WO2001009229A1 - Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten - Google Patents

Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten Download PDF

Info

Publication number
WO2001009229A1
WO2001009229A1 PCT/DE2000/002493 DE0002493W WO0109229A1 WO 2001009229 A1 WO2001009229 A1 WO 2001009229A1 DE 0002493 W DE0002493 W DE 0002493W WO 0109229 A1 WO0109229 A1 WO 0109229A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
treated
inorganic particles
plastic
metal
Prior art date
Application number
PCT/DE2000/002493
Other languages
English (en)
French (fr)
Inventor
J. Peter Guggenbichler
Andreas Hirsch
Original Assignee
Guggenbichler J Peter
Andreas Hirsch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26004886&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001009229(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19936059A external-priority patent/DE19936059A1/de
Priority claimed from DE10013248A external-priority patent/DE10013248A1/de
Application filed by Guggenbichler J Peter, Andreas Hirsch filed Critical Guggenbichler J Peter
Priority to EP00954384.4A priority Critical patent/EP1210386B2/de
Priority to AT00954384T priority patent/ATE270688T1/de
Priority to CA002380490A priority patent/CA2380490A1/en
Priority to DE50007020T priority patent/DE50007020D1/de
Priority to JP2001514032A priority patent/JP2003506511A/ja
Priority to AU66859/00A priority patent/AU6685900A/en
Publication of WO2001009229A1 publication Critical patent/WO2001009229A1/de
Priority to US11/789,232 priority patent/US8075823B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L29/126Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0056Catheters; Hollow probes characterised by structural features provided with an antibacterial agent, e.g. by coating, residing in the polymer matrix or releasing an agent out of a reservoir
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to processes for the production of antimicrobial metal-containing plastic bodies, in particular articles for medical use. These objects are used in particular in the form of catheters.
  • silver ions e.g. originate from silver nitrate, acetate, chloride.
  • silver ions have a very broad anti-microbial spectrum and a high toxicity to microorganisms due to e.g. binding to the cell wall via SH groups, blocking of the respiratory chain, prevention of cell proliferation by DNA binding, but low toxicity to animal cells.
  • sufficient microbial activity could not be observed in various clinical studies.
  • the caustic effect or poor water solubility of silver salts leads to further problems in use.
  • metal ions silver ions
  • metal powder for example silver powder
  • a polymer for example polyurethane
  • the critical surface required for antimicrobial effectiveness can therefore not be achieved by adding metal powder.
  • EP-A-0 71 1 113 discloses a new technology in which metallic silver is evaporated on polyurethane foils and these are compounded in comminuted form. This made it possible to achieve a uniform distribution of silver particles in the polymer material and thus to achieve a surface that was sufficiently large for bacteriostatic activity.
  • the antimicrobial effectiveness of these plastic bodies has been well documented in terms of reducing and preventing adherence, biofilm formation and long-term behavior, as well as toxicity and tolerance.
  • the applicability of the above plastic bodies is limited by a time-consuming and cost-intensive manufacturing process, especially caused by the vapor deposition with silver.
  • TJS-A-5, 180,585 describes an antimicrobial composition comprising inorganic particles with a first microbicidal layer and a second layer for protecting the underlying first layer.
  • the manufacturing process is relatively complex.
  • the object of the present invention is therefore to provide a process for the production of antimicrobially active plastic bodies which do not have the above disadvantages, i.e. are easy to manufacture and provide a sufficient silver ion concentration on the surface.
  • This object is achieved by a method which is characterized in that at least one component of the preliminary product of the molded body is treated with a silver colloid before the plastic body is molded.
  • polymeric compounds that are commonly used in the medical field come into consideration as the starting material for the plastic body. These are in particular polyethylene, polypropylene, cross-linked polysiloxanes, polyurethanes, polymers based on (meth) acrylate, cellulose and cellulose derivatives, polycarbonates, ABS, tetrafluoroethylene polymers and polyethylene terephthalates, as well as the corresponding copolymers. Polyurethane, polyethylene and polypropylene and polyethylene-polypropylene copolymers are particularly preferred.
  • the metal used is preferably silver, copper, gold, zinc or cerium. Of these metals, silver is particularly preferred.
  • one or more polymer materials are used in the production of the plastic bodies according to the invention.
  • Other additives can also be added to the mixture of colloidal metal and plastics). These are, in particular, inorganic particles such as barium sulfate, calcium sulfate, strontium sulfate, titanium oxide, aluminum oxide, silicon oxide, zeolites, mica, talc, kaolin, etc. Barium sulfate, which can simultaneously serve as an X-ray contrast agent for special applications, is particularly preferred.
  • one or more polymer components are treated with the colloidal metal solution and / or one or more of the inorganic additives.
  • plastic molding This can be done in mixers, kneaders, extruders, injection molding machines or (hot) presses.
  • the metal colloids with which the plastics or inorganic particles are treated are suitably produced by reducing metal salt solutions.
  • Protective substances such as gelatin, silica or starch can be used to stabilize the resulting colloid.
  • ammoniacal silver nitrate solution in the gelatin is slowly mixed with a suitable reducing agent.
  • a suitable reducing agent for example aldehydes (eg acetaldehyde), aldoses (eg glucose), quinones (eg hydroquinone), inorganic complex hydrides (sodium or Potassium boranate), reducing nitrogen compounds (hydrazine, polyethyleneimine) and ascorbic acid.
  • Plastic intermediate products such as Pellets, and / or the inorganic particles, e.g. Barium sulfate are then treated with this colloidal silver solution, dried and brought into the appropriate form.
  • the application of the silver colloid to the starting materials and the subsequent drying can be repeated several times, so that very high silver concentrations can be introduced into the plastic material in this way. This is particularly advantageous for the silver coating of barium sulfate, since prior coating of the plastic pellets is not absolutely necessary.
  • the suspension can also be filtered off from the solvent and then by washing, first with approx. 5% ammonia solution and then several times with distilled water. be freed from all low molecular weight organic compounds.
  • the filter residue as above, provides a homogeneous material after air drying. This process can also be repeated several times.
  • gelatin, (pyrogenic) silica or starch as a colloid stabilizer can be avoided in the adsorption of silver to the inorganic particles, since the microcrystalline silver particles formed during the reduction are adsorptively bound to the surface of the inorganic particles and thus the formation of a closed silver layer on the solid is prevented.
  • Used water-soluble auxiliary chemicals can be removed with ater W ⁇ .
  • the particle size of the silver and thus the mobility of the resulting silver ions can be controlled in a wide range and, moreover, the use of low molecular weight aldehydes as reducing agents, which partially crosslink the gelatin, ensures very good adhesion to the Polymer can be achieved.
  • Example 1 The process according to the invention is illustrated below by examples.
  • Example 1 The process according to the invention is illustrated below by examples.
  • 1.0 g of gelatin (DAß) are distilled at 40 ° C in 100 ml of distilled water. dissolved with stirring. Then 1.0 g (5.88 mmol) of AgNO 3 pa is added and the resulting solution is mixed with 1.0 ml (14.71 mmol) of 25% NH 3 water.
  • Example 2 10 minutes after the end of the dropping according to Example 1, about 50 g of polyurethane pellets made from Tecothane TT-1085A are added and the mixture is first stirred vigorously for 2 hours at 40 ° C. and then for 3 hours at RT for coating with colloidal silver.
  • the silver colloid is separated off by rapid filtration through a pleated filter of a suitable pore size, the pellets are washed again with the filtrate and the pellets which are still moist are transferred to an evaporation pan. After removing excess silver colloid solution not adhering to the polymer, drying is carried out at 70 ° C. for 10 h.
  • a solution of 3.53 g of anhydrous ⁇ -D-glucose in 150 ml of distilled water is slowly added at 50 ° C with vigorous stirring. and the resulting silver colloid, when about half of the glucose solution has been added dropwise, is mixed with 333 g BaSO. After the dropwise addition has ended, the suspension is subjected to a further turbine treatment at 50 ° C. for about 2 hours and then freed of the volatile components by evaporation and drying at 70 ° C. The material is crushed in a hand mortar.
  • thermogravimetry a finished compounded polyurethane material with 20% BaSO and 0.8% Ag has a theoretical total organic residual content of theoretically a maximum of 0.182% by weight (max possible lower detection limit of the device). The actual value should therefore be much lower.
  • test body 1 piece from a PU catheter from Arrow (ES 04701)
  • test body 2 according to example 2 of the present invention
  • test body 3 according to example 3 of the present invention.
  • test specimens in each case were subjected to four test series under the following conditions:
  • Test series 1 initial concentration of Staphylococcus epidermis 5 x 10 7 CFU / ml
  • Test series 2 initial concentration of Staphylococcus epidermis 10 8 CFU / ml
  • Test series 3 as test series 1, but measured after a 5-hour preincubation in physiological buffer solution at 37 ° C.
  • Test series 4 as test series 1, the plastic bodies having been pretreated with sterile filtered natural ham at 37 ° C. for 4 hours. Table 1 shows the number of populated plastic bodies. This was determined by visual control.
  • the catheter materials show no impairment of the mechanical properties required for therapeutic purposes (roughness, homogeneity and elasticity).
  • the process can be adapted well to changing requirements in the production process, since the antimicrobial effectiveness is retained regardless of whether the silver is introduced into the polymer material via a coating of the polyurethane pellets (example 2) or via the X-ray contrast agent (examples 3 and 4) becomes.
  • the plastic articles according to the invention show a significantly higher antimicrobial effectiveness with regard to adherence and biofilm formation and a significantly improved long-term behavior than previous materials, with a comparably low toxicity.
  • the manufacturing processes according to the invention are easy to control, inexpensive and suitable for large-scale production.
  • a method was developed with Example 4 to remove all "auxiliary chemicals" from the inorganic contrast medium, so that certification of the method should not pose any problems.
  • Control ArgenTec 1 lumen catheter (Sicuris) Extr. 1/99

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft Verfahren zur Herstellung eines antimikrobiellen Kunststoffkörpers, umfassend das Formen eines Vorprodukts, dadurch gekennzeichnet, dass vor dem Formen mindestens ein Bestandteil des Vorprodukts mit einem Metallkolloid behandelt wird.

Description

Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern mit verbessertem Langzeitverhalten
Die Erfindung betrifft Verfahren zur Herstellung von antimikrobiellen metallhaltigen Kunststoffkörpern, insbesondere Gegenstände für den medizinischen Bedarf. Diese Gegenstände werden insbesondere in Form von Kathetern verwendet.
Ein erheblicher Nachteil von Kunststoffgegenständen für den medizinischen Bedarf, insbesondere von Kurz- und Langzeitkathetern, besteht in der leichten Besiedelbarkeit der verwendeten Kunststoffe mit oft multi-resistenten Keimen, die auf der Oberfläche des Kunststoffkörpers, bzw. auf der Katheteraußen- und -innenseite, einen Biofilm bilden. Eine prophylaktische Imprägnierung der Oberflächen mit Antibiotika scheidet wegen der damit verbundenen hohen Selektion von resistenten Mikroorganismen aus.
In den letzten Jahren wurden daher zahlreiche Versuche unternommen, die Kunststoffoberflächen mit Silberionen, die z.B. aus Silbernitrat, -acetat, -chlorid stammen, zu imprägnieren. Silberionen besitzen von allen Schwermetallionen ein sehr breites antirnikrobielles Spektrum und eine hohe Toxizität gegenüber Mikroorganismen durch z.B. die Bindung an die Zellwand über SH-Gruppen, Blockierung der Atmungskette, Unterbinden der Zeilproliferation durch DNA-Bindung, aber eine geringe Toxizität gegenüber animalischen Zellen. Hierbei konnte jedoch in verschiedenen klinischen Studien keine ausreichende mikrobielle Wirksamkeit beobachtet werden. Zusätzlich führt die ätzende Wirkung bzw. die schlechte Wasserlöslichkeit von Silbersalzen zu weiteren Problemen in der Anwendung.
Bei Kontakt von Metalloberflächen wie z.B. Silber mit physiologischer NaCl-Lösung werden in Abhängigkeit von der Größe der Metalloberfläche Metallionen (Silberionen) in Freiheit gesetzt. Die Beimischung von Metallpulver, z.B. von Silberpulver, zu einem Polymer, z.B. Polyurethan, führt jedoch nicht zum Erfolg, da auf Grund der geringen Oberfläche relativ hohe Konzentrationen an Metallpulver erforderlich sind, was mechanische Probleme im Kunststoffmaterial verursacht. Die für eine antimikrobielle Wirksamkeit erforderliche kritische Oberfläche ist daher durch Zumischen von Metallpulver nicht erreichbar.
EP-A-0 71 1 113 offenbart eine neue Technologie, bei der metallisches Silber auf Polyurethanfolien aufgedampft und diese in zerkleinerter Form compoundiert werden. Dadurch konnte eine gleichmäßige Verteilung von Silberpartikeln im Polymermaterial erreicht und somit eine für eine bakteriostatische Wirksamkeit ausreichend große Oberfläche erzielt werden. Die antimikrobielle Wirksamkeit dieser Kunststoffkörper ist sowohl hinsichtlich Reduktion und Verhinderung von Adhärenz, Biofilmbildung und Langzeitverhalten als auch Toxizität und Verträglichkeit sehr gut belegt. Die Anwendbarkeit vorstehender Kunststoffkörper wird jedoch durch einen zeitaufwendigen und kostenintensiven Herstellungsprozess, vor allem verursacht durch das Bedampfen mit Silber, limitiert.
Ferner beschreibt TJS-A-5, 180,585 eine antimikrobielle Zusammensetzung, umfassend anorganische Teilchen mit einer ersten mikrobiziden Schicht und einer zweiten Schicht zum Schützen der darunterliegenden ersten Schicht. Das Herstellungsverfahren ist relativ komplex.
Die Aufgabe der vorliegenden Erfindung ist somit die Bereitstellung eines Verfahrens zur Herstellung von antimikrobiell wirksamen Kunststoffkörpern, welche die vorstehenden Nachteile nicht aufweisen, d.h. einfach herstellbar sind und eine ausreichende Silberionenkonzentration an der Oberfläche liefern.
Gelöst wird diese Aufgabe durch ein Verfahren, das dadurch gekennzeichnet ist, daß vor dem Formen des Kunststoffkörpers mindestens ein Bestandteil des Vorprodukts des Formkörpers mit einem Silberkolloid behandelt wird.
Als Ausgangsmaterial für den Kunststoffkörper kommen viele polymere Verbindungen in Betracht, die im medizinischen Bereich üblicherweise verwendet werden. Diese sind insbesondere Polyethylen, Polypropylen, vernetzte Polysiloxane, Polyurethane, Polymere auf (Meth)acrlyat-Basis, Cellulose und Cellulosederivate, Polycarbonate, ABS, Tetrafluorethylenpolymere und Polyethylenterephthalate, sowie die entsprechenden Copolymere. Besonders bevorzugt sind Polyurethan, Polyethylen und Polypropylen sowie Polyethylen-Polypropylen-Copolymere. Das eingesetzte Metall ist vorzugsweise Silber, Kupfer, Gold, Zink oder Cer. Von diesen Metallen ist Silber besonders bevorzugt.
Neben dem kolloidalen Metall wird bei der Herstellung der erfindungsgemäßen Kunststoffkörper ein oder mehrere Polymerwerkstoffe eingesetzt. Dem Gemisch aus kolloidalem Metall und Kunststoffen) können auch weitere Additive zugesetzt werden. Dies sind insbesondere anorganische Teilchen wie Bariumsulfat, Calciumsulfat, Strontiumsulfat, Titanoxid, Aluminiumoxid, Siliziumoxid, Zeolithe, Glimmer, Talk, Kaolin usw. Besonders bevorzugt ist dabei Bariumsulfat, das gleichzeitig als Röntgenkontrastmittel für besondere Anwendungsformen dienen kann.
Vor dem Formen wird ein oder mehrere Polymerbestandteile mit der kolloidalen Metallösung behandelt und/oder ein oder mehrere der anorganischen Additive.
Nach dem Mischen der (teilweise) mit einem kolloidalen Metall behandelten
Ausgangsstoffe wird das erhaltene Gemisch weiterverarbeitet, um einen
Kunststofformling zu erhalten. Dies kann in Mischern, Knetern, Extrudern, Spritzgießmaschinen oder (Heiß)pressen geschehen.
Die Metallkolloide, mit denen die Kunststoffe oder anorganischen Teilchen behandelt werden, stellt man geeigneterweise durch Reduktion von Metallsalzlösungen her. Zur Stabilisierung des entstehenden Kolloids können Schutzstoffe wie Gelatine, Kieselsäure oder Stärke eingesetzt werden.
Im Falle des bevorzugten Metalls Silber wird z.B. ammoniakalische Silbernitratlösung in der Gelatine langsam mit einem geeigneten Reduktionsmittel versetzt. Als Reduktionsmittel können neben Aldehyden (z.B. Acetaldehyd) auch Aldosen (z.B. Glucose), Chinone (z.B. Hydrochinon), anorganische komplexe Hydride (Natrium- oder Caliumboranat), reduzierende StickstoffVerbindungen (Hydrazin, Polyethylenimin) sowie Ascorbinsäure verwendet werden.
Kunststoffvorprodukte, wie z.B. Pellets, und/oder die anorganischen Teilchen, wie z.B. Bariumsulfat, werden dann mit dieser kolloidalen Silberlösung behandelt, getrocknet und in die entsprechende Form gebracht. Das Aufbringen des Silberkolloids auf die Ausgangsstoffe und das anschließende Trocknen kann mehrmals wiederholt werden, so daß auf diesem Wege sehr hohe Silberkonzentrationen in das Kunststoffmaterial eingebracht werden können. Dies ist insbesondere bei der Silberbeschichtung von Bariumsulfat vorteilhaft, da so eine vorherige Beschichtung der Kunststoff-Pellets nicht zwingend erforderlich ist.
Die Suspension kann auch durch Filtration vom Lösungsmittel und anschließend durch Nachwaschen zunächst mit ca. 5 %-iger Ammoniaklösung und dann mehrmals mit aqua dest. von allen niedermolekularen organischen Verbindungen befreit werden. Der Filterrückstand liefert wie vorstehend nach Lufttrocknung ein homogenes Material. Auch dieser Prozess kann mehrmals wiederholt werden.
Die Verwendung von z.B. Gelatine, (pyrogener) Kieselsäure oder Stärke als Kolloidstabilisator kann bei der Adsorption von Silber an die anorganischen Teilchen unterbleiben, da die bei der Reduktion entstehenden mikrokristallinen Silberpartikel adsorbtiv an die Oberfläche der anorganischen Teilchen gebunden werden und somit die Ausbildung einer geschlossenen Silberschicht auf dem Feststoff verhindert wird. Eingesetzte wasserlösliche Hilfschemikalien können mit Wτasser entfernt werden.
Durch Variation oder Weglassen der Kolloidstabilisatoren sowie der Reduktionsmittel kann die Partikelgröße des Silbers und damit die Mobilität der entstehenden Silberionen in einem weiten Bereich gesteuert und darüber hinaus durch die Verwendung von niedermolekularen Aldehyden als Reduktionsmittel, welche die Gelatine teilweise vernetzen, eine sehr gute Haftung auf dem Polymer erreicht werden.
Im folgenden wird das erfindungsgemäße Verfahren durch Beispiele veranschaulicht. Beispiel 1:
Herstellung des Silberkolloids
1,0 g Gelatine (DAß) werden bei 40 °C in 100 ml aqua dest. unter Rühren gelöst. Hierzu gibt man anschließend 1,0 g (5,88 mmol) AgNO3 p.a. und versetzt die entstandene Lösung mit 1,0 ml (14,71 mmol) 25 %-igen NH3-Wasser.
Zur Darstellung des Silberkolloids werden zu vorstehender Lösung bei 40 °C langsam über einen Zeitraum von 30 min 258,7 mg (5,88 mmol, 330 μl) Acetaldehyd gelöst in 50 ml aqua dest. getropft.
Beispiel 2:
Beschichtung von Polyurethan-Pellets
10 min nach beendetem Zutropfen gemäß Beispiel 1 werden ca. 50 g Polyurethan-Pellets aus Tecothane TT-1085A zugesetzt und zur Beschichtung mit kolloidalem Silber zunächst 2 h bei 40 °C und anschließend 3 h bei RT kräftig gerührt.
Man trennt das Silberkolloid durch rasche Filtration über einen Faltenfilter geeigneter Porengröße ab, wäscht die Pellets noch einmal mit dem Filtrat nach und überführt die noch feuchten Pellets in eine Abdampfschale. Nach dem Entfernen überschüssiger nicht am Polymer anhaftender Silberkolloidlösung wird 10 h bei 70 °C getrocknet.
Beispiel 3:
Adsorption von kolloidalem Silber an Bariumsulfat
a) In 500 ml aqua dest. werden bei 50 °C nacheinander 0,666 g Gelatine und anschließend 6,66 g AgNO3 gelöst. Man versetzt mit ca. 8,5 ml 25 %-iger wässriger NH3-Lösung bis zur schwach alkalischen Reaktion.
Hierzu wird langsam bei 50 °C unter kräftigem Rühren eine Lösung aus 3,53 g wasserfreier α-D-Glucose in 150 ml aqua dest. getropft und das entstandene Silberkolloid, wenn ca. die Hälfte der Glucoselösung zugetropft ist, mit 333 g BaSO versetzt. Nach beendetem Zutropfen wird die Suspension noch ca. 2 h bei 50 °C weiterturbiniert und anschließend durch Eindampfen und Trocknen bei 70 °C von den flüchtigen Anteilen befreit. Die Zerkleinerung des Materials erfolgt in einem Handmörser.
b) Vorgehensweise analog Beispiel 3a), jedoch unter Verwendung von 6,66 g pyrogener Kieselsäure (Degussa, Aerosil 200) anstelle von Gelatine. Die Teilchengröße des kolloidalen Silbers lag im Bereich von 10 bis 50 nm, bestimmt mittels einer REM- Aufhahme.
Beispiel 4:
Alternative Adsorption von kolloidalem Silber an Bariumsulfat
Verfahrensweise analog Beispiel 3a), jedoch mit 1,2 1 aqua dest., 2 g Gelatine, 20 g AgNO3 und 26 ml 25 %-iger NH3-Lösung. Als Reduktionsmittel wird eine Lösung aus 10,59 g Glucose in 400 ml aqua dest. verwendet und analog Beispiel 3a) mit 333 g BaSO versetzt. Die Suspension wird anschließend 3 h bei 50 °C weiterturbiniert und zur Vervollständigung der Reaktion ca. 8 h bei 70 °C gehalten. Das an BaS04 absorbierte Ag- Kolloid wird durch Filtration der noch möglichst warmen Suspension und anschließendem viermaligem Nachwaschen des Rückstandes mit aqua dest. vom Wasser und den darin löslichen Bestandteilen (Gelatine, Gluconsäure, NH4N03 und NH3) abgetrennt. Die Trocknung erfolgt bei 70 °C und die Zerkleinerung wie in Beispiel 3a).
Der Restanteil an organischem Material (Gelatine, Gluconsäure, Glucose) des nach Beispiel 4 erhaltenen Materials wurde unter der Voraussetzung, daß Gelatine und Gluconsäure unter den verwendeten Bedingungen eine vergleichbare Löslichkeit in Wasser besitzen, mittels zweier voneinander unabhängigen Methoden bestimmt. Durch Verbrennungsanalyse:
Hierbei liegen die C- und H- Werte unterhalb der vom Gerätehersteller angegebenen Meßtoleranz von 0,3 %, d.h. daß ein fertiges compoundiertes Polyurethanmaterial mit 20 % BaSO und 0,8 % Ag rechnerisch einen organischen Gesamtrestanteil von theoretisch maximal 0,182 Gew.-% (maximal mögliche untere Erfassungsgrenze des Geräts) besitzt. Der tatsächliche Wert dürfte somit wesentlich geringer sein. Durch Thermogravimetrie:
Durch Vergleich des nach Beispiel 4 erhaltenen Materials mit einer identisch hergestellten, aber nicht ausgewaschenen Referenzprobe (Gewichtsverlust ca. 3,2 %) und reinem BaS0 ergibt sich ein Gesamtgewichtsverlust von maximal 0,28 Gew.-% (Gelatine: 0,045 Gew.-%, Gluconsäure: 0,235 Gew.-%) oder besser. Das fertige compoundierte Polyurethan mit 20 % BaSO und 0,8 % Ag weist somit einen organischen Gesamtrestanteil von < 0,056 Gew.-% (Gelatine: < 0,009 Gew.-%, Gluconsäure: < 0,047 Gew.-%) auf. Hierbei ist wegen der bedeutend größeren Empfindlichkeit die Thermogravimetrie der Verbrennungsanalyse vorzuziehen.
Beispiel 5:
Bestimmung der antibakteriellen Wirksamkeit
Zur Bestimmung der Besiedelbarkeit der erfindungsgemäßen Kunststoffkörper mit Keimen wurden jeweils fünf zylinderförmige Proben des entsprechenden Kunststoffs (Durchmesser 3 mm, Länge 13 mm) mit einer Zusammensetzung enthaltend Staphylococcus epidermis in einer Trypcase-Soy-Broth-Nährlösung bei 175 °C inkubiert. Folgende Kunststoffkörper wurden untersucht (Nummer 1 ist handelsüblich und unbehandelt, Nummer 2 und 3 sind erfindungsgemäß): Prüfkörper 1 : Stück aus einem PU-Katheter der Firma Arrow (ES 04701) Prüfkörper 2: gemäß Beispiel 2 der vorliegenden Erfindung Prüfkörper 3 : gemäß Beispiel 3 der vorliegenden Erfindung.
Die jeweils 5 Prüfkörper wurden vier Testreihen unter folgenden Bedingungen unterzogen:
Testreihe 1 : anfängliche Konzentration von Staphylococcus epidermis 5 x 107 CFU/ml
Testreihe 2: anfängliche Konzentration von Staphylococcus epidermis 108 CFU/ml
Testreihe 3: wie Testreihe 1, jedoch nach einer 5-stündigen Vorinkubation in physiologischer Pufferlösung bei 37 °C gemessen Testreihe 4: wie Testreihe 1, wobei die Kunststoffkörper mit steril filtriertem natürlichen Ham bei 37 °C 4 Stunden lang vorbehandelt wurden. Tabelle 1 zeigt die Anzahl der besiedelten Kunststoffkörper. Bestimmt wurde dies durch visuelle Kontrolle.
Tabelle 1
Figure imgf000009_0001
Die Kathetermaterialien zeigen nach dem Compoundieren keine Beeinträchtigung der für therapeutische Zwecke nötigen mechanischen Eigenschaften (Rauhigkeit, Homogenität und Elastizität). Hierbei kann das Verfahren gut an wechselnde Anforderungen im Produktionsprozess angepaßt werden, da die antimikrobielle Wirksamkeit unabhängig davon erhalten bleibt, ob das Silber über eine Beschichtung der Polyurethan-Pellets (Beispiel 2) oder über das Röntgenkontrastmittel (Beispiel 3 und 4) in das Polymermaterial eingebracht wird.
Die erfindungsgemäßen Kunststoffgegenstände zeigen bei vergleichbar geringer Toxizität eine signifikant höhere antimikrobielle Wirksamkeit hinsichtlich Adhärenz und Biofilmbildung sowie ein deutlich verbessertes Langzeitverhalten als bisherige Werkstoffe.
Die erfindungsgemäßen Herstellungsverfahren sind gut kontrollierbar, kostengünstig und für eine Produktion im größeren Maßstab geeignet. Zusätzlich wurde mit Beispiel 4 ein Verfahren ausgearbeitet, alle "Hilfschemikalien" aus dem anorganischen Kontrastmittel zu entfernen, so daß eine Zertifizierung des Verfahrens keine Probleme bereiten sollte.
Beispiel 6:
Zeitabhängigkeit der antimikrobiellen Wirksamkeit
Katheter (die Mengenangaben sind auf das fertige, compoundierte Material bezogen): 1) Polyurethankatheter 20 % BaSO4 + 0,8 % Ag 1,0 cm Länge (Beispiel 4) 2a) Silikonkatheter 25 % BaSO + 1 % Ag 1 cm Länge, 1,3 mm Dicke und 2 mm Breite (Beispiel 4) 2b) Silikonkatheter 25 % BaSO4 + 0,33 % Ag + 0,33 % SiO2 (Beispiel 3b)
Wandstücke von Silikon 1 cm Länge, 1 mm Dicke und 2 mm
Breite 3) Kontrolle: ArgenTec 1 Lumenkatheter (Sicuris) Extr. 1/99
20 % BaSO4 + 0,9-1 % Ag Sterilisation: Aufbewahrung im Heißluftschrank bei 90 °C über 3 Stunden. Vorangegangene Untersuchungen zeigten die Keimfreiheit der Proben nach dieser Zeit. (Proben sind weitgehend vorher bereits nicht keimbesiedelt)
Keime: S. epidermidis (Ref.: Infection Suppl. 6/99) E. coli
Nährmedium: Trypcase Soja
Vorgangsweise:
• Proben werden 8 Stunden lang in einer Suspension NaCl 0,45 % mit 2,5 % Glukose mit 5 x 10 Keimen bei Zimmertemperatur inkubiert
• Anschließend wird die Keimsuspension abzentrifugiert
• 2 x Waschen (2 min Resuspension in physiologischer Kochsalzlösung unter Schwenken)
• Transferierung der Proben in sterile Kochsalzösung in einer Petrischale
• Stündliche, nach 6 Stunden 2-stündliche Entnahme einer Probe und Transferierung nach leichtem Schwenken in physiologischer Kochsalzlösung in Trypcase Soja Medium
• Inkubation für 24-36 Stunden
• Beurteilung auf Sterilität der Probe (Trübung = Endpunktmessung).
Ergebnisse der Untersuchungen mit S. epidermidis Alle Proben werden 5-fach (+++++) getestet Zeit: Probe 1 Probe 2 a Probe 2 b Kontrolle h
0 +++++ I l I l I +++++ -H-
1 i i i i i i l I I I
2 +++++ +++++ ++
3 ++++- ++++- M I M
4 ++++- +- ++
5 ++— +- ++ 6 + ++— +++++
8 +++++
10 I I I I i
12 I I I !-
16
18 - ~
+ = Bouillone nach 36 Stunden trüb
- = Bouillone nach 36 Stunden klar (steril)
Diskussion:
In dieser Untersuchung konnte eine zeitaufgelöste antimikrobielle Wirksamkeit von Festkörpern geprüft werden. Es zeigt sich, daß die antimikrobielle Wirksamkeit der silbergefüllten Proben bereits nach 6 Stunden besteht und ein kontaminierter Katheter in dieser Zeit auch bei einem unphysiologisch hohen Inokulum bereits wiederum steril ist. Eine geringere Ag-Konzentration wie bei Probe 2b führt ebenfalls zu einem positiven Ergebnis.
Ergebnisse der Untersuchungen mit E. coli Alle Proben werden 5 -fach (+++++) getestet Zeit: Probe 1 Probe 2 a Probe 2 b Kontrolle h
0
1
2 H~
3 ++++-
4 ++++- -H-+
5 ++++-
6
8
10 +.— +.—
12
16 -+-
18 -+.
Die Erebnisse für S. epidermidis sind auch nach 1, 2 und 3 Wochen Elution des Silbers in physiologischer NaCl-Lösung gleich gut und zeigen identische Ergebnisse wie in Tabelle 1.
Die Untersuchung der Cytotoxizität wurde durch die Firma Toxikon, Bedford Mass, USA durchgeführt. Es zeigte sich, daß die hergestellten Proben nicht toxisch sind und den Erfordernissen des Elutions-Testes ISO 10993 entsprechen.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines antimikrobiellen Kunststoffkörpers, umfassend das Formen eines Vorprodukts, dadurch gekennzeichnet, daß vor dem Formen mindestens ein Bestandteil des Vorprodukts mit einem Metallkolloid behandelt wird.
2. Verfahren nach Anspruch 1, wobei das Vorprodukt aus einem oder mehreren polymeren Materialien besteht.
3. Verfahren nach Anspruch 2, wobei das Vorprodukt aus Polyurethan besteht.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei dem Kunststoffvorprodukt neben den polymeren Werkstoffen weitere Additive zugegeben werden.
5. Verfahren nach Anspruch 4, wobei die Additive aus anorganischen Teilchen bestehen.
6. Verfahren nach Anspruch 5, wobei die anorganischen Teilchen Bariumsulfat, Calciumsulfat, Strontiumsulfat, Titanoxid, Aluminiumoxid, Siliziumoxid, Zeolithe, Glimmer, Talk oder Kaolin umfassen.
7. Verfahren nach Anspruch 6, wobei die anorganischen Teilchen Bariumsulfat und/oder pyrogene Kieselsäure umfassen.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei eines oder mehrere der Vorproduktbestandteile mit dem kolloiden Metall behandelt werden.
9. Verfahren nach einem der Ansprüche 4 bis 7, wobei sowohl der Kunststoff als auch die anorganischen Teilchen mit dem kolloiden Metall behandelt werden.
10. Verfahren nach einem der Ansprüche 4 bis 7, wobei die anorganischen Teilchen mit dem Metallkolloid behandelt werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei das Metallkolloid kolloidales Silber ist.
12. Verfahren nach einem der Ansprüche 1 bis 11, wobei das behandelte Vorprodukt durch Mischen, Kneten, Extrudieren, Spritzgießen oder (Heiß)pressen in die endgültige Form gebracht wird.
13. Kunststoffkörper erhältlich nach einem der Ansprüche 1 bis 12.
14. Kunststoffkörper nach Anspruch 13, wobei das kolloidale Silber eine Teilchengröße von 10 bis 50 nm aufweist.
15. Kunststoffkörper nach Anspruch 13 oder 14 in Form eines Katheters.
PCT/DE2000/002493 1999-07-30 2000-07-28 Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten WO2001009229A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00954384.4A EP1210386B2 (de) 1999-07-30 2000-07-28 Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten
AT00954384T ATE270688T1 (de) 1999-07-30 2000-07-28 Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten
CA002380490A CA2380490A1 (en) 1999-07-30 2000-07-28 Method of producing antimicrobial synthetic bodies with improved long-term behavior
DE50007020T DE50007020D1 (de) 1999-07-30 2000-07-28 Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten
JP2001514032A JP2003506511A (ja) 1999-07-30 2000-07-28 改良された長期効能を有する抗菌性プラスチック体の製造法
AU66859/00A AU6685900A (en) 1999-07-30 2000-07-28 Method of producing antimicrobial synthetic bodies with improved long-term behavior
US11/789,232 US8075823B2 (en) 1999-07-30 2007-04-24 Process for preparing antimicrobial plastic bodies having improved long-time performance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19936059A DE19936059A1 (de) 1999-07-30 1999-07-30 Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
DE19936059.6 1999-07-30
DE10013248.0 2000-03-17
DE10013248A DE10013248A1 (de) 2000-03-17 2000-03-17 Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern mit verbessertem Langzeitverhalten

Publications (1)

Publication Number Publication Date
WO2001009229A1 true WO2001009229A1 (de) 2001-02-08

Family

ID=26004886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002493 WO2001009229A1 (de) 1999-07-30 2000-07-28 Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten

Country Status (7)

Country Link
EP (2) EP1457516A1 (de)
JP (3) JP2003506511A (de)
AT (1) ATE270688T1 (de)
AU (1) AU6685900A (de)
CA (1) CA2380490A1 (de)
DE (1) DE50007020D1 (de)
WO (1) WO2001009229A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087750A1 (de) * 2001-04-27 2002-11-07 Peter Guggenbichler Verfahren zur herstellung von gecoateten nanopartikeln
JP2006509054A (ja) * 2002-09-10 2006-03-16 プロフェソール・ドクトル・ヨーゼフ−ペーター・グッゲンビヒラー・ドクトル・クリストフ・ヒホス・ゲゼルシャフト・ビュルガーリーヒェン・レッヒツ・アンティミクロビアル・アルゲントゥム・テヒノロギース 抗菌性プラスチック製品の製造方法
WO2008089887A2 (de) * 2007-01-24 2008-07-31 Raumedic Ag Verfahren zur herstellung eines medizinischen arbeitsmittels, nach einem derartigen verfahren hergestelltes medizinisches arbeitsmittel sowie verwendung eines derartigen medizinischen arbeitsmittels
EP2108385A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
EP2108383A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2108388A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108386A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
WO2012080458A1 (de) * 2010-12-17 2012-06-21 Laser Zentrum Hannover E. V. Verfahren zur herstellung von mikro-nanokombinierten wirksystemen
DE102011102635A1 (de) 2011-05-27 2012-11-29 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes unter Verwendung eines Reduktons
WO2012163806A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
DE102005053295C5 (de) * 2005-11-08 2013-03-07 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines steril verpackten, metallhaltigen Kunststoffkörpers mit antimikrobiell wirkender Oberfläche
US8673441B2 (en) 2007-07-26 2014-03-18 Spiegelberg (Gmbh & Co.) Kg Antimicrobial plastics product and process for production thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936059A1 (de) 1999-07-30 2001-02-01 J Peter Guggenbichler Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
WO2010090097A1 (ja) * 2009-02-09 2010-08-12 テルモ株式会社 抗菌性カテーテルおよびその製造方法
IL203403A (en) * 2010-01-19 2016-08-31 Cupron Inc Biofilm resistant materials
SG186739A1 (en) * 2010-06-18 2013-02-28 Dow Global Technologies Llc Coated polymeric particulates, and a process for coating polymeric particulates
JP6482384B2 (ja) * 2015-05-28 2019-03-13 旭化成株式会社 複合粒子及びこれを含有する水性分散液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217399A1 (de) * 1972-04-11 1973-10-25 Allor Corp Colloidale zusammensetzung und verfahren zu ihrer herstellung
JPH0345709A (ja) * 1989-07-10 1991-02-27 Nichibi:Kk 抗微生物性繊維およびその製造方法
JPH0797767A (ja) * 1993-09-28 1995-04-11 Daiso Co Ltd 抗菌性有機高分子材料
JPH11172154A (ja) * 1997-12-08 1999-06-29 Nichiban Kenkyusho:Kk 静電防止性加工用組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686571B2 (ja) * 1989-10-06 1994-11-02 株式会社日板研究所 抗菌・導電性組成物および抗菌・導電性樹脂組成物
JPH04231062A (ja) * 1990-09-18 1992-08-19 Create Medic Kk 抗菌性医療用品
US5180585A (en) 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
JPH06299038A (ja) * 1993-04-09 1994-10-25 Japan Synthetic Rubber Co Ltd 抗菌性樹脂組成物
JPH0751039A (ja) * 1993-08-10 1995-02-28 Sekisui Plastics Co Ltd 抗菌性球状樹脂粒子の製造方法
US5976562A (en) 1994-02-01 1999-11-02 Krall; Theodor Process for producing bactericidal/fungicidal plastic bodies
JP3017135B2 (ja) * 1997-07-04 2000-03-06 大塚化学株式会社 抗菌もしくは抗黴性樹脂組成物及びその用途
JP3594069B2 (ja) * 1997-07-17 2004-11-24 日本ペイント株式会社 貴金属又は銅の固体ゾル及び製造方法並びに塗料組成物及び樹脂成型物
JPH11146904A (ja) * 1997-11-18 1999-06-02 Sumitomo Osaka Cement Co Ltd 抗菌性樹脂製品およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217399A1 (de) * 1972-04-11 1973-10-25 Allor Corp Colloidale zusammensetzung und verfahren zu ihrer herstellung
JPH0345709A (ja) * 1989-07-10 1991-02-27 Nichibi:Kk 抗微生物性繊維およびその製造方法
JPH0797767A (ja) * 1993-09-28 1995-04-11 Daiso Co Ltd 抗菌性有機高分子材料
JPH11172154A (ja) * 1997-12-08 1999-06-29 Nichiban Kenkyusho:Kk 静電防止性加工用組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199115, Derwent World Patents Index; Class A97, AN 1991-104975, XP002152347 *
DATABASE WPI Section Ch Week 199523, Derwent World Patents Index; Class A60, AN 1995-175662, XP002152345 *
DATABASE WPI Section Ch Week 199936, Derwent World Patents Index; Class A82, AN 1999-425182, XP002152346 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087750A1 (de) * 2001-04-27 2002-11-07 Peter Guggenbichler Verfahren zur herstellung von gecoateten nanopartikeln
JP2006509054A (ja) * 2002-09-10 2006-03-16 プロフェソール・ドクトル・ヨーゼフ−ペーター・グッゲンビヒラー・ドクトル・クリストフ・ヒホス・ゲゼルシャフト・ビュルガーリーヒェン・レッヒツ・アンティミクロビアル・アルゲントゥム・テヒノロギース 抗菌性プラスチック製品の製造方法
DE102005053295C5 (de) * 2005-11-08 2013-03-07 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines steril verpackten, metallhaltigen Kunststoffkörpers mit antimikrobiell wirkender Oberfläche
WO2008089887A2 (de) * 2007-01-24 2008-07-31 Raumedic Ag Verfahren zur herstellung eines medizinischen arbeitsmittels, nach einem derartigen verfahren hergestelltes medizinisches arbeitsmittel sowie verwendung eines derartigen medizinischen arbeitsmittels
WO2008089887A3 (de) * 2007-01-24 2008-09-18 Raumedic Ag Verfahren zur herstellung eines medizinischen arbeitsmittels, nach einem derartigen verfahren hergestelltes medizinisches arbeitsmittel sowie verwendung eines derartigen medizinischen arbeitsmittels
US8673441B2 (en) 2007-07-26 2014-03-18 Spiegelberg (Gmbh & Co.) Kg Antimicrobial plastics product and process for production thereof
EP2108386A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
EP2108382A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
EP2108388A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108387A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108389A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
EP2108384A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2108383A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2108385A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
WO2012080458A1 (de) * 2010-12-17 2012-06-21 Laser Zentrum Hannover E. V. Verfahren zur herstellung von mikro-nanokombinierten wirksystemen
US9403160B2 (en) 2010-12-17 2016-08-02 Particular Gmbh Method for producing micro-nano combined active systems
DE102011102635A1 (de) 2011-05-27 2012-11-29 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes unter Verwendung eines Reduktons
WO2012163809A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes unter verwendung eines reduktons
WO2012163806A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes

Also Published As

Publication number Publication date
EP1210386A1 (de) 2002-06-05
EP1457516A1 (de) 2004-09-15
DE50007020D1 (de) 2004-08-12
JP2011252162A (ja) 2011-12-15
JP2003506511A (ja) 2003-02-18
CA2380490A1 (en) 2001-02-08
ATE270688T1 (de) 2004-07-15
JP2014080624A (ja) 2014-05-08
EP1210386B2 (de) 2014-10-29
EP1210386B1 (de) 2004-07-07
AU6685900A (en) 2001-02-19

Similar Documents

Publication Publication Date Title
EP1536848B1 (de) Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
EP1210386B1 (de) Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten
DE19936059A1 (de) Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
EP3558401B1 (de) Wasserhaltige hydrogelzusammensetzung, umfassend elementare silberpartikel
EP0302186B1 (de) Medizinisches Gerät und Verfahren zu seiner Herstellung
EP2176329B1 (de) Antimikrobielles kunststoffprodukt und verfahren zu dessen herstellung
DE60107455T2 (de) Stabilisierte zusammensetzungen mit antibakterieller wirkung
EP2091333B1 (de) Stoff mit antimikrobieller wirkung
DE60313626T2 (de) Antimikrobieller silberhaltiger wundverband f r kontinuierliche freisetzung
WO2003090799A1 (de) Wasserabsorbierende, die zersetzung von körperflüssigkeiten verzögernde polymerteilchen, diese beinhaltende verbunde sowie deren verwendung
EP0158092A1 (de) Sanitäre Hygienemittel
EP2217296B1 (de) Chirugisches Nahtmaterial
DE212010000186U1 (de) Bakterizides Sorptionsmaterial
EP2185208B1 (de) Brust-implantat mit antibakterieller wirkung
DE10013248A1 (de) Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern mit verbessertem Langzeitverhalten
DE602004007106T2 (de) Wegwerfprodukte für die weibliche hygiene
EP3587456A1 (de) Verfahren zur herstellung eines antibakteriellen chitosanhaltigen polymers für medizinische zwecke, insbesondere für die wundbehandlung
DE10331324A1 (de) Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes
DE102011102636B3 (de) Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes
DE102011102635B4 (de) Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes unter Verwendung eines Reduktons
Elbarbary et al. Radiation Synthesis of PVA/Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2380490

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2000954384

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000954384

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000954384

Country of ref document: EP