WO2001012832A1 - Procedimiento para la obtencion de licopeno - Google Patents

Procedimiento para la obtencion de licopeno Download PDF

Info

Publication number
WO2001012832A1
WO2001012832A1 PCT/ES2000/000266 ES0000266W WO0112832A1 WO 2001012832 A1 WO2001012832 A1 WO 2001012832A1 ES 0000266 W ES0000266 W ES 0000266W WO 0112832 A1 WO0112832 A1 WO 0112832A1
Authority
WO
WIPO (PCT)
Prior art keywords
lycopene
biomass
alcohol
solvent
drying
Prior art date
Application number
PCT/ES2000/000266
Other languages
English (en)
French (fr)
Inventor
Antonio Estrella De Castro
Alfonso J. Collados De La Vieja
Ermanno Bernasconi
Manuel Esteban Morales
Emiliano Gonzalez De Prado
Original Assignee
Vitatene, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitatene, S.A. filed Critical Vitatene, S.A.
Priority to ES00949493T priority Critical patent/ES2237439T3/es
Priority to EP00949493A priority patent/EP1201762B1/en
Priority to DE60018427T priority patent/DE60018427T2/de
Priority to JP2001516919A priority patent/JP2003507021A/ja
Priority to AU62826/00A priority patent/AU6282600A/en
Priority to AT00949493T priority patent/ATE290095T1/de
Publication of WO2001012832A1 publication Critical patent/WO2001012832A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a new process for the isolation and purification of lycopene, in principle, from any natural source of bio-synthesis and more specifically from submerged cultures of mucoral fungi such as Blakeslea, Choanephora or Phycomyces in a crystalline form for human consumption.
  • An extraction method is described that allows to obtain a simplification in the recovery process and an increase in product purity with respect to the procedures described above.
  • Carotenoid dyes are widespread in nature in fruits and vegetables, giving their characteristic color from yellow to deep red to numerous natural substances such as carrots, peppers, tomatoes, flowers or certain microorganisms. They can be divided into two classes: pure hydrocarbons, such as those of Brazil, which include compounds such as ⁇ -carotene, alpha-carotene or lycopene and xanthophylls which contain an oxygenated function, examples of which are asthaxanthine, capsantin or canthaxanthin. Both groups of compounds have a different behavior in terms of their physicochemical properties and different solubility in organic solvents.
  • Lycopene is a carotenoid that is produced as an intermediate in the biosynthetic pathway of ⁇ -carotene and xantho-rows belonging to the group of hydrocarbon carotenoids. It has an empirical formula C40H56 with a molecular weight of 536.85 and the following molecular formula:
  • This compound has been extensively studied. Thus, its antioxidant properties have been described, capturing free radicals continuously originated in the human organism and their application in the prevention of cardiovascular diseases and some types of cancers such as prostate cancer (Giovannucci et al., J Nat. Cancer Inst. 87 : 1767-1776 (1995); Stahl et al., Arch Biochem. Biophys 336: 1-9 (1996); Clinton et al., Nutr. Rev. 56: 35-51 (1998)) which has given rise to an increase in consumer demand and therefore the industry has tried to meet this demand by manufacturing lycopene by chemical synthesis.
  • prostate cancer Giovannucci et al., J Nat. Cancer Inst. 87 : 1767-1776 (1995); Stahl et al., Arch Biochem. Biophys 336: 1-9 (1996); Clinton et al., Nutr. Rev. 56: 35-51 (1998)
  • lycopene can be obtained from plant products such as: tomato, carrot, pepper, vegetable oils, etc. .
  • WO 97/48287 describes a process for the preparation of lycopene-rich oleoresins from tomatoes by crushing the tomato until obtaining the pulp, extracting the lycopene from the pulp with organic solvents and subsequent solvent removal. by evaporation resulting in an oleoresin with a lycopene content between 2-10%.
  • WO 97/15554 describes the extraction of carotenoids of vegetable origin from carrots and tomatoes, including lycopene by isolating chloroplasts and chromoplasts, to proceed with the digestion of said organelles. with protein hydrolytic enzymes such as peptins and / or proteases that allow the release of lycopene bound to different structural proteins.
  • protein hydrolytic enzymes such as peptins and / or proteases that allow the release of lycopene bound to different structural proteins.
  • lycopene Another important source of lycopene is certain carotenoid-rich microalgae of the Dulaniella type.
  • lycopene such as US 5378369, US 4713398 US 4680314, by extraction with organic solvents (chlorocarbons, hydrocarbons, etc.) or edible oils DE 4342798.
  • organic solvents chlorocarbons, hydrocarbons, etc.
  • edible oils DE 4342798 A different process It is described in PCT WO 98/08584 where obtaining a lycopene extract is carried out using C02 in a supercritical state but the extract thus obtained has a low purity in lycopene.
  • Lycopene can be obtained from certain mucoral fungi such as Phycomyces, Blakeslea or Chonaephora by fermentation in liquid medium which have the advantage of obtaining lycopene from vegetable products or algae, the high concentration of this compound in some cases greater than 5% by weight with respect to the amount of dry biomass (concentrations higher than those obtained from the best plant varieties), as well as the possibility of development Biotechnology of superproductive strains of these microorganisms either through classical mutagenesis techniques or through the application of new molecular biology technologies that allow the genetic manipulation of these microorganisms by increasing the concentration and production of lycopene as well as eliminating the production of other structurally related carotenoids.
  • mucoral fungi such as Phycomyces, Blakeslea or Chonaephora
  • the patent application WO 96/13178 describes the preparation of crystalline lycopene concentrates stabilized in a food compatible liquid medium in which lycopene is insoluble, such as ethylene glycol, ethanol or glycerol, obtaining small-size lycopene crystals by grinding, between 1-3 ⁇ m in suspension in a liquid medium.
  • lycopene insoluble
  • WO 98/43620 a method of isolating lycopene crystals from an oleoresin is described by means of a saponification process of different triglycerides and phosphonates at high temperature and subsequent dilution with water obtaining lycopene crystals of purity between 75 to 95%.
  • This invention refers to obtaining crystalline lycopene of high purity from a natural source of biosynthesis, in general and more specifically, from a fermentation broth, using solvents considered natural. Natural solvents would be those, on the one hand, toxicologically harmless and / or those that are included in Class 3 of the ICH (International Conference of Harmonization). In its general consideration the process includes the following stages:
  • the method described here allows us to recover crystalline lycopene with a purity greater than 90%, preferably greater than 95% and more preferably greater than 98%.
  • the recovery procedure from the culture broth, prepared according to the procedures used involves the separation of the biomass from the broth, in order to eliminate or reduce losses in the stock without biomass.
  • This separation can be done by the established procedures of A) Filtration, using the technologies to use filters, be they bands, rotary, presses, etc., in which a barrier constituted by the filter cloth separates the biomass and allows to pass the liquid phase without biomass, or B) Centrifugation, in which using the density difference between the broth and the biomass (normally greater) a machine of the type of a centrifugal separator, decanter or similar is used, in which the phase Heavy is concentrated and separated from the liquid phase with the least possible amount of biomass. Reducing losses and optimizing the characteristics of each respective phase against Following the greatest amount of biomass with the highest dry residue content and eliminating the greatest amount of fermentation broth, with the least amount of active material is one of the objectives of this invention.
  • the resulting wet mycelium contains more than 95% of the carotenoids produced in the fermentation, preferably more than 97% and more preferably more than 99%.
  • the carotenoid content of the aqueous phase is therefore less than 5%, preferably less than 3% and more preferably less than 1%.
  • This moist solid of the mycelium would be able to allow, through the subsequent stages, the separation of lycopene, but the verification that, related to fermentation, still maintains a relatively high percentage of lipophilic components, between 15 and 20% (acids fatty and oils) that in later stages pose problems of purification, leads to introduce, at this point, a stage of purification of the biomass.
  • This purification stage implies a resuspension of the biomass with an amount of alcohol: methanol, ethanol, propanol, isopropanol, or any other alcohol in which the solubility of lycopene is very low, in adequate proportion to achieve maximum purification of the components lipid. That is, the wet mycelium is resuspended with an amount of alcohol ranging from 1 ml / g to 10 ml / g of wet mycelium.
  • the resuspension temperature ranges between room temperature and boiling temperature of alcohol.
  • the contact time ranges from 5 minutes to 24 hours.
  • the alcoholic resuspension thus prepared is filtered or centrifuged, so that the solids content in the filtrate or clarified is practically nil.
  • the resulting wet mycelium which will contain alcohol plus water in varying proportions, contains more than 93% of the carotenoids pro fermented in the fermentation, preferably more than 95% and more preferably more than 97%.
  • the carotenoid content is less than 2%, preferably less than 1%.
  • carotenoid product is intracellular implies that the purified biomass requires conditioning well by drying more grinding, drying more disintegration or direct disintegration of the biomass, which favors mixing with solvents and facilitates extraction with them.
  • Dehydrated / purified mycelium is dried. Drying can be done by the usual procedures in batch (batches) or in continuous.
  • the drying temperature ranges between room temperature and 150 ° C, preferably it should not exceed 60 ° C and more preferably be below 50 ° C.
  • the drying time is a function of the temperature used, ranging from 1 hour to 72 hours. Due to the possible decomposition of these carotenoids by oxidation with atmospheric oxygen, it is convenient to carry out this drying operation in the absence of oxygen, either under a nitrogen atmosphere or at least under vacuum.
  • the optimum particle size of the dried and broken mycelium should be less than 3 mm, preferably less than 1 mm and more preferably less than 0.5 mm.
  • the grinding can be done on the dry product, by means of mechanical systems with rotating or fixed parts: mallets, sieves, etc., by passing through rotating cylinders by pressing on each other or by means of the flash drying system (instantaneous) in a jet mill equipment (jet mill) where the wet product is fed to a stream of a recirculating gas and at an elevated temperature, so that the residence time is the minimum to be able to vaporize the content of liquid components, and transport, by varying the densities the product to a cyclone where it is recovered.
  • the drying time and the path there is also a homogenization effect when the particles collide with the walls.
  • lycopene For 'extracting the lycopene from a mycelium conditioned as described, they may be employed various organic solvent.
  • This invention will refer to the use of food grade solvents considered natural, such as acyl esters, preferably ethyl acetates, propyl, isopropyl, butyl, isobutyl, which combine reasonably high solubility for carotenoid components with their compatibility as solvents included in the ICH Class 3 Group.
  • acyl esters preferably ethyl acetates, propyl, isopropyl, butyl, isobutyl, which combine reasonably high solubility for carotenoid components with their compatibility as solvents included in the ICH Class 3 Group.
  • the extraction temperature ranges between ambient and boiling temperature of the solvent, preferably between 50 ° C and 80 ° C.
  • the extraction time will be the minimum necessary to achieve solubilization, between 1 second and 1 hour, preferably between 1 minute and 15 minutes.
  • the amount of solvent used depends on the temperature and the richness of the mycelium in carotenoids, ranging between 5 ml / g and 20 ml / g.
  • the number of extractions varies from 1 to 3.
  • the amount of carotenoids extracted is greater than 85%, preferably greater than 90% and more preferably greater than 95%.
  • the final concentration of carotenoids in the solvent after concentrating preferably ranges from 10 to 40 g / 1.
  • the concentration temperature should be below 80 ° C, preferably below 70 ° C and more preferably below 50 ° C.
  • the concentration time should be less than 1 hour, preferably less than 30 min., And more preferably less than 15 min.
  • an insolubilizer of the carotenoids specifically an alcohol and more specifically Methanol, Ethanol, Isopropyl Alcohol, ..., or any other alcohol in which the solubility of lycopene is very low, whereby the yield in crystalline lycopene increases considerably.
  • the addition of alcohol also exerts a purifying effect, recovering a purer product than when it is not added.
  • the crystallization time ranges from 15 min. and 24 hours, preferably between 1 h and 12 h and more preferably between 3 and 8 hours.
  • the crystallization temperature should be below 25 ° C, preferably below 5 ° C.
  • the separation of the crystals from the crystallization waters can be carried out by filtration or centrifugation, displacing the crystallization waters that bathe the crystals, washing with the same alcohol used to solubilize.
  • the crystals obtained are dried under vacuum and at room temperature for at least 1 h. until a residual solvent content is obtained in accordance with the maximum concentration specifications established by the aforementioned legislation and which, in the case of lycopene, is established at a drying loss ⁇ 0.5%.
  • the crystalline product obtained can be handled and marketed as such or as part of formulations in which the proportion of lycopene varies between 1 and 85%, mixed with various excipients or compounds, such as soy oils, corn, olive, etc. with varying degrees of purity and accompanied by tocopherol type antioxidants.
  • the method of this invention is especially applicable for the recovery of crystalline lycopene from a microbial source, preferably algae, fungi or yeasts, more preferably of fungi of the order of the Mucorales, and more preferably B. Trispora
  • 3 1 fermentation broth is harvested corresponding to a biosynthesis process in which the biosynthetic pathway is interrupted at the lycopene level.
  • the title of the culture broth is 1.4 g of lycopene per liter.
  • the bio-mass of this broth is recovered by filtration by buchner (porcelain filter-funnel that supports a paper or cardboard disk that acts as a filter sheet, obtaining 880 g of wet biomass.
  • the wet biomass is resuspended in 5, 2 1 of isopropanol aceotropic 85/15 and stirred for 30 minutes
  • the purified biomass is recovered again by buchner.
  • This biomass is dried in an oven under vacuum at a temperature below 45 ° C and in a time of 18 hours, until the residual solvent content is of the order 1-2%.
  • 150 g of dry and purified biomass are obtained with a lycopene content equivalent to a wealth of 2.75%.
  • the dried biomass is milled in a hammer mill and 1 mm sieve, obtaining a solid with the same specific richness and conditioning to allow the extraction with the solvent.
  • the extraction is carried out by mixing the 150 g of ground biomass with 1500 ml of isobutyl acetate at 70 ° C, while stirring for 5 minutes.
  • the bio- is separated Exhausted mass of the rich solvent filtering by filter plate.
  • the spent biomass is washed with 300 ml of hot isobutyl acetate on the filter itself, mixing the two solvents.
  • the total of rich isobutyl acetate is concentrated under vacuum and the temperature is maintained below 45 ° C until the volume is reduced to 200 ml, which has partly crystallized the lycopene.
  • 600 ml of isopropanol are added.
  • the mixture is kept under stirring between 0-5 ° C and under nitrogen for 3 hours. Filter by buchner, washing the crystals with 25 ml of isopropanol on the buchner. The crystals are collected and dried, obtaining 3.3 g of lycopene crystals with a purity of 94%.
  • a quantity of fermentation broth of the order of 500 1 is grown. It is mixed directly with 500 1 of isotropanol aceotropic with water 85-15. After stirring for 30 min. the biomass is separated from the liquid by filtering by press filter. They are collected on the order of 130 kg. of purified wet biomass.
  • This biomass is dried in an oven under vacuum until it is contained in residual solvents of the order of 1-2%. Temperature below 45 ° C and time of the order of 12-24 h. You get 30 kg. of dry biomass with a lycopene content equivalent to a specific richness of 3%, purity practically analogous to that of Example 1, although slightly lower.
  • the dried biomass is milled in a mill with hammers and 1 mm sieve obtaining a solid with the same richness specific and conditioned to allow solvent extraction.
  • the extraction is carried out by mixing the 30 kg of ground solids with 350 1 of Isobutyl Acetate at 70 ° C and kept under stirring for 15 min.
  • the spent biomass is separated from the rich solvent by filtering by filter plate.
  • the spent biomass is washed with 100 1 of hot Isobutyl Acetate on the filter itself.
  • the filtrate is mixed with the previous solvent.
  • the total of rich Isobutyl Acetate is concentrated under vacuum and keeping the temperature below 45 ° C until the volume is reduced to 65 1, whereby lycopene has partially crystallized.
  • 180 1 of isopropanol are added.
  • the mixture is kept under stirring while cooling and for 3 h at 0-5 ° C.
  • Filter through a Buchner collecting the lycopene crystals that are dried. 500 g of product are obtained with a purity of 94% by spectrometry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • External Artificial Organs (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Saccharide Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Procedimiento de obtención de licopeno. La presente invención se refiere a un nuevo procedimiento para la obtención de carotenoides, especialmente licopeno, a partir de fuentes naturales biosintéticas en general y, en concreto de cultivos sumergidos de hongos mucorales como Blakeslea, Choanephora o Phycomyces. El procedimiento descrito permi-te obtener una simplificación en el proceso de recuperación y un incremento en la purificación del producto. Consta de las siguientes etapas: 1) Tratamiento directo con alcohol sobre la fuente natural de biosíntesis (caldo de fermentación por ejemplo) y separación de una biomasa húmeda purificada. 2) Acondicionamiento de la biomasa purificada mediante secado más disgregación o ruptura de la misma. 3) Extracción sólido-líquido del licopeno con un disolvente orgánico. 4) Concentración del extracto enriquecido. 5) Precipitación/cristalización por adición de alcohol. 6) Filtración. 7) Secado.

Description

PROCEDIMIENTO PARA LA OBTENCIÓN DE LICOPENO
Campo de la invención
La presente invención se refiere a un nuevo procedimiento para el aislamiento y purificación de licopeno, en principio, a partir de cualquier fuente natural de bio- síntesis y más en concreto a partir de cultivos sumergidos de hongos mucorales como Blakeslea, Choanephora o Phycomyces en una forma cristalina para consumo humano. Se describe un método de extracción que permite obtener una simplificación en el proceso de recuperación y un incremento de pureza del producto con respecto a los proce- dimientos anteriormente descritos.
Estado de la técnica
Los colorantes carotenoides están ampliamente exten- didos en la naturaleza en frutas y vegetales, dándole su característico color de amarillo a rojo profundo a numerosas sustancias naturales como la zanahoria, pimientos, tomates, flores o determinados microorganismos. Pueden dividirse en dos clase: hidrocarburos puros como los caro- teños que incluyen compuestos como β-caroteno, alfa-caroteno o licopeno y xantofilos los cuales contienen una función oxigenada siendo ejemplos de este tipo la astha- xantina, capsantina o cantaxantina . Ambos grupos de compuestos presenta un comportamiento diferente en cuanto a sus propiedades físico-químicas y diferente solubilidad en disolventes orgánicos.
Todos estos compuestos juegan un papel importante en la dieta humana habiendo sido extensamente estudiadas sus propiedades como antioxidantes para la prevención del cáncer y otras enfermedades humanas y como precursores de la vitamina A. Además los carotenoides debido a su coloración amarilla a roja son utilizados como suplemento y colorante alimenticio de margarina mantequilla, aceites, sopas salsas, etc. (Ninet et al Microbial Technology 2nd Edn vol 1 529-544 (1979) Academic Press NY Eds Peppler HJ and Perlman D. )
El licopeno es un carotenoide que se produce como intermedio en la ruta biosintética del β-caroteno y xanto- filas perteneciendo al grupo de los carotenoides hidro- carbonados . Presenta una fórmula empírica C40H56 con un peso molecular de 536.85 y la siguiente fórmula molecular:
Figure imgf000003_0001
Licopeno
Las propiedades de este compuesto han sido extensamente estudiadas. Así se han descrito sus propiedades antioxidantes, capturando los radicales libres continuamente originados en el organismo humano y su aplicación en la prevención de las enfermedades cardiovasculares y algunos tipos de cánceres como el de próstata (Giovannucci et al ., J Nat. Cáncer Inst . 87: 1767-1776 (1995) ; Stahl et al., Arch Biochem. Biophys 336: 1-9 (1996); Clinton et al., Nutr. Rev. 56: 35-51 (1998)) lo que ha dado lugar a un incremento de la demanda por parte de los consumidores y por tanto la industria ha intentado satisfacer esta demanda mediante la fabricación de licopeno mediante síntesis química.
La obtención de licopeno como compuesto de alta pureza ha estado ligado en el pasado a la síntesis química (US 5208381; US 5166445; US 4105855; US 2842599) procesos que hoy en día son objeto de polémica al considerarse que vías alternativas partiendo de fuentes de origen natural junto a procesos de extracción específicos resultan más ventajosos y constituyen lo que se denomina "vía natural" de obtención de estos productos.
Dentro de la denominada "vía natural" el licopeno puede ser obtenido a partir de productos vegetales tales como: tomate, zanahoria, pimiento, aceites vegetales, etc. . Así en la patente WO 97/48287 se describe un procedimiento para la preparación de oleoresinas ricas en licopeno a partir de tomates mediante el estrujado del tomate hasta la obtención de la pulpa, extracción del licopeno de la pulpa con solventes orgánicos y posterior eliminación del solvente por evaporación dando lugar a una oleoresina con un contenido en licopeno entre el 2-10% .
Procedimientos similares de obtención de oleoresinas ricas en carotenoides en general y licopeno en particular a partir de vegetales y aceites se describen en diferentes patentes US 5245095 y EP 580745 mediante la precipitación con sales de calcio, US 5019668 utilizando un procedimiento de transesterificación con aceites y posterior destilación, WO 95/16363 describe el fraccionamiento del tomate en diferentes fracciones que incluyen una oleoresina rica en carotenoides y en la PCT WO 90/08584 se describe la extracción de licopeno mediante la utilización de fluidos en estado supercrítico aunque el extracto obtenido es una mezcla de diferentes carotenoides y los rendimientos de extracción debido a su baja solubilidad son muy bajos. En todos estos casos debido a la baja concentración de licopeno en estos productos naturales y la disposición intracelular de este compuesto en determinados orgánulos como cloroplastos o cromoplastos los rendimientos de ex- tracción y pureza del producto obtenido son bajos, obteniéndose oleoresinas ricas en licopeno o productos crudos deshidratados junto a cantidades variables de otros compuestos carotenoides o no. En la mayoría de los casos los procedimientos de extracción descritos requieren la prepa- ración del fruto mediante molienda extrusión para facilitar la extracción del solvente y así liberar el contenido intracelular rico en licopeno. Por último en la mayoría de los procesos descritos en estas patentes se requiere el uso de solventes orgánicos que aparecen como trazas en la oleoresina obtenida.
Asimismo en la patente IL 107999 se describe la preparación de oleoresinas muy ricas en licopeno a partir de pulpas de tomates aunque al igual que en los casos anteriores no se obtienen cristales de licopeno de alta pureza sino concentrados lipidíeos ricos en licopeno.
Por otro lado en la patente WO 97/15554 se describe la extracción de carotenoides de origen vegetal a partir de zanahorias y tomates entre los que se incluyen el licopeno mediante el aislamiento de cloroplastos y cromoplastos, para proceder a continuación a la digestión de dichos orgánulos con enzimas hidrolíticas de proteínas como pee- tinas y/o proteasas que permiten la liberación del licopeno unido a diferentes proteínas estructurales. Mediante un tratamiento alcalino posterior y una extracción con mezclas alcohólicas de bajo peso molecular es posible obtener extractos de licopeno con una riqueza y pureza superior a las oleoresinas aunque sin obtenerse cristales purificados de licopeno sino extractos crudos ricos en licopeno. Igualmente en la patente EP 608027 A2 se obtienen extractos concentrados de licopeno mediante el aislamiento de cromoplastos de tomates en los cuales se encuentra el licopeno en forma cristalina. Dichos extractos de cromo- plastos de tomate ricos en licopeno son utilizados directamente como colorantes sin extracción posterior de los cristales de licopeno evitando el cambio de coloración del licopeno durante la extracción y obviando el uso de solventes orgánicos. De acuerdo al procedimiento descrito en esa patente no es posible obtener licopeno puro en forma cristalina apto para uso en composiciones alimenticias o farmacéuticas, sino únicamente como colorante alimentario en forma deshidratada, liofilizada o congelada.
Otra fuente importante de licopeno son determinadas microalgas ricas en carotenoides del tipo de Dulaniella . Existen descritos diferentes procedimientos de extracción de carotenoides de estos organismos y en particular de licopeno como US 5378369, US 4713398 US 4680314, mediante la extracción con solventes orgánicos (clorocarbonados, hi- drocarburos, etc.) o aceites comestibles DE 4342798. Un proceso diferente aparece descrito en la PCT WO 98/08584 donde la obtención de un extracto de licopeno se realiza utilizando C02 en estado supercrítico pero el extracto así obtenido presenta una baja pureza en licopeno. El licopeno puede ser obtenido a partir de determinados hongos mucorales como Phycomyces , Blakeslea o Chonaephora por fermentación en medio líquido los cuales presentan como ventaja frente a la obtención de licopeno a partir de productos vegetales o algas, la elevada concen- tración de este compuesto en algunos casos superior al 5% en peso respecto a la cantidad de biomasa seca (concentraciones superiores a las obtenidas de las mejores variedades vegetales) , así como a la posibilidad del desarrollo biotecnológico de cepas superproductoras de estos microorganismos ya sea mediante técnicas de mutagénesis clásica o bien mediante la aplicación de las nuevas tecnologías de biología molecular que permiten la manipulación genética de estos microorganismos incrementando la concentración y producción de licopeno así como la eliminación de la producción de otros carotenoides estructuralmente relacionados.
La preparación de licopeno cristalino de elevada pureza a partir de fuentes naturales exige por lo general, como ya se ha comentado, una etapa de extracción con solventes orgánicos o fluidos en estado supercrítico y posteriormente diversas etapas de purificación adicionales como cromatografía, procesos de adsorción y elución y etapas de precipitación o cristalización como por ejemplo se descri- ben en las patentes US 3369974, EP 818255 y EP 242148. En la mayoría de los casos en los cuales no se utilizan estas etapas de purificación posterior y la cristalización se realiza directamente a partir de extracto por evaporación del solvente hasta superar la solubilidad, la pureza del producto obtenido es muy baja y es preciso proceder posteriormente a procesos de recristalización del licopeno obtenido con el agravante de la baja solubilidad del producto y por tanto la gran cantidad de solvente necesario para llevar a cabo la etapa de recristalización así como a pér- didas de rendimiento muy importantes. (NL 6411184 , US 4439629) .
En la solicitud de patente WO 96/13178 se describe la preparación de concentrados de licopeno cristalino estabilizado en un medio líquido compatible alimentario en el cual el licopeno es insoluble, como etilenglicol, etanol o glicerol obteniéndose cristales de licopeno de pequeño tamaño por molienda, entre 1-3 μm en suspensión en un medio liquido . Asimismo en la solicitud de patente WO 98/43620 se describe un procedimiento de aislamiento de cristales de licopeno a partir de una oleoresina mediante un procedimiento de saponificación de diferentes triglicéridos y fos- fonatos a alta temperatura y posterior dilución con agua obteniendo cristales de licopeno de pureza entre el 75 al 95%. Un procedimiento similar ha sido descrito recientemente para la preparación de cristales de β-caroteno de elevada pureza en la solicitud internacional WO 98/03480 por lavado con agua, alcoholes de bajo peso molecular o acetona, aunque no ha sido descrito su aplicación para la obtención de cristales de licopeno de alta pureza por un procedimiento similar.
Resumen de la invención
Esta invención hace referencia a la obtención licopeno cristalino de elevada pureza a partir de una fuente natural de biosíntesis, en general y más en concreto, a partir de un caldo de fermentación, empleando disolventes considerados como naturales. Disolventes naturales serían los, por una parte, toxicológicamente inocuos y/o los que están incluidos en la Clase 3 de la ICH (International Conference of Harmonization) . En su consideración general el proceso comprende las siguientes etapas :
1) Separación de la biomasa húmeda, desde la fuente natural de biosíntesis (el caldo de fermentación, por ejemplo) . 2) Purificación de la biomasa húmeda por tratamiento con alcohol . 3) Separación de la biomasa purificada del alcohol. 4) Acondicionamiento de la biomasa purificada mediante secado más disgregación o ruptura de la misma.
5) Extracción sólido-líquido del licopeno con un disolvente orgánico. 6) Concentración del extracto enriquecido.
7) Precipitación/cristalización por adición de alcohol.
8) Filtración.
9) Secado.
El método aquí descrito nos permite recuperar licopeno cristalino con una pureza superior al 90%, preferiblemente superior al 95% y más preferiblemente superior al 98%.
Descripción detallada de la invención
Dada la característica intracelular del componente carotenoide biosintetizado en la fermentación, el procedimiento de recuperación a partir del caldo de cultivo, preparado de acuerdo con los procedimientos al uso, implica la separación de la biomasa del caldo, con el propósito de eliminar o reducir las pérdidas en el caldo sin biomasa.
Esta separación puede hacerse por los procedimientos establecidos de A) Filtración, empleando las tecnologías al uso de filtros, bien sean de bandas, rotatorios, prensas, etc., en los que una barrera constituida por la tela filtrante separa la biomasa y permite pasar la fase líquida sin biomasa, o B) Centrifugación, en la que haciendo uso de la diferencia de densidades entre el caldo y la biomasa (normalmente mayor) se emplea una máquina del tipo de un separador centrífugo, decantador o similar, en el que la fase pesada se concentra y se separa de la fase líquida con la menor cantidad posible de biomasa. El reducir pérdidas y optimizar las características de cada fase respectiva con- siguiendo la mayor cantidad de biomasa con el mayor contenido de residuo seco y eliminar la mayor cantidad de caldo de fermentación, con la menor cantidad de materia activa es uno de los objetivos de esta invención. El micelio húmedo resultante contiene más del 95% de los carotenoides producidos en la fermentación, preferiblemente más del 97% y más preferiblemente más del 99%. El contenido en carotenoides de la fase acuosa es, por tanto, inferior al 5%, preferiblemente inferior al 3% y más prefe- riblemente inferior al 1%.
Este sólido húmedo del micelio, estaría en disposición de permitir, mediante las etapas ulteriores, la separación de licopeno, pero la comprobación de que, relacionado con la fermentación, aún mantiene un porcentaje relativamente elevado de componentes lipofílicos, entre 15 y 20% (ácidos grasos y aceites) que en etapas ulteriores plantean problemas de purificación, conduce a introducir, en este punto, una etapa de purificación de la biomasa.
Esta etapa de purificación implica una resuspensión de la biomasa con una cantidad de alcohol: metanol, etanol, propanol, isopropanol, o cualquier otro alcohol en el que la solubilidad del licopeno sea muy baja, en proporción adecuada para conseguir la máxima purificación de los componentes lipidíeos. Es decir el micelio húmedo se resus- pende con una cantidad de alcohol que oscila entre 1 ml/g y 10 ml/g de micelio húmedo. La temperatura de resuspensión oscila entre la temperatura ambiente y la de ebullición del alcohol. El tiempo de contacto oscila entre 5 minutos y 24 horas. La resuspensión alcohólica así preparada se filtra o centrifuga, de modo que el contenido en sólidos en el filtrado o clarificado sea prácticamente nulo. El micelio húmedo resultante, que contendrá alcohol más agua en diversa proporción, contiene más del 93% de los carotenoides pro- ducidos en la fermentación, preferiblemente más del 95% y más preferiblemente más del 97%.
En la mezcla resultante de restos de caldo de cultivo con alcohol, el contenido en carotenoides es inferior al 2%, preferiblemente inferior al 1%. Mediante este tratamiento con alcohol se consigue eliminar una serie de sustancias lipofílicas solubles en alcohol, en cantidad variable en función de las características del caldo de cultivo utilizado, efectuando una purificación previa extremada- mente importante y que nos va a permitir obtener un producto final cristalino de elevada pureza. Además, al eliminar una proporción variable de agua del micelio húmedo inicial, se facilita considerablemente el proceso de secado.
Alternativamente al conjunto de estas dos etapas de separación de la biomasa y de subsecuente purificación de la misma por resuspensión, se plantea el hecho de que mezclando directamente el caldo de cultivo con el alcohol en proporciones de volumen próximas a 1:1 y manteniendo el tiempo mínimo de contacto se consigue un efecto de purifi- cación equivalente al descrito para la alternativa en 2 etapas, con lo que se simplifica el proceso al eliminar una operación de separación sólido-líquido.
El hecho de que el producto carotenoide sea intra- celular implica que la biomasa purificada requiere un acon- dicionamiento bien mediante secado más molienda, secado más disgregación o disgregación directa de la biomasa, que favorezca la mezcla con disolventes y facilite la extracción con ellos.
El micelio deshidratado/purificado se seca. El secado puede hacerse por los procedimientos habituales en batch (lotes) o en continuo. La temperatura de secado oscila entre la temperatura ambiente y 150 °C, preferiblemente no debe sobrepasar los 60 °C y más preferiblemente estar por debajo de 50°C. El tiempo de secado es función de la temperatura empleada, oscilando entre 1 hora y 72 horas. Debido a la posible descomposición de estos carotenoides por oxidación con el oxígeno atmosférico, es conveniente efectuar esta operación de secado en ausencia de oxígeno, bien bajo atmósfera de nitrógeno o al menos a vacío.
Para conseguir una buena accesibilidad del disolvente al carotenoide a extractar es necesaria una operación de ruptura previa del micelio, de modo que la superficie de contacto sea máxima. El tamaño de partícula óptimo del micelio seco y roto debe ser inferior a 3 mm, preferiblemente inferior a 1 mm y más preferiblemente inferior a 0.5 mm.
La molienda puede hacerse sobre el producto seco, mediante los sistemas mecánicos con partes giratorias o fijas: mazas, tamices, etc., por el paso a través de cilindros giratorios presionando uno sobre el otro o mediante el sistema de secado tipo flash (instantáneo) en un equipo jet mili (molino de chorro) donde el producto húmedo se alimen- ta a una corriente de un gas en recirculación y a temperatura elevada, de manera que el tiempo de residencia sea el mínimo para conseguir vaporizar el contenido de componentes líquidos, y transporte, al variar las densidades el producto hasta un ciclón donde se recupera. Durante el tiempo de secado y en el trayecto tiene lugar asimismo un efecto de homogeneización al chocar las partículas con las paredes.
Para' la extracción del licopeno a partir de un micelio acondicionado tal y como se ha descrito, se pueden emplear diversos disolvente orgánicos. Esta invención se referirá al uso de disolventes de grado alimentario considerados como naturales, tales como los esteres de acilo, preferiblemente acetatos de etilo, propilo, isopropilo, butilo, isobutilo, que conjugan la solubilidad razonablemente elevada para los componentes carotenoides con su compatibilidad como disolventes incluidos en el Grupo de Clase 3 de la ICH. Estos disolventes son admisibles tanto a nivel na- cional, como comunitario, en los ámbitos tanto farmacéutico como alimentario (RDL12/04/90 y RDL16/10/96) .
La temperatura de extracción oscila entre la temperatura ambiente y la de ebullición del disolvente, preferiblemente entre 50 °C y 80 °C. El tiempo de extracción será el mínimo necesario para conseguir la solubilización, entre 1 segundo y 1 hora, preferiblemente entre 1 minuto y 15 minutos. La cantidad de disolvente empleada depende de la temperatura y de la riqueza del micelio en carotenoides, oscilando entre 5 ml/g y 20 ml/g. El número de extracciones varía desde 1 hasta 3. La cantidad de carotenoides extractados es superior al 85%, preferiblemente superior al 90% y más preferiblemente superior al 95%.
Una vez obtenido el extracto rico en carotenoides es necesario concentrarlo hasta un determinado volumen. La concentración final de carotenoides en el disolvente tras concentrar oscila preferentemente entre 10 y 40 g/1. La temperatura de concentración debe ser inferior a 80 °C, preferiblemente inferior a 70 °C y más preferiblemente inferior a 50 °C. El tiempo de concentración debe ser inferior a 1 hora, preferiblemente inferior a 30 min., y más preferiblemente inferior a 15 min.
Una vez concentrado el extracto al volumen requerido se hace necesario adicionar un insolubilizante de los carotenoides, concretamente un alcohol y más concretamente Metanol, Etanol, Alcohol Isopropílico, ..., o cualquier otro alcohol en el que la solubilidad del licopeno sea muy baja, con lo cual el rendimiento en licopeno cristalino aumenta considerablemente. La adición del alcohol ejerce tam- bien un efecto purificante, recuperándose un producto más puro que cuando no se adiciona. El tiempo de cristalización oscila entre 15 min. y 24 horas, preferiblemente entre 1 h y 12 h y más preferiblemente entre 3 y 8 horas. La tempera- tura de cristalización debe ser inferior a 25°C, preferiblemente inferior a 5°C.
La separación de los cristales de las aguas de cristalización se puede efectuar por filtración o centrifugación, desplazando las aguas de cristalización que bañan los cris- tales, lavando con el mismo alcohol empleado para inso- lubilizar .
Los cristales obtenidos se secan a vacío y temperatura ambiente durante al menos 1 h. hasta obtener un contenido de disolventes residuales acorde con las especificaciones de concentración máxima establecidas por la legislación anteriormente mencionada y que, en el caso del licopeno, se establece en una pérdida por secado < 0,5%.
La pureza de los cristales obtenidos por el método anteriormente descrito, corresponde a un Titulo - determi- nado por espectrofotometría mediante lectura de la Absorción a 472 nm disuelto en n-hexano (El% lcm = 3450) - superior a 95%, con un contenido en β-caroteno inferior al 3% y un contenido en otros carotenoides inferior a 2%.
Asimismo el producto cristalino obtenido puede mane- jarse y comercializarse como tal o formando parte de formulaciones en las que la proporción de licopeno varíe entre el 1 y el 85%, mezclado con diversos excipientes o compuestos, como es el caso de aceites de soja, maíz, oliva, etc. con diversos grados de pureza y acompañado de antioxidantes tipo tocoferol .
El método de esta invención es especialmente aplicable para la recuperación de licopeno cristalino de una fuente microbiana, preferiblemente algas, hongos o levaduras, más preferiblemente de hongos del orden de los Mucorales, y más preferiblemente B . trispora .
La extrema pureza conseguida en los cristales obtenidos por la presente metodología y el empleo de disol- ventes considerados como naturales hace que estos cristales sean aplicables en la industria alimentaria, farmacéutica o de cosméticos.
Ejemplo 1
Se cosechan 3 1 de caldo fermentación correspondiente a un proceso de biosíntesis en el cual la ruta biosin- tética está interrumpida a nivel de licopeno. El título del caldo de cultivo es de 1,4 g de licopeno por litro. La bio- masa de este caldo se recupera mediante filtración por buchner (filtro-embudo de porcelana que soporta un disco de papel o cartulina que ejerce de lámina filtrante, obteniendo 880 g de biomasa húmeda. La biomasa húmeda se resus- pende en 5,2 1 de isopropanol aceotrópo 85/15 y se agita durante 30 minutos. La biomasa purificada se vuelve a recuperar mediante buchner.
Esta biomasa se seca en estufa bajo vacío a temperatura inferior a 45 °C y en un tiempo de 18 horas, hasta que el contenido en disolventes residuales es del orden 1-2%. Se obtienen 150 g de biomasa seca y purificada con un contenido de licopeno equivalente a una riqueza del 2,75%. La biomasa seca se muele en molino de martillos y tamiz de 1 mm obteniéndose un sólido con la misma riqueza específica y acondicionado para permitir la extracción con el disol- vente.
La extracción se efectúa mezclando los 150 g de biomasa molida con 1500 mi de acetato de isobutilo a 70°C, manteniéndose en agitación durante 5 minutos. Se separa la bio- masa agotada del disolvente rico filtrando por placa filtrante. La biomasa agotada se lava con 300 mi de acetato de isobutilo caliente sobre el propio filtro, mezclando los dos disolventes. El total de acetato de isobutilo rico se concentra bajo vacío y manteniéndose la temperatura por debajo de 45 °C hasta reducir el volumen a 200 mi, con lo que ha cristalizado en parte el licopeno. Para completar la cristalización y obtener un licopeno más puro, se añaden 600 mi de isopropanol. La mezcla se mantiene en agitación entre 0-5°C y bajo nitrógeno durante 3 horas. Se filtra por buchner, lavando los cristales con 25 mi de isopropanol sobre el buchner. Se recogen los cristales y se secan, obteniéndose 3,3 g de cristales de licopeno con una pureza del 94%.
Ejemplo 2
Se cultiva una cantidad de caldo de fermentación del orden de 500 1. Se mezcla directamente con 500 1 de isopro- panol aceotrópo con agua 85-15. Después de mantener en agitación durante 30 min. se procede a separar la biomasa del líquido filtrando por filtro prensa. Se recogen del orden de 130 Kg . de biomasa húmeda purificada.
Esta biomasa se seca en estufa bajo vacío hasta conte- nido en disolventes residuales del orden de 1-2%. Temperatura inferior a 45 °C y tiempo del orden de 12-24 h. Se obtiene 30 Kg . de biomasa seca con un contenido licopeno equivalente a una riqueza específica del 3%, pureza prácticamente análoga a la del Ejemplo 1, aunque ligeramente inferior.
La biomasa seca se muele en molino con martillos y tamiz de 1 mm obteniéndose un sólido con la misma riqueza específica y acondicionado para permitir la extracción con el disolvente.
La extracción se efectúa mezclando los 30 Kg. de sóli-do molido con 350 1 de Acetato de Isobutilo a 70 °C y se mantiene en agitación durante 15 min. Se separa la biomasa agotada del disolvente rico filtrando por placa filtrante. La biomasa agotada se lava con 100 1 de Acetato de Isobutilo caliente sobre el propio filtro. El filtrado se mezcla con el disolvente anterior. El total de Acetato de Isobu- tilo rico se concentra bajo vacío y manteniendo la temperatura por debajo de 45 °C hasta reducir el volumen a 65 1, con lo que se ha cristalizado en parte el licopeno. Para completar la cristalización del licopeno se añaden 180 1 de isopropanol. Se mantiene la mezcla en agitación mientras se enfría y durante 3 h a 0-5°C. Se filtra por un Buchner recogiendo los cristales de licopeno que se secan. Se obtienen 500 g de producto con una pureza de 94% por espectrometría.

Claims

REIVINDICACIONES
1.- Un procedimiento para la obtención de licopeno a partir de cualquier fuente natural de biosíntesis, caracte- rizado por comprender las siguientes etapas :
• Tratamiento con alcohol directamente de la fuente natural de biosíntesis y separación de una biomasa húmeda purificada.
• Acondicionamiento de la biomasa húmeda purificada medíante secado más disgregación o ruptura de la misma.
• Extracción sólido-líquido del licopeno contenido en la biomasa purificada con un disolvente orgánico.
• Concentración del extracto de licopeno enriquecido.
• Precipitación/cristalización del licopeno a partir del extracto concentrado, por adición de alcohol.
• Filtración.
• Secado.
2.- Procedimiento según la reivindicación 1, caracterizado porque la fuente natural de biosíntesis es un caldo de fermentación microbiana.
3. - Procedimiento según cualquiera de las reivindicaciones 1 y 2, caracterizado porque se obtiene un producto cristalino de licopeno, cuyo contenido establecido como es- pectrofotometría por lectura de absorción a 472 nm El% lcm en acetona 3450) es superior al 95%, siendo el contenido en β-caroteno inferior a 3% y el contenido en otros carotenoides, inferior a 2%.
4.- Procedimiento según cualquiera de las reivindicaciones 1 a 3, caracterizado por realizar la purificación de la biomasa en una proporción de alcohol : biomasa del orden de 1:1 a 10 :1.
5.- Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado por utilizar el alcohol a temperatura comprendida entre 0°C y la correspondiente a su temperatura de ebullición respectiva, preferiblemente entre 10 y 50"C y más preferentemente entre temperatura ambiente y 40°C.
6.- Procedimiento según la reivindicación 1, caracterizado por utilizar en la etapa de extracción sólido-líquido, un disolvente tipo éster, pre erentemente acetato de etilo, acetato de propilo, acetato de isopropilo, acetato de butilo, acetato de isobutilo.
7.- Procedimiento según la reivindicación 6, caracterizado por utilizar una cantidad de disolvente del orden de 10 a 20 volúmenes por peso de biomasa, preferentemente de 10 a 15 volúmenes por peso.
8.- Procedimiento según cualquiera de las reivindicaciones 6 y 7, caracterizado por utilizar el disolvente a temperaturas próximas a las de ebullición del mismo, preferiblemente entre 40 y 80 °C y más preferentemente entre 60 y 70°C.
9.- Procedimiento según cualquiera de las reivindicaciones 6 a 8, caracterizado por utilizar el disolvente de manera que el tiempo de contacto con el licopeno sea inferior a los 10 min.
10.- Procedimiento según la reivindicación 1, caracterizado porque la precipitación del producto concentrado después de extraer, se consigue mediante la adición de un compuesto en el que el licopeno sea poco soluble, tipo metanol, etanol, isopropanol, y que mantenga disueltas las sustancias de carácter lipofílico que acompañan al licopeno .
11.- Procedimiento de acuerdo con la reivindicación 1, según el cual el producto obtenido puede manejarse y comer- cializarse como tal en forma cristalina o formando parte de formulaciones en las que la proporción de licopeno varíe entre el 1 y el 85%, preferiblemente en proporciones del orden de 15 al 50% p/p, opcionalmente mezclado con diversos excipientes o compuestos, como es el caso de aceites de soja, maíz y oliva, de diversos grados de acidez, y preferiblemente aceite de oliva virgen, o virgen extra, con la adición opcional de antioxidantes, tipo tocoferol .
PCT/ES2000/000266 1999-08-12 2000-07-21 Procedimiento para la obtencion de licopeno WO2001012832A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES00949493T ES2237439T3 (es) 1999-08-12 2000-07-21 Procedimiento para producir licopeno.
EP00949493A EP1201762B1 (en) 1999-08-12 2000-07-21 Process for producing lycopen
DE60018427T DE60018427T2 (de) 1999-08-12 2000-07-21 Verfahren zur herstellung von lykopen
JP2001516919A JP2003507021A (ja) 1999-08-12 2000-07-21 リコペンの製造方法
AU62826/00A AU6282600A (en) 1999-08-12 2000-07-21 Process for producing lycopen
AT00949493T ATE290095T1 (de) 1999-08-12 2000-07-21 Verfahren zur herstellung von lykopen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009901869A ES2157166B1 (es) 1999-08-12 1999-08-12 Procedimiento para la obtencion de licopeno.
ESP9901869 1999-08-12

Publications (1)

Publication Number Publication Date
WO2001012832A1 true WO2001012832A1 (es) 2001-02-22

Family

ID=8309661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000266 WO2001012832A1 (es) 1999-08-12 2000-07-21 Procedimiento para la obtencion de licopeno

Country Status (8)

Country Link
EP (1) EP1201762B1 (es)
JP (1) JP2003507021A (es)
CN (1) CN1197972C (es)
AT (1) ATE290095T1 (es)
AU (1) AU6282600A (es)
DE (1) DE60018427T2 (es)
ES (2) ES2157166B1 (es)
WO (1) WO2001012832A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512599A (ja) * 2001-12-31 2005-05-12 ビタテネ、ソシエダッド アノニマ ブラケスレアトリスポラの選択された菌株の発酵による改善されたリコペン産生方法、このようにして得たリコペンの調合物及び使用
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464877A (zh) * 2001-05-18 2003-12-31 阿迪索法国两合公司 萃提叶黄素和类胡萝卜素酯的方法
AU2011253728B2 (en) * 2001-12-31 2013-11-21 Dsm Ip Assets, B.V. Improved method of producing lycopene through the fermentation of selected strains of Blakeslea Trispora, formulations and uses of the lycopene thus obtained
ITMI20020632A1 (it) 2002-03-27 2003-09-29 Indena Spa Processo per la preparazione di estratti di pomodoro ad elevato contenuto di licopene
EP1886584A1 (en) * 2006-08-08 2008-02-13 Indena S.P.A. Stable and bioavailable compositions of isomers of lycopene for skin and hair
CN101085989B (zh) * 2007-07-10 2010-06-02 北京市农林科学院 一种利用细菌发酵生产番茄红素的方法
CN102140052B (zh) * 2010-12-30 2013-12-18 南京工业大学 一种连续提取番茄红素的方法
CN102787158B (zh) * 2011-05-20 2015-01-21 浙江医药股份有限公司新昌制药厂 一种发酵法生产天然β-胡萝卜素的方法和应用
EP2757904B1 (en) 2011-09-19 2017-01-11 OmniActive Health Technologies Limited An efficient process for the preparation of lycopene containing oleoresin and lycopene crystals for human consumption
CN103664462B (zh) * 2013-11-19 2015-06-17 新疆红帆生物科技有限公司 番茄油中番茄红素的二次回收方法
CN112479799B (zh) * 2020-12-07 2023-06-27 中国科学院天津工业生物技术研究所 一种从发酵液中分离提取番茄红素的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003480A1 (en) * 1996-07-19 1998-01-29 Gist-Brocade B.V. PROCESS FOR THE RECOVERY OF CRYSTALLINE β-CAROTENE FROM A NATURAL SOURCE
WO1998043620A1 (en) * 1997-04-03 1998-10-08 Kemin Foods, L.C. Process for the isolation and purification of lycopene crystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003480A1 (en) * 1996-07-19 1998-01-29 Gist-Brocade B.V. PROCESS FOR THE RECOVERY OF CRYSTALLINE β-CAROTENE FROM A NATURAL SOURCE
WO1998043620A1 (en) * 1997-04-03 1998-10-08 Kemin Foods, L.C. Process for the isolation and purification of lycopene crystals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512599A (ja) * 2001-12-31 2005-05-12 ビタテネ、ソシエダッド アノニマ ブラケスレアトリスポラの選択された菌株の発酵による改善されたリコペン産生方法、このようにして得たリコペンの調合物及び使用
JP2009171973A (ja) * 2001-12-31 2009-08-06 Vitatene Sa ブラケスレアトリスポラの選択された菌株の発酵による改善されたリコペン産生方法、このようにして得たリコペンの調合物及び使用
EP2143800A1 (en) * 2001-12-31 2010-01-13 Vitatene, S.A. Formulations of lycopene and uses thereof
US7799540B2 (en) * 2001-12-31 2010-09-21 Vitatene, S.A. Method of producing lycopene through the fermentation of selected strains of Blackeslea trispora, formulations and uses of the lycopene thus obtained
US7851199B2 (en) 2005-03-18 2010-12-14 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
US9909130B2 (en) 2005-03-18 2018-03-06 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
US9297031B2 (en) 2006-09-28 2016-03-29 Dsm Ip Assets B.V. Production of carotenoids in oleaginous yeast and fungi

Also Published As

Publication number Publication date
CN1370241A (zh) 2002-09-18
EP1201762B1 (en) 2005-03-02
JP2003507021A (ja) 2003-02-25
ES2157166A1 (es) 2001-08-01
DE60018427T2 (de) 2006-04-06
ES2157166B1 (es) 2002-02-16
ES2237439T3 (es) 2005-08-01
CN1197972C (zh) 2005-04-20
ATE290095T1 (de) 2005-03-15
EP1201762A1 (en) 2002-05-02
DE60018427D1 (de) 2005-04-07
AU6282600A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
US5858700A (en) Process for the isolation and purification of lycopene crystals
ES2333944T3 (es) Procedimiento mejorado de produccion de licopeno mediante la fermentacion de cepas seleccionadas de blakeslea trispora.
ES2237439T3 (es) Procedimiento para producir licopeno.
ES2203118T3 (es) Concentrados de ester de trans-xantofila de pureza aumentada y metodos de obtencion de los mismos.
KR100278576B1 (ko) 리코펜의 추출방법과 그를 함유한 추출물
EP2571996B1 (en) Process for production of high purity beta-carotene and lycopene crystals from fungal biomass
US8425948B2 (en) Process for isolation of lutein and zeaxanthin crystals from plant sources
CN104640975B (zh) 用于制备富含由微藻产生的叶黄素的组合物的方法
US7572468B1 (en) Extraction of carotenoids from plant material
ES2223894T3 (es) Metodo para la produccion de beta-caroteno.
US6737552B1 (en) Method for extracting lutein from green plant materials
WO2003037833A1 (en) Extraction of lutein from marigold meal
JP4136026B2 (ja) 赤色系色素およびその製法
US20130302365A1 (en) Extraction of oil-soluble pigment from micro-organisms
IL160535A (en) Carotonoid extraction from plant material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000949493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008116342

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000949493

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000949493

Country of ref document: EP