WO2001002579A1 - GENE SYNTHETIQUE cryIC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE - Google Patents

GENE SYNTHETIQUE cryIC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE Download PDF

Info

Publication number
WO2001002579A1
WO2001002579A1 PCT/FR2000/001856 FR0001856W WO0102579A1 WO 2001002579 A1 WO2001002579 A1 WO 2001002579A1 FR 0001856 W FR0001856 W FR 0001856W WO 0102579 A1 WO0102579 A1 WO 0102579A1
Authority
WO
WIPO (PCT)
Prior art keywords
crylc
gene
plants
sequence
synthetic
Prior art date
Application number
PCT/FR2000/001856
Other languages
English (en)
Inventor
Marc Giband
Catherine Pannetier
Marianne Mazier
Josette Chaufaux
Jacques Tourneur
Original Assignee
Institut National De La Recherche Agronomique (Inra)
Centre De Cooperation Internationale En Recherche Agronomique Pour Le Developpement (Cirad)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De La Recherche Agronomique (Inra), Centre De Cooperation Internationale En Recherche Agronomique Pour Le Developpement (Cirad) filed Critical Institut National De La Recherche Agronomique (Inra)
Priority to AU62902/00A priority Critical patent/AU6290200A/en
Priority to BR0012045-6A priority patent/BR0012045A/pt
Publication of WO2001002579A1 publication Critical patent/WO2001002579A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the invention relates to the construction of a synthetic crylC gene from Bacillus thuringiensis and to its expression in plants to make them resistant to attack by insects.
  • Bacillus thuringiensis produced during its sporulation, various insecticidal toxins (Cry proteins). These proteins are produced in the form of crystalline protoxins, which are dissolved after ingestion by insects and undergo proteolysis in the intestine, which releases the active toxin.
  • Cry proteins Bacillus thuringiensis
  • These proteins are produced in the form of crystalline protoxins, which are dissolved after ingestion by insects and undergo proteolysis in the intestine, which releases the active toxin.
  • cry genes bacterial genes
  • the level of expression of "native" cry bacterial genes in plants is too low to confer effective resistance.
  • B. thuringiensis subsp. aizawai produces a protein, called CrylC, toxic to lepidoptera of the genus Spodoptera, and in particular Spodoptera li ttoralis, which is a cotton pest.
  • CrylC a protein, called CrylC
  • the transfer of the native crylC gene into plants gives them a certain level of resistance to S. li ttoralis.
  • the transgene does not express itself at a level high enough to provide effective protection for the plant; for example, in the case of transgenic tobacco plants, the number of plants showing resistance to this insect remains low (2 plants out of thirty plants tested show> 80% mortality in 7 days against larvae at stage L1-L2 pre-moult), and the observed mortality decreases as the tested plant ages [MAZIER et al. Plant Sci., 127: 179-190, (1997)].
  • VAN DER SALM et al. Plant Mol. Biol., 26: 51-59, (1994)] describe the expression in transgenic tobacco and tomato plants of a synthetic crylC gene; the modifications made, limited to 45 nucleotides in 9 regions of the crylC gene allow expression of the transgene at a level sufficient to be able to detect the mRNAs, but not allowing the detection of the corresponding proteins. This improvement in the level of expression is however accompanied by a certain increase in protection against larvae of Manduca sexta and Spodoptera exigua.
  • STRIZHOV et al. [Proc. Natl. Acad. Sci. USA, 93: 15012-15017, (1996)] describe the expression of a synthetic crylC gene in transgenic alfalfa and tobacco plants.
  • This gene codes for an N-terminal fragment of 630 amino acids of protoxin. Modifications brought in relation to the native sequence coding for the same fragment relate to 286 bases out of a total of 1890, or 15% of the bases, and affect 249 codons out of 630, or 39.5% of the codons.
  • This synthetic gene, associated with the leader sequence (leader sequence) of TMV was placed under the control of the CaMV 35S promoter, reinforced by the presence of 4 copies of the amplifying elements.
  • the transgenic broccoli plants producing the highest amount of CrylC protein are protected against larvae of a strain of Plutella xylostella sensitive to CrylC, and also against larvae of a strain of Plutella xylostella 100 times more resistant to CrylC than the previous one .
  • the subject of the present invention is any nucleic acid comprising the nucleotide sequence of this synthetic crylC gene. This sequence is represented in the attached sequence list by the number SEQ ID NO: 1.
  • the peptide sequence essentially differs from the sequence published by SANCHIS et al. (1989) by replacing the first eight amino acids of the wild-type sequence (M-E-E-N-N-Q-N-Q) with the sequence M-A-Q-
  • CrylC varying, depending on the plant concerned, between 0.15 and 1% of total soluble proteins.
  • the present invention also relates to recombinant vectors comprising a DNA sequence in accordance with the invention, and which can be used in particular for the transfer of said sequence and / or its expression in cells of host plants.
  • nucleic acid sequence will be placed under the transcriptional control of a promoter appropriate.
  • promoters which can be used in the context of the present invention, there may be mentioned: the CaMV35S promoter [BENFEY et al, Science, 250, pp. 959-966, (1990)]; Agrobacterium tumefaciens T-DNA promoters: nopaline synthase, octopine synthase, mannopine synthase, l ', 2' [SANDERS et al., Nucleic Acid Res., 15, pp. 1543-1558, (1987) HOOYKAAS and SCHILPEROORT, Plant. Mol.
  • the present invention further relates to plant cells, organs, or tissues, transformed by at least one DNA sequence in accordance with the invention, as well as transgenic plants, the genome of which comprises at least one DNA sequence in accordance with the invention.
  • These cells, organs, plant tissues, or plants can be obtained by the usual techniques of plant transformation and transgenesis, which are known in themselves.
  • the invention also includes the descendants, obtained by sowing or by vegetative propagation, of the plants in accordance with the invention obtained by transgenesis, insofar as these descendants also contain in their genome at least one copy of a sequence d nucleic acid according to the invention.
  • the synthetic crylC gene according to the invention can in particular be used to transform plants such as tobacco, cotton, corn, clover, tomato, alfalfa, cabbage, in order to increase their resistance to insect pests, and in particular their resistance towards the larvae of lepidoptera of the family of moths, in particular of the genus Spodoptera, in particular S. littoralis, S. exigua, S. frugiperda, S. cosmioides, or towards larvae of Lepidoptera of the genus Mamestra, in particular Mamestra brassicae.
  • the present invention will be better understood using the additional description which follows which follows. refers to non-limiting examples of obtaining and using a synthetic gene according to the invention.
  • the sequence of the crylC gene represented in the sequence list in the appendix under the number SEQ ID NO: 1 is divided into four “blocks" ("A" to "D") which are cloned separately and then ligated together to cover the whole of the sequence.
  • the oligonucleotides which constitute the block are mixed in equimolar concentration, then subjected to a PCR reaction.
  • the reaction mixture (100 ⁇ l) is as follows: - 1 pmole of each of the oligonucleotides
  • the mixture is subjected to a phenol: chloroform extraction (1: 1), then to a chloroform extraction.
  • the primers used correspond to the sequences of the two ends of the block, to which sequences corresponding to restriction enzyme sites (in this case, the Kpnl site at the 5 'end, and the Hindi II site at the 3 ′ end) were added to facilitate the cloning of the PCR products thus obtained.
  • reaction mixture (100 ⁇ l) is as follows:
  • the PCR conditions are as follows: 1)
  • the mixture is subjected to a phenol: chloroform extraction (1: 1), then to a chloroform extraction.
  • the synthetic products are verified by sequencing the two strands of DNA. If none of the clones analyzed contains a sequence without errors, these are repaired by site-directed mutagenesis.
  • Block “B”, cloned into the vector pGem7Zf (-), is hydrolyzed by the restriction enzymes StuI and HindIII, and the insert of ca. 580 bp isolated on gel. This insert is cloned downstream of block "A”, between the StuI and HindIII restriction sites. The construction thus obtained is named "A + B”.
  • Block "C” is digested with restriction enzymes EcoRV and HindIII, and the insert of ca. 420 bp is cloned downstream of the "A + B” block, between the EcoRV and HindIII restriction, to give the construct "A + B + C”.
  • block “D” is hydrolyzed by the enzymes BglII and HindIII.
  • the ca.610 bp insert is then cloned downstream of the "A + B + C" block between the BglII and HindIII restriction sites.
  • a + B + C + D corresponds to the entire crylC gene.
  • the two strands of DNA are sequenced.
  • FIG. 1 represents the sequence of the synthetic gene crylC, indicating the oligonucleotides used for its construction. Each of the arrows represents an oligonucleotide whose sequence is indicated.
  • the restriction sites delimiting the four blocks (A, B, C, and D) are framed: block A extends from the start of the gene to the StuI site, block B, from the StuI site to the EcoRV site, the block C is between the EcoRV and BglII sites, while block D extends from the BglII site to the end of the sequence.
  • Block A was constructed using oligonucleotides A1 to A4, block B using oligonucleotides Bl to B8, block C using oligonucleotides C1 to C6, and block D using oligonucleotides D1 to D8.
  • oligonucleotides identified by odd numbers corresponds to the sequence shown in Figure 1
  • sequence of l the oligonucleotide used is the complement of the sequence indicated in FIG. 1.
  • CrylC was distributed using a micropipette at a dose of 750 ng / cm 2 on the surface of the artificial medium.
  • the experiment was carried out on batches of 30 larvae of different Spodoptera species at the pre-moult L1 larval stage (L1PM).
  • the vector pGem7Zf (-) carrying the synthetic gene crylC between the restriction sites Kpnl and HindIII is digested with the restriction enzymes Xhol and Sstl.
  • the insert of ca. 1900 bp is purified on agarose gel, and cloned into the vector pKYLX71-35S 2 hydrolyzed by the restriction enzymes Xhol and Sstl.
  • the construction thus obtained is called pKYcrylC.
  • the pKYcrylC construct is transferred to the Agroba cterium tumefaciens C58 strain: pGV2260 [DEBLAERE et al, Nucleic Acids Res.
  • the total soluble proteins are extracted by grinding a leaf fragment in extraction buffer (50 mM Tris-HCl pH 9, 150 M NaCl, 1 mM EDTA, 1 mM DTT, 0.5% Triton-X100). The ground material is centrifuged, and the supernatant containing the proteins is removed. The proteins are quantified according to the BRADFORD method, [Anal. Biochem. , 72: 248-254, (1976)]. The proteins (10 ⁇ g) are subjected to an electrophoresis on polyacrylamide gel under denaturing conditions (SDS-PAGE), and transferred to a nitrocellulose membrane according to the standard protocol [SAMBROOK et al., Molecular Cloning: A Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press (1989)].
  • the detection of the toxin CrylC is carried out using antibodies derived from egg yolk (IgY) directed against this protein, and a secondary anti-IgY antibody labeled with alkaline phosphatase, according to conventional techniques [SAMBROOK et al., Molecular Cloning: A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press (1989)].
  • the negative control consists of a protein extract from a control plant (transformed with a vector similar to that of resistant plants but not carrying the crylC gene).
  • samples consisting of a control plant extract, to which an increasing amount (from 1 to 200 ng) of purified toxin (control range) is added, are placed on the same gel as the extracts to be analyzed.
  • a comparison of the intensities of the bands obtained for the samples to be analyzed with the control range makes it possible to estimate the amount of CrylC toxin present in the samples.
  • the regenerated tobacco plants obtained as indicated in Example 3 above are used to carry out bioassays on leaf fragments using larvae of S. li ttoralis at different stages.
  • L1, L2 and L3 PM larval stage L1, L2, L3 premature).
  • the pieces of tobacco leaf are cut and placed in plastic, round boxes, 28 mm in diameter.
  • the bottom of the boxes is lined with a washer of moistened filter paper, the lid is ventilated.
  • two pieces of tobacco leaf are placed, then 6 larvae are introduced, at a stage defined in advance.
  • Five repetitions are carried out for a plant (5 times 6 larvae per plant)
  • the 5 boxes containing the same plant are brought together in a plastic cell.
  • the entire test is kept in pieces under controlled conditions (25 ° C, 16 hours of photophase) for 7 days. Intermediate mortality checks are carried out after 2 and 4 days.
  • Each test comprises a control batch carried out under the same conditions with control tobacco (transformed with a vector similar to that of resistant plants but not carrying the crylC gene).
  • the ABBOT mortality is determined as indicated in Example 2 above.
  • Certain transgenic tobaccos have been tested using a strain of S. li ttoralis resistant to the CrylC toxin, selected in the laboratory [MULLER-COHN and al., (J. Econ. Entomol., 89, 4: 791-797, (1996).
  • This resistant strain (44th generation after selection) is homozygous for the resistance factor to the protein CrylC, and at the time of the bioassay, its LD50 towards the CrylC protein is 367 times higher than that of the sensitive strain.
  • the bioassays were carried out under the conditions described above, using larvae at the pre-moult L1 larval stage (L1PM).
  • ABBOT mortality was determined as described above.
  • the synthetic gene induces rapid mortality: (100% mortality on larvae at the Ll PM stage in a 4-day bioassay) for all the plants tested.
  • the protection conferred is also effective against older larvae, and consequently less sensitive to toxins (100% mortality on L2PM larvae,> 80% mortality on L3PM larvae).
  • tobaccos that have integrated the synthetic gene crylC show effective protection (> 97% mortality in a 7-day bioassay) against LL PM larvae of a resistant strain (LD50 resistant strain 367 x LD50 strain ' sensitive).
  • Bioassays were also carried out on larvae of Spodoptera frugiperda with the line FL17 of tobacco expressing the synthetic gene crylC and which causes 100% mortality on the larvae of S. li ttoralis (at stage Ll) at 3 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Insects & Arthropods (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention est relative à un gène synthétique codant pour une toxine CryIC de <i>Bacillus thuringiensis</i>, et à des plantes transgéniques exprimant ce gène.

Description

GENE SYNTHETIQUE crylC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE
L'invention est relative à la construction d'un gène synthétique crylC de Bacillus thuringiensis et à son expression dans les plantes pour les rendre résistantes aux attaques des insectes.
Bacillus thuringiensis (Bt) produit lors de sa sporulation, différentes toxines insecticides (protéines Cry) . Ces protéines sont produites sous forme de protoxines cristallines, qui sont solubilisées après ingestion par les insectes et subissent dans l'intestin de ceux-ci une protéolyse qui libère la toxine active. On connaît actuellement plus d'une centaine de protéines de la famille Cry, regroupées selon leurs homologies de séquence et leur spécificité d'action.
L'utilisation des toxines insecticides de Bacillus thuringiensis dans le cadre de la lutte contre les insectes ravageurs fait l'objet d'un grand intérêt, en particulier du fait de l'innocuité de ces toxines pour l'environnement. Notamment, on a construit des plantes transgéniques exprimant des gènes bactériens (gènes cry) , dans le but d' augmenter leur résistances aux attaques des insectes phytophages. Il a toutefois été constaté que le niveau d' expression des gènes bactériens cry « natifs » dans les plantes était trop faible pour conférer une résistance efficace. Pour augmenter l'expression des gènes cry, il a été proposé de modifier leurs séquences, notamment en éliminant diverses séquences qui peuvent interférer avec l'expression dans les cellules eucaryotes, et en remplaçant les codons utilisés chez les procaryotes pour codons préférentiellement utilisés chez les plantes. Les gènes « synthétiques » créés de la sorte peuvent avoir une expression jusqu'à 500 fois plus élevée que celle observée pour les gènes cry natifs ; il en résulté une protection beaucoup plus efficace des plantes transformées par lesdits gènes [pour revue, voir MAZIER et al, Biotechnol. Ann. Rev., 3: 313-347, (1997)].
B . thuringiensis subsp. aizawai produit une protéine, dénommée CrylC, toxique envers les lépidoptères du genre Spodoptera , et notamment Spodoptera li ttoralis, qui est un ravageur du coton. Le gène correspondant
{ crylC) a été clone et séquence [SANCHIS et al. Mol.
Microbiol., 3: 229-238, (1989)].
Le transfert du gène natif crylC dans des plantes permet de conférer à celles-ci un certain niveau de résistance envers S . li ttoralis . Néanmoins, le transgène ne s'exprime pas à un niveau assez élevé pour procurer une protection efficace à la plante ; par exemple, dans le cas de plants de tabac transgéniques, le nombre de plantes montrant une résistance à cet insecte reste faible (2 plantes sur une trentaine de plantes testées montrent >80% de mortalité en 7 jours vis-à-vis de larves au stade L1-L2 pré-mue) , et la mortalité observée décroit au fur et à mesure que la plante testée vieillit [MAZIER et al. Plant Sci., 127: 179-190, (1997)].
VAN DER SALM et al. [Plant Mol. Biol., 26: 51- 59,(1994)] décrivent l'expression dans des plants transgéniques de tabac et de tomate d'un gène crylC synthétique ; les modifications apportées, limitées à 45 nucléotides dans 9 régions du gène crylC permettent une expression du transgène à un niveau suffisant pour pouvoir détecter les ARNm, mais ne permettant pas la détection des protéines correspondantes. Cette amélioration du niveau d'expression s'accompagne cependant d'une certaine augmentation de la protection contre des larves de Manduca sexta et Spodoptera exigua .
STRIZHOV et al. [Proc. Natl. Acad. Sci. USA, 93: 15012-15017, (1996)] décrivent l'expression d'un gène crylC synthétique dans des plants transgéniques de luzerne et de tabac. Ce gène code un fragment N-terminal de 630 acides aminés de la protoxine. Les modifications apportées par rapport à la séquence native codant le même fragment concernent 286 bases sur un total de 1890, soit 15% des bases, et touchent 249 codons sur 630, soit 39,5% des codons. Ce gène synthétique, associé à la séquence de tête (leader séquence) du TMV, a été placé sous contrôle du promoteur 35S de CaMV, renforcé par la présence de 4 copies des éléments amplificateurs. L'expression de cette construction dans des plants transgéniques de luzerne et de tabac aboutit à la production de protéines CrylC à un niveau détectable, variant, selon le plant concerné, entre 0,01 et 0,2% des protéines solubles totales, et permet d'obtenir une protection contre des larves de Spodoptera li ttoralis et Spodoptera exigua issues de souches sensibles à CrylC. L'expression de la même construction chez le brocoli a permis d'obtenir une production de CrylC plus importante que celle obtenue chez la luzerne et le tabac, et allant jusqu'à 0,4% des protéines totales solubles [CAO et al., Mol. Breed. , 5, 131-141, (1999)] ; les plants de brocolis transgéniques produisant la plus grande quantité de protéine CrylC sont protégés contre des larves d'une souche de Plutella xylostella sensible à CrylC, et également contre des larves d'une souche de Plutella xylostella 100 fois plus résistante à CrylC que la précédente. Les Inventeurs ont recherché s'il était possible d'augmenter encore, par l'apport de modifications supplémentaires dans la séquence du gène crylC , le niveau d'expression de la toxine CrylC dans des plantes transgéniques et d'améliorer la protection conférée à ces plantes.
Ils sont ainsi parvenus à obtenir un gène crylC synthétique s 'exprimant à un niveau très élevé dans des plantes transgéniques, et conférant une protection plus efficace que les gènes crylC synthétiques précédemment décrits dans l'art antérieur, notamment vis- à vis de larves de Spodoptera à des stades tardifs de leur développement. En outre, ils ont constaté que l'expression de ce gène permettait de protéger les plantes contre des insectes ayant développé une résistance à la toxine CrylC. La présente invention a pour objet tout acide nucléique comprenant la séquence nucléotidique de ce gène crylC synthétique. Cette séquence est représentée dans la liste de séquences en annexe par le numéro SEQ ID NO: 1.
Par rapport à la séquence nucléotidique de la portion correspondante du gène bactérien, 25,5% des bases ont été remplacées, et 65% des codons modifiés dans le gène crylC synthétique conforme à l'invention.
La séquence peptidique diffère essentiellement de la séquence publiée par SANCHIS et al. (1989) par le remplacement des huit premiers acides aminés de la séquence sauvage (M-E-E-N-N-Q-N-Q) par la séquence M-A-Q-
I-P-P-Q, et le remplacement de la séquence en acides aminés C375-Q-R-H-H379 par la séquence W375~P-A-P-P379/ et des acides aminés I355 et G385 par N3g5 et V385, afin de corriger une erreur signalée [STRIZHOV et al. Mol.
Gen. Genêt., 253: 11-19, (1996)] dans la séquence initialement publiée par SANCHIS et al.
Les modifications apportées permettent d'obtenir dans les plantes transgéniques un taux d'expression très élevé. Dans des plants de tabac transgénique on observe ainsi un niveau d'expression de
CrylC, variant, selon le plant concerné, entre 0,15 et 1% des protéines solubles totales.
La présente Invention a également pour objet des vecteurs recombinants comprenant une séquence d'ADN conforme à l'invention, et utilisables notamment pour le transfert de ladite séquence et/ou son expression dans des cellules de plantes hôtes.
Pour l'expression dans des plantes ou des cellules de plantes, ladite séquence d'acide nucléique sera placée sous contrôle transcriptionnel d'un promoteur approprié. A titre d'exemples non limitatifs de promoteurs utilisables dans le cadre de la présente invention, on citera : le promoteur CaMV35S [BENFEY et al, Science, 250, pp. 959-966, (1990)] ; les promoteurs Agrobacterium tumefaciens T-DNA : nopaline synthase, octopine synthase, mannopine synthase, l' , 2' [SANDERS et al., Nucleic Acid Res., 15, pp. 1543-1558, (1987) HOOYKAAS and SCHILPEROORT, Plant. Mol. Biol., 19, pp. 15- 38, (1992)]. La présente Invention a en outre pour objet des cellules, organes, ou tissus végétaux, transformés par au moins une séquence d'ADN conforme à l'invention, ainsi que des plantes transgéniques dont le génome comprend au moins une séquence d'ADN conforme à l'invention. Ces cellules, organes, tissus végétaux, ou plantes peuvent être obtenus par les techniques habituelles de transformation et de transgénèse végétale, qui sont connues en elles-mêmes. Bien entendu, l'invention englobe également les descendants, obtenus par semis ou par multiplication végétative, des plantes conformes à l'invention obtenues par transgénèse, dans la mesure où ces descendants contiennent également dans leur génome au moins une copie d'une séquence d'acide nucléique conforme à l'invention. Le gène synthétique crylC conforme à l'invention peut notamment être utilisé pour transformer les plantes telles que le tabac, le coton, le maïs, le trèfle, la tomate, la luzerne, le chou, afin d'augmenter leur résistance aux insectes ravageurs, et notamment leur résistance vis-à-vis des larves de lépidoptères de la famille des noctuelles, notamment du genre Spodoptera , en particulier S . littoralis , S . exigua , S . frugiperda , S. cosmioides, ou vis à vis des larves de lépidoptères du genre Mamestra , notamment Mamestra brassicae . La présente invention sera mieux comprise à l'aide du complément de description qui va suivre qui se réfère à des exemples non-limitatifs d'obtention et d'utilisation d'un gène synthétique conforme à 1' invention.
EXEMPLE 1- CONSTRUCTION D'UN GENE SYNTHETIQUE czylC: L'assemblage du gène crylC synthétique a été effectué selon la technique décrite par SARDANA et al. Plant Cell Rep., 15: 677-681, (1996), avec les modifications suivantes :
La séquence du gène crylC, représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO: 1 est divisée en quatre " blocs " (" A " à " D " ) qui sont clones séparément puis liguatures entre eux pour couvrir la totalité de la séquence.
Chacun des blocs est synthétisé selon le protocole suivant :
Les oligonucléotides qui constituent le bloc sont mélangés en concentration équimolaire, puis soumis à une réaction de PCR.
Le mélange réactionnel (100 μl) est le suivant : - 1 pmole de chacun des oligonucléotides
- 6 mM MgS0
- 250 μM dATP, dTTP, dCTP, dGTP
- 2 unités de polymérase VENTR ®
- IX Tampon de réaction pour polymérase VENTR ® Le profil de la réaction de PCR est le suivant : 1)
- 95° 3mns
- 95° -» 42° en 120 ns 1 cycle
- 42° 2 mn
- 72° 30 secondes
2)
- 95° lmn
- 95° ^ 42° en 120 mns 1 cycle
- 42° 30 secondes
— 72° 30 secondes 3) - 95° 1 mn
- 42° 30 secondes 15 cycles
— 72° 30 secondes 4)
- 95° 1 mn
- 44° 30 secondes 15 cycles
- 72° 30 secondes
5)
— 72° 5 mns A la fin de la réaction, le mélange est soumis à une extraction au phénol : chloroforme (1:1), puis à une extraction au chloroforme.
Une aliquote de la première réaction de PCR est ensuite soumise à une nouvelle réaction d'amplification par PCR. Dans ce cas, les amorces utilisées (oligonucléotides " externes ") correspondent aux séquences des deux extrémités du bloc, auxquelles des séquences correspondant à des sites d'enzymes de restriction (en l'occurrence, le site Kpnl à l'extrémité 5', et le site Hindi II à l'extrémité 3') ont été ajoutées pour faciliter le clonage des produits de PCR ainsi obtenus .
Le mélange réactionnel (100μl) est le suivant :
- 30 pmoles chacun des oligonucléotides externes - 6 mM MgS04
- 250 μM dATP, dTTP, dCTP, dGTP
- 2 unités de polymérase VentR
- 5 μl du produit de PCR de la première réaction
Les conditions de PCR sont les suivantes : 1)
- 93° 3 mns
- 50° 30 secondes 1 cycle - 72° 1 mn 30 secondes
2) - 95° 30 secondes
- 50° 30 secondes 30 cycles - 72° 1 mn 30 secondes 3) - 72° 3 mns
A la fin de la réaction, le mélange est soumis à une extraction au phénol: chloroforme (1:1), puis à une extraction au chloroforme.
Une aliquote du produit de la réaction (25 μl) est soumise à une électrophorèse en gel d'agarose, et la bande correspondant à l'ADN de taille attendue est isolée. Après hydrolyse à l'aide des enzymes de restriction adéquates, dont le site de reconnaissance a été incorporé lors de cette réaction de PCR, l'ADN est clone dans le vecteur pGem7Zf(-) (PROMEGA) hydrolyse par les enzymes de restriction Kpnl et HindIII. Le vecteur pGem7Zf(-), outre un gène de résistance à l' ampiciline, comporte un site de clonage multiple où sont présents des sites de restriction pour les enzymes suivantes : Apal, Aa tll, SphI, Xbal , Xhol, EcoRI, Kpnl, Smal, Csp45l, Clal, HindIII, BamHI, Sacl (= SstI) , BstXI, et Nsil. Les produits de synthèse sont vérifiés par séquençage des deux brins d'ADN. Si aucun des clones analysés ne contient de séquence sans erreurs, on répare celles-ci par mutagenèse dirigée.
Les différents blocs ainsi obtenus sont ligaturés entre eux pour produire le gène entier selon le protocole suivant :
Le bloc " B ", clone dans le vecteur pGem7Zf(-), est hydrolyse par les enzymes de restriction StuI et HindIII, et l' insert de ca. 580 pb isolé sur gel. Cet insert est clone en aval du bloc " A ", entre les sites de restriction StuI et HindIII. La construction ainsi obtenue, est nommée " A+B " .
Le bloc " C " est digéré par les enzymes de restriction EcoRV et HindIII, et l' insert de ca . 420 pb est clone en aval du bloc " A+B ", entre les sites de restriction EcoRV et HindIII, pour donner la construction " A+B+C " .
Finalement, le bloc " D " est hydrolyse par les enzymes BglII et HindIII. L' insert de ca.610 pb est ensuite clone en aval du bloc " A+B+C " entre les sites de restriction BglII et HindIII.
La construction ainsi obtenue (" A+B+C+D " ) correspond au gène crylC dans son entier. Afin de s'assurer de l'intégrité de la séquence, les deux brins d'ADN sont séquences.
La figure 1 représente la séquence du gène synthétique crylC, indiquant les oligonucléotides utilisés pour sa construction. Chacune des flèches représente un oligonucléotide dont la séquence est indiquée. Les sites de restriction délimitant les quatre blocs (A, B, C, et D) sont encadrés : le bloc A s'étend du début du gène jusqu'au site StuI, le bloc B, du site StuI au site EcoRV, le bloc C est compris entre les sites EcoRV et BglII, tandis que le bloc D s'étend du site BglII jusqu'à la fin de la séquence.
Le bloc A a été construit à l'aide des oligonucléotides Al à A4, le bloc B à l'aide des oligonucléotides Bl à B8, le bloc C à l'aide des oligonucléotides Cl à C6, et le bloc D à l'aide des oligonucléotides Dl à D8.
Pour les oligonucléotides identifiés par des numéros impairs (flèches pleines), la séquence de 1' oligonucléotide utilisé correspond à la séquence indiquée sur la figure 1, tandis que pour les oligonucléotides identifiés par des numéros pairs (flèches en pointillés), la séquence de l' oligonucléotide utilisé est le complément de la séquence indiquée sur la figure 1.
Le sens de la flèche indique la polarité de 1' oligonucléotide (de 5' en 3'). EXEMPLE 2 : TOXICITE DE LA PROTEINE CrylC VIS-A-VIS DE DIFFERENTES ESPECES DE SPODOPTERA
Des essais biologiques ont été effectués par ingestion libre de milieu artificiel traité en surface selon la technique décrite par MULLER-COHN et al. [ (J.
Econ. Entomol., 89, 4 : 791-797, (1996)]. La protéine
CrylC a été distribuée à l'aide d'une micropipette à la dose de 750ng/cm2 à la surface du milieu artificiel.
L'expérimentation a été effectuée sur des lots de 30 larves de différentes espèces de Spodoptera au stade larvaire Ll pré-mue (L1PM) .
La mortalité larvaire à 5 jours a été déterminée par calcul du pourcentage de larves mortes dans chaque lot. Pour tenir compte de la mortalité dans le lot témoin, les résultats sont corrigés selon la formule d'ABBOT ci-dessous. (% de mortalité du lot traité - % de mortalité témoin) x 100
Mortalité ABBOTT = — '
(100 - % de mortalité témoin )
Les résultats de ces essais sont donnés dans le tableau IV ci-dessous:
TABLEAU IV
Figure imgf000011_0001
Ces résultats montrent que la protéine CrylC est active sur différentes espèces de Spodoptera .
EXEMPLE 3 : OBTENTION DE PLANTES TRANSGENIQUES ET EXPRESSION DU GENE SYNTHETIQUE crylC DANS CES PLANTES
Le gène synthétique obtenu comme décrit à l'exemple 1 ci-dessus a été clone dans le vecteur binaire pKYLX71-35S2 [MAÏTI et al., Proc. Natl. Acad. Sci. USA, 90, pp. 6110-6114, (1993)]. Ce vecteur comprend un site de clonage multiple (comportant des sites uniques pour les enzymes de restriction HindIII, Xhol, Sacl = SstI et Xbal) permettant le clonage du gène d'intérêt entre le promoteur de l'ARN 35S du virus de la mosaïque du chou- fleur (CaMV) , dont la partie amplificateur a été doublée (P35S2) , et le terminateur de la petite sous-unité de la Rubisco (tRbcS), ainsi qu'un marqueur de sélection ( nptll) conférant une résistance à la kanamycine, sous le contrôle du promoteur et du terminateur de la nopaline synthase .
Pour ce faire, le vecteur pGem7Zf (-) portant le gène synthétique crylC entre les sites de restriction Kpnl et HindIII est digéré par les enzymes de restriction Xhol et Sstl. L' insert de ca . 1900 pb est purifié sur gel d'agarose, et clone dans le vecteur pKYLX71-35S2 hydrolyse par les enzymes de restriction Xhol et Sstl. La construction ainsi obtenue est nommée pKYcrylC. Après vérification de son intégrité, la construction pKYcrylC est transférée dans la souche d' Agroba cterium tumefaciens C58 : pGV2260 [DEBLAERE et al, Nucleic Acids Res . 13 : 383-396 (1985)] Construction de tabacs transgéniques Des plants de tabac ont été transformés avec la construction pKYcrylC décrite ci-dessus, par transfert de gènes via Agrobacterium tumefaciens selon la méthode décrite par HORSCH et al. [Science 227 : 1229-1231, (1985)] . La quantité de toxine synthétisée par les plantes transgéniques, a été évaluée par transfert de protéines (Western blot) , selon le protocole suivant :
Les protéines solubles totales sont extraites par broyage d'un fragment de feuille dans du tampon d'extraction (50 mM Tris-HCl pH 9, 150 M NaCl, 1 mM EDTA, 1 mM DTT, 0,5% Triton-XlOO) . Le broyât est centrifugé, et le surnageant contenant les protéines est prélevé. La quantification des protéines est réalisée suivant la méthode de BRADFORD, [Anal. Biochem. , 72 : 248-254, (1976)]. Les protéines (10 μg) sont soumises à une électrophorèse sur gel de polyacrylamide en conditions dénaturantes (SDS-PAGE) , et transférées sur une membrane de nitrocellulose suivant le protocole standard [SAMBROOK et al., Molecular Cloning : A Laboratory Manual . Second Edition. Cold Spring Harbour Laboratory Press (1989)].
La détection de la toxine CrylC est réalisée à l'aide d'anticorps issus de jaune d'œuf (IgY) dirigés contre cette protéine, et d'un anticorps secondaire anti- IgY marqué à la phosphatase alcaline, suivant les techniques classiques [SAMBROOK et al., Molecular Cloning : A Laboratory Manual. Second édition. Cold Spring Harbour Laboratory Press (1989)].
Le témoin négatif est constitué d'un extrait proteique provenant d'une plante témoin (transformée avec un vecteur similaire à celui des plantes résistantes mais ne portant pas le gène crylC) . Pour estimer la quantité de toxine CrylC produite par les plantes analysées, des échantillons constitués d'un extrait de plante témoin, auquel on ajoute une quantité croissante (de 1 à 200 ng) de toxine purifiée (gamme témoin) , sont déposés sur le même gel que les extraits à analyser.
Une comparaison des intensités des bandes obtenues pour les échantillons à analyser avec la gamme témoin permet d'estimer la quantité de toxine CrylC présente dans les échantillons.
Les résultats de ces expériences montrent que, suivant les lignées testées, le taux d'expression du gène synthétique crylC se situe entre 0,15 et 1% des protéines totales solubles.
EXEMPLE 4 : PROTECTION CONFEREE PAR LE GENE SYNTHETIQUE DANS DES PLANTES TRANSGENIQUES
Les plants de tabac régénérés obtenus comme indiqué à l'exemple 3 ci-dessus sont utilisés pour effectuer des bioessais sur fragments de feuilles en utilisant des larves de S. li ttoralis à différents stades. Ll, L2 et L3 PM = stade larvaire Ll, L2, L3 pré- mue) .
Le protocole de ces essais est le suivant :
Les morceaux de feuilles de tabac sont découpés et déposés dans des boîtes en plastique, rondes, de 28 mm de diamètre. Le fond des boîtes est garni d'une rondelle de papier filtre humidifié, le couvercle est aéré. Dans chaque boîte, on dépose deux morceaux de feuille de tabac, puis on introduit 6 larves, de stade défini à l'avance. Cinq répétitions sont réalisées pour une plante (5 fois 6 larves par plante) Les 5 boîtes contenant une même plante sont rassemblées dans une cellule plastique. L'ensemble de l'essai est maintenu en pièce en conditions contrôlées (25°C, 16 heures de photophase) pendant 7 jours. Des contrôles intermédiaires de la mortalité sont effectués après 2 et 4 jours. Chaque essai comporte un lot témoin réalisé dans les mêmes conditions avec du tabac témoin (transformée avec un vecteur similaire à celui des plantes résistantes mais ne portant pas le gène crylC) .
On détermine la mortalité ABBOT comme indiqué à l'exemple 2 ci-dessus.
Les résultats de ces expériences sont présentés dans le tableau III suivant:
TABLEAU III
Figure imgf000014_0001
li ttoralis résistante à la toxine CrylC
Certains tabacs transgéniques ont été testés en utilisant une souche de S. li ttoralis résistante à la toxine CrylC, sélectionnée en laboratoire [MULLER-COHN et al., (J. Econ. Entomol., 89, 4 : 791-797, (1996). Cette souche (44ème génération après sélection) résistante est homozygote pour le facteur de résistance à la protéine CrylC, et au moment du bioessai, sa DL50 envers la protéine CrylC est 367 fois plus élevée que celle de la souche sensible.
Les bioessais ont été effectués dans les conditions décrites ci-dessus, en utilisant des larves au stade larvaire Ll pré-mue (L1PM) .
La mortalité ABBOT a été déterminée comme décrit ci-dessus.
Les résultats de ces bioessais (mortalité ABBOT) sont donnés dans le tableau IV ci-dessous:
TABLEAU IV
Figure imgf000015_0001
Les expériences menées montrent que, contrairement au gène natif crylC, le gène synthétique s'exprime à un taux très élevé, et permet de conférer une protection efficace contre des larves de S . li ttoralis à divers stades de développement.
Le gène synthétique induit une mortalité rapide : (100% de mortalité sur des larves au stade Ll PM dans un bioessai de 4 jours) pour toutes les plantes testées. La protection conférée est également efficace contre des larves plus âgées, et par conséquence moins sensibles aux toxines (100% de mortalité sur des larves L2PM, >80% de mortalité sur des larves L3PM) . En outre, les tabacs ayant intégré le gène synthétique crylC montrent une protection efficace (>97% de mortalité dans un bioessai de 7 jours) contre des larves Ll PM d'une souche résistante (DL50 souche résistante 367 x DL50 souche 'sensible) . Des bioessais ont également été réalisés sur des larves de Spodoptera frugiperda avec la lignée FL17 de tabac exprimant le gène synthétique crylC et qui entraîne 100% de mortalité sur les larves de S. li ttoralis (au stade Ll) à 3 jours.
Pour des larves de l'espèce frugiperda (au même stade larvaire Ll) , on observe également 100% de mortalité à 3 jours.
On constate donc une très grande efficacité du gène synthétique crylC, exprimé dans une plante, sur deux espèces du genre Spodoptera .

Claims

REVENDICATIONS 1) Acide nucléique comprenant la séquence représentée dans la liste de séquences en annexe par le numéro SEQ ID NO: 1. 2) Vecteur recombinant comprenant une séquence d'acide nucléique selon la revendication 1.
3) Plante transgénique comprenant au moins une séquence d'acide nucléique selon la revendication 1.
4) Plante transgénique selon la revendication 3, caractérisée en ce qu'elle appartient à une espèce choisie parmi le tabac, le coton, le maïs, le trèfle, la tomate, la luzerne, et le chou.
5) Utilisation d'une séquence d'acide nucléique selon la revendication 1, pour la lutte contre des insectes phytophages.
6) Utilisation selon la revendication 5, caractérisée en ce que lesdits insectes appartiennent au genre Spodoptera .
PCT/FR2000/001856 1999-07-01 2000-06-30 GENE SYNTHETIQUE cryIC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE WO2001002579A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU62902/00A AU6290200A (en) 1999-07-01 2000-06-30 Synthetic cryic gene and transgenic plants expressing same
BR0012045-6A BR0012045A (pt) 1999-07-01 2000-06-30 ácido nucleico, vetor recombinante, planta transgênica, e, utilização de uma sequência de ácido nucleico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9908469A FR2795739B1 (fr) 1999-07-01 1999-07-01 Gene synthetique cryic et plantes transgeniques exprimant ledit gene
FR99/08469 1999-07-01

Publications (1)

Publication Number Publication Date
WO2001002579A1 true WO2001002579A1 (fr) 2001-01-11

Family

ID=9547576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001856 WO2001002579A1 (fr) 1999-07-01 2000-06-30 GENE SYNTHETIQUE cryIC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE

Country Status (5)

Country Link
AR (1) AR034540A1 (fr)
AU (1) AU6290200A (fr)
BR (1) BR0012045A (fr)
FR (1) FR2795739B1 (fr)
WO (1) WO2001002579A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145406A1 (fr) * 2007-06-01 2008-12-04 Bayer Bioscience N.V. Nouveaux gènes codant pour des protéines insecticides
US11060103B2 (en) 2006-03-21 2021-07-13 Basf Agricultural Solutions Seed, Us Llc Genes encoding insecticidal proteins

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2782554A1 (fr) 2009-12-16 2011-07-14 Dow Agrosciences Llc Proteines cry insecticides cry1ca modifiees

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015630A2 (fr) * 1996-10-07 1998-04-16 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Gene synthetique de bacillus thuringiensis codant une toxine crylca (crylc)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015630A2 (fr) * 1996-10-07 1998-04-16 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Gene synthetique de bacillus thuringiensis codant une toxine crylca (crylc)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ELY S: "THE ENGINEERING OF PLANTS TO EXPRESS BACILLUS THURINGIENSIS DELTA-ENDOTOXINS", ENTWISTLE, P. ET AL. : "BACILLUS THURINGIENSIS, AN ENVIRONMENTAL BIOPESTICIDE: THEORY AND PRACTICE.", 1993, pages 105 - 124, XP002054693 *
MAZIER M. ET AL.: "The cryptic gene from Bacillus thuringiensis provides protection against Spodoptera littoralis in young transgenic plants.", PLANT SCIENCE (SHANNON), vol. 127, no. 2, 1997, pages 179 - 190, XP000892542, ISSN: 0168-9452 *
PANNETIER C ET AL: "Introduction of new traits into cotton through genetic engineering: Insect resistance as example.", EUPHYTICA, vol. 96, no. 1, 1997, pages 163 - 166, XP000892712, ISSN: 0014-2336 *
STRIZHOV N ET AL: "A SYNTHETIC CRYIC GENE, ENCODING A BACILLUS THURINGIENSIS DELTA- ENDOTOXIN, CONFERS SPODOPTERA RESISTANCE IN ALFALFA AND TOBACCO", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, no. 26, 24 December 1996 (1996-12-24), pages 15012 - 15017, XP002064600, ISSN: 0027-8424 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060103B2 (en) 2006-03-21 2021-07-13 Basf Agricultural Solutions Seed, Us Llc Genes encoding insecticidal proteins
WO2008145406A1 (fr) * 2007-06-01 2008-12-04 Bayer Bioscience N.V. Nouveaux gènes codant pour des protéines insecticides
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins

Also Published As

Publication number Publication date
AR034540A1 (es) 2004-03-03
AU6290200A (en) 2001-01-22
BR0012045A (pt) 2002-05-14
FR2795739A1 (fr) 2001-01-05
FR2795739B1 (fr) 2003-08-15

Similar Documents

Publication Publication Date Title
JP3209744B2 (ja) 結実能力のある遺伝子変換コーン
EP1698699B1 (fr) Expression améliorée de la protéine insecticide CRY3B dans des plantes
US5824864A (en) Maize gene and protein for insect control
US20050273882A1 (en) Expression of Cry3B insecticidal protein in plants
CN109868273B (zh) 用于检测玉米植物dbn9501的核酸序列及其检测方法
KR20110009197A (ko) 세균 독소 백신
CN112239491A (zh) 与抗锈病相关的蛋白及其编码基因与应用
CN113215127B (zh) 广谱抗病的转TaWRK2A基因小麦的培育方法及其相关生物材料
CN111171118B (zh) 一种植物抗虫基因mCry2Ab及其载体和应用
EP4012028A1 (fr) Séquence d&#39;acide nucléique pour la détection du plant de soja dbn8002 et son procédé de détection
Dandekar et al. Low levels of expression of wild type Bacillus thuringiensis var. Kurstaki cryIA (c) sequences in transgenic walnut somatic embryos
Gunasekara et al. Development of a Sri Lankan rice variety Bg 94-1 harbouring Cry2A gene of Bacillus thuringiensis resistant to rice leaffolder [Cnaphalocrocis medinalis (Guenée)]
FR2849863A1 (fr) Gene de resistance a aphis gossypii
EP1196581B1 (fr) Promoteur s&#39;exprimant specifiquement dans les cellules de racines de plantes, vecteurs et cellules hotes recombinantes comprenant un tel promoteur et plantes transgeniques obtenues
JP2019524137A (ja) 内生菌における代謝産物の生産
WO2001002579A1 (fr) GENE SYNTHETIQUE cryIC ET PLANTES TRANSGENIQUES EXPRIMANT LEDIT GENE
CN114276429B (zh) 兼抗纹枯病与茎基腐病的转TaLRK-R基因小麦的培育方法及其相关生物材料
CN110035662B (zh) 二元杀虫cry毒素
JP2018501798A (ja) 害虫の防除に有用な改変Cry1Ca毒素
JP2001503992A (ja) 線虫誘導性調節dna配列
EP3995583A1 (fr) Polynucléotides, amorces et procédés de détection d&#39;événement transgénique, construction génétique, kit de détection de matériau à partir d&#39;un échantillon de plantes, événement ctc75064-3, plant de canne à sucre résistant aux insectes, et procédé de production d&#39;un plant de canne à sucre résistant aux insectes, cellule végétale, partie ou graines de plant
JP5054267B2 (ja) 新規トキシン
CN107739403B (zh) 一种与植物开花期相关的蛋白及其编码基因与应用
MXPA01009823A (es) Vectores virales de insectos y usos de los mismos.
CN115925842B (zh) 抗病与抗倒伏的转TaDKR1基因小麦的培育方法及其相关生物材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP