WO2001001455A2 - Chip mit räumlich vorstehenden mikroelektroden und verfahren zur herstellung eines solchen - Google Patents

Chip mit räumlich vorstehenden mikroelektroden und verfahren zur herstellung eines solchen Download PDF

Info

Publication number
WO2001001455A2
WO2001001455A2 PCT/EP2000/004905 EP0004905W WO0101455A2 WO 2001001455 A2 WO2001001455 A2 WO 2001001455A2 EP 0004905 W EP0004905 W EP 0004905W WO 0101455 A2 WO0101455 A2 WO 0101455A2
Authority
WO
WIPO (PCT)
Prior art keywords
chip
microelectrodes
substrate
selective
silicon
Prior art date
Application number
PCT/EP2000/004905
Other languages
English (en)
French (fr)
Other versions
WO2001001455A3 (de
Inventor
Volker Dudek
Heinz Gerhard Graf
Michael Graf
Bernd HÖFFLINGER
Original Assignee
Institut Für Mikroelektronik Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Für Mikroelektronik Stuttgart filed Critical Institut Für Mikroelektronik Stuttgart
Publication of WO2001001455A2 publication Critical patent/WO2001001455A2/de
Publication of WO2001001455A3 publication Critical patent/WO2001001455A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the invention relates to a method for producing microelectrodes on a chip, in which the microelectrodes are produced on a surface of the same in selected areas as spatially protruding elements.
  • the invention further relates to a chip with a substrate and with microelectrodes which spatially protrude from a surface of the substrate.
  • Such a method and such a chip are known from Buser, R.A., Brugger, J., Linder, C, Rooij, N.F. de “Micromachined Silicon cantilevers and tips for bidirectional force microscopy", Dig. Techn. Papers 1991, Int. Conf. Solid-State Sens. Act., San Francisco, pp. 249-252 (1991), and from Dizon. R., Han, H., Reed, M., "Single-Mask processing of micro-mechanical piercing structures using ion milling", Proc. Micro-electromechanical Systems (MEMS), Fort Lauderdale, pp.
  • MEMS Micro-electromechanical Systems
  • micro-contacts protruding spatially from a chip are produced by complex dry and wet etching processes, while the latter is produced by galvanic waxing.
  • the materials used for this are usually the standard metals for semiconductor production, i.e. aluminum, Nikkei, copper and gold.
  • the electrical stimulation of certain cells or cell groups depends very much on the local conditions at the location of the stimulation.
  • the distance between the stimulation electrode and the cell to be stimulated has a considerable influence on the stimulation threshold or below which a successful stimulation takes place. Since the energy must be as low as possible for reasons of supply technology and cell compatibility, the distance between the stimulation electrode and the cell should be as small as possible.
  • the object of the invention is therefore to provide a method for producing microelectrodes on a chip, with which the microelectrodes can be produced in the simplest and most easily controllable way possible as elements protruding spatially from the chip surface. It should be possible to integrate the manufacturing process in a CMOS process.
  • an improved chip is to be specified, from the surface of which microelectrodes protrude spatially.
  • this object is achieved in a method of the type mentioned at the outset by the following steps:
  • microelectrodes consist of the material of the substrate and are doped.
  • microelectrodes can be produced within a CMOS process.
  • the microelectrodes can be arranged on a microelectronic control chip without having to use complex cables for signal transmission.
  • microelectrode arrays with several hundred or a thousand microelectrodes can be connected, whereby problems of the necessary connection and surgical technique when using them as retinal implants are eliminated.
  • the shape and size of the microelectrodes can be defined very precisely by means of the process parameters, without the need for additional levels of litography in a CMOS process.
  • the height of the electrodes can be adapted to the desired conditions and can be controlled in the range from 0 to 50 micrometers.
  • the selective crystal growth is stopped before the crystal has reached its ideal spatial structure in order to produce flattened microelectrodes.
  • the substrate of the chip is made of silicon, for example, the microelectrodes normally have the ideal crystal structure, ie they are pyramid-shaped.
  • the epitaxy process is stopped before the ⁇ 111> planes are filled, the tips of the microelectrodes do not grow out completely. In this way, when used as a retinal implant, the risk of the tissue above the chip being damaged during surgery is reduced.
  • the doping required to achieve sufficient conductivity of the microelectrodes is generated in situ during the epitaxial crystal growth.
  • the doping is achieved by implantation after the selective epitaxy.
  • the passivation of the surface is carried out in an expedient embodiment of the invention using a lithography method.
  • silicon or another semiconductor for example a III-V, II-VI or a IV-IV semiconductor, can be used as the substrate for producing the chip.
  • the passivation layer is produced from silicon oxide.
  • the passivation layer can also be made from other materials.
  • the surface of the microelectrodes is provided with a coating made of a biocompatible material.
  • a control circuit is generated on the chip by a CMOS process and is coupled to the microelectrodes.
  • microelectrodes can be connected directly to the control circuit as part of the CMOS process, so that a high-resolution sensor array for a retina implant can be combined directly with a control circuit that has one of the number of pixels corresponding number of microelectrodes is directly combined on the surface of the chip.
  • FIG. 1 shows a chip with a microelectrode according to the invention in a schematic, simplified representation
  • FIG. 2 shows a chip which is additionally provided with a CMOS circuit
  • 3 shows a chip with a microelectrode according to the invention, which has a flattened pyramid shape
  • Fig. 4 shows a system in which the epitaxy process can be carried out
  • a chip is generally designated by the number 10.
  • the chip 10 has a substrate, which can be made of silicon, for example, and is designated by 14.
  • a passivation layer 16 is provided on a flat surface 12 of the substrate 14, in which a selected area 18 is left out. Through this recessed area 18, a spatially protruding element 20 can be gradually generated from the surface 12 of the substrate 14 by selective epitaxial growth, which element consists of the same material as the substrate 14 and has the same crystal structure. In the case of silicon, this results in the pyramid shape shown in FIG. 1, in which the ⁇ 111> plane is indicated by the number 24 and which has an apex angle of 35.3 °.
  • the spatially protruding element 20 can serve as a microelectrode, it is, as will be explained in more detail below is doped in a suitable manner in order to achieve sufficient electrical conductivity.
  • a first variant of the chip that can be produced in this way is shown schematically in FIG.
  • a CMOS circuit 26 is provided below the microelectrode 22a in the substrate 14 and serves as a control circuit for controlling the microelectrode 22a.
  • Fig. 2 it is also indicated schematically that the surface of the microelectrode 22a can be provided with a coating 28 made of a biocompatible material, for example titanium oxide or gold, if the chip 10a is used as a retina implant.
  • a coating 28 made of a biocompatible material for example titanium oxide or gold
  • FIG. 3 shows a slightly modified embodiment of the embodiment according to FIG. 2 and is designated overall by the number 10b.
  • the microelectrode 22b has a shape that deviates from the ideal pyramid shape, namely the shape of a pyramid with a flattened tip.
  • Such a shape can be created by stopping the epitaxial process before the ⁇ 111> planes of the crystal are completely filled.
  • microelectrodes of different sizes and shapes can be produced in this way.
  • the flattened tip microelectrodes 22b have particular advantages when used with a retina implant.
  • a reactor is shown schematically and generally designated by the number 40, which is suitable for performing the gas phase epitaxy.
  • epitaxy is a type of deposition of a material from the gas phase. What is special about this process is the continuation of the crystal lattice of the substrate in the deposited layer, as a result of which the substrate and the new layer form a larger single crystal.
  • Epitaxy is a general term under which various variations of the basic principle have been summarized over time. Such methods are e.g. molecular beam epitaxy (MBE), organometallic gas phase epitaxy (MOCVD) or organometallic molecular beam epitaxy (MOMBE). All of these variants can in principle be used for the method according to the invention, but only the general gas phase epitaxy will be explained at this point with reference to FIG. 4.
  • MBE molecular beam epitaxy
  • MOCVD organometallic gas phase epitaxy
  • MOMBE organometallic molecular beam epitaxy
  • a silicon sample is used instead of a whole-area substrate, the surface of which is partially covered, for example, with silicon dioxide, then the single-crystal growth takes place only in the areas in which the silicon surface is exposed. In the other areas, either polycrystalline silicon grows or there is no growth at all. In the latter case, one speaks of selective epitaxy.
  • the first case can occur if the growth rate is chosen too high. By varying the process temperature, the doping However, the amount of material and the gas flows can be used to control the selective epitaxy in very controllable ways.
  • the reactor 40 according to FIG. 4 can consist, for example, of a gas vessel; it has a heater 44 and is connected to a vacuum pump 46.
  • a susceptor 42 on which the substrate 14 to be treated is placed.
  • the selected areas 14 are first left out on the substrate 14 and the other areas of the surface 12 are provided with the passivation layer 16, which is expediently carried out using a lithography method.
  • the pressure inside the reactor 40 is now reduced to a suitable value (approximately 60 mbar) by means of the pump 46 and brought to the process temperature of approximately 1000-1100 ° C. by means of the heater 44, which can be inductive, for example.
  • the substrate Before the growth phase, the substrate (wafer) may be etched back to condition surface 12 in the desired manner.
  • the process gases are then introduced into the reactor 40, in which the selective epitaxial growth then takes place in a controlled manner.
  • the substrate 14 consists of silicon, for example, silicon tetrachloride is converted to hydrogen chloride and hydrogen solid silicon reduced. Growth rates in the range between 200 nm / min and 1 ⁇ m / min can be achieved.
  • additives in the form of phosphine or diborane are added to the process gas, as indicated in FIG. 4. After the chemical reaction, the resulting phosphorus and drilling atoms are built into the crystal lattice.
  • the epitaxial growth can be stopped prematurely before the ⁇ 111> planes are completely filled in order to produce flattened microelectrodes 22b according to FIG. 3.
  • the doping can also be carried out after the selective epitaxy.
  • the doping by implantation can only reach depths of up to about one micrometer, the doping is successively carried out for microelectrodes which have a greater height, in that epitaxial growth is alternately carried out first, then an implantation step is carried out and then another epitaxial step is carried out which is in turn followed by an implantation. In this way, great heights can be generated if the process is repeated a corresponding number of times.
  • a layer 52 is first deposited on a substrate 50 by selective epitaxy.
  • an implantation is carried out on the surface of the layer 52 ', as indicated schematically by the arrows.
  • the layer 52 ' which has initially grown intrinsically and then is implanted on its surface becomes a doped layer 52' '.
  • a further intrinsic layer 54 is deposited on the surface of the doped layer 52 ′′, which in turn is implanted on its surface in the subsequent step according to FIG. 5e), so that one layer 54 'is formed, which in the subsequent healing step according to FIG. 5f) becomes a further doped layer 54' '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Es wird ein Verfahren zur Erzeugung von Mikroelektroden (22) auf einem Chip (10) angegeben, bei dem zunächst auf der Oberfläche (12) eines Substrates (10) eine Passivierungsschicht (16) aufgebracht wird, wobei ausgewählte Bereiche (18) ausgespart werden. Anschliessend erfolgt ein selektives epitaktisches Kristallwachstum über den ausgewählten Bereichen (18) des Chips (10), um räumlich hervorstehende Mikroelektroden (22) zu erzeugen, die zwecks einer ausreichenden Leitfähigkeit dotiert werden. Das erfindungsgemässe Verfahren kann in einen CMOS-Prozess integriert werden, um eine grosse Anzahl von mikroskopisch kleinen, räumlich von der Oberfläche eines Chips hervorstehenden Mikroelektroden zu erzeugen, die unmittelbar mit Steuerschaltungen kombiniert werden können, die auf dem Chip im Rahmen des CMOS-Prozesses erzeugt werden.

Description

Chip mit räumlich vorstehenden Mikroelektroden und Verfahren zur Herstellung eines solchen
Die Erfindung betrifft ein Verfahren zur Erzeugung von Mikroelektroden auf einem Chip, bei dem die Mikroelektroden auf einer Oberfläche desselben an ausgewählten Bereichen als räumliche vorstehende Elemente erzeugt werden. Die Erfindung betrifft ferner einen Chip mit einem Substrat, und mit Mikroelektroden, die von einer Oberfläche des Substrates räumlich hervorstehen.
Ein derartiges Verfahren und ein derartiger Chip sind bekannt aus Buser, R.A., Brugger, J., Linder, C, Rooij , N.F. de "Micromachined Silicon cantilevers and tips for bidirectional force microscopy", Dig. Techn. Papers 1991, Int. Conf. Solid- State Sens. Act., San Francisco, S. 249-252 (1991), sowie aus Dizon. R., Han, H., Reed, M., "Single-Mask processing of micro- mechanical piercing structures using ion milling" , Proc . Micro- electromechanical Systems (MEMS), Fort Lauderdale, S. 48-52 (1993), als auch aus Meier, J.H., Rutten, W.L., Zout- man, A.E., Boom, H.B.K. "Recruitment and selectivity of neural Stimulation with multipolar litrafascicular elctrodes", Dissertation, Meier, J., "Selectivity and Design of Neuro-Electronic Interfaces, Institute for Biomedical Technology, Universität Twente (1992).
Gemäß der beiden erst genannten Dokumente werden dabei von einem Chip räumlich hervorstehende Mikrokontakte durch aufwendige Trocken- und Naßätzprozesse hergestellt, während die Herstellung bei dem letzt genannten Zitat durch galvanisches Wachsen erfolgt. Die dazu verwendeten Materialien sind in der Regel die Standardmetalle der Halbleiterfertigung, also Aluminium, Nikkei, Kupfer und Gold.
Es handelt sich dabei um sehr aufwendige und komplizierte Herstellungsverfahren; auch ist es nicht möglich, die Herstellung solcher Mikroelektroden oder Mikroelektrodenarrays in einen CMOS-Prozeß zu integrieren. Im Rahmen der Entwicklung von subretinalen Netzhautimplantaten ist es geplant, bei Patienten, die an Netzhautdegeneration leiden, einen Chip mit einem Sensorarray und mikroskopisch kleinen Stimulationselektroden unterhalb der Retina zu implantieren. Über den Sensorarray des Chips, der beispielsweise aus MikroFotodioden bestehen kann, kann das von dem ansonsten noch intakten Auge auf die Netzhaut abgebildete Licht detektiert werden und über eine Steuerschaltung verarbeitet werden, um über den Array von Stimulationselektroden die darüber liegenden Zellschichten zu stimulieren, um so dem Patienten wieder ein Sehen zu ermöglichen. Es wird davon ausgegangen, daß eine Pixelzahl in der Größenordnung von einigen Hundert bis etwa Zweitausend Pixeln bereits ausreichend ist, um zumindest eine Erkennung räumlicher Objekte zu ermöglichen. Allerdings soll natürlich die Pixelzahl so groß wie möglich sein, um eine bessere Auflösung beim Sehen zu erreichen.
Die elektrische Stimulation bestimmter Zellen oder Zellgruppen hängt sehr stark von den lokalen Gegebenheiten am Ort der Stimulation ab. So hat der Abstand zwischen der Stimulationselektrode und der zu stimulierenden Zelle erheblichen Einfluß auf die Reizschwelle, oderhalb derer eine erfolgreiche Stimulation stattfindet. Da aus versorgungstechnischen und zellverträglichen Gründen die Energie so gering wie möglich sein muß, sollte der Abstand zwischen der Stimulationselektrode und der Zelle so klein wie möglich sein.
Die unabhängige Beschaltung einer großen Anzahl von Stimulationselektroden ist nur mit Hilfe eines mikroelektronischen Chips möglich . Die vorstehend genannten Verfahren, die die Herstellung von räumlich von einer Chipoberfläche hervorstehenden Mikroelektroden ermöglichen, lassen sich jedoch nicht in einen CMOS-Prozeß integrieren.
Da es jedoch geplant ist, die Steuerschaltung im Rahmen eines CMOS-Prozesses herzustellen, führt dies zu einer weiteren Komplikation im Herstellungsverfahren, zu vergrößerten Abmessungen und damit zu späteren Problemen bei der Implantation.
Die Aufgabe der Erfindung besteht somit darin, ein Verfahren zur Erzeugung von Mikroelektroden auf einem Chip anzugeben, mit dem die Mikroelektroden auf möglichst einfache und gut zu kontrollierende Weise als räumlich von der Chipoberfläche hervorstehende Elemente erzeugt werden können. Dabei soll es möglich sein, das Herstellungsverfahren in einen CMOS-Prozeß zu integrieren.
Ferner soll ein verbesserter Chip angegeben werden, von dessen Oberfläche Mikroelektroden räumlich hervorstehen.
Hinsichtlich des Verfahrens wird diese Aufgabe bei einem Verfahren der eingangs genannten Art durch die folgenden Schritte gelöst :
Passivieren einer Oberfläche des Chips und Freilegen von ausgewählten Bereichen,
Erzeugen von selektivem epitaktischen Kristallwachstum über den ausgewählten Bereichen des Chips, um die Mikroelektroden zu erzeugen und Dotieren der Mikroelektroden.
Hinsichtlich des Chips gemäß der eingangs genannten Art wird diese Aufgabe ferner dadurch gelöst, daß die Mikroelektroden aus dem Material des Substrates bestehen und dotiert sind.
Die Aufgabe der Erfindung wird auf diese Weise vollkommen gelöst.
Gemäß dem erfindungsgemäßen Verfahren können räumlich herstehende Mikroelektroden innerhalb eines CMOS-Prozesses hergestellt werden. Dadurch können die Mikroelektroden auf einem mikroelektronischen Steuerchip angeordnet sein, ohne daß aufwendige Kabel zur Signalübertragung verwendet werden müssen. Auf diese Weise können Mikroelektrodenarrays mit mehreren hundert oder tausend Mikroelektroden beschaltet werden, wobei Probleme der notwendigen Verbindungs- und Operationstechnik bei der Verwendung als Retina-Implantate entfallen. Die Form und Größe der Mikroelektroden läßt sich sehr exakt durch die Prozeßparameter definieren, ohne daß dazu zusätzliche Litrographieebenen im Rahmen eines CMOS-Prozesses notwendig sind.
Die Höhe der Elektroden kann an die gewünschten Verhältnisse angepaßt werden und im Rahmen von 0 bis 50 Mikrometern gesteuert werden.
In bevorzugter Weiterbildung des erfindungsgemäßen Verfahrens wird das selektive Kristallwachstum gestoppt, bevor der Kristall seine ideale Raumstruktur erreicht hat, um abgeflachte Mikroelektroden zu erzeugen. Besteht das Substrat des Chip beispielsweise aus Silizium, so weisen die Mikroelektroden normalerweise die ideale Kristallstruktur auf, sind also pyramidenförmig ausgebildet. Stoppt man jedoch den Epitaxie-Prozeß, bevor die <111>-Ebenen aufgefüllt sind, so wachsen die Spitzen der Mikroelektroden nicht vollständig aus. Auf diese Weise wird bei einer Verwendung als Retina-Implantat das Risiko, daß bei Operationen das Gewebe über dem Chip geschädigt wird, vermindert.
Die zur Erzielung einer ausreichenden Leitfähigkeit der Mikroelektroden notwendige Dotierung wird gemäß einer ersten Ausführung der Erfindung in-situ während des epitaktischen Kristall- wachstums erzeugt.
Gemäß einer alternativen Ausführung der Erfindung wird die Dotierung durch Implantation nach der selektiven Epitaxie erreicht.
Beide Möglichkeiten können in vorteilhafter Weise verwendet werden.
Da mit einer Implantation allerdings nur Tiefen bis zu etwa einem Mikrometer erreicht werden können, wäre bei größeren Schichtdicken die Dotierung einer tieferen Schicht nicht mehr möglich.
Aus diesem Grunde werden die Schritte der selektiven Epitaxie und der Implantation gemäß einer weiteren Ausführung der Erfindung sukzessive wiederholt. Auf diese Weise lassen sich gezielt dotierte Mikroelektroden, bei der die Dotierung nach dem selektiven Epitaxiewachstum erfolgt, herstellen, die eine Höhe von mehr als einem Mikrometer aufweisen.
Die Passivierung der Oberfläche unter Aussparung der ausgewählten Bereiche, an denen das spätere epitaktische Wachstum erfolgt, erfolgt in zweckmäßiger Ausführung der Erfindung unter Verwendung eines Litographieverfahrens .
Als Substrat zur Herstellung des Chips kann gemäß einer weiteren Ausführung der Erfindung Silizium oder ein anderer Halbleiter, etwa ein III-V-, II-VI- oder ein IV-IV-Halbleiter verwendet werden.
Gemäß einer weiteren Ausführung der Erfindung wird die Passi- vierungsschicht aus Siliziumoxid hergestellt.
Dies ist ein gängiges Verfahren bei der Verwendung von Silizium als Substrat, jedoch kann die Passivierungsschicht auch aus anderen Materialien hergestellt werden.
Gemäß einer weiteren Ausführung der Erfindung werden die Mikroelektroden an ihrer Oberfläche mit einer Beschichtung aus einem biokompatiblen Werkstoff versehen.
Auf diese Weise wird bei der Verwendung als Retina-Implantat die notwendige Biokompatibilität auf jeden Fall sichergestellt. In bevorzugter Weiterbildung der Erfindung wird durch einen CMOS-Prozeß auf dem Chip eine Steuerschaltung erzeugt, die mit den Mikroelektroden gekoppelt wird.
Auf diese Weise ergibt sich der erhebliche Vorteil, daß die Mikroelektroden im Rahmen des CMOS-Prozesses unmittelbar mit der Steuerschaltung verbunden werden können, um so für ein Retina- Implantat eine hochauflösenden Sensor-Array unmittelbar mit einer Steuerschaltung zu kombinieren, die mit einer der Pixelzahl entsprechenden Anzahl von Mikroelektroden auf der Oberfläche des Chips unmittelbar kombiniert ist.
Auf diese Weise entsteht ein leicht zu handhabendes und gut implantierbares Retina-Implantat.
Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:
Fig. 1 einen Chip mit einer erfindungsgemäßen Mikroelektro- de in schematischer , vereinfachter Darstellung;
Fig. 2 einen Chip, der zusätzlich mit einer CMOS-Schaltung versehen ist; Fig. 3 einen Chip mit einer erfindungsgemäßen Mikroelektrode, die eine abgeflachte Pyramidenform aufweist;
Fig. 4 eine Anlage, in der der Epitaxie-Prozeß durchgeführt werden kann und
Fig. 5a) bis 5f) verschiedene Phasen eines sukzessiven Prozesses, bei dem sich jeweils an einen Epitaxie-Schritt ein Implantationsschritt anschließt.
Anhand von Fig. 1 wird das Grundprinzip des erfindungsgemäßen Verfahrens im folgenden erläutert.
In Fig. 1 ist ein Chip insgesamt mit der Ziffer 10 bezeichnet. Der Chip 10 weist ein Substrat auf, das beispielsweise aus Silizium bestehen kann und mit 14 bezeichnet ist. Auf einer ebenen Oberfläche 12 des Substrates 14 ist eine Passivierungs- schicht 16 vorgesehen, in der ein ausgewählter Bereich 18 ausgespart ist. Durch diesen ausgesparten Bereich 18 kann durch selektives Epitaxiewachstum von der Oberfläche 12 des Substrates 14 aus allmählich ein räumlich hervorstehendes Element 20 erzeugt werden, das aus demselben Material wie das Substrat 14 besteht und dieselbe Kristallstruktur aufweist. Im Falle von Silizium ergibt sich somit die in Fig. 1 dargestellt Pyramidenform, bei der die <111>-Ebene mit der Ziffer 24 angedeutet ist und die einen Spitzenwinkel von 35,3° aufweist.
Damit das räumlich hervorstehende Element 20 als Mikroelektrode dienen kann, wird es, wie nachfolgend noch näher erläutert wird, auf geeignete Weise dotiert, um eine ausreichende elektrische Leitfähigkeit zu erreichen.
In Fig. 2 ist eine erste Variante des so herstellbaren Chips schematisch dargestellt und insgesamt mit der Ziffer 10a bezeichnet. Dabei ist unterhalb der Mikroelektrode 22a im Substrat 14 eine CMOS-Schaltung 26 vorgesehen, die als Steuerschaltung zur Ansteuerung der Mikroelektrode 22a dient.
In Fig. 2 ist zusätzlich noch schematisch angedeutet, daß die Oberfläche der Mikroelektrode 22a mit einer Beschichtung 28 aus einem biokompatiblen Werkstoff, beispielsweise aus Titanoxid oder Gold versehen sein kann, sofern der Chip 10a als Retina- Implantat verwendet wird.
In Fig. 3 ist eine leicht abgewandelte Ausführungsform der Ausführung gemäß Fig. 2 dargestellt und insgesamt mit der Ziffer 10b bezeichnet.
Hierbei weist die Mikroelektrode 22b eine von der idealen Pyramidenform abweichende Form auf, nämlich die Form einer Pyramide mit abgeflachter Spitze.
Eine solche Form kann erzeugt werden, indem der Epitaxie-Prozeß abgebrochen wird, bevor die <111>-Ebenen des Kristalls vollständig aufgefüllt sind.
Je nach Größe der ausgesparten Bereiche 18 und je nach Zeitpunkt des Abstoppens des Epitaxie-Wachstums lassen sich auf diese Weise Mikroelektroden unterschiedlicher Größe und Form herstellen. Die Mikroelektroden 22b mit abgeflachter Spitze weisen besondere Vorteile bei der Verwendung bei einem Retina-Implantat auf.
In Fig. 4 ist ein Reaktor schematisch dargestellt und insgesamt mit der Ziffer 40 bezeichnet, der zur Durchführung der Gasphasenepitaxie geeignet ist.
Bei der Epitaxie handelt es sich bekanntlich um eine Art der Abscheidung eines Materials aus der Gasphase. Das besondere an diesem Verfahren ist die Fortsetzung des Kristallgitters des Substrates in der abgeschiedenen Schicht, wodurch das Substrat und die neue Schicht einen größeren Einkristall bilden.
Epitaxie ist eine allgemeine Bezeichnung, unter der im Laufe der Zeit verschiedene Variationen des Grundprinzips zusammengefaßt wurden. Solche Verfahren sind z.B. die Molekularstrahlepitaxie (MBE), die metallorganische Gasphasenepitaxie (MOCVD) oder die metallorganische Molekularstrahlenepitaxie (MOMBE). All diese Varianten sind im Prinzip für das erfindungsgemäße Verfahren verwendbar, jedoch soll an dieser Stelle nur die allgemeine Gasphasenepitaxie anhand von Fig. 4 erläutert werden.
Wird anstelle eines ganzflächigen Substrates eine Siliziumprobe verwendet, deren Oberfläche teilweise z.B. mit Siliziumdioxid bedeckt ist, so erfolgt das einkristalline Wachstum nur in den Bereichen, in denen die Siliziumoberfläche frei liegt. Auf den anderen Gebieten erfolgt entweder ein Wachsen von polykristallinem Silizium oder es erfolgt gar kein Wachstum. Im letzteren Fall wird von selektiver Epitaxie gesprochen. Der erste Fall kann dann eintreten, wenn die Wachstumsrate zu hoch gewählt wurde. Durch Variation der Prozeßtemperatur, der Dotier- stoffmenge und der Gasflüsse kann die selektive Epitaxie jedoch in sehr kontrollierbaren Bahnen gesteuert werden.
Der Reaktor 40 gemäß Fig. 4 kann beispielsweise aus einem Gasgefäß bestehen; er besitzt eine Heizung 44 und ist mit einer Vakuumpumpe 46 verbunden.
Innerhalb des Reaktors 40 befindet sich ein Suszeptor 42, auf den das zu behandelnde Substrat 14 aufgelegt wird.
Auf dem Substrat 14 werden vor dem Beginn der Epitaxie zunächst die ausgewählten Bereiche 14 ausgespart und die übrigen Bereiche der Oberfläche 12 mit der Passivierungsschicht 16 versehen, was zweckmäßigerweise unter Verwendung eines Litographieverfah- rens erfolgt.
Der Druck innerhalb des Reaktors 40 wird nun mittels der Pumpe 46 auf einen geeigneten Wert (etwa 60 mbar) reduziert und mittels der Heizung 44, die beispielsweise induktiv ausgebildet sein kann, auf die Prozeßtemperatur von ca. 1000 - 1100 °C gebracht.
Vor der Wachstumsphase kann das Substrat (der Wafer) zurückgeätzt werden, um die Oberfläche 12 in der gewünschten Weise zu konditionieren . Anschließend werden die Prozeßgase in den Reaktor 40 eingeführt, in dem dann das selektive epitaktische Wachstum kontrolliert erfolgt.
Besteht das Substrat 14 beispielsweise aus Silizium, so wird Siliziumtetrachlorid mit Wasserstoff zu Wasserstoffchlorid und festem Silizium reduziert. Dabei können Wachstumsraten etwa im Bereich zwischen 200 nm/min und 1 um/min erreicht werden.
Soll bei der selektiven Epitaxie in-situ die Dotierung durchgeführt werden, so werden dem Prozeßgas Zusätze in Form von Phos- phin oder Diboran beigemischt, wie in Fig. 4 angedeutet ist. Nach der chemischen Reaktion werden die entstandenen Phosphor- und Bohratome in das Kristallgitter eingebaut.
Das epitaktische Wachstum kann vorzeitig beendet werden, bevor die <111>-Ebenen vollständig aufgefüllt sind, um abgeflachte Mikroelektroden 22b gemäß Fig. 3 zu erzeugen.
In alternativer Weise kann die Dotierung auch nach der selektiven Epitaxie durchgeführt werden.
Da mit der Dotierung durch Implantation nur Tiefen bis zu etwa einem Mikrometer erreicht werden können, wird bei Mikroelektroden, die eine größere Höhe aufweisen, die Dotierung sukzessive durchgeführt, indem abwechselnd zunächst epitaktisches Wachstum durchgeführt wird, dann ein Implantationsschritt erfolgt und anschließend ein weiterer Epitaxieschritt durchgeführt wird, an den sich wiederum eine Implantation anschließt. Auf diese Weise können große Höhen erzeugt werden, sofern der Prozeß entsprechend oft widerholt wird.
Die verschiedenen Phasen eine solchen sukzessiven Verfahrens sind anhand von Fig. 5a) bis f) schematisch dargestellt.
Gemäß Fig. 5a) wird auf einem Substrat 50 zunächst durch selektive Epitaxie eine Schicht 52 abgeschieden. In einem nachfolgenden Schritt erfolgt gemäß Fig. 5b) auf der Oberfläche der Schicht 52' eine Implantation, wie durch die Pfeile schematisch angedeutet ist.
Im nachfolgenden Ausheilschritt gemäß Fig. 5c) wird die zunächst intrinsisch gewachsene und dann an ihrer Oberfläche implantierte Schicht 52' zu einer dotierten Schicht 52 ' ' .
In einem anschließenden Epitaxie-Schritt gemäß Fig. 5d) wird auf der Oberfläche der dotierten Schicht 52'' eine weitere in- trinsische Schicht 54 abgeschieden, die im nachfolgenden Schritt gemäß Fig. 5e) wiederum an ihrer Oberfläche implantiert wird, so daß eine Schicht 54' entsteht, die im nachfolgenden Ausheilschritt gemäß Fig. 5f) zu einer weiteren dotierten Schicht 54' ' wird.
Diese Folge von Schritten wird sukzessive wiederholt, bis die betreffenden Mikroelemente ihre gewünschte räumliche Ausdehnung erreicht haben.

Claims

Patentansprüche
1. Verfahren zur Erzeugung von Mikroelektroden (22, 22a, 22b) auf einem Chip (10, 10a), bei dem die Mikroelektroden (22, 22a, 22b) auf einer Oberfläche (12) desselben an ausgewählten Bereichen (18) als räumlich hervorstehende Elemente (20) erzeugt werden, gekennzeichnet durch die folgenden Schritte:
Passivieren einer Oberfläche (12) des Chips (10, 10a) und Freilegen von ausgewählten Bereichen (18), Erzeugen von selektivem epitaktischem Kristallwachstum über den ausgewählten Bereichen (18) des Chips (10, 10a), um die räumlich hervorstehenden Mikroelektroden (22, 22a, 22b) zu erzeugen und Dotieren der Mikroelektroden (22, 22a, 22b).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das selektive Kristallwachstum gestoppt wird, bevor der Kristall seine ideale Raumstruktur erreicht hat, um abgeflachte Mikroelektroden (22, 22a, 22b) zur erzeugen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Dotierung in-situ während des epitaktischen Kristallwachstums erfolgt.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Dotierung durch Implantation nach der selektiven Epitaxie erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schritte der selektiven Epitaxie und der Implantation sukzessive wiederholt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Passivierung der Oberfläche unter Aussparung der ausgewählten Bereiche unter Verwendung eines Lithographieverfahrens erfolgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Substrat (14) aus Silizium, aus einem III-V-, II-VI- oder einem IV-IV-Halbleiter zur Herstellung des Chips (10, 10a) verwendet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Passivierungsschicht (16) aus Siliziumoxid hergestellt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mikroelektroden (22a) an ihrer Oberfläche mit einer Beschichtung (28) aus einem biokompatiblen Werkstoff versehen werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß durch einen CMOS-Prozeß auf dem Chip (10a, 10b) eine Steuerschaltung (26) erzeugt wird, die mit den Mikroelektroden (22a, 22b) gekoppelt wird.
11. Chip mit einem Substrat (14), mit Mikroelektroden (22, 22a, 22b), die von einer Oberfläche des Substrates (14) räumlich hervorstehen, dadurch gekennzeichnet, daß die Mikroelektroden (22, 22a, 22b) aus dem Material des Substrates (14) bestehen und dotiert sind.
12. Chip nach Anspruch 11, dadurch gekennzeichnet, daß die Mikroelektroden (22b) eine gegenüber einer idealen Kristallform abgeflachte Form aufweisen.
13. Chip nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Mikroelektroden (22a, 22b) mit einer CMOS- Steuerschaltung (26) gekoppelt sind.
14. Chip nach einem der Ansprüche 11, 12 oder 13, dadurch gekennzeichnet, daß der Chip (10, 10a, 10b) aus einem Substrat (14) aus Silizium oder aus einem III-V-, II-VI- oder einem IV-IV-Halbleiter hergestellt ist.
15. Retina-Implantat mit einem Chip (10, 10a, 10b) nach einem der Ansprüche 11 bis 14.
PCT/EP2000/004905 1999-06-28 2000-05-30 Chip mit räumlich vorstehenden mikroelektroden und verfahren zur herstellung eines solchen WO2001001455A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929542.5 1999-06-28
DE19929542A DE19929542B4 (de) 1999-06-28 1999-06-28 Flächige Anordnung von Stimulationselektroden auf einem Chip und Herstellungsverfahren dazu und Verwendung als Retina-Implantat

Publications (2)

Publication Number Publication Date
WO2001001455A2 true WO2001001455A2 (de) 2001-01-04
WO2001001455A3 WO2001001455A3 (de) 2002-10-10

Family

ID=7912800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004905 WO2001001455A2 (de) 1999-06-28 2000-05-30 Chip mit räumlich vorstehenden mikroelektroden und verfahren zur herstellung eines solchen

Country Status (2)

Country Link
DE (1) DE19929542B4 (de)
WO (1) WO2001001455A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9846126B2 (en) 2008-10-27 2017-12-19 Genalyte, Inc. Biosensors based on optical probing and sensing
US9921165B2 (en) 2010-11-05 2018-03-20 Genalyte, Inc. Optical analyte detection systems and methods of use
US9983206B2 (en) 2013-03-15 2018-05-29 The Board Of Trustees Of The University Of Illinois Methods and compositions for enhancing immunoassays
US10365224B2 (en) 2007-12-06 2019-07-30 Genalyte, Inc. Label-free optical sensors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134454A (en) * 1990-09-26 1992-07-28 Purdue Research Foundation Self-aligned integrated circuit bipolar transistor having monocrystalline contacts
JPH0521467A (ja) * 1991-07-09 1993-01-29 Hitachi Ltd 電界効果トランジスタの製造方法
US5313484A (en) * 1991-06-13 1994-05-17 Fujitsu Limited Quantum box or quantum wire semiconductor structure and methods of producing same
JPH07183486A (ja) * 1993-12-24 1995-07-21 Toshiba Corp 半導体装置及びその製造方法
US5602057A (en) * 1990-11-22 1997-02-11 Canon Kabushiki Kaisha Process of making a semiconductor device using crystal growth by a nucleation site in a recessed substrate and planarization
US5753555A (en) * 1995-11-22 1998-05-19 Nec Corporation Method for forming semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529371C3 (de) * 1995-08-10 2003-05-28 Nmi Univ Tuebingen Mikroelektroden-Anordnung
DE19705987C2 (de) * 1996-10-23 1999-09-09 Univ Eberhard Karls Optisch ansteuerbare Mikroelektrodenanordnung zum Stimulieren von Zellen, insbesondere Retina-Implantat
US5865839A (en) * 1996-12-30 1999-02-02 Doorish; John F. Artificial retina

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134454A (en) * 1990-09-26 1992-07-28 Purdue Research Foundation Self-aligned integrated circuit bipolar transistor having monocrystalline contacts
US5602057A (en) * 1990-11-22 1997-02-11 Canon Kabushiki Kaisha Process of making a semiconductor device using crystal growth by a nucleation site in a recessed substrate and planarization
US5313484A (en) * 1991-06-13 1994-05-17 Fujitsu Limited Quantum box or quantum wire semiconductor structure and methods of producing same
JPH0521467A (ja) * 1991-07-09 1993-01-29 Hitachi Ltd 電界効果トランジスタの製造方法
JPH07183486A (ja) * 1993-12-24 1995-07-21 Toshiba Corp 半導体装置及びその製造方法
US5753555A (en) * 1995-11-22 1998-05-19 Nec Corporation Method for forming semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 292 (E-1376), 4. Juni 1993 (1993-06-04) -& JP 05 021467 A (HITACHI LTD), 29. Januar 1993 (1993-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30. November 1995 (1995-11-30) -& JP 07 183486 A (TOSHIBA CORP), 21. Juli 1995 (1995-07-21) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10365224B2 (en) 2007-12-06 2019-07-30 Genalyte, Inc. Label-free optical sensors
US9846126B2 (en) 2008-10-27 2017-12-19 Genalyte, Inc. Biosensors based on optical probing and sensing
US11041811B2 (en) 2008-10-27 2021-06-22 Genalyte, Inc. Biosensors based on optical probing and sensing
US9921165B2 (en) 2010-11-05 2018-03-20 Genalyte, Inc. Optical analyte detection systems and methods of use
US9983206B2 (en) 2013-03-15 2018-05-29 The Board Of Trustees Of The University Of Illinois Methods and compositions for enhancing immunoassays
US10739340B2 (en) 2013-03-15 2020-08-11 The Board Of Trustees Of The University Of Illinois Methods and compositions for enhancing immunoassays

Also Published As

Publication number Publication date
DE19929542B4 (de) 2004-09-23
WO2001001455A3 (de) 2002-10-10
DE19929542A1 (de) 2001-01-11

Similar Documents

Publication Publication Date Title
DE102008015333B4 (de) Nanodraht-Strukturelement, Verfahren zu dessen Herstellung, Mikroreaktorsystem und Katalysatorsystem
DE69738218T2 (de) Cvd-aufbringung von fruorcarbonpolymer-dünnschichten
EP2608841B1 (de) Elektrode für medizinische anwendungen, system mit einer derartigen elektrode und verfahren zur herstellung einer derartigen elektrode
DE19820223C1 (de) Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung
DE2716992A1 (de) Feldemitteranordnung und verfahren zu deren herstellung
DE2313219B2 (de) Verfahren zur Herstellung einer Halbleiteranordnung mit einer auf mehreren Niveaus liegenden Metallisierung
WO1998017344A1 (de) Optisch ansteuerbare mikroelektrodenanordnung zum stimulieren von zellen, insbesondere retina-implantat
DE102006007431A1 (de) Durch Halbleitersilizium-Verfahrenstechnik gebildeter Probenträger
DE60034265T2 (de) Halbleiterbauelement mit SOI-Struktur und dessen Herstellungsverfahren
DE102007019842A1 (de) Verfahren und Anordnung zum elektrischen Kontaktieren eines membranumhüllten Objekts mit einer Elektrode
EP3204106B1 (de) Implantierbare elektrodenanordnung
DE19936941B4 (de) Verfahren zur Herstellung dünner Schichten, insbesondere Dünnschichtsolarzellen, auf einem Trägersubstrat
WO1999025026A1 (de) Schaltungsstruktur mit mindestens einem kondensator und verfahren zu dessen herstellung
DE2231891A1 (de) Verfahren zum herstelllen amorpher halbleiterschichten
DE19929542B4 (de) Flächige Anordnung von Stimulationselektroden auf einem Chip und Herstellungsverfahren dazu und Verwendung als Retina-Implantat
WO1998029748A1 (de) Mikromechanische halbleiteranordnung und verfahren zur herstellung einer mikromechanischen halbleiteranordnung
EP1383574A1 (de) Mikrokontaktstruktur zur implantation bei einem säugetier, insbesondere bei einem menschen
DE102020118446A1 (de) Verbindungselement
EP2190033A1 (de) Tandemsolarzelle aus kristallinem Silizium und kristallinem Siliziumcarbid sowie Verfahren zu dessen Herstellung
DE10241066A1 (de) Halbleiterbauelement und Verfahren
EP0567764A1 (de) Halbleiterkörper mit gut haftender Metallisierung
EP0168771A1 (de) Verfahren zur gezielten Erzeugung von lateralen Dotierungs-gradienten in scheibenförmigen Siliziumkristallen für Halbleiterbauelemente
DE102011079222B4 (de) Verfahren zur Herstellung einer mikromechanischen Struktur
EP3884546B1 (de) Implantierbare elektrische verbindungseinrichtung
DE102019001256B3 (de) Nervenbrücke mit Quarzglas isolierten Platin-Wolfram-Mikroelektrodenfasern (Heptoden) und Kapillaren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase