WO2001008329A1 - Emetteur de station de base et systeme mobile de communication amcr incorporant cet emetteur - Google Patents

Emetteur de station de base et systeme mobile de communication amcr incorporant cet emetteur Download PDF

Info

Publication number
WO2001008329A1
WO2001008329A1 PCT/JP2000/004961 JP0004961W WO0108329A1 WO 2001008329 A1 WO2001008329 A1 WO 2001008329A1 JP 0004961 W JP0004961 W JP 0004961W WO 0108329 A1 WO0108329 A1 WO 0108329A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
value
transmission power
base station
average value
Prior art date
Application number
PCT/JP2000/004961
Other languages
English (en)
French (fr)
Inventor
Takashi Nakagawa
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/048,059 priority Critical patent/US7260138B1/en
Priority to AU63139/00A priority patent/AU6313900A/en
Priority to BR0013059A priority patent/BR0013059A/pt
Priority to CA002380353A priority patent/CA2380353A1/en
Priority to EP00949888A priority patent/EP1199819A4/en
Publication of WO2001008329A1 publication Critical patent/WO2001008329A1/ja
Priority to NO20020415A priority patent/NO20020415L/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • the present invention relates to a base station transmitting apparatus and a CDMA mobile communication system using the same, and more particularly, adds and combines transmission spread data of all transmission channels to generate quantized amplitude data, performs analog conversion, and performs a non-fountain carrier wave.
  • a base station transmitting apparatus that inputs the modulated output signal through a variable attenuating means capable of controlling the amount of level attenuation to the transmission amplifying means, amplifies the power, and transmits the radio wave as a downlink transmission output; It relates to the CDMA mobile communication system used. Background art
  • the transmission power of the base station can be made higher than the reference power to prevent the deterioration of the communication quality. Also, for mobile stations located at locations where a plurality of strong multipath signals arrive, the transmission power of the base station can be increased above the reference power to prevent the degradation of speech quality.
  • the dynamic range of the transmission power amplifier in the base station is limited, and if overpower is input, it will lead to distortion of the output spectrum and destruction of the amplifier. For this reason, the number of communication channels per carrier is normally restricted, and no more communication channels are allocated.
  • the transmission power of the communication channel differs for each user, and the regulation of a certain number of communication channels does not make sense. If the number of communication channels per carrier is limited in consideration of the case where all the communication channels reach the maximum transmission power as a result of the transmission power control, the system will have a smaller traffic capacity.
  • the present invention is directed to a base station transmission in a mobile communication system using a direct spread CDMA system. It is possible to prevent destruction due to overpower input of the transmission amplifier and prevent distortion of the transmission spectrum even during the transmission channel downlink transmission power control performed by the equipment, and to make the area covered by the base station the total power of the communication channel. It enables automatic scaling in response to the request. Disclosure of the invention
  • a base station transmitting apparatus is used for a base station of a mobile communication system using a direct spread CDMA system, and generates quantized amplitude data by adding and combining transmission spread data of all transmission channels.
  • a base station transmitting apparatus that converts the analog output signal into an analog signal having a level corresponding to the value to obtain a modulated output signal having a radio carrier frequency, amplifies the power of the modulated output signal by transmission amplification means, and transmits the signal as a downlink transmission output.
  • a variable attenuating means capable of controlling a level attenuation amount of the modulation output signal on an input side of the transmission amplifying means, comparing a value of the amplitude data with a predetermined maximum value, By increasing the level attenuation of the variable attenuating means in accordance with the extent to which the value of the data exceeds the maximum value, the input of the transmission amplifying means is prevented from exceeding the limit value, Even during the control, it is possible to prevent the transmission amplifying means from being destroyed and the transmission spectrum from being distorted due to overpower input.
  • a base station transmitting apparatus is used in a base station of a mobile communication system using a direct spread CDMA scheme, and is obtained by adding and combining transmission spread data of all transmission channels and quantizing.
  • a transmitter that generates amplitude data and converts it into an analog signal of a level corresponding to the value to generate a modulated output signal of a radio carrier frequency, and power-amplifies the output of the transmitter to transmit radio waves as a transmission output to a mobile station.
  • a base station having a transmission power amplifier that performs transmission and amplification; wherein the transmitter adds and combines transmission spread data of all transmission channels to generate quantized amplitude data; After converting to an analog baseband signal of a level corresponding to the value, modulation is performed on the radio carrier frequency.
  • Modulating means for performing a modulated output signal; variable attenuating means for controlling the amount of attenuation of the level of the modulated output signal in accordance with the value of an input control signal; modulation output re-level controlled by the variable attenuating means
  • Amplifying means for performing power amplification for outputting a signal as a transmitter output to the transmission power amplifier; monitoring the level of the transmitter output to the transmission power amplifier means, and outputting as transmission power data which is a corresponding digital value Transmission power detection means; and first average value calculation means for calculating an average value of the amplitude data values from the addition / combination means at predetermined time intervals and obtaining a transmission average value indicating an average value of requested transmission power levels.
  • a second average value calculation for calculating an average value of the transmission power data value from the transmission power detection means for each predetermined time and obtaining an average transmission power value indicating an average value of an actual transmission power level; Means; comparing the transmission average value from the first average value calculation means with a predetermined maximum transmission power value, and when the transmission average value is equal to or less than the maximum transmission power value, the variable attenuation means As the control signal, data for correcting a difference between the transmission average value and the average transmission power value from the second average value calculation means is output, and the transmission average value is compared with the maximum transmission power value.
  • a comparison control unit that outputs data for correcting a difference between the maximum transmission power value and the average transmission power value as the control signal when the value is large.
  • a CDMA mobile communication system moves between a plurality of base stations using the above-described base station transmitting device and cells formed by the respective base stations, and detects a cell present in the own station and performs a corresponding cell.
  • a mobile station that performs call processing while performing transmission power control with a base station under its control, and wherein the base station is configured to transmit to the mobile station when the transmission average value is larger than the maximum transmission power value.
  • the feature is that the cell size is reduced by reducing the power of the pilot channel according to the increase in the total power of the communication channel to be transmitted.
  • the amplitude data after addition and synthesis of all transmission channels is monitored and the maximum value defined by the transmitter output is determined.
  • the variable attenuator in the transmitter is controlled so as not to exceed.
  • the overpower input causes The transmission amplifier (transmission power amplifier) can be prevented from being destroyed, and distortion of the transmission spectrum can be prevented.
  • the power of the pilot channel automatically decreases. Thereby, the cell radius can be reduced. Therefore, since a mobile station near the cell boundary hands off to another cell, a cell having a tight communication channel can naturally reduce the communication channel.
  • FIG. 1 is a block diagram showing an embodiment of a base station transmitting apparatus according to the present invention.
  • FIG. 2 is a block diagram showing a configuration example of an addition / synthesis unit in FIG.
  • FIG. 5 is a block diagram showing a configuration example of the average value part in FIG. 4,
  • FIG. 6 is an operation flow chart of the comparison control unit of FIG. 1,
  • FIG. 7 is a diagram showing the relationship between transmission average value information and transmitter output
  • FIG. 8 is a diagram for explaining a change in cell area size according to transmission power from a base station.
  • FIG. 9 is a block diagram showing a second embodiment of the base station transmitting apparatus according to the present invention
  • FIG. 10 is an operation flow chart of the comparison / control section of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an embodiment of a base station transmitting apparatus according to the present invention, showing a basic configuration thereof.
  • a base station transmitting apparatus includes: a transmitter 10 for modulating a signal to be transmitted and outputting the modulated signal as a radio frequency signal (transmitter output S 5); And a transmission power amplifier 30 for amplifying the power of the output S5 and transmitting it from the antenna 31 to the mobile station as radio waves.
  • the transmitter 10 performs multiplexing by adding the spread transmission data S1 of each of the pilot channel, the control channel, and the plurality of communication channels, generates a multiplexed signal, and generates quantized amplitude data S2.
  • the amplitude data S 2 is accumulated for an arbitrary period of time (for example, 320 ms), the average value is calculated, and the transmission average value information S 8 indicating the average value of the requested transmission power (transmitter output) level is added.
  • a synthesizing unit 11 a D / A converting unit 12 for converting the amplitude data S2 provided from the adding and synthesizing unit 11 into an analog baseband signal S3 as input; a local oscillator 13 1 and a modulator 1 A modulation unit 13 that outputs a modulation output signal S4 using an analog baseband signal S3 and a carrier generated by a local oscillator 131, and a modulation output signal S4, which will be described later.
  • Attenuated by control signal S10 Variable ATT (attenuator) section 14 that controls the amount and controls the transmitter output level, and an amplification section that performs power amplification using the modulated output signal S 4 whose power level is controlled by the variable ATT section 14 as input.
  • HYB (divider) 16 and HYB 16 output the output of the amplifier 15 and the output of the amplifier 15 in two, and output one as the transmitter output S 5 and the other output to the detector 17.
  • a detection unit 17 that performs detection and outputs a detection output S6 that is voltage information
  • an AZD conversion unit 18 that quantizes the detection output S6 and converts it into digital transmission power data S7
  • the output transmission average value information S 8 is used as a first input
  • the transmission power data S 7 output from the AZD converter 18 is used as a second input
  • a predetermined maximum transmission power value transmitmitter output Digital constant corresponding to the maximum allowable level of S5 (input limit of the transmission power amplifier 30) S9
  • a T T unit 1 4 comparator and control unit 1 9 for generation of the control signal S 1 0 for controlling.
  • the comparison and control unit 19 accumulates transmission power data S7 for an arbitrary fixed time (in this case, 320 ms) when the transmission average value information S8 is less than the maximum transmission power value S9.
  • Average value obtained Average transmission power data S 1 1 indicating the average value of actual transmission power (transmitter output) level
  • a control signal S10 for controlling the attenuation of the variable ATT unit 14 is generated.
  • the transmission average value information S 8 is larger than the maximum transmission power value S 9
  • the difference between the average value of the transmission power data S 7 (average transmission power data S 11) and the maximum transmission power value S 9 is corrected. Is output to generate the control signal S10.
  • the transmitter 10 normally quantizes the transmission average value information S 8 and the detection output S 6 calculated by the addition / combination unit 11 with a certain period of time (320 ms) as a cycle.
  • the average value of the transmitted power data S 7 (average transmitted power data S 11) is compared.
  • Compared by the control unit 19, data for correcting the difference is output, and the variable ATT unit 14 is output.
  • Transmission average value information S 8 Force ⁇ When the maximum transmission power value S 9 is exceeded, stop comparing the transmission average value information S 8 with the average transmission power data S 11, and transmit the maximum transmission power value S 9 and average transmission The power data S 11 is compared with the power data S 11, and data for correcting the difference is output to perform attenuation control of the variable ATT unit 14.
  • the transmitter output S5 does not exceed the specified maximum value, thereby preventing destruction or distortion of the transmission spectrum due to excessive input to the transmission amplifier (the transmission power amplifier 30 and the amplifier 15).
  • the pilot power decreases as the power of the communication channel increases, and the cell radius is reduced.
  • a mobile station (mobile station) near the cell boundary will hand off to another cell, reducing the number of communication channels and consequently the power of the communication channel.
  • the adder / synthesizer 11 receives a plurality of adders 1 1 1 that receive spread transmission data S 1 of each transmission channel as input, add all input channels, and output amplitude data S 2, It has a transmission average value information generating unit 112 that receives the amplitude data S2, accumulates the amplitude data S2 at an arbitrary fixed time, calculates transmission average value information S8, and outputs the information.
  • the transmission average value information generation unit 112 will be described in detail with reference to FIG. In FIG.
  • the transmission average value information generation unit 112 includes a buffer 112 for storing the amplitude data S2, and a timer 1 for measuring an arbitrary set time (32 Oms). 1 2 2, control unit 1 1 2 3 that controls the timing of buffer 1 1 2 1 linked to timer 1 1 2 2, and amplitude data S 2 within an arbitrary time linked to timer 1 1 2 2 And an operation unit 1 124 for performing the accumulation and the average value calculation.
  • the comparison / control section 19 stores a buffer 191, which stores the input transmission average value information S8, and the transmission power data S7, which is input simultaneously, for an arbitrary fixed period of time, and obtains the average value.
  • (Average transmission power data S11) Calculates the average value part 192, the buffer 1919 and the average value part 192, and transmits the average value information S8 that is timing-synchronized.
  • the comparator 1993 compares the power data S7 with the maximum transmission power value S9 and the transmission average value information S8, and converts the output of the comparator 1993 from digital to analog to control signal S.
  • a D / A converter 194 that outputs as 10; a data memory 195 that stores the amplitude data supplied to the DZA converter 194 corresponding to the output of the comparator 193; And a control unit 196 for controlling the flow of air.
  • a maximum transmission power value S9 a value specified in advance in a storage unit (not shown) is set.
  • the average value part 192 is composed of a buffer 1921 that stores the transmission power data S7, a timer 1922 that measures an arbitrary set time (320 ms).
  • the control unit 1923 which controls the timing of the buffer 1921, linked to the timer 1922, and the accumulation of the transmission power data S7 within an arbitrary fixed time, linked to the timer 1922 And an arithmetic unit 1924 for calculating the average value and outputting the average transmission power data S11.
  • the spread transmission data S 1 of each transmission channel is added by the adding / combining unit 11 of the transmitter 10.
  • the transmission average value information generation unit 112 in the addition synthesis unit 111 outputs the amplitude data S2 to the average power value (amplitude) for each given arbitrary time (320 ms in this example). An average value of the transmission power level requested as the transmitter output according to the data value is obtained, and output as transmission average value information S8.
  • the transmission average value information generation unit 112 captures the amplitude data S 2 into the buffer 111 for an arbitrary fixed time specified by the timer 112, and performs integration in the arithmetic unit 111 Thereby, transmission average value information S8 is obtained.
  • This transmission average value information S8 is used in the comparison / control section 19 as described later.
  • the amplitude data S 2 output from the addition / synthesis unit 11 is subjected to digital-analog conversion by the DZA conversion unit 12, and is converted into an analog baseband signal S 3 having a level corresponding to the value of the amplitude data.
  • the analog baseband signal S 3 is mixed with the local signal generated by the local oscillator 13 1 inside the modulator 13 by the modulator 13 2 inside the modulator 13, and the modulated output signal S 3 Outputs as 4.
  • the modulation output signal S 4 is input to the variable ATT section 14 whose attenuation changes according to the control signal S 10, and after being subjected to level control (attenuation control), is input to the amplification section 15.
  • the amplification unit 15 performs power amplification for outputting the level-controlled modulated output signal S4 as a transmitter output to the transmission power amplifier 30.
  • the modulated output signal S 4 which has been power-amplified by the amplification unit 15, is distributed to the transmitter output S 5 and the output to the detection unit 17 by the HYB 16.
  • the detector 17 detects the input signal by means of envelope detection or the like, and outputs a detection output S6.
  • the detection output S 6 is input to the AZD converter 18, subjected to analog-to-digital conversion, and output as transmission power data S 7. That is, the transmission power data S7 is a digital value corresponding to the actual power level of the transmitter output.
  • the comparison control unit 19 transmits the transmission power data S 7, transmission average value information S 8, and the maximum transmission. Input power value S9. From the transmission power data S7, average transmission power data S11, which is an average value at an arbitrary time interval, is obtained.
  • the maximum transmission power value S9 is a fixed value that sets the input limit value of the transmission power amplifier 30.
  • the transmission average value information S 8 is different in operation when the transmission average value information S 8 is less than or equal to the maximum transmission power value S 9 and when the transmission average value information S 8 is larger than the maximum transmission power value S 9.
  • the transmission average value information S 8 is equal to or less than the maximum transmission power value S 9
  • the characteristic according to the temperature of the amplifying unit 15 as in the prior art As an operation of compensating for fluctuations and aging, the difference ⁇ ⁇ between the transmission average value information S 8 and the average transmission power data S 11 is detected, and the variable ⁇ ⁇ ⁇ unit 14 is changed so that ⁇ ⁇ is minimized.
  • the control signal S10 for controlling the amount of attenuation is output.
  • transmission average value information S8 is larger than maximum transmission power value S9 is the operation of the present invention, and detection of difference Am between average transmission power data S11 and maximum transmission power value S9 is performed. And outputs a control signal S10 for controlling the amount of attenuation of the variable ATT unit 14 so that ⁇ is minimized.
  • the comparison / control section 19 compares the input transmission average value information S8 with the maximum transmission power value S9 (step A1). If the value of the transmission average value information S 8 is equal to or less than the maximum transmission power value S 9, the input transmission power data S 7 is accumulated and averaged to calculate the average transmission power data S 11 (step A 2 ), The difference ⁇ between the transmission average value information S8 and the average transmission power data S11 is calculated (step A3).
  • step A 4 By controlling the amount of attenuation of the variable ⁇ ⁇ ⁇ section 14 so that ⁇ ⁇ is minimized, the variation in characteristics and the secular change due to the temperature of the amplifier section 15 are compensated (step A 4).
  • step A 2 if the input transmission average value information S 8 is larger than the maximum transmission power value S 9, that is, if the input limit of the transmission power amplifier 30 is exceeded, the processing in step A 2 Similarly, the average transmission power data S11 is calculated from the input transmission power data S7. After that (step B2), the difference ⁇ between the maximum transmission power value S9 and the average transmission power data S11 is calculated (step ⁇ 3), and the attenuation of the variable ⁇ unit 14 is controlled so that ⁇ is minimized. Control (step # 4).
  • the transmission average value information S8 exceeds the maximum transmission power value S9, the input power to the amplifier 15 is suppressed to a constant value, and the transmitter output S5 does not exceed the maximum transmission power value S9. In other words, overpower input to the transmission power amplifier 30 is prevented, and destruction due to excessive input of the transmission power amplifier 30 and distortion of the transmission waveform in the transmission power amplifier 30 are prevented.
  • FIG. 7 shows the relationship between the transmission average value information S8 and the transmitter output S5. If the transmission average value information S8 is equal to or less than the maximum transmission power value S9, the transmitter output S5 also increases if the transmission average value information S8 increases. If the transmitter average value information S 8 becomes larger than the maximum transmission power value S 9, the transmitter output S 5 becomes constant even if the transmission average value information S 8 increases.
  • the operation of the present invention will be described using specific numerical values.
  • the maximum transmission power value S9 is +4 dBm.
  • the transmission output signal S5 is output at +1 dBm because the transmission average value information S8 is equal to or less than the maximum transmission power value S9.
  • the ATT section 14 is variable by the control signal S10 output from the controller 19. Is reduced by 0.5 dB, and the transmitter output signal S 5 is kept at +1 dBm.
  • the variable A TT unit 14 is controlled by the control signal S 10 output from the comparison / control unit 19.
  • the attenuation increases by +1 dBm and the transmitter output signal S5 is rounded to +4 dBm.
  • the transmission average value information S 8 exceeds the maximum transmission power value S 9 at the base stations 111, the transmission power is rounded up by the maximum transmission power, and the pilot power is reduced.
  • the area covered by 1 1 changes from area Z 1 to smaller area Z l 1. Therefore, the area where the mobile station 4 exists is an area (Z 2) of only the base stations 112, and the mobile station 4 stops communicating with the base station 111 and communicates only with the base station 112. It will be.
  • the base station 1-1 reduces the number of communication channels by one, and the transmission average value information S8 decreases. If the transmission average value information S8 falls below the maximum transmission power value S9 again, the area covered by the base stations 111 will be expanded. According to the present invention, the area covered by the base station can be automatically scaled in this manner.
  • FIG. 9 is a block diagram of a base station transmitting apparatus according to a second embodiment of the present invention.
  • the base station transmitting apparatus of this example is compared with the base station transmitting apparatus (first embodiment) shown in FIG. 1 by the comparison / control unit 19 (transmitter 10). The difference is that the control unit 21 (transmitter 20) is replaced.
  • the comparison / control unit 21 uses the transmission average value information S8 of an arbitrary constant time (320 ms) cycle output from the addition / synthesis unit 11 as a first input and is output from the AZD conversion unit 18 If the transmission power data S7 is the second input and the transmission average value information S8 is equal to or less than the maximum transmission power value (constant) S9, the transmission power data S7 is arbitrarily set (320 ms) The average transmission power data S11 obtained by accumulating and averaging in the cycle is compared with the transmission average value information S8. The data for correcting the difference is output, and the control signal S10 for controlling the variable ATT unit 14 is generated.
  • the upper control device (upper control station) not shown A notification signal S22 for notifying the user is output.
  • the threshold value S21 is set to a value specified in advance in a storage unit (not shown), similarly to the maximum transmission power value S9.
  • the higher-level control device (upper-level control station) that has received the notification signal S22 rejects the increase in the number of traffic channels and rejects the increase in power in downlink power control, and thereby confirms that the total power of the traffic channels will increase. prevent.
  • the cell radius may be reduced and a non-communication zone may be formed. If the second embodiment is used, the reduction of the cell radius can be suppressed at a certain place, and the above problem can be solved.
  • Step C1 and step C2 are added to the operation flow of the comparison / control section 19 of the first embodiment of the present invention shown in FIG.
  • step A1 when the input transmission average value information S8 is compared with the maximum transmission power value S9, and the input transmission average value information S8 power S is larger than the maximum transmission power value S9.
  • the transmission average value information S 8 is compared with the threshold value S 21 (step C 1), and if the transmission average value information S 8 is larger than the threshold value S 21, the notification signal S is sent to the higher-level control device (upper-level control station).
  • Output 2 2 The host controller receives the notification signal S22 for a certain period of time (the average value calculation cycle of the transmission average value information S8 and the average transmission power data S11: 320 ms). Controls the numerical regulation processing and the downlink power control processing so that the total power of the downlink traffic channel in the corresponding base station does not increase.
  • the transmission power is controlled by controlling the variable attenuation means in the transmission device when the retransmission power approaches the limit of the transmission amplification means due to an increase in the number of communication channels or an increase in the communication channel power due to downlink transmission power control. Is maintained at the upper limit value and the transmission amplification means is protected. By this control, the transmission amplification means is not required to have an output exceeding its capability, and can avoid distortion of the transmission waveform.
  • the transmission power output from the transmission device is always constant, so that the pilot power decreases and the cell radius decreases each time the transmission power of the communication channel increases. .
  • the mobile station (terminal) that has been near the cell boundary automatically hands off to another cell, so that the communication channel power of the cell can be automatically reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Description

明 細 書 基地局送信装置とそれを用いた C D M A移動通信システム 技術分野
本発明は基地局送信装置とそれを用いた C D MA移動通信システムに関し、特に全 送信チャネルの送信拡散データを加算合成して量子化された振幅データを生成しァ ナログ変換して無糸泉搬送波周波数の変調出力信号とし、 この変調出力信号をレベル減 衰量の制御可能な可変減衰手段を通して送信増幅手段に入力し、電力増幅を行い下り 送信出力として電波送信する基地局送信装置と、 それを用いた C D MA移動通信シス テムとに関する。 背景技術
C D MA方式では、通常の情報変調の後に高速な伝送速度の拡散符号を用いた拡散 変調を行 ヽ伝送する。受信側では送信側と同じ拡散符号を用いて拡散復調を行うこと によリ元の情報帯域幅に戻して通常の情報復調を行う。各利用者には相互に直交した 拡散符号系列が割リ当てられ、複数の移動局が同一の周波数帯域を共有することとな る。 このため、 ある移動局にとっての希望信号は他の移動局にとっては干渉信号とな る。
例えば、 同一基地局 Xから移動局 Aへの通話と、 移動局 Bへの通話とを同時に行つ たとき、 移動局 Aは自局への通話を希望波信号 S Aとして受信し、 移動局 Bへの送信 信号を干渉波信号 S Bとして受信する。 これら受信信号成分 S Aと S Bとは、 当然基 地局 Xから移動局 Aまで同一の伝送路を通って受信されるので、 変動特性は同一であ リ、移動局における希望波受信電力対干渉波受信電力は移動局の位置によらず一定で ある。 しかし、 移動局 Aがある基地局 Xから希望波信号を受信し、 他の基地局 Yから干渉 波信号を受信するとき、 基地局 Xから送信された信号成分は、 基地局 Yから送信され た信号成分と異なる伝送路を通って移動局 Aに到達する。 その結果、 それらの信号成 分の変動特性は異なるので、セル境界周辺に位置する移動局 Aは他の基地局 Yからの 干渉波信号の影響を大きく受けることとなる。
このような場合には、 セル境界周辺に位置する移動局に対しては基地局の送信電力 を基準電力より大きくすることによって通話品質の劣化を防ぐことができる。 また、 複数の強いマルチパス信号が到来する場所に位置する移動局に対しても、基地局の送 信電力を基準電力よりも増加させることによって通話品質の劣化を防ぐことができ る。
一方、 その他の通話品質が良好な移動局に対しては基地局の送信電力を基準電力よ リも減少させる必要がある。 これは、 基地局と通信中の他の移動局が受信する干渉波 電力を減少させるためである。
以上のような理由から、サービスエリァ内で均一な通話品質を得るためには基地局 の下り (基地局から移動局への送信) 送信電力制御が必要となる。
一方、基地局における送信電力増幅器のダイナミックレンジには限界があり過電力 が入力された場合は出カスペクトラムの歪みや増幅器の破壊につながる。 このため、 通常 1キヤリァあたりの通話チャネル数に規制をかけ、 それ以上の通話チャネルの割 当は行わないものとしている。
しかしながら上述の下り送信電力制御を実施した場合、通話チャネルの送信電力は 利用者ごとに異なり、 一定数の通話チャネルの規制は意味をなさなくなる。 送信電力 制御の結果、 全通話チャネルが最大送信電力となった場合を考慮して、 1キャリアあ たりの通話チャネル数を制限してしまえば、 それだけトラフィック容量の少ないシス テムとなる。
本発明は、 直接拡散 C D MA方式を用いた移動通信システムにおいて、 基地局送信 装置が行う通話チャネル下り送信電力制御中でも送信増幅器の過電力入力による破 壊を防ぎ、 かつ送信スペクトラムの歪みを防ぐことを可能とするとともに、 基地局が カバ一するエリアを通話チャネルの総電力に応じて自動拡大縮小することを可能と するものである。 発明の開示
本発明に係る基地局送信装置は、 直接拡散 C D MA方式を用いた移動通信システム の基地局に用いられ、全送信チャネルの送信拡散デ一タを加算合成して量子化された 振幅データを生成しその値に応じたレベルのアナ口グ信号に変換して無線搬送波周 波数の変調出力信号とし、 この変調出力信号を送信増幅手段により電力増幅し下り送 信出力として電波送信する基地局送信装置において、 前記送信増幅手段の入力側に、 前記変調出力信号のレベル減衰量の制御可能な可変減衰手段を備え、前記振幅データ の値とあらかじめ指定された最大値とを比較し、前記振幅デ一タの値が前記最大値を 超えた程度に応じて前記可変減衰手段のレベル減衰量を増加させることにより、前記 送信増幅手段の入力が限界値を越えないようにし、 下り送信電力制御中においても、 過電力入力による前記送信増幅手段の破壊及び送信スペクトラムの歪み発生を防止 することを特徴とする。
他の側面において、 本発明に係る基地局送信装置は;直接拡散 C D MA方式を用い た移動通信システムの基地局に用いられ、全送信チャネルの送信拡散データを加算合 成して量子化された振幅データを生成しその値に応じたレベルのアナログ信号に変 換して無線搬送波周波数の変調出力信号とする送信機と、前記送信機の出力を電力増 幅し移動局に対する送信出力として電波送信する送信電力増幅器とを備えた基地局 送信装置において;前記送信機が、 全送信チャネルの送信拡散データを加算合成し量 子化された振幅データを生成する加算合成手段と;前記振幅データをその値に応じた レベルのアナログべ一スバンド信号に変換してから無線搬送波周波数に対し変調を 行い変調出力信号とする変調手段と;入力される制御信号の値に応じて前記変調出力 信号のレベルの減衰量の制御を行う可変減衰手段と;前記可変減衰手段によリレベル 制御された変調出力信号を送信機出力として前記送信電力増幅器へ出力するための 電力増幅を行う増幅手段と;前記送信電力増幅手段への送信機出力のレベルを監視し 対応するディジタル値である送信電力データとして出力する送信電力検出手段と;前 記加算合成手段からの振幅データの値の所定時間ごとの平均値を算出し要求された 送信電力レベルの平均値を示す送信平均値とする第 1の平均値算出手段と;前記送信 電力検出手段からの送信電力データの値の所定時間ごとの平均値を算出し実際の送 信電力レベルの平均値を示す平均送信電力値とする第 2の平均値算出手段と;前記第 1の平均値算出手段からの送信平均値をあらかじめ指定された最大送信電力値と比 較し、 前記送信平均値が前記最大送信電力値以下の場合は、 前記可変減衰手段への前 記制御信号として前記送信平均値と前記第 2の平均値算出手段からの平均送信電力 値との差分を補正するためのデータを出力し、前記送信平均値が前記最大送信電力値 よリ大きい場合は、前記制御信号として前記最大送信電力値と前記平均送信電力値と の差分を補正するためのデータを出力する比較制御手段とを有する。
本発明に係る C D MA移動通信システムは、上記の基地局送信装置を用いた複数の 基地局と、 前記各基地局が形成するセル間を移動し、 自局存在セルの検出及び該当セ ルを管轄する基地局との間で送信電力制御を行いながら通話処理を行う移動局とを 備え、 前記基地局が、 前記送信平均値が前記最大送信電力値より大きい場合に、 前記 移動局に対して送信する通話チャネルの合計電力の上昇分に応じて、 パイロットチヤ ネルの電力を減少させることにより、 セルサイズを縮小させることを特徴とする。 上述したように、 本発明では、 直接拡散 C D MA方式を用いた移動通信システムの 基地局送信装置において、 全送信チャネルの加算合成後の振幅データをモニタして、 送信機出力が規定した最大値を越えないように送信機内の可変減衰器が制御される。 これにより、 基地局送信装置が行う下り送信電力制御中においても、 過電力入力によ る送信増幅器 (送信電力増幅器) の破壊を防ぎ、 かつ送信スペクトラムの歪みを防ぐ ことができる。 さらに、 本発明では、 通話チャネルの合計電力が上昇したとき、 パイ ロットチャネルの電力が自動的に減少する。 これにより、 セル半径を縮小することが できる。 よって、 セル境界付近の移動機は他のセルにハンドオフするので、 通話チヤ ネルが逼迫していたセルは自然に通話チャネルを減少させることができる。 図面の簡単な説明
第 1図は、 本発明の基地局送信装置の一実施形態を示すプロック構成図であリ、 第 2図は、 第 1図の加算合成部の構成例を示すプロック図であリ、
第 3図は、 第 2図の送信平均値情報生成部の構成例を示すプロック図であリ、 第 4図は、 第 1図の比較 ·制御部の構成例を示すブロック図であり、
第 5図は、 第 4図の平均値部の構成例を示すプロック図であリ、
第 6図は、 第 1図の比較 ·制御部の動作フロー図であり、
第 7図は、 送信平均値情報と送信機出力との関係を示す図であリ、
第 8図は、基地局からの送信電力に応じたセルのエリアサイズの変化を説明するため の図
であり、
第 9図は、 本発明の基地局送信装置の第 2の実施形態を示すプロック構成図であリ、 第 1 0図は、 第 9図の比較 '制御部の動作フロー図である。 発明を実施するための最良の形態
次に、 本発明の実施の形態について図面を参照して詳細に説明する。
第 1図は本発明の基地局送信装置の一実施形態を示すプロック構成図であリ、基本 的構成を示している。 第 1図において、 本例の基地局送信装置は、 送信すべき信号を 変調し無線周波数信号 (送信機出力 S 5 ) として出力する送信機 1 0と、 送信機 1 0 の出力 S 5を電力増幅しアンテナ 3 1から電波として移動局に対し送信する送信電 力増幅器 3 0とから成る。
送信機 1 0は、 パイロットチャネル, 制御チャネル, 及び複数の通話チャネル各々 の拡散送信データ S 1を加算することで多重を行い多重信号を生成して量子化され た振幅データ S 2を生成するとともに、 振幅データ S 2を任意の一定時間 (例えば 3 2 0 m s ) 累積し平均値を算出し、 要求された送信電力 (送信機出力) レベルの平均 値を示す送信平均値情報 S 8を求める加算合成部 1 1と、加算合成部 1 1から提供さ れる振幅データ S 2を入力としてアナログべ一スバンド信号 S 3に変換する D /A 変換部 1 2と、 ローカル発振器 1 3 1と変調器 1 3 2とから構成され、 アナログべ一 スバンド信号 S 3とローカル発振器 1 3 1にて生成する搬送波により変調出力信号 S 4を出力する変調部 1 3と、 変調出力信号 S 4を入力として後述する制御信号 S 1 0により減衰量の制御を行い送信機出力レベルの制御を行う可変 A T T (減衰器)部 1 4と、可変 A T T部 1 4にて電力レベル制御された変調出力信号 S 4を入力として 電力増幅を行う増幅部 1 5と、 増幅部 1 5の出力を二分配し、 一方を送信機出力 S 5 として出力し、 他方を検波部 1 7に出力する H Y B (分配器) 1 6と、 H Y B 1 6の 出力の検波を行い電圧情報である検波出力 S 6を出力する検波部 1 7と、検波出力 S 6を量子化しディジタルの送信電力データ S 7に変換する AZD変換部 1 8と、加算 合成部 1 1から出力される送信平均値情報 S 8を第 1の入力とし、 AZD変換部 1 8 から出力される送信電力データ S 7を第 2の入力とし、 あらかじめ指定された最大送 信電力値 (送信機出力 S 5の最大許容レベル (送信電力増幅器 3 0の入力限界) に相 当するディジタルの定数) S 9を第 3の入力として、 可変 A T T部 1 4の制御を行う 制御信号 S 1 0の生成を行う比較 ·制御部 1 9とを備えている。
この比較 ·制御部 1 9は、送信平均値情報 S 8力 ^最大送信電力値 S 9以下の場合は、 送信電力データ S 7を任意の一定時間 (この場合、 3 2 0 m s ) 累積して得た平均値 (実際の送信電力 (送信機出力) レベルの平均値を示す平均送信電力データ S 1 1 ) と送信平均値情報 S 8との比較を行い、 その差分を補正するためのデータを出力し、 可変 A T T部 1 4の減衰量を制御するための制御信号 S 1 0の生成を行う。送信平均 値情報 S 8が最大送信電力値 S 9よリ大きい場合は、 送信電力データ S 7の平均値 (平均送信電力データ S 1 1 ) と最大送信電力値 S 9との差分を補正するためのデー タを出力し、 制御信号 S 1 0の生成を行う。
このように送信機 1 0は、 通常は、 ある一定時間 (3 2 0 m s ) を周期として、 加 算合成部 1 1にて算出された送信平均値情報 S 8と検波出力 S 6を量子化した送信 電力データ S 7の平均値 (平均送信電力データ S 1 1 ) とを比較 ·制御部 1 9にて比 較し、 その差分を補正するためのデータを出力して可変 A T T部 1 4の制御を行うこ とで増幅部 1 5の温度変化や経年変化による利得変動の補償を行う。
送信平均値情報 S 8力 ^最大送信電力値 S 9を上回った時に、送信平均値情報 S 8と 平均送信電力データ S 1 1とを比較することを止め、 最大送信電力値 S 9と平均送信 電力データ S 1 1とを比較して、 その差分を補正するためのデータを出力して可変 A T T部 1 4の減衰量制御を行う。
これにより送信機出力 S 5は規定した最大値を上回ることなく、 送信増幅器 (送信 電力増幅器 3 0及び増幅器 1 5 )への過大入力による破壊や送信スペクトラムの歪み を防ぐことができる。 また、 このとき、 通話チャネルの電力増加に伴いパイロット電 力が減少することとなり、 セル半径が縮小される。 これによつてセル境界付近の移動 局 (移動機) は他のセルにハンドオフすることとなり、 通話チャネルを減少させ、 結 果的に通話チヤネルの電力を減少させることができる。
次に第 2図を参照して加算合成部 1 1について詳細な説明をする。 第 2図において、 加算合成部 1 1は、 各送信チャネルの拡散送信データ S 1を入力とし、 入力された全 チャネルを加算して振幅データ S 2を出力する複数の加算器 1 1 1と、 振幅データ S 2を入力として任意の一定時間における振幅データ S 2の累積を行い、 送信平均値情 報 S 8を算出し出力する送信平均値情報生成部 1 1 2とを有している。 次に第 3図を参照して送信平均値情報生成部 1 1 2の詳細な説明をする。第 3図に おいて、 送信平均値情報生成部 1 1 2は、 振幅データ S 2を蓄積するバッファ 1 1 2 1と、 設定された任意の一定時間 (3 2 O m s ) を計測するタイマ 1 1 2 2と、 タイ マ 1 1 2 2に連動したバッファ 1 1 2 1のタイミング制御を行う制御部 1 1 2 3と、 タイマ 1 1 2 2に連動して任意の時間内における振幅データ S 2の累積と平均値計 算を行う演算部 1 1 2 4とを有している。
次に第 4図を参照して比較 ·制御部 1 9について詳細な説明をする。 第 4図におい て、 比較 ·制御部 1 9は、 入力される送信平均値情報 S 8を蓄積するバッファ 1 9 1 と、 同時に入力される送信電力データ S 7を任意の一定時間蓄積し平均値 (平均送信 電力データ S 1 1 ) を算出する平均値部 1 9 2と、 ノ ッファ 1 9 1と平均値部 1 9 2 とで蓄積することでタイミング同期確立された平均値情報 S 8と送信電力データ S 7との比較、 また最大送信電力値 S 9と送信平均値情報 S 8との比較を行う比較器 1 9 3と、比較器 1 9 3の出力をディジタル一アナログ変換し制御信号 S 1 0として出 力する D/A変換部 1 9 4と、比較器 1 9 3の出力に対応する DZA変換部 1 9 4に 与えられる振幅データを記憶しているデータメモリ 1 9 5と、 データの流れを制御す る制御部 1 9 6とを有している。 なお、 最大送信電力値 S 9は、 図示していない記憶 手段にあらかじめ指定された値が設定されている。
次に第 5図を参照して平均値部 1 9 2の詳細な説明をする。 第 5図において、 平均 値部 1 9 2は、 送信電力データ S 7を蓄積するバッファ 1 9 2 1と、 設定された任意 の一定時間 (3 2 0 m s ) を計測するタイマ 1 9 2 2と、 タイマ 1 9 2 2に連動した バッファ 1 9 2 1のタイミング制御を行う制御部 1 9 2 3と、 タイマ 1 9 2 2に連動 して任意の一定時間内における送信電力データ S 7の累積と平均値計算を行い平均 送信電力データ S 1 1を出力する演算部 1 9 2 4とを有している。
次に、 第 1図〜第 5図を参照して本発明の動作について詳細に説明する。
各送信チャネルの拡散送信データ S 1は、送信機 1 0の加算合成部 1 1にて加算さ れて全ての送信チャネルの振幅情報を含んだ振幅データ S 2を生成する。振幅データ S 2は、 加算合成部 1 1の中の送信平均値情報生成部 1 1 2にて、 ある任意の一定時 間 (本例の場合、 3 2 0 m s ) ごとの平均電力値 (振幅データの値に応じた送信機出 力として要求された送信電力レベルの平均値) が求められ、 送信平均値情報 S 8とし て出力される。
つまり送信平均値情報生成部 1 1 2では、振幅データ S 2をタイマ 1 1 2 2で規定 される任意の一定時間分だけバッファ 1 1 2 1に取り込み、演算部 1 1 2 4で積分を 行うことによって、 送信平均値情報 S 8を得る。 この送信平均値情報 S 8は、 後に説 明するように、 比較 ·制御部 1 9にて使用される。
一方、 加算合成部 1 1から出力された振幅データ S 2は、 D ZA変換部 1 2にてデ イジタルーアナ口グ変換されて振幅データの値に応じたレベルのアナログべ一スバ ンド信号 S 3となる。 アナログベースバンド信号 S 3は、 変調部 1 3内部の変調器 1 3 2にて、 同じく変調部 1 3内部のローカル発振器 1 3 1にて生成されるローカル信 号とミックスされて変調出力信号 S 4となり出力される。
変調出力信号 S 4は、制御信号 S 1 0により減衰量が変化する可変 A T T部 1 4に 入力され、 レベル制御 (減衰制御) を受けた後、 増幅部 1 5に入力される。 増幅部 1 5は、 レベル制御された変調出力信号 S 4を送信機出力として送信電力増幅器 3 0へ 出力するための電力増幅を行う。
増幅部 1 5にて電力増幅された変調出力信号 S 4は、 H Y B 1 6にて送信機出力 S 5と、 検波部 1 7への出力の 2つに分配される。
検波部 1 7は入力された信号を、 包絡線検波等の手段により検波を行い検波出力 S 6を出力する。 検波出力 S 6は、 AZD変換部 1 8に入力されてアナログ—ディジタ ル変換されて送信電力データ S 7として出力される。 すなわち、 この送信電力データ S 7は、 実際の送信機出力の電力レベルに対応するディジタル値である。
比較 ·制御部 1 9は、 送信電力データ S 7、 送信平均値情報 S 8、 および最大送信 電力値 S 9を入力とする。 送信電力データ S 7から、 任意の一定時間ごとの平均値で ある平均送信電力データ S 1 1を求める。最大送信電力値 S 9は送信電力増幅器 3 0 の入力限界値を設定した固定値とする。送信平均値情報 S 8力 ^最大送信電力値 S 9以 下である場合と、送信平均値情報 S 8が最大送信電力値 S 9よリ大きい場合とで動作 を異にする。
前者の場合 (送信平均値情報 S 8が最大送信電力値 S 9以下) は、 従来技術 (特許 第 2 8 5 6 2 5 0号公報参照) にあるように、 増幅部 1 5の温度による特性の変動や 経年変化を補償する動作として、送信平均値情報 S 8と平均送信電力データ S 1 1の 差分 Δ ρの検出を行い、 Δ ρが最小になるように可変 Α Τ Τ部 1 4の減衰量を制御す る制御信号 S 1 0を出力する。
後者の場合 (送信平均値情報 S 8が最大送信電力値 S 9より大きい) が本発明の動 作であり、平均送信電力データ S 1 1と最大送信電力値 S 9との差分 A mの検出を行 レ、、 Δ ιηが最小になるように可変 A T T部 1 4の減衰量を制御する制御信号 S 1 0を 出力する。
次に、 比較 ·制御部 1 9の具体的な動作を第 6図のフロー図を参照して説明する。 比較 ·制御部 1 9は、 入力された送信平均値情報 S 8と最大送信電力値 S 9とを比 較する(ステップ A 1 )。送信平均値情報 S 8の値が最大送信電力値 S 9以下の場合、 入力された送信電力データ S 7を累積して平均化を行い平均送信電力データ S 1 1 を算出した後 (ステップ A 2 )、 送信平均値情報 S 8と平均送信電力データ S 1 1の 差分 Δ Ρを算出する (ステップ A 3 )。 Δ ρが最小となるように可変 Α Τ Τ部 1 4の 減衰量を制御することで増幅部 1 5の温度による特性の変動や経年変化を補償する (ステップ A 4 )。
一方、 入力された送信平均値情報 S 8力最大送信電力値 S 9より大きい場合、 すな わち、 送信電力増幅器 3 0の入力限界を越えてしまうような場合、 ステップ A 2の処 理と同様に入力された送信電力データ S 7から平均送信電力データ S 1 1を算出し た後 (ステップ B 2)、 最大送信電力値 S 9と平均送信電力データ S 1 1の差分 Δπι を算出し (ステップ Β 3)、 Διηが最小となるように可変 ΑΤΤ部 14の減衰量を制 御する (ステップ Β4)。
これにより、 送信平均値情報 S 8力最大送信電力値 S 9を上回っても、 増幅部 15 への入力電力は一定値に抑えられ、送信機出力 S 5は最大送信電力値 S 9を越えるこ とはなく、 送信電力増幅器 30への過電力入力を防ぎ、 送信電力増幅器 30の入力過 大による破壊と、送信電力増幅器 30における送信波形の歪み発生とを防ぐこと力可 倉 となる。
第 7図に送信平均値情報 S 8と送信機出力 S 5との関係を示す。送信平均値情報 S 8が最大送信電力値 S 9以下の場合は送信平均値情報 S 8が増加すれば送信機出力 S 5もまた増加する。送信機平均値情報 S 8力最大送信電力値 S 9より大きくなつた 場合は、 送信平均値情報 S 8力増加しても送信機出力 S 5は一定となる。
ここで、 本発明の動作を具体的な数値を用いて説明する。 送信平均値情報 S 8と送 信機出力信号 S 5の電力の関係を示す第 7図において、最大送信電力値 S 9を + 4 d Bmとする。 今、 送信平均値情報 S 8が + 1 dBmであるとき、 送信平均値情報 S 8 は最大送信電力値 S 9以下であるため送信機出力信号 S 5は + 1 dBmで出力され る。 仮に増幅部 1 5の温度変動により送信機出力信号 S 5が +0. 5 dBmに一時的 になったとしても、 比較.制御部 1 9から出力される制御信号 S 10により可変 AT T部 14の減衰量が 0. 5 dB減らされて、 送信機出力信号 S 5は + 1 dBmに保た れる。 また、 送信平均値情報 S 8が + 5 dBmと算出された場合は、 最大送信電力値 S 9より大きいため、 比較 ·制御部 1 9から出力される制御信号 S 10により可変 A TT部 14の減衰量が + 1 dBm増加して、 送信機出力信号 S 5は + 4 d Bmに丸め 込まれる。
次に、 送信平均値情報 S 8が最大送信電力値 S 9を上回った場合、 すなわち本発明 の機能が実施された場合のセルの変化を第 8図を使って説明する。 第 8図において、 隣接する二つの基地局 1— 1, 1 _ 2がカバ一するエリアをそれ ぞれエリア Z l, Z 2とする。 今、 移動局 4がエリア Z 1とエリア Z 2との重複する エリア Z 3にあるものとする。 この時、 移動局 4は基地局 1一 1と基地局 1— 2との 両方と通信を行っている。
例えば、 基地局 1 一 1において、 送信平均値情報 S 8が最大送信電力値 S 9を上回 つたとすると、 送信電力が最大送信電力により丸め込まれ、 パイロット電力が減少す ることとなり、 基地局 1一 1のカバーするエリアはエリア Z 1から、 それより小さな エリア Z l 1へと変化する。 したがって、 移動局 4が存在するエリアは、 基地局 1 一 2のみのェリア ( Z 2 ) となり、 移動局 4は基地局 1一 1との通信を止めて基地局 1 一 2とのみ通信を行うこととなる。
これにより、 基地局 1— 1は通話チャネルを一つ減らすこととなり、 送信平均値情 報 S 8力 ^ '減少することとなる。再度送信平均値情報 S 8が最大送信電力値 S 9を下回 れば、 基地局 1一 1のカバ一するエリアは拡大することとなる。 本発明を用いれば、 このようにして基地局のカバ一するエリアを自動的に拡大縮小することが可能とな る。
次に本発明の第 2の実施形態について図面を参照して説明する。
第 9図は本発明の基地局送信装置の第 2の実施形態を示すプロック構成図である。 第 9図において、 本例の基地局送信装置は、 第 1図に示した基地局送信装置 (第 1の 実施形態) に対して、 比較 ·制御部 1 9 (送信機 1 0 ) が比較 ·制御部 2 1 (送信機 2 0 ) に置き換わっている点が異なる。
比較 ·制御部 2 1は、加算合成部 1 1から出力される任意の一定時間( 3 2 0 m s ) 周期の送信平均値情報 S 8を第 1の入力とし、 AZD変換部 1 8から出力される送信 電力データ S 7を第 2の入力として、 送信平均値情報 S 8が最大送信電力値 (定数) S 9以下の場合は、 送信電力データ S 7を任意の一定時間 (3 2 0 m s ) 周期で累積 し平均化して得た平均送信電力データ S 1 1と送信平均値情報 S 8との比較を行い、 その差分を補正するためのデータを出力し可変 A T T部 1 4の制御を行う制御信号 S 1 0の生成を行う。
送信平均値情報 S 8が最大送信電力値 (定数) S 9より大きい場合は、 平均送信電 力データ S 1 1と最大送信電力値 S 9との差分を補正するためのデータを出力し可 変 A T T部 1 0 6の制御を行う制御信号 S 1 0の生成を行う。
さらに、 送信平均値情報 S 8が閾値 S 2 1 (閾値 S 2 1は最大送信電力値 S 9より 大きい値) より大きい場合は、 図示していない上位制御装置 (上位制御局) に対して その旨を通知する通知信号 S 2 2を出力する。 なお、 この閾値 S 2 1も、 最大送信電 力値 S 9と同様に、 図示していない記憶手段に、 あらかじめ指定された値が設定され ている。
通知信号 S 2 2を受け取った上位制御装置 (上位制御局) は、 通話チャネル数の増 加の拒否と下り電力制御における電力増加の拒否を行うことで通話チャネルの総電 力が増加することを防ぐ。 本発明の第 1の実施形態の場合、 通話チャネルの総電力が 増加し続けるとセル半径の縮小が進み不通話地帯が形成される場合がある。第 2の実 施形態を用レ、ればセル半径の縮小はある一定の所で抑えることが可能となり、上記問 題を解決することができる。
次に本発明の第 2の実施形態の比較 ·制御部 2 1の動作について第 1 0図のフロー 図を参照して説明する。 第 6図に示した本発明の第 1の実施形態の比較'制御部 1 9 の動作フローに対して、 ステップ C 1とステップ C 2とが追加されている。
ステップ A 1の処理において、 入力された送信平均値情報 S 8と最大送信電力値 S 9とを比較した結果、入力された送信平均値情報 S 8力 S最大送信電力値 S 9より大き い場合、 送信平均値情報 S 8を閾値 S 2 1と比較して (ステップ C 1 )、 送信平均値 情報 S 8が閾値 S 2 1より大きい場合は、 上位制御装置 (上位制御局) に通知信号 S 2 2を出力する。 上位制御装置は通知信号 S 2 2を受信してからある一定時間 (送信 平均値情報 S 8及び平均送信電力データ S 1 1の平均値算出周期: 3 2 0 m s ) の間 は、 該当基地局における下り通話チャネルの総電力が増加しないように、 数的規制処 理と下り電力制御処理とを制御する。 産業上の利用可能性
本発明は、通話チャネル数の増加や下り送信電力制御による通話チヤネル電力の増 加によリ送信電力が送信増幅手段の限界に近づいた時、送信装置内の可変減衰手段を 制御して送信電力を上限値に保ち、 送信増幅手段を保護する点で有用である。 この制 御により送信増幅手段は、 その能力を越えた出力を要求されることはなく、 送信波形 の歪みを避けることができる。
また、 本発明に従う送信電力規制中は、 送信装置から出力される送信電力は常に一 定となるため、 通話チャネルの送信電力力 曽加する度にパイロット電力が減少し、 セ ル半径カ縮小する。 これにより自動的にセル境界付近にいた移動局 (端末) は他のセ ルにハンドオフするため、該セルの通話チャネル電力を自動的に減少させることがで さる。

Claims

請 求 の 範 囲
1 . 直接拡散 C DMA方式を用いた移動通信システムの基地局に用いられ、 全送信 チヤネルの送信拡散デ一タを加算合成して量子化された振幅デ一タを生成しその値 に応じたレベルのアナログ信号に変換して無線搬送波周波数の変調出力信号とし、 こ の変調出力信号を送信増幅手段により電力増幅し下り送信出力として電波送信する 基地局送信装置において、
前記送信増幅手段の入力側に、前記変調出力信号のレベル減衰量の制御可能な可変 減衰手段を備え、 前記振幅データの値とあらかじめ指定された最大値とを比較し、 前 記振幅データの値が前記最大値を超えた程度に応じて前記可変減衰手段のレベル減 衰量を増加させることにより、 前記送信増幅手段の入力が限界値を越えないようにし、 下り送信電力制御中においても、過電力入力による前記送信増幅手段の破壊及び送信 スペクトラムの歪み発生を防止することを特徴とする基地局送信装置。
2 . 前記送信チャネルは、 通話チャネル, 制御チャネル, 及びパイロットチャネル を含み、 前記振幅データの値が前記最大値を超えた場合、 通話チャネルの合計電力の 上昇分に応じて、 パイロットチャネルの電力を減少させることにより、 セル半径を縮 小させることを特徴とする請求の範囲第 1項記載の基地局送信装置。
3 . 前記振幅データの値が前記最大値を超えた場合に、 前記レベル値と前記最大値 より大きいあらかじめ指定された閾値とを比較し、前記振幅デ一タの値が前記閾値よ り大きい場合は、上位制御装置に対してその旨を通知する通知信号を出力することを 特徴とする請求の範囲第 1項記載の基地局送信装置。
4 . 直接拡散 C D MA方式を用いた移動通信システムの基地局に用いられ、 全送信 チャネルの送信拡散データを加算合成して量子化された振幅データを生成しその値 に応じたレベルのアナログ信号に変換して無線搬送波周波数の変調出力信号とする 送信機と、前記送信機の出力を電力増幅し移動局に対する送信出力として電波送信す る送信電力増幅器とを備えた基地局送信装置において、 前記送信機が、 全送信チヤ ネルの送信拡散データを加算合成し量子化された振幅データを生成する加算合成手 段と、 前記振幅データをその値に応じたレベルのアナログべ一スバンド信号に変換 してから無線搬送波周波数に対し変調を行い変調出力信号とする変調手段と、 入力 される制御信号の値に応じて前記変調出力信号のレベルの減衰量の制御を行う可変 減衰手段と、
前記可変減衰手段によリレベル制御された変調出力信号を送信機出力として前記 送信電力増幅器へ出力するための電力増幅を行う増幅手段と、
前記送信電力増幅手段への送信機出力のレベルを監視し対応するディジタル値で ある送信電力データとして出力する送信電力検出手段と、
前記加算合成手段からの振幅データの値の所定時間ごとの平均値を算出し要求さ れた送信電力レベルの平均値を示す送信平均値とする第 1の平均値算出手段と、 前記送信電力検出手段からの送信電力データの値の所定時間ごとの平均値を算出 し実際の送信電力レベルの平均値を示す平均送信電力値とする第 2の平均値算出手 段と、
前記第 1の平均値算出手段からの送信平均値をあらかじめ指定された最大送信電 力値と比較し、 前記送信平均値が前記最大送信電力値以下の場合は、 前記可変減衰手 段への前記制御信号として前記送信平均値と前記第 2の平均値算出手段からの平均 送信電力値との差分を補正するためのデータを出力し、前記送信平均値が前記最大送 信電力値よリ大きい場合は、前記制御信号として前記最大送信電力値と前記平均送信 電力値との差分を補正するためのデータを出力する比較制御手段とを有することを 特徴とする基地局送信装置。
5 . 前記比較制御手段が、 前記最大送信電力値よリ大きいあらかじめ指定された閾 値を入力し、 前記送信平均値と前記最大送信電力値との比較の際、 前記送信平均値が 前記最大送信電力値より大きい場合は、 さらに前記送信平均値と前記閾値との比較を 行い、 前記送信平均値が前記閾値より大きい場合は、 上位制御装置に対してその旨を 通知する通知信号を出力することを特徴とする請求の範囲第 4項記載の基地局送信
6 . 請求の範囲第 4項記載の基地局送信装置を用いた複数の基地局と、 前記各基地 局が形成するセル間を移動し、 自局存在セルの検出及び該当セルを管轄する基地局と の間で送信電力制御を行いながら通話処理を行う移動局とを備え、 前記基地局が、 前 記送信平均値が前記最大送信電力値より大きい場合に、前記移動局に対して送信する 通話チャネルの合計電力の上昇分に応じて、 パイロットチャネルの電力を減少させる ことにより、 セルサイズを縮小させることを特徴とする C D M A移動通信システム。
7 . 請求の範囲第 5項記載の基地局送信装置を用いた複数の基地局と、 前記各基地 局が形成するセル間を移動し、 自局存在セルの検出及び該当セルを管轄する基地局と の間で送信電力制御を行いながら通話処理を行う移動局と、 これら基地局及び移動局 を管理する上位制御局とを備え、 前記基地局が、 前記送信平均値が前記閾値より大き 、場合に前記上位制御局に対してその旨を通知する通知信号を出力し、前記上位制御 局が、 前記通知信号を受信してから所定時間の間は、 該当基地局における下り通話チ ャネルの総電力が増加しないように、通話チヤネルの数的規制と下り電力制御とを管 理することを特徴とする C D M A移動通信:
PCT/JP2000/004961 1999-07-28 2000-07-26 Emetteur de station de base et systeme mobile de communication amcr incorporant cet emetteur WO2001008329A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/048,059 US7260138B1 (en) 1999-07-28 2000-07-26 Base station transmitter and CDMA mobile communication system comprising the same
AU63139/00A AU6313900A (en) 1999-07-28 2000-07-26 Base station transmitter and cdma mobile communication system comprising the same
BR0013059A BR0013059A (pt) 1999-07-28 2000-07-26 Dispositivo de transmissão de sinal de estação base e sistema de comunicação móvel cdma que utiliza tal dispositivo
CA002380353A CA2380353A1 (en) 1999-07-28 2000-07-26 Signal transmission device of base station and cdma movable communication system using same
EP00949888A EP1199819A4 (en) 1999-07-28 2000-07-26 BASE STATION TRANSMITTER AND MOBILE AMCR COMMUNICATION SYSTEM INCORPORATING THE SAME
NO20020415A NO20020415L (no) 1999-07-28 2002-01-25 Signalsendeutstyr for en basisstasjon, og CDMA- mobilkommunikasjonssystem som utnytter dette

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/214204 1999-07-28
JP21420499A JP3360044B2 (ja) 1999-07-28 1999-07-28 基地局送信装置とそれを用いたcdma移動通信システム

Publications (1)

Publication Number Publication Date
WO2001008329A1 true WO2001008329A1 (fr) 2001-02-01

Family

ID=16651967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004961 WO2001008329A1 (fr) 1999-07-28 2000-07-26 Emetteur de station de base et systeme mobile de communication amcr incorporant cet emetteur

Country Status (10)

Country Link
US (1) US7260138B1 (ja)
EP (1) EP1199819A4 (ja)
JP (1) JP3360044B2 (ja)
KR (1) KR100431912B1 (ja)
CN (1) CN1375140A (ja)
AU (1) AU6313900A (ja)
BR (1) BR0013059A (ja)
CA (1) CA2380353A1 (ja)
NO (1) NO20020415L (ja)
WO (1) WO2001008329A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368208A (en) * 2000-10-18 2002-04-24 Ericsson Telefon Ab L M Controlling power output of a radio frequency transmitter using information relating to statistical variation in the amplitude of the information signal

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218788A (ja) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd セルサーチにおける送信電力制御装置及び方法
CN100358254C (zh) * 2004-08-13 2007-12-26 华为技术有限公司 无线通信系统中功率保护的优化方法
JP4441429B2 (ja) * 2005-03-30 2010-03-31 京セラ株式会社 無線送信装置
JP2007019594A (ja) * 2005-07-05 2007-01-25 Nec Corp 無線基地局及び送信電力調整方法
CN1917403B (zh) * 2005-08-16 2011-07-20 中兴通讯股份有限公司 一种基于fpga实现的保护功放的方法和装置
EP2019491B1 (en) * 2006-05-17 2016-08-03 NEC Corporation Strain control device and method
JP4769657B2 (ja) * 2006-07-28 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
JP4829049B2 (ja) * 2006-08-30 2011-11-30 京セラ株式会社 無線通信方法及び無線基地局
GB0809271D0 (en) * 2008-05-21 2008-06-25 Nokia Corp Transmitter control
CN101446838B (zh) * 2008-12-24 2012-06-27 华为技术有限公司 控制电子设备功耗的方法及装置
JP5480557B2 (ja) * 2009-08-07 2014-04-23 ソフトバンクモバイル株式会社 中継装置及び中継出力レベル調整プログラム
KR101102403B1 (ko) * 2009-12-17 2012-01-05 한국표준과학연구원 진폭변조신호원을 이용한 무선주파수 최대 전력 계측 교정 방법
WO2014198314A1 (en) * 2013-06-13 2014-12-18 Telefonaktiebolaget L M Ericsson (Publ) Attenuator control for a signal processing chain

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489828A (en) * 1987-09-30 1989-04-05 Toshiba Corp Mobile communication system
US5794129A (en) * 1995-07-14 1998-08-11 Nec Corporation Mobile communication system and base station for use therein
EP0887947A2 (en) * 1997-06-27 1998-12-30 Nec Corporation Method of controlling transmitting power of a base station in a CDMA mobile communication system
JPH1174804A (ja) * 1997-08-29 1999-03-16 Mitsubishi Electric Corp 衛星通信用の送信装置
US5930242A (en) * 1996-01-19 1999-07-27 Nec Corporation Transmitting power control method and apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276140A (ja) 1993-03-23 1994-09-30 Oki Electric Ind Co Ltd 基地局回線制御装置
JP3192323B2 (ja) 1994-07-29 2001-07-23 沖電気工業株式会社 電力制御回路
JP2718398B2 (ja) 1995-06-30 1998-02-25 日本電気株式会社 Cdma基地局送信装置
US5715526A (en) 1995-09-08 1998-02-03 Qualcomm Incorporated Apparatus and method for controlling transmission power in a cellular communications system
JP2734448B2 (ja) 1996-07-31 1998-03-30 日本電気株式会社 基地局送信電力制御方式
JP3129285B2 (ja) 1997-06-27 2001-01-29 日本電気株式会社 Cdma移動通信システムにおける基地局送信電力制御方法と基地局送信電力制御装置
JP2856250B2 (ja) 1997-06-27 1999-02-10 日本電気株式会社 コード多重通信方式における増幅部利得補償装置
JP3022481B2 (ja) 1998-05-15 2000-03-21 日本電気株式会社 移動通信呼制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489828A (en) * 1987-09-30 1989-04-05 Toshiba Corp Mobile communication system
US5794129A (en) * 1995-07-14 1998-08-11 Nec Corporation Mobile communication system and base station for use therein
US5930242A (en) * 1996-01-19 1999-07-27 Nec Corporation Transmitting power control method and apparatus
EP0887947A2 (en) * 1997-06-27 1998-12-30 Nec Corporation Method of controlling transmitting power of a base station in a CDMA mobile communication system
JPH1174804A (ja) * 1997-08-29 1999-03-16 Mitsubishi Electric Corp 衛星通信用の送信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1199819A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368208A (en) * 2000-10-18 2002-04-24 Ericsson Telefon Ab L M Controlling power output of a radio frequency transmitter using information relating to statistical variation in the amplitude of the information signal
GB2368208B (en) * 2000-10-18 2004-12-22 Ericsson Telefon Ab L M Communications systems

Also Published As

Publication number Publication date
CN1375140A (zh) 2002-10-16
BR0013059A (pt) 2002-04-09
NO20020415D0 (no) 2002-01-25
JP3360044B2 (ja) 2002-12-24
JP2001044929A (ja) 2001-02-16
KR100431912B1 (ko) 2004-05-17
CA2380353A1 (en) 2001-02-01
US7260138B1 (en) 2007-08-21
AU6313900A (en) 2001-02-13
EP1199819A1 (en) 2002-04-24
NO20020415L (no) 2002-03-27
EP1199819A4 (en) 2003-01-02
KR20020014839A (ko) 2002-02-25

Similar Documents

Publication Publication Date Title
EP0695482B1 (en) Method and apparatus for correction and limitation of transmitter power on the reverse link of a mobile radio telephone system
JP4668486B2 (ja) 隣接チャネル・パワー・リジェクションのために一定のマージンを維持するために最大送信パワーを調整するための方法及びシステム
AU746139B2 (en) Multiple code channel power control in a radio communication system
JP3228741B2 (ja) 電力増幅器の飽和検出および訂正方法および装置
JP2734448B2 (ja) 基地局送信電力制御方式
US20080045271A1 (en) Transmit power control
US8160630B2 (en) Method and arrangement for controlling transmission power and a network element
WO2001008329A1 (fr) Emetteur de station de base et systeme mobile de communication amcr incorporant cet emetteur
US6603825B1 (en) Automatic gain control for a receiver and method therefor
WO2002056504A1 (fr) Emetteur et procede d'emission
JP3834299B2 (ja) 送信装置、無線基地局及びクリッピング方法
KR20010049806A (ko) 과부하 전력 제어 방법
EP1569350A1 (en) Power limit device and digital radio transmitter using the same
JP3717788B2 (ja) 送信電力制御装置及びその送信電力制御方法、並びに移動局装置
EP1675275A2 (en) Apparatus for limiting maximum transmission power and method thereof
JP2003110385A (ja) 通信装置
KR101315478B1 (ko) 단말기 및 그 송신 전력 제어 방법
CA2275156C (en) Reverse link, transmit power correction and limitation in a radiotelephone system
KR100649922B1 (ko) 대역내 및 대역외 신호의 비를 이용한 cdma 신호의 송신
JPH0437322A (ja) ヘテロダイン中継方式
JPH06244662A (ja) 自動利得制御増幅装置
MXPA99001093A (en) Load monitoring and management in a cdma wireless communication system
MXPA00000478A (en) Automatic gain control for a receiver and method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR NO NZ SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2380353

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 516795

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020027001160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 63139/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000949888

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027001160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008131201

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000949888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10048059

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000949888

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027001160

Country of ref document: KR