1項記 載の水素吸蔵用材料。
4 3 . 前記 5 0 %以上の低抵抗化比の変化が、 1重量%以上の水素 吸蔵量に相当する、 請求の範囲第 4 1項記載の水素吸蔵用材料。
4 4 . 炭素質から構成される、 請求の範囲第 4 1項記載の水素吸蔵 用材料。
4 5 . 前記水素がプロ トンの形で吸蔵される、 請求の範囲第 4 1項 記載の水素吸蔵用材料。
4 6 . 負極と、 正極と、 これらの間に介在する電解質とを有し、 前 記負極及び/又は前記正極の材料が、 水素吸蔵状態における直流抵抗 が、 水素未吸蔵状態における直流抵抗に比して 5 0 %以上低抵抗化 されるか、 或いは、 水素吸蔵状態における複素抵抗成分中の実数部 分が、 水素未吸蔵状態の複素抵抗成分中の実数部分に比して、 5 0 %以上低抵抗化される、 水素吸蔵用材料を用いる電池。
4 7 . アルカリ蓄電池として構成された、 請求の範囲第 4 6項記載 の電池。
4 8 . 空気電池として構成された、 請求の範囲第 4 6項記載の電池。
4 9 . 負極と、 プロ トン伝導体と、 正極との積層構造からなる燃料 電池であって、 水素吸蔵能のある材料を含む水素吸蔵部を配置し、 ここから水素を前記負極に供給するように構成し、 前記材料として 水素吸蔵状態における直流抵抗が、 水素吸蔵状態における直流抵抗 に比して 5 0 %以上低抵抗化されるか、 或いは、 水素吸蔵状態にお ける複素抵抗成分中の実数部分が、 水素未吸蔵状態の複素抵抗成分 中の実数部分に比して、 5 0 %以上低抵抗化される、 水素吸蔵用材 料を用いる燃料電池。
5 0 . 水素吸蔵可能な材料に、 プラスの電圧を印加し、 水素を含む ガス雰囲気下で、 処理することを特徴とする水素吸蔵材料の製造方 法。
5 1 . 前記水素吸蔵可能な材料が炭素質材料によって構成されたこ とを特徴とする請求の範囲第 5 0項記載の水素吸蔵材料の製造方法。
5 2 . 前記炭素質材料が、 表面積が大きく、 構造的に曲率を有する 炭素質材料によって構成されたことを特徴とする請求の範囲第 5 1 項記載の水素吸蔵材料の製造方法。
5 3 . 前記炭素質材料が、 フラーレン、 カーボンナノファイバー、 カーボンナノチューブ、 炭素スス、 ナノカプセル、 バッキーォニォ ンおよび力一ボンファイバーよりなる群から選ばれる炭素質材料に よって構成されたことを特徴とする請求の範囲第 5 2項記載の水素 吸蔵材料の製造方法。
5 4 . プラスの電圧が印加された水素吸蔵可能な材料が、 水素を含 むガス雰囲気下で、 処理されたことを特徴とする水素吸蔵材料。
5 5 . 前記水素吸蔵可能な材料が炭素質材料によって構成されたこ とを特徴とする請求の範囲第 5 4項記載の水素吸蔵材料。
5 6 . 前記炭素質材料が、 表面積が大きく、 構造的に曲率を有する 炭素質材料によって構成されたことを特徴とする請求の範囲第 5 5 項記載の水素吸蔵材料。
5 7 . 前記炭素質材料が、 フラーレン、 力一ボンナノファイバー、 カーボンナノチューブ、 炭素スス、 ナノカプセル、 バッキーォニォ ンおよび力一ボンファイバーよりなる群から選ばれる炭素質材料に よつて構成されたことを特徴とする請求の範囲第 5 6項記載の水素 吸蔵材料。
5 8 . 水素吸蔵材料に、 第一のプラスの電圧を印加することによつ て、 水素の放出を停止させ、 前記第一のプラスの電圧よりも低い第 二のプラスの電圧を印加することによって、 水素を放出させること を特徴とする水素吸蔵材料の水素吸蔵放出制御方法。
5 9 . 前記水素吸蔵材料が炭素質材料によって構成されたことを特 徴とする請求の範囲第 5 8項記載の水素吸蔵放出制御方法。
6 0 . 前記炭素質材料が、 表面積が大きく、 構造的に曲率を有する 炭素質材料によって構成されたことを特徴とする請求の範囲第 5 8 項記載の水素吸蔵放出制御方法。
6 1 . 前記炭素質材料が、 フラーレン、 カーボンナノファイバ一、 力一ボンナノチューブ、 炭素スス、 ナノカプセル、 バッキーォニォ ンおよび力一ボンファイバ一よりなる群から選ばれる炭素質材料に よって構成されたことを特徴とする請求の範囲第 6 0項記載の水素 吸蔵放出制御方法。
6 2 . 水素吸蔵材料を収容可能なチャンバと、 前記水素吸蔵材料に プラスの電圧を印加可能な電圧源と、 前記電圧源を制御可能なコン トローラとを備えたことを特徴とする水素吸蔵放出システム。
6 3 . 前記チャンバが耐圧容器によって構成されたことを特徴とす る請求の範囲第 6 2項記載の水素吸蔵放出システム。
6 4 . 負極と、 正極と、 これらの間に介在する電解質とを有し、 前 記負極および/または前記正極が、 プラスの電圧を印加した水素吸 蔵可能な材料を、 水素を含むガス雰囲気下で、 処理した水素吸蔵材 料を含んだことを特徴とする電池。
6 5 . 負極と、 プロ トン伝導体と、 正極との積層構造を有し、 さら に、 水素吸蔵材料を含み、 水素を放出して、 前記負極に供給するよ うに構成された水素供給部を備えた燃料電池であって、 前記水素供 給部が、 前記水素吸蔵材料に、 プラスの電圧を印加可能な電圧印加 手段を備えたことを特徴とする燃料電池。
6 6 . 前記水素供給部が、 前記水素吸蔵材料を収容するチャンバと、 前記水素吸蔵材料にプラスの電圧を印加可能な電圧源と、 前記電圧 源を制御可能なコン トローラとを備えたことを特徴とする請求の範 囲第 6 5項記載の燃料電池。
6 7 . 前記チャンバが耐圧容器によって構成されたことを特徴とす る請求の範囲第 6 6項記載の燃料電池。
6 8 . 負極と、 プロ トン伝導体と、 正極との積層構造を有し、 さら に、 水素吸蔵材料を含み、 水素を放出して、 前記負極に供給するよ うに構成された水素供給部を備えた燃料電池の前記水素吸蔵材料に 印加されるプラスの電圧を制御することを特徴とする燃料電池の水 素放出制御方法。
6 9 . 前記水素吸蔵可能な材料が炭素質材料によって構成されたこ とを特徴とする請求の範囲第 6 8項記載の燃料電池の水素放出制御 方法。
7 0 . 前記炭素質材料が、 表面積が大きく、 構造的に曲率を有する 炭素質材料によって構成されたことを特徴とする請求の範囲第 6 9 項記載の燃料電池の水素放出制御方法。
7 1 . 前記炭素質材料が、 フラーレン、 カーボンナノファイバー、 カーボンナノチューブ、 炭素スス、 ナノカプセル、 バツキ一ォニォ ンおよび力一ボンファイバ一よりなる群から選ばれる炭素質材料に ■ よって構成されたことを特徴とする請求の範囲第 7 0項記載の燃料 電池の水素放出制御方法。
7 2 . フラーレン分子の単体またはその混合物の重合体からなる焼 成体を主成分とする、 水素吸蔵用炭素質材料。
7 3 . 前記フラーレン分子が C n (但し、 nは球状構造を形成しう る 2 0以上の偶数である。 ) で表され、 このフラーレン分子が 6 0 0 - 2 0 0 0 °Cでの焼成により重合体化されている、 請求の範囲第 7 2項記載の水素吸蔵用炭素質材料。
7 4 . 前記フラーレン分子の単体が C 6 0フラーレン又は C 7。フラー レンであり、 前記フラーレン分子の混合物が C 6 Qフラーレンと C 7 0 又はそれ以上の高次フラーレンとを含む、 請求の範囲第 7 3項記載 の水素吸蔵用炭素質材料。
7 5 . 前記フラーレン分子の単体又はその混合物が、 前記焼成時に、 炭素のオーダリングを促進する金属又はその化合物を含有したまま 焼成されている、 請求の範囲第 7 2項記載の水素吸蔵用炭素質材料。
7 6 . 前記オーダリング用の金属又はその化合物が、 金属、 金属酸 化物又は金属配位化合物である、 請求の範囲第 7 5項記載の水素吸 蔵用炭素質材料。
7 7 . 前記オーダリング用の金属が、 遷移金属又はランタノイ ド金 属である、 請求の範囲第 7 5項記載の水素吸蔵用炭素質材料。
7 8 . 前記遷移金属が鉄、 ニッケル又はバナジウムである、 請求の 範囲第 7 7項記載の水素吸蔵用炭素質材料。
7 9 . 前記焼成体の表面に、 水素分子を水素原子へ、 又は更にプロ トンと電子へと分離する触媒能を有する金属からなる触媒微粒子又 は膜が担持されている、 請求の範囲第 7 2項記載の水素吸蔵用炭素 質材料。
8 0 . 前記焼成体が、 焼成時に炭素のオーダリングを促進する金属 又はその化合物とともにフラーレン分子の単体又はその混合物を焼 成したものである、 請求の範囲第 7 2項記載の水素吸蔵用炭素質材 料。
8 1 . 前記触媒の微粒子が平均粒径 1 / m以下の微粒子である、 請 求の範囲第 7 9項記載の水素吸蔵用炭素質刻料。
8 2 . 前記触媒の微粒子の含有量が 1 0重量%以下である、 請求の 範囲第 7 9項記載の水素吸蔵用炭素質材料。
8 3 . 前記焼成体に担持される前記触媒金属が、 白金又はパラジゥ ムの微粒子であり、 前記合金の触媒粒子が白金系の微粒子である、 請求の範囲第 79項記載の水素吸蔵用炭素質材料。
84. 前記焼成体に対する前記触媒金属の担持方法が、 金属錯体を 含む溶液を用いた化学担持法である、 請求の範囲第 7 9項記載の水 素吸蔵用炭素質材料。
8 5. 前記焼成体に対する前記触媒金属の担持方法が、 白金を含む 電極を用いたアーク放電法である、 請求の範囲第 7 9項記載の水素 吸蔵用炭素質材料。
8 6. フラーレン分子の C n (但し、 nは球状摸造を形成し得る 2
0以上の偶数である) の単体又はその混合物を非酸化性ガス中で焼 成して重合体化する、 水素吸蔵用炭素質材料の製造方法。
8 7. 前記フラーレン分子の単体を C 6。フラーレンまたは C7。フラ 一レンとし、 前記フラーレン分子の混合物を、 C60フラーレンと C
70又はそれ以上の高次フラーレンとの混合物とする、 請求の範囲第
8 6項記載の水素吸蔵用炭素質材料の製造方法。
8 8. 前記非酸化性ガスとして、 不活性ガス、 窒素ガス又は水素ガ スのそれぞれ単独もしくは 2種以上の混合ガスを使用する、 請求の 範囲第 86項記載の水素吸蔵用炭素質材料の製造方法。
8 9. 前記非酸化性ガス中に有機化合物のガスを添加混合する、 請 求の範囲第 8 6項記載の水素吸蔵用炭素質材料の製造方法。
9 0. 前記焼成温度を 6 00〜2000°C (好ましくは 800〜 1 3 0 0°C) とする、 請求の範囲第 86項記載の水素吸蔵用炭素質材 料の製造方法。
9 1. 前記フラーレン分子の単体又は混合物を、 炭素のオーダリン グを促進する金属又はその化合物とともに焼成する、 請求の範囲第 8 6項記載の水素吸蔵用炭素質材料の製造方法。
9 2 . 前記オーダリング用の金属又はその化合物を、 金属、 金属酸 化物または金属配位化合物とする、 請求の範囲第 9 1項記載の水素 吸蔵用炭素質材料の製造方法。
9 3 . 前記オーダリング用の金属を、 遷移金属又はランタノイ ド金 属とする、 請求の範囲第 9 2項記載の水素吸蔵用炭素質材料の製造 方法。
9 4 . 前記遷移金属を鉄、 ニッケル又はバナジウムとする、 請求の 範囲第 9 3記載の水素吸蔵用炭素質材料の製造方法。
9 5 . 前記焼成体の表面に、 水素分子を水素原子へ、 又は更にプロ トンと電子へと分離する触媒能を有する金属からなる、 触媒微粒子 又は膜を担持させる、 請求の範囲第 8 6項記載の水素吸蔵用炭素質 材料の製造方法。
9 6 . 前記焼成体が、 焼成時に炭素のオーダリングを促進する金属 又はその化合物とともにフラーレン分子の単体又はその混合物を焼 成したものである、 請求の範囲第 9 5項記載の水素吸蔵用炭素質材 料の製造方法。
9 7 . 前記触媒微粒子を平均粒子径 1 m以下の微粒子とする、 請 求の範囲第 9 5項記載の水素吸蔵用次素質材料の製造方法。
9 8 . 前記触媒の微粒子の含有量を 1 0重量%以下とする、 請求の 範囲第 9 5項記載の水素吸蔵用炭素質材料の製造方法。
9 9 . 前記焼成体に担持させる前記金属の触媒微粒子を、 白金又は パラジゥムの微粒子とし、 前記合金の触媒微粒子を白金系の微粒子 とする、 請求の範囲第 9 5項記載の水素吸蔵用次素質材料の製造方 法。
1 0 0. 前記白金又は白金系触媒微粒子を、 白金錯体を含む溶液を 用いる化学担持法によって、 前記焼成体に担持させる、 請求の範囲 第 9 9項記載の水素吸蔵用炭素質材料の製造方法。
1 0 1. 前記焼成体の表面に前記触媒金属をスパッ夕、 化学的手法 又は混練りによって担持させる、 請求の範囲第 9 5項記載の水素吸 蔵用炭素質材料の製造方法。
1 0 2. 前記焼成体の表面に前記白金粒子又は白金合金粒子を、 泊 金を含む電極を用いたアーク放電法により担持させる、 請求の範囲 第 9 9項記載の水素吸蔵用炭素質材料の製造方法。
1 0 3. 負極と、 正極と、 これらの間に介在する電解質とを有し、 前記負極及び/又は前記正極が、 フラーレン分子の単体またはその 混合物の重合体からなる焼成体を主成分とする水素吸蔵用炭素質材 料を含む、 電池。
1 04. アル力リ蓄電池として構成された、 請求の範囲第 1 03項 記載の電池。
1 0 5. 空気電池として構成された、 請求の範囲第 1 03項記載の 電池。
1 0 6. 負極と、 プロ 卜ン伝導体と、 正極との積層構造からなる燃 料電池であって、 フラーレン分子の重合体またはその混合物の重合 体からなる焼成体を主成分とする水素吸蔵用炭素質材料を含む水素 吸蔵部を配置し、 ここから水素を前記負極に供給するように構成し た、 燃料電池。
1 0 7. フラーレン分子の単体又はその混合物の電解重合体を主成 分とする、 水素吸蔵用炭素質材料。
1 0 8. 前記電解重合体が、 Cn (但し、 nは幾何学的に球状化合 物を形成し得る整数である。 ) で表わされるフラーレン分子の環状 付加重合体を含む、 請求の範囲第 1 07項記載の水素吸蔵用炭素質 材料。
1 0 9. 前記フラーレン分子が C 60フラーレン及び/又は C 70フラ 一レンである、 請求の範囲第 1 08項記載の水素吸蔵用炭素質材料。
1 1 0. 前記環状付加重合体が、 複数の前記フラーレン分子がその シクロへキサト リエニル部位に付加した 1 , 2—付加結合によって 互いに重合してなる (Cn ) m 〔但し、 nは前述したのと同様であ り、 mは任意の自然数である。 〕 で表わされる重合体である、 請求 の範囲第 1 08項記載の水素吸蔵用炭素質材料。
1 1 1. 前記電解重合体が、 電解液中の支持電解質から供された対 イオンを含む、 請求の範囲第 1 07項記載の水素吸蔵用炭素質材料。
1 1 2. 前記対イオンが L i、 B e、 Na、 M :、 C a、 K、 C e、 A l、 Mn、 F e、 C o等から選ばれる金属イオン又はそのクラス 夕一である、 請求の範囲第 1 1 1項記載の水素吸蔵用炭素質材料。
1 1 3. 前記電解重合に用いられる非水溶媒が、 前記フラーレン分 子を溶解する第 1溶媒と、 支持電解質を溶解する第 2溶媒との混合 溶媒である、 請求の範囲第 1 0 7項記載の水素吸蔵用炭素質材料。
1 1 4. 前記第 1溶媒が 7Γ電子系を有する極性の低い溶媒であり、 前記第 2溶媒が極性溶媒である、 請求の範囲第 1 1 3項記載の水素 吸蔵用炭素質材料。
1 1 5. 前記第 1溶媒が、 二硫化炭素、 トルエン、 ベンゼン及びォ ルトジクロルベンゼンからなる群より選ばれた少なくとも 1種の溶 媒であり、 前記第 2溶媒がァセ トニト リル、 ジメチルホルムアミ ド、 ジメチルスルホキシド及びジメチルァセ トアミ ドからなる群より選 ばれた少なく とも 1種の溶媒である、 請求の範囲第 1 13項記載の 水素吸蔵用炭素質材料。
1 1 6. フラーレン分子の単体又はその混合物を振動させることに よって得られた重合体を主成分とする、 水素吸蔵用炭素質材料。
1 1 7. 前記フラーレン分子の振動が不活性ガス中での機械的震と う法又は超音波照射法により行われる、 請求の範囲第 1 16項記載 の水素吸蔵用炭素質材料。
1 18. 前記重合体が、 Cn (但し、 nは幾何学的に球状化合物を 形成し得る整数である。 ) で表わされるフラーレン分子の環状付加 重合体を含む、 請求の範囲第 1 1 6項記載の水素吸蔵用炭素質材料。
1 1 9. 前記フラーレン分子が C60フラ一レン及び/又は C70フラ 一レンである、 請求の範囲第 1 18項記載の水素吸蔵用炭素質材料。
120. 前記環状付加重合体が、 複数の前記フラーレン分子がその シクロへキサトリェニル部位に付加した 1, 2—付加結合によって 互いに重合してなる (Cn ) m 〔但し、 nは前述したのと同様であ り、 mは任意の自然数である。 〕 で表わされる重合体である、 請求 の範囲第 1 18項記載の水素吸蔵用炭素質材料。
12 1. 前記フラーレン分子が触媒金属の微粒子の存在下で振動さ せて重合体化されたものである、 請求の範囲第 1 1 6項記載の水素 吸蔵用炭素質材料。
122. 前記触媒金属の微粒子が L i、 B e、 Na、 Mg、 Ca、 K、 Ce、 Al、 Mn、 F e、 C o等から選ばれる金属からなる、 請求の範囲第 12 1項記載の水素吸蔵用炭素質材料。
123. 負極と、 正極と、 これらの間に介在する電解質とを有し、 前記負極及び/又は前記正極が、 フラーレン分子の単体又はその混 合物の電解重合体、 又はフラーレン分子の単体又はその混合物を振 動させることによって得られた重合体を主成分とする水素吸蔵用炭 素質材料を含む、 電池。
124. アル力リ蓄電池として構成された、 請求の範囲第 1 23項 記載の電池。
125. 空気電池として構成された、 請求の範囲第 123¾記載の 電池。
126. 負極とプロ トン伝導体と、 正極との積層構造からなる燃料 電池であって、 フラーレン分子の単体又はその混合物の電解重合体、 又はフラーレン分子の単体又はその混合物を振動させることによつ て得られた重合体を主成分とする水素吸蔵用炭素質材料を含む水素 吸蔵部を配置し、 ここから水素を前記負極に供給するように構成し た燃料電池。
127. 炭素を主成分とする炭素質材料を母体とし、 これにプロ ト ンと水素結合し得る基を導入してなる炭素質材料誘導体を主成分と して含む、 水素吸蔵用炭素質材料。
128. 前記基が、 酸素原子、 フッ素原子、 窒素原子、 硫黄原子及 び塩素原子からなる群より選ばれる少なくとも 1種を含むものであ る、 請求の範囲第 127項記載の水素吸蔵用炭素質材料。
129. 前記炭素質材料の炭素原子数の、 前記基の数に対する比が、 ( 1 0 : 1 ) 〜 ( 1 : 1 ) である、 請求の範囲第 127項記載の 水素吸蔵用炭素質材料。
130. 前記炭素質材料が、 炭素原子の集合体である炭素クラス夕 一を含む、 請求の範囲第 127項記載の水素吸蔵用炭素質材料。
13 1. 前記炭素クラス夕一が、 フラーレン分子、 フラーレン構造 の少なく とも一部に開放端を持つ構造を有するもの、 ダイヤモンド 構造を有するもの、 若しくはこれらの混合物である、 請求の範囲第 1 3 0項記載の水素吸蔵用炭素質材料。
1 3 2. 前記フラーレン分子が、 Cm (m= 3 6、 60、 70、 7
8、 8 2、 84等) で表される球状炭素クラス夕一分子である、 請 求の範囲第 1 30項記載の水素吸蔵用炭素質材料。
1 3 3. 前記炭素質材料がカーボンナノチューブである、 請求の範 囲第 1 2 7項記載の水素吸蔵用炭素質材料。
1 34. 前記炭素質材料が炭素クラス夕一が結合したものである、 請求の範囲第 1 27項記載の水素吸蔵用炭素質材料。
1 3 5. 炭素を主成分とする炭素質材料を炭素原料とし、 この炭素 原料を、 プロ トンと水素結合し得る基を含むガス雰囲気中で焼成す るか、 或いは前記基を含む液体中に投入して処理することにより、 前記炭素原料を構成する炭素原子に前記基を導入することを特徴と する、 水素吸蔵用炭素質材料の製造方法。
1 3 6. 前記基が、 酸素原子、 フッ素原子、 窒素原子、 硫黄原子及 び塩素原子からなる群より選ばれる少なく とも 1種を含むものであ る、 請求の範囲第 1 3 5項記載の水素吸蔵用炭素質材料の製造方法。
1 3 7. 前記基が硫黄原子を含むものであり、 前記液体が発煙硫酸 である、 請求の範囲第 1 3 5項記載の水素吸蔵用炭素質材料の製造
1 3 8. 前記基が窒素原子を含むものであり、 前記液体が窒素酸化 ガスを通じた液体である、 請求の範囲第 1 35項記載の製造方法。
1 3 9. 前記炭素質材料の炭素原子数の、 前記基の数に対する比を、 ( 1 0 : 1 ) 〜 ( 1 : 1 ) とする、 請求の範囲第 1 3 5項記載の 水素吸蔵用炭素質材料の製造方法。
1 4 0. 前記炭素質材料が、 炭素原子の集合体である炭素クラス夕 一を含む、 請求の範囲第 1 3 5項記載の水素吸蔵用炭素質材料の製 造方法。
1 4 1. 前記炭素クラス夕一が、 フラーレン分子、 フラーレン構造 の少なく とも一部に開放端を持つ構造を有するもの、 ダイヤモン ド 構造を有するもの、 若しくはこれらの混合物である、 請求の範囲第 1 4 0項記載の水素吸蔵用炭素質材料の製造方法。
14 2. 前記フラーレン分子が、 Cm (m二 3 6、 60、 70、 7 8、 8 2、 84等) で表される球状炭素クラスター分子である、 請 求の範囲第 14 1項記載の水素吸蔵用炭素質材料の製造方法。
1 4 3. 前記炭素質材料がカーボンナノチューブである、 請求の範 囲第 1 3 5項記載の水素吸蔵用炭素質材料の製造方法。
1 44. 前記炭素質材料が炭素クラス夕一が結合したものである、 請求の範囲第 1 3 5項記載の水素吸蔵用炭素質材料の製造方法。
1 4 5. 負極と、 正極と、 これらの間に介在する電解質とを有し、 前記負極及び/又は正極が、 炭素を主成分とする炭素質材料を母体 とし、 これにプロ トンと水素結合し得る基が導入されている炭素質 材料誘導体を主成分として含む、 電池。
1 4 6. アル力リ蓄電池として構成された、 請求の範囲第 145項 記載の電池。
1 4 7. 空気電池として構成された、 請求の範囲第 145項記載の 電池。
14 8. 負極と、 プロ トン伝導体と、 正極との積層構造からなる燃 料電池であって、 炭素を主成分とする炭素質材料を母体とし、 これ にプロ トンと水素結合し得る基が導入されている炭素質材料誘導体 をを含む水素吸蔵部を有し、 前記水素吸蔵部に吸蔵された水素を放 出して前記負極に供給するように構成した、 燃料電池。
1 4 9 . 構造中に屈曲部を有する炭素質材料からなる、 水素吸蔵用 炭素質材料。
1 5 0 . 遷移金属、 その酸化物及びその炭化物からなる群より選ば れた触媒の表面に、 炭素含有化合物の熱分解により生成された前記 炭素質材料が被着されてなる、 請求の範囲第 1 4 9項記載の水素吸 蔵用炭素質材料。
1 5 1 . 前記炭素質材料が、 遷移金属、 その酸化物及びその炭化物 からなる群より選ばれた触媒の表面に炭素含有化合物の熱分解によ り生成されたものである、 請求の範囲第 1 4 9項記載の水素吸蔵用 炭素質材料。
1 5 2 . 前記炭素質材料がグラフアイ トからなり、 前記遷移金属が、 鉄、 ニッケル及びコバル卜からなる群より選ばれた少なくとも 1つ を含むものである、 請求の範囲第 1 5 0項又は第 1 5 1項記載の水 素吸蔵用炭素質材料。
1 5 3 . 遷移金属、 その酸化物及びその炭化物からなる群より選ば れた触媒上で炭素含有化合物を熱分解することにより、 前記触媒の 表面に炭素質材料を生成する、 水素吸蔵用炭素質材料の製造方法。
1 5 4 . 前記触媒の表面に、 構造中に屈曲部を有する前記炭素質材 料を生成する、 請求の範囲第 1 5 3項記載の水素吸蔵用炭素質材料 の製造方法。
1 5 5 . 前記遷移金属として、 鉄、 ニッケル及びコバルトからなる 群より選ばれた少なくとも 1つを含むものを用い、 前記炭素質材料 としてグラフアイ トを生成する、 請求の範囲第 1 5 3項記載の水素 吸蔵用炭素質材料の製造方法。
1 5 6. 熱分解させる前記炭素含有化合物として、 炭素及び水素を 含有する化合物を用いる、 請求の範囲第 1 53項記載の水素吸蔵用 炭素質材料の製造方法。
1 5 7. 前記炭索含有化合物の熱分解温度を 90 0 °C;〜 1 30 0 °C とする、 請求の範囲第 1 53項記載の水素吸蔵用炭素質材料の製造 方法。
1 5 8. 前記炭素含有化合物を気体状態でキヤリァガスに随伴させ たまま加熱分解する、 請求の範囲第 1 5 3項記載の水素吸蔵用炭素 質材料の製造方法。
1 5 9. 前記キャリアガスに還元性ガスを添加、 混合する、 請求の 範囲第 1 5 8項記載の水素吸蔵用炭素質材料の製造方法。
1 6 0. 前記熱分解により生成した前記炭素質材料を、 前記触媒と 複合化する、 請求の範囲第 1 5 7項記載の水素吸蔵用炭素質材料の 製造方法。
1 6 1. 前記熱分解により生成した前記炭素質材料から前記触媒を 除去する、 請求の範囲第 1 60項記載の水素吸蔵用炭素質材料の製 造方法。
1 6 2. 負極と、 正極と、 これらの間に介在する電解質とを有し、 前記負極及び/又は正極が、 構造中に屈曲部を有する炭素質材料を 含む、 電池。
1 6 3. アルカリ蓄電池として構成されてなる、 請求の範囲第 1 6 2項記載の電池。
1 64. 空気電池として構成されてなる、 請求の範囲第 1 6 2項記 載の電池。
1 6 5. 負極とプロ トン伝導体と、 正極との積層構造からなる燃料 電池であって、 構造中に屈曲部を有する炭素質材料を含む水素吸蔵 部を有し、 前記水素吸蔵部に吸蔵された水素を放出して前記負極に 供給するように構成した、 燃料電池。
1 6 6. 水素分子を水素原子へ、 あるいは更にプロ トンと電子へと 分離できる触媒能を有する金属の微粒子を炭素質材料に担持させた、 水素吸蔵用炭素質材料。
1 6 7. 前記金属微粒子が平均粒径 1 m以下の微粒子である、 請 求の範囲第 1 6 6項記載の水素吸蔵用炭素質材料。
1 6 8. 前記炭素質材料中の前記金属微粒子の含有量が 1 0重量% 以下である、 請求の範囲第 1 6 6項記載の水素吸蔵用炭素質材料。
1 6 9. 前記金属微粒子が白金又は白金系の合金の微粒子である、 請求の範囲第 1 66項記載の水素吸蔵用炭素質材料。
1 0. 前記炭素質材料に対する前記金属微粒子の担持方法が、 白 金錯体を含む溶液を用いた化学担持法である、 請求の範囲第 1 6 6 項記載の水素吸蔵用炭素質材料。
1 7 1. 前記炭素質材料に対する前記金属微粒子の担持方法が、 白 金を含む電極を用いたアーク放電法である、 請求の範囲第 1 6 6項 記載の水素吸蔵用炭素質材料。
1 7 2. 前記炭素質材料がフラーレン分子の単体又はその混合物、 又はフラーレン分子のプラズマ重合体を含む、 請求の範囲第 1 6 6 項記載の水素吸蔵用炭素質材料。
1 7 3. 前記フラーレン分子が Cn (但し、 nは球状構造を形成し 得る 20以上の偶数である。 ) で表わされる、 請求の範囲第 1 7 2 項記載の水素吸蔵用炭素質材料。
1 7 4. 前記フラーレン分子の単体が C60フラーレン又は C70フラ 一レンであり、 前記フラーレン分子の混合物が C 60フラーレンと C 70又はそれ以上の高次フラーレンとを含む、 請求の範囲第 1 7 2項 記載の水素吸蔵用炭素質材料。
1 7 5. 前記炭素質材料にカーボンナノチューブが含有される、 請 求の範囲第 1 6 6項記載の水素吸蔵用炭素質材料。
1 7 6. 水素分子を水素原子へ、 あるいは更にプロ トンと電子へと 分離できる触媒能を有するプロ トンと電子へと分離できる触媒能を 有する金属の微粒子を、 炭素質材料の少なく とも表面に接触させて この表面に担持させる、 水素吸蔵用炭素質材料の製造方法。
1 7 7. 前記金属微粒子を平均粒径 1 m以下の微粒子とする、 請 求の範囲第 1 7 6項記載の水素吸蔵用炭素質材料の製造方法。
1 7 8. 前記金属微粒子の含有量を 1 0重量%以下とする、 請求の 範囲第 1 7 6項記載の水素吸蔵用炭素質材料の製造方法。
1 7 9. 前記金属微粒子を白金又は白金系の合金の微粒子とする、 請求の範囲第 1 7 6項記載の水素吸蔵用炭素質材料の製造方法。
1 8 0. 白金錯体を含む溶液を用いる化学担持法によって、 前記白 金又は白金系の微粒子を前記炭素質材料に担持させる、 請求の範囲 第 1 7 9項記載の水素吸蔵用炭素質材料の製造方法。
1 8 1. 白金を含む電極を用いるアーク放電法により、 前記白金又 は白金系の微粒子を前記炭素質材料に担持させる、 請求の範囲第 1 7 9項記載の水素吸蔵用炭素材料の製造方法。
1 8 2. 前記炭素質材料をフラーレン分子の単体又はその混合物、 又はフラーレン分子のプラズマ重合体とする、 請求の範囲第 1 Ί 6 項記載の水素吸蔵用炭素質材料の製造方法。
1 8 3. 前記フラーレン分子が Cn (但し、 nは球状構造を形成し 得る 2 0以上の偶数である。 ) で表わされる、 請求の範囲第 1 8 2 項記載の水素吸蔵用炭素質材料の製造方法。
1 84. 前記フラーレン分子の単体が C60フラーレン又は C 70フラ —レンであり、 前記フラーレン混合物が C 60フラーレンと C 70フラ 一レン又はそれ以上の高次フラーレンとを含む、 請求の範囲第 1 8 2項記載の水素吸蔵用炭素質材料の製造方法。
1 8 5. 前記炭素質材料にカーボンナノチューブが含有させる、 請 求の範囲第 1 76項記載の水素吸蔵用炭素質材料の製造方法。
1 8 6. 負極と、 正極と、 これらの間に介在する電解質とを有し、 前記負極及び/又は前記正極が、 水素分子を水素原子へ、 あるいは 更にプロ トンと電子へと分離できる触媒能を有する金属の微粒子を 担持した炭素質材料より構成されている、 電池。
1 8 7. アル力リ蓄電池として構成された、 請求の範囲第 1 8 6項 記載の電池。
1 8 8. 空気電池として構成された、 請求の範囲第 1 8 6項記載の 電池。
1 8 9. 負極と、 プロ トン伝導体と、 正極との積層構造からなる燃 料電池であって、 水素分子を水素原子へ、 あるいは更にプロ トンと 電子へと分離できる触媒能を有する金属の微粒子を炭素質材料に担 持させた水素吸蔵部を有し、 ここで吸蔵された水素を前記負極に供 給するように構成した燃料電池。
PCT/JP2000/006199 1999-09-09 2000-09-11 Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible WO2001017900A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002384359A CA2384359A1 (en) 1999-09-09 2000-09-11 Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
KR1020027003080A KR20020042673A (ko) 1999-09-09 2000-09-11 수소 흡장용 탄소질 재료와 그 제조 방법 및, 전지, 연료전지
EP00957095A EP1219567A1 (en) 1999-09-09 2000-09-11 Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
AU68781/00A AU6878100A (en) 1999-09-09 2000-09-11 Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
US09/803,813 US20010016283A1 (en) 1999-09-09 2001-03-11 Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP25574399 1999-09-09
JP11/255743 1999-09-09
JP28563999 1999-10-06
JP11/285639 1999-10-06
JP30038199 1999-10-22
JP11/300381 1999-10-22
JP11/303968 1999-10-26
JP30396899 1999-10-26
JP11/322975 1999-11-12
JP32297599 1999-11-12
JP33094899 1999-11-22
JP11/330948 1999-11-22
JP11/351701 1999-12-10
JP35170199 1999-12-10
JP2000/127113 2000-04-27
JP2000127113 2000-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/803,813 Continuation US20010016283A1 (en) 1999-09-09 2001-03-11 Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same

Publications (1)

Publication Number Publication Date
WO2001017900A1 true WO2001017900A1 (fr) 2001-03-15

Family

ID=27573553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006199 WO2001017900A1 (fr) 1999-09-09 2000-09-11 Materiau carbone destine au stockage d'hydrogene et procede de preparation, element de pile et pile a combustible

Country Status (6)

Country Link
EP (1) EP1219567A1 (ja)
KR (1) KR20020042673A (ja)
CN (1) CN1378521A (ja)
AU (1) AU6878100A (ja)
CA (1) CA2384359A1 (ja)
WO (1) WO2001017900A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029142A1 (fr) * 2001-09-11 2003-04-10 Sony Corporation Materiau d'occlusion de substance, dispositif electrochimique utilisant ce materiau et procede de production de ce materiau d'occlusion de substance
US6706431B2 (en) 2000-11-14 2004-03-16 Fullerene Usa, Inc. Fuel cell
JP2006124298A (ja) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc ナノシート及びその製造方法並びに複合体
JP2006265089A (ja) * 2005-02-22 2006-10-05 Tama Tlo Kk 複合フラーレン粒子の製造方法、その製造装置及び複合フラーレン粒子
JP2007273453A (ja) * 2006-03-08 2007-10-18 Matsushita Electric Ind Co Ltd ニッケル−水素蓄電池用負極およびニッケル−水素蓄電池
JP2008105136A (ja) * 2006-10-26 2008-05-08 Ulvac Japan Ltd ナノ粒子作製方法及び燃料電池用触媒
US7663468B2 (en) 2003-01-17 2010-02-16 Tdk Corporation Conductive member and manufacturing method thereof, and electric device and manufacturing method thereof
JP2012526720A (ja) * 2009-05-11 2012-11-01 本田技研工業株式会社 調整可能な新種のガス貯蔵材料及びガス感知材料
US8501349B2 (en) 2008-09-24 2013-08-06 Alliance For Sustainable Energy, Llc Hydrogen-based electrochemical energy storage
JP2016536743A (ja) * 2013-10-04 2016-11-24 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 充電式マグネシウム電池用のフラーレンカソード
WO2016190248A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 含フッ素カーボン粒子、その製造方法、およびその使用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370373B2 (ja) * 2003-01-31 2009-11-25 独立行政法人科学技術振興機構 水素吸蔵材料及びその製造方法
EP1638885A2 (en) * 2003-06-10 2006-03-29 General Electric Company Field-assisted gas storage materials and fuel cells comprising the same
JP2005001970A (ja) * 2003-06-16 2005-01-06 Sony Corp 窒素含有炭素系材料及びその製造方法
KR100738651B1 (ko) * 2005-04-27 2007-07-11 한국과학기술원 상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조변화 방법
KR100679644B1 (ko) * 2005-12-16 2007-02-06 충남대학교산학협력단 수소저장능력을 향상시키는 방법 및 그에 따른수소저장매체
US8945500B1 (en) 2010-02-22 2015-02-03 Savannah River Nuclear Solutions, Llc High capacity hydrogen storage nanocomposite materials
DE102011012734B4 (de) * 2011-02-24 2013-11-21 Mainrad Martus Verfahren zur reversiblen Speicherung von Wasserstoff und anderer Gase sowie elektrischer Energie in Kohlenstoff-, Hetero- oder Metallatom-basierten Kondensatoren und Doppelschichtkondensatoren unter Standardbedingungen (300 K, 1atm)
US8764966B2 (en) * 2011-11-10 2014-07-01 GM Global Technology Operations LLC Electrochemical process and device for hydrogen generation and storage
CN103456975B (zh) * 2012-05-31 2016-02-03 佛山市顺德区雷动能源科技有限公司 水催化产氢发电的方法及设备
DE102014112059A1 (de) * 2014-08-22 2016-02-25 Proton Motor Fuel Cell Gmbh Brennstoffzellensystem-Reaktionsgasbehälter mit optimierter Raumausnutzung
CN107029769B (zh) * 2017-04-28 2021-01-15 武汉理工大学 一种负载型铜氧化物催化剂的制备及其应用
CN111411353B (zh) * 2020-01-20 2022-01-04 湖北大学 具有亲水、滑移表面的硅胶块体材料与超疏水-亲水表面的锥形铜针用于水雾收集的方法
CN113350983A (zh) * 2020-03-06 2021-09-07 顾士平 电场极化气体吸附系统
CN112624087B (zh) * 2020-12-22 2022-12-16 同济大学 一种采用氢化的富勒烯材料制作的铝离子电池正极材料及其制备和应用
JP2023096785A (ja) * 2021-12-27 2023-07-07 エルジー エナジー ソリューション リミテッド リチウムイオン二次電池用負極スラリー及びその製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424013A (en) * 1987-07-17 1989-01-26 Yazaki Corp Graphite intercalating compound
WO1994022176A1 (en) * 1993-03-19 1994-09-29 Materials And Electrochemical Research Corporation Electrochemical fulleren system
JPH08978A (ja) * 1994-06-23 1996-01-09 Japan Storage Battery Co Ltd 流体供給装置
JPH0831444A (ja) * 1994-07-14 1996-02-02 Japan Storage Battery Co Ltd 電気化学セル及びその作動方法
JPH09188506A (ja) * 1995-12-29 1997-07-22 Sony Corp フッ化フラーレン重合体、フッ化フラーレン重合体膜、フッ化フラーレン重合体含有媒体、及びこれらの製造方法
US5698175A (en) * 1994-07-05 1997-12-16 Nec Corporation Process for purifying, uncapping and chemically modifying carbon nanotubes
JPH1072201A (ja) * 1996-08-30 1998-03-17 Toyota Motor Corp 水素貯蔵方法
JPH1192126A (ja) * 1997-09-16 1999-04-06 Sony Corp 球状炭素重合体の製造方法、その製造に用いる電解質溶液、並びに球状炭素重合体
JPH11116218A (ja) * 1997-10-17 1999-04-27 Osaka Gas Co Ltd 単層ナノチューブの製造方法
JP2000095509A (ja) * 1998-07-21 2000-04-04 Showa Denko Kk カ―ボンナノチュ―ブの製造方法および製造用触媒
JP2000191302A (ja) * 1998-12-28 2000-07-11 Toshiba Corp 水素吸蔵体及び水素吸蔵体の製造方法
US6113673A (en) * 1998-09-16 2000-09-05 Materials And Electrochemical Research (Mer) Corporation Gas storage using fullerene based adsorbents

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424013A (en) * 1987-07-17 1989-01-26 Yazaki Corp Graphite intercalating compound
WO1994022176A1 (en) * 1993-03-19 1994-09-29 Materials And Electrochemical Research Corporation Electrochemical fulleren system
JPH08978A (ja) * 1994-06-23 1996-01-09 Japan Storage Battery Co Ltd 流体供給装置
US5698175A (en) * 1994-07-05 1997-12-16 Nec Corporation Process for purifying, uncapping and chemically modifying carbon nanotubes
JPH0831444A (ja) * 1994-07-14 1996-02-02 Japan Storage Battery Co Ltd 電気化学セル及びその作動方法
JPH09188506A (ja) * 1995-12-29 1997-07-22 Sony Corp フッ化フラーレン重合体、フッ化フラーレン重合体膜、フッ化フラーレン重合体含有媒体、及びこれらの製造方法
JPH1072201A (ja) * 1996-08-30 1998-03-17 Toyota Motor Corp 水素貯蔵方法
JPH1192126A (ja) * 1997-09-16 1999-04-06 Sony Corp 球状炭素重合体の製造方法、その製造に用いる電解質溶液、並びに球状炭素重合体
JPH11116218A (ja) * 1997-10-17 1999-04-27 Osaka Gas Co Ltd 単層ナノチューブの製造方法
JP2000095509A (ja) * 1998-07-21 2000-04-04 Showa Denko Kk カ―ボンナノチュ―ブの製造方法および製造用触媒
US6113673A (en) * 1998-09-16 2000-09-05 Materials And Electrochemical Research (Mer) Corporation Gas storage using fullerene based adsorbents
JP2000191302A (ja) * 1998-12-28 2000-07-11 Toshiba Corp 水素吸蔵体及び水素吸蔵体の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. HAMWI ET AL.: "Fluorination of carbon nanotubes", CARBON, vol. 35, no. 6, 1997, pages 723 - 728, XP002935867 *
A.C. DILLION ET AL.: "Storage of hydrogen in single-walled carbon nanotubes", NATURE, vol. 386, March 1997 (1997-03-01), pages 377 - 379, XP002935863 *
ALAIN CHAMBERS ET AL.: "Hydrogen storage in graphite nanofibers", PHYSICAL CHEMISTRY B, vol. 102, no. 22, 1998, pages 4253 - 4256, XP002935866 *
D.S. BETHUNE ET AL.: "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layerwalls", NATURE, vol. 363, 1993, pages 605 - 607, XP002935864 *
KOUICHI KOMATSU ET AL.: "Fullerene 2 ryoutai C120 no gousei to kouzou kettei; bucky dumbbell no tanjo", KAGAKU TO KOGYO, vol. 51, no. 5, 1998, pages 774 - 776, XP002935865 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706431B2 (en) 2000-11-14 2004-03-16 Fullerene Usa, Inc. Fuel cell
WO2003029142A1 (fr) * 2001-09-11 2003-04-10 Sony Corporation Materiau d'occlusion de substance, dispositif electrochimique utilisant ce materiau et procede de production de ce materiau d'occlusion de substance
US7663468B2 (en) 2003-01-17 2010-02-16 Tdk Corporation Conductive member and manufacturing method thereof, and electric device and manufacturing method thereof
JP2006124298A (ja) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc ナノシート及びその製造方法並びに複合体
JP2006265089A (ja) * 2005-02-22 2006-10-05 Tama Tlo Kk 複合フラーレン粒子の製造方法、その製造装置及び複合フラーレン粒子
JP2007273453A (ja) * 2006-03-08 2007-10-18 Matsushita Electric Ind Co Ltd ニッケル−水素蓄電池用負極およびニッケル−水素蓄電池
JP2008105136A (ja) * 2006-10-26 2008-05-08 Ulvac Japan Ltd ナノ粒子作製方法及び燃料電池用触媒
US8501349B2 (en) 2008-09-24 2013-08-06 Alliance For Sustainable Energy, Llc Hydrogen-based electrochemical energy storage
JP2012526720A (ja) * 2009-05-11 2012-11-01 本田技研工業株式会社 調整可能な新種のガス貯蔵材料及びガス感知材料
US9616376B2 (en) 2009-05-11 2017-04-11 Honda Motor Co., Ltd. Class of tunable gas storage and sensor materials
US10071360B2 (en) 2009-05-11 2018-09-11 Honda Motor Co., Ltd. Class of tunable gas storage and sensor materials
JP2016536743A (ja) * 2013-10-04 2016-11-24 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 充電式マグネシウム電池用のフラーレンカソード
WO2016190248A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 含フッ素カーボン粒子、その製造方法、およびその使用

Also Published As

Publication number Publication date
AU6878100A (en) 2001-04-10
CA2384359A1 (en) 2001-03-15
CN1378521A (zh) 2002-11-06
KR20020042673A (ko) 2002-06-05
EP1219567A1 (en) 2002-07-03

Similar Documents

Publication Publication Date Title
WO2001017900A1 (fr) Materiau carbone destine au stockage d&#39;hydrogene et procede de preparation, element de pile et pile a combustible
US20010016283A1 (en) Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same
Hong et al. Ordered macro–microporous metal–organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries
Guo et al. A highly reversible long‐life Li–CO2 battery with a RuP2‐based catalytic cathode
Chen et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: mechanistic understanding of activity and stability improvements
Han et al. Functionalised hexagonal boron nitride for energy conversion and storage
Zhang et al. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes
Wang et al. Single-atom electrocatalysts for lithium sulfur batteries: progress, opportunities, and challenges
Qiao et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating
Wang et al. Rational design of three-dimensional graphene encapsulated with hollow FeP@ carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries
Zhang et al. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives
Chen et al. Hierarchical ternary carbide nanoparticle/carbon nanotube-inserted N-doped carbon concave-polyhedrons for efficient lithium and sodium storage
Xiao et al. Core–shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage
Chai et al. In‐MOF‐Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc‐Iodine Batteries
Wan et al. Oxygen-evolution catalysts based on iron-mediated nickel metal–organic frameworks
Hu et al. Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups
Gao et al. High quality pyrazinoquinoxaline-based graphdiyne for efficient gradient storage of lithium ions
Yang et al. Fast and facile room-temperature synthesis of MOF-derived Co nanoparticle/nitrogen-doped porous graphene in air atmosphere for overall water splitting
Pham et al. Robust Design of Dual‐Phasic Carbon Cathode for Lithium–Oxygen Batteries
Dong et al. Metal-organic frameworks and their derivatives for Li–air batteries
Wu et al. Generalized Synthesis of Ultrathin Cobalt‐Based Nanosheets from Metallophthalocyanine‐Modulated Self‐Assemblies for Complementary Water Electrolysis
JP5710693B2 (ja) ミクロポーラス炭素系材料、ミクロポーラス炭素系材料の製造方法、吸着材及びミクロポーラス炭素系材料を用いた水素吸蔵方法
Yao et al. Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations
Song et al. Highly efficient Ru/B4C multifunctional oxygen electrode for rechargeable LiO2 batteries
Zheng et al. Heteroatom doping of molybdenum carbide boosts pH-universal hydrogen evolution reaction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09803813

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 521650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000957095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2384359

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027003080

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00311/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 008140901

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027003080

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000957095

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000957095

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020027003080

Country of ref document: KR