WO2001014729A1 - Ventileinrichtung - Google Patents

Ventileinrichtung Download PDF

Info

Publication number
WO2001014729A1
WO2001014729A1 PCT/DE2000/002668 DE0002668W WO0114729A1 WO 2001014729 A1 WO2001014729 A1 WO 2001014729A1 DE 0002668 W DE0002668 W DE 0002668W WO 0114729 A1 WO0114729 A1 WO 0114729A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
control chamber
seat body
seat
injection
Prior art date
Application number
PCT/DE2000/002668
Other languages
English (en)
French (fr)
Inventor
Friedrich Boecking
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2001014729A1 publication Critical patent/WO2001014729A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0035Poppet valves, i.e. having a mushroom-shaped valve member that moves perpendicularly to the plane of the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat

Definitions

  • the invention relates to a valve device for controlling the pressure curve in a unit for injecting fuel into the combustion chamber of an internal combustion engine in accordance with the preamble of claim 1.
  • a valve device is already known, for example, from DE 196 24 001 AI. This valve device controls a valve seat with the help of one in one
  • Valve bore slidably guided and interacting with an externally controllable actuator body.
  • An inlet flows into the valve bore in front of and behind the valve seat, or an outlet branches off.
  • a piezoelectric actuator is provided as the actuator, which is characterized by large
  • a control chamber is hydraulically connected to the valve device, in which a nozzle needle of the unit for the injection of fuel controls injection cross sections as a function of pressure.
  • the above-mentioned actuators are sensitive to high control frequencies. This limits the display in short succession Pre and main injections and ultimately has a negative impact on the noise and emission behavior of an internal combustion engine.
  • the fuel quantities to be injected during a pre-injection should also be as small as possible in order to avoid an abrupt pressure increase in the combustion chamber, which is accompanied by a corresponding noise development.
  • the speed of the nozzle needle movement is subject to mechanical limits, as is a minimization of the injection cross sections controlled by the nozzle needle.
  • a valve device for controlling the pressure build-up in an assembly for injecting fuel into the combustion chamber of an internal combustion engine with the characterizing features of claim 1 has the advantage that a pre-injection and a main injection can be controlled separately from one another by actuating the actuator.
  • the amount of fuel injected during the pre-injection could be further reduced without increasing the durability of the nozzle needle, which would affect durability, or reducing the size of the nozzle in terms of production technology and economy
  • Figure 1 shows a first embodiment of the
  • Figure 2 shown in a second embodiment, also in cross section.
  • FIG. 3 shows functional diagrams to illustrate the functioning of the two exemplary embodiments
  • FIG. 1 shows a first embodiment of a valve device 10, consisting of a valve bore 12 with a first and a second valve seat 14, 16. These are formed at spaced changes in diameter of the valve bore 12 and are alternately controlled by a displaceably guided seat body 18.
  • the seat body 18 has a cylindrical guide 20 which is matched to the diameter of the valve bore 12, a constriction 22 of smaller outer diameter adjoining it and a control head 24 arranged in the region of the two changes in diameter of the valve bore 12.
  • the latter is thickened relative to the guide shaft 20, is divided into a cylindrical central section 26 and two at the ends thereof arranged conical sections 28, 30 with circumferential, oppositely inclined seating surfaces 29 and 31.
  • the seat body 18 is acted upon by an actuator, not shown in FIG. 1.
  • This is advantageously designed as a piezoelectric actuator and acts in its electrically controlled state with an actuating force F on the seat body 18.
  • the actuator is not electrically controlled, so that the seat body 18 is pressed against the valve seat 14 by the medium pressure. He seals a pressure medium connection from the valve bore 12 to a return channel 32 which opens into the valve bore 12 in the region of the constriction 22 of the seat body 18.
  • the pressure level determined by the pressure of an inlet 34 thus prevails in the valve bore 12.
  • This inlet 34 opens into a first control chamber 40 upstream of an inlet throttle 36. This is formed on the end of the valve bore 12 facing away from the seat body 18.
  • the first control chamber 40 is bounded by one end of a nozzle needle 42.
  • This nozzle needle 42 is part of a device, not shown, which injects fuel into the combustion chamber of an internal combustion engine.
  • a throttle device designated as a discharge throttle 38 is arranged between the closing body 18 and the nozzle needle 42 in the valve bore 12 and thereby divides them into two pressure zones 44, 46.
  • the first control chamber 40 is located in the first pressure zone 44 facing the inlet 34, while according to the invention a second control chamber 48 is formed in the second pressure zone 46. This is located between the two valve seats 14 and 16 and extends coaxially to the valve bore 12.
  • Their volume is variable Adaptable to the respective conditions of use of the valve unit 12, but is always smaller than that of the first control chamber 40.
  • the smaller the volume of the second control chamber 48 the smaller the amount of fuel that can be pre-injected or the higher the speed at which the nozzle needle 42 moves during the main injection.
  • a valve unit 10 designed in this way functions as follows:
  • both control chambers 40 and 48 are connected to one another and take up a large total volume. Both control chambers 40 and 48 are filled with fuel under high pressure, so that both the seat body 18 and the nozzle needle 42 are acted upon hydraulically. The seat body 18 thereby closes the first valve seat 14, while the nozzle needle 42 keeps the injection cross sections, which cannot be seen in FIG. 1, closed.
  • a single actuation of the actuator is sufficient to represent an injection process divided into a pre-injection and a main injection.
  • the actuating force F acting on the seat body 18 opens the valve seat 14 and moves the closing body into the second valve seat 16.
  • both valve seats 14 and 16 are opened simultaneously, so that the pressure in the valve bore 12 and in particular in the control chambers 40 and 48 degrades via the return 32.
  • the pressure level drops only slightly due to the interposed discharge throttle 38.
  • this pressure drop is sufficient to determine the pressure drop mechanically, for example by means of a spring or hydraulically, by means of correspondingly dimensioned pressure stages To fall below the opening pressure of the nozzle needle 42.
  • the drop in pressure is accompanied by a decrease in the hydraulic force acting on the nozzle needle 42, so that this nozzle needle 42 moves into its open position.
  • the pre-injection is completed with the closing of the second valve seat 16 by the seat body 18.
  • the valve unit 10 is thus in a state in which the second control chamber 48 is relieved of pressure, while the high pressure determined by the inlet 34 and the inlet throttle 36 prevails again in the first control chamber 40.
  • Valve seats 14 and 16 are open at the same time. Since only the control chamber 40, which is smaller than the total volume, now has to be relieved of pressure, this happens relatively quickly. The opening movement of the nozzle needle 42 runs correspondingly quickly, since the course of the
  • Pressure reduction depends directly on the volume of the control room 40.
  • the main injection is ended when the seat body 18 is again in the starting position shown, i.e. the first valve seat 14 is closed again.
  • the opening pressure of the nozzle needle 42 is only slightly undershot due to the different volumes of the control chambers 40 and 48 and the discharge throttle 38 arranged between them, and only for a short period of time. A very small amount of fuel is thereby metered without changing the speed of the nozzle needle 42.
  • the opening pressure becomes due to the smaller volume of the first control chamber 40 compared to the total volume fell very strongly and very quickly, which produces a correspondingly high speed of the nozzle needle 42.
  • the pre-injection and the main injection can thus follow one another particularly quickly in terms of time, since only the small volume of the control chamber 48 has to be relieved and because only a small pressure difference in the control chamber 40 has to be compensated for beforehand. Both effects improve the meterability and the switching speed of a device for the injection of fuel equipped with the valve unit 10 according to the invention. Conversely, if the pre-injection quantity remains unchanged, the switching time of the actuator can be extended, thereby increasing its service life.
  • FIG. 2 shows a second exemplary embodiment of a valve device 10 according to the invention. This differs from the first exemplary embodiment according to FIG. 1 essentially by the inverse configuration of the valve seats 14, 16 and the seat surfaces 29, 31 of the control head 24 on the seat body 18
  • Embodiment 1 the valve seats 14, 16 are formed at the transitions of a radial expansion of the valve bore 12, embodiment 2 has two valve seats 14 and 16 formed at the transitions of a constriction of the valve bore 12. Furthermore, in the first exemplary embodiment, the control head 24 of the seat body 18 is thickened relative to its guide section 20, whereas in the second exemplary embodiment it is constricted. This means that the seat surfaces 29 and 31 on the control head 24 form external bevels in FIG. 1, while in FIG.
  • Inner chamfers are realized.
  • the arrangement and design of the second control chamber 48 takes place unchanged between the two valve seats 14 and 16.
  • three different function diagrams 50, 52, 54 are shown in FIG. 3, which show the stroke of the nozzle needle 42, the stroke of the seat body 18 and the pressure curve in the first and second control chambers 40, 48 plotted over time.
  • Function diagrams 50, 52, 54 are recorded synchronously with one another.

Abstract

Die Erfindung geht aus von einer Ventileinrichtung (10) zur Steuerung des Druckverlaufs in einem Aggregat zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors. Diese umfasst einen vom Aktor betätigbaren Sitzkörper (18), einen vom Sitzkörper (18) gesteuerten ersten Ventilsitz (14) und eine erste Steuerkammer (40), in die ein druckgesteuertes Schliessglied (42) hineinragt. Zur Darstellung einer Voreinspritzung und einer Haupteinspritzung mit einer einzigen Ansteuerung des Aktors, wobei die Voreinspritzung eine äusserst geringe Menge an Kraftstoff zumisst, wird vorgeschlagen, die Ventileinrichtung (10) mit einem in Wechsel mit dem ersten Ventilsitz (14) vom Steuerkörper (18) gesteuerten zweiten Ventilsitz (16) auszustatten und zwischen beiden Ventilsitzen (14, 16) eine zweite Steuerkammer (48) vorzusehen, die im nicht betätigten Zustand des Sitzkörpers (18) mit der ersten Steuerkammer (40) über eine Drosseleinrichtung (38) hydraulisch verbunden ist.

Description

Ventileinrichtung
Stand der Technik
Die Erfindung geht aus von einer Ventileinrichtung zur Steuerung des Druckverlaufs in einem Aggregat zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors entsprechend der Gattung des Anspruchs 1. Eine derartige Ventileinrichtung ist beispielsweise aus der DE 196 24 001 AI bereits bekannt. Diese Ventileinrichtung steuert einen Ventilsitz mit Hilfe eines in einer
Ventilbohrung verschiebbar geführten und mit einem extern ansteuerbaren Aktor zusammenwirkenden Sitzkörpers. Vor und hinter dem Ventilsitz mündet ein Zulauf in die Ventilbohrung ein bzw. zweigt ein Ablauf ab. Als Aktor ist ein piezoelektrischer Aktor vorgesehen, der sich durch große
Schaltkräfte und hohe Schaltgeschwindigkeiten bei geringen Abmessungen und kleiner elektrischer Leistungsaufnahme auszeichnet. Mit der Ventileinrichtung ist eine Steuerkammer hydraulisch verbunden, in der eine Düsennadel des Aggregats zur Einspritzung von Kraftstoff Einspritzquerschnitte druckabhängig steuert .
Nachteiligerweise verhalten sich die oben genannte Aktoren empfindlich gegenüber hohen Ansteuerfrequenzen. Dies schränkt die Darstellung zeitlich kurz aufeinanderfolgender Vor- und Haupteinspritzungen ein und wirkt sich dadurch letztendlich nachteilig auf das Geräusch- und Emissionsverhalten eines Verbrennungsmotors aus. Die während einer Voreinspritzung einzuspritzenden Kraftstoffmengen sollen zudem möglichst gering sein, um einen abrupten Druckanstieg im Brennraum, der mit einer entsprechenden Geräuschentwicklung einher geht zu vermeiden. Der Geschwindigkeit der Düsennadelbewegung sind jedoch mechanisch bedingte Grenzen gesetzt, ebenso wie einer Minimierung der von der Düsennadel gesteuerten Einspritzquerschnitte .
Vorteile der Erfindung
Demgegenüber weist eine Ventileinrichtung zur Steuerung des Druckaufbaus in einem Aggregat zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors mit den kennzeichnenden Merkmalen des Anspruchs 1 den Vorteil auf, daß mit einer Ansteuerung des Aktors eine Vor- und eine Haupteinspritzung getrennt voneinander steuerbar sind. Zudem konnte die eingespritzte Kraftstoffmenge während der Voreinspritzung weiter reduziert werden, ohne eine die Haltbarkeit beeinflußende Vergrößerung der Geschwindigkeit der Düsennadel oder eine fertigungstechnisch und wirtschaftlich aufwendige Verkleinerung der
Einspritzquerschnitte zu erfordern. Im Umkehrschluß dazu lassen sich bei unveränderten Voreinspritzmengen geringere Schaltzeiten und damit eine erhöhte Lebensdauer der Aktoren realisieren. Die notwendigen konstruktiven Änderungen erfordern lediglich einen geringen Aufwand, zusätzliche Bauteile sind beispielsweise nicht erforderlich. Eine erfindungsgemäße Ventileinrichtung ist damit kostengünstig darstellbar. Weitere Vorteile oder vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung .
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert .
Figur 1 zeigt ein erstes Ausfü rungsbeispiel der
Erfindung in einer schematischen Darstellung im Querschnitt; das Detail X nach Figur 1 ist in
Figur 2 in einer zweiten Ausführungsvariante, ebenfalls im Querschnitt, dargestellt.
Figur 3 zeigt Funktionsdiagramme zur Veranschaulichung der Funktionsweise der beiden Ausführungsbeispiele
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt ein erstes Ausführungsbeispiel einer Ventileinrichtung 10, bestehend aus einer Ventilbohrung 12 mit einem ersten und einem zweiten Ventilsitz 14, 16. Diese sind an voneinander beabstandeten Durchmesseränderungen der Ventilbohrung 12 ausgebildet und werden von einem verschiebbar geführten Sitzkörper 18 wechselweise gesteuert. Der Sitzkörper 18 weist dazu einen zylindrischen, auf den Durchmesser der Ventilbohrung 12 abgestimmten Führungsschaff 20, eine sich daran anschließende Einschnürung 22 kleineren Außendurchmessers und einen im Bereich der beiden Durchmesseränderungen der Ventilbohrung 12 angeordneten Steuerkopf 24 auf. Letzterer ist gegenüber dem Führungsschaft 20 verdickt, gliedert sich in einen zylindrischen Mittenabschnitt 26 und zwei an dessen Enden angeordnete kegelförmige Abschnitten 28, 30 mit umlaufenden, entgegengesetzt zueinander geneigten Sitzflächen 29 und 31.
Der Sitzkörper 18 ist von einem in der Figur 1 nicht dargestellten Aktor beaufschlagt. Dieser ist vorteilhafterweise als piezoelektrischer Aktor ausgebildet und wirkt in seinem elektrisch angesteuerten Zustand mit einer Stellkraft F auf den Sitzkörper 18 ein. In der Grundstellung nach Figur 1 ist der Aktor elektrisch nicht angesteuert, so daß der Sitzkörper 18 vom Mediumdruck gegen den Ventilsitz 14 gedrückt ist. Dabei dichtet er eine Druckmittelverbindung von der Ventilbohrung 12 zu einem im Bereich der Einschnürung 22 des Sitzkörpers 18 in die Ventilbohrung 12 einmündenden Rücklaufkanal 32 ab. In der Ventilbohrung 12 herrscht somit das vom Druck eines Zulaufs 34 bestimmte Druckniveau. Dieser Zulauf 34 mündet unter Vorschaltung einer Zulaufdrossel 36 in eine erste Steuerkammer 40 ein. Diese ist an dem vom Sitzkörper 18 abgewandten Ende der Ventilbohrung 12 ausgebildet.
Darüber hinaus ist die erste Steuerkammer 40 u.a. von einem Ende einer Düsennadel 42 begrenzt. Diese Düsennadel 42 ist Bestandteil einer nicht näher dargestellten Vorrichtung, die Kraftstoff in den Brennraum eines Verbrennungsmotors einspritzt.
Eine als Ablaufdrossel 38 bezeichnete Drosseleinrichtung ist zwischen dem Schließkörper 18 und der Düsennadel 42 in der Ventilbohrung 12 angeordnet und teilt diese dadurch in zwei Druckzonen 44, 46 ein. In der dem Zulauf 34 zugewandten ersten Druckzone 44 befindet sich die erste Steuerkammer 40, während in der zweiten Druckzone 46 erfindungsgemäß eine zweite Steuerkammer 48 ausgebildet ist. Diese befindet sich zwischen den beiden Ventilsitzen 14 und 16 und dehnt sich koaxial zur Ventilbohrung 12 aus. Ihr Volumen ist variabel an die jeweiligen Einsatzbedingungen der Ventileinheit 12 anpaßbar, ist jedoch stets kleiner als das der ersten Steuerkammer 40 dimensioniert. Je kleiner das Volumen der zweiten Steuerkammer 48 ausgeführt ist, desto kleiner ist die voreinspritzbare Kraftstoffmenge bzw. desto höher ist die Geschwindigkeit, mit der sich die Düsennadel 42 während der Haupteinspritzung bewegt.
Eine derart ausgebildete Ventileinheit 10 funktioniert wie folgt:
In der in Figur 1 dargestellten Grundstellung sind die beiden Steuerkammern 40 und 48 miteinander verbunden und nehmen ein großes Gesamtvolumen ein. Beide Steuerkammern 40 und 48 sind mit Kraftstoff unter Hochdruck befüllt, so daß sowohl der Sitzkörper 18 als auch die Düsennadel 42 hydraulisch beaufschlagt sind. Der Sitzkörper 18 verschließt dadurch den ersten Ventilsitz 14, während die Düsennadel 42 die in Figur 1 nicht erkennbaren Einspritzquerschnitte geschlossen hält.
Zur Darstellung eines in eine Vor- und eine Haupteinspritzung gegliederten Einspritzvorgangs reicht einen einzige Ansteuerung des Aktors aus. Die dabei auf den Sitzkörper 18 einwirkende Stellkraft F öffnet den Ventilsitz 14 und fährt den Schließkörper in den zweiten Ventilsitz 16. Kurzzeitig sind dabei beide Ventilsitze 14 und 16 gleichzeitig geöffnet, so daß sich der Druck in der Ventilbohrung 12 und insbesondere in den Steuerkammern 40 und 48 über den Rücklauf 32 abbaut. In der Steuerkammer 40 fällt das Druckniveau aufgrund der zwischengeschalteten Ablaufdrossel 38 allerdings nur geringfügig ab. Dieser Druckabfall reicht jedoch aus, um den mechanisch, beispielsweise mittels einer Feder oder hydraulisch, mittels entsprechend dimensionierten Druckstufen festgelegten Öffnungsdruck der Düsennadel 42 zu unterschreiten. Mit dem Druckabfall geht ein Rückgang der auf die Düsennadel 42 einwirkenden hydraulischen Kraft einher, so daß sich diese Düsennadel 42 in ihre Offenstellung bewegt.
Die Voreinspritzung ist mit dem Schließen des zweiten Ventilsitzes 16 durch den Sitzkörper 18 abgeschlossen. Damit befindet sich die Ventileinheit 10 in einem Zustand, in dem der zweite Steuerraum 48 druckentlastet ist, während im ersten Steuerraum 40 wieder der vom Zulauf 34 und der Zulaufdrossel 36 bestimmte Hochdruck herrscht.
Für die nachfolgende Haupteinspritzung wird die Ansteuerung des Aktors derart zurückgenommen, daß der Sitzkörper 18 sich erneut in die Zwischenstellung bewegt, in der beide
Ventilsitze 14 und 16 gleichzeitig geöffnet sind. Da nunmehr lediglich der gegenüber dem Gesamtvolumen kleinere Steuerraum 40 druckentlastet werden muß, geschieht dies relativ schnell. Entsprechend schnell verläuft die Öffnungsbewegung der Düsennadel 42, da der Verlauf des
Druckabbaus direkt vom Volumen des Steuerraums 40 abhängt.
Die Haupteinspritzung ist beendet, wenn der Sitzkörper 18 sich wieder in der dargestellten Ausgangsstellung befindet, d.h. der erste Ventilsitz 14 wieder geschlossen ist.
Zur Voreinspritzung wird der Öffnungsdruck der Düsennadel 42 aufgrund der unterschiedlichen Volumina der Steuerräume 40 und 48 sowie der zwischen ihnen angeordneten Ablaufdrossel 38 nur wenig und nur für einen kurzen Zeitraum unterschritten. Ohne Änderung der Geschwindigkeit der Düsennadel 42 wird dadurch eine sehr kleine Menge an Kraftstoff zugemessen. Bei der Haupteinspritzung dagegen wird der Öffnungsdruck infolge des gegenüber dem Gesamtvolumen kleineren Volumens der ersten Steuerkammer 40 sehr stark und sehr schnell unterschritten, was eine entsprechend hohe Geschwindigkeit der Düsennadel 42 erzeugt. Die Vor- und die Haupteinspritzung können somit zeitlich besonders schnell aufeinander folgen, da nur das geringe Volumen des Steuerraums 48 zu entlasten ist und weil zeitlich davor nur ein kleiner Druckunterschied im Steuerraum 40 auszugleichen ist. Beide Effekte verbessern die Dosierbarkeit und die Schaltgeschwindigkeit einer mit der erfindungsgemäßen Ventileinheit 10 ausgestatteten Einrichtung zur Einspritzung von Kraftstoff. Im Umkehrschluß dazu kann bei unveränderter Voreinspritzmenge die Schaltzeit des Aktors verlängert und damit dessen Lebensdauer erhöht werden.
In Figur 2 ist ein zweites Auführungsbeispiel einer erfindungsgemäßen Ventileinrichtung 10 dargestellt. Dieses unterscheidet sich vom ersten Ausführungsbeispiel nach Figur 1 im wesentlichen durch die inverse Ausbildung der Ventilsitze 14, 16 und der Sitzflächen 29, 31 des Steuerkopfes 24 am Sitzkörper 18. Während im
Ausführungsbeispiel 1 die Ventilsitze 14, 16 an den Übergängen einer radialen Erweiterung der Ventilbohrung 12 ausgebildet sind, weist Ausführungsbeispiel 2 zwei an den Übergängen einer Einschnürung der Ventilbohrung 12 ausgebildete Ventilsitze 14 und 16 auf. Des weiteren ist im ersten Ausfuhrungsbeispiel der Steuerkopf 24 des Sitzkörpers 18 gegenüber seinem Führungsabschnitt 20 verdickt, wogegen er beim zweiten Ausfuhrungsbeispiel eingeschnürt ist. Dies bedeutet, daß die Sitzflächen 29 und 31 am Steuerkopf 24 in Figur 1 Außenfasen bilden, während sie in Figur 2 als
Innenfasen realisiert sind. In beiden Ausführungsbeispielen erfolgt die Anordnung und Ausbildung der zweiten Steuerkammer 48 unverändert zwischen den beiden Ventilsitzen 14 und 16. Zur Verdeutlichung der Wirkungsweise der Erfindung sind in Figur 3 drei verschiedene Funktionsdiagramme 50, 52, 54 dargestellt, die den Hub der Düsennadel 42, den Hub des Sitzkkörpers 18 und den Druckverlauf im ersten und zweiten Steuerraum 40, 48 aufgetragen über die Zeit zeigen. Die
Funktionsdiagramme 50, 52, 54 sind zeitsynchron zueinander aufgenommen .
Zum Zeitpunkt Tl herrscht in der Ventilbohrung 12 maximaler Druck 56 und der Sitzkörper 18 befindet sich in der
Grundstellung 58 nach Figur 1. Mit der Ansteuerung des Aktors bewegt sich der Sitzkörper 18 in eine Zwischenstellung 60 und öffnet dabei beide Ventilsitze 14 und 16. Dadurch baut sich der Druck in den Steuerkammern 40 und 48 ab, aufgrund des hohen Gesamtvolumens jedoch verhältnismäßig langsam. Eine Voreinspritzung 64 erfolgt. Zum Zeitpunkt T2 , an dem die Hubbewegung des Sitzkörpers 18 ihren Maximalwert 62 erreicht hat und der Ventilsitz 16 verschlossen ist, steigt der Druck in der Steuerkammer 40 wieder auf maximalen Druck 56 an, während der Steuerraum 48 unverändert druckentlastet ist. Damit ist die Düsennadel 42 wieder hydraulisch beaufschlagt und die Voreinspritzung 64 abgeschlossen (Diagramm 50) .
Zum Zeitpunkt T3 wird die Ansteuerung des Aktors zurückgenommen und der Sitzkörper 18 bewegt sich in die Zwischenstellung 60 zurück. Dabei wird der Steuerraum 40 mit dem Rücklauf 32 verbunden, so daß der dort herrschende maximale Druck 56 abfällt und die Düsennadel 42 zur Haupteinspritzung 66 öffnet. Die Steigung dieses
Druckabfalls ist aufgrund des gegenüber dem Gesamtvolumen kleineren Volumens der Steuerkammer 40 steiler als zum Zeitpunkt Tl - der Druckabbau erfolgt schneller. Mit dem Verschließen des Ventilsitzes 14 zum Zeitpunkt T4 befindet sich die Ventileinrichtung 10 wieder in der Grundstellung 58 und der Druck in den beiden Steuerräumen 40 und 48 baut sich wieder bis zum maximalen Druck 56 auf.
Selbstverständlich sind Änderungen oder Ergänzungen am beschriebenen Ausführungsbeispiel möglich, ohne vom Grundgedanken der Erfindung abzuweichen.

Claims

Ansprüche
1. Ventileinrichtung (10), zur Steuerung des Druckaufbaus in einem Aggregat zur Einspritzung von Kraftstoff in den Brennraum eines Verbrennungsmotors, mit einer Ventilbohrung (12), in der ein extern betätigbarer Stützkörper (18) verschiebbar geführt ist, einem von der Wandung der Ventilbohrung (12) ausgebildeten und vom Sitzkörper (18) gesteuerten ersten Ventilsitz (14), wenigstens jeweils einem vor und nach dem Ventilsitz (14) in die Ventilbohrung (12) ein- oder ausmündenden Zulauf (34) und einem Ablauf (32) und mit einer mit der Ventilbohrung (12) gekoppelten ersten Steuerkammer (40) , in die ein druckbeaufschlagtes Schließglied (42) des von der Ventileinrichtung (10) gesteuerten Aggregats hineinragt, dadurch gekennzeichnet, daß die Ventileinrichtung (10) einen vom Sitzkörper (18) im Wechsel mit dem ersten Ventilsitz (14) gesteuerten zweiten Ventilsitz (16) aufweist und daß zwischen den beiden Ventilsitzen (14, 16) eine zweite Steuerkammer (48) vorgesehen ist, die im nicht betätigten Zustand des Sitzkörpers (18) über eine Drosseleinrichtung (38) mit der ersten Steuerkammer (40) verbunden ist.
2. Ventileinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Steuerkammer (48) konzentrisch zur Ventilbohrung (12) ausgebildet ist und daß das Volumen der zweiten Steuerkammer (48) kleiner als das der ersten Steuerkammer (40) ist.
3. Ventileinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Sitzkörper (18) von einem piezoelektrischen oder einem elektromagnetischen Aktor beaufschlagt ist.
4. Ventileinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Ventileinheit (10), der Aktor und das Aggregat zur Einspritzung von Kraftstoff in einem gemeinsamen Gehäuse angeordnet sind und über den Zulauf (34) mit einem Kraftstoffhochdruckspeieher verbunden sind, der mehrere Aggregate zur Einspritzung von Kraftstoff versorgt.
5. Ventileinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Sitzkörper (18) einen Kopf
(24) mit zwei einander gegenüberliegenden und entgegengesetzt zueinander geneigten Sitzflächen (29, 31) , einem dazwischen liegenden zylindrischen Abschnitt (26) , einer Einschnürung (22) und einer Führung (20) aufweist und daß der Kopf (24) , die Einschnürung (22) und die Führung (20) in Längsrichtung des Sitzkorpers (18) hintereinanderliegend angeordnet sind.
PCT/DE2000/002668 1999-08-20 2000-08-10 Ventileinrichtung WO2001014729A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939453.9 1999-08-20
DE1999139453 DE19939453A1 (de) 1999-08-20 1999-08-20 Ventileinrichtung

Publications (1)

Publication Number Publication Date
WO2001014729A1 true WO2001014729A1 (de) 2001-03-01

Family

ID=7918979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002668 WO2001014729A1 (de) 1999-08-20 2000-08-10 Ventileinrichtung

Country Status (2)

Country Link
DE (1) DE19939453A1 (de)
WO (1) WO2001014729A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370609A (en) * 2000-11-13 2002-07-03 Bosch Gmbh Robert Accumulator chamber-influenced fuel injector having a cascading control arrangement
US8869805B2 (en) 2006-06-01 2014-10-28 Schweitzer-Mauduit International, Inc. Free air burning smoking articles with reduced ignition proclivity characteristics

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10120157A1 (de) * 2001-04-25 2002-11-07 Bosch Gmbh Robert Kraftstoffinjektor mit Steuerventil-integriertem Drosselelement
DE102007042466B3 (de) * 2007-09-06 2009-04-09 Continental Automotive Gmbh Einspritzsystem mit reduzierter Schaltleckage und Verfahren zum Herstellen eines Einspritzsystems
US8480009B2 (en) 2010-07-30 2013-07-09 Caterpillar Inc. Large bore fuel system and fuel injector for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025888A1 (de) * 1994-03-24 1995-09-28 Siemens Aktiengesellschaft Einspritzventil für brennkraftmaschinen
DE19624001A1 (de) 1996-06-15 1997-12-18 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19732802A1 (de) * 1997-07-30 1999-02-04 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645243C2 (de) * 1996-11-02 1998-10-29 Orange Gmbh Druckspeicher-Einspritzvorrichtung
DE19742320A1 (de) * 1997-09-25 1999-04-01 Bosch Gmbh Robert Kraftstoffeinspritzventil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025888A1 (de) * 1994-03-24 1995-09-28 Siemens Aktiengesellschaft Einspritzventil für brennkraftmaschinen
DE19624001A1 (de) 1996-06-15 1997-12-18 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19732802A1 (de) * 1997-07-30 1999-02-04 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370609A (en) * 2000-11-13 2002-07-03 Bosch Gmbh Robert Accumulator chamber-influenced fuel injector having a cascading control arrangement
GB2370609B (en) * 2000-11-13 2002-11-13 Bosch Gmbh Robert Accumulating chamber-influenced injector having a cascading control arrangement
US8869805B2 (en) 2006-06-01 2014-10-28 Schweitzer-Mauduit International, Inc. Free air burning smoking articles with reduced ignition proclivity characteristics

Also Published As

Publication number Publication date
DE19939453A1 (de) 2001-03-01

Similar Documents

Publication Publication Date Title
EP1771650B1 (de) Kraftstoffinjektor mit zweistufigem übersetzer
EP1654455B1 (de) Steuerventil für einen einen drucküberbesetzer enthaltenden kraftstoffinjektor
EP1593839B1 (de) Kraftstoffinjektor für Verbrennungskraftmaschinen mit mehrstufigem Steuerventil
EP1387939B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1342005B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
DE10001099A1 (de) Steuerventil für einen Injektor eines Kraftstoffeinspritzsystems für Brennkraftmaschinen mit Druckerhöhung im Steuerraum
EP2536942A1 (de) Hochdruck-kraftstoff-einspritzventil für einen verbrennungsmotor
EP1613855B1 (de) Kraftstoffinjektor mit leckagefreiem servoventil
WO2007038811A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2462335A1 (de) Vorrichtung zur kraftstoffhochdruckeinspritzung
WO2001014729A1 (de) Ventileinrichtung
DE19939452A1 (de) Vorrichtung zur Einspritzung von Kraftstoff
EP1682769A1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
EP1311755A1 (de) Kraftstoffeinspritzeinrichtung
DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
WO2001029409A1 (de) Einspritzeinrichtung und verfahren zum einspritzen von fluid
DE102016208055A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1210512B1 (de) Injektor
WO2005040594A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2002020978A1 (de) Hydraulisch übersetztes ventil
DE10003252A1 (de) Einspritzdüse
DE19939451A1 (de) Aggregat zur Einspritzung von Kraftstoff
EP1370766A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10342567A1 (de) Vorrichtung zum Einspritzen von Kraftstoff

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP