WO2001005489A1 - Appareil et procede d'epuration de gaz acide - Google Patents

Appareil et procede d'epuration de gaz acide Download PDF

Info

Publication number
WO2001005489A1
WO2001005489A1 PCT/JP2000/004857 JP0004857W WO0105489A1 WO 2001005489 A1 WO2001005489 A1 WO 2001005489A1 JP 0004857 W JP0004857 W JP 0004857W WO 0105489 A1 WO0105489 A1 WO 0105489A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cleaning liquid
cleaning
regenerator
cleaned
Prior art date
Application number
PCT/JP2000/004857
Other languages
English (en)
French (fr)
Inventor
Qingquan Su
Norihisa Miyoshi
Katsutoshi Naruse
Takahiro Oshita
Kazuo Kinoshita
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU60211/00A priority Critical patent/AU6021100A/en
Priority to CA002379709A priority patent/CA2379709A1/en
Priority to KR1020027000424A priority patent/KR20020026536A/ko
Priority to EP00946417A priority patent/EP1201290A4/en
Publication of WO2001005489A1 publication Critical patent/WO2001005489A1/ja
Priority to US10/965,930 priority patent/US20050132883A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1621Compression of synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to an acid gas cleaning apparatus and method, and in particular, to cool a gas to be cleaned by bringing a gas to be cleaned containing carbon dioxide gas into contact with a gas cleaning liquid containing an alkaline agent and to remove an acid gas in the gas to be cleaned.
  • the present invention relates to an acid gas cleaning apparatus and method for removing the same. Background art
  • the combustion gas and generated gas include acidic gases such as hydrogen chloride, sulfur oxides, nitrogen oxides, and hydrogen sulfide. It is. In many cases, these acid gases often contain only trace amounts (ppm level) in the gas to be cleaned, but even trace amounts are not only toxic to the human body, but also affect gas processing equipment. Since it is corrosive and toxic to various catalysts, it must be removed.
  • acidic gases such as hydrogen chloride, sulfur oxides, nitrogen oxides, and hydrogen sulfide. It is.
  • these acid gases often contain only trace amounts (ppm level) in the gas to be cleaned, but even trace amounts are not only toxic to the human body, but also affect gas processing equipment. Since it is corrosive and toxic to various catalysts, it must be removed.
  • a method of contacting with a solid or liquid alcoholic agent and performing a neutralization absorption treatment is generally used.
  • the wet scrubber method in which the gas to be cleaned is brought into contact with the alkaline solution, the higher the pH of the alkaline solution is, the higher the acid gas absorption / removal performance is.However, burning combustible waste or gas
  • the combustion gas and product gas obtained from the conversion contain carbon dioxide gas, and its concentration is several to more than ten and several percent, which is higher than the concentration of the acidic gas of several ppm. Very high.
  • the wet scrubber method heat is exchanged between the gas to be cleaned and the cleaning liquid.Cleaning of the cleaning liquid is required when cleaning a high-temperature gas to be cleaned, but the wet type scrubber is operated at atmospheric pressure.
  • the heat recovered by the cleaning liquid from the gas to be cleaned is low-temperature heat of 100 ° C or less. It was not used.
  • gasification and melting systems that combust flammable waste by pyrolysis and gasification of the waste and supplying the generated gas and fly ash to a high-temperature melting furnace to form slag
  • gasification and melting systems require gases such as steam and carbon dioxide as diluents for oxygen for partial combustion.
  • fluidizing gas when a fluidized bed is used as a gasification furnace, it is necessary to supply a certain amount or more of fluidizing gas in order to maintain fluidization.
  • fluidizing gas since fluidizing gas also serves as an oxidizing agent, Uses air as the fluidizing gas and generates a large amount of heat
  • oxygen may be excessive even with the minimum air supply to maintain fluidization, and when a gas is required as an oxygen concentration regulator in the fluidized gas There is.
  • the low-temperature waste heat of the wet scrubber is generated in large quantities, it can be used effectively when there is a load such as district heat supply.However, in general, waste incineration facilities are located far away from residential areas. Because there is no effective heat source, the fact is that low-temperature waste heat is created by constructing a heated pool or greenhouse adjacent to the incineration facility.
  • the present invention has been made in view of the above situation, and not only increases energy efficiency by effectively utilizing the low-temperature exhaust heat of a wet scrubber to generate steam and carbon dioxide gas, but also enhances the acidity of the wet scrubber.
  • an acid gas cleaning apparatus and method capable of dramatically improving gas removal performance. The purpose is to do so. The purpose is to do so.
  • the present invention provides a gasification system for combustibles, wherein the acid gas cleaning device and the gasifier are combined, a combustibles incineration system, which includes the acid gas cleaning device and an incinerator, and a gas for the combustibles. It is intended to provide a combustible gasified fuel cell power generation system combining a gasification system and a fuel cell power generation system.
  • an acid gas cleaning apparatus comprises: a gas cleaner for bringing a cleaning gas into contact with an alkaline solution; a regenerator having a function of cooling an alkaline solution and a function of regenerating an alkaline solution. It is composed of
  • the acid gas cleaning method of the present invention is a method of removing an acid gas in a gas to be cleaned by bringing a gas to be cleaned including a carbon dioxide gas into contact with a gas cleaning liquid containing an alkaline agent.
  • the gas to be cleaned is regenerated by contacting with a regenerating gas having a different component, and the regenerated gas cleaning liquid is used as a cleaning liquid for the gas to be cleaned including the carbon dioxide gas.
  • the gas to be cleaned supplied to the gas cleaning device comes into contact with the cleaning solution, which is an alkaline solution, in a countercurrent flow, and carbon dioxide gas is absorbed into the cleaning solution along with the acid gas in the gas to be cleaned.
  • the dust components in the gas to be cleaned are also taken into the cleaning solution, and the gas to be cleaned is oxygen, carbon monoxide, hydrogen, saturated water vapor having a low solubility in the alkaline solution, and carbon dioxide that cannot be completely dissolved in the alkaline solution. It becomes a clean gas mainly composed of gas.
  • the alkaline cleaning solution that has absorbed the acid gas and carbon dioxide gas is sent to the regenerator, where it comes into contact with a regeneration gas having a different component from the gas to be cleaned, for example, air, and the saturated steam at the temperature inside the regenerator. Generates steam up to pressure.
  • a regeneration gas having a different component from the gas to be cleaned for example, air
  • the saturated water vapor pressure is as shown in Table 1. ⁇ table 1 ⁇
  • the regenerator is operated at 80 at atmospheric pressure (approximately 0.1 PMa (1 bar))
  • 47% water vapor will accompany the regenerator offgas discharged from the regenerator.
  • the cleaning liquid is deprived of latent heat of evaporation and cooled.
  • the regenerating gas entrains water vapor at or above the saturated water vapor pressure in the regenerator, there is no water evaporation in the regenerator and the washing liquid cooling in the regenerator is not performed.
  • the regenerator off-gas accompanied by water vapor and desorbed carbon dioxide gas can be used as a gasifying agent for oxidizing combustibles and a gas for diluting an oxidizing agent.
  • the regenerator off-gas can be used as it is as a mixed gas of an oxidizing agent and a gasifying agent.
  • the alkaline cleaning solution that has recovered the acidic gas absorption function in the regenerator is sent back to the gas washer.
  • This replenisher is circulating Cleaner liquids should be used compared to cleaning liquids, so it is necessary to supply gas to the top of the gas scrubber, that is, to the lowest stream of the flow of the gas to be cleaned, together with a replenishing alkaline agent to enhance the gas cleaning effect. preferable.
  • the salts generated by the absorption reaction of the acidic gas gradually concentrate in the gas cleaning liquid with the gas cleaning, so it is necessary to blow it appropriately to prevent concentration. ⁇ Also, the gas entrainment rate of the gas to be cleaned is high, When the amount of cleaning solution increases, it is necessary to prepare a cleaning solution.However, if the cleaning solution is used as it is, the cleaning agent will be discharged along with it. is there.
  • regenerators for example, in series (series), in order to increase the cleaning power of the cleaning liquid as much as possible and to increase the gas cleaning effect. This is because, when chemical reactions are performed continuously, the reaction rate is higher in a series reaction in a multistage reactor than in a single complete mixing reactor, for the same reaction time. When the gas to be cleaned and the cleaning liquid come into contact with each other in the counter flow, the same effect as using a multi-stage regenerator is obtained.However, since mixing in the flow direction of the cleaning liquid cannot be avoided, a multi-stage regenerator is required. The degree of regeneration is lower than when using.
  • each regenerator When a plurality of types of gases having different gas compositions can be used as regenerating gases, each regenerator functions as a purpose-specific regenerator by providing an independent regenerator corresponding to each of the regenerating gases. In addition, by using the regenerators in sequence and devising the order, more sophisticated playback becomes possible.
  • the gas cleaning device and the cleaning liquid regenerator can be divided into two stages. That is, a first gas cleaning unit for bringing a gas to be cleaned and a first gas cleaning liquid containing a first alkaline agent into contact with each other in a countercurrent flow. A second gas cleaning unit for bringing the gas to be cleaned out of the first gas cleaning unit and a second gas cleaning liquid containing a second alkali agent into contact with each other in a counterflow, and a second gas cleaning unit having a different component from the gas to be cleaned.
  • Circulating means disposed between the first gas cleaning section and the first cleaning liquid regenerator to circulate the first cleaning liquid
  • FIG. 1 is a diagram showing a basic embodiment of the present invention.
  • FIG. 2 is a diagram showing an improved embodiment in which the device configuration of the present invention is simplified.
  • FIG. 3 shows a basic embodiment of the present invention, in which a regenerator is provided in two stages.
  • FIG. 4 shows an improved embodiment in which the regenerator of the present invention is provided in two stages.
  • FIG. 5 is a view showing a first embodiment of a combustible gasification system utilizing the present invention.
  • FIG. 6 is a diagram showing an embodiment in which a regenerator is provided in two stages in a combustible gasification system using the present invention.
  • FIG. 7 is a view showing a first embodiment of a combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 8 is a diagram showing a second embodiment of a combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 9 shows the second example of a combustible gasification fuel cell power generation system using the present invention.
  • FIG. 3 is a view showing a first specific embodiment of the present invention in an example.
  • FIG. 10 is a view showing a second specific embodiment of the present invention in a second embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 11 is a view showing a third embodiment of a combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 12 is a view showing a specific embodiment of the present invention in a third embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 13 is a view showing a third specific embodiment of the present invention in the second embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 14 shows a basic embodiment of the present invention, in which a washing unit and a regenerator are provided in two stages, respectively.
  • FIG. 15 shows a third embodiment of the present invention, showing a specific embodiment in which a washer and a regenerator are provided in two stages, respectively.
  • FIG. 16 is a diagram showing a fourth embodiment of a combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 17 is a diagram showing a typical embodiment of the gasification process in the fourth embodiment of the fuel cell power generation system for combustible gasification utilizing the present invention.
  • FIG. 18 is a configuration diagram of a raw material feeder in the fourth embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 19 is a configuration diagram of another example of the feeder in the fourth embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 20 is a diagram showing a typical embodiment of a gasification step and a hydrogen purification step in a fifth embodiment of the combustible gasification fuel cell power generation system utilizing the present invention.
  • FIG. 1 is the first embodiment of the present invention.
  • the same or corresponding members or elements are denoted by the same reference numerals, and redundant description is omitted (the cover introduced from the lower part of the gas cleaning device A).
  • the cleaning gas 30 comes into contact with the gas cleaning solution 40 containing an alcohol supplied from the upper part of the gas cleaning device A, and is cooled and hydrogen sulfide, carbonyl sulfide, hydrogen chloride, sulfur oxides, nitrogen oxides are oxidized. Acid gas and dust such as carbon dioxide are removed.
  • the temperature at which the gas to be cleaned is supplied to the gas washer A is usually around 200 ° C. ° C, and after passing through the temperature range of dioxin resynthesis around 470 ° C, there is a high possibility that dioxin will be contained in the gas to be cleaned, and dioxin may migrate and concentrate in the cleaning solution. Is high. Therefore, in the cleaning of incineration exhaust gas from chlorine-containing waste such as garbage, the supply temperature of the gas to be cleaned 30 to the gas washer A should be 480 ° C or higher, preferably to avoid the temperature range of dioxin resynthesis. The temperature is preferably 500 ° C. or higher.
  • the gas to be cleaned is a gasified gas obtained by pyrolyzing gas from waste containing chlorine such as garbage, the risk of re-synthesis of dioxin is significantly reduced because of the reducing atmosphere.
  • the gas scrubber A may be supplied to the gas scrubber A at a temperature of about 0 ° C, it is still preferably at least 300 ° C, more preferably at least 350 ° C, and still more preferably at least 500 ° C. Good to supply.
  • the cleaning agent to be supplied to the cleaning solution may be either an organic cleaning agent or an inorganic cleaning agent, but from the viewpoint of thermal stability, an inorganic cleaning compound is preferably used.
  • an inorganic cleaning compound is preferably used.
  • hydroxides of alkali metal such as sodium hydroxide and hydroxide are preferable.
  • sodium carbonate and potassium carbonate It may be supplied by the alkali metal carbonate.
  • the following shows the absorption reaction formula in a gas scrubber when K 2 C 03 is used as an alkaline agent.
  • K 2 C 03 + H 2 S ⁇ KHS + KHC Os (1) K 2 CO 3 + H 2 O + COS ⁇ KHS + KHC 0 3 + C ⁇ 2 (2) K 2 C 03 + HC 1 ⁇ KHC Os + KC l (3) K 2 C ⁇ 3 + S 02 + H 20 ⁇ KHCO 3 + KHS O3 (4)
  • the temperature of the cleaning solution used The lower the value, the better.
  • the cleaning liquid inlet temperature TLAI to the gas cleaning device A should be 100 ° C or less, but the water vapor brought in from the gas to be cleaned should be as small as possible. It is preferable to maintain the temperature at 80 ° C or less so that the carbon dioxide is condensed and the partial pressure of carbon dioxide in the gas phase is kept high, and as much carbon dioxide as possible is absorbed into the cleaning liquid.
  • the temperature is preferably in the range of ° C.
  • the temperature T of the cleaning liquid at the lower part of the gas cleaning device A is naturally higher than the temperature of the cleaning liquid at the upper part because it is heated by the gas to be cleaned, but the temperature difference between TLAE and TLAI is 20 ° C or less.
  • the temperature is preferably set to 10 ° C. or lower. The restriction on this temperature difference is that if the TLAE becomes too hot, the absorbed carbon dioxide will be desorbed again at the bottom of the gas washer A, and the carbon dioxide will be absorbed by the gas washer A. This is because the performance is reduced.
  • the temperature difference is controlled by adjusting the circulation amount of the cleaning liquid.
  • the water vapor contained in the gas to be cleaned 30 condenses due to rapid cooling due to contact with the cleaning liquid, and further condenses due to a temperature drop toward the upper part. Since reduction in C 0 2 partial pressure also progressed absorption of C 0 2 in the absorption tower is small fence, C 0 2 partial pressure is kept high. Therefore, the driving force for absorbing the cleaning liquid against co 2 is kept high, and the absorption effect is enhanced.
  • the cleaned gas 30 to be cleaned is further purified by the replenishing cleaning liquid 41 a supplied with the replenishing alkaline agent 46 to the relatively clear replenishing liquid 45 a supplied to replenish the cleaning liquid.
  • the gas becomes 31 after clean cleaning.
  • the gas to be cleaned 30 is incineration exhaust gas, the gas 31 after cleaning can be released to the atmosphere as it is after cooling and taking white smoke prevention measures such as removing condensed water. If the gas is a useful gas containing flammable gas components, the gas 31 after cleaning can be used for various purposes such as fuel gas.
  • the cleaning liquid is supplied by a spray method so that the surface area of the gas contacting on the liquid side is increased and the cleaning liquid spreads over the entire internal gas flow path of the gas washer A.
  • the gas cleaning device A may be filled with the contact promoting filler 5a to increase the gas-liquid contact efficiency.
  • the cleaning solution 40a withdrawn from the lower part of the gas washer A is supplied to the regenerator B by the circulation pump 4a.
  • a sedimentation tank 8 is provided below the gas scrubber A for sedimentation and separation of solids such as dusts.
  • a cyclone, bagfill, and ceramic cupfill are located upstream of the gas scrubber A. It is preferable to provide a dry dust collector 7 to reduce the dust load on the gas scrubber.
  • the regeneration gas 35b is supplied to the regenerator B from the lower part of the regenerator, and gas-liquid contact with the cleaning liquid is performed similarly to the gas washer A.
  • the regeneration gas 35 b exchanges heat with the cleaning liquid, and also converts various gas components and water vapor in the cleaning gas dissolved in the cleaning liquid into a vapor-liquid equilibrium state at the outlet gas temperature of the regenerator B, that is, saturation. It is released so as to maintain its state, and is discharged as regenerator off-gas 36 b with the accompanying gas. After the regeneration gas 35b comes into contact with the cleaning liquid, it is further purified by the replenishing cleaning liquid 41b. The mist in the regenerator off-gas 36 b is removed at mist separator 6 b.
  • the regenerator off-gas 36b entrains a large amount of water vapor, for example, if the amount of evaporation in the regenerator is large and the cleaning liquid is decreasing, install a cooler as necessary to condense the water vapor.
  • the condensed water may be reused as the cleaning liquid.
  • the condensed water is much clearer than the cleaning liquid, and thus may be used as the replenisher 45a.
  • regenerator B water vapor and carbon dioxide are desorbed and released from the cleaning water (cleaning liquid). If the residence time of the regeneration gas in regenerator B is sufficient, Evaporates until the saturation concentration is reached at the operating temperature of the regenerator B, and as the dry gas component, the gas to be cleaned dissolved in the alkaline cleaning water (cleaning liquid) is desorbed from the regeneration gas flowing through the regenerator B. ⁇ Desorbed and released until the absorption equilibrium concentration is reached.
  • the main component of the dry gas desorbed and released in the regenerator B is carbon dioxide, and the pH of the cleaning solution is rapidly recovered by the release of carbon dioxide, so that even the acid gas absorbed in the cleaning solution is desorbed. ⁇ Almost no release.
  • Equation (7) shows the alkali regeneration reaction formula in regenerator B.
  • a reducing agent such as a sulfur compound can be oxidized by injecting an oxidizing agent into the cleaning solution.
  • an oxidizing agent a chlorine-based oxidizing agent such as sodium hypochlorite or chlorine dioxide, a bromine-based oxidizing agent such as sodium hypobromite, or an active oxygen-based oxidizing agent such as hydrogen peroxide or ozone can be used.
  • Equations (8) to (10) show the reaction formulas when sodium hypochlorite (NaC10) is used as the oxidizing agent.
  • carbon dioxide gas is desorbed and released from the cleaning water (cleaning liquid) in the regenerator B, whereby the alkaline agent in the cleaning liquid combined with the carbon dioxide gas is released again, and the alkalinity of the cleaning liquid is reduced.
  • acidic gas components such as hydrogen sulfide, carbonyl sulfide, hydrogen chloride, sulfur oxides, and nitrogen oxides dissolved in the cleaning solution in the regenerator B can be suppressed, and alkalinity is reduced.
  • the regeneration gas 35b to be introduced into the regenerator B may be any gas as long as it is gaseous, but it is mainly air, oxygen, nitrogen, argon, water vapor, hydrogen, monoxide depending on the purpose. Select and use carbon, carbon dioxide, and their mixed gas.
  • a regeneration gas in principle, it is better to select a gas in which the partial pressure of the gas component to be desorbed in the regenerator is as low as possible.
  • the partial pressure of the gas component to be desorbed in the regenerator is as low as possible.
  • the partial pressure of the gas component to be desorbed in the regenerator is as low as possible.
  • the purpose of desorbing carbon dioxide gas it is better to select a gas with the lowest possible carbon dioxide content. If the purpose is to cool the cleaning liquid or to increase the amount of recovered steam, the ratio of the water vapor content is as low as possible. It is advisable to select a gas having a low temperature.
  • supplying the regenerator off-gas to the gasification process it is better to use a gas
  • the temperature TL BE of the cleaning liquid staying in the lower part of the regenerator B can be set arbitrarily according to the purpose.
  • the temperature control of ⁇ ⁇ ⁇ ⁇ ⁇ _ ⁇ ⁇ is determined by the flow rate, temperature, and humidity of the regeneration gas 35b and the circulating flow rate of the cleaning solution.However, when the flow rate, temperature, and humidity of the regeneration gas 35 are constant, The temperature of the TLBE is controlled by controlling the flow rate of the cleaning liquid. To increase the amount of saturated steam generated and the amount of desorbed and released carbon dioxide gas, it is better to keep TWE as high as possible.However, since latent heat is taken away with the generation of water vapor, TLBE is replaced by TLB I (regeneration). (Temperature at the inlet of the cleaning solution to the vessel B). Therefore, to match the T LBE the desired T LAI, a heat exchanger provided to the regenerator bottom if necessary, may be heated or cooled.
  • the cooling of the cleaning liquid by the regeneration gas 35b is performed by direct heat exchange of sensible heat and by removing the latent heat of vaporization of the vapor accompanying the regenerator off-gas 36b from the cleaning liquid.
  • the temperature of the TBE can be controlled only by adjusting the circulation flow rate of the cleaning solution, but the cooling capacity is lower than the amount of heat recovered from the gas 30 to be cleaned by the gas cleaning device A. If the cleaning liquid is smaller, a means for separately cooling the cleaning liquid other than the regenerator B is required.
  • a gas-liquid separator 3a When supplying the cleaning liquid from the gas cleaning device A to the regenerator B, preferably, a gas-liquid separator 3a is provided, and it is preferable to remove as much as possible the components to be cleaned which are not dissolved in the cleaning liquid but mixed therein. .
  • the function of the gas-liquid separator is particularly important to prevent explosion.
  • the gas component separated by the gas-liquid separator 3a is a gas having substantially the same component as the gas component to be cleaned, but the cleaning water (cleaning liquid) flowing into the gas-liquid separator 3a from the gas cleaning device A is In the circulation path of the cleaning water (cleaning liquid), the pH has dropped most due to the dissolution of carbon dioxide gas, and the acid gas absorbed in the cleaning liquid is easily released. It should be returned to the uppermost stream of the gas stream and re-cleaned.
  • the cleaning water which releases carbon dioxide in the regenerator B and evaporates the water to cool it, is introduced again into the gas cleaning unit A, but when the gas to be cleaned contains dust.
  • dust components may be entrained in the cleaning solution, it is necessary to take measures to avoid dust as much as possible when removing the cleaning solution from the regenerator B as in the case of the gas cleaning device A. .
  • a gas-liquid separator 3b when returning the cleaning liquid from the regenerator B to the gas cleaning unit A, it is preferable to provide a gas-liquid separator 3b to remove as much as possible the regenerating gas components that do not dissolve in the cleaning liquid but are mixed. Is good.
  • the gas to be cleaned is a flammable gas and the regeneration gas is an oxygen-containing gas
  • the function of the gas-liquid separator becomes important in order to prevent mixing of the oxygen and the flammable gas.
  • the gas component separated by the gas-liquid separator 3 b is a mixture of the regeneration gas component, water vapor and, in some cases, a very small amount of carbon dioxide gas. They can be mixed as they are.
  • the operating pressures of the gas scrubber A and the regenerator B in the present invention can be arbitrarily selected according to the process to be applied, but in the embodiment shown in FIG.
  • the pressure Pb has a device configuration that can be set arbitrarily irrespective of the operating pressure Pa of the gas phase portion of the gas scrubber A.
  • Higher pressure on the regenerator side is advantageous for effective use of regenerator off-gas 36b.
  • the supply amount of the replenishing solution 45a composed of the cleaning agent to the gas cleaning device A is controlled so that the pH value of the cleaning solution is measured and adjusted to a predetermined value.
  • the pH value of the cleaning solution is measured and adjusted to a predetermined value.
  • the pH value of the washing solution is adjusted so as to be 7 to 14 or less, preferably 9 to 12 and more preferably 10 to 11.
  • reference numeral 10a is a replenishing liquid control valve
  • 15a is a valve for adjusting the replenishment amount of the liquid
  • 16a and 16b are level control valves for the gas-liquid separator
  • 18a and 18 b is a level control valve
  • reference numerals 70a, 70b, 71a, and 7lb are level controllers
  • 73 is a flow controller
  • 75a is a pH controller.
  • the gas-liquid separator 3a, the regenerator B and the gas-liquid separator 3b should be integrated with each other to reduce the number of equipment such as the washing liquid circulation pump and to simplify as much as possible.
  • the amount of cleaning liquid in the acid gas cleaning system can be controlled by measuring the level of the cleaning liquid remaining in the regenerator B and the amount of circulation of the cleaning liquid, and supplying the replenishing liquid to the gas cleaning unit A. It is very simple because only the amount has to be controlled.
  • the gas to be cleaned 30 flowing into the gas cleaning device A is added to the circulating cleaning solution 40 and the replenishing solution 45 a in the same manner as in the case of FIG. Replenishment washing liquid to which a has been added is washed by contact with 41 a.
  • the cleaning liquid and the replenishing liquid after the contact cleaning with the gas to be cleaned 30 are collected by the liquid collecting plate 11a and naturally flow to the lower gas-solid liquid separating section A1.
  • the lower end of the downflow pipe 12a connected to the lower part of the liquid collecting plate 11a is near the bottom of the retained water retained in the gas-solid separation part A1, and the washed down liquid is near the bottom of the retained water. Supplied to
  • the gas-solid separation part A 1 is provided with a crest 13 a, and the washing liquid flows near the bottom of the stagnant liquid, then rises and overflows the crevice 13 a to be extracted from the gas scrubber A. .
  • the SS (solid) component contained in the cleaning liquid settles against the flow during this upward flow, so that solid-liquid separation is performed, and the wastewater sludge 9a having a high concentration can be recovered from the bottom of the gas cleaning device A.
  • the liquid level inside the crest 13a is always kept gentle, gaseous gas is quickly separated from the cleaning liquid level.
  • an inorganic or organic / polymer based flocculant may be used for the purpose of flocculating the SS component. If the SS load is too high or if solid-liquid separation cannot be easily performed by the sedimentation method, a dry dust collector 7 such as a cyclone filter is installed upstream of the gas washer A to dust the gas to be washed. It is good to remove the components.
  • the cleaning liquid extracted from the gas washer A is supplied to the regenerator B under natural flow. If a sufficient height difference can be obtained at this time, the cleaning liquid can be supplied to the regenerator B by the spray method.However, if a sufficient height difference cannot be obtained and the pressure loss of the circulating water cannot be tolerated, use special measures. Instead, it may be supplied to the upper part of the contact promoting filler installed in the regenerator B.
  • the gas layer pressure P b [P a] of the regenerator B is the gas layer pressure P a [P a] in the gas scrubber A, the retained cleaning liquid level H a [m] after the 13 a overflow Cleaning liquid regenerator B inlet level H bi [m], cleaning liquid specific gravity p [kg / m 3 ], and gravitational acceleration g [m / s 2 ], pressure loss of cleaning liquid from gas washer A to regenerator B AP ab CP a], and is expressed as follows.
  • Pb P a +-g (Ha-Hb i)-AP ab (1 1)
  • Pa is kept at 2 to 7 kPa, preferably 3 to 6 kPa, and more preferably 4 to 5 kPa below atmospheric pressure.
  • Pb varies depending on the use of the regenerator off-gas, when the regenerator off-gas is used as fluidizing gas in a fluidized bed furnace, it is preferable to set Pb 20 to 50 kPa higher than the atmospheric pressure. Expressed in terms of pressure, Pa is about 94 to 99 kPa. Pb is set to 121 to 151 kPa.
  • the regenerator B is supplied with a regenerating gas 35b of a component corresponding to the purpose just like the regenerator described in FIG. 1, and is discharged in contact with the cleaning liquid.
  • a gas-solid-liquid separator B 1 similar to the gas washer A is provided below the regenerator B, and the washing liquid after contact with the regenerating gas 35 b is collected by the collecting plate 11 b.
  • the boil 13 b is provided in the gas-solid separation section B 1, and the washing liquid flows near the bottom of the stagnant liquid, then rises and overflows the bough 13 b to be discharged from the regenerator B.
  • the S S (solid) component contained in the washing liquid settles against the flow during this ascending flow, so that solid-liquid separation is performed, and the waste liquid sludge 9b with a high concentration can be recovered from the bottom of the regenerator B.
  • the remaining liquid level inside the crevice 13 b is always kept gentle, the gaseous gas mixed in the cleaning liquid is quickly separated into gas and liquid by the cleaning liquid level and entrained in the extracted cleaning liquid. Can be prevented.
  • the regenerator B also has The lower the rising speed of the washing liquid, the better the solid-liquid separation performance is, which is preferable.However, since the required device cross-sectional area becomes large, it is necessary to design in an appropriate range, and usually, it is 50 mm / s or less, preferably It is preferably at most 10 mm / s, more preferably at most 5 mm / s.
  • an inorganic or organic / polymer based flocculant may be used for the purpose of flocculating the SS component.
  • a dry dust collector such as a cyclone filter is installed upstream of the regenerator B to remove dust components from the regeneration gas. It is the same as gas scrubber A that should be kept.
  • the regeneration gas 35b is a gas containing no dust, the solid-liquid separation in the regenerator B is not necessary, and there is no need to pull out the sludge and soji from the bottom.
  • the structure can be simplified, a gas-liquid separation function is required, and it is desirable to use a structure as shown in Fig. 2 for the purpose of keeping the liquid surface in a gentle state.
  • the cleaning liquid extracted from the regenerator B is returned to the gas cleaning unit A by the cleaning liquid circulation pump 4b.
  • the method of controlling the amount of the cleaning liquid is as follows. First, the level of the cleaning liquid level after overflowing the crest 13b of the regenerator B is measured and converted into an electric signal. The level signal is input to a level controller 70b. If the level of the level controller 70 b requires replenishment of the cleaning liquid so that the liquid level will be the specified value, open the replenishing liquid control valve 10 a and output a signal to close the waste liquid control valve 17 a to output the cleaning liquid. If the amount increases and it is necessary to discharge from the circulation system, a signal is output to close the make-up fluid control valve 10a and open the waste fluid control valve 17a.
  • replenisher B may be supplied with replenisher or waste liquid may be discharged. It is necessary to extract waste liquid / sludge from regenerator B especially when a reaction precipitate is generated in the regenerator. Also, as with the gas scrubber A, the regenerator B Also, by supplying a fresh replenisher liquid to the most downstream side of the flow of the regeneration gas in the regenerator, the cleaning effect of the regeneration gas discharged from the regenerator B is also increased, and the utility value of the gas is further increased .
  • replenisher control valve 10b and waste liquid control valve 17b When supplying replenisher or draining replenisher from regenerator B, replenisher control valve 10b and waste liquid control valve 17b also apply the level control signal from level meter 70b to valves 10a and 10a, respectively. By acting in the same manner as in 17a, the amount of circulating cleaning liquid can be controlled.
  • reference numerals 5a and 5b are fillers for promoting contact.
  • Reference numeral 19 denotes a cleaning liquid circulation flow rate regulating valve
  • reference numeral 4 lb denotes a supplementary cleaning liquid.
  • FIG. 3 shows a second embodiment of the present invention, in which the regenerating function of the alkaline agent is further enhanced by performing regeneration of the alkaline agent in two stages of the regenerator B and the second regenerator C. It shows an embodiment.
  • the functions up to the first regenerator B are the same as described in FIG.
  • the cleaning liquid extracted from the first regenerator B is supplied to the second regenerator C.
  • the second regenerator C is supplied with a regeneration gas 35 c of a component corresponding to the purpose exactly in the same manner as the above-described regenerator B, and comes into contact with the cleaning solution to be regenerated with saturated steam and desorbed carbon dioxide gas. It is discharged out of the system as a reactor off-gas 36 c.
  • the structure of the second regenerator C is basically the same as that of the regenerator B, and the cleaning liquid extracted from the second regenerator C is returned to the gas washer A again.
  • reference numeral 10a denotes a replenishing liquid control valve
  • 15a denotes a valve for adjusting the replenishing amount of the liquid
  • 16a, 16b, and 16c denote level control valves for the gas-liquid separator
  • 18a Reference numerals 18b and 18c are level control valves.
  • reference numerals 70a, 70b, 70c, 71a, 71b, 71c denote level controllers
  • 73 denotes a flow controller
  • 75a denotes a pH controller.
  • FIG. 3 is merely one embodiment of the present invention, and when the installation place of the apparatus of the present invention has a sufficient vertical space, as shown in FIG. Integrate the gas-liquid separator 3a, the regenerator B and the gas-liquid separator 3b, and the regenerator C and the gas-liquid separator 3c, respectively, to reduce the number of equipment such as the cleaning liquid circulation pump and to simplify as much as possible Is good.
  • the cleaning liquid extracted from the regenerator B is supplied to the second regenerator C under natural flow.
  • the cleaning liquid can be supplied to the second regenerator C by a spray method. If the circulating water pressure loss is unacceptable, it may be supplied to the top of the contact promoting filler 5c installed in the second regenerator C without using any special means. .
  • the gas pressure P c [Pa] in the second regenerator C is the gas pressure Pb [P a] in the first regenerator B, the retained washing liquid level H b [ m], cleaning liquid C inlet level H ci [m], cleaning liquid specific gravity p [kg / m 3 ], and gravitational acceleration g [m / s 2 ], from regenerator B to second regenerator C It is expressed as follows using the pressure loss APbc [Pa] of the cleaning liquid.
  • the regeneration gas 35 c of the component according to the purpose is provided in the same manner as the regenerator B described above. It is supplied and discharged in contact with the cleaning liquid.
  • the structure of the second regenerator C is basically the same as that of the regenerator B, and a gas-solid liquid separation section C1 is provided at the lower part.
  • the cleaning liquid after contact with the regeneration gas 35c is collected by the collecting plate 1. It is collected at 1 c and flows down naturally to the lower gas-solid separation section C 1.
  • the lower end of the downcomer pipe 1 2c connected to the lower part of the liquid collecting plate 11c is close to the bottom of the stagnant water retained in the gas-solid liquid separation section C1. Supplied near the bottom.
  • the gas-solid separation section C1 is provided with a crest 13c, and the washing liquid flows near the bottom of the stagnant liquid, then rises and overflows the clog 13c, and is drawn out of the second regenerator C. It is.
  • the S S (solid) component contained in the washing liquid settles against the flow during the upward flow, so that a solid-liquid separation is performed, and the high concentration sludge 9 c can be recovered from the bottom of the second regenerator C.
  • the second regenerator C since the remaining liquid level inside the crest 13 c is always kept gentle, gaseous gas is quickly separated from the cleaning liquid level by gas-liquid separation, and can be prevented from being entrained in the extracted cleaning liquid ⁇ Similarly to the first regenerator B, in the second regenerator C, the lower the rising speed of the cleaning liquid in the gas-solid separation section C1, the better the solid-liquid separation performance. Since it becomes large, it is necessary to design in an appropriate range. Usually, it is 50 mm / s or less, preferably 10 mm / s or less, and more preferably 5 mm / s or less. In order to enhance the solid-liquid separation effect, an inorganic or organic / polymer coagulant may be used for the purpose of coagulating the SS component.
  • the colloidal SS component cannot be separated by the precipitation treatment, if such SS content is large, it is different from the sedimentation separation means such as filtering part of the washing solution with a separation membrane or filter media.
  • the sedimentation separation means such as filtering part of the washing solution with a separation membrane or filter media.
  • a means for removing solids from the washing water (washing liquid) is required.
  • the second regenerator C does not require solid-liquid separation in the second regenerator C and does not require sludge extraction from the bottom.
  • the internal structure can be simplified, a gas-liquid separation function is required, and it is desirable to use a structure similar to that of the gas washer A or the first regenerator B in order to keep the liquid surface in a gentle state.
  • the cleaning liquid extracted from the second regenerator C is regassed by the cleaning liquid circulation pump. Supplied to washer A.
  • the method of controlling the amount of the cleaning liquid is as follows. First, the level of the cleaning liquid level after overflowing the cir- cuit 13c of the second regenerator C is measured and converted into an electric signal. The level signal is input to a level controller 70c. If replenishment of the cleaning liquid is necessary, open the replenishment liquid control valves 10 a, 10 b, and 10 c so that the liquid level at the level controller 70 c is the specified value. Outputs a signal that closes 7a, 17b, and 17c.
  • regenerators As with the first and second regenerators described above, it is of course possible to employ regenerators connected in three or more stages in series.
  • FIG. 5 shows an embodiment of a combustible gasification system using the acid gas removal device of the present invention.
  • the gas is guided to the heat recovery step 120, and the heat recovery is performed.
  • an oxidizing gas for the gasification process is used as a regeneration gas for the regenerator B.
  • the gasification step 110 comprises a two-stage gasification step using a low-temperature gasification furnace 112 and a high-temperature gasification furnace 114.
  • the heat recovery process 120 includes a high-temperature heat exchanger 122 and a heat recovery boiler 122.
  • the oxidizing agent 50 for the gasification process is supplied to the regenerator B as a regenerating gas, and the regenerator off-gas 36 b contains saturated steam in addition to the regenerating gas components and desorbed carbon dioxide gas. They function as gasifiers in the gasification process. Normal air, oxygen-enriched air, high-concentration oxygen, pure oxygen, etc. are used as oxidants Of course, any gas containing oxygen may be used.
  • the regenerator off-gas 36 b is preferably heated by exchanging heat with a high-temperature generated gas after the gasification step, and in this embodiment, the regenerator off-gas 36 b heats the medium to be heated to a temperature of 500 ° C. or more. It is led to a heat exchanger 122 and heated to 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 700 ° C. or higher, and supplied to the gasification furnace as a heating off gas 37. I have.
  • the gasification step is composed of a plurality of furnaces as in the present embodiment and the appropriate oxygen concentration of the oxidizing agent supplied to each furnace is different, the oxidizing agent is supplied to the heating off gas. It is good to adjust the oxygen concentration.
  • the oxidizing agent 50 is supplied to the heating off-gas 37 supplied to the high-temperature gasification furnace 114.
  • FIG. 6 shows a second embodiment of the combustible gasification system using the acid gas removal device of the present invention.
  • the regenerator uses a two-stage (first regenerator B and second regenerator C) acid gas removing device.
  • first regenerator B and second regenerator C the combustible material 1 that generates an acidic gas when heated
  • the heat is recovered to the heat recovery step 120, and the heat is recovered. Wash with.
  • the oxidizing agent 50 for the gasification process is used once as the regenerating gas for the first regenerator B, and the regenerator off-gas 36b is led to the high-temperature heat exchanger 122, where it is at least 500 ° C, preferably 60 ° C.
  • the mixture is supplied to the gasification step as a mixed gas of an oxidizing agent and a gasifying agent.
  • an oxidizing agent 50 air, oxygen-enriched air, high-concentration oxygen, pure oxygen and the like are usually used, but any gas may be used as long as it is a gas containing oxygen.
  • the oxidizing agent for the gasification process is used as a regeneration gas to cool the gas cleaning liquid and to wash the regenerator off-gas 36b. Since oxygen is diluted with water vapor and carbon dioxide released from the liquid, the degree of material corrosion due to oxidation can be reduced even if the oxygen is diluted as it is to the high-temperature heat exchanger 12 1, and the high-temperature heat exchanger 1 2 1 Saturated steam in the regenerator off-gas becomes superheated steam by being heated by the steam, which not only prevents drain attacks due to steam condensation, but also recovers valuable high-temperature sensible heat and supplies it to the gasification process 110. Thus, the cold gas efficiency can be improved.
  • the regeneration gas 35 c for the second regenerator C may be any gas, and may be any gas which is the cheapest and can be easily used according to the purpose. Is wide.
  • FIG. 7 shows an embodiment in which the present invention is applied to a combustible gasification fuel cell power generation process.
  • Raw materials such as combustible waste (combustibles) 1 are supplied to the gasification process 110, and the high-temperature generated gas generated there is sent to the heat recovery process 120, where sensible heat is recovered, and 200 °. C, preferably to 350 ° C, more preferably to 500 ° C.
  • the recovered sensible heat is used to generate steam and heat the gasifying agent.
  • the cooled product gas at 500 ° C. is led to the gas scrubber A of the present invention in the product gas pretreatment step 130, where the acid gas is removed and the temperature is reduced to 60 ° C. to 90 ° C. Cooled.
  • the gasification process 110 in Fig. 7 consists of a two-stage gasifier, a low-temperature gasifier 1 1 2 and a high-temperature gasifier 1 1 4, and the low-temperature gasifier 1 1 2
  • the fluidized-bed furnace is preferred because it thermally cracks and gasifies the raw material at a temperature of C to 850 ° C, and in some cases, 450 to 950 ° C.
  • the high-temperature gasifier 1 14 can completely gasify organic components at a temperature of 1200 ° C.
  • the gasification step 110 may be any one having a function of gasifying combustible components, and it is not always necessary to perform two-stage gasification as in the present embodiment.
  • the operating pressure Pa of the gas phase of the gas cleaning device A in the embodiment of FIG. 7 is a pressure obtained by subtracting the pressure loss due to the gas flow in each process from the operating pressure of the gasification process, and the gasification process is operated at atmospheric pressure.
  • the pressure is in the range of atmospheric pressure to atmospheric pressure-10 kPa, but the operating pressure of the gasification process can be set to any pressure, so the operating pressure of the gas scrubber can also be set arbitrarily it can.
  • the outlet temperature of the generated gas in the gas cleaning device can be set to any value up to the saturation temperature of the cleaning liquid.
  • the optimum reaction temperature for the shift process is about 200 ° C, so the operating pressure of the gas scrubber is set to 1550
  • the temperature of the gas generated at the outlet of the gas cleaning device may be increased to about 200 ° C. by setting kPa or more.
  • the gas-phase operating pressure Pa of the gas scrubber is operated between 95 and 99 kPa, the generated gas is cooled to 80 ° C. or less, and the gas compressor (1) The pressure is increased to 200 to 800 kPa in 135 and supplied to the hydrogen production step 140.
  • Gas compressor (1) A gas cooler may be provided downstream of the gas scrubber to reduce the power consumption of the 135 and condense and remove water vapor contained in the gas.
  • the hydrogen production process 140 is a desulfurization reaction device that removes the sulfur content in the product gas 141, and a metamorphosis reactor that converts carbon monoxide and water in the product gas to hydrogen and carbon dioxide.
  • a gas compressor that compresses the gas after metamorphosis (2) 1 45, a carbon dioxide absorption device 1 47 that absorbs and removes carbon dioxide in the product gas, carbon monoxide that slightly remains in the gas after carbon dioxide absorption, A methanation reactor that reacts carbon dioxide with hydrogen to produce methane.
  • It consists of a hydrogen purifier / pressure booster 149 that uses a storage alloy to increase the purity of hydrogen by absorbing only hydrogen in the gas and raises the pressure.
  • a selective oxidizer that selectively burns carbon monoxide can be installed upstream of the carbon dioxide absorber 147 instead of the methanation reactor to remove carbon monoxide in the product gas. . In this case, the methanation reactor 148 becomes unnecessary.
  • the carbon dioxide gas compressor (2) 145 is provided so that the pressure can be increased to 800 kPa or more. Naturally, the pressure of the gas compressor (1) is increased. If it is sufficient, it is not necessary. If a gas compressor (2) 145 is installed, a gas cooler 80 is installed downstream of the shift reactor 144 to reduce the power consumption, and the water vapor contained in the gas is condensed and removed. Is good.
  • the off-gas of the pressure booster 149 contains methane-nitrogen, argon and a small amount of hydrogen.
  • the methane absorber 170 absorbs only methane and exhausts the remaining gas.
  • the recovered main gas is supplied to the gasification process 110, where it is reformed and refined again to become a raw material for hydrogen gas.
  • Hydrogen purification ⁇ After being purified to pure hydrogen by the pressure booster 149, it is supplied to the fuel cell power generation process 160.
  • Fuel cells generate electricity, water and heat by reacting hydrogen and oxygen.Four types of solid polymer type, polymer electrolyte type, phosphoric acid type, molten carbonate type, and solid electrolyte type have been developed in order of lower operating temperature. ing.
  • FIG. 7 shows an example in which a polymer electrolyte fuel cell is used.
  • any fuel cell using hydrogen or carbon monoxide as a fuel may be used.
  • air or pure oxygen is used as an oxidizing agent for supplying oxygen to the fuel cell.
  • any gas that basically contains oxygen and does not contain poisonous components of the fuel cell can be used. Any gas can be used.
  • a high-concentration oxygen gas of 80% or more, preferably 90% or more, more preferably 93% or more is used as an oxidizing agent. Pure oxygen is even better.
  • the gas components other than oxygen are nitrogen and argon.
  • Fig. 7 shows an example using high-concentration oxygen gas.
  • the oxidant supplied to the fuel cell as an oxidant consumes about 50% of oxygen inside the fuel cell and is discharged as off-gas 55 from the oxygen electrode. .
  • the offgas 55 contains saturated steam according to its temperature and pressure, but is collected as condensed water by cooling it to about 45 to 60 ° C with an offgas cooler (gas cooler) 80 . This condensed water is almost completely pure water and has a very high utility value. If there is no other use, it may be used as makeup water for a gas scrubber.
  • the saturated steam pressure at 50 to 60 ° C is 10 to 20 kPa, and the cooled oxygen electrode off-gas contains 10 to 20% steam at atmospheric pressure and is regenerated to the regenerator. Supplied as a working gas.
  • the oxygen electrode off-gas 55 of the fuel cell does not contain any carbon dioxide gas, it is truly suitable as a gas for regenerating energy in the regenerator B.
  • the operation is performed such that the gas phase pressure Pb of the regenerator B is maintained at 120 to 14 OkPa, and the regenerator off-gas 36b is carbon dioxide of 5% or more of the total gas amount. Gas can be entrained.
  • the temperature of the cleaning solution flowing into the regenerator is 70 to 99 ° C, and the oxygen electrode off-gas 55 comes into contact with the cleaning solution in a counterflow, and is heated by direct heat exchange to 70 to 99 ° C. Warmed up.
  • the saturated steam pressure from 70 ° C to 9.9 ° C is 31 to 99 k Pa.
  • the gas phase pressure Pb of the regenerator be 130 kPa.
  • the oxygen electrode off-gas of the fuel cell supplied as the regeneration gas removes the difference in the water vapor ratio between the inlet and the outlet of the regenerator from the washing water (washing solution) and cools the washing water (washing solution).
  • the regenerator off-gas component varies slightly depending on the operating temperature of the regenerator, but about 5 to 10% carbon dioxide, almost the same amount of nitrogen and argon, 15 to 45% oxygen, 76% water vapor.
  • the gas of this component has a perfect composition as a mixed gas of an oxidizing agent and a gasifying agent supplied to the gasification step, and may be supplied to the gasification step as it is, or may be further supplied with steam or oxygen as necessary.
  • the regenerator B functions as if it were a "gasifying agent generator".
  • the reason why air is not used as the oxidizing agent for the fuel cell in this embodiment is that nitrogen contained in a large amount leads to an increase in power consumption in the gas compressor (1) 135 and the hydrogen production process 140. is there.
  • nitrogen and argon contained in the oxidizing agent are discharged out of the system as off-gas of the methane absorbing device 170.
  • the alkali regenerating function of the regenerator keeps the gas cleaning liquid supplied to the gas scrubber at a high pH without consuming a large amount of alkaline agent, so the acid gas absorbing function in the gas cleaning process is greatly enhanced.
  • the durability of the equipment constituting the downstream hydrogen production process can be improved.
  • washing water washing liquid
  • the waste heat supplied to the cooling tower is reduced, the consumption of cooling water makeup water is reduced, and white smoke and rain fall (A descent of mist to nearby areas) is reduced.
  • Carbon dioxide is desorbed and recovered from the cleaning solution and supplied as a gasifying agent to the gasification process.
  • the specific heat of carbon dioxide gas is lower than that of steam, the heat of heating in the gasification process is small, and the temperature is low. Gas efficiency is improved.
  • the purified hydrogen is used as fuel for the fuel cell.
  • the use of the purified hydrogen is not limited to the fuel for the fuel cell. Of course, it can be used for other purposes as a hydrogen production system.
  • FIG. 8 is a flowchart showing an embodiment in which air is used as an oxidant for a fuel cell.
  • the oxygen off-gas of the fuel cell contains a large amount of nitrogen gas. This nitrogen gas not only does not function as a gasifying agent in the gasification process, but also increases the power consumption in the subsequent hydrogen production process. Therefore, it is not advisable to supply the oxygen electrode off-gas to the gasification process in this case.
  • the oxygen concentration in the gasification step is 80% or more, preferably 90% or more, and more preferably 9% or more, as in the embodiment shown in FIG.
  • High-concentration oxygen gas containing 3% or more oxygen or pure oxygen gas In this case, it can be used as a regeneration gas for the regenerator.
  • gases There are two types of gases, an oxidizing agent for the gasification process and an off-gas of the fuel cell oxygen electrode. Good to use.
  • description will be given on the assumption that parts of the embodiment of FIG. 8 that are not described are the same as those of the embodiment of FIG.
  • the oxidizing agent for the gasification step is used as the regenerating gas for the first regenerator B, and the fuel cell oxygen electrode off-gas is used as the regenerating gas for the second regenerator C.
  • the first regenerator off-gas 36b is supplied to the gasification step 110 as a mixed gas of an oxidizing agent and a gasifying agent.
  • the off-gas 36c of the second regenerator C contains about 5 to 10% of carbon dioxide and is exhausted out of the system. What should be noted here is the carbon dioxide gas emitted outside this system.
  • a carbon dioxide gas absorbing device is provided in the hydrogen production process, the carbon dioxide gas is concentrated using the amide absorption method, and the concentrated carbon dioxide gas is discharged out of the system. Yes, it is.
  • This amine absorption method requires a large amount of steam.
  • the absorption refrigerator is driven by using the heat of 70 to 90 ° C generated from the fuel cell power generation process, and the generated cold heat is used for the carbon dioxide gas absorption process. Supply and increase the temperature difference between the heating source steam 57 and the steam in the CO2 absorption device Consumption can be reduced as much as possible.
  • the amount of carbon dioxide to be absorbed by the carbon dioxide absorption device can be reduced, the amount of steam consumed can be reduced. That is, as shown in Fig. 8, by discharging the off-gas of the second regenerator C containing carbon dioxide gas out of the system, the amount of steam consumed by the carbon dioxide gas absorption device can be suppressed, and the in-house energy consumption rate can be reduced. It is.
  • the method to maximize the effect is to reduce the operating temperature of the gas washer A as much as possible to increase the ability of the gas washer to absorb carbon dioxide into the cleaning liquid, and to reduce the carbon dioxide as much as possible in the first regenerator B. Generates saturated water vapor while suppressing desorption.
  • the second regenerator C it is preferable to operate at a temperature as high as possible and to make the gas-liquid contact with the regeneration gas intense to promote the desorption and release of carbon dioxide gas.
  • the purpose of suppressing the amount of carbon dioxide gas released from the first regenerator is to release and release carbon dioxide gas at once from the second regenerator while keeping the amount of carbon dioxide taken into the cleaning liquid as high as possible, and discharge carbon dioxide gas out of the system. This is to increase the amount as much as possible. Therefore, it is preferable to provide a heat exchanger as needed to heat the cleaning liquid. This heating involves the steam generated in the heat recovery process or the heat generated in the heat recovery process, and the carbon dioxide is absorbed in the carbon dioxide gas absorption process. It is desirable to use the steam that has been used to heat the absorbing solution.
  • the fuel cell oxygen electrode off-gas which is the regenerating gas for the second regenerator, is at a temperature of about 75 to 90 ° C, and contains saturated steam at the fuel cell outlet. , There is almost no new steam generation in the second regenerator, and therefore the cooling effect is almost Almost no. This is extremely advantageous in keeping the operating temperature of the second regenerator as high as possible.
  • FIG. 9 shows a specific embodiment of the two-stage regenerating acid gas removing apparatus of the embodiment shown in FIG.
  • a two-stage regenerative acid gas remover as shown in Fig. 3 or Fig. 4 may be used, as shown in Fig. 9, the first regenerator B does not use gas-liquid contact in countercurrent, It is a mixed type.
  • the regenerator off gas 36 b entrains water vapor and carbon dioxide gas according to the equilibrium state with the cleaning liquid at the inlet of the first regenerator, but the cleaning liquid at the inlet of the first regenerator is heated by the gas washer A.
  • the off-gas 36b only entrains steam and carbon dioxide that follow the gas-liquid equilibrium with the cleaning liquid at the outlet of the first regenerator.
  • the amount of carbon dioxide accompanying the off-gas 36 b is smaller than in the case, and the amount discharged outside the system at the second regenerator increases.
  • FIG. 10 shows an embodiment of a two-stage regenerating acid gas removing apparatus for the purpose of suppressing the amount of carbon dioxide gas released while securing the amount of steam generated in the first regenerator B.
  • Only part of the cleaning solution 40 is supplied to the first regenerator B, and the rest is directly to the second regenerator Supply to C.
  • the first regenerator is provided with a means for heating the cleaning liquid. The temperature of the cleaning liquid is raised to promote the generation of water vapor. At the same time, carbon dioxide is released.
  • the gasification fuel cell power generation system shown in Fig. 8 uses a combustible material with a calorific value of about 13 MJ / kg as a raw material.
  • the circulation amount is about 150 t / h, and only about 1% or less than 10% of it is led to the first regenerator to cover the amount of steam required as a gasifying agent in the gasification process.
  • FIG. 13 shows an embodiment of the present invention, in which steam and carbon dioxide are actively collected from the cleaning liquid and used as a gasifying agent.
  • the pressure of the offgas is necessary. Pb is being measured.
  • the measured pressure signal is sent to the pressure regulator 74, and the pressure regulator 74 regulates the regeneration gas flow control valve 38 and the heating steam flow control valve 39 to maintain the specified pressure.
  • the vertical position of the first regenerator B relative to the gas scrubber A is determined by the pressure required as a gasifying agent. The higher the pressure required as a gasifying agent, the lower the first regenerator B is located relative to the gas washer A.
  • the cleaning liquid that has flowed into the first regenerator B is sent to the second regenerator C, but if the second regenerator C is located relatively lower than the gas washer A, the cleaning liquid at the outlet of the first regenerator B No need for a circulation pump in the cleaning liquid circulation system Can also flow into the second regenerator C by natural flow. However, if the pressure of Pb becomes lower than the predetermined pressure, the cleaning liquid may flow backward. Therefore, it is necessary to provide a check valve in the cleaning liquid circulation system if necessary.
  • a pump for circulating the cleaning liquid may be provided.
  • a bypass line with a cleaning liquid bypass valve 19 ac to reduce the amount of cleaning liquid flowing into the first regenerator B, control of Pb is facilitated and the consumption of steam for heating is reduced. Can be reduced.
  • the type of the first regenerator is a completely mixed type, carbon dioxide emission in the first regenerator can be suppressed.
  • the gasification fuel cell power generation system shown in FIG. 8 can be made more efficient.
  • the embodiment shown in FIG. 8 can be said to be a system having two carbon dioxide absorption devices in series.
  • the regeneration gas of the second regenerator is preferably a gas capable of reducing the partial pressure of carbon dioxide in the off-gas 36c as much as possible, and has a low carbon dioxide content and a low volume at the lowest possible temperature. More is better.
  • the operating pressure of the gasification process was normal pressure
  • the temperature of the gas flowing into the gas scrubber A was 500 ° C
  • the raw material heat generation was about 13 MJ /
  • the most efficient operating conditions for kg are:
  • FIG. 11 is a second embodiment of the gasification fuel cell power generation system using the two-stage regenerative acid gas removal device of the present invention, similarly to FIG.
  • This embodiment is an embodiment in a case where a gasifier having a low carbon dioxide gas concentration and as rich as possible a steam rich gas is required as a gasifying agent to be supplied to the gasification step.
  • the fuel cell oxygen electrode off-gas is used as the regeneration gas of the first regenerator B, and the oxidizing agent for the gasification process is used as the regeneration gas of the second regenerator C.
  • the fuel cell oxygen electrode off-gas contains saturated steam at about 75 to 90 ° C, it does not lose latent heat of vaporization even when used as a regeneration gas for the first regenerator, so its ability to cool the cleaning liquid is small. Since it does not contain carbon dioxide, its function as a gas for desorbing carbon dioxide is high.
  • the fuel cell oxygen electrode off-gas is used as the regeneration gas for the first regenerator, the first regenerator off-gas is exhausted out of the system, and the second regenerator is supplied with the cleaning liquid after the desorption of carbon dioxide.
  • the off-gas of the second regenerator obtained by supplying pure oxygen or high-concentration oxygen as a regeneration gas, that is, the concentration of carbon dioxide contained in the mixed gas of the gasifier and the oxidizer supplied to the gasification process is shown in Fig. 8. Significantly lower than in the example.
  • the temperature drop of the cleaning water (cleaning liquid) in the first regenerator is extremely small, the steam generation capacity in the second regenerator has not been reduced, and it is desirable to supply carbon dioxide gas as a gasifying agent in the gasification process. If not, it is very convenient. Of course, if the amount of generated steam is insufficient, the cleaning liquid in the second regenerator may be heated with steam or the like.
  • a specific embodiment of the first regenerator and the second regenerator of the present invention in the present embodiment may be a countercurrent regenerator as shown in FIGS. 3 and 4, but the second regenerator may be steam or the like.
  • a line 40b is provided that bypasses the second regenerator C from the first regenerator B and flows into the gas cleaning unit A.
  • the cleaning liquid heating heat transfer tube 48 of the second regenerator is disposed as high as possible in the retained cleaning liquid. Install at least above the lower end of the washing liquid down pipe 12c.
  • the operating pressure of the gasification process is normal pressure
  • the temperature of the gas flowing into the gas scrubber A is 500 ° C.
  • the raw material calorific value is about 13 M.
  • the most efficient operating conditions for JZkg are:
  • FIG. 14 shows a third embodiment of the present invention, in which a gas scrubber has two stages of a first gas scrubber A ′ and a second gas scrubber A2, and a cleaning liquid regenerator is a first regenerator B and a first regenerator B.
  • a cleaning liquid regenerator is a first regenerator B and a first regenerator B.
  • the acidic gas is absorbed into the first cleaning liquid 82b, and the dust components in the gas to be cleaned are also taken into the first cleaning liquid 82b.
  • the gas to be cleaned guided from the first gas cleaning section A ′ to the second gas cleaning section A2 comes into contact with the second cleaning liquid 82 c in counterflow, and the gas to be cleaned is further purified by the second cleaning liquid 82 c.
  • the super-saturated steam is cooled and condensed, and the weakly acidic gas such as carbon dioxide and hydrogen sulfide in the gas to be cleaned is absorbed by the second cleaning liquid 82c.
  • the post-cleaning gas 31 obtained from the second gas cleaning section A2 has low solubility in the alkaline solution such as carbon monoxide, hydrogen, saturated water vapor, and carbonic acid that cannot be completely dissolved in the alkaline solution. It becomes a clean gas mainly composed of gas.
  • the first cleaning liquid 82b which has absorbed a strongly acidic gas such as hydrogen chloride and has increased in temperature, is sent to the first regenerator B via the gas-liquid separator 3a, and is treated in the first regenerator B. It comes into contact with a first regeneration gas 35 b containing oxygen, which is different from the cleaning gas and contains oxygen, for example, an enriched oxygen gas, and generates steam up to the saturated steam pressure at the temperature in the first regenerator B.
  • a strongly acidic gas such as hydrogen chloride and has increased in temperature
  • the first regenerator B For example, if the first regenerator B is operated at 80 ° C. at atmospheric pressure (about 0.1 MPa (lbar)), the first regenerator off-gas 36 b discharged from the first regenerator 47% of water vapor is entrained. At the same time, the first cleaning liquid 82b is deprived of the latent heat of evaporation and cooled.
  • the first regenerating gas 35b entrains water vapor at or above the saturated vapor pressure in the first regenerator B, there is no water evaporation in the regenerator and the first regenerator B 1Cleaning liquid cooling is not performed. C Therefore, as the first regeneration gas 35b, the smaller the water vapor content, that is, the lower the dew point, the better.
  • the first cleaning liquid 82b absorbs a strongly acidic gas in the first gas cleaning section A ', so that its pH is lowered, and the first cleaning liquid regenerator B evaporates water. Alkali and water need to be replenished.
  • the dust contains dust and the dust is taken into the first cleaning liquid 82b, it is necessary to separate the dust from the first cleaning liquid 82b.
  • a chemical addition device and a filtration device are provided in the circulation path of the first cleaning liquid, respectively, and the first cleaning liquid 82b is adjusted to pH by adding the first cleaning agent and water as the cleaning agent dilution water. Then, the whole or a part of the first washing liquid 82b is constantly filtered to remove the solid content.
  • any alkaline agent may be used as the alkaline agent, but sodium hydroxide or hydroxylated hydroxide is preferred.
  • the pH of the first cleaning liquid 82b to be adjusted that is, the pH of the first cleaning liquid 82b at the inlet of the first gas cleaning section A 'is pH 4 or more, it is sufficient to have the ability to absorb hydrogen chloride gas.
  • the pH of the first cleaning liquid 82b at the inlet of the first gas cleaning section A ' is preferably in the range of pH 4 to 11, and more preferably in the range of pH 5 to 10.
  • Salts generated by the neutralization reaction of the first alkaline agent and the strong acid gas gradually accumulate in the first cleaning liquid 82b.
  • one of the first cleaning liquid 82b is used. Parts must be blown at all times.
  • the first regenerator off-gas 36b accompanied by the saturated steam can be used as a gasifying agent diluting gas for gasification of combustibles described above.
  • oxygen-enriched gas or PSA oxygen enriched oxygen produced by the pressure-causing method
  • the first regenerator off-gas 36b is used as a gasifying agent as it is. You can also.
  • the first cleaning liquid temperature T lout at the cleaning liquid outlet of the first gas cleaning section may be 20 ° C or less, preferably 10 ° C or less. , Below the boiling point and within 5 ° C Preferred.
  • the first cleaning liquid temperature T 1 in at the cleaning liquid inlet of the first gas cleaning section A ′ is equal to or less than the first cleaning liquid temperature T 10 ut at the cleaning liquid outlet of the first gas cleaning section A ′ and within 20 ° C.
  • the temperature is not more than the saturation temperature of water vapor in the gas to be cleaned and within 5 ° C.
  • the circulation rate of the first cleaning liquid 82b is determined from the flow rate, temperature and specific heat of the gas to be cleaned so as to satisfy the first cleaning liquid temperature at the cleaning liquid outlet and the inlet of the first gas cleaning section A '. do it.
  • the first cleaning liquid 82b extracted from the first regenerator B is returned to the first gas cleaning unit A 'via the gas-liquid separator 3b.
  • the second cleaning liquid 82 c which absorbs weakly acidic gas such as hydrogen sulfide and carbon dioxide, and whose temperature has risen due to condensation of water vapor, is sent to the second regenerator C via the gas-liquid separator 3 c.
  • the second regenerating gas 35 c having a different component from the gas to be cleaned, such as air or a fuel cell off-gas, comes into contact with the second regenerator C to generate steam up to the saturated steam pressure at the temperature in the second regenerator C. As they occur, they are decarboxylated and regenerated.
  • a chemical addition device is provided in the circulation path of the second cleaning liquid 82c, and an appropriate amount of an oxidizing agent can be added to the second cleaning liquid 82c according to the absorption amount of reducing acid gas such as hydrogen sulfide.
  • the pH of the second cleaning solution 82 c is preferably 7 or more and 12 or less.
  • the second alkaline agent and the oxidizing agent used are the same as the alkaline agent and the oxidizing agent described in the first embodiment.
  • the second regenerator off-gas 36c accompanying the desorbed carbon dioxide gas and saturated water vapor is discharged through the condenser 80c and the condensed water separator 81c.
  • the condensed water recovered by the condensed water separator 81c can be returned to the system as dilution water of the first alkaline agent or dilution water of the first washing liquid 82b.
  • the cleaning liquid in the second gas cleaning section A 2 The second cleaning liquid temperature T 20 ut at the mouth is lower than the first cleaning liquid temperature T 1 in at the cleaning liquid inlet of the first gas cleaning section A ′ at 20 ° C. or less, preferably the first gas cleaning section A ′.
  • the temperature is preferably at least 10 ° C or higher, more preferably at least 20 ° C or lower.
  • the circulation flow rate of the second cleaning liquid 82c is determined by the flow rate, temperature and specific heat of the gas to be cleaned so as to satisfy the second cleaning liquid temperature at the outlet and the inlet of the cleaning liquid in the second gas cleaning section A2. You only have to decide.
  • the second cleaning liquid 82 c withdrawn from the second regenerator C is returned to the second gas cleaning unit A2 via the gas-liquid separator 3d.
  • the temperature of the second cleaning liquid at the outlet of the second regenerator C is higher than the predetermined temperature of the second cleaning liquid at the inlet of the second gas cleaning section, the temperature is adjusted by providing a cooling device in the circulation path.
  • the sensible heat of the calorie of the gas 30 to be cleaned is recovered and recovered by the first gas cleaning section A ′.
  • the recovered heat is used to generate steam in the first regenerator B, while the latent heat, that is, the heat of condensation of the water vapor contained in the gas 30 to be cleaned is cooled and recovered in the second gas cleaning section A2.
  • the recovered heat is used in the second regenerator C for decarboxylation of the second cleaning solution 82 c, that is, for regeneration of the second alkaline agent.
  • the post-cleaning gas 31 obtained according to the present embodiment is subjected to a desulfurization step, a carbon monoxide conversion step, a carbon monoxide selective oxidation step, a carbon dioxide absorption step, a methanation step, a hydrogen purification step using a hydrogen storage alloy, and a hydrogen purification step.
  • Purified hydrogen gas by treating in one of the PSA processes or any combination of these processes Gas can be produced, and the produced hydrogen gas can be supplied to the fuel cell power generation process to generate electricity.
  • FIG. 15 shows another specific example of the third embodiment of the present invention shown in FIG.
  • the inside of the gas washer A is partitioned by a liquid collecting plate 85.
  • the lower side of the liquid collecting plate is a first gas cleaning section A ', and the upper side is a second gas cleaning section A2.
  • the collecting plate 85 allows the gas to be cleaned from the first gas cleaning section A 'to flow, but prevents the cleaning liquid from flowing down from the second gas cleaning section A2 to the first gas cleaning section A'. It has a structure. Accordingly, the first cleaning liquid 8 2 b between the first gas washing part A 5 and the first regenerator B is also a second gas cleaning unit A 2 between the second regenerator C second cleaning liquid 8 2c circulates independently of each other. Other explanations are the same as in FIG.
  • FIG. 16 shows combustible materials, that is, combustible waste (industrial waste such as municipal waste, solidified fuel, slurry fuel, waste paper, waste plastic, waste FRP, biomass waste, automobile waste, waste wood, etc.). , Low-grade coal, waste oil, etc.) and coal, etc., into gas, process the resulting gas, and gasify combustibles to be supplied to the fuel cell.
  • FIG. 2 is a device configuration diagram illustrating an example.
  • the raw material 1, which is a combustible material is supplied from the raw material feeder 115 to the low-temperature gasification furnace 112, and the product gas obtained by pyrolysis and gasification in the temperature range of 400 to 100 ° C is obtained.
  • the raw material is sent to the high-temperature gasifier 111 as it is, and the incombustibles in the raw material are separately extracted from the low-temperature gasifier 112.
  • the produced gas is further gasified in the high temperature gasifier 114 in the temperature range of 1000 to 1500 ° C., and the molecular weight is reduced.
  • the temperature of the high-temperature gasification furnace 114 is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and the ash of 80 to 90% in the generated gas is turned into slag, which is converted into molten slag 127 It is discharged out of the system.
  • Organic matter and hydrocarbons in the product gas are completely hydrogen and monoxide in the high temperature gasifier Decomposes to carbon, water vapor and carbon dioxide.
  • the product gas obtained in the high-temperature gasification furnace 114 is then recovered by a high-temperature heat exchanger 122 and a waste heat boiler (heat recovery boiler) 122 to obtain sensible heat at 200 ° C, preferably at 200 ° C.
  • the temperature is reduced to 350 ° C, more preferably to 500 ° C.
  • the recovered sensible heat is used for generating steam and heating the gasifying agent.
  • the raw material is an irregular combustible material such as garbage, as shown in Fig. 18 or Fig. 19, which will be described later in detail, to prevent air from leaking from the raw material feeder It is good to adopt a raw material feeder.
  • the compressed water generated when the raw material is pressed by the raw material feeder is supplied to the waste heat boiler 122, and is evaporated and decomposed by being mixed into the high-temperature generated gas.
  • the degassed gas generated during raw material compression may be supplied to the waste heat boiler 122 similarly to the compressed water and decomposed.
  • high-temperature gasification is performed as an oxidizing agent and a gasifying agent. It may be supplied to a furnace. Alternatively, it may be introduced into an off-gas burner 163 for treatment.
  • the generated gas whose sensible heat has been recovered by the waste heat boiler, that is, the gas to be cleaned 30, is led to the gas washer A of the present invention, where the acid gas is removed and the gas is cooled to 60 to 90 ° C. You. If the amount of dust / components in the generated gas has a particularly bad effect on the performance of the gas scrubber, install a cyclone-filled dry type dust collector upstream of the gas scrubber and remove the dust. It is better to lead to gas washer A.
  • the regeneration of the alkaline agent is performed in two stages.
  • a high-concentration oxygen gas containing oxygen of 80% or more, preferably 90% or more, more preferably 93% or more, or pure oxygen gas is used as a regeneration gas.
  • the regenerator off-gas 36 b exiting the first regenerator B was heated in the high-temperature heat exchanger 122, and was supplied to the gasification furnace as a gasifying agent and an oxidizing agent for partial oxidation. Supplied as The high-concentration oxygen gas and the regenerating gas supplied to the first regenerator B, which are pure oxygen gas, do not contain water vapor. Temperature rise is suppressed, and the carbon dioxide uptake is kept low.
  • the fuel cell hydrogen electrode off-gas 161 and the oxygen electrode off-gas 162 of the fuel cell power generation process 160 are burned by an off-gas burner 163 as regeneration gas.
  • the combustion exhaust gas 166 from which the pressure energy and the heat energy have been recovered is supplied by the pocharger 164, and a wet gas 36c rich in carbon dioxide gas is obtained.
  • the gas washer A, the first regenerator B, and the second regenerator C are not limited to the mode shown in FIG. 16 and may be modes such as FIGS. 9, 10 or FIGS. 12, 13, and the like. .
  • the cooled post-cleaning gas 31 is pressurized to 200 to 800 kPa by a gas compressor 135 and supplied to the hydrogen production step 140.
  • the gas compressor 135 is driven by a steam bin 125 using high-pressure steam 123 from the waste heat boiler 122. It is also possible to use the low-pressure steam 124 coming out of the steam bins 125 to the carbon dioxide absorber 147 and the metamorphic reactor 1442 in the hydrogen production process to make effective use of heat energy. I can do it.
  • the hydrogen production process 140 is a desulfurization reactor that removes the sulfur content in the product gas 141, and a metamorphosis reactor that reacts carbon monoxide and water in the product gas to convert them to hydrogen and carbon dioxide.
  • the carbon dioxide absorption device 147 which removes the carbon monoxide remaining in the gas 188 after absorption of the carbon dioxide gas. Is sequentially processed in each device, and high-concentration hydrogen gas 69 is obtained.
  • the CO removal device 150 has a selective oxidation device that selectively burns carbon monoxide in the gas, Alternatively, a methanation reactor that generates methane by reacting carbon monoxide and carbon dioxide in a gas with hydrogen, or adsorbs gas components other than hydrogen, such as carbon monoxide, carbon dioxide, and nitrogen, on activated carbon and zeolite A PSA (pressure swing gas adsorption device) for hydrogen purification, which adsorbs and separates the material, is used.
  • a methanation reactor that generates methane by reacting carbon monoxide and carbon dioxide in a gas with hydrogen, or adsorbs gas components other than hydrogen, such as carbon monoxide, carbon dioxide, and nitrogen, on activated carbon and zeolite A PSA (pressure swing gas adsorption device) for hydrogen purification, which adsorbs and separates the material, is used.
  • PSA pressure swing gas adsorption device
  • high-concentration hydrogen gas 69 is supplied to the hydrogen electrode of the fuel cell, and the air 53 is supplied to the oxygen electrode of the fuel cell by boosting the pressure of the air 53 by the evening charger 164.
  • the fuel cell used may be any fuel cell that can use hydrogen as a fuel, and may be any of a polymer electrolyte type, a phosphoric acid type, a molten carbonate type, and a solid electrolyte type.
  • Both the hydrogen electrode off-gas 16 1 and the oxygen electrode off-gas 16 2 are led to the off-gas par 1613 and burned.
  • the flue gas 165 from the off-gas parner 163 is supplied to the turbocharger 164 to increase the pressure of the air 53 supplied to the oxygen electrode of the fuel cell, and then used as the regeneration gas for the second regenerator C. However, it becomes a moist gas 36 c containing a lot of carbon dioxide.
  • FIG. 17 shows a typical configuration of main components of the gasification process of the embodiment in FIG.
  • the low-temperature gasification furnace 202 is a cylindrical fluidized-bed furnace having an internal swirling flow, and performs stable gasification by enhancing the diffusivity of the raw material in the furnace.
  • the high-temperature gasifier 215 is a rotary melting furnace.
  • a conical dispersion plate 206 is arranged on the hearth of the cylindrical fluidized-bed furnace.
  • the fluidizing gas supplied via the dispersion plate 206 is supplied from the central fluidizing gas 307 supplied as an upward flow into the furnace from the vicinity of the central part 304 of the furnace bottom and from the peripheral part 303 of the furnace bottom.
  • Peripheral fluidized gas supplied as upward flow into the furnace Become.
  • the central fluidizing gas 307 is made of a gas containing no oxygen
  • the peripheral fluidizing gas 308 is made of a gas containing oxygen.
  • the amount of oxygen in the fluidized gas as a whole is 10% or more and 30% or less of the theoretical combustion oxygen amount required for combustible material combustion, and the inside of the furnace is a reducing atmosphere.
  • the mass velocity of the central fluidizing gas 307 is made smaller than the mass velocity of the peripheral fluidizing gas 308, and the upward flow of the fluidizing gas above Turned toward the center.
  • a moving bed 309 in which the fluidized medium (using silica sand) settles and diffuses is formed in the center of the furnace, and a fluidized bed 311 in which the fluidized medium is actively fluidized around the furnace. 0 is formed.
  • the combustible material 1 supplied to the upper part of the moving bed 309 by the raw material feeder 201 is heated by the heat of the flowing medium while descending in the moving bed 309 together with the flowing medium, and mainly the volatile matter Is gasified. Since there is no or little oxygen in the moving bed 309, the pyrolysis gas (product gas) composed of the gasified volatiles is not burned, but passes through the moving bed 309 as indicated by an arrow 216. The moving bed 309 therefore forms a gasification zone G.
  • the product gas that has moved to the freeboard 207 rises as indicated by an arrow 220 and is discharged as a product gas g from the gas outlet 208 through the freeboard 207.
  • the gas that is not gasified in the moving bed 309 mainly the char (fixed carbon content) and the gas flows from the lower part of the moving bed 309 together with the flowing medium around the furnace as shown by the arrow 2 12 It moves to the lower part of the layer 310 and is burned by the peripheral fluidizing gas 308 having a relatively high oxygen content and partially oxidized.
  • the fluidized bed 310 forms an oxidation zone S for combustibles.
  • the fluidized medium is heated by combustion heat in the fluidized bed to a high temperature.
  • the high temperature fluid medium is inverted by the inclined wall (deflector) 306 as shown by the arrow 218, moves to the moving bed 309, and becomes a heat source for gasification again.
  • the temperature of the fluidized bed is maintained at 400 to 100 ° C., preferably at 400 to 600 ° C., so that the suppressed combustion reaction can be continued.
  • a ring-shaped non-combustible material discharge port for discharging non-combustible material is formed at the bottom outer peripheral portion of the fluidized bed gasifier.
  • a gasification zone G and an oxidation zone S are formed in the fluidized-bed furnace, and the fluidized medium serves as a heat transfer medium in both zones.
  • G high-quality combustible gas having a high calorific value is generated, and in the oxidation zone S, it is possible to efficiently burn char and tar which are difficult to gasify. Therefore, the gasification efficiency of combustibles such as waste can be improved, and high-quality product gas can be generated.
  • the low-temperature gasification furnace is not limited to the cylindrical fluidized-bed furnace, and may be a kiln-stalker furnace as in the previous embodiment.
  • the rotary melting furnace as a high temperature gasifier 2 15
  • a gap between the secondary gasification chamber 2 15 b and the tertiary gasification chamber 2 15 c It has a lag outlet 242 where most of the ash is discharged as slag.
  • the product gas supplied to the swirling melting furnace is supplied tangentially so as to generate a swirling flow in the primary gasification chamber 215a.
  • the inflowing product gas forms a swirling flow, and the solid content in the gas is trapped on the surrounding wall by centrifugal force, so the slag conversion rate and slag collection rate are high, and the slag mist is less scattered. is there.
  • Oxygen is supplied from 2 3 4.
  • the temperature distribution is adjusted so that hydrocarbon decomposition and ash slag conversion are completely completed in the primary gasification chamber 2 15a and the secondary gasification chamber 2 15b. Since the supply of oxygen alone may cause burnout of the nozzle, etc., it is supplied after dilution with steam or the like as necessary.
  • steam must be supplied so as not to be insufficient because it contributes to the reduction of hydrocarbon molecules by steam reforming. This is because the inside of the furnace is at a high temperature, and if there is insufficient steam, the condensation polymerization reaction will produce extremely poorly reactive graphite, causing unburned losses.
  • the slag flows down the lower surface of the secondary gasification chamber 2 15 b and is discharged from the slag discharge port 2 42 as molten slag 2 2 6.
  • the tertiary gasification chamber 215c serves as an interference zone for preventing the slag discharge port 242 from being cooled by radiant cooling from the exhaust heat boiler provided downstream, It is provided for the purpose of completing the reduction of molecular weight.
  • An exhaust port 244 for exhausting generated gas is provided at the upper end of the tertiary gasification chamber 215c, and a radiating plate 248 is provided at the lower portion.
  • the radiation plate 248 has a function of reducing the amount of heat lost from the exhaust port 244 due to radiation. Note 2
  • 3 2 is a start-up wrench, and 2 3 6 is an auxiliary burner wrench.
  • Organic matter and hydrocarbons in the product gas are completely hydrogen, carbon monoxide, water vapor, Decomposed to carbon oxide.
  • the product gas obtained in the high-temperature gasifier 2 15 is discharged from the exhaust port 2 4 4, and then the exhaust heat boiler consisting of a radiation boiler
  • the high temperature gasifier is not limited to the rotary melting furnace, but may be another type of gasifier.
  • FIG. 18 is a configuration diagram of the raw material feeder in FIG.
  • the external casing of the raw material feeder 115 is composed of a raw material hopper section 401, a taper-shaped casing 402 whose diameter becomes smaller toward the tip, and a plurality of downstream casings. It is formed of a tapered perforated casing 400 having an opening 430 and a tip casing 404 including an outlet 450. Inside the casing, there is provided a screw shaft 410 whose diameter decreases toward the tip in accordance with the tapered casing.
  • the combustible material 1 as a raw material is supplied to a raw material hopper section 401, and is conveyed to the tip of the screw shaft by the rotation of the screw shaft 410, and the screw shaft 410 and the casing 4 are rotated. It is compressed by the taper shape of 02. Moisture is squeezed from the compressed combustible material, and gas mixed with the raw material is degassed and discharged out of the machine through a plurality of openings 4330 provided in the casing 4003. The size of the opening is such that combustibles do not come out, and the maximum diameter is about 10 mm.
  • the combustibles, which have been compressed and have a reduced water content, are supplied from the outlet 450 to the low-temperature gasifier 112.
  • the compressed combustibles also have a relatively uniform density and a small fluctuation in the amount of supply, making it a very preferable equipment as a raw material feeder when using irregular combustibles such as garbage as raw materials. .
  • a separate casing is provided around the casing 402 so as to have a gap between the casing 402 and the casing, and a heating fluid is caused to flow through the gap to heat the raw material 1 to more effectively compress and dehydrate. Can also be performed.
  • a heating fluid a part of the steam from the waste heat boiler 122 in FIG. 16 or the combustion gas from the off gas parner 163 in FIG. 16 can be used.
  • a heating cover casing 42 1 is provided around the casing 402 so as to have a gap 4 23 between the casing 402 and the heating fluid.
  • the raw material 1 can be dried and dehydrated by heating, and can be pressed and deaerated and degassed, so that the raw material 1 can be more effectively dehydrated. That is, the heat obtained by the waste heat boiler, the heat obtained by burning the hydrogen discharged from the hydrogen electrode (anode) of the fuel cell, the heat obtained by radiating heat from the fuel cell stack, or the hydrogen electrode of the fuel cell
  • the raw material is heated and dried using the heat and the like of the off-gas itself of the oxygen electrode.
  • the specific heating fluid used in this case is the steam from the waste heat boiler 122 shown in Fig.
  • heat efficiency can be further improved by using the steam—the combustion gas as a heating fluid for the raw material after power recovery with a steam bin or a turbocharger.
  • the offgas or air from the fuel cell oxygen electrode (power source) can be used for combustion of the hydrogen discharged from the fuel cell hydrogen electrode.
  • drying and dehydration by heating the raw materials can be obtained by waste heat boiler Heat, heat obtained by burning the hydrogen discharged from the hydrogen electrode of the fuel cell, heat generated by heat radiation from the fuel cell stack, or the offgas itself of the hydrogen electrode and oxygen electrode of the fuel cell It is not only possible to introduce heat as a heating fluid into the casing of the raw material feeder, but it is also possible to use such heat as a heating source for existing raw material drying equipment. In other words, regardless of whether or not a compressed raw material feeder as shown in Figs.
  • the heat obtained by the waste heat boiler, the heat obtained by burning the hydrogen discharged from the hydrogen electrode of the fuel cell, the heat generated by heat radiation from the fuel cell stack, or the hydrogen electrode and oxygen of the fuel cell is also achieved by supplying the raw material feeder after drying using the heat of the polar off-gas itself.
  • FIG. 9 is a device configuration diagram showing another embodiment.
  • the embodiment of the two-stage cleaning and the two-stage regeneration shown in FIG. 14 is basically used as the acid gas cleaning device, but the second cleaning solution 82 c regenerated by the second regenerator C is used in the hydrogen production process.
  • the carbon dioxide gas absorption device of 140 is led to the carbon dioxide absorption tower 181 as the carbon dioxide gas absorbing solution of 147, the carbon dioxide gas is absorbed and separated from the gas 144 after the shift reaction, and then the acid gas absorption device (2)
  • the feature is that it is sent to the gas cleaning section A2.
  • the absorption liquid regenerating device originally required for the carbon dioxide gas absorbing device 144 of the hydrogen production process 140 is not required, but also the heat exchange rate is improved because the regeneration heat is significantly reduced. To improve.
  • raw material 1 as a combustible material was supplied from a raw material feeder 115 to a low-temperature gasification furnace 112, and was obtained by pyrolysis and gasification in a temperature range of 400 to 100 ° C.
  • the generated gas is sent to the high-temperature gasifier 111 as it is, and the incombustibles in the raw materials are separately extracted from the low-temperature gasifier 112.
  • the generated gas is further gasified in the high temperature gasifier 114 in a temperature range of 1000 to 1500 ° C., and is depolymerized.
  • the temperature of the high-temperature gasification furnace 114 is maintained at a temperature higher than the temperature at which the ash contained in the generated gas melts, and 80 to 90% of the ash in the generated gas is turned into slag, and the molten slag 1 27 Is discharged outside the system.
  • Organic matter and hydrocarbons in the product gas are completely decomposed into hydrogen, carbon monoxide, water vapor, and carbon dioxide in the high-temperature gasifier.
  • the product gas obtained in the high-temperature gasification furnace 114 is then recovered in the high-temperature heat exchanger 122 and the waste heat boiler 122 to recover sensible heat at 200 ° C, preferably 350 ° C. More preferably, the temperature is reduced to 500 degrees.
  • the recovered sensible heat is used for generating steam and heating the gasifying agent.
  • a raw material feeder as shown in Fig. 18 described above to prevent air from leaking from the raw material feeder.
  • the compressed water generated when the raw material is compressed by the raw material feeder is supplied to the waste heat boiler 122, and is evaporated and decomposed by being mixed into the high-temperature generated gas.
  • the generated gas whose sensible heat has been recovered by the waste heat boiler, that is, the gas to be cleaned 30 is guided to the first gas cleaning device A 'of the present invention, and comes into contact with the first cleaning liquid 82b in a counterflow to be cleaned.
  • the gas 30 is cooled by the first cleaning liquid 82b and the strongly acidic gas such as hydrogen chloride in the gas 30 to be cleaned is absorbed into the first cleaning liquid 82b, and the dust component in the gas to be cleaned is removed. Is also taken into the first cleaning solution 82b.
  • the gas to be cleaned led from the first gas cleaning section A 'to the second gas cleaning section A2 comes into contact with the second cleaning liquid 82c in a counterflow, and the gas to be cleaned is further moved by the second cleaning liquid 82c.
  • the supersaturated water vapor is cooled and condensed, and the weakly acidic gas such as carbon dioxide and hydrogen sulfide in the gas to be cleaned is absorbed by the second cleaning liquid 82c.
  • the post-cleaning gas 31 obtained from the second gas cleaning section A2 can be completely dissolved in carbon monoxide, hydrogen, saturated water vapor, and alkaline solution having low solubility in the alkaline solution. It becomes a clean gas containing carbon dioxide as a main component.
  • the first cleaning liquid 82b which has absorbed a strongly acidic gas such as hydrogen chloride and has increased in temperature, is sent to the first regenerator B via the gas-liquid separator 3a, and is treated in the first regenerator B.
  • First regeneration gas containing oxygen that is different from the cleaning gas and contains oxygen that is, gasifier gas 50, for example, oxygen having an oxygen concentration of 80% or more, preferably 90% or more, more preferably 93% or more It comes into contact with high-concentration oxygen gas containing pure or pure oxygen gas, and generates steam up to the saturated steam pressure at the temperature in the first regenerator B.
  • the first regenerator B For example, if the first regenerator B is operated at 80 ° C. at atmospheric pressure (about 0.1 MPa (lbar)), the first regenerator off-gas 36 b discharged from the first regenerator 47% of water vapor is entrained. At the same time, the first cleaning liquid 82b is deprived of the latent heat of evaporation and cooled.
  • the first regenerating gas 35b entrains water vapor at or above the saturated vapor pressure in the first regenerator B, there is no water evaporation in the regenerator and the first regenerator B 1Cleaning liquid cooling is not performed. C Therefore, as the first regeneration gas 35b, the smaller the water vapor content, that is, the lower the dew point, the better.
  • the first cleaning liquid 82b absorbs a strongly acidic gas in the first gas cleaning section A ', so that the pH decreases, and in the first regenerator B, water evaporates. It is necessary to replenish the first alkaline agent and water. Further, when the gas to be cleaned contains dust and the dust is taken into the first cleaning liquid 82b, it is necessary to separate the dust from the first cleaning liquid 82b.
  • a chemical addition device and a filtration device are provided in the circulation path of the first cleaning liquid, respectively, and a first alkaline agent and water as the alkaline agent dilution water are added to adjust the pH of the first cleaning liquid 82b.
  • the whole or a part of the first washing liquid 82b is constantly filtered to remove the solid content.
  • Any alkaline agent may be used as long as it is an alkaline substance, and sodium hydroxide or a hydroxide hydroxide is preferred.
  • the pH of the first cleaning liquid 8 2b to be adjusted that is, 11 of the first cleaning liquid 8 2 13 at the inlet of the first gas cleaning section A 'is 114 or more, it has the ability to absorb hydrogen chloride gas. Although it is good, when the pH is 11 or more, it absorbs not only the strongly acidic gas but also the carbon dioxide gas, so that the consumption of the first alkaline agent increases, which is not preferable.
  • the pH of the first cleaning liquid 82b at the inlet of the first gas cleaning section A ' is preferably in the range of pH 4 to 11, and more preferably in the range of pH 5 to 10. Salts generated by the neutralization reaction of the first alkaline agent and the strong acid gas gradually accumulate in the first cleaning solution 82b, but the first cleaning solution 82b is used to prevent adverse effects due to excessive concentration of the salts.
  • the first regenerator off-gas 36 b accompanied by the saturated water vapor is heated in the high-temperature heat exchanger 122, and the gasifying agent and gasifier are supplied to the gasification furnace. Supplied as oxidizer for partial oxidation.
  • the first cleaning liquid temperature T lout at the cleaning liquid outlet of the first gas cleaning section may be within the boiling point of 20 ° C or lower, and may be within the boiling point of 10 ° C or lower. It is more preferable, and it is more preferable that the boiling point is within 5 ° C.
  • the first cleaning liquid temperature T 1 in at the cleaning liquid inlet of the first gas cleaning section A ′ is the first cleaning liquid temperature at the cleaning liquid outlet of the first gas cleaning section A ′.
  • the temperature may be T 1 out or less and 20 ° C. or less, but is more preferably 5 ° C. or less than the saturation temperature of water vapor in the gas to be cleaned.
  • the circulation rate of the first cleaning liquid 82b is determined from the flow rate, temperature and specific heat of the gas to be cleaned so as to satisfy the first cleaning liquid temperature at the cleaning liquid outlet and the inlet of the first gas cleaning section A '. do it.
  • the first cleaning liquid 82b extracted from the first regenerator B is returned to the first gas cleaning unit A 'via the gas-liquid separator 3b.
  • the second cleaning liquid 82 c which absorbs weakly acidic gas such as hydrogen sulfide and carbon dioxide gas, and which has condensed water vapor to increase the temperature, is sent to the second regenerator C, and is treated in the second regenerator C.
  • the second regeneration gas 35 c having a different composition from the cleaning gas comes into contact with the combustion exhaust gas 16 6 of the fuel cell power generation process that has exited the turbocharger 16 4, and has saturated steam at the temperature inside the second regenerator C. Steam is generated up to the pressure and decarbonation is performed to regenerate the alkali.
  • the reboiler 84 is provided, and the second cleaning liquid 82c can be further heated by using the low-pressure steam 124 coming out of the steam turbine 125 to promote regeneration.
  • the second cleaning liquid 82c can be regenerated with only the low-pressure steam 124 without using the combustion exhaust gas 166.
  • the condensed water 124 a coming out of the reboiler 84 is returned to the waste heat boiler 122.
  • the second alcohol agent used may be either an inorganic alcohol agent or an organic alcohol agent, but an alkanol having a strong ability to absorb carbon dioxide gas.
  • Lumin absorbing solution is still more suitable, and specific absorbents include monoethanolamine (MEA), jetanolamine (DEA), methylgenolamine (MDEA) and the like.
  • MEA monoethanolamine
  • DEA jetanolamine
  • MDEA methylgenolamine
  • the absorption reaction with the alkanolamine absorption solution is described below.
  • the regeneration reaction of the absorbing solution is a reverse reaction of the following reaction.
  • the second regenerator with desorbed carbon dioxide gas and saturated water vapor Off gas 36 c is a condenser It is discharged through 80 c and the condensate separator 81 c.
  • the condensed water recovered by the condensed water separator 81c can be returned to the system as dilution water for the second cleaning liquid 82c, dilution water for the first cleaning agent, or dilution water for the first cleaning liquid 82b. it can.
  • the second cleaning liquid temperature T 2 out at the cleaning liquid outlet of the second gas cleaning section A 2 is the first cleaning liquid temperature at the cleaning liquid inlet of the first gas cleaning section A ′.
  • the temperature of the first cleaning liquid at the cleaning liquid inlet of the first gas cleaning section A ' is preferably not higher than T 1 in and not higher than 10 ° C.
  • the second cleaning liquid temperature T 2 in at the cleaning liquid inlet of the second gas cleaning section A 2 is at least 5 ° C higher than the second cleaning liquid temperature T 2 out at the cleaning liquid outlet of the second gas cleaning section A 2,
  • the temperature is preferably lower than 10 ° C., more preferably lower than 20 ° C.
  • the circulation flow rate of the second cleaning liquid 82c is determined from the flow rate, the temperature, and the specific heat of the gas to be cleaned so as to satisfy the second cleaning liquid temperature at the outlet and the inlet of the cleaning liquid in the second gas cleaning section A2. I just need.
  • the second cleaning liquid 82 c withdrawn from the second regenerator C is sent to the carbon dioxide absorbing device 147 in the hydrogen production step 140.
  • the washed and cooled post-cleaning gas 3 1 The pressure is increased to 0 to 800 kPa and supplied to the hydrogen production step 140.
  • the gas compressor 135 is driven by a steam turbine 125 using high-pressure steam 123 from the waste heat boiler 122. Further, the low-pressure steam 124 coming out of the steam bin 125 is sent to the reboiler 84 as described above, and can be used as a regenerative heat source for the second cleaning liquid 82c.
  • the hydrogen production process 140 is a desulfurization reactor that removes the sulfur content in the product gas 141, and a metamorphosis reactor that reacts carbon monoxide and water in the product gas to convert them to hydrogen and carbon dioxide. , Which absorbs and removes the carbon dioxide gas in the gas after metamorphosis.
  • the carbon dioxide absorption device 147 which removes the carbon monoxide remaining in the gas 188 after absorption of the carbon dioxide gas. Is sequentially processed in each device, and high-concentration hydrogen gas 69 is obtained.
  • the CO removal device 150 is equipped with a selective oxidation device that selectively burns carbon monoxide in gas, or a methanation reaction that produces methane by reacting carbon monoxide and carbon dioxide in gas with hydrogen.
  • PSA pressure swing gas adsorber
  • PSA hydrogen purification gas adsorber
  • a carbon dioxide gas absorbing tower 181, a liquid sending pump 182, a heat exchanger 183, and a cooler 184 are provided in the carbon dioxide gas absorbing device 147 of this embodiment.
  • the second cleaning liquid 82 c regenerated by the second regenerator C of the cleaning device is introduced into the upper part of the carbon dioxide absorption tower 181, via the heat exchanger 183 and the cooler 1884, After the gaseous carbon dioxide was absorbed by flowing countercurrently with the post-transformation gas 143 introduced from the bottom, the second gas cleaning section A2 was passed through the heat exchanger 183 from the bottom via the liquid sending pump 182. Will be returned.
  • the second cleaning liquid 82 c is cooled to a temperature suitable for absorbing carbon dioxide, preferably 40 to 70 ° C., by a cooler 184 and then introduced into the absorption tower 181. Cooler used 1 8 4 cooling The method may be either water cooling or air cooling. Further, the second cleaning liquid 82c that has exited the carbon dioxide gas absorbing device 147 can be introduced into the second gas cleaning section A2 after adjusting the inlet temperature T2in of the second gas cleaning section A2.
  • the carbon dioxide absorption load in the carbon dioxide gas absorption device 147 is relatively small, that is, the flow rate of the second absorbent to be supplied to the carbon dioxide absorption tower 18 1 is reduced to the second gas cleaning section A 2.
  • the second cleaning liquid 82c that has exited the second regenerator C is branched, a part of the liquid is sent to the carbon dioxide gas absorption device 147, and the rest is directly Alternatively, it can be returned to the second gas cleaning section A2 via a cooler for temperature control.
  • the second absorbent 82 c that has exited the carbon dioxide gas absorbing device 147 can be sent to the second gas cleaning section A 2 or returned to the second regenerator C.
  • high-concentration hydrogen gas 69 is supplied to the hydrogen electrode of the fuel cell, and air 53 is supplied to the oxygen electrode of the fuel cell by boosting the pressure of the air 53 by the evening heater 164.
  • the fuel cell used may be any fuel cell that can use hydrogen as a fuel, and may be any of a polymer electrolyte type, a phosphoric acid type, a molten carbonate type, and a solid electrolyte type.
  • Both the hydrogen electrode off-gas 16 1 and the oxygen electrode off-gas 16 2 are led to the off-gas par 1613 and burned.
  • the flue gas 165 from the off-gas parner 163 is supplied to the turbocharger 164 to increase the pressure of the air 53 supplied to the oxygen electrode of the fuel cell, and then used as the regeneration gas for the second regenerator C. You.
  • the combustion exhaust gas 166 is discharged out of the system after the recovery of steam and heat. According to the acid gas cleaning apparatus and method of the present invention, only by increasing the energy efficiency by effectively utilizing the low-temperature exhaust heat of the wet scrubber to generate steam and absorbing and separating carbon dioxide gas.
  • a gasification system for combustibles combining the above-mentioned acid gas cleaning device and gasifier having the above-mentioned advantages, and a system for incinerating combustible materials combining the above-mentioned acid gas cleaning device and incinerator.
  • the present invention relates to an acid gas cleaning apparatus and method for cooling a gas to be cleaned by removing a gas to be cleaned by contacting the gas to be cleaned containing carbon dioxide gas with a gas cleaning liquid containing an alkaline agent and removing an acid gas in the gas to be cleaned.
  • Combustible material gasification system combining acid gas cleaning equipment and gasifier, combustible material incineration system combining acid gas cleaning equipment and incinerator, and combustible gasification system and fuel
  • the present invention can be suitably used for a combustible gasified fuel cell power generation system combined with a battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Description

明 細 書
酸性ガス洗浄装置及び方法
技 分野
本発明は酸性ガス洗浄装置及び方法に係り、 特に炭酸ガスを含む被洗 浄ガスをアル力 リ剤を含むガス洗浄液と接触させて被洗浄ガスを冷却す ると共に被洗浄ガス中の酸性ガスを除去する酸性ガス洗浄装置及び方法 に関するものである。 背景技術
可燃性廃棄物を燃焼したりガス化した場合、 その燃焼ガスや生成ガス (以下、 被洗浄ガスと云う) 中には塩化水素、 硫黄酸化物、 窒素酸化物、 硫化水素等の酸性ガスが含まれる。 多くの場合、 これらの酸性ガスは被 洗浄ガス中に p p mオーダーと極微量しか含まれないことが多いが、 極 微量であっても人体に対して毒性があるばかりでなく、 ガス処理設備に 対する腐食性や様々な触媒に対して被毒性を有するため、 除去が必要で ある。
酸性ガスを除去する手段としては、 固体や液体のアル力リ剤と接触さ せて中和吸収処理する方法が一般的である。 被洗浄ガスとアル力 リ溶液 を接触させる湿式スクラバ方式においては、 アル力リ溶液の p Hを高く 維持すればするほど酸性ガスの吸収除去性能が高まるが、 可燃性廃棄物 を燃焼したりガス化して得られた燃焼ガスや生成ガス中には多くの場合 炭酸ガスが含まれており、 その濃度は数%から十数%以上と前記酸性ガ スの濃度が数 p p mであることに比べて格段に高い。 そのため、 酸性ガ スをアル力 リ剤で中和処理する場合、 この炭酸ガスがアル力 リ剤と反応 してアルカ リ剤を消費してしまうため、 酸性ガス除去に十分な p Hを維 持するには大量のアル力 リ剤が必要となることから、 従来は経済的な理 由から酸性ガスの吸収除去性能を犠牲にせざるを得なかった。
湿式スクラバ方式では、 被洗浄ガスと洗浄液との間で熱交換が行われ るので、 高温の被洗浄ガスを洗浄する場合には洗浄液の冷却が必要であ るが、 大気圧で運転される湿式スクラバで高温の被洗浄ガスを洗浄する 場合、 被洗浄ガスから洗浄液が回収した熱は 1 0 0 °C以下の低温熱であ り、 殆どの場合は冷却塔等で大気に放散させ、 有効に利用されることは なかった。
近年、 焼却炉からのダイォキシン発生が社会問題となっているが、 ダ ィォキシン発生原因の大きなものとしては 2 5 0 °C〜 5 0 0 °Cの温度域 における焼却飛灰を触媒としたダイォキシンの再合成反応と言われてい る。 従って、 今後はダイォキシンの再合成温度以上の温度からガスを急 冷するシステムの普及が見込まれ、 この急冷システムとして湿式スクラ バ方式が採用される可能性が高く、 その場合よ り多くの低温排熱が発生 することになるので、 低温排熱を有効に利用できる手段が望まれている。 一方、 ダイォキシン問題や埋め立て地の不足といった問題から、 可燃 性廃棄物の処理方法として廃棄物を熱分解、 ガス化し、 発生したガスと 飛灰を高温溶融炉に供給しスラグ化するガス化溶融システムが普及しつ つあるが、 ガス化溶融システムにおいては部分燃焼用酸素の希釈剤とし て蒸気、 炭酸ガス等のガスが必要となる。
特にガス化炉として流動床を用いる場合は、 流動化を維持する目的で、 ある一定量以上の流動化ガスを供給する必要があるが、 流動化ガスが酸 化剤を兼ねていることから、 流動化ガスとして空気を用い、 発熱量の高 い可燃性廃棄物を原料とする場合など、 流動化を維持するための最低限 の空気供給量でも酸素が過剰になる場合があり、 流動化ガスの酸素濃度 調整剤としてのガスが必要な場合がある。
また、 近年可燃性廃棄物を完全燃焼させずガス化して、 燃料ガスとし て利用しょう という試みがなされており、 ガス化のためのガス化剤、 即 ち水素原子、 酸素原子の供給源としての水蒸気、 炭酸ガスの需要が高ま りつつある。 また近年、 こう して得られた燃料ガスを更に精製して水素 を製造し、 燃料電池に供給して発電しょう という試みがなされており、 燃料ガス中の炭酸ガスや窒素ガスの混入量が多くなると、 精製する際の 消費動力も増大することから、 生成ガス中の炭酸ガスや窒素ガスの混入 量を如何に減らすかが重要な課題になりつつある。
湿式スクラバの低温排熱は大量に発生するので、 地域熱供給等の負荷 がある場合は有効に利用できるが、 一般に廃棄物の焼却施設は住宅地域 からは離れたところに位置していることが多く、 有効な熱利用先がない ことから、 わざわざ焼却施設に隣接して温水プールや温室を作って低温 廃熱を利用しているというのが実状である。
その一方で、 ガス処理においては年を追う毎に高度処理を要求される ため、 前述のような酸素ガスの希釈用ガスとして上質の蒸気を流用する、 といったようにエネルギー消費量は増加しつつあるという現実がある。 発明の開示
本発明は、 上述の状況に鑑みなされたもので、 湿式スクラバの低温排 熱を有効に利用して、 水蒸気や炭酸ガスを発生させることによって、 ェ ネルギー効率を高めるだけでなく、 湿式スクラバの酸性ガス除去性能を 飛躍的に向上させることができる酸性ガス洗浄装置及び方法を提供する ことを目的とするものである。
また、 本発明は、 上記酸性ガス洗浄装置とガス化装置とを組み合わせ た可燃物のガス化システムおよび上記酸性ガス洗浄装置と焼却装置とを 組み合わせた可燃物の焼却システム、 そして上記可燃物のガス化システ ムと燃料電池発電システムとを組み合わせた可燃物のガス化燃料電池発 電システムを提供することを目的とする。
上述の目的を達成するため、 本発明による酸性ガス洗浄装置は、 被洗 浄ガスとアルカリ溶液とを接触させるガス洗浄器と、 アルカ リ溶液の冷 却機能とアル力リ再生機能を有する再生器にて構成される。
本発明の酸性ガス洗浄方法は、 炭酸ガスを含む被洗浄ガスをアル力リ 剤を含むガス洗浄液と接触させて該被洗浄ガス中の酸性ガスを除去する 方法であって、 前記ガス洗浄液を前記被洗浄ガスとは成分の異なる再生 用ガスと接触させることによつて再生し、 再生したガス洗浄液を前記炭 酸ガスを含む被洗浄ガスの洗浄液として用いることを特徴とするもので め ■©
ガス洗浄器に供給された被洗浄ガスはアル力リ溶液である洗浄液と対 向流で接触し、 被洗浄ガス中の酸性ガスと共に炭酸ガスが洗浄液中に吸 収される。 被洗浄ガス中のダス ト成分も洗浄液に取り込まれ、 被洗浄ガ スはアルカリ溶液への溶解度が小さい酸素、 一酸化炭素、 水素、 飽和状 態の水蒸気、 そしてアルカリ溶液中に溶け込みきれなかった炭酸ガスを 主成分とした清浄なガスになる。
酸性ガスと炭酸ガスを吸収したアル力リ洗浄液は再生器に送られ、 再 生器内で被洗浄ガスとは成分の異なる再生用ガス、 例えば空気と接触し、 再生器内の温度における飽和水蒸気圧まで蒸気を発生する。
飽和水蒸気圧は表 1に示すとおりである。 【表 1 】
運転温度と飽和水蒸気圧力
Figure imgf000007_0001
例えば、 再生器が大気圧 (約 0 . 1 P M a ( 1 b a r ) ) 、 8 0 で 運転された場合、 再生器から排出される再生器オフガスには 4 7 %の水 蒸気が同伴する。 なお、 この蒸発の際、 洗浄液は蒸発潜熱を奪われ冷却 される。 もちろん再生用ガスが再生器内の飽和水蒸気圧以上の水蒸気を 同伴しているような場合は、 再生器での水分蒸発はなく、 再生器での洗 浄液冷却は行われない。
また、 再生用ガスとして炭酸ガスを含有しないガスを用いたり、 ガス 洗浄器に比べて再生器の運転圧力を低くすると、 再生器内気相部の炭酸 ガス分圧の差により再生器内でアル力リ洗浄液から炭酸ガスが脱離放出 される。 炭酸ガスが放出されることによってアル力 リ洗浄液の p Hは上 昇し、 再びアル力リ洗浄液としての酸性ガス吸収能が回復する。
水蒸気と脱離炭酸ガスを同伴した再生器オフガスは、 前述した可燃物 のガス化のためのガス化剤や酸化剤希釈用ガスとして用いることができ る。 また再生用ガスとして空気や酸素を用いた場合は、 再生器オフガス をそのまま酸化剤 · ガス化剤の混合ガスとして利用することができる。 再生器にて酸性ガス吸収機能を回復したアル力 リ洗浄液は再びガス洗 浄器に送られる。 再生用ガスとして空気を用いた場合等、 再生器におい て洗浄液からの水分蒸発が生じる場合、 また洗浄液の一部を常時ブロー する場合は、 ガス洗浄液の補給が必要である。 この補給液は循環してい る洗浄液に比べて清浄な液を用いるべきであるので、 補給用のアルカリ 剤と共にガス洗浄器最上部、 即ち被洗浄ガスの流れの最下流に供給し、 ガス洗浄効果を高めるようにするのが好ましい。
ガス洗浄に伴い、 ガス洗浄液中に酸性ガスの吸収反応で生じた塩類が 徐々に濃縮してく るので、 濃縮防止のために適宜ブローする必要がある < また被洗浄ガスの水蒸気同伴割合が高く、 洗浄液量が増加してく る場合 にも、 洗浄液をプロ一する必要があるが、 そのままプロ一するとアル力 リ剤も同伴して排出されるので、 濃縮してから廃棄する等の注意が必要 である。
できるだけ洗浄液のアル力 リ再生度を高めて、 ガス洗浄効果を高める ためには再生器を、 例えばシリーズ (直列) で多段に設けることも有効 である。 なぜなら化学反応を連続的に行わせる場合、 同じ反応時間であ れば、 1つの完全混合反応器で行うよ りも多段の反応器で系列的に行う 方が反応率は高いからである。 被洗浄ガスと洗浄液が対向流で接触する 場合は、 多段の再生器を用いるのと同様の効果はあるが、 洗浄液の流れ 方向での混合がどう しても避けられないので、 多段の再生器を用いる場 合に比べてアル力リ再生度は低い。
ガス組成の異なる複数種類のガスを再生用ガスとして利用できる場合 には、 それぞれの再生用ガスに対応する独立した再生器を設けることに よって個々の再生器が目的別の再生器として機能する。 また、 それぞれ の再生器を、 順番を工夫して系列的に用いることによってよ り高度な再 生が可能になる。
また、 本発明による酸性ガス洗浄装置はガス洗浄器及び洗浄液再生器 をそれぞれ 2段に分けることもできる。 即ち、 被洗浄ガスと、 第 1のァ ルカ リ剤を含む第 1ガス洗浄液とを対向流で接触させる第 1ガス洗浄部 と、 第 1ガス洗浄部を出た被洗浄ガスと第 2のアルカリ剤を含む第 2ガ ス洗浄液とを対向流で接触させる第 2ガス洗浄部と、 被洗浄ガスとは成 分の異なる第 1の再生用ガスと第 1ガス洗浄液とを接触させる第 1洗浄 液再生器と、 被洗浄ガスとは成分の異なる第 2の再生用ガスと第 2ガス 洗浄液とを接触させる第 2洗浄液再生器と、 前記第 1ガス洗浄部と第 1 洗浄液再生器との間に配置され第 1洗浄液を循環させる循環手段と、 前 記第 2ガス洗浄部と第 2洗浄液再生器との間に配置され第 2洗浄液を循 環させる循環手段によつて構成することもできる。 図面の簡単な説明
図 1は本発明の基本的な実施例を示した図である。
図 2は本発明の機器構成を簡素化した改良型実施例を示す図である。 図 3は本発明の基本的な実施例で、 再生器を 2段に設けた場合の実施 例を示した図である。
図 4は本発明の再生器を 2段に設けた場合の改良型実施例を示す図で め
図 5は本発明を利用した可燃物のガス化システムの第 1の実施例を示 す図である。
図 6は本発明を利用した可燃物のガス化システムで再生器を 2段に設 けた場合の実施例を示す図である。
図 7は本発明を利用した可燃物のガス化燃料電池発電システムの第 1 実施例を示す図である。
図 8は本発明を利用した可燃物のガス化燃料電池発電システムの第 2 実施例を示す図である。
図 9は本発明を利用した可燃物のガス化燃料電池発電システムの第 2 実施例における、 本発明の第 1具体的実施形態を示す図である。
図 1 0は本発明を利用した可燃物のガス化燃料電池発電システムの第 2実施例における、 本発明の第 2の具体的実施形態を示す図である。 図 1 1は本発明を利用した可燃物のガス化燃料電池発電システムの第 3実施例を示す図である。
図 1 2は本発明を利用した可燃物のガス化燃料電池発電システムの第 3実施例における、 本発明の具体的実施形態を示す図である。
図 1 3は本発明を利用した可燃物のガス化燃料電池発電システムの第 2実施例における、 本発明の第 3の具体的実施形態を示す図である。 図 1 4は本発明の基本的な実施例で、 洗浄器及び再生器をそれぞれ 2 段に設けた場合の実施例を示した図である。
図 1 5は本発明の第 3実施例で、 洗浄器及び再生器をそれぞれ 2段に 設けた場合の具体的な実施形態を示す図である。
図 1 6は本発明を利用した可燃物のガス化燃料電池発電システムの第 4実施例を示す図である。
図 1 7は本発明を利用した可燃物のガス化燃料電池発電システムの第 4実施例における、 ガス化工程の典型的な実施形態を示す図である。 図 1 8は本発明を利用した可燃物のガス化燃料電池発電システムの第 4実施例における、 原料フィーダの構成図である。
図 1 9は本発明を利用した可燃物のガス化燃料電池発電システムの第 4実施例における、 原料フィ一ダのもう一例の構成図である。
図 2 0は本発明を利用した可燃物のガス化燃料電池発電システムの第 5実施例における、 ガス化工程及び水素精製工程の典型的な実施形態を 示す図である。 発明を実施するための最良の形態
本発明の具体的な実施例を本発明の第 1の実施形態である図 1 を用い て説明する。 以下の図 1乃至図 2 0に示す実施例において、 同一又は対 応する部材又は要素は、 同一の符号を付し、 重複する説明が省略される ( ガス洗浄器 Aの下部から導入された被洗浄ガス 3 0はガス洗浄器 A内上 方から供給されたアル力 リ剤を含有するガス洗浄液 4 0 と接触し、 冷却 されると共に硫化水素、 硫化カルボニル、 塩化水素、 硫黄酸化物、 窒素 酸化物、 炭酸ガスといった酸性ガスやダス 卜が除去される。
被洗浄ガスが都巿ゴミ等塩素含有廃棄物の焼却排ガスである場合、 被 洗浄ガスのガス洗浄器 Aへの供給温度は通常 2 0 0 °C前後であるが、 こ の温度では 3 0 0 °C前後、 及び 4 7 0 °C前後のダイォキシンの再合成温 度域を経た後であるので被洗浄ガス中にダイォキシンを含む可能性が高 く、 洗浄液中にダイォキシンが移行し濃縮する可能性が高い。 従って都 巿ゴミ等塩素含有廃棄物の焼却排ガス洗浄においては、 ダイォキシンの 再合成温度域を避ける目的から被洗浄ガス 3 0のガス洗浄器 Aへの供給 温度は 4 8 0 °C以上、 好ましくは 5 0 0 °C以上とするのがよい。
被洗浄ガスが都巿ゴミ等塩素含有廃棄物を熱分解ガス化して得られた ガス化ガスである場合は、 還元雰囲気であるためダイォキシンの再合成 の恐れは格段に小さ くなるため、 2 0 0 °C程度の温度でガス洗浄器 Aに 供給しても良いが、 やはり好ましくは 3 0 0 °C以上、 よ り好ましくは 3 5 0 °C以上、 更に好ましくは 5 0 0 °C以上で供給するのが良い。
洗浄液に供給するアル力リ剤としては有機アル力リ と無機アル力 リの いずれでもよいが、 熱的安定性の面から無機のアル力リ化合物を使用す るのがよい。 特に水酸化ナト リゥムゃ水酸化力 リゥムといったアル力リ 金属の水酸化物が望ましい。 また、 炭酸ナ ト リ ウムや炭酸カリ ウムとい つたアルカ リ金属の炭酸塩で供給しても良い。 一例としてアル力リ剤と して K 2 C 03を用いた場合のガス洗浄器における吸収反応式を以下に示 す。
K 2 C 03 + H 2 S → K H S + K H C Os ( 1 ) K 2 C O 3 + H 2 O + C O S → K H S + K H C 03+ C〇 2 ( 2 ) K 2 C 03 + H C 1 → K H C Os+K C l ( 3 ) K 2 C〇 3+ S 02 + H 20 → K H C O 3 + K H S O3 ( 4 )
K 2 C O 3 + N O 2 + H 2 O → K H C O3 + K H N O3 ( 5 ) K 2 C O 3 + H 2 O + C O 2 → 2 K H C 03 ( 6 ) 上記吸収反応が放熱反応なので、 用いる洗浄液の温度は低いほど有利 である。 例えば、 ガス圧力が常圧 ( 1気圧) の場合、 ガス洗浄器 Aへの 洗浄液入口温度 T LAIは 1 0 0 °C以下であればよいが、 被洗浄ガスから持 ち込まれた水蒸気がなるべく凝縮して、 気相中の炭酸ガス分圧が高く維 持され、 できるだけ多くの炭酸ガスが洗浄液側へ吸収されるように 8 0 °C以下にするのが好ましく、 さらには 6 0〜 7 5 °Cの温度範囲であるこ とが好ましい。
ガス洗浄器 A下部での洗浄液温度 T は、 被洗浄ガスによって加熱さ れるので当然ながら前記上部での洗浄液温度よ り高くなるが、 TLAEと T LAIとの温度差を 2 0 °C以下、 好ましくは 1 0 °C以下にするのがよい。 こ の温度差に制約を設けるのは、 T LAEが高温になりすぎると、 せっかく吸 収した炭酸ガスをガス洗浄器 A下部において再び脱離させてしまい、 ガ ス洗浄器 Aでの炭酸ガス吸収性能が低下してしまうからである。 該温度 差の制御は洗浄液の循環量を調整することによって行う。 ガス洗浄器 A 下部においては被洗浄ガス 3 0中に含まれていた水蒸気が洗浄液との接 触による急冷却に伴い凝縮し、 上部に向って温度降下のためさらに凝縮 するので、 吸収塔における C 0 2の吸収が進んでも C 0 2分圧の低下は小 さく、 C 0 2分圧は高く維持される。 そのため洗浄液の c o 2に対する吸 収駆動力は高く維持され、 吸収効果が高まる。
このように、 ガス洗浄器 Aでガス中水蒸気を凝縮させることによって、 水蒸気の潜熱が回収されるのみでなく、 ガス洗浄器 Aでの C 0 2吸収効果 を高めることができるので、 ガス洗浄器 Aへの洗浄液入口温度 T L A I、 お よび下部洗浄液温度 T L A E、 および T と T L A Iとの温度差を適正な範囲 に保つことは重要である。 また以上のことから分かるように被洗浄ガス 3 0の組成としては、 炭酸ガス含有率が一定である場合は水蒸気の含有 率が高いほど、 即ち乾ガス中の炭酸ガス割合が高いほど本発明によるガ ス洗浄器における C 0 2の吸収条件が有利になる。
洗浄された被洗浄ガス 3 0は更に洗浄液の補給用に供給される比較的 清澄な補給液 4 5 aに補充用のアルカリ剤 4 6を供給した補給洗浄液 4 1 aで更に浄化され、 ミス トセパレ一夕 6 aでミス トを除去された後、 ク リーンな洗浄後ガス 3 1 となる。 被洗浄ガス 3 0が焼却排ガスの場合、 洗浄後ガス 3 1は冷却して凝結水を除去する等の白煙防止対策を施した 後そのまま大気放出することができるし、 被洗浄ガス 3 0が可燃ガス成 分を含む有用なガスである場合は洗浄後ガス 3 1 を燃料ガス等様々な用 途に利用することができる。
被洗浄ガスと洗浄液の接触効率を高めるためには、 液側の接ガス表面 積を高め、 かつガス洗浄器 Aの内部ガス流路全面にわたって洗浄液が行 き渡るよう、 スプレー方式で洗浄液を供給するのが望ましいが、 洗浄液 の供給には特別な手段を使わず、 ガス洗浄器 Aの内部に接触促進用充填 材 5 aを充填して気液接触効率を高めてもよい。 もちろんスプレー方式 で洗浄液を供給して、 かつ接触促進用充填材を使用すればなお好ましい。 ガス洗浄器 Aの下部から引き抜かれた洗浄液 4 0 aは、 循環ポンプ 4 aによ り再生器 Bへ供給される。 被洗浄ガス中にダス 卜が含まれている 場合は、 ガス洗浄器からの洗浄液を引き抜く際に極力ダス トを同伴しな いような工夫が必要であり、 例えば洗浄液をガス洗浄器 Aの下部側面か ら引き抜き、 ガス洗浄器 Aの鉛直下方にはダス ト等固形分を沈殿分離さ せる沈殿槽 8を設けるのがよい。 但し、 被洗浄ガス 3 0の含麈濃度が高 く、 ガス洗浄器 Aへ流入するダス ト負荷が大き過ぎる場合は、 ガス洗浄 器 Aの上流にサイクロンやバグフィル夕一、 セラ ミ ヅクフィル夕一とい つた乾式集塵器 7を設け、 ガス洗浄器へのダス ト負荷を軽減するのが好 ましい。
再生器 Bには再生器下部よ り再生用ガス 3 5 bが供給され、 ガス洗浄 器 Aと同様に洗浄液との気液接触が行われる。 再生用ガス 3 5 bは洗浄 液と熱交換を行う と共に、 洗浄液中に溶存していた被洗浄ガス中の各種 ガス成分及び水蒸気を、 再生器 Bの出口ガス温度における気液平衡状態、 即ち飽和状態を保つように放出し、 それらのガスを同伴して、 再生器ォ フガス 3 6 bとして排出される。 再生用ガス 3 5 bは洗浄液と接触した 後に、 補給洗浄液 4 1 bで更に浄化される。 また、 再生器オフガス 3 6 b中のミス トはミス トセパレ一夕 6 bで除去される。 再生器オフガス 3 6 bは大量の水蒸気を同伴しているので、 例えば再生器における蒸発量 が多く、 洗浄液が減少傾向にあるような場合は、 必要に応じて冷却器を 設け水蒸気を凝縮させて、 その凝縮水を洗浄液として再利用しても良い もちろんこの凝縮水は洗浄液に比べるとはるかに清澄なので、 補給液 4 5 aとして利用しても良い。
再生器 B内では洗浄水 (洗浄液) から水蒸気、 炭酸ガスが脱離 '放出 される。 再生器 B内での再生ガスの滞留時間が十分にあれば、 水蒸気は 再生器 Bの運転温度における飽和濃度に達するまで蒸発し、 乾ガス成分 としてはアルカリ性の洗浄水 (洗浄液) に溶存している被洗浄ガス成分 が再生器 B中を流れる再生用ガスとの脱離 · 吸収平衡濃度に達するまで 脱離放出される。 再生器 B内で脱離放出する乾ガスの主成分は炭酸ガス であり、 炭酸ガスの放出によって洗浄液の p Hは急激に回復するので、 洗浄液中に吸収していた酸性ガスまでもが脱離 · 放出されることはほと んど無い。
再生器 Bにおけるアルカ リ再生反応式を ( 7 ) 式に示す。 また、 吸収 した酸性ガスの脱離を防止するために洗浄液に酸化剤を注入して硫黄化 合物等の還元性物質を酸化することができる。 酸化剤としては次亜塩素 酸ソーダや二酸化塩素などの塩素系酸化剤、 次亜臭素酸ソーダ等の臭素 系酸化剤、 過酸化水素やオゾン等の活性酸素系酸化剤などを用いること ができる。 酸化剤として、 次亜塩素酸ソーダ ( N a C 10 ) を用いた場 合の反応式を ( 8 ) 〜 ( 1 0) 式に示す。
2 K H C 0 a → K 2 C O 3 + H 2 O + C O 2 ( 7 )
KH S + 4 N a C 10 → KHS〇4+4 Na C l ( 8) K H S O s + Na C I O → KH S 04 + Na C l ( 9) 2 KHN03 + Na C 10 -> 2 KN03+Na C l +H20 ( 1 0) 再生器 B内で洗浄液から水分が蒸発することによって洗浄液は蒸発潜 熱を奪われ、 冷却される。
また、 再生器 B内で洗浄水 (洗浄液) から炭酸ガスが脱離放出される ことによって、 炭酸ガスと結合していた洗浄液中のアル力 リ剤が再び解 放され、 洗浄液のアルカ リ度が回復するので、 洗浄液中に溶存している 硫化水素、 硫化カルボニル、 塩化水素、 硫黄酸化物、 窒素酸化物といつ た酸性ガス成分の再生器 B内での放出が抑制できるし、 アルカリ度が回 復した洗浄液を再びガス洗浄器 Aに循環させることによって、 アル力リ 剤の循環利用が図れる。
再生器 Bへ導入する再生用ガス 3 5 bとしては、 ガス状のものであれ ばどんな成分のガスでも良いが、 目的に応じて主に空気、 酸素、 窒素、 アルゴン、 水蒸気、 水素、 一酸化炭素、 二酸化炭素、 及びそれらの混合 ガスを選定して使用する。 再生用ガスの選定に際しては、 原則として再 生器で脱離させよう とするガス成分の分圧ができるだけ低いガスを選定 するのがよい。 例えば、 炭酸ガスの脱離を目的とする場合はできるだけ 炭酸ガス含有割合の低いガスを選定するのがよ く、 洗浄液の冷却を目的 としたり、 蒸気回収量を多く したいときは、 できるだけ水蒸気含有割合 の低いガスを選定するのがよい。 また再生器オフガスをガス化工程に供 給する場合はできるだけ酸素濃度の高いガスを用いるのが良い。
再生器 Bの下部に滞留する洗浄液の温度 T LBEは目的に応じて任意に設 定できる。 この Τ ι_Β Εの温度制御は再生用ガス 3 5 bの流量、 温度、 湿度 および洗浄液の循環流量によって定まるが、 通常は再生用ガス 3 5 の 流量、 温度、 湿度が一定である場合は、 洗浄液流量を制御することによ つて T LBEの温度制御が行われる。 飽和水蒸気の発生量や、 炭酸ガスの脱 離放出量を多く したい場合は T WEをできるだけ高く保つのが良いが、 水 蒸気発生に伴って潜熱を奪われるので、 T LBEは T LB I (再生器 Bへの洗 浄液入口温度) よりも低下する。 従って、 T LBEを望ましい T LAIに合致 させるため、 必要に応じて再生器下部に熱交換器を設け、 加熱もしくは 冷却してもよい。
前述のように再生用ガス 3 5 bによる洗浄液の冷却は、 顕熱の直接熱 交換と再生器オフガス 3 6 bに同伴する蒸気の蒸発潜熱が洗浄液から奪 われることによってなされるが、 この冷却能力がガス洗浄器 Aで被洗浄 ガス 3 0から回収する熱量を上回る場合には、 洗浄液の循環流量の調整 のみで T B Eの温度制御は可能であるが、 前記冷却能力がガス洗浄器 Aで 被洗浄ガス 3 0から回収する熱量よ りも小さい場合は、 再生器 B以外に も別途洗浄液を冷却する手段が必要になる。
ガス洗浄器 Aから洗浄液を再生器 Bへ供給する場合、 好ましくは気液 分離器 3 aを設け、 そこで洗浄液中に溶解せず混入している被洗浄ガス 成分をできるだけ除去しておくのがよい。 特に被洗浄ガスが可燃性のガ スで、 再生用ガスが酸素含有ガスであるような場合は、 爆発事故防止の ために気液分離器の機能は特に重要である。
気液分離器 3 aで分離されたガス成分は被洗浄ガス成分とほぼ同様の 成分を持つガスであるが、 ガス洗浄器 Aから気液分離器 3 aに流入する 洗浄水 (洗浄液) は、 洗浄水 (洗浄液) の循環経路中、 炭酸ガスの溶け 込みによって p Hが最も低下しているところであり、 洗浄液中に吸収さ れた酸性ガスが放出されやすいので、 ガス洗浄器 A内の被洗浄ガス流れ の最上流部に戻し、 再洗浄するのがよい。
再生器 Bで炭酸ガスを放出し、 水分を蒸発して冷却された洗浄水 (洗 浄液) は再びガス洗浄器 Aに導入されるが、 被洗浄ガス中にダス トが含 まれている場合は、 洗浄液中に大量のダス ト成分が同伴する場合がある ので、 再生器 Bから洗浄液を引き抜く際にはガス洗浄器 Aの場合と同様 に極力ダス 卜を同伴しないような工夫が必要である。
また再生器 Bから洗浄液をガス洗浄器 Aへ返送する場合も、 好ましく は気液分離器 3 bを設け、 そこで洗浄液中に溶解せず混入している再生 用ガス成分をできるだけ除去しておくのがよい。 特に被洗浄ガスが可燃 性ガスで、 再生用ガスが酸素含有ガスであるような場合は、 酸素と可燃 性ガスとの混合を防ぐ目的からこの気液分離器の機能が重要になる。 この気液分離器 3 bで分離されたガス成分は再生用ガス成分に、 水蒸 気と場合によってはごく少量の炭酸ガスが混入したものであるので、 再 生器 Bから出る再生用ガスにそのまま混合することができる。
もちろん本発明におけるガス洗浄器 Aと再生器 Bの運転圧力は、 適用 するプロセスに応じて任意に選定することができるが、 図 1に示す実施 例においては、 再生器 Bの気相部分の運転圧力 P bは、 ガス洗浄器 Aの 気相部分の運転圧力 P aに依らず任意に設定できる機器構成となってい る。 再生器側の圧力が高ければ、 再生器オフガス 3 6 bの有効利用を図 る際に有利である。
逆に、 再生器 Bの気相部分の運転圧力をガス洗浄器 Aの気相部分の圧 力よりも低く設定するようにすれば、 再生用ガスの用途は限られるが、 ガス洗浄器 Aと再生器 Bそれぞれの気相部分の炭酸ガス分圧差が大きく なるので、 再生器 Bの出口ガス温度が同じであれば、 炭酸ガス放出量が 多くなり、 アル力リ剤の再生機能が高まるというメ リ ッ トがある。
ガス洗浄器 Aへのアル力リ剤からなる補給液 4 5 aの供給量制御は、 洗浄液の p Hを計測して所定の値になるように行うが、 適正に制御する ためには、 図 1に示すようにガス洗浄器 Aにおいて、 新規に補給したァ ルカ リ剤 4 6 と流入した洗浄液が混合するようにし、 その混合した直後 の洗浄液の p Hを計測するのがよい。 なぜなら、 このようにすることに よって補給したアル力リ剤の効果が直ちに確認できるので、 制御遅れを 最低限に抑えることができるからである。
洗浄液の p Hの値は 7から 1 4以下、 好ましくは 9〜 1 2、 更に好ま しくは 1 0〜 1 1になるように調節するのがよい。
図 1において、 符号 1 0 aは補給液調節弁、 1 5 aはアル力リ補充量 調節弁、 1 6 aおよび 1 6 bは気液分離器レベル調節弁、 1 8 aおよび 1 8 bはレベル調節弁である。 さらに符号 7 0 a , 7 0 b , 7 1 a , 7 l bはレベル調節計、 7 3は流量調節計、 7 5 aは p H調節計である。 図 1に示した実施例はあく までも本発明の 1実施形態にすぎず、 本発 明の装置の設置場所が鉛直方向に十分な余裕のある場合は図 2に示すよ うにガス洗浄器 Aと気液分離器 3 a、 再生器 Bと気液分離器 3 bをそれ それ一体化させて、 洗浄液循環ポンプ等の機器点数を減らし、 極力簡素 化するのがよい。 このような構成にすることによって、 酸性ガス洗浄装 置系内の洗浄液量制御も、 再生器 B内に滞留する洗浄液面レベルと洗浄 液循環量を計測してガス洗浄器 Aへの補給液供給量を制御するだけで済 むので、 非常に簡素になる。
図 2において、 ガス洗浄器 Aに流入した被洗浄ガス 3 0は先に説明し た図 1の場合と全く同様に、 循環する洗浄液 4 0、 および補給液 4 5 a にアル力 リ剤 4 6 aを添加した補給洗浄液 4 1 aと接触し洗浄される。 被洗浄ガス 3 0 と接触洗浄した後の洗浄液及び補給液は集液板 1 1 aで 集められ下部の気固液分離部 A 1に自然流下する。 集液板 1 1 aの下部 に接続された流下管 1 2 aの下端は気固液分離部 A 1に滞留している滞 留水の底部近傍まであり、 流下した洗浄液は滞留水の底部近傍に供給さ れる。
気固液分離部 A 1にはせき 1 3 aが設けられており、 洗浄液は滞留液 底部近傍に流入した後、 上昇してせき 1 3 aを越流し、 ガス洗浄器 Aか ら抜き出される。 洗浄液中に含まれる S S (固形) 成分は、 この上昇流 の際に流れに逆らって沈降するので固液分離が行われ、 ガス洗浄器 Aの 底部から高濃度の廃液スラッジ 9 aとして回収できる。 またせき 1 3 a の内側の滞留液面は常に穏やかに保たれるので、 気体状のガスは洗浄液 液面で速やかに気液分離される。 気固液分離部 A 1における洗浄液の上昇速度が遅いほど、 固液分離性 能は高まるので好ましいが、 必要となる装置断面積が大きくなるので、 適切な範囲で設計する必要があり、 通常は 5 Omm/s以下、 好ましく は 1 Omm/s以下、 更に好ましくは 5mm/s以下とするのがよい。 但し、 コロイ ド状の S S分は沈殿処理で分離することができないので、 このような S S分が多い場合は、 洗浄液の一部を分離膜やろ材でろ過処 理するなど、 沈殿分離手段とは異なる洗浄水 (洗浄液) からの固形分除 去手段が必要となる。
固液分離効果を高めるために、 S S成分を凝集させる目的で無機系も しくは有機 · 高分子系の凝集剤等を使用しても良い。 また、 S S負荷が 高過ぎたり、 容易に沈殿方式により固液分離できない場合は、 サイ クロ ンゃフィルター等の乾式集塵装置 7をガス洗浄器 Aの上流に設け、 被洗 浄ガスのダス ト成分を除去しておくのが良い。
ガス洗浄器 Aから抜き出された洗浄液は自然流下で再生器 Bへ供給さ れる。 このとき十分な高低差がとれる場合は洗浄液をスプレー方式で再 生器 Bへ供給できるが、 十分な高低差が取れず、 循環水の圧力損失が許 容できない場合は、 特別な手段を用いることなく再生器 B内に設置され た接触促進用充填材の上部へ供給してもよい。
再生器 Bの気層部圧力 P b [P a] はガス洗浄器 A内の気層部圧力 P a [P a] , せき 1 3 a越流後の滞留洗浄液面レベル H a [m] 、 洗浄 液の再生器 Bの入口レベル H b i [m] 、 洗浄液比重 p [ k g/m3] 、 及び重力加速度 g [m/s 2] 、 ガス洗浄器 Aから再生器 Bへの洗浄液の 圧力損失 AP ab CP a] を用いて以下のように表現される。
Pb = P a + - g (Ha-Hb i) - AP ab ( 1 1 ) ほぼ常圧近辺で運転される都巿ゴミ焼却炉の燃焼排ガスを処理する場 合には、 P aは大気圧から 2〜 7 k P a、 好ましくは 3〜6 kP a、 さ らに好ましくは 4〜 5 kP a程度低く保持される。 また P bは再生器ォ フガスの用途によって変わるが、 再生器オフガスを流動床炉の流動化ガ スとして用いる場合には、 大気圧よ り 20〜 50 kP a高く設定するの が好ましく、 従って絶対圧で表現すると、 P aは 94〜99 kP a程度. P bは 1 2 1〜 1 5 1 kP aに設定される。 もちろんガス化工程に流動 床炉を用いない場合は流動化のための圧力を必要としないので、 再生器 オフガスをガス化工程のガス化剤として用いる場合であっても P bはガ ス化工程の運転圧力に供給管路での抵抗分の圧力を加えた圧力でよい。 再生器 Bには、 図 1で説明した再生器と全く同様に目的に応じた成分 の再生用ガス 3 5 bが供給され、 洗浄液と接触して排出される。 再生器 Bの下部にはガス洗浄器 Aと同様の気固液分離部 B 1が設けられており、 再生用ガス 35 bと接触した後の洗浄液は集液板 1 1 bで集められ下部 の気固液分離部 B 1に自然流下する。 集液板 1 1 bの下部に接続された 流下管 1 2 bの下端は気固液分離部 B 1に滞留している滞留水の底部近 傍まであり、 流下した洗浄液は滞留水の底部近傍に供給される。
気固液分離部 B 1にはせき 1 3 bが設けられており、 洗浄液は滞留液 底部近傍に流入した後、 上昇してせき 1 3 bを越流し、 再生器 Bから抜 き出される。 洗浄液中に含まれる S S (固形) 成分はこの上昇流の際に 流れに逆らって沈降するので固液分離が行われ、 再生器 Bの底部から高 濃度の廃液スラヅジ 9 bとして回収できる。 またせき 1 3 bの内側の滞 留液面は常に穏やかに保たれるので、 洗浄液中に混入していた気体状の ガスは洗浄液液面で速やかに気液分離され、 抜き出される洗浄液に同伴 することを防止できる。
ガス洗浄器 Aと同様に再生器 Bにおいても気固液分離部 B 1における 洗浄液の上昇速度が遅いほど、 固液分離性能は高まるので好ましいが、 必要となる装置断面積が大きくなるので、 適切な範囲で設計する必要が あり、 通常は 5 0 m m/ s以下、 好ましくは 1 0 m m/ s以下、 更に好 ましくは 5 m m/ s以下とするのがよい。
固液分離効果を高めるために、 S S成分を凝集させる目的で無機系も しくは有機 · 高分子系の凝集剤等を使用しても良い。 また、 S S負荷が 高過ぎたり、 容易に沈殿方式により固液分離できない場合は、 サイクロ ンゃフィルター等の乾式集塵装置を再生器 Bの上流に設け、 再生用ガス のダス ト成分を除去しておくのが良いのはガス洗浄器 Aと同様である。 再生用ガス 3 5 bがダス トを含まないガスである場合は、 再生器 Bで の固液分離は必要なく、 最下部からのスラ 、ソジ抜き出しが不要となる等、 再生器 Bの内部構造が簡素化できるが、 気液分離機能は必要であり、 液 面を穏やかな状態に保つ目的から図 2に示すような構造とするのが望ま しい。
再生器 Bから抜き出された洗浄液は洗浄液循環ポンプ 4 bでガス洗浄 器 Aに返送される。 ここで洗浄液量を制御する方法は、 まず再生器 Bの せき 1 3 bを越流した後の洗浄液液面レベルを計測し、 電気信号に変換 する。 そのレベル信号をレベル調節計 7 0 bに入力する。 レベル調節計 7 0 bでは液面が所定の値になるように、 洗浄液の補給が必要な場合は 補給液調節弁 1 0 aを開け、 廃液調節弁 1 7 aを閉める信号を出力し、 洗浄液量が増加して、 循環系内から排出する必要のある場合は補給液調 節弁 1 0 aを閉め、 廃液調節弁 1 7 aを開ける信号を出力する。
もちろん再生器 Bに補給液を供給したり、 廃液を排出しても良い。 特 に再生器内で反応沈殿物を生成するような場合は再生器 Bからの廃液/ スラッジ抜き出しは必要である。 また、 ガス洗浄器 Aと同様に再生器 B においてもフレツシュな補給液を再生器内の再生用ガス流れの最下流側 に供給することにより、 再生器 Bから排出された再生用ガスの洗浄効果 も高まるので、 該ガスの利用価値がより高まる。
再生器 Bから補給液を供給したり、 廃液を排出する場合は補給液調節 弁 1 0 b、 廃液調節弁 1 7 bにもレベル計 7 0 bからのレベル制御信号 を、 弁 1 0 a, 1 7 aと同様に作用させることによって、 循環洗浄液量 制御を行うことができる。 図 2において、 符号 5 a , 5 bは接触促進用 充填材である。 また符号 1 9は洗浄液循環流量調整弁、 符号 4 l bは補 給洗浄液である。
図 2に示す実施例のように自然流下方式にすることによってプロセス が簡素化し、 制御系の数も減少し、 システムの安定度が高まる。
図 3は本発明の第 2の実施形態で、 アル力 リ剤の再生を再生器 Bおよ び第 2再生器 Cの 2段で行うことによってアルカ リ剤の再生機能を更に 高めた場合の実施例を示すものである。 第 1再生器 Bまでの機能につい ては図 1の説明と周様である。 第 1再生器 Bから抜き出された洗浄液は 第 2再生器 Cへ供給される。 第 2再生器 Cには、 前述の再生器 Bと全く 同様に目的に応じた成分の再生用ガス 3 5 cが供給され、 洗浄液と接触 して、 飽和蒸気と脱離炭酸ガスを伴って再生器オフガス 3 6 cとして系 外へ排出される。 第 2再生器 Cの構造は基本的に再生器 Bと同様で、 第 2再生器 Cから抜き出された洗浄液は再びガス洗浄器 Aへ返送される。 図 3において、 符号 1 0 aは補給液調節弁、 1 5 aはアル力リ補充量 調節弁、 1 6 a , 1 6 b , 1 6 cは気液分離器レベル調節弁、 1 8 a, 1 8 b, 1 8 cはレベル調節弁である。 さらに符号 7 0 a , 7 0 b , 7 0 c , 7 1 a , 7 1 b , 7 1 cはレベル調節計、 7 3は流量調節計、 7 5 aは p H調節計である。 図 3に示した実施例はあくまでも本発明の 1つの実施形態にすぎず、 本発明の装置の設置場所が鉛直方向に十分な余裕のある場合は図 4に示 すようにガス洗浄器 Aと気液分離器 3 a、 再生器 Bと気液分離器 3 b、 および再生器 Cと気液分離器 3 cをそれぞれ一体化させて、 洗浄液循環 ポンプ等の機器点数を減らし、 極力簡素化するのがよい。
図 4において再生器 Bから抜き出された洗浄液は自然流下で第 2再生 器 Cへ供給される。 この場合も第 1再生器 B内の洗浄液液面レベルと、 第 2再生器の洗浄液供給レベルに十分な高低差がとれる場合は、 洗浄液 をスプレー方式で第 2再生器 Cへ供給できるが、 十分な高低差が取れず- 循環水の圧力損失が許容できない場合は特別な手段を用いることなく第 2再生器 C内に設置された接触促進用充填材 5 cの上部へ供給してもよ い。
第 2再生器 Cの気層部圧力 P c [P a] は、 第 1再生器 B内の気層部 圧力 Pb [P a] 、 せき 1 3 b越流後の滞留洗浄液面レベル H b [m] 、 洗浄液の第 2再生器 C入口レベル H c i [m] 、 洗浄液比重 p [k g/ m3] 、 及び重力加速度 g [m/s 2] 、 再生器 Bから第 2再生器 Cへの 洗浄液の圧力損失 APb c [P a] を用いて以下のように表現される。
P c =P b + og (Hb-H c i) - AP b c ( 1 2) 第 2再生器 Cには、 前述の再生器 Bと全く同様に目的に応じた成分の 再生用ガス 3 5 cが供給され、 洗浄液と接触して排出される。 第 2再生 器 Cの構造は基本的に再生器 Bと同様で、 下部には気固液分離部 C 1が 設けられており、 再生用ガス 35 cと接触した後の洗浄液は集液板 1 1 cで集められ下部の気固液分離部 C 1に自然流下する。 集液板 1 1 cの 下部に接続された流下管 1 2 cの下端は気固液分離部 C 1に滞留してい る滞留水の底部近傍まであり、 流下した洗浄液は滞留している洗浄液の 底部近傍に供給される。
気固液分離部 C 1にはせき 1 3 cが設けられており、 洗浄液は滞留液 底部近傍に流入した後、 上昇してせき 1 3 cを越流し、 第 2再生器 Cか ら抜き出される。 洗浄液中に含まれる S S (固形) 成分はこの上昇流の 際に流れに逆らって沈降するので固液分離が行われ、 第 2再生器 Cの底 部から高濃度スラッジ 9 c として回収できる。 またせき 1 3 cの内側の 滞留液面は常に穏やかに保たれるので、 気体状のガスは洗浄液液面で速 やかに気液分離され、 抜き出される洗浄液に同伴することを防止できる < 第 1再生器 Bと同様に第 2再生器 Cにおいても気固液分離部 C 1 にお ける洗浄液の上昇速度が遅いほど、 固液分離性能は高まるので好ましい が、 必要となる装置断面積が大きくなるので、 適切な範囲で設計する必 要があり、 通常は 5 0 m m / s以下、 好ましくは 1 0 m m/ s以下、 更 に好ましくは 5 m m/ s以下とするのがよい。 固液分離効果を高めるた めに、 S S成分を凝集させる目的で無機系も しくは有機 · 高分子系の凝 集剤等を使用しても良い。 但し、 コロイ ド状の S S分は沈殿処理で分離 することができないので、 このような S S分が多い場合は、 洗浄液の一 部を分離膜やろ材でろ過処理するなど、 沈殿分離手段とは異なる洗浄水 (洗浄液) からの固形分除去手段が必要となるのは第 1再生器 Bと同様 ある。
再生用ガス 3 5 cがダス トを含まないガスである場合は、 第 2再生器 Cでの固液分離は必要なく、 最下部からのスラッジ抜き出しが不要とな る等、 第 2再生器 Cの内部構造が簡素化できるが、 気液分離機能は必要 であり、 液面を穏やかな状態に保つ目的からガス洗浄器 Aや第 1再生器 Bと同様の構造とするのが望ましい。
第 2再生器 Cから抜き出された洗浄液は洗浄液循環ポンプで再びガス 洗浄器 Aに供給される。 ここで洗浄液量を制御する方法は、 まず第 2再 生器 Cのせき 1 3 cを越流した後の洗浄液液面レベルを計測し、 電気信 号に変換する。 そのレベル信号をレベル調節計 7 0 cに入力する。 レべ ル調節計 7 0 cでは液面が所定の値になるように、 洗浄液の補給が必要 な場合は補給液調節弁 1 0 a , 1 0 b , 1 0 cを開け、 廃液調節弁 1 7 a , 1 7 b , 1 7 cを閉める信号を出力する。 洗浄液量が増加し、 循環 系内から排出する必要のある場合は補給液調節弁 1 0 a , 1 0 b , 1 0 cを閉め、 廃液調節弁 1 7 a , 1 7 b , 1 7 cを開ける信号を出力する < 図 4において、 符号 6 cはミス トセパレー夕であり、 符号 3 6 b , 3 6 cはそれぞれ再生器オフガスである。 また符号 4 1 cは補給洗浄液であ る。
以上に記した第 1、 第 2再生器と同様に、 再生器を 3段以上系列的に つなげて採用することも当然ながら可能である。
図 5は本発明の酸性ガス除去装置を用いた可燃物のガス化システムの 実施例を示したものである。 本実施例は、 加熱されると酸性ガスを発生 させる可燃物 1をガス化工程 1 1 0でガス化した後、 熱回収工程 1 2 0 に導き、 熱回収を行った後、 ガス洗浄器 Aで洗浄するシステムであり、 ガス化工程への酸化剤ガスをアル力リ再生器 Bの再生ガスとして用いた 実施例である。 ガス化工程 1 1 0は低温ガス化炉 1 1 2 と高温ガス化炉 1 1 4とを用いた 2段ガス化工程からなる。 熱回収工程 1 2 0は高温熱 交換器 1 2 1 と熱回収ボイラ 1 2 2 とからなる。 ガス化工程用酸化剤 5 0が再生器 Bに再生ガスとして供給され、 再生器オフガス 3 6 b中には 再生ガス成分にプラスして飽和水蒸気と、 脱離した炭酸ガスが含まれて おり、 それらがガス化工程においてガス化剤として機能するのである。 酸化剤としては通常空気、 酸素富化空気、 高濃度酸素、 純酸素などが用 いられるが、 もちろん酸素を含有しているガスであればどのようなガス でも良い。
再生器オフガス 3 6 bは、 ガス化工程後の高温の生成ガスと熱交換し て加熱するのが良く、 本実施例においては被加熱側媒体を 5 0 0 °C以上 の温度に加熱する高温熱交換器 1 2 1 に導き、 5 0 0 °C以上、 好ましく は 6 0 0 °C以上、 更に好ましくは 7 0 0 °C以上に加熱して加熱オフガス 3 7 としてガス化炉に供給している。 また本実施例のようにガス化工程 が複数の炉で構成されており、 かつ各々の炉へ供給する酸化剤の適正酸 素濃度が異なるような場合は、 加熱オフガスに酸化剤を供給して酸素濃 度を調整するのが良い。 本実施例では高温ガス化炉 1 1 4に供給する加 熱オフガス 3 7に酸化剤 5 0を供給している。
図 6は本発明の酸性ガス除去装置を用いた可燃物ガス化システムの第 2の実施例を示したものである。 本実施例においては、 再生器が 2段 (第 1再生器 Bおよび第 2再生器 C ) の酸性ガス除去装置を利用してい る。 図 5 と同様、 加熱されると酸性ガスを発生させる可燃物 1 をガス化 工程 1 1 0でガス化した後、 熱回収工程 1 2 0に導き、 熱回収を行った 後、 ガス洗浄器 Aで洗浄する。 ガス化工程用酸化剤 5 0を、 いったん第 1再生器 Bの再生ガスとして用い、 再生器オフガス 3 6 bを高温熱交換 器 1 2 1に導き、 5 0 0 °C以上、 好ましくは 6 0 0 °C以上、 更に好まし くは 7 0 0 °C以上に加熱し、 加熱オフガス 3 7 とした後、 ガス化工程へ 酸化剤とガス化剤の混合ガスとして供給する。 酸化剤 5 0 としては通常 空気、 酸素富化空気、 高濃度酸素、 純酸素などが用いられるが、 もちろ ん酸素を含有しているガスであればどのようなガスでも良い。
図 5、 図 6の実施例ともに、 ガス化工程用の酸化剤を再生用ガスとし て用い、 ガス洗浄液を冷却するとともに、 再生器オフガス 3 6 bは洗浄 液から放出された水蒸気と炭酸ガスで酸素が希釈されているので、 その まま高温熱交換器 1 2 1 に導いても酸化による材料腐食の程度を軽減で き、 また高温熱交換器 1 2 1で加熱されることによって再生器オフガス 中の飽和水蒸気は過熱蒸気となり、 蒸気の凝縮による ドレンアタックを 防止できるばかりでなく、 貴重な高温顕熱を回収してガス化工程 1 1 0 に供給することで冷ガス効率も向上させることができる。
特に図 6の実施例においては、 第 2再生器 C用の再生ガス 3 5 cはど のようなガスでも良く、 目的に応じ、 最も安価で容易に利用できるガス であればよいので、 適用範囲が広い。
図 7は本発明を可燃物のガス化燃料電池発電プロセスに適用した際の 実施例である。 可燃性廃棄物等の原料 (可燃物) 1がガス化工程に 1 1 0に供給され、 そこで発生した高温生成ガスは熱回収工程 1 2 0に送ら れて顕熱を回収され 2 0 0 °C、 好ましくは 3 5 0 °C、 更に好ましくは 5 0 0 °cにまで降温される。 回収された顕熱は蒸気を発生したりガス化剤 の加熱に用いられる。 降温された 5 0 0 °Cの生成ガスは生成ガス前処理 工程 1 3 0における本発明のガス洗浄器 Aに導かれ、 酸性ガスを除去さ れると共に 6 0 °C〜 9 0 °Cにまで冷却される。 なお、 生成ガス中に含ま れるダス ト量ゃ成分が、 ガス洗浄器の性能に対して特に悪影響を及ぼす ような場合は、 ガス洗浄器の上流にサイクロンゃフィルター方式の乾式 集塵器を設け、 脱塵した後にガス洗浄器 Aに導く ようにするのがよい。 図 7におけるガス化工程 1 1 0は低温ガス化炉 1 1 2 と高温ガス化炉 1 1 4の 2段のガス化炉で構成されており、 低温ガス化炉 1 1 2は 4 5 0 °C〜 8 5 0 °C、 場合によっては 4 5 0 °C〜 9 5 0 °Cの温度で原料の熱 分解、 ガス化を行わせるもので、 流動床炉が望ましい。 高温ガス化炉 1 1 4は 1 2 0 0 °C〜 1 5 0 0 °Cの温度で有機成分を完全にガス化すると 共に、 灰分をスラグ化する。 もちろんガス化工程 1 1 0は可燃成分をガ ス化する機能を有するものであればどのようなものでも良く、 必ずしも 本実施例のように 2段ガス化を行う必要はない。
図 7の実施例におけるガス洗浄器 Aの気相部運転圧力 P aは、 ガス化 工程の運転圧力から各工程のガスの流通による圧力損失分を差し引いた 圧力となり、 ガス化工程が大気圧運転の場合は大気圧〜大気圧一 1 0 k P aの範囲となるが、 ガス化工程の運転圧力はもちろん任意の圧力に設 定することができるので、 ガス洗浄器の運転圧力も任意に設定できる。 但し、 運転圧力を高く設定する場合は洗浄液の飽和温度も高まるので、 生成ガスのガス洗浄器出口温度は洗浄液の飽和温度を上限とする任意の 値に設定することができる。 下流の水素製造工程 1 4 0に C 0変成工程 を設けているような場合、 変成工程に最適な反応温度は 2 0 0 °C程度で あるので、 ガス洗浄器の運転圧力を 1 5 5 0 k P a以上として、 ガス洗 浄器出口生成ガス温度を 2 0 0 °C程度にまで高めるようにしても良い。 図 7の実施例でガス洗浄器の気相部運転圧力 P aは 9 5〜 9 9 k P a の間で運転され、 生成ガスは 8 0 °C以下に冷却され、 ガス圧縮機 ( 1 ) 1 3 5で 2 0 0〜 8 0 0 k P aに昇圧されて水素製造工程 1 4 0に供給 される。 ガス圧縮機 ( 1 ) 1 3 5の消費動力を低減するためガス洗浄器 の下流にガス冷却器を設け、 ガス中に含まれる水蒸気を凝結除去しても 良い。 水素製造工程 1 4 0は生成ガス中の硫黄分を除去する脱硫反応装 置 1 4 1、 生成ガス中の一酸化炭素と水を反応させて水素と二酸化炭素 に変成する変成反応装置 1 4 2、 変成後のガスを圧縮するガス圧縮機 ( 2 ) 1 4 5、 生成ガス中の炭酸ガスを吸収除去する炭酸ガス吸収装置 1 4 7、 炭酸ガス吸収後のガスにわずかに残る一酸化炭素、 二酸化炭素 を水素と反応させてメタンを生成するメタン化反応装置 1 4 8、 水素吸 蔵合金を用い、 ガス中の水素だけを吸収して水素の純度を高め、 かつ昇 圧する水素精製 · 昇圧装置 1 4 9から構成されている。 なお、 生成ガス 中の一酸化炭素を除去するためにメタン化反応装置の代わりに一酸化炭 素を選択的に燃焼させる選択酸化装置を炭酸ガス吸収装置 1 4 7の上流 に設置することもできる。 この場合、 メタン化反応装置 1 4 8は不要に なる。
炭酸ガス吸収装置 1 4 7にはアミ ン吸収法を採用するのが良いが、 ァ ミ ン吸収法では流入するガスの圧力が高いほど吸収時と再生時の炭酸ガ ス分圧差を大きく取れるので有利であり、 本実施例では 8 0 0 k P a以 上に昇圧して供給できるように炭酸ガス圧縮機 ( 2 ) 1 4 5を設けてい るが、 当然ながらガス圧縮機 ( 1 ) の昇圧で十分な場合には設ける必要 はない。 ガス圧縮機 ( 2 ) 1 4 5を設けた場合は、 その消費動力を低減 するために変成反応装置 1 4 2の下流にガス冷却器 8 0を設け、 ガス中 に含まれる水蒸気を凝結除去するのがよい。
水素精製 · 昇圧装置 1 4 9のオフガスにはメタンゃ窒素、 アルゴンお よび少量の水素が含まれており、 メタン吸収装置 1 7 0でメタンだけを 吸収して残りのガスは排気する。 回収されたメ夕ンガスはガス化工程 1 1 0に供給され、 再び改質、 精製をへて水素ガスの原料となる。
水素精製 · 昇圧装置 1 4 9で純水素にまで精製された後は、 燃料電池 発電工程 1 6 0に供給される。 燃料電池は水素と酸素を反応させて電気 と水と熱を発生させるもので、 作動温度の低い順に固体高分子型、 リ ン 酸型、 溶融炭酸塩型、 固体電解質型の 4種類が開発されている。 図 7で は固体高分子型の燃料電池を用いた場合の例を示しているが、 もちろん 水素、 一酸化炭素を燃料とする燃料電池であればどの燃料電池を用いて も良い。 一般に燃料電池に酸素を供給する酸化剤としては空気や純酸素を用い るが、 基本的に酸素を含有するガスであって、 燃料電池の被毒成分を含 まないガスであれば、 どのようなガスでも用いることができる。 本実施 例では酸化剤として P S A法等によって精製した 8 0 %以上、 好ましく は 9 0 %以上、 さらに好ましくは 9 3 %以上の高濃度酸素ガスを用いる。 純酸素であればなお良い。 ちなみに P S A法で製造した酸素ガスの場合、 酸素以外のガス成分は窒素とアルゴンである。 図 7は高濃度酸素ガスを 用いた実施例であり、 燃料電池へ酸化剤として供給された酸化剤は燃料 電池内部で酸素を約 5 0 %消費され、 酸素極からオフガス 5 5 として排 出される。 オフガス 5 5にはその温度、 圧力に応じた飽和水蒸気が含ま れているが、 オフガスクーラ (ガス冷却器) 8 0で 4 5〜 6 0 °C程度に まで冷却することによって凝結水として回収する。 この凝結水はほぼ完 全な純水であり非常に利用価値が高く、 他に用途が無い場合はガス洗浄 器の補給水として用いてもよい。
4 5〜 6 0 °Cの飽和水蒸気圧は 1 0〜 2 0 k P aであり、 冷却された 酸素極オフガスは大気圧であれば 1 0 ~ 2 0 %の水蒸気を含んで再生器 に再生用ガスとして供給される。
燃料電池の酸素極オフガス 5 5は炭酸ガスを全く含まないので、 再生 器 Bでのアル力リ再生用ガスとしては誠に好適である。 本発明では再生 器 Bの気相部圧力 P bが 1 2 0〜 1 4 O k P aに維持されるように運転 されており、 再生器オフガス 3 6 bはガス総量の 5 %以上の炭酸ガスを 同伴することができる。
再生器へ流入する洗浄液の温度は 7 0〜 9 9 °Cであり、 酸素極オフガ ス 5 5は洗浄液と対向流で接触し、 直接熱交換により加温され、 7 0〜 9 9 °Cにまで加温される。 7 0 °C〜 9 9 °Cの飽和水蒸気圧は 3 1〜 9 9 k P aである。 ここで再生器の気相部圧力 P bを 1 30 kP aとすると. 再生器オフガスの水蒸気割合は 24 % (= 3 1/ 1 3 0 ) 〜 7 6% (二 9 9/ 1 30 ) である。 従って、 再生用ガスとして供給された燃料電池 の酸素極オフガスは再生器入口と出口の水蒸気割合の差分を洗浄水 (洗 浄液) から持ち去ると共に、 洗浄水 (洗浄液) を冷却することになる。 以上のことから、 再生器オフガス成分は再生器の運転温度によって多 少異なるが、 約 5〜 1 0 %の炭酸ガス、 ほぼ同量の窒素およびアルゴン、 1 5〜4 5 %の酸素、 24〜 76 %の水蒸気となる。 この成分のガスは ガス化工程に供給する酸化剤とガス化剤の混合ガスとして申し分のない 組成であり、 そのままガス化工程に供給しても良いし、 必要に応じてさ らに水蒸気や酸素を加えてガス化工程に最も適する成分に調整して供給 しても良い。 即ち、 図 7に示す実施例において再生器 Bはあたかも 「ガ ス化剤発生装置」 の様な役割を果たしている。 なお、 本実施例で燃料電 池の酸化剤として空気を用いないのは、 大量に含まれる窒素がガス圧縮 機 ( 1 ) 1 3 5や水素製造工程 140における消費動力の増大につなが るからである。 本実施例において酸化剤に含まれていた窒素、 アルゴン はメタン吸収装置 1 70のオフガスとして系外に排出される。
本発明をガス化燃料電池発電プロセスに応用することによって、 以下 に列挙する大きな効果を奏することができる。
1. 再生器のアルカ リ再生機能によって、 アルカリ剤を大量消費する ことなくガス洗浄器へ供給するガス洗浄液を高 p Hに保つことができる ので、 ガス洗浄工程での酸性ガス吸収機能が大いに高ま り、 下流の水素 製造工程を構成する装置の耐久性を向上させることができる。
2. 再生器で洗浄水 (洗浄液) が冷却できるので冷却塔へ供給される 廃熱が少なくなり、 冷却水補給水の消費量が減少し、 かつ白煙 · 雨降り (近隣へのミス ト降下) といった問題が低減される。
3 . 洗浄液からガス化工程でガス化剤として使用する蒸気が回収でき るので、 上質の蒸気を消費する必要が無く、 水の消費量および水処理に 必要なエネルギーを低減できる。
4 . 従来であれば冷却塔で廃熱として捨てられていた低圧蒸気の潜熱 がガス化工程に還元されることによ り、 エネルギー効率が向上する。
5 . 炭酸ガスが洗浄液から脱離回収されてガス化工程にガス化剤とし て供給されるが、 炭酸ガスは蒸気よ りも比熱が小さいのでガス化工程で の昇温熱が少なくて済み、 冷ガス効率が向上する。
6 . 炭酸ガスをガス化剤とする場合、 水素よ りも利用価値の高い一酸 化炭素に富んだガスとなるので、 生成ガスの用途が広がる。
本実施例は精製した水素を燃料電池の燃料にしたものであるが、 精製 された水素の用途は燃料電池の燃料に限られるものではなく、 本実施例 から燃料電池発電工程を除いたシステムは水素製造システムとして他の 用途に供することももちろん可能である。
図 8は燃料電池の酸化剤として空気を用いた場合の実施例を示すフロ 一図である。 燃料電池の酸化剤が空気の場合、 燃料電池の酸素極オフガ スには大量の窒素ガスを含んでいる。 この窒素ガスはガス化工程でガス 化剤として機能しないばかりか、 その後の水素製造工程の消費動力を増 大させるので、 この場合の酸素極オフガスをガス化工程に供給するのは 得策ではない。
従って燃料電池の酸化剤が空気であっても、 ガス化工程の酸化剤とし ては図 7に示した実施例同様、 酸素濃度が 8 0 %以上、 好ましくは 9 0 %以上、 さらに好ましくは 9 3 %以上の酸素を含む高濃度酸素ガス、 も しくは純酸素ガスとする。 この場合再生器の再生用ガスとして利用でき るガスは、 ガス化工程用酸化剤と燃料電池酸素極オフガスの 2種類ある ので、 再生器を 2段に設け、 それぞれのガスを第 1再生器 Bと第 2再生 器 Cの再生用ガスとして用いるのがよい。 以下、 図 8の実施例において 説明の無い部分については、 図 7の実施例と同様であることを前提に説 明する。
図 8に示す実施例では第 1再生器 Bの再生用ガスとしてガス化工程用 酸化剤を、 第 2再生器 Cの再生用ガスとして燃料電池酸素極オフガスを 用いている。 第 1再生器オフガス 3 6 bは酸化剤とガス化剤の混合ガス としてガス化工程 1 1 0へと供給される。 第 2再生器 Cのオフガス 3 6 cは 5〜 1 0 %程度の炭酸ガスを含有して系外に排気される。 ここで注 目すべきはこの系外に排出される炭酸ガスである。 図 7に示す実施例の ように再生器が単段の場合、 再生器オフガスをガス化工程に供給すると 再生器オフガスに含有されていた炭酸ガスが再び系内を循環し、 生成ガ ス前処理工程 1 3 0や水素製造工程 1 4 0での消費動力を増大させる可 能性がある。 なぜなら炭酸ガスも水蒸気同様ガス化工程でのガス化剤と して機能はするが、 水蒸気と違い冷却して凝縮除去することができない ので、 生成ガス中の炭酸ガスの割合が増えてく るとガス圧縮機での動力 増加が避けられないからである。
従って図 7に示した実施例では、 水素製造工程内に炭酸ガス吸収装置 を設け、 ァミ ン吸収法を用いて炭酸ガスの濃縮を行い、 濃縮された炭酸 ガスを系外に排出することで対応している。 このアミ ン吸収法は大量の 蒸気を必要とする。 ちなみに図 7、 図 8に示す実施例においては燃料電 池発電工程から発生する 7 0〜 9 0 °Cの温熱を利用して吸収式冷凍機を 駆動し、 発生した冷熱を炭酸ガス吸収工程に供給し、 加熱源である蒸気 5 7 との温度差を大きく とることによって、 炭酸ガス吸収装置での蒸気 消費量をできるだけ抑制することもできる。 いずれにしても炭酸ガス吸 収装置で吸収すべき炭酸ガス量を低減できれば蒸気消費量を抑えること ができる。 即ち、 図 8に示すように炭酸ガスを含む第 2再生器 Cのオフ ガスを系外に排出することで、 炭酸ガス吸収装置での蒸気消費量を抑制 できるので、 所内エネルギー消費率が低減できるのである。
従って本実施例においては、 できるだけ多くの炭酸ガスを第 2再生器 オフガス 3 6 c とともに系外へ排出することが重要となる。 その効果を 最大にする方法はガス洗浄器 Aの運転温度を極力下げることによってガ ス洗浄器における洗浄液への炭酸ガスの吸収能力を高め、 かつ、 第 1再 生器 Bにおいてはできるだけ炭酸ガスの脱離放出を抑制しつつ飽和水蒸 気を発生させる。 そして第 2再生器 Cにおいてはできるだけ高い温度で 運転するとともに再生用ガスとの気液接触を激しく して、 炭酸ガスの脱 離放出を促進するのがよい。 第 1再生器での炭酸ガス放出量を抑制する 目的は、 洗浄液中へ取り込まれた炭酸ガス量をできるだけ高めたままで、 第 2再生器にて一気に脱離放出させ、 系外への炭酸ガス排出量をできる だけ多くするためである。 従って、 必要に応じて熱交換器を設け、 洗浄 液の加熱を行うのが良く、 この加熱には熱回収工程で発生した蒸気また は、 熱回収工程で発生し、 炭酸ガス吸収工程にて炭酸吸収液の加熱に利 用された後の蒸気を利用するのが望ましい。
第 1再生器の再生用ガスである純酸素、 高濃度酸素は水蒸気を含まな いので、 ガス化剤としての水蒸気発生を目的とした場合の再生用ガスと しては誠に好適である。 また第 2再生器の再生用ガスである燃料電池酸 素極オフガスは 7 5〜 9 0 °C程度の温度で、 しかも燃料電池出口では飽 和水蒸気を含んでいるので、 そのまま再生用ガスとして用いた場合、 第 2再生器での新たな水蒸気発生はほとんど無く、 従って冷却効果もほと んど無い。 このことはできるだけ第 2再生器の運転温度を高く保つ上で は誠に有利である。 当然ながら第 2再生器における洗浄水 (洗浄液) の 冷却効果も高めたい場合には、 酸素極オフガスを冷却して、 含まれてい る水蒸気を凝縮させるのがよい。 この凝縮水はほぼ純粋な水であるので. 誠に利用価値が高く、 様々な用途に利用できる。 また、 燃料電池酸素極 オフガスが必要以上に圧力を有している場合は、 ァスピレー夕を設けて 空気を吸い込み、 再生用ガス量を増量し、 再生効果を高めることもでき る。
図 9は図 8に示した実施例の 2段再生式酸性ガス除去装置の具体的実 施例を示す。 図 3も しく は図 4に示したような 2段再生式酸性ガス除去 装置を用いてもよいが、 図 9に示すように第 1再生器 Bは気液接触を向 流式とせず、 完全混合型としている。 なぜなら向流式の場合、 再生器ォ フガス 3 6 bは第 1再生器入口の洗浄液との平衡状態に従って水蒸気や 炭酸ガスを同伴するが、 第 1再生器入口の洗浄液はガス洗浄器 Aで加熱 されかつたっぷり と炭酸ガスを吸収しているので、 炭酸ガスを放出しや すく、 ここで大量に炭酸ガスが放出されると、 第 2再生器での炭酸ガス の系外排出量が低下してしまい、 「できるだけ多くの炭酸ガスを系外に 排出する」 という目的に反してしまうからである。
図 9のように第 1再生器 Bを完全混合式にすれば、 オフガス 3 6 bは 第 1再生器出口の洗浄液との気液平衡に従う蒸気、 炭酸ガスを同伴する だけなので、 向流式の場合よりもオフガス 3 6 bに同伴される炭酸ガス 量は少なく、 第 2再生器での系外排出量が増加する。
図 1 0は第 1再生器 Bでの蒸気発生量を確保しつつ炭酸ガス放出量を 抑えることを目的とした 2段再生式酸性ガス除去装置の実施例である。 洗浄液 4 0の一部のみを第 1再生器 Bに供給し、 残りは直接第 2再生器 Cへ供給する。 第 1再生器には洗浄液を加熱する手段が設けられており . 洗浄液の温度を上げて水蒸気の発生を促進させる。 同時に炭酸ガスも放 出するが、 本発明者らの試算によれば、 図 8に示すガス化燃料電池発電 システムで約 1 3 M J / k gの発熱量を持つ可燃物を原料とした場合、 洗浄液循環量は約 1 5 0 t / hで、 そのうちの約 1 %、 あるいは 1 0 % 以下を第 1再生器に導く だけで、 ガス化工程のガス化剤として必要とす る水蒸気量を賄うことができる。 すなわち、 9 0〜 9 9 %の炭酸ガスは 高温のまま第 2再生器へ供給されるので、 炭酸ガスの系外排出が誠に容 易になる。
図 1 3は本発明の実施例の一つで、 洗浄液から積極的に水蒸気と炭酸 ガスを回収してガス化剤として利用する場合の実施例である。 本実施例 では第 1再生器のオフガス 3 6 bをガス化工程のガス化剤として用いる c ガス化剤として用いるためにはオフガスの圧力が必要なので、 第 1再生 器 Bの気相部の圧力 P bを計測している。 計測された圧力信号は圧力調 節計 7 4に送られ、 圧力調節計 7 4からは所定の圧力を維持するために 再生ガス流量調節弁 3 8、 及び加熱用蒸気流量調節弁 3 9を調節するた めの操作信号を出力する。 圧力 P bが所定の圧力よりも低下した場合は 再生ガス流量調節弁 3 8、 及び加熱用蒸気流量調節弁 3 9を共に開ける 操作を行ない、 逆の場合は閉める操作を行う。
第 1再生器 Bのガス洗浄器 Aに対する相対的な鉛直方向位置は、 ガス 化剤として必要な圧力によって決定される。 ガス化剤として必要な圧力 が高ければ高いほど第 1再生器 Bはガス洗浄器 Aに対して相対的に下方 に配置される。 第 1再生器 Bに流入した洗浄液は第 2再生器 Cに送られ るが、 第 2再生器 Cがガス洗浄器 Aよりも相対的に低く配置されている 場合は第 1再生器 B出口の洗浄液循環系路に循環用ポンプを設けなくて も自然流下により第 2再生器 Cに流入させることができる。 但し、 P b の圧力が所定の圧力以下になると洗浄液が逆流する恐れがあるので、 必 要に応じて洗浄液循環系路に逆止弁を設けるなどの配慮が必要である。 もちろん洗浄液循環用のポンプを設けても良い。 また第 1再生器 Bへ流 入する洗浄液量を抑制すベく洗浄液バイパス弁 1 9 a cを有したバイパ スライ ンを設けることによって、 P bの制御を容易にしたり、 加熱用蒸 気の消費量を低減させることができる。 また図 9 , 1 0の実施例同様、 第 1再生器の形式を完全混合式とすれば、 第 1再生器での炭酸ガス放出 を抑制することができる。
図 9、 図 1 0、 図 1 3に示した 2段再生式酸性ガス除去装置を採用す ることにより、 図 8に示したガス化燃料電池発電システムの高効率化が 可能になる。
図 8に示す実施例はあたかも炭酸ガス吸収装置を直列に 2系統有して いるようなシステムであると言える。 このような応用の場合において、 第 2再生器の再生用ガスはとにかくオフガス 3 6 c中の炭酸ガス分圧を 極力低下させられるガスが好ましく、 できるだけ低温で炭酸ガス含有率 が低く、 かつ量が多い方が良い。
本発明者らが見いだした本実施例における最適条件のうち、 ガス化工 程の運転圧力が常圧でガス洗浄器 Aへの流入ガス温度が 5 00 °C、 原料 発熱量が約 1 3M J/k gの場合の最も効率の高い運転条件は、
ガス洗浄器 A気相部圧力 P a : 9 5〜9 9 kP a、 洗浄液温度 T LA E : 70〜80°C、 (場合によって 80°C~9 5°C)
第 1再生器 B気相部圧力 Pb : 70〜 140 kP a、 洗浄液温度 T LBE : 70〜 99。C
第 2再生器 C気相部圧力 P c : 9 0〜 1 1 0 kP a、 洗浄液温度 T L C E : 6 0〜 8 0。C
であった。
図 1 1は図 8 と同様に、 本発明の 2段再生式酸性ガス除去装置を用い たガス化燃料電池発電システムの第 2の実施例である。 以下特に説明の ない部分は図 8に示す実施例と同じであるという前提で説明する。 本実 施例はガス化工程に供給するガス化剤として炭酸ガス濃度が低く、 でき るだけ蒸気リ ツチなガスを要求する場合の実施例である。 図 8の実施例 と異なり、 第 1再生器 Bの再生用ガスとして燃料電池酸素極オフガスを 用い、 第 2再生器 Cの再生用ガスとしてガス化工程用酸化剤を用いる点 である。 燃料電池酸素極オフガスは 7 5〜 9 0 °C程度で飽和水蒸気を含 むので、 第 1再生器の再生用ガスとして用いても蒸発潜熱を奪わないの で、 洗浄液を冷却する能力は小さいが、 炭酸ガスは含まないので炭酸ガ ス脱離用ガスとしての機能は高い。
従って、 燃料電池酸素極オフガスを第 1再生器の再生用ガスとして用 い、 第 1再生器オフガスは系外に排気し、 第 2再生器には炭酸ガス脱離 後の洗浄液が供給されるので、 純酸素や高濃度酸素を再生用ガスとして 供給し得られた第 2再生器オフガス、 即ちガス化工程へ供給するガス化 剤と酸化剤の混合ガスに含まれる炭酸ガス濃度は図 8の実施例の場合に 比べて著しく低い。 しかも第 1再生器において洗浄水 (洗浄液) の温度 降下は非常に小さいので、 第 2再生器における蒸気発生能力は低下して おらず、 ガス化工程のガス化剤としてあまり炭酸ガスを供給したくない 場合には誠に好都合である。 もちろん蒸気発生量が不足する場合は蒸気 等で第 2再生器中の洗浄液を加熱しても良い。
本実施例における本発明の第 1再生器及び第 2再生器の具体的実施形 態は図 3、 図 4に示すような向流式の再生器で良いが、 蒸気等で第 2再 生器中の洗浄液を加熱する場合は、 図 1 2に示すように、 第 1再生器 B から第 2再生器 Cをバイパスしてガス洗浄器 Aへ流入するライ ン 4 0 b を設け、 第 2再生器への洗浄液流入量を調節し、 できるだけ少ない加熱 熱量で第 2再生器内の洗浄液温度を高められるようにするのがよい。 第 2再生器の洗浄液加熱用伝熱管 4 8は滞留している洗浄液内のできるだ け上方に配置する。 少な く とも洗浄液流下管 1 2 cの下端部よりも上部 に設置する。 このように配置することによって滞留洗浄水 (洗浄液) の 対流を抑制できるので、 固形分の沈殿が阻害されない。
本発明者らが見いだした本実施例における最適条件のうち、 ガス化工 程の運転圧力が常圧でガス洗浄器 Aへの流入ガス温度が 5 0 0 °C、 原料 発熱量が約 1 3 M JZk gの場合の最も効率の高い運転条件は、
ガス洗浄器 A気相部圧力 P a : 9 5 9 9 k P a、 洗浄液温度 T E : 7 0 8 0 ° (:、 (場合によって 8 0 °C 9 5 °C)
第 1再生器 B気相部圧力 P b : 9 0〜: L 1 0 k P a、 洗浄液温度 T LBE : 6 0 8 0 °C
第 2再生器 C気相部圧力 P c : 7 0 1 4 0 k P a、 洗浄液温度 T L CE : 7 0 9 9 °C
であった。
図 1 4は本発明の第 3の実施形態で、 ガス洗浄器を第 1ガス洗浄部 A ' 及び第 2ガス洗浄部 A 2の 2段と、 洗浄液再生器を第 1再生器 Bおよ び第 2再生器 Cの 2段で行うことによって洗浄液のアル力 リ再生機能と 共に、 被洗浄ガスの酸性ガス除去機能をさらに高めた場合の実施例を示 すものである。 ここで、 第 1ガス洗浄部 A' に供給された被洗浄ガス 3 0と第 1洗浄液 8 2 bとが対向流で接触し、 被洗浄ガス 3 0が第 1洗浄 液 8 2 bによって冷却されると共に被洗浄ガス 3 0中の塩化水素等の強 酸性ガスが第 1洗浄液 8 2 b中に吸収され、 被洗浄ガス中のダス ト成分 も第 1洗浄液 8 2 bに取り込まれる。 次いで、 第 1ガス洗浄部 A ' から 第 2ガス洗浄部 A 2に導かれた被洗浄ガスと第 2洗浄液 8 2 c とが対向 流で接触し被洗浄ガスが第 2洗浄液 8 2 cによってさらに冷却され過飽 和状態の水蒸気が凝縮すると共に、 被洗浄ガス中の炭酸ガスと硫化水素 等の弱酸性ガスが第 2洗浄液 8 2 cに吸収される。 これにより、 第 2ガ ス洗浄部 A 2から得られた洗浄後ガス 3 1はアルカ リ溶液への溶解度が 小さい一酸化炭素、 水素、 飽和状態の水蒸気、 そしてアルカリ溶液中に 溶け込みきれなかった炭酸ガスを主成分とした清浄なガスになる。
一方、 塩化水素等の強酸性ガスを吸収し、 そして温度が上昇した第 1 洗浄液 8 2 bは気液分離器 3 aを経て第 1再生器 Bに送られ、 第 1再生 器 B内で被洗浄ガスとは成分の異なりかつ酸素を含む第 1再生用ガス 3 5 b、 例えば富化酸素ガスと接触し、 第 1再生器 B内の温度における飽 和水蒸気圧まで蒸気を発生する。
例えば、 第 1再生器 Bが大気圧 (約 0 . l M P a ( l b a r ) ) 、 8 0 °Cで運転された場合、 第 1再生器から排出される第 1再生器オフガス 3 6 bには 4 7 %の水蒸気が同伴する。 同時に、 第 1洗浄液 8 2 bは蒸 発潜熱を奪われ冷却される。 もちろん第 1再生用ガス 3 5 bが第 1再生 器 B内の飽和水蒸気圧以上の水蒸気を同伴しているような場合は、 再生 器での水分蒸発はなく、 第 1再生器 Bでの第 1洗浄液冷却は行われない c 従って、 第 1再生用ガス 3 5 bとしては含有水蒸気が少ないほど、 即ち 露点が低いほど好ましい。
また、 第 1洗浄液 8 2 bは第 1ガス洗浄部 A ' にて強酸性ガスを吸収 するので p Hが低下し、 そして、 第 1洗浄液再生器 Bにて水分が蒸発す るので、 第 1アルカ リ剤と水を補給する必要がある。 さらに、 被洗浄ガ スにダス 卜が含まれていて該ダス 卜が第 1洗浄液 82 bに取込まれた場 合は第 1洗浄液 82 bからダス トを固液分離することが必要である。 本 発明では第 1洗浄液の循環経路に薬剤添加装置と濾過装置とをそれぞれ 設け、 第 1アル力リ剤と該アル力 リ剤希釈水としての水を添加して第 1 洗浄液 82 bを pH調整し、 そして第 1洗浄液 8 2 bの全部又は 1部を 常時濾過して固形分を除去する。 用いるアルカ リ剤としてアル力リ性物 質であれば何でもよいが、 水酸化ナ ト リゥム又は水酸化力 リゥムが好適 である。 調整する第 1洗浄液 8 2 bの pH、 即ち第 1ガス洗浄部 A ' 入 口における第 1洗浄液 8 2 bの pHは pH 4以上であれば塩化水素ガス を吸収する能力をもつのでよいが、 p H 1 1以上になると強酸性ガスの 他に炭酸ガスをも吸収するようになるので第 1アル力 リ剤消費量が増大 し好ましくない。 従って第 1ガス洗浄部 A' 入口における第 1洗浄液 8 2 bの pHは pH4〜 l 1の範囲が好ましく、 さらに pH 5〜 : 1 0の範 囲がより好ましい。 なお、 第 1アルカ リ剤と前記強酸性ガスが中和反応 して生成した塩類が第 1洗浄液 82 bに徐々に蓄積するが、 塩類の過度 濃縮による弊害を防止するために第 1洗浄液の一部を常時ブローする必 要がある。
一方、 飽和状態の水蒸気を同伴した第 1再生器オフガス 36 bは、 前 述した可燃物ガス化のためのガス化剤希釈用ガスとして用いることがで きる。 また第 1再生用ガス 35 bとして富化酸素ガスや P S A酸素 (圧 カスイ ング法によって製造される富化酸素) を用いた場合は、 第 1再生 器オフガス 3 6 bをそのままガス化剤として利用することもできる。 第 1洗浄液 82 bの温度については、 第 1ガス洗浄部の洗浄液出口で の第 1洗浄液温度 T l o u tが沸点以下 20 °C以内であればよく、 沸点 以下 1 0 °C以内であればなお好ましく、 沸点以下 5 °C以内であればさら に好ましい。 また、 第 1 ガス洗浄部 A ' の洗浄液入口での第 1洗浄液温 度 T 1 i nが前記第 1ガス洗浄部 A ' の洗浄液出口での第 1洗浄液温度 T 1 0 u t以下 2 0 °C以内であればよいが、 被洗浄ガス中の水蒸気の飽 和温度以下 5 °C以内であればなお好ましい。
なお、 第 1洗浄液 8 2 bの循流量は前記第 1 ガス洗浄部 A ' の洗浄液 の出口及び入口での第 1洗浄液温度を満足するように、 被洗浄ガスの流 量、 温度及び比熱より決定すればよい。
第 1再生器 Bから引抜かれた第 1洗浄液 8 2 bは気液分離器 3 bを経 て第 1ガス洗浄部 A ' に返送される。
また、 硫化水素等の弱酸性ガス及び炭酸ガスを吸収し、 そして水蒸気 が凝縮して温度が上昇した第 2洗浄液 8 2 cは気液分離器 3 cを経て第 2再生器 Cに送られ、 第 2再生器 C内で被洗浄ガスとは成分の異なる第 2再生用ガス 3 5 c、 例えば空気や燃料電池オフガスと接触し、 第 2再 生器 C内の温度における飽和水蒸気圧まで蒸気を発生すると共に、 脱炭 酸しアル力リ再生が行われる。
本発明では第 2洗浄液 8 2 cの循環経路に薬剤添加装置を設け、 硫化 水素等の還元性酸性ガスの吸収量に応じて第 2洗浄液 8 2 cに酸化剤を 適量添加することができる。 また、 第 2洗浄液 8 2 cの p Hとしては 7 以上で 1 2以下が好ましい。 用いる第 2のアル力リ剤及び酸化剤につい ては第 1実施形態で述べたアル力 リ剤及び酸化剤と同様である。
一方、 脱離した炭酸ガス及び飽和状態の水蒸気を同伴した第 2再生器 オフガス 3 6 cは、 凝縮器 8 0 c及び凝縮水分離器 8 1 cを経て排出さ れる。 なお、 凝縮水分離器 8 1 cで回収された凝縮水は第 1アルカ リ剤 の希釈水又は第 1洗浄液 8 2 bの希釈水として系内に戻すことができる。 第 2洗浄液 8 2 cの温度については、 第 2ガス洗浄部 A 2の洗浄液出 口での第 2洗浄液温度 T 2 0 u tが前記第 1ガス洗浄部 A ' の洗浄液入 口での第 1洗浄液温度 T 1 i n以下 2 0 °C以内、 好ましくは第 1ガス洗 浄部 A ' の洗浄液入口での第 1洗浄液温度 T 1 ;1 11以下 1 0 以内でぁ るのがよい。 また、 第 2ガス洗浄部 A 2の洗浄液入口での第 2洗浄液温 度 T 2 i nが前記第 2ガス洗浄部 A 2の洗浄液出口での第 2洗浄液温度 T 2 o u t よ り 5 °C以上、 好ましく は 1 0 °C以上、 更に好ましくは 2 0 °C以上低い温度であるのがよい。
なお、 第 2洗浄液 8 2 cの循環流量は前記第 2ガス洗浄部 A 2の洗浄 液の出口及び入口での第 2洗浄液温度を満足するように、 被洗浄ガスの 流量、 温度及び比熱よ り決定すればよい。
第 2再生器 Cから引抜かれた第 2洗浄液 8 2 cは気液分離器 3 dを経 て第 2ガス洗浄部 A 2に返送される。 なお、 第 2再生器 C出口の第 2洗 浄液温度が所定の第 2ガス洗浄部入口での第 2洗浄液温度より高い場合 は、 循環経路に冷却装置を設けることによって温度を調節する。
本実施例では上述のように各部の温度を設定することによって、 被洗 浄ガス 3 0が持つ熱量の内、 顕熱分を第 1ガス洗浄部 A ' にて^却、 回 収し、 該回収熱を第 1再生器 Bにて蒸気発生に利用し、 一方で潜熱分、 即ち被洗浄ガス 3 0に含まれる水蒸気の凝縮熱を第 2ガス洗浄部 A 2に て冷却、 回収し、 該回収熱を第 2再生器 Cにて第 2洗浄液 8 2 cの脱炭 酸、 即ち第 2アルカ リ剤の再生に利用する。 このようにして本発明によ るシステム全体の熱効率及び除去対象ガスの吸収効率を高める。
なお、 本実施形態によって得られた洗浄後ガス 3 1を脱硫工程と一酸 化炭素変成工程と一酸化炭素選択酸化工程と炭酸ガス吸収工程とメタン 化工程と水素吸蔵合金による水素精製工程と水素精製 P S A工程の内あ る一つの工程、 又はこれら工程の任意の組み合せにより処理して水素ガ スを製造し、 そして製造した水素ガスを燃料電池発電工程に供給して発 電することができる。
図 1 5は図 1 4に示した本発明における第 3の実施形態の、 他の具体 的実施例を示すものである。 ガス洗浄器 A内は集液板 8 5で仕切られて おり、 集液板の下側が第 1ガス洗浄部 A ' 、 上側が第 2ガス洗浄部 A 2 である。 集液板 8 5は第 1ガス洗浄部 A ' からの被洗浄ガスは流通でき るが、 洗浄液が第 2ガス洗浄部 A 2から第 1ガス洗浄部 A ' へ流下する ことは防止できるような構造になっている。 従って、 第 1ガス洗浄部 A 5 と第 1再生器 Bとの間を第 1洗浄液 8 2 bが、 また、 第 2ガス洗浄部 A 2 と第 2再生器 Cとの間を第 2洗浄液 8 2 cが互いに独立して循環し ている。 他の説明は図 1 3 と同様である。
図 1 6は可燃物、 即ち可燃性廃棄物 (都市ゴミ、 固形化燃料、 スラ リ 一化燃料、 古紙、 廃プラスチック、 廃 F R P、 バイオマス廃棄物、 自動 車廃棄物、 廃木材等の産業廃棄物、 低品位石炭、 廃油等) や石炭等をガ ス化し、 得られたガスを処理して、 燃料電池に供給する可燃物のガス化 発電システムに本発明の酸性ガス除去装置を用いた場合の実施例を示す 機器構成図である。 原料フィーダ 1 1 5から可燃物である原料 1を低温 ガス化炉 1 1 2に供給し、 4 0 0〜 1 0 0 0 °Cの温度域で熱分解 · ガス 化して得られた生成ガスは、 そのまま高温ガス化炉 1 1 4に送られ、 原 料中の不燃物は低温ガス化炉 1 1 2から別途取り出される。 生成ガスは 高温ガス化炉 1 1 4において 1 0 0 0〜 1 5 0 0 °Cの温度域で更にガス 化され、 低分子化される。 高温ガス化炉 1 1 4の温度は、 生成ガス中に 含まれる灰分が溶融する温度以上に維持され、 生成ガス中の 8 0〜 9 0 %の灰分はスラグ化され、 溶融スラグ 1 2 7 として系外に排出される。 生成ガス中の有機物、 炭化水素は高温ガス化炉内で完全に水素、 一酸化 炭素、 水蒸気、 二酸化炭素にまで分解される。 高温ガス化炉 1 1 4で得 られた生成ガスは、 その後、 高温熱交換器 1 2 1 と廃熱ボイラ (熱回収 ボイラ) 1 2 2で顕熱を回収され 2 0 0 °C、 好ましくは 3 5 0 °C、 更に 好ましくは 5 0 0度にまで減温される。 回収された顕熱は蒸気の発生や ガス化剤の加熱等に用いられる。
ここで、 都巿ゴミ等の不定形可燃物を原料とする場合は、 原料フィ一 ダからの空気の漏れ込みを防止するために後に詳述する図 1 8も しくは 図 1 9に示すような原料フィ一ダを採用するのがよい。 この際、 該原料 フィ一ダで原料を圧搾した際に生ずる圧搾水は廃熱ボイラ 1 2 2に供給 し、 高温の生成ガスに混入することによって蒸発 · 分解される。 一方、 同じく原料圧搾時に発生する脱気ガスは、 圧搾水と同様に廃熱ボイラ 1 2 2に供給して分解してもよいし、 図示はしないが、 酸化剤及びガス化 剤として高温ガス化炉に供給してもよい。 また、 オフガスバ一ナ 1 6 3 に導入して処理してもよい。
廃熱ボイラで顕熱を回収された生成ガス即ち被洗浄ガス 3 0は、 本発 明のガス洗浄器 Aに導かれ、 酸性ガスを除去されると共に 6 0〜 9 0 °C にまで冷却される。 生成ガス中のダス ト量ゃ成分がガス洗浄器の性能に 対して特に悪影響を及ぼすような場合は、 ガス洗浄器の上流にサイクロ ンゃフィル夕一方式の乾式集塵機を設け、 脱塵した後にガス洗浄器 Aに 導く ようにするのがよい。
本実施例では、 アルカ リ剤の再生を 2段で行う。 第 1再生器 Bには酸 素濃度が 8 0 %以上、 好ましくは 9 0 %以上、 更に好ましくは 9 3 %以 上の酸素を含む高濃度酸素ガス、 も しくは純酸素ガスを再生用ガス 5 0 として用い、 第 1再生器 Bを出た再生器オフガス 3 6 bは高温熱交換器 1 2 1にて昇温され、 ガス化炉にガス化剤及び部分酸化のための酸化剤 として供給される。 第 1再生器 Bに供給される高濃度酸素ガスや純酸素 ガスである再生用ガスは水蒸気を含まないので、 アル力リ剤との接触で 多くの水蒸気を取り込み、 更に蒸発潜熱により再生用ガスの温度上昇が 抑制され、 二酸化炭素の取り込み量が低く押さえられる。 このためガス 化工程に供給するガスとして好適である。 また、 第 2再生器 Cには再生 用ガスとして、 燃料電池発電工程 1 6 0の燃料電池水素極オフガス 1 6 1 と酸素極オフガス 1 6 2をオフガスバ一ナ 1 6 3により燃焼させ、 夕 —ポチヤージャ 1 6 4により圧力エネルギー及び熱エネルギーが回収さ れた燃焼排ガス 1 6 6が供給され、 炭酸ガスを多く含む湿潤なガス 3 6 cが得られる。 なお、 ガス洗浄器 A、 第 1再生器 B及び第 2再生器 Cは 図 1 6に示す態様に限られず、 図 9、 1 0も しくは図 1 2、 1 3等のよ うな態様でもよい。
洗浄 · 冷却された洗浄後ガス 3 1は、 ガス圧縮機 1 3 5で 2 0 0〜 8 0 0 k P aに昇圧されて水素製造工程 1 4 0に供給される。 ガス圧縮機 1 3 5は、 廃熱ボイラ 1 2 2からの高圧蒸気 1 2 3を用いた蒸気夕一ビ ン 1 2 5によって駆動される。 また、 蒸気夕一ビン 1 2 5からでた低圧 蒸気 1 2 4を、 水素製造工程における炭酸ガス吸収装置 1 4 7や変成反 応装置 1 4 2に供して、 熱エネルギーを有効活用することが出来る。 水素製造工程 1 4 0は生成ガス中の硫黄分を除去する脱硫反応装置 1 4 1、 生成ガス中の一酸化炭素と水を反応させて水素と二酸化炭素に変 成する変成反応装置 1 4 2、 変成後のガス中の炭酸ガスを吸収除去する 炭酸ガス吸収装置 1 4 7、 炭酸ガス吸収後ガス 1 8 8に残る一酸化炭素 を除去する C 0除去装置 1 5 0から構成され、 生成ガスはそれぞれの装 置で順次処理され、 高濃度水素ガス 6 9が得られる。 なお、 C O除去装 置 1 5 0にはガス中の一酸化炭素を選択的に燃焼させる選択酸化装置、 もしくはガス中の一酸化炭素、 二酸化炭素を水素と反応させてメタンを 生成するメタン化反応装置、 も しく は一酸化炭素、 二酸化炭素、 窒素な ど水素以外のガス成分を活性炭ゃゼォライ ト等吸着材に吸着分離する水 素精製用 P S A (圧力スイ ングガス吸着装置) が用いられる。
燃料電池発電工程 1 6 0では、 高濃度水素ガス 6 9を燃料電池の水素 極に、 空気 5 3を夕一ボチャージャ 1 6 4によ り昇圧して燃料電池の酸 素極に供給して発電する。 用いる燃料電池は、 水素を燃料とできる燃料 電池ならばよく、 固体高分子型、 リ ン酸型、 溶融炭酸塩型、 固体電解質 型のいずれでもよい。
水素極オフガス 1 6 1、 酸素極オフガス 1 6 2は共にオフガスパーナ 1 6 3に導かれ、 燃焼される。 オフガスパーナ 1 6 3の燃焼排ガス 1 6 5はターボチャージャ 1 6 4に供給されて、 燃料電池の酸素極に供給す る空気 5 3を昇圧し、 その後、 第 2再生器 Cの再生ガスとして用いられ、 二酸化炭素を多く含んだ湿潤なガス 3 6 c となる。
図 1 7は図 1 6における実施例のガス化工程の主要構成機器の典型的 な形状を示したものである。 低温ガス化炉 2 0 2は内部旋回流を有する 円筒形流動床炉であり、 原料の炉内拡散性を高めて安定したガス化を行 わせている。 炉内中央の流動媒体が沈降している部分には酸素を含まな いガスを供給し、 炉内周辺部にのみ酸素を供給することで、 低温ガス化 炉内で発生したチヤ一の選択燃焼が可能になり、 炭素転換率、 冷ガス効 率の向上に寄与する。 また高温ガス化炉 2 1 5は旋回型溶融炉である。
円筒形流動床炉の炉床には、 円錐状の分散板 2 0 6が配置されている。 分散板 2 0 6を介し供給される流動化ガスは、 炉底中央部 3 0 4付近か ら炉内へ上向き流として供給される中央流動化ガス 3 0 7及び炉底周辺 部 3 0 3から炉内へ上向き流として供給される周辺流動化ガス 3 0 8か らなる。
中央流動化ガス 3 0 7は酸素を含まないガスからなり、 周辺流動化ガ ス 3 0 8は酸素を含むガスからなっている。 流動化ガス全体の酸素量が. 可燃物の燃焼に必要な理論燃焼酸素量の 1 0 %以上 3 0 %以下とされ、 炉内は、 還元雰囲気とされる。
中央流動化ガス 3 0 7の質量速度は、 周辺流動化ガス 3 0 8の質量速 度より小にされ、 炉内周辺部上方における流動化ガスの上向き流がデフ レク夕 3 0 6により炉の中央部へ向かうように転向される。 それによつ て、 炉の中央部に流動媒体 (硅砂を使用) が沈降拡散する移動層 3 0 9 が形成されるとともに炉内周辺部に流動媒体が活発に流動化している流 動層 3 1 0が形成される。 流動媒体は、 矢印 2 1 8で示すように、 炉周 辺部の流動層 3 1 0を上昇し、 次にデフレクタ 3 0 6によ り転向され、 移動層 3 0 9の上方へ流入し、 移動層 3 0 9中を下降し、 次に矢印 2 1 2で示すように、 分散板 2 0 6に沿って移動し、 流動層 3 1 0の下方へ 流入することにより、 流動層 3 1 0 と移動層 3 0 9の中を矢印 2 1 8お よび 2 1 2で示すように循環する。
原料フィーダ 2 0 1によって移動層 3 0 9の上部へ供給された可燃物 1は、 流動媒体とともに移動層 3 0 9中を下降する間に、 流動媒体のも つ熱により加熱され、 主として揮発分がガス化される。 移動層 3 0 9に は、 酸素がないか少ないため、 ガス化された揮発分からなる熱分解ガス (生成ガス) は燃焼されないで、 移動層 3 0 9 中を矢印 2 1 6のように 抜ける。 それ故、 移動層 3 0 9は、 ガス化ゾーン Gを形成する。 フ リー ボ一 ド 2 0 7へ移動した生成ガスは、 矢印 2 2 0で示すように上昇し、 フ リーボード 2 0 7を経てガス出口 2 0 8から生成ガス gとして排出さ れる。 移動層 3 0 9でガス化されない、 主としてチヤ一 (固定炭素分) や夕 —ルは、 移動層 3 0 9の下部から、 流動媒体とともに矢印 2 1 2で示す ように炉内周辺部の流動層 3 1 0の下部へ移動し、 比較的酸素含有量の 多い周辺流動化ガス 3 0 8により燃焼され、 部分酸化される。 流動層 3 1 0は、 可燃物の酸化ゾーン Sを形成する。 流動層 3 1 0内において、 流動媒体は、 流動層内の燃焼熱によ り加熱され高温となる。 高温になつ た流動媒体は、 矢印 2 1 8で示すように、 傾斜壁 (デフ レクタ) 3 0 6 によ り反転され、 移動層 3 0 9へ移り、 再びガス化の熱源となる。 流動 層の温度は、 4 0 0〜 1 0 0 0 °C、 好ましくは 4 0 0〜 6 0 0 °Cに維持 され、 抑制された燃焼反応が継続するようにされる。 流動層ガス化炉の 底部外周側の部分には、 不燃物を排出するためのリ ング状の不燃物排出 口 3 0 5が形成されている。
図 1 7に示す流動層ガス化炉によれば、 流動層炉内にガス化ゾーン G と酸化ゾーン Sが形成され、 流動媒体が両ゾーンにおいて熱伝達媒体と なることによ り、 ガス化ゾーン Gにおいて、 発熱量の高い良質の可燃ガ スが生成され、 酸化ゾーン Sにおいては、 ガス化困難なチヤ一やタール を効率よく燃焼させることができる。 それ故、 廃棄物等の可燃物のガス 化効率を向上させることができ、 良質の生成ガスを生成することができ る。 なお、 低温ガス化炉には円筒形流動床炉に限ることなく、 前の実施 例と同様、 キルンゃス トーカー方式の炉を採用しても良い。
次に、 旋回型溶融炉を説明する。 高温ガス化炉 2 1 5 としての旋回型 溶融炉は垂直の軸線を有する円筒形の 1次ガス化室 2 1 5 a、 および水 平からわずかに下向きに傾斜した 2次ガス化室 2 1 5 b、 およびその下 流に配され、 ほぼ垂直の軸線を有する 3次ガス化室 2 1 5 cによって構 成されている。 2次ガス化室 2 1 5 bと 3次ガス化室 2 1 5 cの間にス ラグ排出口 2 4 2 を有し、 ここで大部分の灰分はスラグ化して排出され る。 旋回型溶融炉に供給される生成ガスは 1次ガス化室 2 1 5 a内で旋 回流を生じるよう、 接線方向に供給される。 流入した生成ガスは旋回流 を形成し、 ガス中の固形分は遠心力によって周辺の壁面に捕捉されるの でスラグ化率、 スラグ捕集率が高く、 スラグミス トの飛散が少ないのが 特長である。
旋回型溶融炉内には炉内を適正な温度分布に保つよう、 複数のノズル
2 3 4から酸素が供給される。 1次ガス化室 2 1 5 a、 2次ガス化室 2 1 5 bまでで完全に炭化水素の分解と灰のスラグ化を完了させるように 温度分布を調整する。 酸素の単独供給はノズルの焼損等を引き起こす恐 れがあるので、 必要に応じて蒸気等で希釈して供給される。 また、 蒸気 は蒸気改質による炭化水素の低分子化に寄与するので不足しないように 供給しなければならない。 なぜなら、 炉内は高温であり、 水蒸気が不足 すると縮合重合反応によ り反応性の著しく劣るグラフアイ トが生成され、 未燃損失の原因となるからである。
スラグは 2次ガス化室 2 1 5 bの下面を流下し、 スラグ排出口 2 4 2 から溶融スラグ 2 2 6 として排出される。 3次ガス化室 2 1 5 cはその 下流に設けられた排熱ボイラからの輻射冷却によってスラグ排出口 2 4 2が冷却されないようにするための干渉ゾーンの役割を果たすと共に、 未分解ガスの低分子化を完了させる目的で設けられている。 3次ガス化 室 2 1 5 cの上端には生成ガスを排気する排気口 2 4 4が設けられ、 ま た下部には輻射板 2 4 8が設けられている。 輻射板 2 4 8は輻射により 排気口 2 4 4から失われる熱量を減少させる機能を有する。 なお符号 2
3 2は始動パーナ、 符号 2 3 6は助燃パーナである。 生成ガス中の有機 物、 炭化水素は高温ガス化炉内で完全に水素、 一酸化炭素、 水蒸気、 二 酸化炭素にまで分解される。 高温ガス化炉 2 1 5で得られた生成ガスは 排気口 2 4 4から排出され、 その後、 輻射ボイラからなる排熱ボイラ
(図示せず) で 6 5 0 °C以下にまで冷却され、 溶融アル力リ金属塩類を 凝固させ、 この溶融アルカ リ金属塩類を集塵装置 (図示せず) で捕集す る。 なお、 高温ガス化炉は本旋回溶融炉に限られず、 他の型式のガス化 炉であってもよい。
図 1 8は図 1 6における原料フィーダの構成図である。 以下原料フィ —ダの詳細な説明をする。 原料フィーダ 1 1 5の外部ケ一シングは、 原 料ホッパ部 4 0 1 と、 先端に行くに従って直径が小さ くなるテ一パ状の ケ一シング 4 0 2 と、 その下流に設けられた複数の開口部 4 3 0を有す るテ一パ形状の穴明きケ一シング 4 0 3 と、 出口 4 5 0を含む先端ケー シング 4 0 4より形成されている。 ケ一シング内部にはテ一パ形状のケ 一シングに合わせて先端に行くほど直径が小さ くなるスク リュウ軸 4 1 0が設けられている。 原料となる可燃物 1は、 原料ホッパ部 4 0 1 に供 給され、 スク リュウ軸 4 1 0の回転によりスク リユウ軸先端へと搬送さ れると共に、 スク リュウ軸 4 1 0及びケ一シング 4 0 2のテ一パ形状に より圧縮される。 圧縮された可燃物からは水分が圧搾されるとともに、 原料に混入した気体が脱気され、 ケーシング 4 0 3に設けられた複数の 開口 4 3 0から機外へ排出される。 開口の大きさは可燃物が出てこない 大きさで最大径で 1 0 m m程度である。 圧搾されて含水率が低下した可 燃物は出口 4 5 0から低温ガス化炉 1 1 2へと供給される。
原料フィーダ 1 1 5のケ一シング 4 0 1、 4 0 2、 4 0 3の内部では、 可燃物が圧縮されており、 機内圧が上昇しているので、 外部から空気等 が漏れ込むことはない。 また圧搾により可燃物の含水率が低下するので 低温ガス化炉内での蒸発潜熱による熱損失が少なくなり、 その分、 酸素 比も低下するので、 冷ガス効率が高くなる。 また圧縮された可燃物は密 度も比較的均一になり、 供給量の変動も少なくなるので、 都巿ゴミ等の 不定形可燃物を原料とする場合の原料フィーダとして非常に好ましい装 置である。
なお図示はしないが、 ケーシング 4 0 2の周囲にケーシング 4 0 2 と の間に間隙を持つように別ケーシングを設け、 該間隙に加熱流体を流し、 原料 1 を加熱し圧搾脱水をより効果的に行わせることもできる。 この際 の加熱流体は、 図 1 6における廃熱ボイラ 1 2 2からの蒸気やオフガス パーナ 1 6 3からの燃焼ガス等の一部を用いることができる。
また図 1 9に示すように、 ケ一シング 4 0 2の周囲にケーシング 4 0 2 との間に間隙 4 2 3を持つように加熱用カバーケーシング 4 2 1 を設 け、 該間隙に加熱流体 4 2 5を導入し、 原料 1 を加熱により乾燥脱水さ せると共に圧搾脱水及び脱気を行い、 より効果的に原料の脱水を行わせ ることもできる。 即ち、 廃熱ボイラにより得られる熱、 燃料電池の水素 極 (アノード) から排出される水素を燃焼することによって得られる熱 や、 燃料電池スタックからの放熱による熱、 も しくは燃料電池の水素極 や酸素極のオフガスそのものの持つ熱等を用いて原料を加熱し乾燥する ものである。 この際の具体的な加熱流体としては、 図 1 6における廃熱 ボイラ 1 2 2からの蒸気や、 燃料電池の水素極から排出される水素を燃 焼するオフガスバ一ナ 1 6 3からの燃焼ガス等を用いることができるが、 該蒸気ゃ該燃焼ガスを、 蒸気夕一ビンやターボチャージャで動力回収し た後に原料の加熱流体として用いることで、 熱効率を更に高めることが できる。 なお、 燃料電池水素極から排出される水素の燃焼には燃料電池 酸素極 (力ソー ド) のオフガス又は空気を用いることができる。
もちろん、 原料の加熱による乾燥脱水は、 廃熱ボイラにより得られる 熱、 燃料電池の水素極から排出される水素を燃焼することによって得ら れる熱や、 燃料電池スタ ックからの放熱による熱、 も しくは燃料電池の 水素極や酸素極のオフガスそのものの持つ熱を、 原料フィーダのケーシ ング部に加熱流体として導入することのみにとどまらず、 これらの熱を 既存の原料乾燥装置の加熱源として用いることでも可能である。 即ち、 水分の多い都巿ゴミ等の原料を、 図 1 8、 図 1 9に示すような圧搾式原 料フィーダを用いるかどうかを問わず、 原料フィーダに供給する前に既 存の原料乾燥装置にて、 廃熱ボイラにより得られる熱、 燃料電池の水素 極から排出される水素を燃焼することによって得られる熱や、 燃料電池 スタ ックからの放熱による熱、 もしくは燃料電池の水素極や酸素極のォ フガスそのものの持つ熱を用いて乾燥した後、 原料フィーダに供給する ことでも、 上記原料の脱水という目的は達成される。
図 2 0は可燃物、 即ち可燃性廃棄物 (都市ゴミ、 固形化燃料、 スラ リ —化燃料、 古紙、 廃プラスチック、 廃 F R P、 バイオマス廃棄物、 自動 車廃棄物、 廃木材等の産業廃棄物、 低品位石炭、 廃油等) や石炭等をガ ス化し、 得られたガスを処理して、 燃料電池に供給する可燃物のガス化 発電システムに本発明の酸性ガス除去装置を用いた場合のもう一つの実 施例を示す機器構成図である。 本実施例では酸性ガス洗浄装置として基 本的に図 1 4に示す 2段洗浄 2段再生の実施形態を用いるが、 第 2再生 器 Cで再生された第 2洗浄液 8 2 cを水素製造工程 1 4 0の炭酸ガス吸 収装置 1 4 7の炭酸ガス吸収液として炭酸吸収塔 1 8 1 に導き、 変成反 応後ガス 1 4 3より炭酸ガスを吸収分離してから酸性ガス吸収装置の第 2ガス洗浄部 A 2に送ることが特徴である。 本実施例では、 水素製造工 程 1 4 0の炭酸ガス吸収装置 1 4 7に本来必要の吸収液再生装置を不要 にできるだけでなく、 かかる再生熱が大幅に少なくなるので熱交率が改 善する。
即ち、 原料フィーダ 1 1 5から可燃物である原料 1 を低温ガス化炉 1 1 2に供給し、 4 0 0〜 1 0 0 0 °Cの温度域で熱分解 · ガス化して得ら れた生成ガスは、 そのまま高温ガス化炉 1 1 4に送られ、 原料中の不燃 物は低温ガス化炉 1 1 2から別途取り出される。 生成ガスは高温ガス化 炉 1 1 4において 1 0 0 0〜 1 5 0 0 °Cの温度域で更にガス化され、 低 分子化される。 高温ガス化炉 1 1 4の温度は、 生成ガス中に含まれる灰 分が溶融する温度以上に維持され、 生成ガス中の 8 0〜 9 0 %の灰分は スラグ化され、 溶融スラグ 1 2 7 として系外に排出される。 生成ガス中 の有機物、 炭化水素は高温ガス化炉内で完全に水素、 一酸化炭素、 水蒸 気、 二酸化炭素にまで分解される。 高温ガス化炉 1 1 4で得られた生成 ガスは、 その後、 高温熱交換器 1 2 1 と廃熱ボイラ 1 2 2で顕熱を回収 され 2 0 0 °C、 好ましくは 3 5 0 °C、 更に好ましくは 5 0 0度にまで減 温される。 回収された顕熱は蒸気の発生やガス化剤の加熱等に用いられ る。
ここで、 都巿ゴミ等の不定形可燃物を原料とする場合は、 原料フィー ダからの空気の漏れ込みを防止するために前述した図 1 8に示すような 原料フィーダを採用するのがよい。 この際、 該原料フィーダで原料を圧 搾した際に生ずる圧搾水は廃熱ボイラ 1 2 2に供給し、 高温の生成ガス に混入することによって蒸発 · 分解される。
廃熱ボイラで顕熱を回収された生成ガス即ち被洗浄ガス 3 0は、 本発 明の第 1ガス洗浄器 A ' に導かれ、 第 1洗浄液 8 2 bと対向流で接触し、 被洗浄ガス 3 0が第 1洗浄液 8 2 bによって冷却されると共に被洗浄ガ ス 3 0中の塩化水素等の強酸性ガスが第 1洗浄液 8 2 b中に吸収され、 被洗浄ガス中のダス ト成分も第 1洗浄液 8 2 bに取り込まれる。 次いで、 第 1ガス洗浄部 A ' から第 2ガス洗浄部 A 2に導かれた被洗浄ガスと第 2洗浄液 8 2 c とが対向流で接触し被洗浄ガスが第 2洗浄液 8 2 cによ つてさらに冷却され過飽和状態の水蒸気が凝縮すると共に、 被洗浄ガス 中の炭酸ガスと硫化水素等の弱酸性ガスが第 2洗浄液 8 2 cに吸収され る。 これによ り、 第 2ガス洗浄部 A 2から得られた洗浄後ガス 3 1はァ ルカ リ溶液への溶解度が小さい一酸化炭素、 水素、 飽和状態の水蒸気、 そしてアルカ リ溶液中に溶け込みきれなかった炭酸ガスを主成分とした 清浄なガスになる。
一方、 塩化水素等の強酸性ガスを吸収し、 そして温度が上昇した第 1 洗浄液 8 2 bは気液分離器 3 aを経て第 1再生器 Bに送られ、 第 1再生 器 B内で被洗浄ガスとは成分の異なりかつ酸素を含む第 1再生用ガス即 ちガス化剤ガス 5 0、 例えば酸素濃度が 8 0 %以上、 好ましくは 9 0 % 以上、 更に好ましくは 9 3 %以上の酸素を含む高濃度酸素ガス、 も しく は純酸素ガスと接触し、 第 1再生器 B内の温度における飽和水蒸気圧ま で蒸気を発生する。
例えば、 第 1再生器 Bが大気圧 (約 0 . l M P a ( l b a r ) ) 、 8 0 °Cで運転された場合、 第 1再生器から排出される第 1再生器オフガス 3 6 bには 4 7 %の水蒸気が同伴する。 同時に、 第 1洗浄液 8 2 bは蒸 発潜熱を奪われ冷却される。 もちろん第 1再生用ガス 3 5 bが第 1再生 器 B内の飽和水蒸気圧以上の水蒸気を同伴しているような場合は、 再生 器での水分蒸発はなく、 第 1再生器 Bでの第 1洗浄液冷却は行われない c 従って、 第 1再生用ガス 3 5 bとしては含有水蒸気が少ないほど、 即ち 露点が低いほど好ましい。
また、 第 1洗浄液 8 2 bは第 1ガス洗浄部 A ' にて強酸性ガスを吸収 するので p Hが低下し、 そして、 第 1再生器 Bにて水分が蒸発するので、 第 1アルカリ剤と水を補給する必要がある。 さらに、 被洗浄ガスにダス トが含まれていて該ダス 卜が第 1洗浄液 8 2 bに取込まれた場合は第 1 洗浄液 8 2 bからダス トを固液分離することが必要である。 本発明では 第 1洗浄液の循環経路に薬剤添加装置と濾過装置とをそれぞれ設け、 第 1アルカリ剤と該アルカ リ剤希釈水としての水を添加して第 1洗浄液 8 2 bを p H調整し、 そして第 1洗浄液 8 2 bの全部又は 1部を常時濾過 して固形分を除去する。 用いるアルカリ剤としてアルカ リ性物質であれ ば何でもよいが、 水酸化ナ ト リゥム又は水酸化力 リ ゥムが好適である。 調整する第 1洗浄液 8 2 bの p H、 即ち第 1ガス洗浄部 A ' 入口におけ る第 1洗浄液 8 2 13の 11は 11 4以上であれば塩化水素ガスを吸収す る能力をもつのでよいが、 p H 1 1以上になると強酸性ガスの他に炭酸 ガスをも吸収するようになるので第 1アル力リ剤消費量が増大し好まし くない。 従って第 1ガス洗浄部 A ' 入口における第 1洗浄液 8 2 bの p Hは p H 4〜 1 1の範囲が好ましく、 さらに p H 5〜 1 0の範囲がより 好ましい。 なお、 第 1アルカリ剤と前記強酸性ガスが中和反応して生成 した塩類が第 1洗浄液 8 2 bに徐々に蓄積するが、 塩類の過度濃縮によ る弊害を防止するために第 1洗浄液の一部を常時ブローする必要がある 一方、 飽和状態の水蒸気を同伴した第 1再生器オフガス 3 6 bは、 高 温熱交換器 1 2 1にて昇温され、 ガス化炉にガス化剤及び部分酸化のた めの酸化剤として供給される。
第 1洗浄液 8 2 bの温度については、 第 1ガス洗浄部の洗浄液出口で の第 1洗浄液温度 T l o u tが沸点以下 2 0 °C以内であればよく、 沸点 以下 1 0 °C以内であればなお好ましく、 沸点以下 5 °C以内であればさら に好ましい。 また、 第 1ガス洗浄部 A ' の洗浄液入口での第 1洗浄液温 度 T 1 i nが前記第 1ガス洗浄部 A ' の洗浄液出口での第 1洗浄液温度 T 1 o u t以下 2 0 °C以内であればよいが、 被洗浄ガス中の水蒸気の飽 和温度以下 5 °C以内であればなお好ましい。
なお、 第 1洗浄液 8 2 bの循流量は前記第 1 ガス洗浄部 A ' の洗浄液 の出口及び入口での第 1洗浄液温度を満足するように、 被洗浄ガスの流 量、 温度及び比熱より決定すればよい。
第 1再生器 Bから引抜かれた第 1洗浄液 8 2 bは気液分離器 3 bを経 て第 1 ガス洗浄部 A ' に返送される。
また、 硫化水素等の弱酸性ガス及び炭酸ガスを吸収し、 そして水蒸気 が凝縮して温度が上昇した第 2洗浄液 8 2 cは第 2再生器 Cに送られ、 第 2再生器 C内で被洗浄ガスとは成分の異なる第 2再生用ガス 3 5 c、 例えばターボチャージャ 1 6 4を出た燃料電池発電工程の燃焼排ガス 1 6 6 と接触し、 第 2再生器 C内の温度における飽和水蒸気圧まで蒸気を 発生すると共に、 脱炭酸しアルカ リ再生が行われる。
また、 本実施例では水素製造工程 1 4 0の炭酸ガス吸収装置 1 4 7に おける炭酸ガスの吸収分離を完全にするのが好ましいが、 例えば炭酸吸 収後ガス 1 8 8の残留炭酸濃度を 1 %以下、 望ましくは 0 . 5 %以下に するためには、 第 2再生器 Cにおける第 2洗浄液の再生をより完全にす る必要がある。 本実施例ではリボイラ 8 4を設け、 蒸気タービン 1 2 5 を出た低圧蒸気 1 2 4を用いて第 2洗浄液 8 2 cをさらに加熱して再生 を促進することができる。 当然のことながら前記燃焼排ガス 1 6 6を用 いずに低圧蒸気 1 2 4だけで第 2洗浄液 8 2 cの再生を行うこともでき る。 なお、 リボイラ 8 4を出た復水 1 2 4 aは廃熱ボイラ 1 2 2に返送 される。
本発明では用いる第 2のアル力 リ剤が無機系アル力リ剤と有機系アル 力リ剤のいずれでもよいが、 炭酸ガスに対する吸収能力が強いアルカノ —ルァミ ン吸収液がなお好適であり、 具体的な吸収剤としてモノエタノ ールァミ ン (MEA) 、 ジェタノ一ルァミ ン (D EA) 、 メチルジェ夕 ノールァミ ン (MD EA) などが挙げられる。 アルカノ一ルァミ ン吸収 液による吸収反応を下記に記す。 なお該吸収液の再生反応は下記反応の 逆反応である。
R— N H 2+ H 20 + C 02 → R - N H 3H C 03 ( 1 3 ) 一方、 脱離した炭酸ガス及び飽和状態の水蒸気を同伴した第 2再生器 オフガス 3 6 cは、 凝縮器 80 c及び凝縮水分離器 8 1 cを経て排出さ れる。 なお、 凝縮水分離器 8 1 cで回収された凝縮水は第 2洗浄液 82 cの希釈水又は第 1アル力リ剤の希釈水又は第 1洗浄液 82 bの希釈水 として系内に戻すことができる。
第 2洗浄液 8 2 cの温度については、 第 2ガス洗浄部 A 2の洗浄液出 口での第 2洗浄液温度 T 2 o u tが前記第 1ガス洗浄部 A' の洗浄液入 口での第 1洗浄液温度 T 1 i n以下 20 °C以内、 好ましくは第 1ガス洗 浄部 A' の洗浄液入口での第 1洗浄液温度 T 1 i n以下 10°C以内であ るのがよい。 また、 第 2ガス洗浄部 A 2の洗浄液入口での第 2洗浄液温 度 T 2 i nが前記第 2ガス洗浄部 A 2の洗浄液出口での第 2洗浄液温度 T 2 o u tよ り 5 °C以上、 好ましくは 1 0 °C以上、 更に好ましくは 20 °C以上低い温度であるのがよい。
なお、 第 2洗浄液 82 cの循環流量は前記第 2ガス洗浄部 A 2の洗浄 液の出口及び入口での第 2洗浄液温度を満足するように、 被洗浄ガスの 流量、 温度及び比熱より決定すればよい。
第 2再生器 Cから引抜かれた第 2洗浄液 8 2 cは水素製造工程 1 40 の炭酸ガス吸収装置 14 7に送られる。
一方、 洗浄 · 冷却された洗浄後ガス 3 1は、 ガス圧縮機 1 3 5で 20 0〜 8 0 0 k P aに昇圧されて水素製造工程 1 4 0に供給される。 ガス 圧縮機 1 3 5は、 廃熱ボイラ 1 2 2からの高圧蒸気 1 2 3を用いた蒸気 タービン 1 2 5によって駆動される。 また、 蒸気夕一ビン 1 2 5から出 た低圧蒸気 1 2 4を前述のように、 リボイラ 8 4に送り第 2洗浄液 8 2 cの再生熱源として利用することが出来る。
水素製造工程 1 4 0は生成ガス中の硫黄分を除去する脱硫反応装置 1 4 1、 生成ガス中の一酸化炭素と水を反応させて水素と二酸化炭素に変 成する変成反応装置 1 4 2、 変成後のガス中の炭酸ガスを吸収除去する 炭酸ガス吸収装置 1 4 7、 炭酸ガス吸収後ガス 1 8 8に残る一酸化炭素 を除去する C 0除去装置 1 5 0から構成され、 生成ガスはそれぞれの装 置で順次処理され、 高濃度水素ガス 6 9が得られる。 なお、 C O除去装 置 1 5 0にはガス中の一酸化炭素を選択的に燃焼させる選択酸化装置、 もしくはガス中の一酸化炭素、 二酸化炭素を水素と反応させてメタンを 生成するメタン化反応装置、 もしくは一酸化炭素、 二酸化炭素や窒素な ど水素以外のガス成分を活性炭ゃゼォライ ト等吸着材に吸着分離する水 素精製用 P S A (圧力スイングガス吸着装置) が用いられる。
本実施例の炭酸ガス吸収装置 1 4 7では炭酸ガス吸収塔 1 8 1 と送液 ポンプ 1 8 2 と熱交換器 1 8 3 と冷却器 1 8 4 とが設けられており、 前 記酸性ガス洗浄装置の第 2再生器 Cで再生された第 2洗浄液 8 2 cが熱 交換器 1 8 3 と冷却器 1 8 4を経て炭酸吸収塔 1 8 1の上部に導入され、 該吸収塔の下部より導入された変成後ガス 1 4 3 と向流接触して炭酸ガ スを吸収した後に、 底部から送液ポンプ 1 8 2により熱交換器 1 8 3を 経て前記第 2ガス洗浄部 A 2に返送される。 なお、 前記第 2洗浄液 8 2 cを冷却器 1 8 4により炭酸吸収に適した温度、 好ましくは 4 0〜 7 0 °Cに冷却してから吸収塔 1 8 1に導入する。 用いる冷却器 1 8 4の冷却 方式は水冷と空冷のいずれでもよい。 また、 炭酸ガス吸収装置 1 4 7を 出た第 2洗浄液 8 2 cを前記第 2ガス洗浄部 A 2の入口温度 T 2 i nに 調節してから該洗浄部に導入することができる。
また、 炭酸ガス吸収装置 1 4 7での炭酸吸収負荷が比較的少なく、 つ ま り炭酸吸収塔 1 8 1 に供給すべき第 2吸収液の流量が第 2ガス洗浄部 A 2に供給する第 2洗浄液の流量よ りも明らかに少ない場合は、 前記第 2再生器 Cを出た第 2洗浄液 8 2 cを分岐し、 一部を前記炭酸ガス吸収 装置 1 4 7に送り、 残りを直接に又は温度調節のための冷却器を経由し て前記第 2ガス洗浄部 A 2に返送することもできる。 この場合、 炭酸ガ ス吸収装置 1 4 7を出た第 2吸収液 8 2 cを第 2ガス洗浄部 A 2に送る か、 又は第 2再生器 Cに返送することができる。
燃料電池発電工程 1 6 0では、 高濃度水素ガス 6 9を燃料電池の水素 極に、 空気 5 3を夕一ボチヤ一ジャ 1 6 4によ り昇圧して燃料電池の酸 素極に供給して発電する。 用いる燃料電池は、 水素を燃料とできる燃料 電池ならばよく、 固体高分子型、 リ ン酸型、 溶融炭酸塩型、 固体電解質 型のいずれでもよい。
水素極オフガス 1 6 1、 酸素極オフガス 1 6 2は共にオフガスパーナ 1 6 3に導かれ、 燃焼される。 オフガスパーナ 1 6 3の燃焼排ガス 1 6 5はターボチャージャ 1 6 4に供給されて、 燃料電池の酸素極に供給す る空気 5 3を昇圧し、 その後、 第 2再生器 Cの再生ガスとして用いられ る。 また、 第 2再生器 Cでの再生が前記低圧蒸気 1 2 4だけで行われる 場合は前記燃焼排ガス 1 6 6が水蒸気及び熱回収後に系外へ排出される c 以上説明したように、 本発明の酸性ガス洗浄装置及び方法によれば、 湿式スクラバの低温排熱を有効に利用して、 水蒸気を発生させることと 炭酸ガスを吸収分離することによって、 エネルギー効率を高めるだけで なく、 湿式スクラバの酸性ガス除去性能を飛躍的に向上させることがで きる。 また本発明によれば、 上述の利点を有した上記酸性ガス洗浄装置 とガス化装置とを組み合わせた可燃物のガス化システムおよび上記酸性 ガス洗浄装置と焼却装置とを組み合わせた可燃物の焼却システムを構築 することができる。 さらに可燃物のガス化システムと燃料電池とを組み 合わせた可燃物のガス化燃料電池発電システムを構築することができる, 産業上の利用可能性
本発明は、 炭酸ガスを含む被洗浄ガスをアル力 リ剤を含むガス洗浄液 と接触させて被洗浄ガスを冷却すると共に被洗浄ガス中の酸性ガスを除 去する酸性ガス洗浄装置及び方法に関するものであり、 酸性ガス洗浄装 置とガス化装置とを組み合わせた可燃物のガス化システムおよび酸性ガ ス洗浄装置と焼却装置とを組み合わせた可燃物の焼却システム、 さらに 可燃物のガス化システムと燃料電池とを組み合わせた可燃物のガス化燃 料電池発電システムに好適に利用可能である。

Claims

請求の範囲
1 . 炭酸ガスを含む被洗浄ガスをアル力 リ剤を含むガス洗浄液と接触さ せて該被洗浄ガス中の酸性ガスを除去する方法であって、
前記ガス洗浄液を前記被洗浄ガスとは成分の異なる再生用ガスと接触 させることによって再生し、 再生したガス洗浄液を前記炭酸ガスを含む 被洗浄ガスの洗浄液として用いることを特徴とする酸性ガス洗浄方法。
2 . 炭酸ガスを含む被洗浄ガスをアル力リ剤を含むガス洗浄液と接触さ せて該被洗浄ガス中の酸性ガスを除去する方法であって、
前記ガス洗浄液を前記被洗浄ガスとは成分の異なる再生用ガスと接触 させることによって再生した後、 該再生用ガスと同じかまたは成分の異 なる第 2の再生用ガスと接触させることによって再生し、 再生したガス 洗浄液を前記炭酸ガスを含む被洗浄ガスの洗浄液として用いることを特 徴とする酸性ガス洗浄方法。
3 . 塩化水素等の強酸性ガスと、 硫化水素や炭酸ガス等の弱酸性ガスと を含む被洗浄ガスをアル力リ剤を含むガス洗浄液と接触させて該被洗浄 ガス中の酸性ガスを除去する方法であって、
前記被洗浄ガスを第 1のアル力リ剤を含む第 1ガス洗浄液と接触させ て被洗浄ガス中の強酸性ガスを除去した後、 第 2のアルカ リ剤を含む第 2ガス洗浄液と接触させて被洗浄ガス中の炭酸ガス及び弱酸性ガスを除 去する一方、 第 1ガス洗浄液及び第 2ガス洗浄液をそれぞれ前記被洗浄 ガスとは成分の異なる第 1の再生用ガス及び第 2の再生用ガスと接触さ せることによって再生し、 再生した第 1ガス洗浄液及び第 2ガス洗浄液 を前記被洗浄ガスの洗浄液として用いることを特徴とする酸性ガス洗浄 方法。
4 . 前記被洗浄ガスは可燃物をガス化工程でガス化したガスであること を特徴とする請求項 1乃至 3のいずれか 1項に記載の酸性ガス洗浄方法
5 . 前記被洗浄ガスは洗浄された後、 水素製造工程に供給されることを 特徴とする請求項 1乃至 4のいずれか 1項に記載の酸性ガス洗浄方法。
6 . 前記被洗浄ガスは洗浄された後、 水素製造工程を経て燃料電池に燃 料として供給されることを特徴とする請求項 1乃至 5のいずれか 1項に 記載の酸性ガス洗浄方法。
7 . 前記被洗浄ガスは可燃物を焼却したガスであることを特徴とする請 求項 1乃至 3のいずれか 1項に記載の酸性ガス洗浄方法。
8 . 炭酸ガスを含む被洗浄ガスとアルカリ剤を含むガス洗浄液とを接触 させて被洗浄ガス中の酸性ガスを除去するガス洗浄器と、 ガス洗浄液お よび被洗浄ガスとは成分の異なる再生用ガスを接触させることによって ガス洗浄液を再生および冷却する洗浄液再生器と、 前記ガス洗浄器と洗 浄液再生器との間に配置され洗浄液を循環させる循環手段とを備えたこ とを特徴とする酸性ガス洗浄装置。
9 . 炭酸ガスを含む被洗浄ガスとアル力リ剤を含むガス洗浄液とを接触 させて被洗浄ガス中の酸性ガスを除去するガス洗浄器と、 ガス洗浄液お よび被洗浄ガスとは成分の異なる第 1の再生用ガスを接触させることに よってガス洗浄液を再生および冷却する第 1の洗浄液再生器と、 更に第 1の洗浄液再生器から排出されたガス洗浄液を、 第 1の再生用ガスと同 じかまたは成分の異なる第 2の再生用ガスと接触させることによってガ ス洗浄液を再生および冷却する第 2の洗浄液再生器と、 前記ガス洗浄器 と第 2の再生器との間に配置され洗浄液を循環させる循環手段とを備え たことを特徴とする酸性ガス洗浄装置。
1 0 . 炭酸ガスを含む被洗浄ガスとアル力リ剤を含むガス洗浄液とを接 触させて被洗浄ガス中の酸性ガスを除去するガス洗浄器と、 ガス洗浄液 および被洗浄ガスとは成分の異なる複数の種類の再生用ガスを接触させ ることによってガス洗浄液を再生および冷却する 3段以上の洗浄液再生 器とを備え、 最終段の再生器から前記ガス洗浄器へと洗浄液を返送する 目的で最終段の再生器とガス洗浄器との間に配置され、 洗浄液を循環さ せる循環手段を備えたことを特徴とする酸性ガス洗浄装置。
1 1 . ガス洗浄液に同伴する被洗浄ガス成分を分離するために、 ガス洗 浄器と洗浄液再生器の間に気液分離器を設け、 ガス洗浄器から流入した ガス洗浄液を、 気液分離した後に洗浄液再生器へ流入させることを特徴 とする請求項 8又は 9又は 1 0に記載の酸性ガス洗浄装置。
1 2 . 洗浄液の再生用ガスとして、 空気等の酸素含有ガスまたは純酸素 を用いることを特徴とする請求項 8乃至 1 1のいずれか 1項に記載の酸 性ガス洗浄装置。
1 3 . ガス洗浄液に同伴するガス成分を分離するために、 洗浄液再生器 の洗浄液流路の下流に気液分離器を設け、 洗浄液再生器から流入したガ ス洗浄液を気液分離し、 同伴するガス成分を除去した後に更に下流の再 生器もしくはガス洗浄器へ流入させることを特徴とする請求項 1 2に記 載の酸性ガス洗浄装置。
1 4 . ガス洗浄器内の気相の圧力が 8 0 k P a以上 l l O k P a以下、 洗浄液再生器の気相の圧力が 1 1 0 k P a以上 2 0 0 k P a以下で運転 することを特徴とする請求項 8乃至 1 3のいずれか 1項に記載の酸性ガ ス洗浄装置。
1 5 . 循環する洗浄液の温度が 5 0。(:以上 3 0 0 °C以下であることを特 徴とする請求項 8乃至 1 4のいずれか 1項に記載の酸性ガス洗浄装置。
1 6 . 循環する洗浄液の温度が 5 0 °C以上 2 0 0 °C以下であることを特 徴とする請求項 8乃至 1 4のいずれか 1項に記載の酸性ガス洗浄装置。
1 7 . 循環する洗浄液の温度が 5 0 °C以上 1 0 0 °C以下であることを特 徴とする請求項 8乃至 1 4のいずれか 1項に記載の酸性ガス洗浄装置。
1 8 . 塩化水素等の強酸性ガスと、 硫化水素や炭酸ガス等の弱酸性ガス とを含む被洗浄ガスと、 第 1のアルカリ剤を含む第 1ガス洗浄液とを対 向流で接触させて被洗浄ガスを冷却すると共に被洗浄ガス中の強酸性ガ スを除去する第 1ガス洗浄部と、 第 1ガス洗浄部を出た被洗浄ガスと第 2のアルカリ剤を含む第 2ガス洗浄液とを対向流で接触させて被洗浄ガ スをさらに冷却すると共に被洗浄ガス中の炭酸ガス及び弱酸性ガスを除 去する第 2ガス洗浄部と、 第 1ガス洗浄液および被洗浄ガスとは成分の 異なる第 1の再生用ガスとを対向流で接触させることによって第 1ガス 洗浄液を再生および冷却する第 1洗浄液再生器と、 第 2ガス洗浄液およ び被洗浄ガスとは成分の異なる第 2の再生用ガスとを対向流で接触させ ることによって第 2ガス洗浄液を再生および冷却する第 2洗浄液再生器 と、 前記第 1ガス洗浄部と第 1洗浄液再生器との間に配置され第 1洗浄 液を循環させる循環手段と、 前記第 2ガス洗浄部と第 2洗浄液再生器と の間に配置され第 2洗浄液を循環させる循環手段とを備えたことを特徴 とする酸性ガス洗浄装置。
1 9 . 前記第 1ガス洗浄部と第 1洗浄液再生器との間に配置され第 1洗 浄液を循環させる循環手段において、 第 1のアルカリ剤の水溶液を添加 する薬剤添加手段と、 第 1洗浄液中の固形物を分離する固液分離手段と を備えたことを特徴とする請求項 1 8に記載の酸性ガス洗浄装置。
2 0 . 第 1及び第 2のガス洗浄液に同伴する被洗浄ガス成分を分離する ために、 第 1ガス洗浄部と第 1洗浄液再生器の間及び第 2ガス洗浄液と 第 2洗浄液再生器の間にそれぞれ気液分離器を設けることを特徴とする 請求項 1 8又は 1 9に記載の酸性ガス洗浄装置。
2 1 . 第 1の再生用ガスとして、 空気等の酸素含有ガスまたは純酸素を 用いることを特徴とする請求項 1 8乃至 2 0のいずれか 1項に記載の酸 性ガス洗浄装置。
2 2 . 第 1及び第 2のガス洗浄液に同伴する再生ガス成分を分離するた めに、 第 1及び第 2の洗浄液再生器の洗浄液流路の下流に気液分離器を 設けることを特徴とする請求項 1 8乃至 2 1のいずれか 1項に記載の酸 性ガス洗浄装置。
2 3 . 第 1及び第 2ガス洗浄部内の気相の圧力が 8 0 k P a以上 1 1 0 k P a以下、 第 1及び第 2洗浄液再生器の気相の圧力が 1 1 0 k P a以 上 2 0 0 k P a以下で運転するこ を特徴とする請求項 1 8乃至 2 2の いずれか 1項に記載の酸性ガス洗浄装置。
2 4 . 第 1ガス洗浄部の洗浄液の出口における第 1洗浄液の温度が該洗 浄液の沸点以下 2 0 °C以内であり、 第 1ガス洗浄部の洗浄液入口におけ る第 1洗浄液の温度が前記第 1ガス洗浄部の洗浄液出口の第 1洗浄液温 度以下 2 0 °C以内または被洗浄ガス中に含まれる水蒸気の飽和温度以下 5 °C以内であることを特徴とする請求項 1 8乃至 2 3のいずれか 1項に 記載の酸性ガス洗浄装置。
2 5 . 第 2ガス洗浄部の洗浄液出口における第 2洗浄液の温度が前記第 1ガス洗浄部の洗浄液入口における第 1洗浄液の温度以下 2 0 °C以内で あり、 第 2ガス洗浄部の洗浄液入口における第 2洗浄液の温度が前記第 2ガス洗浄部の洗浄液出口の第 2洗浄液温度よ りも 5 °C以上低いことを 特徴とする請求項 1 8乃至 2 4のいずれか 1項に記載の酸性ガス洗浄装 it o
2 6 . 第 1ガス洗浄部における第 1洗浄液の p Hが 4以上 1 1以下、 第 2ガス洗浄部における第 2洗浄液の p Hが 7以上 1 2以下であることを 特徴とする請求項 1 8乃至 2 5のいずれか 1項に記載の酸性ガス洗浄装
2 7 . 可燃性廃棄物、 バイオマス、 石炭等の可燃物から可燃性のガスを 得るガス化装置を設け、 該ガス化装置から生成する生成ガスを請求項 1 乃至 2のいずれか 1項に記載の酸性ガス洗浄方法又は請求項 8乃至 1 7 のいずれか 1項に記載の酸性ガス洗浄装置で洗浄し、 該酸性ガス洗浄装 置の再生器ォフガスを前記ガス化装置へ導き、 ガス化のためのガス化剤 として利用することを特徴とする可燃物のガス化システム。
2 8 . 可燃性廃棄物、 バイオマス、 石炭等の可燃物から可燃性のガスを 得るガス化装置を設け、 該ガス化装置から生成する生成ガスを請求項 3 に記載の酸性ガス洗浄方法又は請求項 1 8乃至 2 6のいずれか 1項に記 載の酸性ガス洗浄装置で冷却すると共に洗浄し、 該酸性ガス洗浄装置の 第 1洗浄液再生器オフガスを前記ガス化装置へ導き、 ガス化のためのガ ス化剤として利用することを特徴とする可燃物のガス化システム。
2 9 . 前記ガス化装置として 4 5 0 °C以上 9 5 0 °C以下の層温で運転さ れる流動床ガス化炉を用いることを特徴とする請求項 2 7又は 2 8に記 載の可燃物のガス化システム。
3 0 . 前記ガス化装置として流動床ガス化炉の下流に 1 2 0 0 °C以上 1 5 0 0 °C以下の温度で運転され、 生成ガス中に含まれるダス ト成分をス ラグ化する溶融炉を用いることを特徴とする請求項 2 9 に記載の可燃物 のガス化システム。
3 1 . 可燃性廃棄物等の可燃物を焼却する焼却装置を設け、 該焼却装置 からの燃焼排ガスを請求項 8乃至 1 7のいずれか 1項に記載の酸性ガス 洗浄装置で洗浄し、 該酸性ガス洗浄装置の再生用ガスを前記焼却装置へ 導き、 燃焼用酸化ガスとして利用することを特徴とする可燃物の焼却シ ステム。
3 2 . 前記焼却装置として 4 5 0 °C以上 9 5 0 °C以下の層温で運転され る流動床焼却炉を用いることを特徴とする請求項 3 1に記載の可燃物の 焼却システム。
3 3 . 前記焼却装置として流動床焼却炉の下流に 1 2 0 0 °C以上 1 5 0 0 °c以下の温度で運転され、 燃焼ガス中に含まれるダス ト成分をスラグ 化する溶融炉を用いることを特徴とする請求項 3 2に記載の可燃物の焼 却システム。
PCT/JP2000/004857 1999-07-19 2000-07-19 Appareil et procede d'epuration de gaz acide WO2001005489A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU60211/00A AU6021100A (en) 1999-07-19 2000-07-19 Apparatus and method for cleaning acidic gas
CA002379709A CA2379709A1 (en) 1999-07-19 2000-07-19 Acid gas scrubbing apparatus and method
KR1020027000424A KR20020026536A (ko) 1999-07-19 2000-07-19 산성가스세정장치 및 방법
EP00946417A EP1201290A4 (en) 1999-07-19 2000-07-19 METHOD AND DEVICE FOR PURIFYING ACID GAS
US10/965,930 US20050132883A1 (en) 1999-07-19 2004-10-18 Acid gas scrubbing apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20539599 1999-07-19
JP11/205395 1999-07-19
JP34527199 1999-12-03
JP11/345271 1999-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/965,930 Continuation US20050132883A1 (en) 1999-07-19 2004-10-18 Acid gas scrubbing apparatus and method

Publications (1)

Publication Number Publication Date
WO2001005489A1 true WO2001005489A1 (fr) 2001-01-25

Family

ID=26515049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004857 WO2001005489A1 (fr) 1999-07-19 2000-07-19 Appareil et procede d'epuration de gaz acide

Country Status (7)

Country Link
US (1) US20050132883A1 (ja)
EP (1) EP1201290A4 (ja)
KR (1) KR20020026536A (ja)
CN (1) CN1276787C (ja)
AU (1) AU6021100A (ja)
CA (1) CA2379709A1 (ja)
WO (1) WO2001005489A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113226A1 (ja) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba 排ガス中の二酸化炭素回収システムおよび二酸化炭素回収方法
JP2005502460A (ja) * 2001-09-14 2005-01-27 シェブロン ユー.エス.エー. インコーポレイテッド 水性流によるco2含有ガスからのco2洗浄
JP2005319358A (ja) * 2004-05-06 2005-11-17 Takuma Co Ltd 排ガス洗浄処理システムと洗浄処理方法
WO2009014016A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. 排煙脱硫装置
JP2010502420A (ja) * 2006-08-29 2010-01-28 イェダ・リサーチ・アンド・ディヴェロプメント・カンパニー・リミテッド 流体のco2濃度を減少させる方法および装置
JP2011005368A (ja) * 2009-06-23 2011-01-13 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法
JP2012055523A (ja) * 2010-09-09 2012-03-22 Japan Organo Co Ltd 空気調和装置
US8597412B2 (en) 2008-02-22 2013-12-03 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery method
US8663363B2 (en) 2009-06-17 2014-03-04 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and method
US9366430B2 (en) 2012-02-10 2016-06-14 Mitsubishi Hitachi Power Systems, Ltd. Flare system and method for reducing dust therefrom
JP2020514116A (ja) * 2016-12-29 2020-05-21 ザ・ボーイング・カンパニーThe Boeing Company 太陽エネルギーを使用して炭素繊維を再生するためのシステム及び方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111607B (fi) * 2001-10-22 2003-08-29 Matti Nurmia Prosessi nestemäisen hiilidioksidin tuottamiseksi normaalipaineisesta savukaasusta
US7381378B2 (en) * 2005-03-09 2008-06-03 Mcwhorter Edward Milton Coal flue gas scrubber
NL1020603C2 (nl) * 2002-05-15 2003-11-18 Tno Werkwijze voor het drogen van een product met behulp van een regeneratief adsorbens.
US7753973B2 (en) * 2002-06-27 2010-07-13 Galloway Terry R Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US7377967B2 (en) * 2002-07-03 2008-05-27 Fluor Technologies Corporation Split flow process and apparatus
US7252703B2 (en) 2003-06-30 2007-08-07 Honeywell International, Inc. Direct contact liquid air contaminant control system
DE10332427A1 (de) * 2003-07-16 2005-02-03 Uhde Gmbh Verfahren zur Entfernung von Schwefelwasserstoff und weiteren Sauergaskomponenten aus unter Druck befindlichen, technischen Gasen
AU2004205336B2 (en) * 2004-08-31 2006-08-24 Kosta Kapitoures Emission Control Systems
DE102005004948B3 (de) 2005-02-02 2006-03-02 Uhde Gmbh Verfahren zur Erhöhung der Selektivität von physikalisch wirkenden Lösungsmitteln bei einer Absorption von Gaskomponenten aus technischen Gasen
FR2881732B1 (fr) * 2005-02-08 2007-11-02 Solvay Procede pour la purification de chlorure d'hydrogene
CN101400430B (zh) * 2006-03-10 2012-03-28 道格拉斯·C·科姆里 二氧化碳分离材料和方法
MX2008014092A (es) * 2006-05-05 2009-01-23 Plascoenergy Ip Holdings Slb Sistema de acondicionamiento de gas.
FI20065330L (fi) 2006-05-16 2007-11-17 Kvaerner Power Oy Menetelmä ja laitteisto laivamoottorin rikkidioksidipäästöjen vähentämiseksi
US8192586B2 (en) 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
US7758729B1 (en) * 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US8193403B2 (en) 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
JP5230088B2 (ja) * 2006-09-06 2013-07-10 三菱重工業株式会社 Co2回収装置及び方法
US8535840B2 (en) 2006-11-09 2013-09-17 Paul Scherrer Institut Method and plant for converting solid biomass into electricity
WO2008079113A1 (en) * 2006-12-20 2008-07-03 Utc Fuel Cells, Llc Ammonia contact scrubber system for a fuel cell
EP1953130B1 (de) * 2007-01-30 2011-06-29 MT-Biomethan GmbH Verfahren und Anlage zur Behandlung von methan- und kohlendioxidhaltigen Rohgasen, insbesondere Biogas, zur Gewinnung von Methan
KR100838738B1 (ko) * 2007-04-17 2008-06-16 주식회사 포스코 복합화력 발전설비의 배열보일러 보조연소버너
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
WO2009065218A1 (en) * 2007-11-20 2009-05-28 The University Of Regina Method for inhibiting amine degradation during co2 capture from a gas stream
US20090151318A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution
DE102008012156A1 (de) * 2008-03-01 2009-09-03 Karl-Heinz Tetzlaff Schneckenförderer zur Einspeisung von Biomasse in einen Druckbehälter
DE102008025971A1 (de) * 2008-05-30 2009-12-03 Dge Dr.-Ing. Günther Engineering Gmbh Verfahren und Anlage zur Reinigung von Biogas zur Gewinnung von Methan
WO2010059268A1 (en) * 2008-11-19 2010-05-27 Murray Kenneth D Carbon dioxide control device to capture carbon dioxide from vehicle combustion waste
CN101412929B (zh) * 2008-11-28 2012-02-01 武汉凯迪工程技术研究总院有限公司 利用生物质制造合成气的高温气化工艺方法及系统
DE102008060310B4 (de) * 2008-12-03 2013-01-31 Dge Dr.-Ing. Günther Engineering Gmbh Verfahren und Anlage zur Reinigung von Roh- oder Biogas zur Gewinnung von Methan
DE102009017228A1 (de) * 2009-04-09 2010-10-14 Linde-Kca-Dresden Gmbh Verfahren und Vorrichtung zur Behandlung von Rauchgasen
US8500868B2 (en) * 2009-05-01 2013-08-06 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
JP5325023B2 (ja) * 2009-05-28 2013-10-23 三菱重工業株式会社 含水固体燃料の乾燥装置及び乾燥方法
JP5383338B2 (ja) * 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
JP5383339B2 (ja) * 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置に用いるco2吸収液の濃度管理方法
CA2722195C (en) * 2009-11-25 2013-03-19 Hitachi, Ltd. Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
EP2554244A4 (en) * 2010-03-29 2014-12-17 Ilkovics Roberto Tomás Miklos METHOD FOR REMOVING ACIDIC AIR GASES AND COMBUSTION GAS FROM BURNERS AND INTERNAL COMBUSTION ENGINES BY ABSORPTION WITH SOLUTION OF SODIUM HYDROXIDE AND PROCESS FOR OBTAINING SODIUM CARBONATE FOR DELIVERING CARBON CREDITS
CN101928608B (zh) * 2010-08-26 2014-01-01 北京首钢国际工程技术有限公司 一种高炉煤气氯化氢净化吸收复合装置及方法
DE102010046334A1 (de) * 2010-09-23 2012-03-29 Linde Aktiengesellschaft Gaswäsche und Verfahren zum Betreiben derselben
JP5693295B2 (ja) 2011-02-28 2015-04-01 三菱重工業株式会社 Co2回収装置およびco2回収装置の運転制御方法
EP2497563A1 (en) * 2011-03-08 2012-09-12 Alstom Technology Ltd System and method for low NOx emitting regeneration of desiccants
ES2387799B1 (es) * 2011-03-10 2013-08-09 Fundación Centro De Innovación Y Demostración Tecnológica Fijación del dióxido de carbono que se emite a la atmósfera en carbonato potásico.
JP5741690B2 (ja) * 2011-07-13 2015-07-01 株式会社Ihi 二酸化炭素の回収方法及び回収装置
FR2979550B1 (fr) * 2011-09-06 2015-04-03 IFP Energies Nouvelles Dispositif et procede de desacidification d'un gaz avec section pour limiter les entrainements de gaz dans la solution absorbante
US8574888B2 (en) * 2011-10-18 2013-11-05 Clean Energy Fuels Corp. Biological H2S removal system and method
US9005337B2 (en) 2011-10-18 2015-04-14 Clean Energy Renewable Fuels, Llc System for the treatment and purification of biogas
US8535429B2 (en) * 2011-10-18 2013-09-17 Clean Energy Renewable Fuels, Llc Caustic scrubber system and method for biogas treatment
EP2599536A1 (en) 2011-11-29 2013-06-05 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method for depleting an exhaust gas stream in gaseous acid
US8951335B2 (en) * 2011-12-07 2015-02-10 Fluor Technologies Corporation Selective caustic scrubbing using a driver gas
WO2013090403A1 (en) * 2011-12-13 2013-06-20 The Southern Company Apparatus and methods for regeneration of precipitating solvent
JP5966565B2 (ja) * 2012-04-24 2016-08-10 株式会社Ihi 二酸化炭素の回収方法及び回収装置
JP5272099B1 (ja) * 2012-07-26 2013-08-28 新日鉄住金エンジニアリング株式会社 二酸化炭素回収方法
CA2943855C (en) 2013-04-06 2020-06-30 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
KR101534710B1 (ko) 2013-11-12 2015-07-07 현대자동차 주식회사 산성가스의 흡수 분리 장치
WO2015109190A1 (en) * 2014-01-17 2015-07-23 Skyonic Corporation Acid gas removal from a gaseous stream
TWI633923B (zh) * 2014-02-10 2018-09-01 中國石油化工科技開發有限公司 一種處理酸性氣體的方法及裝置
WO2016041154A1 (zh) * 2014-09-17 2016-03-24 汪辉明 废气处理的方法
CN105731388B (zh) * 2014-12-06 2018-04-10 中国石油化工股份有限公司 一种制备硫氢化钠的方法及装置
CN105731387B (zh) * 2014-12-06 2017-08-22 中国石油化工股份有限公司 一种通过酸性气制备碳酸氢钠的方法及装置
CN106076084A (zh) * 2016-09-29 2016-11-09 马鞍山市顺达环保设备有限公司 一种化学反应废气处理机构
US10941497B2 (en) * 2017-02-27 2021-03-09 Honeywell International Inc. Electrochemical carbon dioxide converter and liquid regenerator
US11123685B2 (en) 2017-02-27 2021-09-21 Honeywell International Inc. Hollow fiber membrane contactor scrubber/stripper for cabin carbon dioxide and humidity control
SE543151C2 (en) * 2018-07-02 2020-10-13 Valmet Oy Feeding system and method for feeding comminuted cellulosic material to a high-pressure treatment zone
BR102018076758A2 (pt) * 2018-12-20 2020-07-07 Universidade Federal De Minas Gerais processo de captura de co2 e processo de regeneração contínua de solvente
CN110124463A (zh) * 2019-06-11 2019-08-16 湖北瑞力源环保科技有限公司 一种用于喷雾焙烧盐酸再生装置的尾气净化系统和工艺
DE102019214711A1 (de) * 2019-09-26 2021-04-01 Robert Bosch Gmbh Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem
US11359150B2 (en) * 2019-10-28 2022-06-14 Subgeni LLC Modular syngas system, marine vessel powered thereby, and method of operation
KR102398277B1 (ko) * 2019-12-19 2022-05-16 주식회사 포스코 산성가스 함유 배가스로부터 산성가스를 제거하는 배가스 정제장치 및 방법
CN111905551A (zh) * 2020-07-23 2020-11-10 天津市远卓环境工程股份有限公司 双层碱吸收氧化塔
KR20230119654A (ko) 2020-12-10 2023-08-16 아질릭스 코포레이션 폐 플라스틱을 재활용하기 위한 시스템 및 방법
CN115403058A (zh) * 2021-05-27 2022-11-29 中蓝长化工程科技有限公司 一种两级连续提溴生产溴化钠的方法
US20230330607A1 (en) * 2021-12-16 2023-10-19 Streamline Innovations, Inc. Co-current and Counter Contactor for Immiscible Fluids
KR102582085B1 (ko) * 2023-03-14 2023-09-22 고등기술연구원연구조합 세라믹 물질을 추가하는 기액 반응기 및 이를 활용한 제거/반응 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149171A (en) * 1977-06-02 1978-12-26 Chiyoda Chem Eng & Constr Co Ltd Refining method for aqueous amine solution
US4367258A (en) * 1979-11-08 1983-01-04 Snamprogetti, S.P.A. Process for the decarbonation of gases
EP0202600A2 (de) * 1985-05-22 1986-11-26 BASF Aktiengesellschaft Verfahren zum Entfernen von CO2 und/oder H2S aus Gasen
JPH0286627U (ja) * 1988-12-24 1990-07-09
JPH0338219A (ja) * 1989-07-03 1991-02-19 Chiyoda Corp 排ガスからの炭酸ガスの除去、回収方法
EP0487102A1 (en) * 1990-11-22 1992-05-27 Hitachi, Ltd. Recycling system for the recovery and utilization of CO2 gas
JPH1067992A (ja) * 1996-04-23 1998-03-10 Ebara Corp 有機性廃棄物の資源化方法及び資源化装置
JPH10205723A (ja) * 1997-01-17 1998-08-04 Ngk Insulators Ltd 廃棄物溶融システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160810A (en) * 1978-03-07 1979-07-10 Benfield Corporation Removal of acid gases from hot gas mixtures
US4751151A (en) * 1986-12-08 1988-06-14 International Fuel Cells Corporation Recovery of carbon dioxide from fuel cell exhaust
JP2738954B2 (ja) * 1989-05-08 1998-04-08 三菱重工業株式会社 So▲下2▼とhfを含む排ガスの処理方法
US5112586A (en) * 1990-10-18 1992-05-12 Shell Oil Company Process for purification of synthesis gas
US5554453A (en) * 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
US5824273A (en) * 1995-06-23 1998-10-20 Mitsubishi Jukogyo Kabushiki Kaisha Gas refining system
US6376113B1 (en) * 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
GB9702742D0 (en) * 1997-02-11 1997-04-02 Ici Plc Gas absorption

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149171A (en) * 1977-06-02 1978-12-26 Chiyoda Chem Eng & Constr Co Ltd Refining method for aqueous amine solution
US4367258A (en) * 1979-11-08 1983-01-04 Snamprogetti, S.P.A. Process for the decarbonation of gases
EP0202600A2 (de) * 1985-05-22 1986-11-26 BASF Aktiengesellschaft Verfahren zum Entfernen von CO2 und/oder H2S aus Gasen
JPH0286627U (ja) * 1988-12-24 1990-07-09
JPH0338219A (ja) * 1989-07-03 1991-02-19 Chiyoda Corp 排ガスからの炭酸ガスの除去、回収方法
EP0487102A1 (en) * 1990-11-22 1992-05-27 Hitachi, Ltd. Recycling system for the recovery and utilization of CO2 gas
JPH1067992A (ja) * 1996-04-23 1998-03-10 Ebara Corp 有機性廃棄物の資源化方法及び資源化装置
JPH10205723A (ja) * 1997-01-17 1998-08-04 Ngk Insulators Ltd 廃棄物溶融システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1201290A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502460A (ja) * 2001-09-14 2005-01-27 シェブロン ユー.エス.エー. インコーポレイテッド 水性流によるco2含有ガスからのco2洗浄
JP4695834B2 (ja) * 2001-09-14 2011-06-08 シェブロン ユー.エス.エー. インコーポレイテッド 水性流によるco2含有ガスからのco2洗浄
WO2004113226A1 (ja) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba 排ガス中の二酸化炭素回収システムおよび二酸化炭素回収方法
JP4671391B2 (ja) * 2004-05-06 2011-04-13 株式会社タクマ 排ガス洗浄処理システムと洗浄処理方法
JP2005319358A (ja) * 2004-05-06 2005-11-17 Takuma Co Ltd 排ガス洗浄処理システムと洗浄処理方法
JP2010502420A (ja) * 2006-08-29 2010-01-28 イェダ・リサーチ・アンド・ディヴェロプメント・カンパニー・リミテッド 流体のco2濃度を減少させる方法および装置
JP2009028571A (ja) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
WO2009014016A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. 排煙脱硫装置
US8597412B2 (en) 2008-02-22 2013-12-03 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery method
JP5595045B2 (ja) * 2008-02-22 2014-09-24 三菱重工業株式会社 Co2回収装置及びco2回収方法
US8663363B2 (en) 2009-06-17 2014-03-04 Mitsubishi Heavy Industries, Ltd. CO2 recovering apparatus and method
JP2011005368A (ja) * 2009-06-23 2011-01-13 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法
JP2012055523A (ja) * 2010-09-09 2012-03-22 Japan Organo Co Ltd 空気調和装置
US9366430B2 (en) 2012-02-10 2016-06-14 Mitsubishi Hitachi Power Systems, Ltd. Flare system and method for reducing dust therefrom
JP2020514116A (ja) * 2016-12-29 2020-05-21 ザ・ボーイング・カンパニーThe Boeing Company 太陽エネルギーを使用して炭素繊維を再生するためのシステム及び方法
JP7241686B2 (ja) 2016-12-29 2023-03-17 ザ・ボーイング・カンパニー 太陽エネルギーを使用して炭素繊維を再生するためのシステム及び方法

Also Published As

Publication number Publication date
KR20020026536A (ko) 2002-04-10
US20050132883A1 (en) 2005-06-23
EP1201290A1 (en) 2002-05-02
CN1276787C (zh) 2006-09-27
CN1361711A (zh) 2002-07-31
EP1201290A4 (en) 2002-09-04
AU6021100A (en) 2001-02-05
CA2379709A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
WO2001005489A1 (fr) Appareil et procede d&#39;epuration de gaz acide
RU2270849C2 (ru) Система, вырабатывающая электрическую энергию с помощью газификации горючих веществ
JP3723061B2 (ja) 酸素富化ガスを利用した煙突のない廃棄物の完全資源化処理方法
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
WO2001004045A1 (fr) Procede et appareil de production d&#39;hydrogene par gazeification de matiere combustible, procede de generation electrique utilisant des piles a combustible, et systeme de generation electrique utilisant des piles a combustible
JP2003500518A (ja) ガス化発電システム
US20060137579A1 (en) Gasification system
KR101475785B1 (ko) 폐기물의 플라즈마 열분해 가스화장치가 연계되어 스팀과 이산화 탄소를 회수 공급하는 에너지 절약형의 친환경 폐기물 자원화 장치
EP1195353A1 (en) Method and apparatus for production of hydrogen by gasification of combusible material
JP4723922B2 (ja) 炭素質吸着材の製造方法、それを用いた環境汚染物質の除去方法及び除去装置
AU2013237711B2 (en) Gasification system for carbon containing fuel
JP3702396B2 (ja) 石炭ガス化複合発電装置
KR100194555B1 (ko) 고신뢰도 고효율 석탄가스화 복합발전 시스템 및전력발생방법
JP2004075740A (ja) 廃棄物ガス化システム
JP3868078B2 (ja) 発電設備
JP2019218526A (ja) ガス化設備及びその運転方法
WO2008100012A1 (en) Method for recovering resource from waste and resource recovery system therefor
JPH11197627A (ja) 廃棄物処理システム
CN117906149A (zh) 一种液中焚烧协同气化的固废处理系统及方法
JPH1157402A (ja) ガス精製方法及びガス精製設備
TW202346756A (zh) 廢棄物焚化設備
JPH07114927B2 (ja) ▲高▼温還元性ガスの精製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027000424

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10031397

Country of ref document: US

Ref document number: 2379709

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 008106479

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000946417

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027000424

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000946417

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1020027000424

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000946417

Country of ref document: EP