WO2001012595A1 - Procede de production de disulfures aromatiques - Google Patents

Procede de production de disulfures aromatiques Download PDF

Info

Publication number
WO2001012595A1
WO2001012595A1 PCT/JP1999/004371 JP9904371W WO0112595A1 WO 2001012595 A1 WO2001012595 A1 WO 2001012595A1 JP 9904371 W JP9904371 W JP 9904371W WO 0112595 A1 WO0112595 A1 WO 0112595A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
aromatic
reaction
range
group
Prior art date
Application number
PCT/JP1999/004371
Other languages
English (en)
French (fr)
Inventor
Isamu Arai
Tutomu Yamaguchi
Yoko Hida
Original Assignee
Nippon Finechemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Finechemical Co., Ltd. filed Critical Nippon Finechemical Co., Ltd.
Priority to AU51970/99A priority Critical patent/AU5197099A/en
Priority to US09/806,850 priority patent/US6444853B1/en
Priority to JP2001516896A priority patent/JP3826033B2/ja
Priority to PCT/JP1999/004371 priority patent/WO2001012595A1/ja
Publication of WO2001012595A1 publication Critical patent/WO2001012595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/22Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides
    • C07C319/24Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides by reactions involving the formation of sulfur-to-sulfur bonds

Definitions

  • the present invention relates to a method for producing an aromatic disulfide from an aromatic thioether, and more particularly, to a method for reacting an aromatic thioether with a halogen or a precursor thereof. And a method for producing the same.
  • Aromatic disulfides having an electron-withdrawing group bonded to an aromatic ring in particular, of the general formula ( ⁇ ):
  • Y represents a monovalent electron-withdrawing group which may be the same or different; n is an integer of 1 to 5,
  • Aromatic disulfides represented by are widely used as intermediates for pharmaceuticals and agricultural chemicals.
  • Aromatic disulfides having such substituents are usually produced by oxidation of the corresponding aromatic thiols.
  • Several methods have been proposed as methods for producing the aromatic thiols.
  • Japanese Patent Application Laid-Open No. 8-143533 discloses that a methyl group bonded to a sulfur atom of thioanisoles is chlorinated with chlorine gas to obtain a halogenated thioanisole, which is used for the presence of a mineral acid.
  • a method for obtaining aromatic thiols by hydrolysis below is disclosed. However, this method requires a complicated process of using volatile and odorous methyl mercaptan to obtain thioanisols and introducing chlorine gas to chlorinate the methyl group. .
  • the desired aromatic disulfides can be obtained.
  • aromatic thiols obtained by these methods in addition to the multi-step reaction in which aromatic thiols are obtained once and then converted to an aromatic disulfide compound by a dimerization reaction, most of the aromatic thiols are sublimated. The drying and purification steps are complicated due to the nature, and care must be taken when handling because of the irritancy. Therefore, a method for obtaining aromatic disulfides without going through aromatic thiols is desired.
  • R ′ represents a phenyl group, a benzyl group or an n-butyl group, which is unsubstituted or substituted with a formyl group.
  • An object of the present invention is to produce aromatic disulfides having an electron-withdrawing group from an aromatic thioether which can be synthesized relatively easily, by a simple method, with high purity and without producing by-products complicated in handling. Is to manufacture.
  • the present inventors have conducted studies to solve the above-mentioned problems, and as a result, by reacting an aromatic thioether having a specific range of a hydrocarbon group and a substituted aromatic ring with a halogen such as bromine.
  • the present inventors have found that the object can be achieved, and further, have found that the same result can be obtained by using hydrogen halide and hydrogen peroxide as precursors of the halogen.
  • a halogen such as bromine
  • Ar represents a hydrocarbon aromatic ring residue
  • R represents a monovalent tertiary hydrocarbon group and a monovalent hydrocarbon group selected from the group consisting of a benzyl group and a monovalent secondary hydrocarbon group derived from the benzyl group;
  • Y represents a monovalent electron-withdrawing group, and when n is 2 or more, a plurality of Ys may be the same or different;
  • n is an integer from 1 to 12;
  • Aromatic thioethers represented by
  • the production method of the present invention is represented by the following chemical formula.
  • the aromatic thioether used in the present invention is a thioether derivative having one SR bound to a carbon atom of an aromatic ring and at least one Y. .
  • Ar is a hydrocarbon aromatic ring residue.
  • Ar include residues of aromatic rings such as a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
  • a benzene ring residue is particularly preferred in view of reactivity with (B) and usefulness of the obtained disulfide.
  • Y is a monovalent electron-withdrawing group bonded to the carbon atom of the aromatic ring residue Ar and introduced as a substituent into the target aromatic disulfide.
  • the presence of Y promotes the reaction between (A) and (B), and suppresses the substitution reaction of halogens on the hydrogen atoms of the aromatic ring.
  • Y typically includes a halogen atom, a nitro group, a nitrile group, a sulfone group, a sulfamoyl group, or a hydrocarbylsulfonyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • hydrocarbylsulfonyl group examples include methylsulfonyl, phenylsulfonyl, and p-toluylsulfonyl. Is exemplified. When there is more than one Y, they may be the same or different.
  • n is an integer of 1 to 12; for example, when Ar is a benzene ring residue, it is an integer of 1 to 5; and when Ar is a terphenyl ring ring residue, it is an integer of 1 to 12.
  • Y the larger n is, the easier the reaction between (A) and (B) proceeds.
  • R is a specific range of a monovalent hydrocarbon group bonded to a sulfur atom, specifically, a monovalent tertiary hydrocarbon group, and a monovalent tertiary hydrocarbon group derived from a benzyl group and a benzyl group. Selected from secondary hydrocarbon groups.
  • Tertiary hydrocarbon groups include t-butyl, t-pentyl, t-hexyl, t-octyl, t-decyl, t-dodecyl, 1-methyl-1-ethylpropyl, 1,1-ethylpropyl, Tertiary alkyl groups such as 1,1,4-trimethylpentyl; aromatic ring-containing tertiary hydrocarbon groups such as 1-methyl-1-phenylphenyl, 1,1-diphenylethyl, and trityl
  • the secondary hydrocarbon group derived from a benzyl group and a benzyl group include benzyl, 1-methylbenzyl, 1-ethylbenzyl, 1-propylbenzyl, and benzhydryl. Of these, t-butyl, benzyl and benzhydryl are preferred, and t-butyl is particularly preferred, since R is easily eliminated to form aromatic disulfides and handling
  • (B) used in the present invention is a reactant for obtaining an aromatic disulfide by reacting with (A).
  • (B) at least one of the following (1) to (4) is used.
  • (1) is bromine.
  • the bromine is introduced into the reaction system by any method such as dropping into the reaction system through a separating funnel.
  • the amount of (1) is usually in the range of 5 to 5 moles per 1 mole of (A) aromatic thioether, and preferably 1 to 3 moles for effective reaction.
  • (2) is a combination of (a) hydrogen bromide and (b) hydrogen peroxide, which is a precursor of (1), and generates bromine in the reaction system, and the bromine reacts with (A).
  • Produces aromatic disulfide may be introduced into the reaction system in an anhydrous state or may be used in the form of an aqueous solution such as hydrobromic acid, and is preferably present in the reaction system in the form of an aqueous solution because of its power s and handling.
  • (B) usually uses an aqueous solution of 10 to 50% by weight, It is preferable to add dropwise to the reaction system so as to gradually generate bromine.
  • the quantity of (a) is
  • the amount is usually in the range of 1 to 10 mol, preferably 2 to 5 mol, per 1 mol.
  • the amount of (b) is usually in the range of 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of (A).
  • (3) is (c) chlorine, which is reacted with (A) in the presence of iodine and / or hydrogen iodide, which contributes as a catalyst for promoting the reaction with (A).
  • (c) the reaction to form aromatic disulfides by itself is extremely slow, and aromatic disulfides can be obtained at a satisfactory reaction rate only in the presence of the catalyst.
  • (C) is introduced into the reaction system by any method such as gas supply.
  • the amount of (c) is usually in the range of 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of (A).
  • the amount of the catalyst is usually in the range of 0.01 to 0.1 mol when iodine is used as the catalyst with respect to 1 mol of (A), preferably 0.02 to 0.05 mol, When hydrogen iodide is used, it is usually in the range of 0.02 to 0.2 mol, preferably 0.04 to 0.1 mol.
  • (4) is a combination of (d) hydrogen chloride, the precursor of (3), and (b) hydrogen peroxide, similar to that used in (2).
  • the reaction is performed in the presence of the same catalyst as in (3).
  • aromatic disulfides cannot be obtained at a satisfactory reaction rate simply by combining with (b).
  • aromatic aromatic disulfides cannot be obtained at a satisfactory reaction rate.
  • Group disulphides are obtained.
  • the reaction can be carried out in the same manner as in (2).
  • the amount of (d) is usually in the range of 1 to 10 moles, preferably 2 to 5 moles, per 1 mole of (A).
  • the amount of (b) is the same as that used in the combination of (2), and the amount of catalyst is the same as that used in the combination of (3).
  • (B) it is preferable to use a bromine-based compound as in (1) or (2), since the target aromatic disulfides can be obtained with excellent yield and high purity. On the other hand, it is preferable to use the combination of (2) or (4) because of easy handling, so that (2) is particularly preferable overall.
  • the reaction is preferably performed in the presence of an organic solvent that separates from the aqueous phase to form an organic phase.
  • an organic solvent that separates from the aqueous phase to form an organic phase.
  • B uses (2) or (4), then (A) Is dissolved in an organic solvent and (a) hydrogen bromide or (c) hydrogen chloride and a catalyst are added, and (b) an aqueous solution of hydrogen peroxide is added dropwise. Reacts with A).
  • organic solvent examples include halogenated hydrocarbons such as dimethylene chloride, chloroform, carbon tetrachloride, and cyclobenzene; aliphatic hydrocarbons such as pentane, hexane, and cyclohexane; and toluene; Aromatic hydrocarbons such as xylene are exemplified. When hydrocarbons are used, halogenated hydrocarbons are preferred because the hydrocarbons are halogenated by (B) as a side reaction unless light is shielded.
  • halogenated hydrocarbons such as dimethylene chloride, chloroform, carbon tetrachloride, and cyclobenzene
  • aliphatic hydrocarbons such as pentane, hexane, and cyclohexane
  • toluene Aromatic hydrocarbons such as xylene are exemplified.
  • halogenated hydrocarbons are preferred because the hydrocarbons are halogenated by (B) as
  • the amount of the organic solvent is usually 50 to 1,000 parts by weight, preferably 100 to 500 parts by weight, per 100 parts by weight of the aromatic thioether (A).
  • the reaction temperature is preferably from 130 to 60 ° C, and more preferably from 110 to 30 ° C because aromatic disulfides can be obtained with good yield by suppressing side reactions.
  • the aromatic disulfides obtained by the reaction are, for example, separated from the system, the organic phase is separated, washed with an aqueous solution of a reducing substance such as sodium thiosulfate, and the solvent is distilled off. It can be obtained as a purified product by a method such as crystallization.
  • a reducing substance such as sodium thiosulfate
  • the corresponding aromatic disulfides can be directly converted into dimethyl sulfide in an excellent yield and high purity by one-step reaction. Such a recovery can be obtained without the production of complicated products.
  • the method of the present invention is particularly useful particularly for the production of disubstituted aromatic disulfides which cannot be obtained in good yield by other methods.
  • the aromatic disulfides obtained by the present invention are useful as intermediates for pharmaceuticals, agricultural chemicals and the like.
  • Example 1 A reactor equipped with a stirrer, thermometer and dropping funnel was charged with 13.3 parts of methylene chloride and 4.70 parts of 3,5-dichlorophenyl t-butyl sulfide. The mixture was stirred, and while keeping the liquid temperature at 10, 3.20 parts of bromine was added dropwise over 10 minutes, and the reaction was completed quickly.
  • Example 2 A reactor equipped with a stirrer, thermometer and dropping funnel was charged with 66.7 parts of methylene chloride, 23.5 parts of 3,5-dichlorophenyl t-butyl sulfide and 50.5 parts of 48% hydrobromic acid. It is. While stirring and keeping the liquid temperature at 10 ° C, 1496 parts of 3496 hydrogen peroxide was added dropwise over 40 minutes. After completion of the dropwise addition, stirring was continued at that temperature for another hour to complete the reaction.
  • Example 3 In the same reactor as used in Example 1, 13.3 parts of methylene chloride, 4.70 parts of 35-dichloromouth phenyl tert-butyl sulfide, 6.0 parts of 36% hydrochloric acid and 0. 25 parts were charged. With stirring, while maintaining the liquid temperature at 10 ° C., 2.00 parts of a 34% aqueous hydrogen peroxide solution was added dropwise over 10 minutes. After completion of the dropwise addition, stirring was continued at that temperature for another 6 hours to complete the reaction. After completion of the reaction, purification was carried out in the same manner as in Example 2 except that the amount of methylene chloride added was changed to 13.3 parts, to obtain 2.89 parts of colorless needle crystals.
  • Comparative Example 1 Using the same method as in Example 3 except that iodine was not used, the amount of 36% hydrochloric acid was 12.0 parts, the amount of the 34% aqueous hydrogen peroxide solution was 4.04 parts, and the dropping time was 20 minutes. The reaction was performed. After completion of the reaction, purification was carried out in the same manner as in Example 3 to obtain 1.07 parts of colorless needle crystals.
  • Example 4 The same reactor as used in Example 1 was charged with the same amounts of methylene chloride, 3,5-dichlorophenyl t-butyl sulfide and 36% hydrochloric acid as in Example 3, and 55% iodine was used instead of iodine. 0.47 parts of hydrofluoric acid were added.
  • the reaction was carried out in the same manner as in Example 3 except that the stirring time after dropping hydrogen peroxide was changed to 12 hours. After the completion of the reaction, purification was carried out in the same manner as in Example 3 to obtain 2.63 parts of colorless needle crystals.
  • Comparative Example 2 The same reactor as used in Example 1 was charged with 8.9 parts of acetic acid, 4.0 parts of 3,5-dichlorophenyl t-butylsulfide and 12.6 parts of 48% hydrobromic acid. . While stirring, 1.33 parts of dimethyl sulfoxide was added while maintaining the liquid temperature at 10, and stirring was continued at room temperature overnight. The solution turned pale yellow, and the odor of the generated dimethyl sulfide was confirmed. However, the reaction hardly proceeded, and the raw material was almost recovered.
  • Example 5 In the same reactor used in Example 1, 13.3 parts of methylene chloride, 3,5-diene 5.38 parts of chlorophenylbenzyl sulfide and 10.1 parts of 48% hydrobromic acid were charged. While stirring and keeping the liquid temperature at 10, 2.00 parts of 34% hydrogen peroxide was added dropwise over 10 minutes. After completion of the dropwise addition, stirring was continued at that temperature for another 4 hours to complete the reaction.
  • Example 2 The same reactor as used in Example 1 was charged with 20.0 parts of methylene chloride, 2.1 parts of 412 trophenyl tert-butyl sulfide and 5.04 parts of 48% hydrobromic acid. It is. While stirring and keeping the liquid temperature at 10 ° C., 10.0 parts of 34% hydrogen peroxide was added dropwise over 10 minutes. After completion of the dropwise addition, stirring was continued at that temperature for another 15 minutes to complete the reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 ィ ド類の製造方法 技術分野
本発明は、 芳香族チォエーテル類から芳香族ジスルフィ ド類を製造する方法に 関し、 さらに詳しくは、 芳香族チォエーテル類を、 ハロゲンまたはその前駆物質 と反応させることを特徴とする、 芳香族ジスルフィ ド類の製造方法に関する。 背景技術
芳香環に結合した電子吸引性基を有する芳香族ジスルフィ ド類、 特に、 一般式 (ΙΓ ) :
Figure imgf000003_0001
式中、
Yは、 たがいに同一でも異なっていてもよい 1価の電子吸引性基を表し ; nは、 1 〜 5の整数である、
で示される芳香族ジスルフィ ド類は、 医薬および農薬の中間体として、 広く用い られている。
このような置換基を有する芳香族ジスルフィ ド類は、 通常、 相当する芳香族チ オール類の酸化によって製造される。 該芳香族チオール類の製造方法と し て、 いくつかの方法が提案されている。
たとえば、 多塩化ベンゼンを、 液体アンモニアに溶解した硫化ナ ト リ ウムに よって、 オートクレープ中でメルカプト化する方法 (工業化学雑誌、 7 0巻 1 1 4〜 1 1 8頁 (1 9 6 7 ) ) ; アミノ基含有芳香族ハロゲン化物を亜硝酸ナト リゥムでジァゾニゥム化し、 ついで 0—ェチルジチォ炭酸力リゥムと反応させた 後、 アルカリによってハロゲン化芳香族チオール類を得る方法 (特公昭 4 4 一 2 6 1 0 0号公報) ; 4—ハロベンゼンスルフィン酸を、 鉱酸の存在下に亜鉛末 の存在下に還元して、 ハロゲン化チオフヱノール類を得る方法 (特開平 2— 2 9 5 9 6 8号公報) などが提案されている。
しかしながら、 これらの方法は、 液体アンモニアを用いる高圧反応であるため の制約、 ジァゾ二ゥム塩を経由するための危険性、 鉱酸の存在下に還元反応を行 うための特殊な装置の必要などの制約があるうえ、 いずれも収率が低く、 目的物 の精製が困難である。
さらに、 特開平 8— 1 4 3 5 3 3号公報には、 チオア二ソール類の硫黄原子に 結合したメチル基を、塩素ガスにより塩素化してハロゲン化チオア二ソールとし、 これを鉱酸の存在下で加水分解して芳香族チオール類を得る方法が開示されてい る。 しかしながら、 この方法では、 チオア二ソール類を得るために揮発性で臭気 のあるメチルメルカブタンを用いるうえに、 メチル基を塩素化するために塩素ガ スを導入するという煩雑な工程が必要である。
これらの方法で得られる芳香族チォ一ル類を、 酸化剤によつて酸化二量化する ことによ り、 目的物である芳香族ジスルフイ ド類が得られる。 しかしな力 ら、 こ れらの方法では、 いったん芳香族チオール類を得て、 二量化反応によって芳香族 ジスルフィ ド化合物とする多段階反応であることに加えて、 芳香族チオール類の 多くは昇華性であるため、 乾燥、 精製工程が煩雑になり、 また刺激性があるので 取扱いに注意を要する。 したがって、 芳香族チオール類を経由せずに芳香族ジス ルフィ ド類を得る方法が望まれている。
Synthes is, 1 9 9 3年 6月, 5 7 3〜 5 7 4頁 (D. A. Dkkman ら) には、 一般式:
R ' 一 S - t- C 4 H9
式中、 R ' は非置換もしくはホルミル基で置換されたフヱニル基、 ベンジ ル基または n—ブチル基を表す、
で示されるチォエーテル類を、 ジメチルスルホキシ ドの存在下に、 臭化水素酸の 酢酸溶液と反応させて、 一般式:
R ' - S - S - R '
式中、 R ' は上記のとおりである、
で示されるジスルフイ ド類を得る方法を開示している。 しかしながら、 この方法 では、 ジメチルスルホキシドの反応により著しい悪臭のあるジメチルスルフィ ド を生成するので、これを大気中に放出しないで回収するための処理が必要である。 また、 R' の種類によっては、 開示された条件では反応がほとんど進行せず、 目 的物が得られない。 発明の開示
本発明の目的は、 比較的容易に合成できる芳香族チォエーテル類より、 簡単な 方法で、 純度よく、 かつ取扱いが煩雑な副生物を生ずることなく、 電子吸引性基 を有する芳香族ジスルフィ ド類を製造することである。
本発明者らは、 上記の課題を解決するために研究を重ねた結果、 特定範囲の炭 化水素基および置換芳香環を有する芳香族チォエーテル類を、 臭素のようなハロ ゲンと反応させることによって、 その目的を達成し得ることを見出し、 さらに、 該ハロゲンの前駆物質としてハロゲン化水素と過酸化水素を用いても、 同様の結 果が得られることを見出して、 本発明を完成するに至った。
すなわち、 本発明は、
(A) 一般式 (I) :
Yn-A r -S-R (I)
式中、
A rは、 炭化水素芳香環残基を表し;
Rは、 1価の第三級炭化水素基、 ならびにベンジル基およびベンジル基か ら誘導される 1価の第二級炭化水素基からなる群より選ばれた 1価の炭化 水素基を表し;
Yは、 1価の電子吸引性基を表し、 nが 2以上のときは、 複数の Yは、 た がいに同一でも異なっていてもよく ;
nは、 1〜 1 2の整数である、
で示される芳香族チォエーテル類を、
(B) 下記の (1) 〜 (4) の少なく とも 1種:
( 1 ) 臭素;
(2) (a) 臭化水素および ( b ) 過酸化水素; (3)触媒量のヨウ素および/またはヨウ化水素の存在下において、 (c)塩素;
(4) 触媒量のヨウ素およびノまたはヨウ化水素の存在下において、 (d) 塩化 水素および (b) 過酸化水素
と反応させることを特徴とする、 一般式 (II) :
Yn - A r— S - S - A r— Yn (II)
式中、 A r、 Yおよび nは、 前述のとおりである、
で示される芳香族ジスルフィ ド類を製造する方法に関する。 発明を実施するための最良の形態
本発明の製造方法を化学式で示すと以下のようになる。
2 Yn-A r一 S— R + X 2 ―" - Yn-A r一 S - S - A r - Yn + 2 RX 式中、 Xはハロゲン原子であり、 A r, R, Yおよび nは前記と同義である。 本発明に用いられる (A) 芳香族チォエーテル類は、 芳香環の炭素原子に結合 した 1個の一 SRと、少なくとも 1個の Yとを有するチォエーテル誘導体である。
A rは、 炭化水素芳香環残基である。 A rとしては、 ベンゼン環、 ビフヱニル 環、 テルフヱニル環、 ナフタレン環、 アントラセン環、 ピレン環などの芳香環の 残基が挙げられる。 (B) との反応性、 および得られるジスルフイ ド類の有用性 から、 ベンゼン環残基が特に好ましい。
Yは、 芳香環残基 A rの炭素原子に結合し、 目的物である芳香族ジスルフィ ド 類に置換基として導入される 1価の電子吸引性基である。 Yの存在によって、 (A) と (B) との反応が促進されるとともに、 芳香環の水素原子へのハロゲン の置換反応が抑制される。 Yとしては、 代表的には、 ハロゲン原子、 ニトロ基、 二トリル基、 スルホン基、 スルファモイル基またはヒ ドロカルビルスルホニル基 が挙げられる。 ハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子および ヨウ素原子が挙げられ、 ヒドロカルビルスルホニル基としては、 メチルスルホニ ル、 フエニルスルホニル、 p— トルイルスルホニルなど力?例示される。 Yが複数 個存在するとき、 それらはたがいに同一であっても異なっていてもよい。
nは、 1〜 1 2の整数であり、例えば、 A rがベンゼン環残基の場合、 1〜 5の 整数であり、 テルフヱニル環環残基の場合、 1〜 1 2の整数である。 同一の Yに 関していえば、 nが大きレ ほど (A) と (B ) との反応が容易に進行する。
Rは、 硫黄原子に結合する特定範囲の 1価の炭化水素基であり、 具体的には、 1価の第三級炭化水素基、 ならびにベンジル基およびべンジル基から誘導された 1価の第二級炭化水素基から選ばれる。第三級炭化水素基としては、 t 一プチル、 t一ペンチル、 t—へキシル、 t一才クチル、 t—デシル、 t—ドデシル、 1— メチルー 1 —ェチルプロピル、 1, 1 ージェチルプロピル、 1 , 1 , 4ー トリメ チルペンチルのような第三級アルキル基; 1 —メチル一 1 一フエニルェチル、 1, 1ージフエニルェチル、 トリチルのような芳香環含有第三級炭化水素基など が例示され;ベンジル基およびべンジル基から誘導される第二級炭化水素基とし ては、 ベンジル、 1 一メチルベンジル、 1 一ェチルベンジル、 1 一プロピルベン ジル、 ベンズヒドリルなどが例示される。 これらのうち、 Rが容易に脱離して芳 香族ジスルフイ ド類が生成することと、 取扱いが容易なことから、 t 一プチル、 ベンジルおよびべンズヒドリルが好ましく、 t一ブチルが特に好ましい。
本発明において、 反応が容易に、 かつ他の方法に比べて有利に進行し、 生成物 の有用性が高いことから、 ビス (3, 5—ジクロロフエニル) ジスルフイ ドを得 るために、 (A ) として 3 , 5—ジクロロフェニル t ーブチルチオエーテルを用 いることが特に好ましい。
本発明に用いられる (B ) は、 (A ) と反応させることにより、 芳香族ジスル フイ ド類を得るための反応剤である。 (B ) としては、 下記の (1 ) 〜 (4 ) の 少なく とも 1種が用いられる。
( 1 ) は、 臭素である。該臭素は、 分液漏斗によって反応系中に滴下するなど、 任意の方法によって反応系に導入される。 (1 ) の量は、 (A ) 芳香族チォエーテ ル 1モルに対して、 通常 5〜 5モルの範囲であり、 反応を効果的に進めるた めに 1 〜 3モルが好ましい。
( 2 ) は、 (1 ) の前駆体である (a ) 臭化水素と (b ) 過酸化水素の組合せ であり、 反応系中で臭素を生じて、 該臭素が (A ) と反応して芳香族ジスルフィ ドを生成する。 (a ) は無水の状態で反応系に導入しても、 臭化水素酸のような 水溶液の形で用いてもよく、 水溶液の形で反応系に存在させること力 s、 取扱いの 点から好ましい。 (b ) は通常、 1 0〜 5 0重量%の水溶液を用い、 反応系中で 徐々に臭素を生ずるように、 反応系中に滴下するのが好ましい。 (a) の量は、
(A) 1モルに対して、通常 1〜 1 0モルの範囲であり、 2〜 5モルが好ましい。 一方、 (b) の量は、 (A) 1モルに対して、 通常 0. 5〜 5モルの範囲であり、 1〜 3モルが好ましい。
(3) は、 (c) 塩素であり、 (A) との反応を促進するための触媒として寄与 するヨウ素および/またはヨウ化水素の存在下で (A) と反応させる。 (c) は、 単独では芳香族ジスルフィ ド類を形成する反応がきわめて遅く、 上記触媒の存在 下で、 はじめて満足しうる反応速度で芳香族ジスルフイ ド類が得られる。 (c) は、 ガス状で供給するなど、 任意の方法によって反応系に導入される。 (c) の 量は、 (A) 1モルに対して、 通常 0. 5〜 5モルの範囲であり、 1〜3モルが 好ましい。 一方、 触媒の量は、 (A) 1モルに対して、 該触媒としてヨウ素を用 いるときは通常 0. 01〜0. 1モルの範囲であり、 0. 02〜0. 05モルが 好ましく、 ヨウ化水素を用いるときは通常 0. 02〜0. 2モルの範囲であり、 0. 04〜0. 1モルが好ましい。
(4) は、 (3) の前駆体である (d) 塩化水素と、 (2) で用いたのと同様の (b) 過酸化水素との組合せである。 反応は、 (3) と同様の触媒の存在下に行 われる。 (d) の場合も、 単に (b) と組み合わせただけでは、 満足しうる反応 速度で芳香族ジスルフイ ド類を得ることができず、 触媒の存在下で、 はじめて、 満足しうる反応速度で芳香族ジスルフイ ド類が得られる。 反応は、 (2) と同様 の方法によって実施することができる。 (d) の量は、 (A) 1モルに対して、 通 常 1〜 1 0モルの範囲であり、好ましくは 2〜 5モルである。 (b)の量は、 (2) の組合せに用いる場合と同様であり、 触媒の量は、 (3) の組合せに用いる場合 と同様である。
(B) としては、 優れた収率で純度よく目的の芳香族ジスルフイ ド類が得られ ることから、 (1) または (2) のように臭素系を用いることが好ましい。 一方、 取扱いが容易なことからは、 (2) または (4) の組合せを用いることが好まし いので、 総合的に、 (2) が特に好ましい。
反応は、 水相から分離して有機相を形成するような有機溶媒の存在下に行うこ とが好ましい。 たとえば、 (B) として (2) または (4) を用いる場合、 (A) を有機溶媒に溶解して (a ) 臭化水素か、 または (c ) 塩化水素と触媒とを加え、 ( b ) 過酸化水素の水溶液を滴下すると、 発生したハロゲンが有機相に溶解して (A) と反応する。
有機溶媒としては、 塩ィヒメチレン、 クロ口ホルム、 四塩化炭素、 クロ口べンゼ ンのようなハロゲン化炭化水素類; ペンタン、 へキサン、 シクロへキサンのよう な脂肪族炭化水素類;およびトルエン、 キシレンのような芳香族炭化水素類が例 示される。 炭化水素類を用いる際は、 遮光しないと副反応として (B ) による炭 化水素類のハロゲン化が行われるので、 ハロゲン化炭化水素類が好ましい。
有機溶媒の量は、 (A ) 芳香族チォエーテル類 1 0 0重量部に対して、 通常 5 0〜 1, 0 0 0重量部であり、 1 0 0〜 5 0 0重量部が好ましい。
反応温度は、 一 3 0〜 6 0 °Cが好ましく、 副反応を抑制して収率よく芳香族ジ スルフィ ド類が得られることから、 一 1 0〜 3 0 °Cがさらに好ましい。
反応によって得られた芳香族ジスルフィ ド類は、 たとえば、 系より分液して有 機相をとり、 チォ硫酸ナトリウムのような還元性物質の水溶液によって洗浄した 後、 溶媒を留去して、 再結晶などの方法により、 精製物として得ることができる。 本発明によって、 芳香環に電子吸引性基を有する芳香族チォエーテル類より、 相当する芳香族ジスルフィ ド類を、 一段階の反応によって直接に、 優れた収率と 高い純度で、 かつジメチルスルフィ ドのような回収が煩雑な生成物の生成なしに 得ることができる。 本発明の方法は、 特に他の方法では収率よく得られない二置 換芳香族ジスルフィ ド類の製造に、 特に有用性が高い。
本発明によって得られる芳香族ジスルフィ ド類は、 医薬、 農薬などの中間体と して有用である。
以下、 実施例によって、 本発明をさらに詳細に説明する。 実施例中、 部は重量 部を表し、 組成の%は重量%を表す。 以下の反応式において、 t 一 B uは tーブ チル基を、 B z 1 はベンジル基を、 また D M S〇はジメチルスルホキシ ドを表す。 本発明は、 これらの実施例によって限定されるものではない。
実施例 1
Figure imgf000010_0001
撹拌機、 温度計および滴下漏斗を備えた反応器に、 塩化メチレン 1 3. 3部お よび 3, 5—ジクロロフェニル t—プチルスルフイ ド 4. 70部を仕込んだ。 撹 拌して、 液温を 1 0でに保ちながら、 臭素 3. 20部を 1 0分かけて滴下したと ころ、 反応は速やかに終了した。
反応終了後、 生成物から減圧で塩化メチレンを留去し、 生成物を乾固させた。 残留物をアセトン一メタノールにより再結晶して、 無色針状結晶 2. 93部を得 た。
融点: 6 5 ;
iH -賺 (CDCI3): δ 7.33 (d, J=1.7Hz, 4H), 7.23 (t, J=1.7Hz, 2H).
この結果、 得られた生成物は、 ビス (3, 5—ジクロロフエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 82%であった。
実施例 2
Figure imgf000010_0002
撹拌機、 温度計および滴下漏斗を備えた反応器に、 塩化メチレン 6 6. 7部、 3, 5—ジクロロフェニル t—ブチルスルフイ ド 23. 5部および 48%臭化水 素酸 50. 5部を仕込んだ。 撹拌して液温を 1 0°Cに保ちながら、 3496過酸化 水素 1 0. 0部を 40分かけて滴下した。 滴下終了後、 その温度で撹拌をさらに 1時間続けて、 反応を完結させた。
反応終了後、 さらに塩ィヒメチレン 6 6. 7部を加えて撹拌した後、 分液により 有機相をとり、 1 0%チォ硫酸ナトリウム水溶液 1 0. 8部によって 3回洗浄し、 ろ過し、 ついで減圧にして塩化メチレンを留去した。 得られた残留物をアセトン —メタノールにより再結晶して、 無色針状結晶 1 5. 1部を得た。
融点: 65 °C;
IH-N R(CDCIQ): δ 7.33 (d, J=1.7Hz, 4H), 7.23 (t, J=1.7Hz, 2H). この結果、 得られた生成物は、 ビス (3 5—ジクロロフエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 85%であった。
実施例 3
Figure imgf000011_0001
実施例 1に用いたのと同様の反応器に、 塩化メチレン 13. 3部、 3 5—ジ クロ口フエニル t—ブチルスルフイ ド 4. 70部、 36%塩酸 6. 0部およびョ ゥ素 0. 25部を仕込んだ。 撹拌して、 液温を 1 0°Cに保ちながら、 34%過酸 化水素水溶液 2. 00部を 1 0分かけて滴下した。 滴下終了後、 その温度で撹拌 をさらに 6時間続けて、 反応を完結させた。 反応終了後、 塩化メチレンの添加量 を 1 3. 3部とした以外は実施例 2と同様にして精製を行い、 無色針状結晶 2. 89部を得た。
融点: 65 ;
lH-NMR(CDCl3): δ 7.33 (d, J=1.7Hz, 4H), 7.23 (t, J=1.7Hz, 2H).
この結果、 得られた生成物は、 ビス (3, 5—ジクロロフエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 8 1 %であった。
比較例 1
Figure imgf000011_0002
ヨウ素を用いず、 36%塩酸の量を 1 2. 0部とし、 34%過酸化水素水溶液 の量を 4. 04部、 その滴下時間を 2 0分とした以外は実施例 3と同様にして 反応を行った。 反応終了後、 実施例 3と同様にして精製を行い、 無色針状結晶 1. 07部を得た。
融点: 65 °C;
iH -匿 (CDCI3): δ 7.33 (d J=1.7Hz, 4H), 7.23 (t J=1.7Hz 2H).
この結果、 得られた生成物は、 ビス (3 5—ジクロロフエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 30%に過ぎなかった。 実施例 4
Figure imgf000012_0001
実施例 1 に用いたのと同様の反応器に、 実施例 3と同じ量の塩化メチレン、 3, 5—ジクロロフェニル t—ブチルスルフイ ドおよび 36 %塩酸を仕込み、 ョ ゥ素の代わりに 5 5 %ヨウ化水素酸 0. 4 7部を加えた。 以下、 過酸化水素を滴 下した後の撹拌時間を 1 2時間とした以外は実施例 3と同様にして、 反応を進め た。 反応終了後、 実施例 3と同様にして精製を行い、 無色針状結晶 2. 63部を 得た。
融点: 6 5で;
lH-腿 (CDCI3): 8 7.33 (d, J=1.7Hz, 4H), 7.23 (t, J=1.7Hz, 2H).
この結果、 得られた生成物は、 ビス (3, 5—ジクロ口フエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 74%であった。
比較例 2
Figure imgf000012_0002
実施例 1に用いたのと同様の反応器に、 酢酸 8. 9部、 3, 5—ジクロロフヱ ニル t—プチルスルフイ ド 4. 0部および 4 8 %臭化水素酸 1 2. 6部を仕込ん だ。 撹拌して、 液温を 1 0 に保ちながら、 ジメチルスルホキシド 1. 3 3部を 加え、 さらに室温で一夜撹拌を続けた。 溶液は淡黄色に変化し、 発生したジメチ ルスルフィ ドの臭いを確認したが、 反応はほとんど進行せず、 原料がほぼ回収さ れた。
実施例 5
Figure imgf000012_0003
実施例 1に用いたのと同様の反応器に、 塩化メチレン 1 3. 3部、 3, 5—ジ クロロフェニルベンジルスルフイ ド 5.38部および 4 8 %臭化水素酸 1 0.1部 を仕込んだ。 撹拌して液温を 1 0でに保ちながら、 34%過酸化水素 2. 00部 を 1 0分かけて滴下した。 滴下終了後、 その温度で撹拌をさらに 4時間続けて、 反応を完結させた。
反応終了後、 さらに塩化メチレン 1 3. 3部を加えて撹拌した後、 分液により 有機相をとり、 1 0%チォ硫酸ナトリウム水溶液 1 0. 8部によって 3回洗浄し、 ろ過し、 ついで減圧にして塩化メチレンを留去した。 得られた残留物をアセトン —メタノールにより再結晶して、 無色針状結晶 1. 9 5部を得た。
融点: 6 51: ;
iH-賺 (CDCI3): δ 7.33 (d J=1.7Hz, 4H), 7.23 (t J=1.7Hz, 2H).
この結果、 得られた生成物は、 ビス (3 5—ジクロロフエニル) ジスルフィ ドであることを確認した。 収率は、 理論量に対して 5 5%であった。
実施例 6
Figure imgf000013_0001
3 5—ジクロロフェニルベンジルスルフィ ドの代わりに 3—クロ口フエニル t一プチルスルフイ ド 4. 0 1部を用い、 滴下終了後の反応時間を 2時間とした ほかは実施例 5と同様にして反応を行った。 反応終了後、 実施例 5と同様にして 分液から塩化メチレンの留去までを行い、 淡黄色油状物 2. 78部を得た。
lH-NMR(CDCl3): δ 7.47 (m 2H), 7.35 (dt, J=2.1, 7. OHz, 2H), 7.22 (t J=7. OHz, 2H), 7.20 (dt, J=2.1, 7.0Hz, 2H).
この結果、 得られた生成物は、 ビス (3—クロ口フエニル) ジスルフィ ドであ ることを確認した。 収率は、 理論量に対して 9 7%であった。
実施例 7
Figure imgf000013_0002
実施例 1に用いたのと同様の反応器に、 塩化メチレン 2 0. 0部、 4一二トロ フエニル t一プチルスルフイ ド 2. 1 1部および 4 8 %臭化水素酸 5. 04部を 仕込んだ。 撹拌して液温を 1 0°Cに保ちながら、 3 4 %過酸化水素 1 0. 0部を 1 0分かけて滴下した。 滴下終了後、 その温度で撹拌をさらに 1 5分間続けて、 反応を完結させた。
反応終了後、析出した結晶をろ別して、 淡黄色結晶 0. 94部を得た。 さらに、 ろ液を静置した後、 分液して有機相をとり、 以下、 実施例 4と同様にして、 チォ 硫酸ナトリウム水溶液による洗浄から塩化メチレンの留去までを行い、 残留物を メタノールで洗浄して、 淡黄色結晶 0. 2 8部を得た。 得られた両方の結晶の融 点および NMRスペク トルは一致しており、 両者は同じ化合物であった。
融点: 1 82. 5〜 1 83. 5 °C;
iH -腿 (CDCI3): 8 8.20 (d, J=8.9Hz, 4H), 7.82 (d, J =8.9Hz, 4H).
この結果、 得られた生成物は、 ビス (4一二トロフエニル) ジスルフィ ドであ ることを確認した。 収率は、 理論量に対して 79 %であった。

Claims

請 求 の 範 囲
1. (A) 一般式 (I) :
Yn— A r— S - R (I)
式中、
A rは、 炭化水素芳香環残基を表し ;
Rは、 1価の第三級炭化水素基、 ならびにベンジル基およびベンジル基か ら誘導される 1価の第二級炭化水素基からなる群より選ばれた 1価の炭化 水素基を表し;
Yは、 1価の電子吸引性基を表し、 nが 2以上のときは、 複数の Yは、 た がいに同一でも異なっていてもよく ;
nは、 1〜 1 2の整数である、
で示される芳香族チォエーテル類を、
(B) 下記の (1) 〜 (4) の少なくとも 1種:
(1) 臭素;
(2) (a) 臭化水素および ( b ) 過酸化水素;
(3)触媒量のヨウ素および/またはヨウ化水素の存在下において、 (c)塩素;
(4) 触媒量のヨウ素および/またはヨウ化水素の存在下において、 (d) 塩化 水素および (b) 過酸化水素
と反応させることを特徴とする、 一般式 (II) :
Yn-A r -S-S-A r -Yn (II)
式中、 A r、 Yおよび nは、 前述のとおりである、
で示される芳香族ジスルフィ ド類を製造する方法。
2. 反応が、 臭素を (A) 芳香族チォェ一テル 1モルに対して、 0. 5〜 5モル の範囲で滴下することにより行われる、 請求の範囲第 1項記載の方法。
3. 反応が、臭化水素酸を (A)芳香族チォエーテル 1モルに対して、 1〜 1 0モ ルの範囲で (A) 芳香族チォエーテルと混合し、 過酸化水素を (A) 芳香族チォ エーテル 1モルに対して、 0. 5〜 5モルの範囲で滴下することにより行われる、 請求の範囲第 1項記載の方法。
4. 反応が、塩素ガスを (A)芳香族チォエーテル 1モルに対して、 0. 5〜5モ ルの範囲で使用し、 触媒の存在下に行われる、 請求の範囲第 1項記載の方法。
5. 触媒として、 ヨウ素を (A)芳香族チォエーテル 1モルに対して、 0. 01〜 0. 1モルの範囲で、 またはヨウ化水素を (A) 芳香族チォエーテル 1モルに対 して、 0. 02〜 0. 2モルの範囲で使用する、 請求の範囲第 4項記載の方法。
6. 反応が、 塩化水素を (A) 芳香族チォエーテル 1モルに対して、 1〜 1 0モ ルの範囲で(A)芳香族チォエーテルと混合し、触媒の存在下、過酸化水素を(A) 芳香族チォエーテル 1モルに対して、 0. 5〜 5モルの範囲で滴下することによ り行われる、 請求の範囲第 1項記載の方法。
7. 触媒として、 ヨウ素を (A)芳香族チォエーテル 1モルに対して、 0. 01〜 0. 1モルの範囲で、 またはヨウ化水素を (A) 芳香族チォエーテル 1モルに対 して、 0. 02〜0. 2モルの範囲で使用する、 請求の範囲第 6項記載の方法。
8. A rが、 ベンゼン環残基である、 請求の範囲第 1項記載の方法。
9. Yが、 ハロゲン原子、 ニトロ基、 二トリル基、 スルホン基、 スルファモイル 基およびヒドロカルビルスルホニル基からなる群より選ばれる 1種または 2種以 上の電子吸引性基である、 請求の範囲第 1項記載の方法。
1 0. Yが、 塩素原子である、 請求の範囲第 9項記載の方法。
1 1. Rが、 t一ブチル基である、 請求の範囲第 1項記載の方法。
1 2. 3, 5—ジクロロフェニル tーブチルチオェ一テルよりビス (3, 5—ジ クロ口フエニル) ジスルフィ ドを得る、 請求の範囲第 1 1項記載の方法。
1 3. (B) として (2) を用いる、 請求の範囲第 1項記載の方法。
14. 反応を、ハロゲン化炭化水素溶媒中で行う、請求の範囲第 1項記載の方法。
1 5. 反応を、 温度一 30〜 60 °Cで行う、 請求の範囲第 1項記載の方法。
PCT/JP1999/004371 1999-08-12 1999-08-12 Procede de production de disulfures aromatiques WO2001012595A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU51970/99A AU5197099A (en) 1999-08-12 1999-08-12 Process for producing aromatic disulfides
US09/806,850 US6444853B1 (en) 1999-08-12 1999-08-12 Process for producing aromatic disulfides
JP2001516896A JP3826033B2 (ja) 1999-08-12 1999-08-12 芳香族ジスルフィド類の製造方法
PCT/JP1999/004371 WO2001012595A1 (fr) 1999-08-12 1999-08-12 Procede de production de disulfures aromatiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004371 WO2001012595A1 (fr) 1999-08-12 1999-08-12 Procede de production de disulfures aromatiques

Publications (1)

Publication Number Publication Date
WO2001012595A1 true WO2001012595A1 (fr) 2001-02-22

Family

ID=14236442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004371 WO2001012595A1 (fr) 1999-08-12 1999-08-12 Procede de production de disulfures aromatiques

Country Status (4)

Country Link
US (1) US6444853B1 (ja)
JP (1) JP3826033B2 (ja)
AU (1) AU5197099A (ja)
WO (1) WO2001012595A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045706A (ja) * 1996-08-02 1998-02-17 Sumitomo Seika Chem Co Ltd 新規ジスルフィド化合物、その製造方法および該化合物を用いるチアゼピン誘導体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235597A (en) 1963-08-12 1966-02-15 Lilly Co Eli N-aryloxyalkyl and arylthioalkyl derivatives of cyclopropylamine
JPH02295968A (ja) 1989-05-08 1990-12-06 Sumitomo Seika Chem Co Ltd 4―ハロゲノチオフェノールの製造法
JPH08143533A (ja) 1994-11-24 1996-06-04 Sumitomo Seika Chem Co Ltd ハロチオフェノール類の製造方法
US5998670A (en) * 1998-03-18 1999-12-07 Occidental Chemical Corporation Method of making high purity substituted diphenyldisulfides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045706A (ja) * 1996-08-02 1998-02-17 Sumitomo Seika Chem Co Ltd 新規ジスルフィド化合物、その製造方法および該化合物を用いるチアゼピン誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DICKMAN D. ET AL.: "Oxidative Cleavage of Aryl or Alkyl tert-Butyl Sulfides with Dimethyl Sulfoxide/Hydrobromic Acid to Form Symmetrical Aryl or Alkyl Disulfides", SYNTHESIS, vol. 6, June 1993 (1993-06-01), pages 573 - 574, XP002925545 *

Also Published As

Publication number Publication date
JP3826033B2 (ja) 2006-09-27
AU5197099A (en) 2001-03-13
US6444853B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP3777455B2 (ja) 芳香族またはヘテロ芳香族硫黄化合物の製造方法
JP3310459B2 (ja) ジフルオルメトキシアレン及びジフルオルメチルチオアレンの製造法
JP4407062B2 (ja) ジフェニルジスルフィド誘導体の製造法
JPH06157513A (ja) 2−アセチルベンゾ[b]チオフェンの製造法
US6376716B1 (en) Process for the preparation of aromatic sulfur compounds
JPH0625223A (ja) 2,5−ビス(メルカプトメチル)−1,4−ジチアンの製造法
JP3826033B2 (ja) 芳香族ジスルフィド類の製造方法
JP3794858B2 (ja) 芳香族硫黄化合物の製造方法
SU1641189A3 (ru) Способ получени диалкилдисульфидов
KR100654208B1 (ko) 방향족 디설파이드의 제조방법
JP3741403B2 (ja) 芳香族硫黄化合物の製造方法
JP3787791B2 (ja) ジシクロヘキシルジスルフィドの製造方法。
US3331205A (en) Preparation of chlorothiophenols
JP2005336210A (ja) 芳香族チオエーテル類の製造方法
JPH08245558A (ja) 芳香族またはヘテロ芳香族スルフィド化合物の製造方法
WO2001012594A1 (fr) Procede de preparation de chlorures de sulfenyle aromatiques et autres
NZ210507A (en) Preparation of chlorobenzotrifluoride compounds
JP2001302616A (ja) ビスハロフェニルジスルフィド類の製造方法
JP2000007649A (ja) 芳香族硫黄化合物の製造方法
KR20070114343A (ko) 비칼루타미드의 제조 방법
JP2003064051A (ja) スルホニル化合物の製造方法
EP1777216A1 (en) A process for the preparation and purification of bicalutamide
JPH05140086A (ja) ハロゲノチオフエノールの製造方法および精製方法
JPS6354355A (ja) 芳香族チオ−ルの製造法
JPH02295968A (ja) 4―ハロゲノチオフェノールの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 516896

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09806850

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase