WO2001002585A1 - Gene codant pour une acylase des lipopeptides cycliques et expression dudit gene - Google Patents

Gene codant pour une acylase des lipopeptides cycliques et expression dudit gene Download PDF

Info

Publication number
WO2001002585A1
WO2001002585A1 PCT/JP2000/004285 JP0004285W WO0102585A1 WO 2001002585 A1 WO2001002585 A1 WO 2001002585A1 JP 0004285 W JP0004285 W JP 0004285W WO 0102585 A1 WO0102585 A1 WO 0102585A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
cyclic lipopeptide
acylase
Prior art date
Application number
PCT/JP2000/004285
Other languages
English (en)
French (fr)
Inventor
Takashi Shibata
Yuji Noguchi
Michio Yamashita
Original Assignee
Fujisawa Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co., Ltd. filed Critical Fujisawa Pharmaceutical Co., Ltd.
Priority to KR1020027000020A priority Critical patent/KR20020022758A/ko
Priority to CA002377793A priority patent/CA2377793A1/en
Priority to EP00940872A priority patent/EP1197557A4/en
Publication of WO2001002585A1 publication Critical patent/WO2001002585A1/ja
Priority to HK03101531.1A priority patent/HK1049353A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to an enzyme that deacylates the acyl side chain of a cyclic lipopeptide substance (hereinafter also referred to as cyclic lipopeptide acylase), a gene encoding the same, and production of cyclic lipobeptidoacylase by genetic manipulation using the gene.
  • the present invention relates to a method and a method for deacylating the acyl side chain of a cyclic lipopeptide substance.
  • Enzymes that deacylate the acyl side chains of cyclic lipotide substances include bacteria belonging to the genus Streptomyces (eg, Streptomyces anulatus No.4811). Strains, Streptomyces anulatus No. 8703, and Streptomyces sp. No. 6907) have been reported (W097 / 32975).
  • An object of the present invention is to collect cyclic lipopeptide acylase more efficiently. More specifically, the present invention provides a method for determining the amino acid sequence of the cyclic lipopeptide acylase, the gene encoding the same, the method for producing the enzyme by genetic manipulation using the gene, and the cyclic lipopeptide substance. It is intended to provide a method for deacylation of the acyl side chain.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, succeeded in cloning the coding region of cyclic lipopeptide acylase and completed the present invention. Furthermore, the present inventors introduced an expression vector containing the DNA into a host cell, Cyclic lipopeptide acylase activity was expressed.
  • the present invention is as follows.
  • a gene encoding a cyclic lipopeptide acylase which comprises all or a part of the following (a), (b) or (c):
  • the host cell transformed with the expression vector described in (4) above is cultured in a medium, and the acylamino group in the side chain of the cyclic lipopeptide substance is removed from the resulting culture to an amino group.
  • a method for producing a cyclic lipopeptide acylase comprising collecting a cyclic lipopeptide acylase capable of catalyzing a reaction for acylation.
  • a gene encoding a cyclic lipopeptide acylase which comprises all or a part of the following (a), (b) or (c):
  • (c) at least (1) 60% identity, (2) 70% identity in the nucleotide sequence represented by nucleotide numbers 1065-3359 in the nucleotide sequence represented by SEQ ID NO: 1 in the sequence listing, (3) DNA having 80% identity, (4) 90% identity, or (5) 95% identity.
  • (9) A gene encoding the following protein (a) or (b):
  • the host cell transformed with the expression vector described in (11) above is cultured in a medium, and the resulting culture is deacylated from an acylamino group in the side chain of the cyclic lipopeptide substance to an amino group.
  • a method for producing a cyclic lipopeptide acylase which comprises collecting a cyclic lipopeptide acylase capable of catalyzing a reaction that occurs.
  • (21) A recombinant vector containing at least one of the above (19) and (20).
  • (22) An expression vector comprising at least one of the above (19) and (20).
  • (23) A transformant obtained by transforming a host cell with the vector according to (21) or (22).
  • the host cell transformed by the expression vector described in (22) above is cultured in a medium, and from the resulting culture, the acylamino group in the side chain of the cyclic lipopeptide substance is converted into an amino group.
  • a method for producing a cyclic lipopeptide acylase which comprises collecting a cyclic lipopeptide acylase capable of catalyzing a reaction to be converted.
  • a host cell transformed with the expression vector according to (4), (11) or (22) is cultured in a medium, and a cyclic lipopeptide substance is added to the obtained culture or a processed product thereof.
  • Contacting, including the acylamino group in the side chain of the cyclic lipopeptide substance A method for deacylation of a to an amino group.
  • FIG. 1 is a diagram showing the result of determining the N-terminal amino acid sequence of a part of the cyclic lipopeptide acylase small subnet.
  • FIG. 2 is a view showing the result of determining the N-terminal amino acid sequence of a part of the large subunit of the cyclic lipopeptide acylase.
  • FIG. 3 is a genetic map of Streptomyces' lividans 1326 / pIJ702-SB (Detailed Description of the Invention)
  • the cyclic lipopeptide acylase is, for example, an enzyme that deacylates the acyl side chain of FR901379 and its analogs or analogs such as echinocandin B.
  • the cyclic lipopeptide acylase of the present invention comprises two large and small subnets, each of which has the following characteristics. Each subnet forms a complex and exhibits the cyclic lipopeptide acylase activity.
  • N-terminal amino acid sequence is Ser-Asn-Ala-Val-Ala-Phe-Asp-Gly-Ser-Thr-Thr-Val-Asn-Gly-Arg-Gly-Leu-Leu-Leu-Gly No. 3) or an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence.
  • DNA comprising the nucleotide sequence represented by nucleotide numbers 1665 to 3359 in the nucleotide sequence shown in SEQ ID NO: 1 or a DNA which can hybridize with the DNA under stringent conditions, or the nucleotide sequence At least (1) 60% identity, (2) 70% identity, (3) 80% identity, (4) 90% identity, or (5) 95% identity A protein encoded by DNA.
  • amino acid sequence of amino acids 201-765 in the amino acid sequence shown in SEQ ID NO: 2 A protein comprising an amino acid sequence, or an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence, and which forms a complex with the small subunit described below to form a cyclic lipopeptide acylase Evening protein showing activity.
  • DNA consisting of the nucleotide sequence represented by nucleotide numbers 1065 to 1664 in the nucleotide sequence shown in SEQ ID NO: 1 or a DNA which can hybridize with the DNA under stringent conditions, or a small amount in the nucleotide sequence.
  • DNA with (1) 60% identity, (2) 70% identity, (3) 80% identity, (4) 90% identity, or (5) 95% identity Is a protein encoded by
  • a protein consisting of the amino acid sequence of amino acid number 11 or 1 to 200 in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, or one or several amino acids are deleted, substituted or added in the amino acid sequence.
  • a protein having the following amino acid sequence and forming a complex with the above-mentioned large subunit and exhibiting a cyclic lipopeptide acylase activity.
  • the cyclic lipopeptide acylase of the present invention is not particularly limited in its origin as long as it has the above-mentioned characteristics.
  • natural or artificial mutants or variants, ie, foreign cyclic lipoproteins All those derived from a transformant obtained by introducing the peptide acylase gene are also included.
  • mutant cyclic lipopeptidase As a method for artificially producing a mutant, for example, site-directed mutagenesis can be mentioned. More specifically, shown in SEQ ID NO: 1 in the Sequence Listing using the method. By introducing an arbitrary mutation into the nucleotide sequence, a mutant cyclic lipopeptidase can be obtained. The mutant cyclic lipopeptide acylase thus obtained has the above characteristics.
  • the cyclic lipobeptidoacylase of the present invention comprises (1) a method of isolating and purifying a cell or tissue culture that produces the enzyme as a raw material, (2) a method of chemically synthesizing, or (3) a genetic recombination. It can be obtained by appropriately using a known method such as a method of purifying from a cell that has been manipulated to express a cyclic lipopeptide acylase by a technique or the like.
  • Isolation and purification of the cyclic lipopeptide acylase of the present invention can be performed, for example, as follows. That is, cells expressing the cyclic lipopeptide acylase are cultured in an appropriate liquid medium, and the resulting culture is extracted and purified by a known method. A known method is appropriately used for the extraction and purification methods according to the fraction in which the target product is present.
  • the culture is directly subjected to a conventional method such as filtration or centrifugation to collect cells or supernatant.
  • a surfactant is added at an appropriate concentration to solubilize the membrane.
  • a surfactant is added at an appropriate concentration to solubilize the membrane.
  • Detergents include sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which have a strong protein denaturing effect and are therefore folded so that the protein has biological activity.
  • SDS sodium dodecyl sulfate
  • CTAB cetyltrimethylammonium bromide
  • the resulting crude extract is then isolated and purified by appropriately combining commonly used methods, if necessary, in the presence of a surfactant.
  • the culture When the enzyme is present in the culture medium, the culture is first filtered or centrifuged to remove precipitates (solids such as cells) to obtain only a solution portion, which is generally used.
  • the target substance can be isolated and purified by appropriately combining You. Methods that utilize solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration,
  • concentration under reduced pressure, freeze-drying, extraction with a common solvent, pH adjustment, treatment with a common adsorbent such as an anion exchange resin or a cation exchange resin or a nonionic adsorption resin, Separation and purification can be performed by conventional methods such as crystallization and recrystallization, and specifically, the method described in WO97 / 32975 can be referred to.
  • a common adsorbent such as an anion exchange resin or a cation exchange resin or a nonionic adsorption resin
  • Separation and purification can be performed by conventional methods such as crystallization and recrystallization, and specifically, the method described in WO97 / 32975 can be referred to.
  • the production of the cyclic lipopeptide acylase of the present invention by chemical synthesis for example, based on the base sequence shown in SEQ ID NO: 1 in the sequence listing, an amino acid encoded by all or a part of the sequence is specified, and the amino acid is identified. It
  • the cloning of the cyclic lipopeptide acylase gene is usually performed by the following method.
  • the enzyme is completely or partially purified from a cell or tissue producing a cyclic lipopeptide acylase according to an ordinary method, and the N-terminal amino acid sequences of the large and small subunits are determined by the Edman method.
  • the amino acid sequence of an oligopeptide obtained by partially decomposing each subunit with a sequence-specific protease is similarly determined by the Edman method.
  • oligonucleotide having a nucleotide sequence corresponding to the determined partial amino acid sequence is synthesized, and this is used as a primer or probe to prepare RNA or DNA prepared from cells or tissues that produce cyclic lipopeptide acylase. Clones each subunit by PCR or colony (or plaque) hybridization.
  • Oligonucleotides are synthesized based on the nucleotide sequence of each of the obtained subunits, and this is used as a primer from RNA or DNA prepared again from cells or tissues that produce cyclic lipopeptide acylase. PCR or colony (Or plaque) The cyclic lipase acylase is cloned by repeating the hybridization procedure.
  • an antibody against the enzyme or its subunit is prepared in accordance with a conventional method using all or a part of the fully or partially purified cyclic lipopeptide acylase as an antigen, and is prepared from a cell or tissue that produces a cyclic lipopeptide acylase. From the cDNA or genomic DNA library, DNA encoding the enzyme and / or a subunit of the enzyme can be cloned by antibody screening.
  • the DNA encoding the cyclic lipopeptide acylase of the present invention can be directly cloned using the PCR method. That is, genomic DNA or cDNA (or mRNA) derived from a cell or tissue having the enzyme activity is type III, and the amplified fragment is the coding region of a cyclic lipopeptide acylase, the coding region of a large subunit, or the small subunit.
  • PCR is performed according to a conventional method using an appropriate pair of oligonucleotides which can enhance the coding region as a primer to obtain the coding region of the enzyme, the coding region of the large subunit or the small subunit.
  • a DNA fragment containing the coding region can be amplified.
  • the base sequence of the obtained DNA insert can be determined by using a known sequencing technique such as the Maxam-Gilbert method and the dideminution method.
  • the gene encoding the cyclic lipopeptide acylase of the present invention includes all or part of the DNA substantially consisting of the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing.
  • substantially DNA refers to not only a DNA having the above specific nucleotide sequence but also stringent conditions (in the present invention, DNA having a homology of about 60% or more in the nucleotide sequence is hybridized) Stringency can be adjusted by appropriately changing the temperature, salt concentration, etc., during the hybridization reaction or washing), and the DNA comprising the specific base sequence described above and c).
  • the cyclic lipopeptide acylase encoded by the gene can deacylate the acyl side chain of, for example, FR901379 and its analogs, or analogs such as echinocandin B, and each subunit has the above-mentioned physicochemical properties. Has characteristic properties.
  • Another embodiment of the gene encoding the cyclic lipopeptide acylase of the present invention is a DNA substantially consisting of the nucleotide sequence represented by nucleotide numbers 1065 to 3359 in the nucleotide sequence shown in SEQ ID NO: 1 in the Sequence Listing. , Including all or part.
  • the “DNA that becomes substantial” is as described above.
  • the present invention provides a gene encoding the following protein (a) or (b).
  • amino acid sequence comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and having an activity of cyclic lipopeptide acylase. It provides genes encoding large and small subunits of the present invention.
  • the gene of the present invention may be obtained by any method.
  • Genomidzuku DNA prepared from the complementary DNA (cDNA) s genomic library prepared from mR NA, chemically the DNA to be synthesized, DN A obtained by amplified by P CR method of RNA or DNA as ⁇ And DNAs constructed by appropriately combining these methods.
  • the present invention also relates to a recombinant vector containing any of the above genes.
  • the recombinant vectors of the present invention can be used in various prokaryotic and Z or eukaryotic host cells.
  • the plasmid is not particularly limited as long as it can maintain the replication or autonomously propagate in the plasmid.
  • the recombinant vector is simply prepared by inserting any of the above DNAs into a cloning vector or an expression vector available in the art using an appropriate restriction enzyme site. Can be.
  • the recombinant vector of the present invention is an expression vector that functionally contains a gene encoding a cyclic lipobeptidoacylase.
  • “functionally” means that the gene (DNA) is transcribed in a host cell compatible with the vector and that the gene is arranged so that the protein encoded thereby can be produced. means.
  • a vector having an expression cassette in which a promoter region, an initiation codon, a gene encoding a cyclic lipopeptide acylase or each of its subunits, a termination codon, and an overnight / minute / one-night region are continuously arranged. It is.
  • the expression vector used is a promoter region that can function in various host cells of prokaryotic cells and Z or eukaryotic cells to express a gene located downstream thereof, and a transcription of the gene. That is, the promoter and the promoter and the promoter and the promoter are linked via a sequence containing at least one unique restriction enzyme recognition site. There is no particular limitation as long as it is a suitable one, but it is preferable that it further contains a selection marker gene for transformant selection. Furthermore, if desired, the expression vector may include a start codon and a stop codon, respectively, downstream of the promoter region and upstream of the mineral region.
  • a small subunit is used. (Or a large subunit) using an expression vector containing a DNA encoding the DNA in a form capable of being expressed in a host cell.
  • the DNA encoding the large subunit and the DNA encoding the small subunit may each be under the control of another promoter, or may be located in tandem under the control of the same promoter. Is also good.
  • the expression vector of the present invention preferably contains a signal sequence functionally.
  • the signal sequence is not particularly limited as long as it can recognize the secretory mechanism of the protein of the host cell.
  • the gene encoding the cyclic lipopeptide acylase of the present invention has the same origin as the gene encoding the lipopeptide acylase of the present invention. Those belonging to the genus Treptomyces are preferred.
  • the signal sequence is cleaved off by the intracellular protease and the mature protein is secreted out of the cell.
  • the expression vector When a bacterium is used as a host cell, the expression vector generally needs to contain a replicable unit capable of autonomous replication in the host cell, in addition to the promoter region and the overnight-mine-one-night region.
  • the Promo Overnight region contains the Promo Overnight, Operator and Shine-Dalgarno (SD) sequences.
  • SD Shine-Dalgarno
  • SP ⁇ 1 Promoter SP02 Promoter, penP Promoter, etc.
  • the host is actinomycetes, melC, tipA, ermE, aph l and the like.
  • a commonly used natural or synthetic terminator can be used.
  • the selection gene a resistance gene to various drugs such as tetracycline, ampicillin, kanamycin, and thiostrepton can be used.
  • ATG is usually used as the initiation codon, but GTG can be used in some cases.
  • As the stop codon conventional TGA, TAA and TAG are used.
  • a gene encoding the cyclic lipopeptide acylase of the present invention is prepared from a genomic DNA derived from a cell or tissue that produces the enzyme, and is obtained in a form containing an original promoter and an evening motif region.
  • the expression vector of the present invention can be prepared by inserting the DNA into an appropriate site of a known cloning vector capable of maintaining replication or autonomous propagation in a host cell to be transformed. it can.
  • the host is a bacterium, E. coli-derived PBR-based vectors, pUC-based vectors, etc., or B.
  • subtilis-derived pUB110 subtilis-derived pUB110, pTP5, pC194, etc., or actinomyces-derived pIJ702, pSKI ⁇ p SK 2, SCP 2, SCP 1.2, pGA482. PMCXpress, and the like.
  • the transformant of the present invention can be prepared by transforming a host cell with a recombinant vector containing the gene encoding the cyclic lipopeptide acylase of the present invention.
  • the host cell is not particularly limited as long as it is compatible with the recombinant vector to be used and can be transformed, and naturally-occurring cells or artificially produced mutants commonly used in the art.
  • Various cells such as cells or recombinant cells can be used.
  • Preferred are bacteria, especially Escherichia coli, Bacillus subtilis, and actinomycetes, and more preferably Streptomyces bacterium, which is a kind of actinomycetes.
  • a recombinant vector into a host cell can be carried out using a conventionally known method.
  • the host is a bacterium such as Escherichia coli or Bacillus subtilis
  • the method of Cohen et al. Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)]
  • the protoplast method [Mol. Gen. Genet. , 168: 111 (1979)]
  • the competent method J. Mol. Biol., 56: 209 (1971)].
  • the present invention also provides a cyclic lipopeptide acylase.
  • the cyclic lipopeptide acylase of the present invention can be obtained by culturing any transformant containing an expression vector functionally containing a gene encoding the above cyclic lipopeptide acylase in a suitable medium. It can be produced by collecting the enzyme from the culture. Isolation and purification can be performed by appropriately combining various commonly used separation techniques as described above, depending on the fraction in which the cyclic lipopeptide acylase activity is present. When manufacturing on a per-subunit basis, It can be produced in a similar manner by using an expression vector functionally containing a gene encoding each subunit.
  • the nutrient medium used includes carbohydrates such as glucose, xylose, galactose, glycerin, starch, dextrin and the like as carbon sources, and other carbon sources such as maltose, rhamnose, raffinose, arabinose, and the like. Mannose, salicin, sodium succinate, fructose, mannitol, glucitol, lactose, sorbose, sucrose and the like.
  • carbohydrates such as glucose, xylose, galactose, glycerin, starch, dextrin and the like as carbon sources, and other carbon sources such as maltose, rhamnose, raffinose, arabinose, and the like.
  • Preferred nitrogen sources include inorganic or organic nitrogen sources (e.g., ammonium sulfate, ammonium chloride, casein hydrolyzate, yeast extract, polypeptone, bactotripton, beef extract, soy flour, wheat germ, potato protein). , Rice bran, peanut powder, gluten, corn extract, etc.).
  • other nutrient sources eg, inorganic salts (eg, sodium or potassium diphosphate, dipotassium hydrogen phosphate, magnesium chloride, magnesium sulfate, calcium chloride), vitamins (eg, vitamin B 1), antibiotics (eg, ampicillin, kanamycin, thiostrepton), etc.] may be added to the medium.
  • an antifoaming agent such as liquid paraffin, fatty oil, vegetable oil, or silicone may be added as necessary.
  • Culture of the transformant is usually performed at pH 4 to 9, preferably 6 to 7, 15 to 35, and preferably 25 to 35 ° C for 10 to 144 hours.
  • the method for desacylating the acyl group on the side chain of the cyclic lipopeptide substance according to the present invention comprises the steps of:
  • the transformant is cultured in an appropriate medium, and the resulting culture is used as it is to contact a cyclic lipopeptide substance to deacylate a side chain acryl group into an amino group.
  • a cyclic lipopeptide substance is brought into contact with the bacterial cell extract to convert the acyl group in the side chain of the substance to an amino group. And desylation.
  • the culture after completion of the culture is centrifuged or filtered to recover the cells, and the cells are suspended in an appropriate buffer, for example, an acetic acid buffer.
  • an appropriate buffer for example, an acetic acid buffer.
  • the supernatant obtained by disrupting the cells by ultrasonic treatment or the like and then centrifuging them may be used as a cell extract.
  • a desacylated cyclic lipopeptide substance can be obtained.
  • the cyclic lipopeptide substance serving as a substrate of the cyclic lipopeptide acylase of the present invention refers to a substance having a polypeptide ring and having an ⁇ acylamino group '' as a side chain on the ring, and this substance is a further substance. It may have a side chain.
  • these described in W0997 / 32975 can be mentioned.
  • cyclic lipobeptide substance is FR091379 substance, which is a microorganism Coleophoma sp. Strain F-11899 (FERM BP-2635; the strain is a biotechnology industrial technology research institute (Japan).
  • a known substance with antifungal activity Japanese Unexamined Patent Publication (Kokai) No. 3-103, which is deposited at Tsukuba East 1-chome, Ibaraki Prefecture, Japan, and is produced by the original deposit date of October 26, 1989 No. 1,849,211), and a compound represented by the following structural formula [Ia].
  • An FR9101379 substance analog is a compound represented by the following general formula [I]. Or its salt
  • R 1 is an acyl group
  • R 2 is a hydroxy group or an acyloxy group
  • R 3 is a hydrogen or hydroxy group
  • R 4 is a hydrogen or hydroxy group
  • R 5 is a hydrogen or hydroxysulfonyloxy group
  • R 6 represent hydrogen or a radical group.
  • the cyclic lipopeptide acylase of the present invention deacylates the “acylamino group” on the side chain of the cyclic lipopeptide substance to lead to the “amino group”.
  • R 2 , R 3 , R 4 , R 5 and R 6 represent the same groups as described above].
  • Suitable salts of the compounds [I] and [II] are conventional non-toxic mono- or di-salts, such as metal salts, such as alkali metal salts (eg, sodium salt, potassium salt, etc.), alkali earth metal salts (eg, Calcium salt, magnesium salt, etc.), ammonium salt, W
  • Organic base addition salts eg, formic acid
  • organic bases eg, trimethylamine salt, triethylamine salt, pyridine salt, bicholine salt, dicyclohexylamine salt, N, N′-dibenzylethylenediamine salt, etc.
  • Salt acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.
  • inorganic acid addition salts eg hydrochloride, hydrobromide, iodide
  • salts with an amino acid eg, arginine, aspartic
  • a reaction solution of the deacylated cyclic lipopeptide substance specifically, the FR179642 analog represented by the general formula [II] (including the FR179642 substance)
  • Separation and purification can be performed by appropriately combining conventionally known separation and purification methods, such as vacuum concentration, lyophilization, extraction, pH adjustment, adsorption resin, ion exchange resin, crystallization, and recrystallization. .
  • Streptomyces sp. No. 6907 strain (FERM BP-5809; W09 7/3 2975); this strain is a member of the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (Tsukuba East, Ibaraki, Japan 1 0.3 mm) of the cryopreservation liquid deposited on the original deposit date on March 8, 1996 and transferred to the International Depositary (transferred on February 3, 1997).
  • S represents C or G.
  • the PCR-amplified fragment (45 bp) isolated in (1) above was treated with pCR-Script Amp Cloning Kit (Stratagene) according to the protocol to obtain the fragment in pCR-Script Amp SK (+). Into which plasmid p3S4 was inserted.
  • S represents C or G.
  • PCR-amplified fragment (53 bp) isolated in step (3) above was treated with pCR-Script Amp Cloning Kit (Stratagene) according to the protocol to obtain pCR-Script Amp SK (+). Plasmid p3Ll into which the fragment was inserted was obtained.
  • the nucleotide sequence analysis of plasmid p3Ll was performed using 310 DNA Sequencer (PerkinElmer) using the M13 sequencing primer reverse primer (New England Biolabs) by the dideoxy evening method. Sequencing was performed according to the protocol. The result is shown in figure 2.
  • acylases are coded in the order of small subunit and large subunit. Therefore, a forward primer 20S was designed based on the base sequence determined from the PCR within the known amino acid sequence of the small subunit. Similarly, reverse primer 119L was designed based on the base sequence determined from the PCR within the known amino acid sequence of the large subunit.
  • PCR amplified fragment (approximately 600 bp) isolated in step (4) above was treated with pCR-Script Amp Cloning Kit (Stratagene) according to the protocol to obtain pCR-Script Amp SK (+).
  • pCR-Script Amp SK (+) Into the plasmid pSLl.
  • the nucleotide sequence analysis of the plasmid pSLl obtained in (3) of (4) above was carried out by 310 DNA sequencer (PerkinElmer) using the M13 sequencing primers, forward primer and reverse primer (New England). Using Biolabs), sequencing was performed according to the attached protocol according to the dideoxy evening method. As a result, a part of the gene considered to be the acylase was obtained.
  • Cosmid clone No. 133 was digested with EcoRI and PstI, and the obtained fragment of about 8 kb was inserted into the EcoRI / PstI site of pUC18 to obtain plasmid pEPl. Further, plasmid pEP1 was digested with EcoRI and BamHI, and the obtained 5.5 kb fragment was inserted into the EcoRI / BamHI site of pUC18 to obtain plasmid pEB.
  • Nucleotide sequence analysis of plasmid pEB was performed using 310 DNA Sequencer (PerkinElmer) using the M13 sequencing primer, the forward primer, reverse primer (New England Biolabs) and the synthetic oligos listed in Table 1. Sequencing was performed using the nucleotides by the dideoxy luminescence method according to the attached protocol.
  • the plasmid pEB was treated with 5 U of EcoRI and then treated with 1 U of Bacterial Alkaline Phosphatase (BAP) at 37 ° C for 1 hour to dephosphorylate the 5'-terminal c.
  • Ligation High (Toyobo Co., Ltd.) ligated the two treatment solutions to construct plasmid pSB.
  • plasmid pSB By treating 5 ⁇ g of plasmid pSB with 20 U of SacI and 20 U of BamHI, a 5.7 kb SacI-BamHI fragment containing the acylase gene was obtained. Also, pIJ702 (2 jug) (ATCC 35287), a vector for actinomycetes, was treated with 10 U of Sac I and 10 U of Bgl II, and a 5.7 kb plasmid containing the acylase gene prepared above was treated. Ligation was performed in the presence of the Sac I-BamHI fragment and Ligation High (Toyobo). The license solution was prepared according to the method described in Genetic Manipulation of Streptomyces. A Laboratory Manual.
  • the cultivation period until the acylase activity reached the maximum was shortened to 2 to 3 days for the transformant Streptomyces lividans 1326 / pIJ702-SB and 7 days for Streptomyces sp. .
  • the acylase activity was measured as follows.
  • FR 90 1 379 100mg / ml FR 90 1 379 (see WO 97 Z 32 975) 0.1 ml of aqueous solution, 0.1 ml of phosphate buffer (pH 6.0), 0.1 ml of methanol, 0.6 ml of distilled water Add 0.1 ml of the culture solution to the solution and react at 37 ° C (125 rpm). After 15 minutes, the reaction is terminated by adding 1 ml of 4% acetic acid and 2 ml of distilled water. Then, the produced FR 179642 (desacylated FR 90 1379 substance) is quantified using a high performance liquid chromatograph (HPL C) under the following conditions.
  • HPL C high performance liquid chromatograph
  • a 50 OmL volumetric flask contains 5 OmL of tostrepton (50 ⁇ g / mL).
  • No PM- 1 medium (6% eclipse # 3600, 3% defatted soy flour, 0. 5% Ca C_ ⁇ 3, 0.005% Chiosu Toreputon, pH unmodified) placed, transformed strain Streptomyces Ma Isis lividans After inoculating 5 mm square cells of 1326 / pIJ702-SB, the cells were cultured at 30 ° C for 3 days.
  • Part 2. SG medium the 5 mL 5 OmL (8% malto Ichisu, 3% defatted soy flour, 3% skim wheat germ, 0. 5% C a C_ ⁇ 3, 0.00 5% Chiosu Torre Easthampton, pH The cells were inoculated into a 50 OmL flask containing (uncorrected) and cultured at 30 ° C for 3 days.
  • KC1 extract 8 mL was added to 24 mL of the fermented solution, left at 4 ° C overnight, and the supernatant obtained by centrifugation (10,000 rpm, 10 minutes) was used as a KC1 extract.
  • the KC1 extract was concentrated 10-fold with Microcon 50 (Millipore) and returned to the original volume with 0.5 M sodium phosphate buffer (pH 6.0). Molecular proteins were excluded.
  • the protein in the gel after SDS-PAGE was electrophoretically transferred to a PVDF membrane using a horizonblot (Atoka), stained with CBB, and the target band was cut with scissors. Then, it was subjected to amino terminal amino acid sequence analysis.
  • the recombinant cyclic lipopeptidoacylase obtained from a transformant obtained by introducing a gene encoding a cyclic lipopeptidase of the present invention can be produced by a conventional Streptomyces sp. No. 6907 strain or Streptomyces anulatus No. 8703.
  • the time required for the production of peptide acylase is based on a patent application No. 189644 filed in Japan filed in Japan, the contents of which are incorporated in full herein. Sequence listing free text
  • SEQ ID NO: 6 Oligonucleotide designed to act as a forced primer for amplifying DNA in the region encoding the N-terminal amino acid of FR9101379 acylase small subunit
  • SEQ ID NO: 7 Oligonucleotide designed to act as reverse primer for amplifying DNA in the region encoding the N-terminal amino acid of FR9101379 acylase small subunit
  • SEQ ID NO: 8 Oligonucleotide designed to act as a forced primer for amplifying DNA in a region encoding the N-terminal amino acid of FR9101379 large subunit of acylase
  • SEQ ID NO: 9 Copies the N-terminal amino acid of F9101379 acylase large subunit. Oligonucleotide designed to act as a reverse primer to amplify DNA in the region to be loaded
  • SEQ ID NO: 10 Former primer for amplifying DNA of the amino acid coding region between the small and large subunits of FR9101379 acylase
  • SEQ ID NO: 11 Reverse primer for amplifying DNA in a region encoding an amino acid between the small and large subunits of FR9101379 acylase
  • SEQ ID NO: 12 oligonucleotide designed to be used to convert restriction site from Eco RI site to Sac I site
  • SEQ ID NO: 13 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 14 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 15 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 16 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 17 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 18 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 19 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 20 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 21 oligo designed to act as a sequencing primer nucleotide
  • SEQ ID NO: 22 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 23 Oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 24 Oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 25 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 26 oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 27 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 28 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 30 Oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 31 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 32 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 34 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 35 Oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 36 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 37 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 38 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 39 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 40 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 41 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 42 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 43 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 4 4 Oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 47 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 4 8 Oligo designed to act as a sequence sink 'Blimer' nucleotide
  • SEQ ID NO: 49 Oligo nucleotide designed to act as sequencing primer
  • SEQ ID NO: 50 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 51 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 53 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 54 oligonucleotide designed to act as sequencing primer
  • SEQ ID NO: 55 oligonucleotide designed to act as a sequencing primer
  • SEQ ID NO: 56 oligo nucleotide designed to act as a sequencing primer
  • SEQ ID NO: 57 oligonucleotide designed to act as sequencing primer

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明細書
環状リポペプチドアシラーゼをコードする遺伝子およびその発現 技術分野
本発明は、 環状リポペプチド物質のァシル側鎖を脱ァシル化する酵素 (以下環 状リポペプチドアシラーゼともいう) 、 それをコードする遺伝子、 該遺伝子を用 いた遺伝子操作による環状リポベプチドアシラーゼの製造方法および環状リポベ プチド物質のァシル側鎖を脱ァシル化する方法に関する。
背景技術
環状リポぺプチド物質、 例えば F R 9 0 1 3 7 9物質およびその類似体のァシ ル側鎖を脱ァシル化する酵素としては、 ストレブトマイセス属に属する細菌 (例 えば Streptomyces anulatus No.4811株、 Streptomyces anulatus No.8703株、 Streptomyces sp. No.6907 株) が生産する酵素が報告されている (W 0 9 7 / 3 2 9 7 5号公報) 。 さらに、 W 0 9 7 / 4 7 7 3 8号公報には、 Oidiodendron tenuissimum IF0 6798 株、 Oidiodendron echinulatum IF0 31963 株、 Oidiodendron truncatum IF0 9951株、 Oidiodendron truncatum IF0 31812株、 Oidiodendron sp. No.30084株、 Verticill ium sp. No.30085 株が生産する酵素 が報告されている。
当該酵素の大量生産、 あるいは生産時間の短縮化が求められていた。
発明の開示
本発明は、 環状リポペプチドアシラーゼをより効率良く採取することを目的と する。 より具体的には本発明は、 当該環状リポペプチドアシラーゼのアミノ酸配 列の決定、 それをコードする遺伝子の決定、 ならびに該遺伝子を用いた遺伝子操 作による当該酵素の製造方法および環状リポぺプチド物質のァシル側鎖を脱ァシ ル化する方法の提供を目的とする。
本発明者らは、 上記目的を達成するために鋭意研究を重ねた結果、 環状リポぺ プチドアシラーゼのコ一ド領域をクローニングすることに成功し本発明を完成し た。 さらに本発明者らは該 D N Aを含む発現べクタ一を宿主細胞に導入し、 当該 環状リポペプチドァシラ一ゼ活性を発現させた。
すなわち本発明は以下の通りである。
( 1 ) 以下の(a)、 (b)または(c)の全部または一部を含む、 環状リポペプチドァ シラーゼをコ一ドする遺伝子。
(a)配列表配列番号 1で示される塩基配列からなる DN A
(b)上記(a)の D NAとス卜リンジェン卜な条件でハイブリダィズし得る DNA
( c )配列表配列番号 1で示される塩基配列において少なくとも( 1 ) 60 %の同一性、 (2)70%の同一性、 (3) 80%の同一性、 (4)90%の同一性、 または(5)95 % の同一性を有する DNA
(2) 以下の(a)または(b)のタンパク質またはその一部をコードする遺伝子。
( a)配列表配列番号 2で示されるァミノ酸配列からなるタンパク質
(b)アミノ酸配列(a)において 1若しくは数個のアミノ酸が欠失、 置換若しくは付 加されたアミノ酸配列からなり、 且つ環状リポペプチドアシラーゼ活性を有する
(3) 上記 ( 1) または (2) 記載の遺伝子を含む組換えべクタ一。
(4) 上記 ( 1) または (2) 記載の遺伝子を機能的に含む発現ベクター。
(5) 上記 (3) または (4) 記載のベクタ一で宿主細胞を形質転換して得られ る形質転換体。
(6) 上記 (4) 記載の発現べクタ一で形質転換された宿主細胞を培地中で培養 し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基をアミ ノ基へと脱ァシル化する反応を触媒し得る環状リポペプチドアシラーゼを採取す ることを含む該環状リポぺプチドアシラーゼの製造方法。
( 7 ) 上記 ( 6 ) 記載の製造方法によって製造される環状リポペプチドァシ ラ一ゼ。
(8) 以下の(a)、 (b)または(c)の全部または一部を含む、 環状リポペプチドァ シラーゼをコ一ドする遺伝子。
(a)配列表配列番号 1に示される塩基配列中塩基番号 1 06 5〜 335 9で示さ れる塩基配列からなる DN A
(b)上記(a)の DNAとストリンジェン卜な条件でハイプリダイズし得る DNA
(c)配列表配列番号 1に示される塩基配列中塩基番号 1 06 5〜335 9で示さ れる塩基配列において少なくとも(1) 60 %の同一性、 (2)70%の同一性、 (3) 80%の同一性、 (4)90%の同一性、 または(5)95%の同一性を有する DNA (9) 以下の(a)または(b)のタンパク質をコードする遺伝子。
(a)配列表配列番号 2で示されるアミノ酸配列中アミノ酸番号— 1または 1〜7 65からなるタンパク質
(b)アミノ酸配列(a)において 1若しくは数個のアミノ酸が欠失、 置換若しくは付 加されたアミノ酸配列からなり、 且つ環状リポぺプチドアシラーゼ活性を有する
( 10) 上記 (8) または (9) 記載の遺伝子を含む組換えベクター。
( 1 1) 上記 (8) または (9) 記載の遺伝子を機能的に含む発現ベクター。
( 12) 上記 ( 10) または ( 1 1) 記載のベクターで宿主細胞を形質転換して 得られる形質転換体。
( 13) 上記 ( 1 1 ) 記載の発現ベクターで形質転換された宿主細胞を培地中で 培養し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基を アミノ基へと脱ァシル化する反応を触媒し得る環状リポぺプチドアシラーゼを採 取することを含む該環状リポぺプチドアシラーゼの製造方法。
( 1 4) 上記 ( 1 3 ) 記載の製造方法によって製造される環状リポぺプチド アシラーゼ。
( 1 5) 配列表配列番号 1に示される塩基配列中塩基番号 106 5〜 3359で 示される塩基配列からなる D N Aがコードする環状リポぺプチドアシラーゼ。
( 16) 配列表配列番号 1に示される塩基配列中塩基番号 1065〜 3359で 示される塩基配列において少なくとも(1)60%の同一性、 (2)70%の同一性、 (3)80%の同一性、 (4) 90%の同一性、 または(5) 9 5%の同一性を有する D NAがコ一ドする環状リポぺプチドアシラーゼ。 ( 17) 以下の(a)または(b)のタンパク質。
(a)配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号— 1または 1〜2 00のアミノ酸配列からなるタンパク質
(b)上記(a)のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 且つ下記 ( 1 8) 記載のタンパク質と複 合体を形成して環状リポぺプチドアシラーゼ活性を示すタンパク質
( 18) 以下の(c)または(d)のタンパク質
(c)配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号 20 1〜 7 6 5の ァミノ酸配列からなるタンパク質
(d)上記(c)のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 且つ上記 ( 1 7) 記載のタンパク質と複 合体を形成して環状リポぺプチドアシラーゼ活性を示すタンパク質
( 1 9) 上記 ( 17) 記載のタンパク質をコードする DN A
(20) 上記 ( 18) 記載のタンパク質をコードする DNA
(2 1) 上記 ( 19) および (20) の少なくとも一方を含む組換えべクタ一。 (22) 上記 ( 1 9) および (20) の少なくとも一方を含む発現ベクター。 (23) 上記 (2 1 ) または (2 2) 記載のベクタ一で宿主細胞を形質転換して 得られる形質転換体。
(24) 上記 (22) 記載の発現べクタ一で形質転換された宿主細胞を培地中で 培養し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基を アミノ基へと脱ァシル化する反応を触媒し得る環状リポベプチドアシラーゼを採 取することを含む該環状リポぺプチドアシラーゼの製造方法。
( 2 5 ) 上記 ( 24 ) 記載の製造方法によって製造される環状リポぺプチド アシラーゼ。
( 26 ) 上記 (4) 、 ( 1 1 ) 、 (22) 記載の発現ベクターで形質転換された 宿主細胞を培地中で培養し、 得られる培養物またはその処理物に環状リポぺプチ ド物質を接触させる工程を含む、 環状リポぺプチド物質の側鎖のァシルァミノ基 をァミノ基へと脱ァシル化する方法。
図面の簡単な説明
図 1は、 環状リポペプチドアシラーゼ小サブュニッ 卜の一部の N末端アミノ酸配 列を決定した結果を示す図である。
図 2は、 環状リポペプチドアシラーゼ大サブユニッ トの一部の N末端アミノ酸配 列を決定した結果を示す図である。
図 3は、 ストレブトマイセス ' リビダンス 1326/pIJ702- SB の遺伝子地図である ( 発明の詳細な説明
本発明において、 環状リポペプチドアシラーゼとは、 例えば FR 90 1379 物質及びその類似体、 あるいは echinocandin B のような類縁体のァシル側鎖を 脱ァシル化する酵素である。
本発明の環状リポペプチドアシラーゼは大小 2つのサブュニッ トからなり、 各 サブュニッ トはそれそれ以下の特徴を有する。 各サブュニッ トは複合体を形成し て、 当該環状リポペプチドアシラーゼ活性を示す。
大サブュニッ ト :
①分子量:約 6 1 kDa (SD S-PAGE)
②アミノ酸分析:
N末端ァミノ酸配列が、 Ser-Asn- Ala- Val-Ala-Phe- Asp- Gly-Ser- Thr- Thr- Val- Asn-Gly-Arg-Gly-Leu-Leu-Leu-Gly (配列表配列番号 3 ) または該ァミノ酸配列 において 1個もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸 配列である。
③配列表配列番号 1に示される塩基配列中塩基番号 1 66 5〜3359で示され る塩基配列からなる DN Aまたは当該 DN Aとス トリンジェン卜な条件でハイブ リダィズし得る DNA、 若しくは当該塩基配列において少なく とも(1)60%の 同一性、 (2)70%の同一性、 (3) 80%の同一性、 (4)90%の同一性、 または (5)95 %の同一性を有する D N Aがコードするタンパク質。
④配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号 20 1〜765のァ ミノ酸配列からなるタンパク質、 若しくは当該アミノ酸配列において 1若しくは 数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ下 記小サブュニッ 卜と複合体を形成して環状リポぺプチドアシラーゼ活性を示す夕 ンパク質。
小サブュニッ ト :
①分子量:約 1 9 kD a (SD S-PAGE)
②アミノ酸分析:
N末端ァミノ酸配列が、 Gly-Ser-Gly-Leu-Ser-Ala-Val-Ile-Arg-Tyr-Thr-Glu- Tyr-Gly- Ile-Pro- His-Ile- Val- Ala (配列表配列番号 4) または該アミノ酸配列 において 1個もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸 配列
③配列表配列番号 1に示される塩基配列中塩基番号 1 065〜 16 64で示され る塩基配列からなる DNAまたは当該 DNAとス トリンジェン卜な条件でハイブ リダィズし得る DNA、 若しくは当該塩基配列において少なく とも(1) 60%の 同一性、 (2)70%の同一性、 (3)80%の同一性、 (4)90%の同一性、 または (5) 95 %の同一性を有する DN Aがコードするタンパク質。
④配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号一 1または 1〜20 0のアミノ酸配列からなるタンパク質、 若しくは当該アミノ酸配列において 1若 しくは数個のァミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 且つ上記大サブュニッ 卜と複合体を形成して環状リポペプチドアシラーゼ活性を 示すタンパク質。
本発明の環状リポぺプチドアシラーゼは、 上記の特徴を有する限りその由来に 特に限定はなく、 天然に存在する生物起源のものの他、 自然もしくは人工の突然 変異体、 あるいは変種、 すなわち外来の環状リポペプチドアシラーゼ遺伝子を導 入して得られる形質転換体由来のものも全て包含される。
人工的に突然変異体を作製する方法としては、 例えば、 部位特異的突然変異誘 発が挙げられる。 より具体的には当該方法を用いて配列表配列番号 1に示される 塩基配列に任意の変異をもたらすことにより、 変異環状リポぺプチドアシラーゼ を得ることができる。 かくして得られる変異環状リポペプチドアシラーゼは、 上 記特徴を具備している。
本発明の環状リポベプチドアシラーゼは、 (1 )該酵素を産生する細胞または組 織の培養物を原料として単離精製する方法、 (2)化学的に合成する方法または(3) 遺伝子組換え技術等により環状リポペプチドアシラーゼを発現するように操作さ れた細胞から精製する方法等の公知手法を適宜用いることによって取得すること ができる。
本発明の環状リポぺプチドアシラーゼの単離精製は、 例えば以下のようにして 行なうことができる。 すなわち適当な液体培地中で、 環状リポペプチドアシラー ゼを発現している細胞を培養し、 得られる培養物から公知の方法で抽出、 精製さ れる。 当該抽出、 精製の方法は目的生成物の存在する画分に応じて適宜公知の手 法が用いられる。
具体的には次のようにして行なわれる。 まず、 培養物をそのまま濾過又は遠心 分離等の常法に付して細胞又は上清を回収する。 細胞中に該酵素が蓄積されてい る場合には、 当該回収した細胞を適当な緩衝液剤中に懸濁して、 さらに界面活性 剤を適当な濃度で加えて膜を可溶化する。 宿主細胞が細胞壁を有する場合、 リゾ チームや超音波による前処理が必要である。 界面活性剤としてはドデシル硫酸ナ トリウム (S D S )、 セチルトリメチルアンモニゥムブロマイ ド (C T A B ) 等 が挙げられるが、 これらは強力なタンパク質変性作用を有するので、 タンパク質 が生物活性を持つように折り畳まれるためには、 例えば T r i t o n X - 1 0 0 等の穏やかな非イオン性界面活性剤を用いることが好ましい。 次いで得られる粗 抽出液を、 必要ならば界面活性剤の存在下で、 一般に用いられる方法を適宜組み 合わせることによって該酵素を単離精製する。
該酵素が培養培地中に存在する場合には、 まず培養物を濾過又は遠心分離に付 して沈澱物 (細胞等の固形物) を除去することにより、 溶液部分のみを得、 それ を一般に用いられる方法を適宜組み合わせることによって目的物質を単離精製す る。 塩析、 溶媒沈澱法等の溶解度を利用する方法、 透析、 限外濾過、 ゲル濾過、
S D S— P A G E等の分子量の差を利用する方法、 イオン交換クロマトグラフィ 一等の荷電を利用する方法、 ァフィ二ティークロマトグラフィ一等の特異的親和 性を利用する方法、 逆相高速液体クロマトグラフィ一等の疎水性の差を利用する 方法、 等電点電気泳動等の等電点の差を利用する方法等が挙げられる。 より具体 的には、 例えば、 減圧濃縮、 凍結乾燥、 常用の溶媒による抽出、 p H調整、 陰ィ オン交換樹脂または陽イオン交換樹脂、 非イオン性吸着樹脂等の常用の吸着剤に よる処理、 結晶化、 再結晶化等の慣用の方法によって分離、 精製することができ るが、 具体的には WO 9 7 / 3 2 9 7 5号公報記載の方法を参照とすればよい。 化学合成による本発明の環状リポぺプチドアシラーゼの製造は、 例えば配列表 配列番号 1に示される塩基配列を基にして、 該配列の全部または一部がコードす るアミノ酸を特定し、 該アミノ酸をべプチド合成機を用いて合成あるいは半合成 することにより行なうことができる。
環状リポぺプチドアシラーゼ遺伝子のクローニングは、 通常以下の方法により 行なわれる。 まず、 環状リポペプチドアシラーゼを産生する細胞または組織より、 通常の方法に従って該酵素を完全または部分精製し、 大サブュニッ トおよび小サ ブュニッ トそれそれの N末端アミノ酸配列をェドマン法により決定する。 また、 各サブュニッ トを配列特異的プロテアーゼで部分分解して得られるオリゴぺプチ ドのアミノ酸配列を同様にェドマン法により決定する。 決定された部分アミノ酸 配列に対応する塩基配列を有するオリゴヌクレオチドを合成し、 これをプライマ —またはプローブとして用いて、 環状リポぺプチドアシラーゼを産生する細胞ま たは組織より調製された R N Aまたは D N Aから P C R法またはコロニー (もし くはプラーク) ハイブリダイゼ一ション法によって各サブュニッ トをクローニン グする。
得られた各サブュニッ 卜の塩基配列をもとにしてオリゴヌクレオチドを合成し、 これをプライマ一として用いて、 再度環状リポぺプチドアシラ一ゼを産生する細 胞または組織より調製された R N Aまたは D N Aから P C R法またはコロニー (もしくはプラーク) ハイプリダイゼ一シヨン法を繰り返して環状リポぺプチド アシラーゼをクローニングする。
あるいは、 完全または部分精製された環状リポぺプチドアシラーゼの全部また は一部を抗原として該酵素またはそのサブュニッ トに対する抗体を常法に従って 作製し、 環状リポペプチドアシラーゼを産生する細胞または組織より調製された c D N Aまたはゲノミック D N Aライブラリ一から、 抗体スクリ一ニングにより 該酵素および/または該酵素のサブュニッ トをコードする DNAをクロ一ニング することもできる。
さらに、 上述の方法とは別に、 本発明の環状リポペプチドアシラーゼをコード する DNAは、 P CR法を用いて直接クロ一ニングすることもできる。 すなわち、 該酵素活性を有する細胞または組織由来のゲノミック DNAまたは cDNA (も しくは mRNA) を鍊型とし、 増幅断片が環状リポペプチドアシラーゼのコード 領域、 大サブユニッ トのコード領域、 もしくは小サブユニッ トのコード領域を力 バーするような適当なォリゴヌクレオチドの対をプライマ一として用いて、 常法 に従って P CRを行なうことにより当該酵素のコード領域、 大サブユニットのコ 一ド領域もしくは小サブュニッ トのコ一ド領域を含む DN A断片を増幅すること ができる。
得られた DNAインサートの塩基配列は、 マキサム ·ギルバート法ゃジデォキ シ夕一ミネ一ション法等の公知のシ一クエンス技術を用いて決定することができ る。
本発明の環状リポぺプチドアシラーゼをコードする遺伝子は、 配列表配列番号 1に示される塩基配列から実質的になる DNAの、 全部または一部を含むもので ある。 ここで 「実質的になる DNA」 とは、 上記特定の塩基配列からなる DNA に加えて、 ストリンジェン卜な条件 (本発明では、 塩基配列において約 60%以 上の相同性を有する DNAがハイブリダィズし得る条件をいい、 ストリンジェン シ一はハイプリダイズ反応や洗浄の際の温度、 塩濃度等を適宜変化させることに より調節することができる) において、 上記の特定塩基配列からなる DNAとハ ィブリダイズし得る塩基配列からなる DNA、 若しくは配列表配列番号 1で示さ れる塩基配列において少なくとも(1)60 %の同一性、 (2)70%の同一性、 (3) 80%の同一性、 (4)90%の同一性、 または(5) 9 5 %の同一性を有する DNA を意味する。 当該遺伝子がコードする環状リポペプチドアシラーゼは、 例えば F R 90 1379物質及びその類似体、 あるいは echinocandin B のような類縁体 のァシル側鎖を脱ァシル化することができ、 且つ各サブュニッ トは上述の理化学 的性質を有する。
本発明の環状リポぺプチドアシラーゼをコ一ドする遺伝子の別の態様は、 配列 表配列番号 1に示される塩基配列中塩基番号 106 5〜335 9で示される塩基 配列から実質的になる DNAの、 全部または一部を含むものである。 ここで 「実 質的になる DNA」 とは上述のとおりである。
さらに本発明は、 以下の(a)または(b)のタンパク質をコ一ドする遺伝子を提供 する。
(a)配列表配列番号 2で示されるアミノ酸配列中アミノ酸番号— 1または 1〜7 65からなるタンパク質
(b)ァミノ酸配列(a)において 1若しくは数個のァミノ酸が欠失、 置換若しくは付 加されたアミノ酸配列からなり、 且つ環状リポペプチドアシラーゼ活性を有する また、 本発明は上記環状リポペプチドアシラーゼの大サブュニッ トならびに小 サブュニッ トをコ一ドする遺伝子を提供する。
本発明の遺伝子はいかなる方法で得られるものであってもよい。 例えば、 mR NAから調製される相補 DNA (cDNA)s ゲノミックライブラリーから調製 されるゲノミヅク DNA、 化学的に合成される DNA、 RNA又は DNAを錶型 として P CR法により増幅させて得られる DN A及びこれらの方法を適当に組み 合わせて構築される DN A等が含まれる。
本発明はまた、 上記のいずれかの遺伝子を含有する組換えべクタ一に関する。 本発明の組み換えべクタ一は、 原核細胞および Zまたは真核細胞の各種の宿主内 で複製保持または自律増殖できるものであれば特に限定されず、 プラスミ ドべク 夕一およびファージベクター等が包含される。 当該組換えべクタ一は、 簡便には 当分野において入手可能なクローニングベクタ一または発現べクタ一に上記のい ずれかの D N Aを適当な制限酵素部位を利用して挿入することによって調製する ことができる。
特に、 本発明の組換えベクターは環状リポベプチドアシラーゼをコ一ドする遺 伝子を機能的に含む発現べクタ一である。 ここで 「機能的に」 とは、 そのべクタ —に適合する宿主細胞内で該遺伝子 (D N A ) が転写され、 それにコードされる タンパク質が産生され得るように該遺伝子が配置されていることを意味する。 好 ましくは、 プロモーター領域、 開始コ ドン、 環状リポペプチドアシラーゼまたは その各サブュニッ トをコードする遺伝子、 終止コ ドンおよび夕一ミネ一夕一領域 が連続的に配列された発現カセッ 卜を有するベクターである。 用いられる発現べ ク夕一としては、 原核細胞および Zまたは真核細胞の各種宿主細胞内で機能して、 その下流に配置された遺伝子を発現させ得るプロモー夕一領域と、 該遺伝子の転 写を終結させるシグナル、 すなわち夕一ミネ一夕一領域を含有し、 該プロモー夕 一領域と該夕ーミネ一夕一領域とが少なくとも 1つのユニークな制限酵素認識部 位を含む配列を介して連結されたものであれば特に制限はないが、 形質転換体選 択のための選択マーカ一遺伝子をさらに含有していることが好ましい。 さらに所 望により、 該発現べクタ一は開始コ ドンおよび終止コ ドンを、 それそれプロモー 夕一領域の下流および夕一ミネ一夕一領域の上流に含んでいてもよい。
環状リポペプチドアシラーゼの大サブユニッ ト (あるいは小サブユニッ ト) を コードする遺伝子を含む発現べクタ一を環状リポぺプチドアシラーゼの製造の為 に使用する場合には、 当該 D N Aに加えて、 小サブユニッ ト (あるいは大サブュ ニヅ ト) をコードする D N Aを宿主細胞内で発現し得る形態で含有する発現べク 夕一を用いる。 大サブユニッ トをコードする D N A、 小サブユニッ トをコードす る D N Aはそれそれ別のプロモーターの制御下に置かれていても良く、 あるいは 同一のプロモ一夕一の制御下にタンデムに配置されていてもよい。 取得を目的として環状リポぺプチドアシラーゼを培地中へ分泌させるためには 本発明の発現べクタ一はシグナル配列を機能的に含有していることが好ましい。 当該シグナル配列は宿主細胞の夕ンパク質の分泌機構が認識できるものであれば 特に限定されないが、 宿主細胞が放線菌の場合、 本発明の環状リポペプチドァシ ラーゼをコードする遺伝子とその由来を同じくするス トレプトマイセス属のもの が好ましい。 該シグナル配列は細胞内のプロテア一ゼにより切断除去されて成熟 タンパク質が細胞外に分泌される。
宿主細胞として細菌を用いる場合、 一般に発現べクタ一は上記のプロモーター 領域および夕一ミネ一夕一領域に加えて宿主細胞内で自律複製し得る複製可能単 位を含む必要がある。 プロモ一夕一領域には、 プロモ一夕一、 オペレーターおよ び Shine- Dalgarno ( S D) 配列が含まれる。 例えば、 宿主が大腸菌の場合には、 プロモーター領域として T r pプロモ一夕一、 l a cプロモーター、 r e cAプ 口モーター、 ιρρプロモーター、 t a cプロモ一夕一等が、 また、 宿主が枯草 菌の場合には、 プロモ一夕一領域として S P◦ 1プロモー夕一、 S P02プロモ —ター、 p e nPプロモ一夕一等が、 宿主が放線菌の場合には、 me l C、 t i pA、 e rmE、 aph l等が挙げられる。 夕一ミネ一夕一領域としては、 通常 使用されている天然または合成のターミネータ一を用いることができる。 また、 選択マ一力一遺伝子としては、 テトラサイクリン、 アンピシリン、 カナマイシン、 チォストレプトン等の各種薬剤に対する耐性遺伝子を用いることができる。 開始 コドンとしては通常 ATGが用いられるが、 場合によって GTGを使用すること もできる。 終止コドンとしては常用の T GA、 T A Aおよび TAGが用いられる。 本発明の環状リポぺプチドアシラーゼをコ一ドする遺伝子が該酵素を産生する 細胞または組織由来のゲノミック DN Aから調製され、 本来のプロモーターおよ び夕一ミネ一ター領域を含有する形態で得られる場合には、 本発明の発現べクタ —は、 形質転換しょうとする宿主細胞内で複製保持または自律増殖できる公知の クローニングベクターの適当な部位に該 DN Aを挿入することによって調製する ことができる。 用いられるクローニングベクターとしては、 宿主が細菌の場合、 大腸菌由来の P BR系べクタ一、 pUC系べクタ一等、 あるいは枯草菌由来の p UB 1 10、 p TP 5、 p C 1 94等、 あるいは放線菌由来の p I J 702、 p SKIヽ p SK 2、 S CP 2、 S C P 1. 2、 p G A 482. pMCXp r e s s等が例示される。
本発明の形質転換体は、 本発明の環状リポペプチドアシラーゼをコードする遺 伝子を含有する組換えベクターで宿主細胞を形質転換することにより調製するこ とができる。 宿主細胞は使用する組換えべクタ一に適合し、 形質転換され得るも のであれば特に限定されず、 当分野で通常使用される天然に存在する細胞あるい は人工的に作製された変異体細胞もしくは組換え体細胞など種々の細胞が利用で きる。 好ましくは細菌、 特に大腸菌、 枯草菌、 および放線菌等であり、 より好ま しくは放線菌の一種であるストレブトマイセス属細菌である。
組換えベクターの宿主細胞への導入は従来公知の方法を用いて行なうことがで きる。 例えば、 宿主が大腸菌や枯草菌等の細菌の場合には、 Cohen らの方法 [Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)] 、 プロ トプラス ト法 [Mol. Gen. Genet., 168: 111 (1979)] およびコンビテン ト法 [J. Mol. Biol., 56: 209 (1971)] 等が挙げられる。
宿主が放線菌、 特にス トレブトマイセス属細菌の場合は、 transformation Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foudation, Norwich, UK, 1985.に記載されている方法(PEG-assisted protoplast transformation)等が挙げられる。
本発明はまた環状リポペプチドアシラーゼを提供する。
本発明の環状リポぺプチドアシラーゼは、 上記の環状リポぺプチドアシラーゼ をコ一ドする遺伝子を機能的に含む発現ベクターを含有するいずれかの形質転換 体を適当な培地中で培養し、 得られる培養物から当該酵素を採取することにより 製造することができる。 単離精製については環状リポペプチドアシラーゼ活性の 存在する画分に応じて、 上述の如く、 通常使用される種々の分離技術を適宜組み 合わせることにより行なうことができる。 各サブュニッ ト単位で製造する場合は、 各サブュニッ トをコードする遺伝子を機能的に含む発現べクタ一を用いることで、 同様にして製造し得る。
用いられる栄養培地としては、 炭素源としてグルコース、 キシロース、 ガラク トース、 グリセリン、 スターチ、 デキストリン等のような炭水化物が挙げられ、 他の炭素源としてはマルト一ス、 ラムノース、 ラフイ ノ一ス、 ァラビノース、 マ ンノース、 サリシン、 コハク酸ナト リウム、 フルク トース、 マンニ トール、 グル シトール、 ラク ト一ス、 ソルボース、 シュクロ一ス等が挙げられる。
好ましい窒素源としては、 無機もしくは有機窒素源 (例えば硫酸アンモニゥム.、 塩化アン乇ニゥム、 カゼインの加水分解物、 酵母抽出物、 ポリペプトン、 バク ト トリプトン、 ビーフ抽出物、 大豆粉、 小麦胚芽、 ポテトプロテイン、 米ぬか、 ピ —ナッツパウダー、 グルテン、 コーン抽出物等) を含んでいてもよい。 さらに所 望により、 他の栄養源 〔例えば、 無機塩 (例えば、 二リン酸ナトリウムまたは二 リン酸カリウム、 リン酸水素二カリウム、 塩化マグネシウム、 硫酸マグネシウム、 塩化カルシウム)、 ビタミン類 (例えば、 ビタミン B 1 )、 抗生物質 (例えば、 アンピシリン、 カナマイシン、 チォストレプトン) 等〕 を培地中に添加してもよ い。
特に培養培地が著しく発泡する場合には、 必要に応じて液状パラフィ ン、 脂肪 油、 植物油、 シリコーン等の消泡剤を添加してもよい。
形質転換体の培養は、 通常 p H 4〜9、 好適には 6〜 7、 1 5〜3 5 、 好適 には 2 5〜3 5 °Cで 1 0 ~ 1 4 4時間で行われる。
本発明の環状リポぺプチド物質の側鎖のァシル基を脱ァシル化する方法は、 上 記の環状リポペプチドアシラーゼをコードする D N Aを機能的に含む発現べク夕 一を含有するいずれかの形質転換体を適当な培地中で培養し、 得られる培養物を そのまま用いて環状リポペプチド物質を接触させることにより、 該物質の側鎖の ァシル基をァミノ基へと脱ァシル化させる。 あるいは当該酵素活性が該形質転換 体の菌体内画分に存在する場合にはその菌体抽出液に環状リポぺプチド物質を接 触させることにより、 該物質の側鎖のァシル基をアミノ基へと脱ァシル化させる。 菌体抽出液に環状リポベプチド物質を接触させる場合には、 培養終了後の培養 物を遠心分離または濾過して菌体を回収し、 これを適当な緩衝液、 例えば酢酸緩 衝液中に懸濁して、 超音波処理等により菌体を破砕した後遠心処理して得られる 上清を菌体抽出液として使用すればよい。
また、 環状リポぺプチドアシラーゼを生産する宿主細胞を当該環状リポぺプチ ド物質存在下で培養することによつても、 脱ァシル化した環状リポぺプチド物質 を得ることができる。
本発明の環状リポぺプチドアシラーゼの基質となる環状リポぺプチド物質とは、 ポリペプチド環を有し、 該環上に側鎖として 「ァシルァミノ基」 を有する物質を いい、 この物質はさらに他の側鎖を有していてもよい。 例えば W 0 9 7 / 3 2 9 7 5号公報に記載されたものが挙げられる。
該 「環状リポベプチド物質」 の一例である F R 9 0 1 3 7 9物質は微生物 Coleophoma sp. F-11899 株(FERM BP- 2635 ;当該株は通商産業省工業技術院生命 工学工業技術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号) に寄託されてい る、 原寄託日平成元年 1 0月 2 6日)によって生産される抗真菌活性を持った既 知物質 (特開平 3 - 1 8 4 9 2 1号公報) であり、 下記構造式 [ I a ] で示され る化合物である。
Figure imgf000016_0001
また、 F R 9 0 1 3 7 9物質類似体とは、 下記一般式 [ I ] で示される化合物 またはその塩をいう
Figure imgf000017_0001
[式中 R1はァシル基、 R2はヒドロキシ基またはァシルォキシ基、 R3は水素ま たはヒ ドロキシ基、 R 4は水素またはヒ ドロキシ基、 R 5は水素またはヒドロキ シスルホニルォキシ基、 および R6は水素または力ルバモイル基を意味する] 本発明の環状リポペプチドアシラーゼは、 環状リポペプチド物質の側鎖の 「ァ シルァミノ基」 を脱ァシル化して、 「ァミノ基」 へと導くものであり、 具体的に は FR 90 1379物質またはその塩のパルミ トイル側鎖あるいは FR 90 13 79物質を含む前記一般式 [ I ] で示されるアシラーゼ FR 90 1 379物質類 似体またはその塩のァシル側鎖を脱ァシル化して環状リポペプチド物質、 具体的 には、 下記構造式 [Ila] で示される化合物 (FR 1 79 642物質) またはそ の塩
Figure imgf000018_0001
あるいは FR 179642物質を含む下記一般式 [II] で示される FR 1796 42類似体またはその塩
Figure imgf000018_0002
[式中、 R2、 R3、 R4、 R5および R6は前記と同じ基を意味する] を生産さ せるアシラーゼである。
化合物 [I] および [II] の好適な塩は慣用の無毒性のモノまたはジ塩であつ て、 金属塩、 例えばアルカリ金属塩 (例えばナトリウム塩、 カリウム塩等)、 ァ ルカリ土類金属塩 (例えばカルシウム塩、 マグネシウム塩等)、 アンモニゥム塩、 W 有機塩基との塩 (例えば、 トリメチルァミン塩、 トリェチルァミン塩、 ピリジン 塩、 ビコリン塩、 ジシクロへキシルァミン塩、 N, N' —ジベンジルエチレンジ アミン塩等) 等、 有機酸付加塩 (例えばギ酸塩、 酢酸塩、 トリフルォロ酢酸塩、 マレイン酸塩、 酒石酸塩、 メタンスルホン酸塩、 ベンゼンスルホン酸塩、 トルェ ンスルホン酸塩等)、 無機酸付加塩 (例えば塩酸塩、 臭化水素酸塩、 ヨウ化水素 酸塩、 硫酸塩、 リン酸塩等)、 アミノ酸 (例えばアルギニン、 ァスパラギン酸、 グルタミン酸等) との塩等が挙げられる。
脱ァシル化反応終了後、 脱ァシル化された環状リポペプチド物質、 具体的には 一般式 [II] で示される FR 1 7 9 642類似体 (FR 1 7 9 642物質を含 む) の反応液からの分離 ·精製は、 従来公知の分離 '精製法、 例えば減圧濃縮、 凍結乾燥、 抽出、 pH調整、 吸着樹脂、 イオン交換樹脂、 晶析、 再結晶等の方法 を適宜組み合わせて行なうことができる。
実施例
以下に本発明を具体的に説明するため実施例を示すが、 本発明はこれら実施例 によって何ら制限されるものではない。
なお、 本発明において使用する多くの技法、 反応及び分析方法は当業者らに自 体周知のものである。 又、 酵素、 プラスミ ド、 宿主等は特に記載のない場合は商 業的に入手可能なものである。
実施例 1 Streptomyces sp. No.6907 株が生産する環状リポぺプチ ドアシラ —ゼ ( F R 9 0 1 3 79アシラーゼ) のクロ一ニング
( 1) Streptomyces sp. No.6907株の染色体 D N Aの調製
Streptomyces sp. No.6907 株 (FERM BP- 5809; W09 7/3 2 9 7 5号公 報; 当該株は通商産業省工業技術院生命工学工業技術研究所 (日本国茨城県つく ば巿東 1丁目 1番 3号) に寄託されている、 原寄託日平成 8年 3月 8日、 国際寄 託曰 (移管) 平成 9年 2月 3日) の凍結保存液の 1白金耳を 0. 3%酵母エキス、 0. 5 %ペプトン、 0. 3%麦芽エキス、 1 %グルコース、 5 %シュクロース、 5mM MgCl2、 0. 5 %グリシンからなる培地 ( p H 6. 5 ) で 30 °C、 48 時間培養した。 培養液 10mlを遠心 (5, 000 rpm、 10分間) により 集菌した後、 QIAGEN Genomic tip 20/G (キアゲン社) を用い、 プロ トコ一ルに 従って処理することで、 染色体 DNAを調製した。
(2) 小サブュニッ 卜の解析
①小サブュニッ トの既知アミノ末端アミノ酸配列からの P CR用プライマ一の設 計
FR 901379アシラーゼの小サブュニッ 卜のアミノ末端アミノ酸配列 Gly Ser Gly Leu Ser Ala Val lie Arg Tyr Thr Glu Tyr Gly lie Pro His His Val Ala (配列表配列番号 5) (WO 97/32975号公報)
〔尚、 当該小サブユニッ トのァミノ末端アミノ酸配列は、 後日詳細な分析により 正確な配列が Gly Ser Gly Leu Ser Ala Val lie Arg Tyr Thr Glu Tyr Gly lie Pro His lie Val Ala (配列表配列番号 4) であることがわかった。〕
から以下のフォワードプライマ一 (SF3) とリバースプライマ一 (SR2) を設計し た。
SF3 -CTS TCS GCS GTS ATC (配列表配列番号 6)
SR2 -GTG GTG SGG GAT SCC (配列表配列番号 7 )
S:Cまたは Gを表す。
②小サブュニッ 卜の既知アミノ末端アミノ酸配列から設計したプライマーを用い ての P C
上記 (1) で調製した Streptomyces sp. No.6907株の染色体 D N A 100 n gおよび上記①で設計した各プライマー l nmo lを用いて、 GeneAmp PCR System Model 2400 (パ一キンエルマ一社) を使用して P C Rを行なった。 反応 混液 5 0 1 〔P CR緩衝液中、 0. 2 mM各 dNT P sおよび KOD Dash (東 洋紡社) 1. 5ユニッ ト〕 を、 98°Cでの変性 20秒間、 60°Cでのァニ一リン グ 2秒間、 および 74 °Cでのポリメリゼ一シヨン 10秒間からなる PCRに 30 回供した。 増幅後、 小サブュニッ 卜の既知アミノ末端の一部をコ一ドする断片 (45 b p) を 5%ァガロースゲル電気泳動によって単離した。 ③ P CR断片のクローニング
上記②で単離した P C R増幅断片 (4 5 b p) を pCR-Script Amp Cloning Kit (ス トラタジーン社) を用い、 プロ トコ一ルに従って処理することで、 pCR - Script Amp SK( + )に該断片を挿入したプラスミ ド p3S4を得た。
④塩基配列分析
上記③で得られたプラスミ ド p3S4の塩基配列分析を 310 DNAシークェンサ一 (パーキンエルマ一社) にて、 M13 シークェンシングプライマ一であるリバース プライマ一 (New England Biolabs 社) を用いて、 ダイデォキシ夕一ミネ一ショ ン法により、 添付のプロ トコールに従ってシ一クェンシングを行った。 結果を図 1に示す。
(3) 大サブュニッ 卜の解析
①大サブュニッ トの既知アミノ末端アミノ酸配列からの P CR用プライマ一の設 計
FR 90 1 379アシラーゼの大サブュニヅ トのアミノ末端アミノ酸配列 Ser Asn Ala Val Ala Phe Asp Gly Ser Thr Thr Val Asn Gly Arg Gly Leu Leu Leu Gly (配列表配列番号 3) (WO 97/32975号公報)
から以下のフォワードプライマ一 (LF2) とリバースプライマ一 (LR) を設計し た。
LF2 - CS GTS GCS TTC GAC GG (配列表配列番号 8)
LR - SCC SAG SAG SAG SCC (配列表配列番号 9)
S:Cまたは Gを表す。
②大サブュニッ 卜の既知アミノ末端アミノ酸配列から設計したプライマ一を用い ての P CR
上記 ( 1 ) で調製した Streptomyces sp. No.6907株の染色体 D N A 100 n gおよび上記 (3) の①で設計した各プライマ一 1 nmo 1を用いて、 GeneAmp PCR System Model 2400 (パ一キンエルマ一社) を使用して P C Rを行なった。 反応混液 50〃L 〔P CR緩衝液中、 0. 2mM各 dNTP sおよび K0D Dash (東洋紡社) 1. 5ユニッ ト〕 を、 98°Cでの変性 20秒間、 65°Cでのァニー リング 2秒間、 および 74°Cでのポリメリゼ一シヨン 10秒間からなる P CRに 30回供した。 増幅後、 大サブユニッ トの既知アミノ末端の一部をコードする断 片 (53 bp) を 5%ァガロースゲル電気泳動によって単離した。
③ P CR断片のクローニング
上記 ( 3 ) の②で単離した P C R増幅断片 ( 5 3 b p ) を pCR- Script Amp Cloning Kit (ストラタジーン社) を用い、 プロ トコールに従って処理すること で、 pCR-Script Amp SK( + )に該断片を挿入したプラスミ ド p3Llを得た。
④塩基配列分析
プラスミ ド p3Llの塩基配列分析を 310 DNAシークェンサ一 (パーキンエルマ 一社) にて、 M13 シークェンシングプライマ一であるリバースプライマー (New England Biolabs 社) を用いて、 ダイデォキシ夕一ミネーシヨン法により、 添付 のプロトコールに従ってシークェンシングを行った。 結果を図 2に示す。
(4) FR 90 1379アシラーゼの解析
①小、 大サブユニッ ト間での P CRのためのプライマ一の設計
今まで知られているアシラーゼでは、 そのほとんどが小サブユニッ ト、 大サブ ュニッ トの順に並んでコ一ドされている。 そこで小サブュニッ 卜の既知アミノ酸 配列内での P CRから決定した塩基配列をもとに、 フォワードプライマ一 20S を 設計した。 同様に、 大サブユニッ トの既知アミノ酸配列内での P CRから決定し た塩基配列をもとに、 リバースプライマ一 19Lを設計した。
20S -ATC CGG TAC ACG GAG TAC GG (配列表配列番号 10)
19L -C GTT CAC CGT CGT GGA GCC (配列表配列番号 1 1 )
②小、 大サブュニッ ト間での PC R
上記 ( 1 ) で調製した Streptomyces sp. No.6907株の染色体 DNA 1 00 n gおよび上記 ( 4 ) の①で設計した各プライマ一 2 0 p m o 1を用いて、 GeneAmp PCR System Model 2400 (パーキンエルマ一社) を使用して P CRを行 なった。 反応混液 50〃 1 〔P CR緩衝液中、 0. 2 mM各 dNTP sおよび KOD Dash (東洋紡社) 2. 5ユニッ ト〕 を、 98 °Cでの変性 20秒間、 70°Cで のァ二一リング 2秒間、 および 74°Cでのポリメ リゼーシヨン 20秒間からなる P CRに 30回供した。 増幅後、 該アシラーゼの一部をコードする断片 (約 60 0 bp) を 2 %ァガロースゲル電気泳動によって単離した。
③ P CR断片のクロ一ニング
上記 (4) の②で単離した P CR増幅断片 (約 600 bp) を pCR- Script Amp Cloning Kit (ストラタジーン社) を用い、 プロ トコールに従って処理する ことで、 pCR- Script Amp SK( + )に該断片を挿入したプラスミ ド pSLlを得た。
④塩基配列分析
上記 (4 ) の③で得られたプラスミ ド pSLlの塩基配列分析を 310 DNAシーク ェンサ一 (パーキンエルマ一社) にて、 M13 シークェンシングプライマ一である フォワードプライマ一およびリバースプライマ一 (New England Biolabs社) を 用いて、 ダイデォキシ夕一ミネーシヨン法により、 添付のプロ トコ一ルに従って シークェンシングを行った。 その結果、 該アシラーゼと思われる遺伝子の一部を 取得できた。
( 5 ) 染色体 DN Aライブラリ一の調製
上記 ( 1) で調製した Streptomyces sp. No.6907株の染色体 DNA 1 gを Sau3A 1(100 mU)で 37°C、 10分間処理することで、 部分消化した。 また、 コ スミ ド pcos6EMBL (Gene, 57, 229-237 (1987)参照) l〃gを BamH I 5Uで 3 7 °C、 1時間処理した。 両処理液をエタノール沈殿後、 2倍希釈 TE (5 mM Tris-HCl (pH8.0), 0.5 mM) 5〃 1で溶解後、 10x T4 DNA ligase bufer (660 mM Tris-HCl (pH7.6), 66 mM MgCl2,100 mM DTT, 1 mM ATP) 0. 7 / 1と T4 DNA ligase 0. 7 1を加え、 22°C、 3時間保温した。 このライゲ一シヨン 液 3 1を GIGAPACK III XL Packaging Extract (ストラ夕ジーン社) を用い、 プロ トコ一ルに従いインビトロ ·パッケージングした。 このパッケージング液を 指示菌 E. coli XL-1 Blue MRAに接触させることで、 コスミ ドライブラリーを構 築した。 (6) コロニー直接 P CRによるスクリーニング
上で得られた 480個のコスミ ドクローンを、 プライマ一 20Sおよび 19L各 20 pmol を用いて、 GeneAmp PCR System Model 2400 (パーキンエルマ一社) を使用 してコロニー直接 P CRを行なった。 反応混液 20〃 1 〔P CR緩衝液中、 ◦ . 2mM各 dNTP sおよび KOD Dash (東洋紡社) 2. 5ユニッ ト〕 を、 98 °C での変性 20秒間、 68°Cでのァニ一リング 2秒間、 および 74°Cでのポリメリ ゼ一シヨン 20秒間からなる P CRに 30回供したところ、 約 600 b pの断片 が特異的に増幅したコスミ ドクローン No. 133を得た。
(7) コスミ ドクローン No. 133のサブクロ一ニング
コスミ ドクローン No. 1 33を EcoR I と Pst Iで消化し、 得られた約 8 k bの断片を pUC18の EcoR I/Pst I サイ トに揷入することで、 プラスミ ド pEPl を得た。 さらに、 プラスミ ド pEPl を EcoR I と BamH Iで消化し、 得られた約 5. 5 kbの断片を pUC18の EcoR I/BamH I サイ 卜に挿入することで、 プラスミ ド pEBを得た。
(8) 塩基配列分析
プラスミ ド pEBの塩基配列分析を 310 DNAシークェンサ一 (パーキンエルマ —社) にて、 M13 シークェンシングプライマ一であるフォワードプライマー、 リ バースプライマ一 (New England Biolabs 社) および表 1に記載する合成オリゴ ヌクレオチドを用いて、 ダイデォキシ夕一ミネ一シヨン法により、 添付のプロト コールに従ってシークェンシングを行った。
表 1
AC 1 CAA CTG CGC GTA GTC C (配列表配列番号 1 3)
AC 2 CAT GGG TTC CAA CGC G (配列表配列番号 1 4)
AC 3 GCT GTC AAC CGT CTG G (配列表配列番号 1 5)
AC 4 ACG CGC TGA ACG ATC C (配列表配列番号 1 6)
AC 5 CGG ACC TGG ACC TAC C (配列表配列番号 1 7)
AC 6 GTG GGT GAA CAC GAT CG (配列表配列番号 1 8)
AC 7 GAC CTT CAG CGG CAG C (配列表配列番号 1 9)
AC 8 CAA GTG GTG TGC GGC G (配列表配列番号 20)
AC 9 GTC GCT GGG CAT CTG G (配列表配列番号 21 )
AC 10 GCT GCT GAC GTA CTC c (配列表配列番号 22)
AC 11 GTC AAC CGC ATG GTC C (配列表配列番号 23)
AC 12 ATC GCC TGG ATC GTC G (配列表配列番号 24)
AC 13 CGT CAG CGC GAT CAC c (配列表配列番号 25)
AC14 GGT GTA CAG CAG CTG C (配列表配列番号 26)
AC15 CTC CCT CGT CCT GAC c (配列表配列番号 27)
AC 16 GAG TTG TGC GCG TAG G (配列表配列番号 28)
AC 17 TGA CGC TTG GCC GTC C (配列表配列番号 29)
AC18 GAC TAC GCG CAG TTG G (配列表配列番号 30)
AC 19 TAC AAC GCG TGG ATC G (配列表配列番号 31 )
AC20 GGT GAT CCG GTT CTG C (配列表配列番号 32)
AC2 1 GGG TAG TGC GGG TTG C (配列表配列番号 33)
AC22 CTG CAT CAG CTC AGC C (配列表配列番号 34)
AC23 GTC CAC CAC TGG GTG C (配列表配列番号 35)
AC24 GAA GCG GGG TAG GTG G (配列表配列番号 36)
AC25 CCG GTG CTG AAG AAC C (配列表配列番号 37)
AC26 CTG CCG CTG AAG GTC C (配列表配列番号 38)
AC2 7 TCG AAC GGC GTC CTC C (配列表配列番号 39)
AC2 8 TGG AGG ACG CCG TTC G (配列表配列番号 40)
AC29 GCC TGG ATG TAG CTG G (配列表配列番号 41 )
AC30 GGA CAT CGC GCG TC G (配列表配列番号 42)
AC31 CGA ACG CGC GAT GTC C (配列表配列番号 43)
AC32 CCG TGA CCA TGC GTG C (配列表配列番号 44)
AC33 GCA CGC ATG GTC ACG G (配列表配列番号 45)
AC34 GAG GAG ACC TAC CTC G (配列表配列番号 46)
AC35 AGG TCC CGC TAC GAC G (配列表配列番号 47)
AC36 GAC CAT GCG GTT GAC G (配列表配列番号 48)
AC37 CAG TC CGC CTC GTC G (配列表配列番号 49)
AC38 CAG GTG GAC GTT GTC G (記列表配列番号 50)
AC39 GTC GCT GAC GAT CAC G (E列表配列番号 51 )
AC40 GTG ATC GTC AGC GAC C (配列表配列番号 52)
AC4 1 GGC GGT GAT GAA GTC G (配列表配列番号 53)
AC42 CGA CTT CAT CAC CGC C (配列表配列番号 54)
AC 3 GGC GAC TC TC ACC G (配列表配列番号 55)
AC44 CGG TGA AGA AGT CGC C (SB列表配列番号 56)
AC45 CCA GAC GGT TGA CAG C (E列表配列番号 57) 塩基配列の解析により、 〇R Fが見いだされ、 その中に小サブユニッ トおよび 大サブュニッ トのァミノ末端アミノ酸配列に対応する DN A配列がすべて含まれ ていた。 このアシラーゼ遺伝子を含むプラスミ ド pEBの塩基配列を配列表配列番 号 1に示す。
実施例 2 環状リポペプチドアシラーゼの宿主細胞での発現
( 1 ) ストレブトマイセス ' リビダンス 1326/pIJ702- SBの構築
ブラスミ ド pEBの EcoR Iサイ トを Sac Iサイ トに変換したブラスミ ド pSBを 構築することにした。 まず、 合成オリゴマー (AAT TGA GCT C;配列表配列番号 1 2 ) l O O pmo lを 3 0U の T4 polynucleotide kinase で 3 7 °C、 1時間 処理することで、 5'- OH 末端をリン酸化した。 そして、 その反応液を 7 0°C、 1 0分間加熱し、 T4 polynucleotide kinase を失活させた。 一方、 のプラ ス ミ ド pEB を 5 U の EcoR I で処理した後、 1 U の Bacterial Alkaline Phosphatase (BAP)で 3 7°C、 1時間処理することで、 5'末端を脱リン酸化した c この 2つの処理液を Ligation High (東洋紡社) でライゲーシヨンすることで、 プラスミ ド pSBを構築した。
5〃 gのプラスミ ド pSBを 2 0Uの Sac I と 2 0Uの BamH Iで処理することで、 アシラーゼ遺伝子を含む 5. 7 k bの Sac I- BamH I 断片を得た。 また、 放線菌 用べクタ—である pIJ702 ( 2 ju g) (ATCC 35287) を 1 0 Uの Sac I と 10 Uの Bgl II で処理し、 先に調製したアシラーゼ遺伝子を含む 5 . 7 k bの Sac I- BamH I断片と Ligation High (東洋紡社) 存在下ライゲ一シヨンした。 そのライ ヮ一シヨン液を Genetic Manipulation of Streptomyces. A Laboratory Manual . The John Innes Foudation, Norwich, UK, 1985.に記載されている方法に従って、 ス トレプトマイセス · リ ビダンス 1326 株 (J. General Microbiology 1983, 129, 2703-2713) を形質転換した。 得られた形質転換株のうち 1株をス トレプト マイセス ' リビダンス 1326/pIJ702- SBとした (図 3)。
( 2 ) 形質転換株の培養および FR 9 0 1 3 7 9アシラーゼの発現
5 %シュクロース、 1 %グルコース、 0. 3 %酵母エキス (Difco 社)、 0. 5 %バク トペプトン (Difco 社)、 0. 3%肉エキス (Difco 社)、 5 mM MgCl2、 0. 5 %グリシン、 50 / g/m 1のチォストレプトン (pH 6. 5) からなる 培地 1 0 m 1を 100 m 1容三角フラスコに入れ、 形質転換株ストレプトマイセ ス . リビダンス 1326/pIJ702-SB の 5 mm角の菌体を植菌した。 30°C、 3日間 ( 260 r pm) 培養し、 その培養液の F R 90 1379アシラーゼ活性を測定 したところ、 培養液 lml当たり 1時間に 3 Omgの FR 17 9642 (脱ァシ ル化した FR 90 1379物質) を生成する活性が得られた。
また、 アシラーゼ活性が最高に達するまでの培養期間は、 形質転換株ストレブ トマイセス · リビダンス 1326/pIJ702-SB については 2〜3日、 Streptomyces sp. No.6907については 7日と半分以下に短縮された。
当該アシラーゼ活性は以下のようにして測定した。
<アシラーゼ活性の測定 >
100mg/ml F R 90 1 379 (WO 97 Z 32 975号公報参照) 水 溶液 0. lml、 リン酸緩衝液 (pH 6.0) 0. 1 m 1、 メタノール 0. lml、 蒸留水 0· 6 mlからなる溶液に、 培養液 0. l mlを加え、 37 °C ( 12 5 r pm) で反応させる。 1 5分後、 4%酢酸 lmlと蒸留水 2 mlを添加すること で、 反応を終了させる。 そして、 生成した FR 179642 (脱ァシル化した F R 90 1379物質) を高速液体クロマトグラフ (HPL C) を用いて、 以下の 条件で定量する。
カラム ; Kaseisorb LC P0 Super (4.6 腿 I.D. x 250誦) (東京化成社) カラム温度; 50°C
溶離液;蒸留水:メタノール: リン酸 = 960: 40: 1
流速; 1 ml/fflin
検出; UV-215 nm
実施例 3
( 1 ) 発酵液の調製
50 OmL容フラスコに 5 OmLのチォストレプトン ( 50〃g/mL) を含 む PM— 1培地 ( 6%日食 # 3600、 3 %脱脂大豆粉、 0. 5 %Ca C〇3、 0. 005 %チォス トレプトン、 pH無修正) を入れ、 形質転換株ストレプトマ イセス · リビダンス 1326/pIJ702- SB の 5 mm角の菌体を植菌した後、 30°Cで 3日間培養した。 その 2. 5 mLを 5 OmLの S G培地 ( 8%マルト一ス、 3% 脱脂大豆粉、 3%脱脂小麦胚芽、 0. 5 %C a C〇3、 0. 00 5 %チォス トレ プトン、 pH無修正) を入れた 50 OmL容フラスコに植菌し、 30°Cで 3日間 培養した。
( 2 ) FR 90 1 379アシラーゼの精製
発酵液 24mLに 4M K C 1を 8mL加え、 4°Cで一晩放置した後、 遠心 ( 10, 000 rpm、 10分間) により得られた上清を K C 1抽出液とした。 この KC 1抽出液を Microcon 50 (ミ リポア社) で 1 0倍濃縮、 0. 5Mリン酸 ナトリゥム緩衝液 (pH 6. 0) で元の液量まで戻すという操作を 2回繰り返す ことで、 低分子のタンパク質を除いた。
(3) SD S— PAGE分析
マルチゲル 10/20または 1 5/25 (第一化学薬品社; アクリルアミ ド 1 0〜20%または 1 5〜25 %グラジェントゲル) を用いて、 SD S— PAGE 分析を行なった。
(4) FR 90 1379アシラーゼ活性の測定
実施例 2に準じて測定した。
(5) タンパク質の定量
D Cプロティンアツセィ (L owr y法;バイオラヅ ド社) でアルブミンをス タンダ一ドとして測定した。
(6) ァミノ末端アミノ酸配列分析
SD S— PAGE後のゲル中のタンパク質をホラィズブロッ ト (アト一社) に より、 電気泳動的に PVD F膜に移した後、 CBB染色し、 目的のバンドをはさ みで切断した。 そしてァミノ末端アミノ酸配列分析に付した。
分析結果から、 配列表配列番号 4に記載される N末端ァミノ酸配列を有するも のが 4 5 %、 さらにその N末端にセリン残基が付加された N末端アミノ酸配列を 有するものが 5 5 %の割合で環状リポペプチドアシラーゼ小サブュニッ 卜が生産 されることがわかった。 産業上の利用分野
本発明の、 環状リポぺプチドアシラーゼをコ一ドする遺伝子を導入して得られ た形質転換体から得られる組換え環状リポペプチ ドアシラーゼは、 従来の Streptomyces sp. No.6907株や Streptomyces anulatus No .8703株等の環状リポ ぺプチドアシラーゼを生産する天然分離株を培養して得られるアシラーゼと同等 の活性を有し、 且つ当該形質転換体を使用することにより、 その培養にかかる時 間 (すなわち環状リポペプチドアシラーゼの生産にかかる時間) を短縮すること が可能となった。 本出願は、 日本で出願された平成 1 1年特許願第 1 8 9 6 4 4号を基礎として おりそれらの内容は本明細書に全て包含されるものである。 配列表フリーテキスト
配列番号 6 : F R 9 0 1 3 7 9アシラーゼ小サブュニッ 卜の N末端アミノ酸をコ 一ドする領域の D N Aを増幅するためのフォヮ一ドプライマ一として作用すべく 設計されたオリゴヌクレオチド
配列番号 7 : F R 9 0 1 3 7 9アシラーゼ小サブュニッ 卜の N末端アミノ酸をコ 一ドする領域の D N Aを増幅するためのリバースプライマーとして作用すべく設 計されたオリゴヌクレオチド
配列番号 8 : F R 9 0 1 3 7 9アシラーゼ大サブュニッ 卜の N末端アミノ酸をコ ―ドする領域の D N Aを増幅するためのフォヮ一ドプライマ一として作用すべく 設計されたオリゴヌクレオチド
配列番号 9 : F 9 0 1 3 7 9アシラーゼ大サブュニッ 卜の N末端アミノ酸をコ ードする領域の D N Aを増幅するためのリバースプライマーとして作用すべく設 計されたオリゴヌクレオチド
配列番号 1 0 : F R 9 0 1 3 7 9アシラーゼの小サブュニッ トおよび大サブュニ ッ 卜の間のアミノ酸をコードする領域の D N Aを増幅するためのフォヮ一ドプラ ィマー
配列番号 1 1 : F R 9 0 1 3 7 9アシラーゼの小サブュニッ トおよび大サブュニ ットの間のアミノ酸をコードする領域の D N Aを増幅するためのリバ一スプライ マ一
配列番号 1 2 :制限部位を Eco RI サイ 卜から Sac I サイ 卜に変換する為に使用 すべく設計されたオリゴヌクレオチド
配列番号 1 3 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 4 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 5 : シ一クェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 6 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 7 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 8 : シークェンシングブライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 1 9 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 0 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 1 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 2 シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 3 : シークェンシングプラィマ一として作用すベく設計されたォリゴ ヌクレオチド
配列番号 2 4 : シークェンシングプライマーとして作用すベく設計されたォリゴ ヌクレオチド
配列番号 2 5 シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 6 シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 2 7 シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 8 シ一クェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 2 9 シークェンシンダプライマ一として作用すベく設計されたォリゴ ヌクレオチド
配列番号 3 0 : シークェンシングプライマーとして作用すベく設計されたォリゴ ヌクレオチド
配列番号 3 1 シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 3 2 シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 3 3 シークェンシングプライマ一として作用すべく設計されたォリゴ ヌクレオチド
配列番号 3 4 シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド 配列番号 3 5 : シークェンシングプライマ一として作用すべく設計されたォリゴ ヌクレオチド
配列番号 3 6 : シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 3 7 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 3 8 シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 3 9 : シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 0 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 1 シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 2 シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 3 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 4 シークェンシングプライマ一として作用すべく設計されたォリゴ ヌクレオチド
配列番号 4 5 シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 4 6 シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 4 7 シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 4 8 シークェンシンク'ブラィマーとして作用すベく設計されたォリゴ ヌクレオチド
配列番号 4 9 : シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 5 0 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 5 1 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 5 2 : シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 5 3 : シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 5 4 : シークェンシングプライマーとして作用すべく設計されたオリゴ ヌクレオチド
配列番号 5 5 : シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド
配列番号 5 6 : シークェンシングプライマーとして作用すべく設計されたォリゴ ヌクレオチド
配列番号 5 7 : シークェンシングプライマ一として作用すべく設計されたオリゴ ヌクレオチド

Claims

請求の範囲
1. 以下の(a)、 (b)または(c)の全部または一部を含む、 環状リポペプチドァシ ラ一ゼをコ一ドする遺伝子。
( a)配列表配列番号 1で示される塩基配列からなる D N A
(b)上記(a)の DNAとストリンジェン卜な条件でハイブリダィズし得る DNA
( c )配列表配列番号 1で示される塩基配列において少なくとも( 1) 60 %の同一性、 (2)70%の同一性、 (3) 80%の同一性、 (4)90%の同一性、 または(5)95% の同一性を有する DNA
2. 以下の(a)または(b)のタンパク質またはその一部をコードする遺伝子。
(a)配列表配列番号 2で示されるァミノ酸配列からなるタンパク質
(b)ァミノ酸配列(a)において 1若しくは数個のアミノ酸が欠失、 置換若しくは付 加されたアミノ酸配列からなり、 且つ環状リポペプチドアシラーゼ活性を有する
3. 請求の範囲 1または 2記載の遺伝子を含む組換えベクター。
4. 請求の範囲 1または 2記載の遺伝子を機能的に含む発現ベクター。
5. 請求の範囲 3または 4記載のベクターで宿主細胞を形質転換して得られる形 質転換体。
6. 請求の範囲 4記載の発現ベクターで形質転換された宿主細胞を培地中で培養 し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基をアミ ノ基へと脱ァシル化する反応を触媒し得る環状リポベプチドアシラーゼを採取す ることを含む該環状リポぺプチドアシラーゼの製造方法。
7. 請求の範囲 6記載の製造方法によって製造される環状リポぺプチドアシ ラ一ゼ。
8. 以下の(a)、 (b)または(c)の全部または一部を含む、 環状リポペプチドァシ ラーゼをコ一ドする遺伝子。
)配列表配列番号 1に示される塩基配列中塩基番号 1 06 5〜335 9で示さ れる塩基配列からなる D N A (b)上記(a)の DNAとストリンジェン卜な条件でハイブリダィズし得る DNA
(c)配列表配列番号 1に示される塩基配列中塩基番号 106 5〜335 9で示さ れる塩基配列において少なくとも(1)60%の同一性、 (2)70%の同一性、 (3)
80%の同一性、 (4) 90%の同一性、 または(5) 95 %の同一性を有する DN A
9. 以下の(a)または(b)のタンパク質をコードする遺伝子。
(a)配列表配列番号 2で示されるアミノ酸配列中アミノ酸番号— 1または 1〜7 65からなるタンパク質
(b)アミノ酸配列(a)において 1若しくは数個のアミノ酸が欠失、 置換若しくは付 加されたアミノ酸配列からなり、 且つ環状リポペプチドアシラーゼ活性を有する
10. 請求の範囲 8または 9記載の遺伝子を含む組換えべクタ一。
1 1. 請求の範囲 8または 9記載の遺伝子を機能的に含む発現ベクター。
12. 請求の範囲 1 0または 1 1記載のベクタ一で宿主細胞を形質転換して得ら れる形質転換体。
13. 請求の範囲 1 1記載の発現ベクターで形質転換された宿主細胞を培地中で 培養し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基を アミノ基へと脱ァシル化する反応を触媒し得る環状リポぺプチドアシラーゼを採 取することを含む該環状リポぺプチドアシラーゼの製造方法。
1 4. 請求の範囲 1 3記載の製造方法によって製造される環状リポぺプチド アシラーゼ。
1 5. 配列表配列番号 1に示される塩基配列中塩基番号 106 5〜 3359で示 される塩基配列からなる DN Aがコードする環状リポベプチドアシラ一ゼ。
1 6. 配列表配列番号 1に示される塩基配列中塩基番号 1 06 5〜 3359で示 される塩基配列において少なく とも(1) 6 0 %の同一性、 (2)70 %の同一性、 (3)80%の同一性、 (4)90%の同一性、 または(5) 95 %の同一性を有する D NAがコ一ドする環状リポぺプチドアシラーゼ。
17. 以下の(a)または(b)のタンパク質。 (a)配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号— 1〜 2 0 0のァ ミノ酸配列からなるタンパク質
(b)上記(a)のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 且つ下記(c )または(d)の夕ンパク質と複 合体を形成して環状リポぺプチドアシラーゼ活性を示すタンパク質
( c )配列表配列番号 2に示されるアミノ酸配列中ァミノ酸番号 2 0 1〜 7 6 5のアミノ酸配列からなるタンパク質
(d)上記(c )のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置 換若しくは付加されたアミノ酸配列からなり、 且つ上記(a)または(b)のポ リベプチドと複合体を形成して環状リポぺプチドアシラーゼ活性を示す夕 ンパク質
1 8 . 以下の(c )または(d)のタンパク質
( c )配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号 2 0 1〜7 6 5の アミノ酸配列からなるタンパク質
(d)上記(c )のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 且つ下記(a)または(b )の夕ンパク質と複 合体を形成して環状リポぺプチドアシラーゼ活性を示すタンパク質
(a)配列表配列番号 2に示されるアミノ酸配列中アミノ酸番号— 1または 1〜2 0 0のアミノ酸配列からなるタンパク質
(b)上記(a)のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、 置 換若しくは付加されたアミノ酸配列からなり、 且つ上記(c )または(d)の夕 ンパク質と複合体を形成して環状リポぺプチドアシラーゼ活性を示す夕ン パク質
1 9 . 請求の範囲 1 7記載のタンパク質をコードする D N A
2 0 . 請求の範囲 1 8記載のタンパク質をコードする D N A
2 1 . 請求の範囲 1 9および 2 0の少なくとも一方を含む組換えベクター。
2 2 . 請求の範囲 1 9および 2 0の少なくとも一方を含む発現べクタ一。
2 3 . 請求の範囲 2 1または 2 2記載のベクターで宿主細胞を形質転換して得ら れる形質転換体。
2 4 . 請求の範囲 2 2記載の発現ベクターで形質転換された宿主細胞を培地中で 培養し、 得られる培養物から、 環状リポペプチド物質の側鎖のァシルアミノ基を アミノ基へと脱ァシル化する反応を触媒し得る環状リポベプチドアシラーゼを採 取することを含む該環状リポぺプチドアシラーゼの製造方法。
2 5 . 請求の範囲 2 4記載の製造方法によって製造される環状リポぺプチド アシラーゼ。
2 6 . 請求の範囲 4、 1 1、 2 2記載の発現ベクターで形質転換された宿主細胞 を培地中で培養し、 得られる培養物またはその処理物に環状リポベプチド物質を 接触させる工程を含む、 環状リポぺプチド物質の側鎖のァシルァミノ基をァミノ 基へと脱ァシル化する方法。
PCT/JP2000/004285 1999-07-02 2000-06-28 Gene codant pour une acylase des lipopeptides cycliques et expression dudit gene WO2001002585A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020027000020A KR20020022758A (ko) 1999-07-02 2000-06-28 환상 리포펩티드 아실라제를 암호화하는 유전자 및 그 발현
CA002377793A CA2377793A1 (en) 1999-07-02 2000-06-28 Gene encoding cyclic lipopeptide acylase and expression of the same
EP00940872A EP1197557A4 (en) 1999-07-02 2000-06-28 GENE ENCODING CYCLIC LIPOPEPTID ACYLASE AND THEIR EXPRESSION
HK03101531.1A HK1049353A1 (zh) 1999-07-02 2003-02-28 編碼環狀脂肽酰基轉移酶的基因及其表達

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18964499 1999-07-02
JP11/189644 1999-07-02

Publications (1)

Publication Number Publication Date
WO2001002585A1 true WO2001002585A1 (fr) 2001-01-11

Family

ID=16244772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004285 WO2001002585A1 (fr) 1999-07-02 2000-06-28 Gene codant pour une acylase des lipopeptides cycliques et expression dudit gene

Country Status (6)

Country Link
EP (1) EP1197557A4 (ja)
KR (1) KR20020022758A (ja)
CN (1) CN1371423A (ja)
CA (1) CA2377793A1 (ja)
HK (1) HK1049353A1 (ja)
WO (1) WO2001002585A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874919A (zh) * 2022-05-09 2022-08-09 中国科学院青岛生物能源与过程研究所 一株米卡芬净前体fr901379高产菌株及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545506B1 (ko) * 1996-03-08 2006-10-04 아스테라스 세이야쿠 가부시키가이샤 환상 리포펩티드 물질의 탈아실화 방법
CA2813330A1 (en) * 2010-09-29 2012-04-05 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
CN102618604B (zh) * 2011-01-31 2014-09-03 上海天伟生物制药有限公司 一种环脂肽化合物的制备方法
EP3792349A4 (en) * 2018-05-07 2022-03-16 National University Corporation Hokkaido University PEPTIDE MACROCYCLASE
CN109652484B (zh) * 2019-01-16 2020-12-29 常熟理工学院 一种全细胞高效催化合成l-肌肽的方法
CN115786379A (zh) * 2023-01-06 2023-03-14 成都雅途生物技术有限公司 固定化酶与制备方法以及固定化酶转化fr901379的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032975A1 (fr) * 1996-03-08 1997-09-12 Fujisawa Pharmaceutical Co., Ltd. Processus de deacylation de lipopeptides cycliques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095001A (ja) * 1999-10-22 2005-04-14 Fujisawa Pharmaceut Co Ltd ヘテロマーペプチドの遺伝子工学的固定化

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032975A1 (fr) * 1996-03-08 1997-09-12 Fujisawa Pharmaceutical Co., Ltd. Processus de deacylation de lipopeptides cycliques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNJI INOKOSHI ET AL.: "Cloning and sequencing of the aculeacin A acylase-encoding gene from actinoplanes utahensis and expression in streptomyces lividans", GENE, vol. 119, no. 1, 1992, pages 29 - 35, XP002932555 *
See also references of EP1197557A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874919A (zh) * 2022-05-09 2022-08-09 中国科学院青岛生物能源与过程研究所 一株米卡芬净前体fr901379高产菌株及其应用

Also Published As

Publication number Publication date
EP1197557A4 (en) 2002-09-11
CA2377793A1 (en) 2001-01-11
EP1197557A1 (en) 2002-04-17
KR20020022758A (ko) 2002-03-27
CN1371423A (zh) 2002-09-25
HK1049353A1 (zh) 2003-05-09

Similar Documents

Publication Publication Date Title
CA2040707C (en) Cephalosporin acetylhydrolase gene and protein encoded by said gene
US5641650A (en) Expression of heterologous polypeptides in halobacteria
KR20180077008A (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
US6444449B1 (en) D-sorbitol dehydrogenase gene
JP2003520580A (ja) バニリンを生産するための酵素および遺伝子
JPH10229885A (ja) 新規アルコールアルデヒド脱水素酵素
EP1032679A2 (fr) Genes de biosynthese et de transfert des 6-desoxyhexoses chez saccharopolyspora erythraea et chez streptomyces antibioticus et leur utilisation
WO1999061591A1 (fr) GENE D&#39;ENDO-β-N-ACETYLGLUCOSAMINIDASE
WO2001002585A1 (fr) Gene codant pour une acylase des lipopeptides cycliques et expression dudit gene
AU2003255681A1 (en) Polynucleotides and polypeptides coded by said polynucleotides involved in the synthesis of diketopiperazine derivatives
NZ243356A (en) Dna encoding protease x from streptomyces lividans, recombinant protease x and analogues; antibodies, hosts
JP4546089B2 (ja) 融合タンパク質
EP0974665A1 (en) Recombinant yeast pdi and process for preparing the same
JP5210530B2 (ja) RrhJ1I制限・修飾酵素およびその遺伝子
JP2002209582A (ja) 耐熱性グルコキナーゼ遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いた耐熱性グルコキナーゼの製造方法
KR20160077750A (ko) 재조합 트랜스 글루타미나아제의 대량 생산 방법
JPH11137254A (ja) バチルス属細菌由来のトランスグルタミナーゼの製造法
EP0897984B1 (en) D-Sorbitol dehydrogenase gene
JPH06105682A (ja) β−ラクタム抗生物質産生促進法および大量のACVシンテターゼ単離法
JP5626263B2 (ja) RrhJ1I修飾酵素およびその遺伝子
JP3529099B2 (ja) 4−置換−1,4−ジヒドロピリジン誘導体の不斉加水分解酵素活性タンパク質をコードする遺伝子およびその発現産物
JP3330670B2 (ja) アルケンモノオキシゲナーゼ、これをコードする遺伝子及び形質転換微生物並びにアルケンのエポキシ化方法
KR100533116B1 (ko) 내열성 dTDP-글루코스 합성효소 및 그 유전자
FR2786200A1 (fr) Genes de biosynthese et de transfert des 6-desoxy-hexoses chez saccharopolyspora erythraea et chez streptomyces antibioticus et leur utilisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 508357

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2377793

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027000020

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000940872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008121036

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027000020

Country of ref document: KR

ENP Entry into the national phase

Ref country code: GB

Ref document number: 200207861

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000940872

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000940872

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020027000020

Country of ref document: KR