WO2001000912A1 - Preliminarily twisted and false twisted yarn - Google Patents

Preliminarily twisted and false twisted yarn Download PDF

Info

Publication number
WO2001000912A1
WO2001000912A1 PCT/JP2000/004158 JP0004158W WO0100912A1 WO 2001000912 A1 WO2001000912 A1 WO 2001000912A1 JP 0004158 W JP0004158 W JP 0004158W WO 0100912 A1 WO0100912 A1 WO 0100912A1
Authority
WO
WIPO (PCT)
Prior art keywords
false
yarn
twisted
elongation
dtex
Prior art date
Application number
PCT/JP2000/004158
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyuki Yamamoto
Tokio Okuno
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to AU55690/00A priority Critical patent/AU5569000A/en
Priority to JP2001506309A priority patent/JP3444871B2/en
Publication of WO2001000912A1 publication Critical patent/WO2001000912A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist

Definitions

  • the present invention relates to a polyester twisted false twisted yarn, a composite twisted false twisted yarn, a composite twisted yarn, and a fabric. More specifically, the present invention provides a twisted false twisted yarn, a composite twisted false twisted yarn, and a composite textured yarn that are excellent in soft texture and elongation recovery and are suitable as materials for stretching. Is the thing. Furthermore, the present invention relates to a fabric using these processed yarns, the fabric having excellent stretchability and excellent elongation recovery. Background art
  • Japanese Patent Application Laid-Open No. 9-83873 discloses a main component comprising polypropylene terephthalate.
  • a polyester false twisted yarn is proposed.
  • This processed yarn has the characteristic of being excellent in elongation / recovery and having a low Young's modulus as compared with regular polyester, and is therefore soft.
  • the present invention provides a twisted false-twisted yarn and a composite twisted false-twisted yarn which are excellent in soft texture, stretchability and elongation recovery, and are suitable as a material for stretch.
  • the purpose of the present invention is to provide a fabric having excellent stretchability and elongation recovery by using these yarns for fabric. I do.
  • the present inventors have conducted intensive studies on various polyester-based false twisting processes.As a result, the use of a specific fiber and a specific twisted false-twisted processed yarn has made it possible to improve the conventional technology. However, they have found that a fabric having extremely excellent stretchability and elongation recovery properties can be obtained, and have completed the present invention.
  • the present invention is as follows.
  • Pre-twisted false twisted yarn composed of multifilament multi-filament multifilaments, the twist direction of the pre-twist and the twist direction of the false twist are different.
  • a pre-twisted false twisted yarn characterized in that:
  • a composite twisted false twisted yarn composed of multifilament and multifilament fibers and other fibers, the twist direction of false twist and the twist direction of false twist. Are in different directions, and the content of the other fibers in the composite twisted false twisted yarn is less than 8 O wt%.
  • a composite yarn comprising the twisted false twisted yarn described in 1 above and another fiber, wherein the content of the other fiber in the composite yarn is less than 50 wt%. And composite processing yarn.
  • T 1 is the number of twists per unit length (T / m).
  • the coefficient K1 of the number of twists calculated by the following equation (I) is 2700 or more and 1400 or less, and the coefficient of the number of false twists calculated by the following equation (II) is 2 0
  • T 1 represents the number of twists per unit length (T / m).
  • T 1 is the number of twists per unit length (T / m).
  • T 2 indicates the number of false twists per unit length (T / m).
  • T 1 represents the number of twists per unit length (T / m).
  • the coefficient K 1 of the number of twists calculated by the following equation (I) is 2700 or more and 1400 or less, and the coefficient K 2 of the number of false twists calculated by the following equation ( ⁇ ) is 2 8.
  • T 1 represents the number of twists per unit length (T / m).
  • T 1 indicates the number of twists per unit length (T / m)
  • T 2 indicates the number of false twists per unit length (T / m).
  • the polymethylene terephthalate fiber refers to a fiber composed of a polyester having a trimethylene terephthalate unit as a main repeating unit, and the polyester is a trimethylene terephthalate fiber. It has a unit of about 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . Therefore, the total amount of the other acid component and the Z or glycol component as the third component is about 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. And more preferably polytrimethylene terephthalate contained in a range of 10 mol% or less.
  • Polymethylene terephthalate is synthesized by combining terephthalic acid or a functional derivative thereof with trimethylene glycol or a functional derivative thereof under appropriate reaction conditions in the presence of a catalyst. You. In this synthesis process, an appropriate one or more third components may be added to obtain a copolymerized polyester. In addition, a blend of polymethylene terephthalate and a polyester other than polymethylene terephthalate such as polyethylene terephthalate, or a polyamide, or a composite spinning thereof (Sheathed core, side by side, etc.).
  • the third components to be added include aliphatic dicarboxylic acids (eg, oxalic acid, adipic acid), alicyclic dicarboxylic acids (eg, cyclohexanedicarboxylic acid), and aromatic dicarboxylic acids (eg, isophthalic acid, sodium sulfoisovium).
  • aliphatic dicarboxylic acids eg, oxalic acid, adipic acid
  • alicyclic dicarboxylic acids eg, cyclohexanedicarboxylic acid
  • aromatic dicarboxylic acids eg, isophthalic acid, sodium sulfoisovium
  • Talic acid, etc. aliphatic glycols (ethylene glycol, 1,2—propylene glycol, tetramethylen glycol, etc.), alicyclic glycols Coal (cyclohexane dimethanol), aliphatic glycols containing aromatics (1,4—bis (5—hydroxyethoxy) benzene, etc.), polyether glycol (polyethylene glycol) Chole, polypropylene glycol, etc.), aliphatic oxycarboxylic acids ( ⁇ -oxycarboxylic acid, etc.), and aromatic oxycarboxylic acids ( ⁇ -oxybenzoic acid, etc.).
  • aliphatic glycols ethylene glycol, 1,2—propylene glycol, tetramethylen glycol, etc.
  • alicyclic glycols Coal cyclohexane dimethanol
  • aliphatic glycols containing aromatics (1,4—bis (5—hydroxyethoxy) benzene, etc. polyether glycol (polyethylene glycol
  • an anti-glazing agent such as titanium dioxide, a stabilizer such as phosphoric acid, an ultraviolet absorber such as a hydroxybenzophenone derivative, a crystallization nucleating agent such as talc, a lubricating agent such as aerosil, and a hinder It may contain an antioxidant such as a dophenol derivative, a flame retardant, an antistatic agent, a pigment, a fluorescent brightener, an infrared absorber, an antifoaming agent, and the like.
  • an antioxidant such as a dophenol derivative, a flame retardant, an antistatic agent, a pigment, a fluorescent brightener, an infrared absorber, an antifoaming agent, and the like.
  • the fiber is in the form of a multifilament yarn, which may be uniform or thick in the length direction.
  • the cross section may be round, triangular, L-shaped, or T-shaped.
  • Y-shape, W-shape, Yatsuha-shape, flat, dog-bone-shape and other polygonal shapes, multi-leaf shapes, hollow shapes and irregular shapes may be used.
  • the polymethylene terephthalate fiber used in the present invention has a single yarn fineness (dtex) of about 0.1 to 5 dtex. If the single yarn fineness is less than 0.1 dte X, the yarn breaks during false twisting and the workability decreases, and if it is larger than 5 dte X Tends to have a hard texture.
  • the preferred fiber physical properties of the polytrimethyl terephthalate fiber used in the present invention have a strength of preferably 2.6 c NZ dtex or more, more preferably 2.6 to 50,000 dtex. c NZ dtex. If it is less than 2.6 cN / dtex, the strength after processing tends to be low.
  • the elongation is preferably 35% or more, and more preferably 35 to 60%. If it is less than 35%, the frequency of yarn breakage during false twisting tends to increase.
  • the elastic modulus is preferably 27 cNZ dtex or less, more preferably 17 to 27 cN / dtex. If it exceeds 27 c / dtex, the fabric tends to have poor softness.
  • the elongation recovery rate at 10% elongation is preferably 90% or more, and more preferably 90 to 100%. If it is less than 90%, the rate of recovery from elongation when used for fabric tends to be poor.
  • a spiral core structure which is an extremely effective form, can be formed, and a decrease in the strength of the processed yarn can be suppressed to a small extent.
  • the obtained processed yarn has excellent stretchability and elongation recovery properties, and the strength reduction can be suppressed to a small extent, but it is necessary to adopt a spiral core structure with a uniform fiber morphology. As a result, a spring effect is produced, so high stretchability and stretch recovery can be obtained. It is also presumed that stress concentration at the time of fiber breakage can be prevented.
  • the twisted false twisted yarn also has the effect of improving the snagging resistance since it has a real twist, its suitability as a fabric is ⁇ ⁇ o
  • the inventors of the present invention have performed additional combustion processing on the false twisted yarn of polymethylene terephthalate filament.
  • the method of steam setting was studied, but the stretch recovery was improved, but the stretchability was slightly insufficient, and the strength of the obtained processed yarn was greatly reduced.
  • the problem of insufficient tear strength became apparent.
  • a twisting false twisting machine that continuously performs the twisting process and the false twisting process.
  • a separate two-step method may be used.
  • a twisting set at a temperature of 60 to 90 ° C. for 30 to 60 minutes by a method such as steam setting.
  • any method such as a pin type, a friction type, a double belt type, and an air twisting type may be used, but a more uniform crimped state can be obtained.
  • the pin type is preferred because it is easy.
  • the heat setting temperature during false twisting is 150 ° C or more and 190 ° C The following range is preferable. If the heat setting temperature exceeds 190 ° C, thread breakage tends to occur, and if the heat setting temperature is lower than 150 ° C, the elongation recovery rate decreases, and the stretch as stretch material Recoverability may be insufficient.
  • the number of twists (T 1) is determined by the coefficient K 1 of the number of twists calculated by the following equation (I). It is preferably in the range of 2700 to 1400, more preferably in the range of 4500 to 1200. If the coefficient K 1 of the number of twists is less than 270, the stretchability and elongation recovery of the resulting fabric tend to be low. If the coefficient of the number of twists exceeds 1400, which is too strong, the obtained fabric has a strong twist yarn tone and a hard texture, and the stretchability tends to decrease.o
  • T 1 represents the number of twists per unit length (T / m).
  • the number of false twists (T 2) is preferably such that the value of the coefficient K 2 of the number of false twists calculated by the following equation (II) is 20000 to 350.000. Preferably it is in the range of 2500 to 32000. If the coefficient K2 of the number of false twists is less than 20000, the crimpability of the obtained processed yarn tends to be insufficient, and the stretchability tends to decrease. Thread breakage in the twisting process tends to increase.
  • K 2 (T 2-T 1) X [fineness of thread (dtex)] 1/2 (II) (where, in the above formula (II), T 1 is the number of twists per unit length (T / m). T 2 indicates the number of false twists per unit length (T / m).
  • the twist direction of the false twist and the twist direction of the false twist need to be different from each other, similarly to the above described twisted false twisted yarn. If the direction is the same, a spiral core structure is not formed, and when the fabric is used, sufficient stretchability cannot be obtained, which is not appropriate.
  • the composite twisted false twisted yarn of the present invention is obtained by twisting a polytrimethylene terephthalate fiber multifilament and other fibers and then twisting. It is false twisted, and aims to combine the stretchability with the texture and function of other fibers.
  • the other fibers referred to here are polyester fibers other than polymethylene terephthalate, polyamide fibers, cellulose fibers, acetate fibers, acryl fibers, etc. Particularly preferred is cellulosic fiber because it can impart insufficient moisture absorption.
  • the ratio of the multifilament of the other fibers to the composite twisted false twisted yarn of the present invention is required to contain less than 80 wt% of the other fibers with respect to the total mass of the fibers. Is 30 to 7 O wt%. If the ratio of other fibers is 80 wt% or more, the elongation-recovery tends to deteriorate, which is not preferable.
  • the multifilament of poly (methylene terephthalate) fiber and the multifilament of other fibers are required in the step before the twisting. After aligning the nets, it is preferable to apply air blending such as interlace, so that trouble such as yarn breakage in the false twisting step can be reduced.
  • the false twist conditions such as the heat setting temperature, the number of twists, and the coefficient of the false twist during the twist twisting are as follows.
  • the heat setting temperature is preferably 150 to 190 ° C, more preferably 1 to 90 ° C, respectively.
  • the coefficient of the number of twists is preferably 2700 to 1400, more preferably 450 to 1200, and the number of false twists
  • the coefficient is preferably from 20000 to 350.000, and more preferably from 2500 to 32000.
  • the purpose of the composite textured yarn of the present invention is to achieve excellent stretchability of the twisted false twisted textured yarn of the polymethylene terephthalate fiber multifilament and the texture and texture of other fibers. It is compounding with functions.
  • Other fibers that can be combined include polyester fibers other than polymethylene terephthalate fibers, polyamide fibers, cellulose fibers, acetate fibers, acryl fibers, and the like. Cotton, wool, and the like can be mentioned, and cellulose fibers, cotton, and wool are particularly preferable in that they can impart insufficient hygroscopicity to synthetic fibers.
  • the proportion of other fibers in the composite processed yarn of the present invention needs to be less than 50 wt% per total fiber mass. If the content is 5 O wt% or more, it tends to be difficult to make the yarn uniform by compounding. More preferably, it is 20 to 3% by weight.
  • a method of compounding a multifilament of another fiber with a pretwisted false twisted textured yarn of the polytrimethylethylene refractory fiber multifilament is used. For example, simply twisting the pre-twisted twisted yarn and other fibers, then blending and combining them by air entanglement such as interlacing, or loosening the pre-twisted false twisted yarn by slightly over-feeding it. It is possible to adopt a method in which the fibers are aligned with other fibers in a loose state, and then mixed by interlace or the like. However, the latter method is more preferable in that yarn uniformity can be obtained.
  • Pre-twisted false twisted yarn, polytrimethylene terephthalate fiber multifilament, and other fiber multifilament of the polymethylentelephthalate fiber multifilament of the present invention Composite twisted yarn composed of the above-mentioned composite yarn and composite yarn obtained by compounding the above-described false-twisted false twisted yarn with other fibers (hereinafter, these may be collectively referred to simply as the processed yarn of the present invention).
  • the preferred fiber physical properties of the above are those having a strength of preferably 2.5 cN / dtex or more, more preferably 2.5 to 5. OcN / dtex. If it is less than 2.5 cN / dtex, there is a tendency that the strength of the fabric is insufficient.
  • the elongation is preferably 20% or more, and more preferably 20 to 60%. If it is less than 20%, the stretchability tends to be insufficient when formed into a fabric.
  • the elastic modulus is preferably 27 c NX d tex or less, more preferably 13 to 25 c NZ d tex. If it exceeds 27 c NZ dtex, the fabric tends to have poor softness.
  • the stretch ratio is preferably 80% or more, and more preferably 90% or more. If it is less than 80%, the stretchability of the fabric tends to be insufficient.
  • the elongation recovery rate at 10% elongation is preferably 85% or more, and more preferably 90 to 100%. If it is less than 85%, the rate of recovery from elongation when used for fabrics tends to be poor.
  • the fabric of the present invention is obtained by using at least one selected from the above-mentioned processed yarn of the present invention for the warp and Z or weft, and the form of the fabric includes a woven fabric and a knitted fabric.
  • At least one selected from the above-mentioned false twisted twisted yarn, composite twisted false twisted yarn, and composite textured yarn is stretched only in the warp direction of the fabric.
  • the stretch is applied only to the weft direction, the warp is applied to the weft, and the stretch is applied to the warp and weft directions. It can be arbitrarily selected according to the purpose.
  • the mixing ratio of each of the processed yarns to the total mass of the fabric is preferably 20 to 100 wt%, and more preferably 30 to 100 wt%. . If it is less than 20 wt%, the characteristics of stretchiness and soft texture may not be exhibited.
  • the fiber to be mixed with the processed yarn of the present invention is not particularly limited, and may be a long fiber or a short fiber, or may be a polytrimethylene.
  • Polyester fiber such as polyethylene terephthalate fiber, polyethylene terephthalate fiber, polyamide fiber such as nylon 6, nylon 66, synthetic fiber such as acetate fiber, Cubra, Rayo Natural fibers such as cotton, hemp, wool and the like can be used.
  • the form may be a raw yarn or a bulky processed yarn represented by false twisted yarn, and conventionally known yarns in various forms can be used.
  • the mixed form in warp and Z or weft use, for example, one or two alternates, or three or more irregular arrangements may be used. It is more preferable to use one of them or alternate one.
  • woven structure of the fabric of the present invention a variety of changed structures derived therefrom, including a plain woven structure, a twill woven structure, and a satin woven structure, can be applied.
  • Examples of looms for weaving the fabric of the present invention include fluid jet looms typified by air jet-to-water jet rooms, etc., as well as revival rooms / gripper rooms and fly shears.
  • a floor room can be used.
  • weft insertion is possible with a low tension and a weft-friendly air jet.
  • Fluid jet looms such as a hot room and a water jet room are preferred, and the suitability of an air jet room is particularly high.
  • a warp knitting machine, a circular knitting machine, and a flat knitting machine are used as types of the knitting machine.
  • the structure of the knitted fabric is not limited, it is particularly effective for a knitted fabric having a high stretch ratio.
  • a knitted fabric composed of polymethylene terephthalate fiber is subjected to a relaxation heat treatment such as hot water, wet heat, or dry heat.
  • a relaxation heat treatment such as hot water, wet heat, or dry heat.
  • the course and Change the row and density balance As a result, the stretchability is exhibited by changing the length of the tissue point, imparting a bent crimp at the intersection, and imparting a morphological change due to crimping to the floating portion of the thread. Therefore, a higher stretching ratio can be obtained by increasing the density difference between the density of the green fabric of the knitted fabric and the density of the finished knitted fabric of the final product.
  • the knitted fabric By knitting a knitted fabric whose coarseness has been designed in advance in advance by relaxing heat treatment to increase the shrinkage, the knitted fabric is densified, and contraction of the structure occurs in addition to shrinkage of the yarn itself. Fine bending crimps and crimps are provided in the weft direction, and desired stretchability is imparted.
  • the gauge or stitch is designed to be coarse, and the greige fabric is subjected to a desired stretch before or after scouring.
  • the width of the weft direction is set so that the width can be obtained, and the heat treatment is performed for 30 seconds to 2 minutes with dry heat of 150 to 200 ° C. Finishing in the direction gives a stretch in the weft direction.
  • the measurement method, evaluation method, etc. are as follows.
  • the stretchability of the processed yarn was evaluated by the stretch ratio obtained according to the JIS-L-109 stretch test method (Method C).
  • the sample was subjected to wet heat at 90 ° C for 15 minutes, and left overnight. The larger the value, the higher the stretchability of the processed yarn.
  • the elongation recovery of the processed yarn was evaluated by measuring the elongation recovery at 10% elongation.
  • the fiber was attached to the tensile tester at a chuck distance of 10 cm, stretched to an elongation of 10% at a speed of 20 c / min, and when the elongation reached 10%, the reverse was applied. Shrink at the same speed to draw a stress-strain curve. During shrinkage, the residual elongation when the stress was reduced to 0.009 cN / dtex, which is equal to the initial load, was calculated by the following equation.
  • the strong elongation, the elastic modulus, and the elongation recovery rate at the time of 10% elongation of this drawn yarn were 3.1 NZ dtex, 46%, 26.4 c NZ dtex and 98%, respectively.
  • a drawn yarn of 84 dtex Z 24 f was obtained in the same manner as above except that the discharge amount was changed.
  • the strong elongation, the elastic modulus, and the elongation recovery rate at 10% elongation of the drawn yarn were 3.0 Oc NZ dtex, 44%, 25.3 c NZ dtex, and 98%, respectively. .
  • the elongation recovery rates at 0% elongation are 2.8c NZ dtex, 46%, 15cN / dte X. 110%, 96%, respectively, and the strength, elongation, and elasticity are In addition, both stretchability and stretch recovery were excellent.
  • the strength, elongation, elastic modulus, stretching elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 2.9 cN / dtex, 48%, and 14. lc NZ dtex, 130%, 97%, excellent in strength, elongation, elastic modulus, stretchability, and elongation recovery.
  • the strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 3.0 lc NZ dtex, 45%, and 14.0 c, respectively.
  • the N / dtex was 120% and 97%, which were excellent in strength, elongation, elastic modulus, stretchability, and elongation recovery.
  • the strength, elongation, elastic modulus, elongation and elongation, and elongation recovery of the obtained false twisted yarn at 10% elongation were 3.O c NZ dtex, 50%, and 13.9 c NZ, respectively.
  • the dtex was 115% and 96%, which were excellent in strength, elastic modulus, stretchability, and elongation recovery.
  • the drawn yarn of the polymethylene terephthalate fiber 56 dtex X 24 f obtained in the above production example was spinned at a spindle speed of 2 75 using a Mitsubishi Heavy Industries LS-2 false twisting machine.
  • the false twisting was performed under the conditions of 0,000 rpm, the number of false twists (Z direction), 420 T / m, the overfeed rate of 5%, and the false twist temperature of 170 ° C.
  • the strength, elongation, elastic modulus, elastic elongation, and elongation recovery of the obtained false twisted yarn at 10% elongation were 3.0 cN / dte X 57% and 15.99 c, respectively.
  • the NZ dtex was 120% and 80%, respectively, and although the strength, elastic modulus, and elongation / shrinkage were obtained as stretch materials, the elongation recovery was poor.
  • the false-twisted yarn obtained in Comparative Example 1 was subjected to reverse combustion of 80 O TZm in the S direction using DT-3130 manufactured by Murata Machinery Co., Ltd. A 0 minute set was performed.
  • the strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained yarn are 2.3 c NZ dtex, 38%, 15.9 c NZ d
  • the tex was 80% and 97%, and the stretchability and elongation recovery were good, but the strength level was insufficient.
  • the strength, elongation, elastic modulus, stretch elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 2.9 cN / dtex, 43%, and 15 .5, respectively. 9 c NZ dtex, 25% and 96%, indicating that the yarn had excellent stretch recovery properties, but lacked stretchability.
  • Example 1 56 dtex / 24 f polyethylene terephthalate fiber (strength, elongation, elastic modulus and 1 d) was used in place of the polymethylene terephthalate fiber.
  • the strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained twisted false twisted yarn are 3.9 c NZ dtex, 33%, 30.0 cN / dtex, 50% and 66%, the stretchability and elongation / recovery were low, and were not suitable as stretch materials.
  • the yarns were aligned with the tension of NZ dtex, and entangled with an interlace at a speed of 400 m while applying confounding at a pressure of 15 OkPa.
  • the spindle rotation speed was 1200 rpm
  • the twisting number (S direction) was 500 TZm
  • the false twist number (Z direction) was 2800.
  • the obtained composite twisted false twisted yarn has a copper ammonia rayon yarn content of 50 wt%, strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation. They were 2.5 c NZ dtex, 26%, and 25 cN dtex, 80% and 85%, respectively, and were excellent in strength, stretchability, and elongation recovery.
  • the obtained composite twisted false twisted yarn has a content of polyethylene terephthalate fiber of 40 wt%, strength, elongation, elastic modulus, elongation / shrinkage elongation, and recovery at elongation of 10%.
  • the obtained composite twisted false twisted yarn has a copper ammonia rayon yarn content of 83.3 wt%, strength, elongation, elastic modulus, stretch elongation, and elongation recovery at 10% elongation.
  • a copper ammonia rayon yarn content 83.3 wt%
  • the obtained pretwisted false twisted yarn was over-fed by 5%, and the copper ammonia rayon yarn 56 dtex was added thereto.
  • / 30f made by Asahi Kasei Kogyo Co., Ltd.
  • twisted at a speed of 300 mZ while applying confounding with an interlacer at a pressure of 15 OkPa.
  • the resulting composite yarn has a copper ammonia rayon yarn content of 38
  • the pretwisted false twisted yarn of 84 dtex / 24 f polytrimethyl terephthalate fiber obtained in Example 3 was used as a warp and a weft, and had a width of 150 cm.
  • an air jet room (type ZA-209i, manufactured by Tsudakoma Kogyo Co., Ltd.)
  • a green fabric having a density of 87 pieces Z2.54 cm and a density of 90 pieces / 2.54 cm was obtained.
  • This greige was scoured and relaxed at 95 ° C with a liquid jet dyeing machine, then intermediate set at 170 ° C using a tenter, and then set at 120 ° C with a liquid jet dyeing machine. Dyed with a disperse dye, and final set at 170 ° C to obtain a cloth with a density of 117 pieces 2.54 cm and a density of 120 pieces / 2.54 cm.
  • the obtained fabric had a stretch ratio in the warp direction of 24% and 88%, respectively, and a stretch ratio in the weft direction of 27% and 88%, respectively. % And 87%, and the fabric has excellent stretchability and elongation recovery in both cases.
  • the warp yarn In the air jet room, with a warp of 78 // 2.54 cm and a weft of 65 / ⁇ 2.
  • Example 8 A green body of 2 Z 2 twill tissue of 54 cm density was obtained. This greige was dyed in the same manner as in Example 8, except that the dye used in Example 8 was changed to a disperse dye and a direct dye combined type.
  • the resulting fabric has a cool feel unique to copper ammonia, a stretch ratio of 22% in the warp direction, a stretch recovery ratio of 83%, and a stretch in the weft direction. As a result, the stretch ratio was 20% and the elongation recovery rate was 85%, indicating that it had excellent stretchability and elongation recovery.
  • the processed yarn was used as a warp and a weft, and a green fabric having a density of 2Z2 twill with a density of 8 warps Z2.54 cm and a density of 72 wps 2.54 cm was obtained in the air jet room.
  • the greige fabric was subjected to the same dyeing processing as in Example 9 to obtain a cloth having a density of 115 pieces and a thickness of 2.54 cm and a density of 97 pieces and a density of 2.54 cm.
  • the resulting fabric is soft in texture, excellent in water absorbency and quick drying, with a stretch ratio of 23% in the longitudinal direction, a stretch recovery ratio of 85%, and a stretch ratio in the weft direction of 2%.
  • the elongation / recovery rate was 2% and the elongation / recovery rate was 8%.
  • the composite yarn composed of the polytrimethylene terephthalate fiber 84 dtex / 24 f of the pretwisted false twisted yarn and the copper ammonia rayon yarn 56 dtex / 30 f obtained in Example 7 was used.
  • the woven fabric having a density of 86 / 2.54 cm and a density of 72 / 2.54 cm 2Z2 twill is used as the warp and weft in the air jetting machine. Obtained.
  • the greige fabric was subjected to the same dyeing processing as in Example 9 to obtain a cloth having a density of warp 112 pieces Z2.54 cm and a degree of weft 94 pieces Z2.54 cm.
  • the texture of the obtained fabric has a refreshing feeling unique to copper ammonia, a stretch ratio of 20% in the warp direction, a recovery ratio of 83% in elongation, and a stretch ratio of 1 in the weft direction. Excellent stretch with 9% growth recovery rate of 84% It had properties and elongation recovery.
  • the pretwisted false twisted yarn of 84 dtex / 24 f polymethylene terephthalate fiber obtained in Example 3 was subjected to 45 courses using a 32 gage circular knitting machine, A smooth knitted fabric was produced at a density of 44 mm. After scouring the smooth knitted fabric, it was dyed at 120 ° C. for 30 minutes using a Circular dyeing machine, and then dried. After drying, a final set was performed at 170 ° C. for 1 minute with a width to obtain a 49-course, 54-well cloth.
  • This fabric had a stretch ratio in the weft direction and an elongation recovery ratio of 200% and 98%, respectively, indicating good performance in both stretchability and elongation recovery. .
  • the twisted false twisted yarn, the composite twisted false twisted yarn, and the composite yarn of the present invention have a soft texture, and have excellent stretchability and elongation recovery properties. It is suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

A preliminarily twisted and false twisted yarn, characterized in that the yarn comprises multifilaments of polytrimethylene terephthalate fibers and the multifilaments are preliminary twisted in a different direction from that of a false twisting. The preliminarily twisted and false twisted yarn can be used for manufacturing a fabric which is excellent in stretching property and the recovery from an extended state and has a soft feeling.

Description

明 細 書 先撚仮撚加工糸 技術分野  Description Yarn false twisted yarn Technical field
本発明は、 ポ リエステル系の先撚仮撚加工糸、 複合先撚仮撚加工 糸及び複合加工糸並びに布帛に関する。 より詳細には、 ソフ トな風 合いと伸長回復性に優れ、 ス ト レ ッ チ用素材と して好適な先撚仮撚 加工糸、 複合先撚仮撚加工糸及び複合加工糸を提供するものである 。 更に本発明は、 これらの加工糸を用いてなる布帛であって、 ス ト レツチ性に優れ、 且つ伸長回復性に優れた布帛に関する。 背景技術  The present invention relates to a polyester twisted false twisted yarn, a composite twisted false twisted yarn, a composite twisted yarn, and a fabric. More specifically, the present invention provides a twisted false twisted yarn, a composite twisted false twisted yarn, and a composite textured yarn that are excellent in soft texture and elongation recovery and are suitable as materials for stretching. Is the thing. Furthermore, the present invention relates to a fabric using these processed yarns, the fabric having excellent stretchability and excellent elongation recovery. Background art
従来、 伸長回復性に優れ、 ス ト レツチ素材用に適したポリ エステ ル系繊維と して、 例えば特開平 9 — 7 8 3 7 3号公報に、 ポ リ プロ ピレ ンテレフタ レ一 トを主たる成分とするポリエステル系仮撚加工 糸が提案されている。 この加工糸は、 レギュラーポ リ エステルに比 し、 伸長回復性に優れ、 又ヤング率が低いことから、 ソフ トである という特徴を有する。  Hitherto, as a polyester fiber having excellent elongation recovery properties and suitable for stretch materials, for example, Japanese Patent Application Laid-Open No. 9-83873 discloses a main component comprising polypropylene terephthalate. A polyester false twisted yarn is proposed. This processed yarn has the characteristic of being excellent in elongation / recovery and having a low Young's modulus as compared with regular polyester, and is therefore soft.
しかし、 ス ト レ ッ チ素材と して見た場合、 その伸長回復性は充分 な レベルとは言い難く 、 布帛の経糸及びノ又は緯糸と して使用 した 場合、 伸長回復性の乏しい布帛となる。 したがって、 更に伸長回復 性に優れた素材が要求されている。 発明の開示  However, when viewed as a stretch material, the stretch recovery is not at a sufficient level, and when used as a warp and a warp or a weft, the fabric has poor stretch recovery. . Therefore, there is a demand for a material having further excellent elongation recovery. Disclosure of the invention
本発明は、 ソフ 卜な風合いとス ト レツチ性及び伸長回復性に優れ 、 ス ト レ ッ チ用素材と して好適な先撚仮撚加工糸、 複合先撚仮撚加 ェ糸及び複合加工糸を提供するこ とを目的と し、 更に、 これらの加 ェ糸を布帛に使用することにより、 ス ト レツチ性及び伸長回復性に 優れた布帛を提供することを目的とする。 The present invention provides a twisted false-twisted yarn and a composite twisted false-twisted yarn which are excellent in soft texture, stretchability and elongation recovery, and are suitable as a material for stretch. The purpose of the present invention is to provide a fabric having excellent stretchability and elongation recovery by using these yarns for fabric. I do.
本発明者等は、 種々のポリエステル系の仮撚加工について鋭意検 討した結果、 特定の繊維を利用 し、 かつ特定の先撚仮撚加工を施し た加工糸を用いることにより、 従来に比し、 極めてス ト レッチ性及 び伸長回復性に優れた布帛が得られることを見出し、 本発明を完成 するに至った。  The present inventors have conducted intensive studies on various polyester-based false twisting processes.As a result, the use of a specific fiber and a specific twisted false-twisted processed yarn has made it possible to improve the conventional technology. However, they have found that a fabric having extremely excellent stretchability and elongation recovery properties can be obtained, and have completed the present invention.
即ち、 本発明は下記の通りである。  That is, the present invention is as follows.
1 . ポ リ ト リ メ チ レンテ レフ タ レー ト繊維のマルチフ ィ ラ メ ン ト で構成された先撚仮撚加工糸であつて、 先撚の撚方向と仮撚の撚方 向が異方向であることを特徴とする先撚仮撚加工糸。  1. Pre-twisted false twisted yarn composed of multifilament multi-filament multifilaments, the twist direction of the pre-twist and the twist direction of the false twist are different. A pre-twisted false twisted yarn, characterized in that:
2 . ポ リ ト リ メ チ レンテ レフ タ レー ト繊維のマルチフ ィ ラ メ ン ト と他繊維で構成された複合先撚仮撚加工糸であって、 先撚の撚方向 と仮撚の撚方向が異方向であり、 且つ、 該複合先撚仮撚加工糸中に おける他繊維の含有量が 8 O w t %未満であることを特徴とする複 合先撚仮撚加工糸。  2. A composite twisted false twisted yarn composed of multifilament and multifilament fibers and other fibers, the twist direction of false twist and the twist direction of false twist. Are in different directions, and the content of the other fibers in the composite twisted false twisted yarn is less than 8 O wt%.
3 . 上記 1 に記載の先撚仮撚加工糸と他繊維で構成された複合加 ェ糸であって、 該複合加工糸中における他繊維の含有量が 5 0 w t %未満であることを特徴とする複合加工糸。  3. A composite yarn comprising the twisted false twisted yarn described in 1 above and another fiber, wherein the content of the other fiber in the composite yarn is less than 50 wt%. And composite processing yarn.
4 . 上記 1 に記載の先撚仮撚加工糸、 上記 2 に記載の複合先撚仮 撚加工糸、 上記 3 に記載の複合加工糸から選ばれる少なく と も一つ を経糸および Zまたは緯糸に用いてなることを特徴とする布帛。  4. At least one of the pre-twisted false twisted yarn described in 1 above, the composite pre-twisted false twisted yarn described in 2 above, and the composite processed yarn described in 3 above, as warp and Z or weft. A cloth characterized by being used.
5 . 次式 ( I ) で計算される先撚数の係数 K 1 が 2 7 0 0以上、 1 4 0 0 0以下である上記 1 に記載の先撚仮撚加工糸。  5. The twisted false twisted yarn according to 1 above, wherein the coefficient K 1 of the number of twists calculated by the following formula (I) is not less than 2700 and not more than 1400.
K 1 = T 1 X 〔糸の繊度 (d t ex) 〕 1 / 2 … ( I ) K 1 = T 1 X [Yarn fineness (dt ex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 ) (However, in the above formula (I), T 1 is the number of twists per unit length (T / m). )
6. 次式 ( I ) で計算される先撚数の係数 K 1が 2 7 0 0以上、 1 4 0 0 0以下、 次式 (II) で計算される仮撚数の係数 Κ 2が 2 0 6. The coefficient K1 of the number of twists calculated by the following equation (I) is 2700 or more and 1400 or less, and the coefficient of the number of false twists calculated by the following equation (II) is 2 0
0 0 0以上、 3 5 0 0 0以下である上記 1 に記載の先機仮撚加工糸 The false twisted yarn of the preceding machine according to 1 above, which is not less than 0000 and not more than 350 000
Κ 1 = Τ 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) Κ 1 = Τ 1 X [fineness of yarn (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
K 2 = (T 2 — T 1 ) X 〔糸の繊度 (dtex) 〕 1/2 … (II) (但し、 上記式 (II) 中において、 T 1 は単位長さ当たりの先撚数 (T/m). T 2 は単位長さ当たりの仮撚数 (T/m)を示す。 ) K 2 = (T 2 — T 1) X [Fiber fineness (dtex)] 1/2 … (II) (In the above formula (II), T 1 is the number of twists per unit length (T / m). T 2 indicates the number of false twists per unit length (T / m).
7. ポリ ト リ メ チ レ ンテレフ 夕 レー ト繊維マルチフ ィ ラ メ ン ト糸 を先撚した後、 該先撚の撚方向と異なる方向で仮撚する工程を含む 先撚仮撚加工糸の製造方法。  7. Manufacture of a pretwisted false twisted yarn including a process of twisting a multifilament polyethylene terephthalate fiber multifilament yarn and then false twisting in a direction different from the twist direction of the twist. Method.
8. 次式 ( I ) で計算される先撚数の係数 Κ 1 が 2 7 0 0以上、 8. The coefficient 先 1 of the number of twists calculated by the following formula (I) is 2700 or more,
1 4 0 0 0以下である上記 7に記載の先撚仮撚加工糸の製造方法。 8. The method for producing a twisted false-twisted yarn according to 7 above, wherein the yarn is 140,000 or less.
Κ 1 = Τ 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) Κ 1 = Τ 1 X [fineness of yarn (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
9. 次式 ( I ) で計算される先撚数の係数 K 1 が 2 7 0 0以上、 1 4 0 0 0以下、 次式 (Π) で計算される仮撚数の係数 K 2が 2 0 0 0 0以上、 3 5 0 0 0以下である上記 7 に記載の先撚仮撚加工糸 の製造方法。  9. The coefficient K 1 of the number of twists calculated by the following equation (I) is 2700 or more and 1400 or less, and the coefficient K 2 of the number of false twists calculated by the following equation (Π) is 2 8. The method for producing a twisted false twisted yarn according to the above item 7, wherein the yarn has a value of not less than 000 and not more than 350,000.
K 1 = T 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) K 1 = T 1 X [fineness of thread (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
K 2 = (T 2 - T 1 ) X 〔糸の繊度 (dtex) 〕 1/2 … (II) (但し、 上記式 (I I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)、 T 2 は単位長さ当たりの仮撚数 (T/m)を示す。 ) K 2 = (T 2-T 1) X [Thread fineness (dtex)] 1/2 … (II) (However, in the above formula (II), T 1 indicates the number of twists per unit length (T / m), and T 2 indicates the number of false twists per unit length (T / m).)
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明において、 ポリ ト リ メ チレンテレフタ レ一 ト繊維とは、 ト リ メチレンテレフタ レー ト単位を主たる繰り返し単位とするポ リェ ステルからなる繊維をいい、 該ポ リエステルと しては、 ト リ メチレ ンテ レフ タ レー ト単位が約 5 0 モル%以上、 好ま し く は 7 0 モル% 以上、 より好ま し く は 8 0 モル%以上、 さ らに好ま しく は 9 0 モル %以上のものをいう。 従って、 第三成分と して他の酸成分及び Z又 はグリ コール成分の合計量が、 約 5 0 モル%以下、 好ま し く は 3 0 モル%以下、 より好ま しく は 2 0 モル%以下、 さ らに好ま し く は 1 0 モル%以下の範囲で含有されたポリ ト リ メ チレンテレフタ レー ト を包含する。  In the present invention, the polymethylene terephthalate fiber refers to a fiber composed of a polyester having a trimethylene terephthalate unit as a main repeating unit, and the polyester is a trimethylene terephthalate fiber. It has a unit of about 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . Therefore, the total amount of the other acid component and the Z or glycol component as the third component is about 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. And more preferably polytrimethylene terephthalate contained in a range of 10 mol% or less.
ポリ ト リ メ チレンテレフタ レー トは、 テレフタル酸又はその機能 的誘導体と、 卜 リ メ チ レングリ コール又はその機能的誘導体とを、 触媒の存在下で、 適当な反応条件下に結合せしめることにより合成 される。 この合成過程において、 適当な一種又は二種以上の第三成 分を添加して共重合ポ リ エステルと してもよい。 又、 ポ リ ト リ メチ レンテレフタ レー ト と、 ポリエチレンテレフタ レー ト等のポ リ ト リ メチレンテレフタ レー ト以外のポリ エステル、 又はポリア ミ ド等と をブレン ドしたもの、 あるいはそれらを複合紡糸 (鞘芯、 サイ ドバ ィサイ ド等) したものでもよい。  Polymethylene terephthalate is synthesized by combining terephthalic acid or a functional derivative thereof with trimethylene glycol or a functional derivative thereof under appropriate reaction conditions in the presence of a catalyst. You. In this synthesis process, an appropriate one or more third components may be added to obtain a copolymerized polyester. In addition, a blend of polymethylene terephthalate and a polyester other than polymethylene terephthalate such as polyethylene terephthalate, or a polyamide, or a composite spinning thereof (Sheathed core, side by side, etc.).
添加する第三成分と しては、 脂肪族ジカルボン酸 (シユウ酸、 ァ ジピン酸等) 、 脂環族ジカルボン酸 (シク ロへキサンジカルボン酸 等) 、 芳香族ジカルボン酸 (イ ソフタル酸、 ソジゥムスルホイ ソフ タル酸等) 、 脂肪族グリ コール (エチ レ ングリ コール、 1, 2 —プ ロピレングリ コール、 テ トラメ チレングリ コール等) 、 脂環族グリ コール (シクロへキサ ン ジメ タ ノ ール等) 、 芳香族を含む脂肪族グ リ コール ( 1 , 4 — ビス ( 5 — ヒ ドロキシエ トキシ) ベンゼン等) 、 ポ リ エーテルグリ コール (ポ リ エチレングリ コール、 ポ リ プロ ピ レングリ コール等) 、 脂肪族ォキシカルボン酸 ( ω —ォキシ力プロ ン酸等) 、 芳香族ォキシカルボン酸 ( Ρ —ォキシ安息香酸等) 、 等 がある。 The third components to be added include aliphatic dicarboxylic acids (eg, oxalic acid, adipic acid), alicyclic dicarboxylic acids (eg, cyclohexanedicarboxylic acid), and aromatic dicarboxylic acids (eg, isophthalic acid, sodium sulfoisovium). Talic acid, etc.), aliphatic glycols (ethylene glycol, 1,2—propylene glycol, tetramethylen glycol, etc.), alicyclic glycols Coal (cyclohexane dimethanol), aliphatic glycols containing aromatics (1,4—bis (5—hydroxyethoxy) benzene, etc.), polyether glycol (polyethylene glycol) Chole, polypropylene glycol, etc.), aliphatic oxycarboxylic acids (ω-oxycarboxylic acid, etc.), and aromatic oxycarboxylic acids (Ρ-oxybenzoic acid, etc.).
又、 1 個又は 3個以上のエステル形成性官能基を有する化合物 ( 安息香酸等、 またはグリ セ リ ン等) も重合体が実質的に線状である 範囲内で使用出来る。  Compounds having one or more ester-forming functional groups (such as benzoic acid or glycerin) can also be used in a range where the polymer is substantially linear.
さ らに、 二酸化チタ ン等の艷消剤、 リ ン酸等の安定剤、 ヒ ドロキ シベンゾフ ノ ン誘導体等の紫外線吸収剤、 タルク等の結晶化核剤 、 ァエロ ジル等の易滑剤、 ヒ ンダー ドフ エ ノ ール誘導体等の抗酸化 剤、 難燃剤、 制電剤、 顔料、 蛍光増白剤、 赤外線吸収剤、 消泡剤等 が含有されていてもよい。  In addition, an anti-glazing agent such as titanium dioxide, a stabilizer such as phosphoric acid, an ultraviolet absorber such as a hydroxybenzophenone derivative, a crystallization nucleating agent such as talc, a lubricating agent such as aerosil, and a hinder It may contain an antioxidant such as a dophenol derivative, a flame retardant, an antistatic agent, a pigment, a fluorescent brightener, an infrared absorber, an antifoaming agent, and the like.
本発明において、 ポ リ ト リ メ チレンテレフタ レー ト繊維の紡糸に ついては、 1 5 0 0 m Z分程度の巻取り速度で未延伸糸を得た後、 2〜 3 . 5倍程度で延撚する方法、 紡糸一延撚工程を直結した直延 法 (ス ピン ドロー法) 、 巻取り速度 5 0 0 0 m /分以上の高速紡糸 法 (ス ピンテイ クア ップ法) の何れを採用 しても良い。  In the present invention, in the case of spinning polymethylene terephthalate fiber, after obtaining an undrawn yarn at a winding speed of about 1500 mZ, it is twisted at a rate of about 2 to 3.5 times. No matter which method is used, the direct drawing method (spin draw method) directly connecting the spinning and drawing process and the high-speed spinning method (spin take-up method) with a winding speed of 500 m / min or more are adopted. good.
又、 繊維の形態は、 マルチフ ィ ラ メ ン ト糸条であり、 長さ方向に 均一なものや太細のある ものでもよ く 、 断面においても、 丸型、 三 角、 L型、 T型、 Y型、 W型、 八葉型、 偏平、 ドッ グボー ン型等の 多角形型、 多葉型、 中空型や不定形なものでもよい。  The fiber is in the form of a multifilament yarn, which may be uniform or thick in the length direction. The cross section may be round, triangular, L-shaped, or T-shaped. , Y-shape, W-shape, Yatsuha-shape, flat, dog-bone-shape and other polygonal shapes, multi-leaf shapes, hollow shapes and irregular shapes may be used.
本発明で使用するポ リ ト リ メチレンテレフタ レー ト繊維の単糸繊 度 ( d t e x ) は、 0 . l 〜 5 d t e x程度とするのが好ま しい。 単糸繊度が 0 . 1 d t e Xより も小さい場合には、 仮撚加工する際 に糸切れが発生して加工性が低下し、 5 d t e Xより も大きい場合 は、 風合いが硬く なる傾向にある。 It is preferable that the polymethylene terephthalate fiber used in the present invention has a single yarn fineness (dtex) of about 0.1 to 5 dtex. If the single yarn fineness is less than 0.1 dte X, the yarn breaks during false twisting and the workability decreases, and if it is larger than 5 dte X Tends to have a hard texture.
本発明で使用するポリ ト リ メ チレンテレフタ レ一 ト繊維の原糸の 好適な繊維物性は、 強度が 2 . 6 c NZ d t e x以上が好ま しく 、 さ らに好ま しく は 2 . 6〜 5 . O c NZ d t e xである。 2 . 6 c N/ d t e x未満では、 加工後の強度が低く なる傾向にある。 伸度 は 3 5 %以上が好ま しく 、 さ らに好ま し く は 3 5〜 6 0 %である。 3 5 %未満では、 仮撚り時の糸切れ頻度が多く なる傾向がある。 弾性率は 2 7 c NZ d t e x以下が好ま しく 、 さ らに好ま し く は 1 7〜 2 7 c N/ d t e xである。 2 7 c / d t e xを超えると ソフ ト性の乏しい布帛となる傾向がある。 1 0 %伸長時の伸長回復 率は 9 0 %以上が好ま しく 、 さ らに好ま し く は 9 0〜 1 0 0 %であ る。 9 0 %より も小さい場合には、 布帛に使用 したときの伸びに対 する回復率が悪く なる傾向がある。  The preferred fiber physical properties of the polytrimethyl terephthalate fiber used in the present invention have a strength of preferably 2.6 c NZ dtex or more, more preferably 2.6 to 50,000 dtex. c NZ dtex. If it is less than 2.6 cN / dtex, the strength after processing tends to be low. The elongation is preferably 35% or more, and more preferably 35 to 60%. If it is less than 35%, the frequency of yarn breakage during false twisting tends to increase. The elastic modulus is preferably 27 cNZ dtex or less, more preferably 17 to 27 cN / dtex. If it exceeds 27 c / dtex, the fabric tends to have poor softness. The elongation recovery rate at 10% elongation is preferably 90% or more, and more preferably 90 to 100%. If it is less than 90%, the rate of recovery from elongation when used for fabric tends to be poor.
本発明においては、 上記のような原糸を用いて先撚仮撚加工をす る。 先撚と仮撚の撚方向については異方向にすることが必要であり 、 同方向にすると、 後述する加工糸のスパイ ラルコア構造が形成さ れず、 布帛にした場合にス トレツチ性の低いものとなるので適当で ない。  In the present invention, false twisting is performed using the above-described yarn. It is necessary to make the twist directions of the first twist and the false twist different from each other. If the twist directions are the same, a spiral core structure of the processed yarn described later is not formed, and when the fabric is formed, the stretchability is low. Is not appropriate.
先撚仮撚加工糸の製造においては、 驚く べきことに、 先撚と仮撚 の撚り方向を異方向とすることによって、 はじめて、 ス ト レ ッ チ性 および伸長回復性を向上させる上で、 極めて有効な形態であるスパ ィラルコア構造を形成させるこ とができ、 且つ、 加工糸の強度低下 を小さ く抑える事ができる。  In the production of false twisted twisted yarn, surprisingly, it is not possible to improve stretchability and elongation recovery for the first time by changing the twist direction of the false twist and false twist. A spiral core structure, which is an extremely effective form, can be formed, and a decrease in the strength of the processed yarn can be suppressed to a small extent.
得られた加工糸のス ト レツチ性及び伸長回復性が極めて優れ、 且 つ強度低下を小さ く抑えるこ とができる理由は必ずしも明確ではな いが、 繊維形態が均一なスパイラルコァ構造を取ることによって、 スプリ ング効果を生むため、 高いス ト レ ッチ性と伸長回復性が得ら れ、 且つ、 繊維破断時の応力集中を防ぐこ とができるためと推定さ れる。 It is not clear why the obtained processed yarn has excellent stretchability and elongation recovery properties, and the strength reduction can be suppressed to a small extent, but it is necessary to adopt a spiral core structure with a uniform fiber morphology. As a result, a spring effect is produced, so high stretchability and stretch recovery can be obtained. It is also presumed that stress concentration at the time of fiber breakage can be prevented.
また、 先撚仮撚加工糸は、 実撚が入っているため、 耐スナツギン グ性も向上させる効果を併せ持っているので、 布帛と しての適性が 问 ■ o  In addition, since the twisted false twisted yarn also has the effect of improving the snagging resistance since it has a real twist, its suitability as a fabric is 问 ■ o
なお、 本発明者等は、 ス ト レ ッ チ性と伸長回復性を改良するため に、 ポ リ ト リ メ チ レ ンテレフ タ レー ト フ ィ ラ メ ン トの仮撚加工糸に 追燃加工を施し、 スチームセッ 卜する方法の検討を行ったが、 伸張 回復性は改良されるものの、 ス ト レ ッ チ性はやや不足し、 且つ得ら れた加工糸の強度低下が大き く 、 布帛の緯糸に使用 した場合に、 引 裂強力不足するという問題点が明らかとなった。  In order to improve the stretchability and elongation recovery properties, the inventors of the present invention have performed additional combustion processing on the false twisted yarn of polymethylene terephthalate filament. The method of steam setting was studied, but the stretch recovery was improved, but the stretchability was slightly insufficient, and the strength of the obtained processed yarn was greatly reduced. When used for weft yarns, the problem of insufficient tear strength became apparent.
先撚仮撚加工の方法と しては、 一般的には、 先撚工程と仮撚工程 を連続的に行う先撚仮撚機を用いるのが好ま しいが、 先撚工程と仮 撚工程を切り離した 2 ステップ法でもよい。 この場合、 先撚後、 例 えばスチームセッ ト等の方法により、 6 0〜 9 0 °Cの温度で 3 0〜 6 0分の撚止めセッ トを施すことが好ま しい。  As a method of the false twisting process, it is generally preferable to use a twisting false twisting machine that continuously performs the twisting process and the false twisting process. A separate two-step method may be used. In this case, after the first twisting, it is preferable to perform a twisting set at a temperature of 60 to 90 ° C. for 30 to 60 minutes by a method such as steam setting.
仮撚方法と しては、 ピンタイプ、 フ リ ク シ ョ ンタイプ、 二ップべ ル トタイプ、 エアー加撚タイプ等、 いかなる方法によるものでもよ いが、 より均整なク リ ンプ状態が得られ易いという点からピンタイ プが好ま しい。  As the false twisting method, any method such as a pin type, a friction type, a double belt type, and an air twisting type may be used, but a more uniform crimped state can be obtained. The pin type is preferred because it is easy.
後述の 1 0 %伸長時の伸長回復率が 9 0 %以上の先撚仮撚加工糸 を得るためには、 仮撚加工時の熱固定温度は 1 5 0 °C以上、 1 9 0 °C以下の範囲とすることが好ま しい。 熱固定温度が 1 9 0 °Cを超え ると糸切れが発生しやすく 、 又、 熱固定温度が 1 5 0 °C未満では伸 長回復率が低下し、 ス ト レッチ素材と しての伸長回復性が不足する ことがある。  To obtain a pretwisted false twisted yarn with an elongation recovery rate of 90% or more at 10% elongation described later, the heat setting temperature during false twisting is 150 ° C or more and 190 ° C The following range is preferable. If the heat setting temperature exceeds 190 ° C, thread breakage tends to occur, and if the heat setting temperature is lower than 150 ° C, the elongation recovery rate decreases, and the stretch as stretch material Recoverability may be insufficient.
先撚数 (T 1 ) は、 次式 ( I ) で計算される先撚数の係数 K 1 が 2 7 0 0 〜 1 4 0 0 0である こ とが好ま し く 、 更に好ま し く は 4 5 0 0 〜 1 2 0 0 0 の範囲である。 先撚数の係数 K 1 が 2 7 0 0未満 では、 得られる布帛のス ト レッチ性及び伸長回復性が低く なる傾向 がある。 又、 先撚数の係数 K 1 力く 1 4 0 0 0を超えると、 得られる 布帛は強撚糸調で風合いが硬く 、 ス ト レ ッ チ性も低下する傾向があ る o The number of twists (T 1) is determined by the coefficient K 1 of the number of twists calculated by the following equation (I). It is preferably in the range of 2700 to 1400, more preferably in the range of 4500 to 1200. If the coefficient K 1 of the number of twists is less than 270, the stretchability and elongation recovery of the resulting fabric tend to be low. If the coefficient of the number of twists exceeds 1400, which is too strong, the obtained fabric has a strong twist yarn tone and a hard texture, and the stretchability tends to decrease.o
K 1 = T 1 X 〔糸の繊度 (dtex) 〕 1 /2 … ( I ) K 1 = T 1 X [Yarn fineness (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
又、 仮撚数 (T 2 ) は、 次式 (II) で計算される仮撚数の係数 K 2の値が 2 0 0 0 0〜 3 5 0 0 0 であるこ とが好ま し く 、 更に好ま しく は 2 5 0 0 0〜 3 2 0 0 0の範囲である。 仮撚数の係数 K 2 の 値が 2 0 0 0 0未満では、 得られる加工糸の捲縮性が不足し、 ス ト レツチ性が低下する傾向にあり、 3 5 0 0 0 を越えると仮撚工程で の糸切れが増える傾向にある。  In addition, the number of false twists (T 2) is preferably such that the value of the coefficient K 2 of the number of false twists calculated by the following equation (II) is 20000 to 350.000. Preferably it is in the range of 2500 to 32000. If the coefficient K2 of the number of false twists is less than 20000, the crimpability of the obtained processed yarn tends to be insufficient, and the stretchability tends to decrease. Thread breakage in the twisting process tends to increase.
K 2 = (T 2 - T 1 ) X 〔糸の繊度 (dtex) 〕 1 /2 … (II) (但し、 上記式 (II) 中において、 T 1 は単位長さ当たりの先撚数 (T/m). T 2 は単位長さ当たりの仮撚数 (T/m)を示す。 ) K 2 = (T 2-T 1) X [fineness of thread (dtex)] 1/2 (II) (where, in the above formula (II), T 1 is the number of twists per unit length (T / m). T 2 indicates the number of false twists per unit length (T / m).
次に、 本発明におけるポ リ ト リ メ チレンテレフタ レー ト繊維のマ ルチフ ィ ラメ ン ト と他繊維のマルチフ イ ラ メ ン トで構成された複合 先撚仮撚加工糸について説明する。  Next, the composite twisted false twisted yarn composed of multifilament of polymethylene terephthalate fiber and multifilament of other fibers in the present invention will be described.
複合先撚仮撚加工糸についても、 前記の先撚仮撚加工糸と同様、 先撚の撚方向と仮撚の撚方向を異方向にする必要がある。 同方向に すると、 スパイラルコア構造が形成されず、 布帛にした場合に充分 なス ト レ ッ チ性が得られず適当でない。  As for the composite twisted false twisted yarn, the twist direction of the false twist and the twist direction of the false twist need to be different from each other, similarly to the above described twisted false twisted yarn. If the direction is the same, a spiral core structure is not formed, and when the fabric is used, sufficient stretchability cannot be obtained, which is not appropriate.
本発明の複合先撚仮撚加工糸は、 ポリ ト リ メチレンテレフタ レー ト繊維マルチフイ ラメ ン ト とそれ以外の他繊維を合糸した後に先撚 仮撚するものであり、 ス ト レ ッ チ性と、 他繊維のもつ風合い及び機 能との複合化を狙ったものである。 ここで言う他繊維とは、 ボリ ト リ メ チレンテレフタ レー ト以外のポリエステル系繊維、 ポ リ ア ミ ド 系繊維、 セルロース系繊維、 アセテー ト系繊維、 アク リ ル系繊維等 をいい、 合成繊維に不足する吸湿性を付与できる点で特に好ま しく はセル口ース系繊維がよい。 The composite twisted false twisted yarn of the present invention is obtained by twisting a polytrimethylene terephthalate fiber multifilament and other fibers and then twisting. It is false twisted, and aims to combine the stretchability with the texture and function of other fibers. The other fibers referred to here are polyester fibers other than polymethylene terephthalate, polyamide fibers, cellulose fibers, acetate fibers, acryl fibers, etc. Particularly preferred is cellulosic fiber because it can impart insufficient moisture absorption.
本発明の複合先撚仮撚加工糸に占める他繊維のマルチフイ ラメ ン 卜の比率は、 全繊維質量に対し、 他繊維を 8 O w t %未満含有して いることが必要であり、 好ま し く は 3 0〜 7 O w t %である。 他繊 維の比率が 8 0 w t %以上であると、 伸長回復性が悪化する傾向に あり、 好ま しく ない。  The ratio of the multifilament of the other fibers to the composite twisted false twisted yarn of the present invention is required to contain less than 80 wt% of the other fibers with respect to the total mass of the fibers. Is 30 to 7 O wt%. If the ratio of other fibers is 80 wt% or more, the elongation-recovery tends to deteriorate, which is not preferable.
本発明の複合先撚仮撚加工糸を安定的に製造するためには、 先撚 を施す前の工程において、 ポリ ト リ メ チレンテレフタ レ一 ト繊維の マルチフ ィ ラメ ン ト と他繊維のマルチフィ ラメ ン 卜を引き揃えた後 、 イ ンタ レース等のエアー混繊を施すこ とが好ま しく 、 これにより 仮撚工程での糸切れ等の ト ラブルを減少させることができる。  In order to stably produce the composite twisted false twisted yarn of the present invention, the multifilament of poly (methylene terephthalate) fiber and the multifilament of other fibers are required in the step before the twisting. After aligning the nets, it is preferable to apply air blending such as interlace, so that trouble such as yarn breakage in the false twisting step can be reduced.
本発明の複合先撚仮撚加工糸において、 先撚仮撚加工時の熱固定 温度、 先撚数の係数、 仮撚数の係数等の仮撚条件については、 前記 ポ リ ト リ メ チ レンテ レフ タ レー ト繊維マルチフ ィ ラ メ ン トの先撚仮 撚加工の場合と同様の理由によって、 それぞれ、 熱固定温度は 1 5 0〜 1 9 0 °Cが好ま し く 、 より好ま しく は 1 6 0〜 1 8 0 °C、 先撚 数の係数は 2 7 0 0〜 1 4 0 0 0が好ま し く 、 より好ま し く は 4 5 0 0〜 1 2 0 0 0、 仮撚数の係数は 2 0 0 0 0〜 3 5 0 0 0 が好ま しく 、 より好ま し く は 2 5 0 0 0〜 3 2 0 0 0である。  In the composite twisted false twisted yarn of the present invention, the false twist conditions such as the heat setting temperature, the number of twists, and the coefficient of the false twist during the twist twisting are as follows. For the same reason as in the case of pre-twisting false twisting of left-lay fiber multifilament, the heat setting temperature is preferably 150 to 190 ° C, more preferably 1 to 90 ° C, respectively. 60 to 180 ° C, the coefficient of the number of twists is preferably 2700 to 1400, more preferably 450 to 1200, and the number of false twists The coefficient is preferably from 20000 to 350.000, and more preferably from 2500 to 32000.
次に、 本発明の前記ポリ ト リ メ チレンテレフタ レー ト繊維マルチ フ ィ ラメ ン トの先撚仮撚加工糸に、 他繊維を複合したこ とを特徴と する複合加工糸について説明する。 本発明の複合加工糸の狙いとするところは、 ポリ 卜 リ メチ レンテ レフタ レ一ト繊維マルチフ ィ ラメ ン 卜の先撚仮撚加工糸の優れたス ト レツチ性と、 他繊維の持つ風合い及び機能との複合化である。 複 合可能な他繊維と しては、 ポリ ト リ メチレンテレフタ レー ト繊維以 外のポ リ エステル系繊維、 ポ リア ミ ド系繊維、 セルロース系繊維、 アセテー ト系繊維、 アク リル系繊維、 綿、 ウール等を挙げることが でき、 合成繊維に不足する吸湿性を付与できる点で特に好ま しいも のと してはセルロース系繊維、 綿、 ウールである。 Next, a description will be given of a composite processed yarn characterized by combining other fibers with the pretwisted false twisted yarn of the polytrimethyl terephthalate fiber multifilament of the present invention. The purpose of the composite textured yarn of the present invention is to achieve excellent stretchability of the twisted false twisted textured yarn of the polymethylene terephthalate fiber multifilament and the texture and texture of other fibers. It is compounding with functions. Other fibers that can be combined include polyester fibers other than polymethylene terephthalate fibers, polyamide fibers, cellulose fibers, acetate fibers, acryl fibers, and the like. Cotton, wool, and the like can be mentioned, and cellulose fibers, cotton, and wool are particularly preferable in that they can impart insufficient hygroscopicity to synthetic fibers.
本発明の複合加工糸中に占める他繊維の比率は、 全繊維質量当た り 5 0 w t %未満であることが必要である。 5 O w t %以上の場合 は、 複合によるヤー ンの均一化が困難となる傾向にある。 更に好ま し く は 2 0〜 3 O w t %である。  The proportion of other fibers in the composite processed yarn of the present invention needs to be less than 50 wt% per total fiber mass. If the content is 5 O wt% or more, it tends to be difficult to make the yarn uniform by compounding. More preferably, it is 20 to 3% by weight.
本発明の複合加工糸を製造するに当り、 前記ポリ ト リ メチ レ ンテ レフ夕 レー ト繊維マルチフイ ラメ ン 卜の先撚仮撚加工糸に他繊維の マルチフ ィ ラメ ン トを複合する方法と しては、 単に先撚仮撚加工糸 と他繊維を引き揃えた後、 イ ンタ レース等のエアー交絡により混繊 し複合する方法、 先撚仮撚加工糸を若干オーバ一フイ ー ドさせて弛 緩した状態で他繊維と引き揃え、 次いでイ ンタ レース等により混繊 する方法等を採用することができるが、 ヤー ンの均一性が得られる 点で後者の方法がより好ま しい。  In producing the composite textured yarn of the present invention, a method of compounding a multifilament of another fiber with a pretwisted false twisted textured yarn of the polytrimethylethylene refractory fiber multifilament is used. For example, simply twisting the pre-twisted twisted yarn and other fibers, then blending and combining them by air entanglement such as interlacing, or loosening the pre-twisted false twisted yarn by slightly over-feeding it. It is possible to adopt a method in which the fibers are aligned with other fibers in a loose state, and then mixed by interlace or the like. However, the latter method is more preferable in that yarn uniformity can be obtained.
本発明のポ リ ト リ メ チレ ンテ レフ タ レー ト繊維マルチフ ィ ラメ ン 卜の先撚仮撚加工糸、 ポリ ト リ メ チレンテレフタ レー ト繊維マルチ フ ィ ラメ ン ト と他繊維マルチフ イ ラ メ ン トで構成された複合先撚仮 撚加工糸、 および前記の先撚仮撚加工糸に他繊維を複合した複合加 ェ糸 (以下、 これらをまとめて単に本発明の加工糸という ことがあ る。 ) の好適な繊維物性は、 強度は 2. 5 c N/ d t e x以上が好 ま し く 、 さ らに好ま し く は 2. 5〜 5. O c N/ d t e xである。 2. 5 c N/ d t e x未満では布帛にしたときの強力が不足する傾 向がある。 Pre-twisted false twisted yarn, polytrimethylene terephthalate fiber multifilament, and other fiber multifilament of the polymethylentelephthalate fiber multifilament of the present invention. Composite twisted yarn composed of the above-mentioned composite yarn and composite yarn obtained by compounding the above-described false-twisted false twisted yarn with other fibers (hereinafter, these may be collectively referred to simply as the processed yarn of the present invention). The preferred fiber physical properties of the above are those having a strength of preferably 2.5 cN / dtex or more, more preferably 2.5 to 5. OcN / dtex. If it is less than 2.5 cN / dtex, there is a tendency that the strength of the fabric is insufficient.
伸度は 2 0 %以上が好ま しく 、 さ らに好ま しく は 2 0〜 6 0 %で ある。 2 0 %未満では布帛にしたときのス ト レッチ性が不足する傾 向がある。 弾性率は 2 7 c NX d t e x以下が好ま しく、 さ らに好 ま しく は 1 3〜 2 5 c NZ d t e xである。 2 7 c NZ d t e xを 超えるとソ フ ト性の乏しい布帛となる傾向がある。 伸縮伸長率は 8 0 %以上が好ま しく 、 更に好ま し く は 9 0 %以上である。 8 0 %未 満では布帛にしたときのス ト レツチ性が不足する傾向がある。 1 0 %伸長時の伸長回復率は 8 5 %以上が好ま し く 、 さ らに好ま しく は 9 0〜 1 0 0 %である。 、 8 5 %未満では、 布帛に使用 したときの 伸びに対する回復率が悪く なる傾向がある。  The elongation is preferably 20% or more, and more preferably 20 to 60%. If it is less than 20%, the stretchability tends to be insufficient when formed into a fabric. The elastic modulus is preferably 27 c NX d tex or less, more preferably 13 to 25 c NZ d tex. If it exceeds 27 c NZ dtex, the fabric tends to have poor softness. The stretch ratio is preferably 80% or more, and more preferably 90% or more. If it is less than 80%, the stretchability of the fabric tends to be insufficient. The elongation recovery rate at 10% elongation is preferably 85% or more, and more preferably 90 to 100%. If it is less than 85%, the rate of recovery from elongation when used for fabrics tends to be poor.
本発明の布帛は、 上記の本発明の加工糸から選ばれる少なく とも 一つを経糸及び Z又は緯糸に用いてなる ものであり、 布帛の形態と しては、 織物、 編物等がある。  The fabric of the present invention is obtained by using at least one selected from the above-mentioned processed yarn of the present invention for the warp and Z or weft, and the form of the fabric includes a woven fabric and a knitted fabric.
本発明の布帛において、 前記の先撚仮撚加工糸、 複合先撚仮撚加 ェ糸、 複合加工糸から選ばれる少なく と も一つを、 布帛の経糸方向 のみにス ト レ ツチを付与する場合には経糸に、 緯糸方向のみにス ト レツチを付与する場合には緯糸に、 経糸及び緯糸方向にス ト レツチ を付与する 2 ウ ェイス ト レツチ布帛の場合には経糸及び緯糸に用い れば良く 、 目的に応じて任意に選択するこ とができる。  In the fabric of the present invention, at least one selected from the above-mentioned false twisted twisted yarn, composite twisted false twisted yarn, and composite textured yarn is stretched only in the warp direction of the fabric. In this case, if the stretch is applied only to the weft direction, the warp is applied to the weft, and the stretch is applied to the warp and weft directions. It can be arbitrarily selected according to the purpose.
本発明の布帛においては、 前記の各加工糸の布帛全質量に対する 混率は、 2 0〜 1 0 0 w t %であることが好ま しく 、 3 0〜 1 0 0 w t %であることがより好ま しい。 2 0 w t %未満では、 ス ト レツ チ性ゃソフ トな風合いという特徴が発揮されない場合がある。  In the fabric of the present invention, the mixing ratio of each of the processed yarns to the total mass of the fabric is preferably 20 to 100 wt%, and more preferably 30 to 100 wt%. . If it is less than 20 wt%, the characteristics of stretchiness and soft texture may not be exhibited.
布帛において、 本発明の加工糸に混用 しう る繊維と しては、 特に 限定はなく 、 長繊維でも、 短繊維でもよ く 、 また、 ポリ ト リ メ チレ ンテレフタ レ一ト繊維、 ポ リエチレンテレフタ レー 卜繊維等のポリ エステル系繊維、 ナイ ロ ン 6、 ナイ ロン 6 6等のポリ ア ミ ド系繊維 、 アセテー ト繊維等の合成繊維や、 キュブラ、 レーヨ ン、 綿、 麻、 ウール等の天然繊維を用いることができる。 又、 その形態も、 原糸 でも、 仮撚加工糸に代表される嵩高加工糸でもよく 、 従来公知の各 種形態の糸条を用いることができる。 In the fabric, the fiber to be mixed with the processed yarn of the present invention is not particularly limited, and may be a long fiber or a short fiber, or may be a polytrimethylene. Polyester fiber such as polyethylene terephthalate fiber, polyethylene terephthalate fiber, polyamide fiber such as nylon 6, nylon 66, synthetic fiber such as acetate fiber, Cubra, Rayo Natural fibers such as cotton, hemp, wool and the like can be used. Further, the form may be a raw yarn or a bulky processed yarn represented by false twisted yarn, and conventionally known yarns in various forms can be used.
混用形態については、 経糸及び Z又は緯糸使いにおいて、 例えば 、 1 本交互や 2本交互、 更には 3本以上の変則配列であってもよい 力 癖の少ない目面を得る上から、 経糸又は緯糸の一方に用いるか 、 または 1 本交互とするこ とがよ り好ま しい。  As for the mixed form, in warp and Z or weft use, for example, one or two alternates, or three or more irregular arrangements may be used. It is more preferable to use one of them or alternate one.
本発明の布帛の織組織は、 平織組織、 綾織組織、 朱子織組織を初 め、 それらから誘導された各種の変化組織を適用するこ とができる o  As the woven structure of the fabric of the present invention, a variety of changed structures derived therefrom, including a plain woven structure, a twill woven structure, and a satin woven structure, can be applied.
本発明の布帛を製織するための織機と しては、 エアージ ヱ ッ トル —ムゃウ ォータージヱ ッ 卜ルーム等に代表されるような流体噴射織 機を初め、 レ ビアルームゃグリ ッパールーム、 フライ シ ャ ッ トルル ームなどが使用できる。 緯方向のス ト レツチ性を最大限に発揮させ ることに加え、 布帛の幅方向でのス ト レツチ率のバラツキを抑制す る点から、 低張力で緯入れが可能で、 緯糸に優しいエアージ ッ ト ルームやウ ォータージヱ ッ トルーム等の流体噴射織機が好ま しく 、 中でも特にエアージヱ ッ トルームの適性は高い。  Examples of looms for weaving the fabric of the present invention include fluid jet looms typified by air jet-to-water jet rooms, etc., as well as revival rooms / gripper rooms and fly shears. For example, a floor room can be used. In order to maximize the stretchability in the weft direction and to reduce the variation in the stretch rate in the width direction of the fabric, weft insertion is possible with a low tension and a weft-friendly air jet. Fluid jet looms such as a hot room and a water jet room are preferred, and the suitability of an air jet room is particularly high.
本発明における編物については、 編機の種類と しては、 経編機、 丸編機、 横編機が用いられる。 編物の組織は限定されないが、 ス ト レッチ率の高い編組織の編地に対し特に効果的である。  Regarding the knitted fabric in the present invention, a warp knitting machine, a circular knitting machine, and a flat knitting machine are used as types of the knitting machine. Although the structure of the knitted fabric is not limited, it is particularly effective for a knitted fabric having a high stretch ratio.
本発明の編物において、 ス ト レッチ性を得る方法と しては、 ポ リ ト リ メ チ レ ンテレフタ レー ト繊維で構成された編物を、 熱水、 湿熱 、 乾熱等のリ ラ ッ クス熱処理により、 編物ではコースとゥエルの配 列や密度バラ ンスを変化させる。 これにより、 組織点の長さ変化や 、 交差点の屈曲ク リ ンプの付与や、 糸状の浮いている部分に捲縮に よる形態変化を持たせて、 ス ト レ ッ チ性を発現する。 従って、 編物 の生機密度と最終製品の仕上編物密度との密度差を大き く すること によって、 より高ス ト レッチ率が得られる ものである。 予め密度を 粗く設計した編地をリ ラ ッ クス熱処理して高収縮化させることによ り、 編物は高密度化して、 糸自身の収縮以外に組織収縮が起こり、 これによつて、 経又は緯方向に細かい屈曲ク リ ンプゃ捲縮が与えら れて、 所望のス ト レ ッ チ性が付与される。 In the knitted fabric of the present invention, as a method for obtaining stretchability, a knitted fabric composed of polymethylene terephthalate fiber is subjected to a relaxation heat treatment such as hot water, wet heat, or dry heat. In knitting, the course and Change the row and density balance. As a result, the stretchability is exhibited by changing the length of the tissue point, imparting a bent crimp at the intersection, and imparting a morphological change due to crimping to the floating portion of the thread. Therefore, a higher stretching ratio can be obtained by increasing the density difference between the density of the green fabric of the knitted fabric and the density of the finished knitted fabric of the final product. By knitting a knitted fabric whose coarseness has been designed in advance in advance by relaxing heat treatment to increase the shrinkage, the knitted fabric is densified, and contraction of the structure occurs in addition to shrinkage of the yarn itself. Fine bending crimps and crimps are provided in the weft direction, and desired stretchability is imparted.
具体的な方法と しては、 例えば、 緯方向にス ト レ ッ チ性を有する 編物を得る場合は、 ゲー ジ又は度目を粗く 設計し、 生機を精練前又 は精練後に所望のス ト レツチ率が得られる様に、 緯方向の幅入率を 設定し、 1 5 0〜 2 0 0 °Cの乾熱で 3 0秒から 2分間の幅入熱処理 を行い、 その後、 通常の染色加工条件で仕上げることによって緯方 向にス ト レツチ性が得られる。 発明を実施するための最良の形態  As a specific method, for example, when obtaining a knitted fabric having stretchability in the weft direction, the gauge or stitch is designed to be coarse, and the greige fabric is subjected to a desired stretch before or after scouring. The width of the weft direction is set so that the width can be obtained, and the heat treatment is performed for 30 seconds to 2 minutes with dry heat of 150 to 200 ° C. Finishing in the direction gives a stretch in the weft direction. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさ らに詳述するが、 本発明は何らこ れらに限定されるものではない。  Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
尚、 測定方法、 評価方法等は下記の通りである。  The measurement method, evaluation method, etc. are as follows.
( 1 ) 粘度 ( 77 s P Z C )  (1) Viscosity (77 s PZC)
ポ リマーを、 9 0 °Cで 0 —ク ロ口フ エノ ールに 1 g Zデシ リ ツ ト ルの濃度で溶解し、 得られた溶液をォス トワル ド粘度管に移して 3 5 °Cで測定し、 下記式により算出 した。  Dissolve the polymer in 0-cloth phenol at 90 ° C at a concentration of 1 g Z deciliter and transfer the resulting solution to an Ostwald viscometer tube at 35 ° C. C was measured and calculated by the following formula.
77 s p / C = 〔 ( Τ / Τ 0 ) — 1 〕 / C  77 sp / C = [(Τ / Τ 0) — 1] / C
(但し、 Tは試料溶液の落下時間 (秒) 、 T O は溶剤の落下時間 ( 秒) 、 Cは溶液濃度 ( g Zデシ リ ッ トル) を表す。 ) ( 2 ) 強度、 伸度、 弾性率 (However, T represents the falling time of the sample solution (seconds), TO represents the falling time of the solvent (seconds), and C represents the solution concentration (g Z deciliters).) (2) Strength, elongation, elastic modulus
J I S - L - 1 0 1 3に基づき、 東洋ボール ドウイ ン (株) 製の 引張試験機 R TM— 1 0 0を用いて、 つかみ間隔 2 0 c m、 引張速 度 2 0 c mノ分にて測定した。  Based on JIS-L-1013, measured with a gripping distance of 20 cm and a pulling speed of 20 cm using a tensile tester RTM-100 manufactured by Toyo Ball Window Co., Ltd. did.
( 3 ) 加工糸のス ト レ ッ チ性  (3) Stretch property of processed yarn
加工糸のス ト レ ッ チ性は、 J I S— L— 1 0 9 0 伸縮試験方法 (C法) に準じて得られる伸縮伸長率によって評価した。  The stretchability of the processed yarn was evaluated by the stretch ratio obtained according to the JIS-L-109 stretch test method (Method C).
試料の前処理と しては、 湿熱 9 0 °C X 1 5分処理を行い、 一昼夜 放置した。 尚、 この値が大きい程、 加工糸のス ト レッチ性が高いこ とを示す。  As pretreatment of the sample, the sample was subjected to wet heat at 90 ° C for 15 minutes, and left overnight. The larger the value, the higher the stretchability of the processed yarn.
( 4 ) 加工糸の伸長回復性  (4) Elongation recovery of processed yarn
加工糸の伸長回復性は、 1 0 %伸長時の伸長回復率を測定するこ とによって評価した。  The elongation recovery of the processed yarn was evaluated by measuring the elongation recovery at 10% elongation.
繊維をチ ャ ッ ク間距離 1 0 c mで前記の引張試験機に取り付け、 伸長率 1 0 %まで引張速度 2 0 c 分の速度で伸ばし、 伸度 1 0 %になったところで今度は逆に同じ速度で収縮させて、 応力一歪曲 線を画く。 収縮中、 応力が初荷重と等しい 0. 0 0 9 c N/ d t e xにまで低下した時の残留伸度をしと して、 下記式で算出した。  The fiber was attached to the tensile tester at a chuck distance of 10 cm, stretched to an elongation of 10% at a speed of 20 c / min, and when the elongation reached 10%, the reverse was applied. Shrink at the same speed to draw a stress-strain curve. During shrinkage, the residual elongation when the stress was reduced to 0.009 cN / dtex, which is equal to the initial load, was calculated by the following equation.
1 0 %伸長時の伸長回復率 (%) = 〔 ( 1 0 - L ) / 1 0〕 X I 0 0  Elongation recovery rate at 10% elongation (%) = [(10-L) / 10] X I 00
なお、 この値が大きい程、 加工糸の伸長回復性が高いことを示す  The larger this value, the higher the elongation and recovery of the processed yarn.
( 5 ) 布帛のス ト レツチ率及び伸長回復率 (5) Stretch rate and elongation recovery rate of fabric
前記の引張試験機を用いて、 つかみ幅 2 c m、 つかみ間隔 1 0 c m、 引張速度 1 0 c mZ分で試料を経方向又は緯方向に伸長させた 時の、 4. 9 N/ c mの応力下での伸び (%) をス ト レッチ率とし た。 更に、 4 . 9 NZ c mの応力に達したところで今度は逆に同じ速 度で収縮させて、 応力一歪み曲線を画き、 応力が O NZ c mに低下 したときの残留伸度を L 1 とすると、 下記式により算出した。 布帛の伸長回復率 (%) = 〔 ( 1 0 - L 1 ) / 1 0〕 X I 0 0 4.9 N / cm stress when the sample is stretched in the longitudinal or weft direction at a grip width of 2 cm, a grip distance of 10 cm, and a tensile speed of 10 cmZ using the tensile tester described above. The stretch (%) below was taken as the stretch rate. Further, when the stress reaches 4.9 NZ cm, it is contracted again at the same speed, and a stress-strain curve is drawn.The residual elongation when the stress decreases to O NZ cm is defined as L 1. Calculated by the following equation. Elongation recovery rate of fabric (%) = [(10-L1) / 10] XI 00
〔ポリ ト リ メチレンテレフタ レー ト繊維の原糸の製造例〕 [Production example of polytrimethylene terephthalate fiber yarn]
77 s p / c = 0 . 8のポリ ト リ メ チレンテレフタ レー トを、 紡糸 温度 2 6 5 °C、 紡糸速度 1 2 0 0 mノ分で紡糸して未延伸糸を得、 次いで、 ホ ッ ト ロール温度 6 0 °C、 ホッ トプレ一 卜温度 1 4 0 °C、 延伸倍率 3倍、 延伸速度 8 0 O mノ分で延撚して、 5 6 d t e x / 2 4 f の延伸糸を得た。 この延伸糸の強伸度、 弾性率並びに 1 0 % 伸長時の伸長回復率は、 各々、 3 . l c NZ d t e x、 4 6 %、 2 6 . 4 c NZ d t e x並びに 9 8 %であった。  Polytrimethyl terephthalate of 77 sp / c = 0.8 is spun at a spinning temperature of 26.5 ° C and a spinning speed of 1200 m to obtain an undrawn yarn, and then hot. Rolled at a temperature of 60 ° C, hot plate temperature of 140 ° C, stretch ratio of 3 times, and stretched at a stretching speed of 80 Om to obtain a drawn yarn of 56 dtex / 24 f. . The strong elongation, the elastic modulus, and the elongation recovery rate at the time of 10% elongation of this drawn yarn were 3.1 NZ dtex, 46%, 26.4 c NZ dtex and 98%, respectively.
又、 吐出量を変える以外は上記と同様にして、 8 4 d t e x Z 2 4 f の延伸糸を得た。 この延伸糸の強伸度、 弾性率並びに 1 0 %伸 長時の伸長回復率は、 各々、 3 . O c NZ d t e x、 4 4 %、 2 5 . 3 c NZ d t e x並びに 9 8 %であった。  In addition, a drawn yarn of 84 dtex Z 24 f was obtained in the same manner as above except that the discharge amount was changed. The strong elongation, the elastic modulus, and the elongation recovery rate at 10% elongation of the drawn yarn were 3.0 Oc NZ dtex, 44%, 25.3 c NZ dtex, and 98%, respectively. .
<本発明の先撚仮撚加工糸の実施例と比較例〉 <Examples and comparative examples of the pretwisted false twisted yarn of the present invention>
〔実施例 1 〕  (Example 1)
上記の製造例で得られたポリ ト リ メチレンテレフタ レー ト繊維 5 Polytrimethylene terephthalate fiber obtained in the above production example 5
6 d t e x Z 2 4 f の延伸糸を、 村田機械製の 3 H A先撚仮撚機を 用いて、 ス ピン ドル回転数 1 2 0 0 0 r p m、 先撚数 ( S方向) 86 dtex x 24 f drawn yarn was turned using a 3H A pre-twisting false twisting machine manufactured by Murata Machinery, with a spindle rotation speed of 1200 rpm and a pre-twisting speed (S direction) of 8
0 0 TZm、 仮撚数 (Z方向) 5 0 0 0 TZm、 オーバーフィ ー ド 率 5 %、 仮撚ヒーター温度 1 7 0 °Cにて先撚仮撚加工を行つた (K 5 9 8 7 、 K 2 = 3 1 4 3 0 ) 。 0 0 TZm, number of false twists (Z direction) 500 0 TZm, overfeed rate 5%, false twisting at 170 ° C , K 2 = 3 1 4 3 0).
得られた先燃仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回復率は、 各々、 2 . 8 c NZ d t e x、 4 6 % 、 1 5 c N/ d t e X . 1 1 0 %、 9 6 %であり、 強度、 伸度、 弾 性率、 ス ト レッチ性、 伸長回復性共に優れたものであった。 The strength, elongation, elastic modulus, stretch and elongation of the obtained pre-fired false twisted yarn, 1 The elongation recovery rates at 0% elongation are 2.8c NZ dtex, 46%, 15cN / dte X. 110%, 96%, respectively, and the strength, elongation, and elasticity are In addition, both stretchability and stretch recovery were excellent.
〔実施例 2〕  (Example 2)
上記の製造例で得られたポ リ ト リ メチレンテレフタ レー ト繊維 5 6 d / 2 4 f の延伸糸を、 村田機械製の 3 H A先撚仮撚機を用いて 、 スピン ドル回転数 1 2 0 0 0 r p m、 先撚数 ( Z方向) 1 0 0 0 TZm、 仮撚数 ( S方向) 5 0 0 0 TZm、 オーバーフ ィ ー ド率 5 %、 仮撚ヒーター温度 1 7 0 °Cにて先撚仮撚加工を行った (K l = 7 4 8 3、 Κ 2 = 2 9 9 3 3 ) 。  The drawn yarn of the poly (methylene terephthalate) fiber 56 d / 24 f obtained in the above production example was subjected to a spindle rotation speed of 1 using a 3 HA pretwisting false twisting machine manufactured by Murata Machinery. 200 rpm, number of twists (Z direction) 100 TZm, number of false twists (S direction) 500 TZm, overfeed rate 5%, temperature of false twist heater 170 ° C First-twisted false twisting was performed (Kl = 7 483, Κ2 = 2993 3).
得られた先撚仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回復率は、 各々、 2 . 9 c N/ d t e x , 4 8 % 、 1 4 . l c NZ d t e x、 1 3 0 %、 9 7 %であり、 強度、 伸度 、 弾性率、 ス ト レッチ性、 伸長回復性共に優れたものであった。  The strength, elongation, elastic modulus, stretching elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 2.9 cN / dtex, 48%, and 14. lc NZ dtex, 130%, 97%, excellent in strength, elongation, elastic modulus, stretchability, and elongation recovery.
〔実施例 3〕  (Example 3)
上記の製造例で得られたポ リ ト リ メチレンテレフタ レー ト繊維 8 4 d t e x / 2 4 f を、 村田機械製の 3 H A先撚仮撚機を用いて、 スピン ドル回転数 1 2 0 0 0 r p m、 先撚数 ( S方向) 9 0 0 Ύ / m、 仮撚数 ( Z方向) 4 1 0 0 T Zm、 オーバーフ ィ ー ド率 5 %、 仮撚ヒーター温度 1 7 0 °Cにて先撚仮撚加工を行った (K 1 = 8 2 4 9、 K 2 = 2 9 3 2 8 ) 。  The polyethylene methylene terephthalate fiber 84 dtex / 24 f obtained in the above-mentioned production example was subjected to a spindle rotation speed of 1200 d using a 3 HA twisting false twisting machine manufactured by Murata Machinery. 0 rpm, number of twists (S direction) 900 mm / m, number of false twists (Z direction) 4100 TZm, overfeed rate 5%, temperature of false twist heater 170 ° C Pre-twisting false twisting was performed (K 1 = 8 249, K 2 = 293 288).
得られた先撚仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回復率は、 各々、 3 . l c NZ d t e x、 4 5 % 、 1 4 . 0 c N/ d t e x、 1 2 0 %、 9 7 %であり、 強度、 伸度 、 弾性率、 ス ト レッチ性、 伸長回復性共に優れたものであった。  The strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 3.0 lc NZ dtex, 45%, and 14.0 c, respectively. The N / dtex was 120% and 97%, which were excellent in strength, elongation, elastic modulus, stretchability, and elongation recovery.
〔実施例 4〕  (Example 4)
上記の製造例で得られたポ リ ト リ メチレンテレフタ レー ト繊維 8 4 d t e x Z 2 4 f を、 村田機械製の D T— 3 1 0を用いて S方向 に 9 0 O T/mの撚りを施し、 真空セッ ターにて 8 0。C、 4 0分の セッ トを行った。 この糸を三菱重工業製 L S — 2仮燃加工機を用い て、 スピン ドル回転数 3 8 0 0 0 0 r p m、 仮撚数 (Z方向) 4 2 0 0 TZm、 アンダーフィ ー ド率 5. 5 %、 仮撚温度 1 7 0 °Cの条 件で仮撚加工を行つた (K 1 = 8 2 4 9、 K 2 = 3 0 2 4 5 ) 。 得られた仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 % 伸長時の伸長回復率は、 各々、 3. O c NZ d t e x、 5 0 %、 1 3. 9 c NZ d t e x、 1 1 5 %、 9 6 %であり、 強度、 弾性率、 ス ト レツチ性、 伸長回復性共に優れたものであった。 Polymethylene methylene terephthalate fiber obtained in the above production example 8 4 dtex Z 24 f was twisted at 90 OT / m in the S direction using Murata Machinery's DT-310, and 80 was set on a vacuum setter. C, set for 40 minutes. Using a Mitsubishi LS-2 calcining machine made by Mitsubishi Heavy Industries, this yarn was used at a spindle speed of 3800 rpm, a false twist number (Z direction) of 4200 TZm, and an underfeed rate of 5.5 %, And a false twisting process was performed at a false twist temperature of 170 ° C (K1 = 8249, K2 = 304245). The strength, elongation, elastic modulus, elongation and elongation, and elongation recovery of the obtained false twisted yarn at 10% elongation were 3.O c NZ dtex, 50%, and 13.9 c NZ, respectively. The dtex was 115% and 96%, which were excellent in strength, elastic modulus, stretchability, and elongation recovery.
〔比較例 1 〕  [Comparative Example 1]
上記の製造例で得られたポ リ ト リ メ チレンテレフタ レー ト繊維 5 6 d t e x X 2 4 f の延伸糸を、 三菱重工業製 L S — 2仮撚加工機 を用いて、 スピン ドル回転数 2 7 5 0 0 0 r p m、 仮撚数 ( Z方向 ) 4 2 0 0 T/m, オーバーフィ ー ド率 5 %、 仮撚温度 1 7 0 °Cの 条件で仮撚加工を行った。  The drawn yarn of the polymethylene terephthalate fiber 56 dtex X 24 f obtained in the above production example was spinned at a spindle speed of 2 75 using a Mitsubishi Heavy Industries LS-2 false twisting machine. The false twisting was performed under the conditions of 0,000 rpm, the number of false twists (Z direction), 420 T / m, the overfeed rate of 5%, and the false twist temperature of 170 ° C.
得られた仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 % 伸長時の伸長回復率は、 各々、 3. 0 c N/ d t e X 5 7 %、 1 5. 9 c NZ d t e x、 1 2 0 %、 8 0 %であり、 強度、 弾性率、 伸縮伸長率はス 卜 レツチ素材と して傻れる ものの、 伸長回復性に乏 しいものであった。  The strength, elongation, elastic modulus, elastic elongation, and elongation recovery of the obtained false twisted yarn at 10% elongation were 3.0 cN / dte X 57% and 15.99 c, respectively. The NZ dtex was 120% and 80%, respectively, and although the strength, elastic modulus, and elongation / shrinkage were obtained as stretch materials, the elongation recovery was poor.
〔比較例 2〕  (Comparative Example 2)
比較例 1 で得られた仮撚加工糸を、 村田機械製の D T— 3 1 0を 用いて S方向に 8 0 O TZmの逆追燃を施し、 真空セッ ターにて 8 0 °C、 4 0分のセッ トを行った。  The false-twisted yarn obtained in Comparative Example 1 was subjected to reverse combustion of 80 O TZm in the S direction using DT-3130 manufactured by Murata Machinery Co., Ltd. A 0 minute set was performed.
得られた糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の 伸長回復率は、 2. 3 c NZ d t e x、 3 8 %、 1 5. 9 c NZ d t e x、 8 0 %、 9 7 %であり、 ス ト レッチ性及び伸長回復性は良 好であつたが、 強度レベルが不足したものであつた。 The strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained yarn are 2.3 c NZ dtex, 38%, 15.9 c NZ d The tex was 80% and 97%, and the stretchability and elongation recovery were good, but the strength level was insufficient.
〔比較例 3〕  (Comparative Example 3)
上記の製造例で得られたポ リ ト リ メ チレンテレフタ レー ト繊維 5 6 ά / I 4 f の延伸糸を、 仮撚数 ( S方向) 3 4 0 O TZmとする 以外は実施例 1 と同様の条件にて先撚仮撚加工 (同方向) を行った (K l = 5 9 8 7、 Κ 2 = 3 1 4 3 0 ) 。  Same as Example 1 except that the polymethylene terephthalate fiber 56 で / I4f obtained in the above production example was drawn at a false twist number (S direction) of 3400 O TZm. Under the following conditions, false-twist false twisting (same direction) was performed (Kl = 59987, Κ2 = 314430).
得られた先撚仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回復率は、 各々、 2 . 9 c N/ d t e x、 4 3 % 、 1 5 . 9 c NZ d t e x、 2 5 %、 9 6 %であり、 糸の伸長回復 性は優れる ものの、 ス ト レ ッ チ性に乏しい糸であった。  The strength, elongation, elastic modulus, stretch elongation, and elongation recovery at 10% elongation of the obtained pretwisted false twisted yarn were 2.9 cN / dtex, 43%, and 15 .5, respectively. 9 c NZ dtex, 25% and 96%, indicating that the yarn had excellent stretch recovery properties, but lacked stretchability.
〔比較例 4〕  (Comparative Example 4)
実施例 1 において、 ポ リ ト リ メ チ レンテ レフ タ レー ト繊維の代わ り に、 5 6 d t e x / 2 4 f のポ リ エチ レ ンテ レフ タ レー ト繊維 ( 強度、 伸度、 弾性率並びに 1 0 %伸長時の弾性回復率は、 各々、 4 . 8 5 c NZ d t e x、 3 2 %、 6 6 c NZ d t e x並びに 4 9 % である。 ) を用い、 かつ仮撚ヒータ一温度を 2 0 0 °Cにした以外は 、 実施例 1 と同様の条件にて先撚仮撚加工を施した (K 1 = 5 9 8 7、 K 2 = 3 1 4 3 0 ) 。  In Example 1, 56 dtex / 24 f polyethylene terephthalate fiber (strength, elongation, elastic modulus and 1 d) was used in place of the polymethylene terephthalate fiber. The elastic recovery rates at 0% elongation are 4.85 c NZ dtex, 32%, 66 c NZ dtex, and 49%, respectively.) Except that the temperature was changed to ° C, pre-twisting false twisting was performed under the same conditions as in Example 1 (K1 = 59987, K2 = 31430).
得られた先撚仮撚加工糸の強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回復率は、 3 . 9 c NZ d t e x、 3 3 %、 3 0 . 0 c N/ d t e x , 5 0 %、 6 6 %であり、 ス ト レ ッ チ性、 伸長 回復性が低く 、 ス ト レッチ素材と して適さないものであった。 ぐ本発明の複合先撚仮撚加工糸の実施例と比較例〉  The strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation of the obtained twisted false twisted yarn are 3.9 c NZ dtex, 33%, 30.0 cN / dtex, 50% and 66%, the stretchability and elongation / recovery were low, and were not suitable as stretch materials. Examples and Comparative Examples of Composite Yarn False Twisted Yarn of the Present Invention>
〔実施例 5〕  (Example 5)
上記の製造例で得られたポリ ト リ メチレンテレフタ レー ト繊維 8 4 d t e x / 2 4 f と銅ア ンモニア レーヨ ン糸 8 4 d t e x/ 4 5 f (旭化成工業製) を、 バーンワイ ンダー (村田機械社製、 タイプ 3 0 3 — Π ) を用いて 0. 0 7 c NZ d t e xの張力で引き揃え、 イ ンタ レーサーで 1 5 O k P aの圧力で交絡を加えながら 4 0 0 m 分の速度で合糸した。 次いで村田機械製 3 H A先撚仮撚機を用い て、 ス ピン ドル回転数 1 2 0 0 0 r p m、 先撚数 ( S方向) 5 0 0 TZm、 仮撚数 ( Z方向) 2 8 0 0 TZm、 オーバ一フ ィ ー ド率 5 %、 仮撚ヒ一ター温度 1 7 0 °Cにて先撚仮撚加工を行った (K 1 = 6 4 8 1、 K 2 = 2 9 8 1 1 ) 。 Polytrimethylene terephthalate fiber obtained in the above production example 8 4 dtex / 24 f and copper ammonia rayon yarn 84 dtex / 45 f (Asahi Kasei Kogyo) were converted to 0.07 c using a burn winder (Murata Kikai Co., Ltd., type 303— —). The yarns were aligned with the tension of NZ dtex, and entangled with an interlace at a speed of 400 m while applying confounding at a pressure of 15 OkPa. Next, using a Murata Machinery 3 HA twisting false twisting machine, the spindle rotation speed was 1200 rpm, the twisting number (S direction) was 500 TZm, and the false twist number (Z direction) was 2800. Pre-twisted false twisting was performed at TZm, overfeed rate of 5%, and false twisting heater temperature of 170 ° C (K1 = 6481, K2 = 299811) ).
得られた複合先撚仮撚加工糸は、 銅ア ンモニア レーヨ ン糸の含有 量が 5 0 w t %、 強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時 の伸長回復率は、 各々、 2. 5 c NZ d t e x、 2 6 %、 2 5 c N ノ d t e x、 8 0 %, 8 5 %であり、 強度、 ス ト レッチ性、 伸長回 復性共に優れたものであった。  The obtained composite twisted false twisted yarn has a copper ammonia rayon yarn content of 50 wt%, strength, elongation, elastic modulus, elastic elongation, and elongation recovery at 10% elongation. They were 2.5 c NZ dtex, 26%, and 25 cN dtex, 80% and 85%, respectively, and were excellent in strength, stretchability, and elongation recovery.
〔実施例 6〕  (Example 6)
上記の製造例で得られたポリ ト リ メ チレンテレフタ レー ト繊維 5 6 d t e x / 2 4 f と、 ポ リエチレンテレフタ レー ト繊維の W型断 面糸 8 4 d t e x Z 3 0 f (旭化成工業社製 ; 強度、 伸度、 弾性率 、 1 0 %伸長時の伸長回復率は、 各々、 4. 5 c N/ d t e x、 3 5 %、 6 0 c N/ d t e x、 4 5 %である。 ) を用いる以外は、 実 施例 5 と同様の方法で先撚仮撚加工を行つた (K 1 = 5 9 1 6、 K 2 = 2 7 2 1 4 ) 。  56 dtex / 24 f of the polymethylene terephthalate fiber obtained in the above production example and 84 dtex Z 30 f of a polyethylene terephthalate fiber W-shaped cross section yarn (manufactured by Asahi Kasei Corporation) Strength, elongation, elastic modulus, and elongation recovery at 10% elongation are 4.5 cN / dtex, 35%, 60 cN / dtex, and 45%, respectively.) Except for the above, pre-twisting false twisting was carried out in the same manner as in Example 5 (K 1 = 59,16, K 2 = 27,214).
得られた複合先撚仮撚加工糸は、 ポ リエチレンテレフタ レ一 ト繊 維の含有量が 4 0 w t %、 強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の回復率は、 各々、 3. 4 c NZ d t e x、 4 0 %、 2 1 c NZ d t e x、 9 0 %、 8 8 %であり、 糸のス ト レ ッ チ性、 伸長 回復性共に良好であつた。 〔比較例 5〕 The obtained composite twisted false twisted yarn has a content of polyethylene terephthalate fiber of 40 wt%, strength, elongation, elastic modulus, elongation / shrinkage elongation, and recovery at elongation of 10%. Were 3.4 c NZ dtex, 40%, 21 c NZ dtex, 90% and 88%, respectively, and both the stretchability and elongation and recovery of the yarn were good. (Comparative Example 5)
実施例 5 において、 ポ リ ト リ メ チレンテレフタ レー ト繊維 2 2 d t e x / 1 2 f と銅ア ンモニア レーヨ ン糸 1 1 O d t e x / 6 0 f を用いる以外は、 実施例 5 と同様の方法で複合先撚仮撚加工糸を得 た (K 1 = 5 7 4 5、 K 2 = 2 6 4 2 5 ) 。  A composite was prepared in the same manner as in Example 5 except that polymethylene terephthalate fiber 22 dtex / 12 f and copper ammonia rayon yarn 110 Odtex / 60 f were used. A twisted false twisted yarn was obtained (K1 = 57445, K2 = 264424).
得られた複合先撚仮撚加工糸は、 銅ア ンモニアレーヨ ン糸の含有 量が 8 3 . 3 w t %, 強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸 長時の伸長回復率は、 各々、 2 . O c NZ d t e x、 2 0 %、 3 1 , 2 c NZ d t e x、 5 0 %、 7 0 %であり、 強度、 ス ト レ ッ チ性 、 伸長回復性共に劣る ものであった。  The obtained composite twisted false twisted yarn has a copper ammonia rayon yarn content of 83.3 wt%, strength, elongation, elastic modulus, stretch elongation, and elongation recovery at 10% elongation. Are 2.Oc NZ dtex, 20%, 31 and 2c NZ dtex, 50%, 70%, respectively, which are inferior in strength, stretchability and elongation recovery. Was.
<本発明の複合加工糸の実施例と比較例 > <Examples and Comparative Examples of Composite Yarn of the Present Invention>
〔実施例 7〕  (Example 7)
上記の製造例で得られたポリ ト リ メチレンテレフタ レー ト繊維 8 4 d t e x / 2 4 f を用いて、 実施例 1 で使用した先燃仮撚機を用 い、 ス ピン ドル回転数 1 2 0 0 0 r p m、 先撚数 ( S方向) 5 0 0 Tノ m、 仮撚数 ( Z方向) 3 7 0 0 T/m、 オーバーフ ィ ー ド率 5 %、 仮撚ヒ一タ一温度 1 7 0 °Cにて先撚仮撚加工を行つた (K 1 = 4 5 8 3、 K 2 = 2 9 3 2 8 ) 。  Using the polytrimethylene terephthalate fiber 84 dtex / 24 f obtained in the above production example, using the pre-burnt false twisting machine used in Example 1, the spindle speed was 1 2 0 0 0 rpm, number of twists (S direction) 500 T nom, number of false twists (Z direction) 3700 T / m, overfeed rate 5%, temperature of false twist heater 1 Pre-twisting false twisting was performed at 70 ° C. (K 1 = 4583, K2 = 29332).
次にコ ンポジッ トワイ ンダー (中越機械社製、 タイプ M T— C W ) を用いて、 得られた先撚仮撚加工糸を 5 %オーバーフィ ー ドし、 これに銅ア ンモニア レーヨ ン糸 5 6 d t e x / 3 0 f (旭化成工業 社製) を引き揃え、 イ ンタ レーサーで 1 5 O k P aの圧力で交絡を 加えながら 3 0 0 mZ分の速度で合撚した。  Next, using a composite winder (manufactured by Chuetsu Machinery Co., Ltd., type MT-CW), the obtained pretwisted false twisted yarn was over-fed by 5%, and the copper ammonia rayon yarn 56 dtex was added thereto. / 30f (made by Asahi Kasei Kogyo Co., Ltd.) and twisted at a speed of 300 mZ while applying confounding with an interlacer at a pressure of 15 OkPa.
得られた複合加工糸は、 銅ア ンモニア レーヨ ン糸の含有量が 3 8 The resulting composite yarn has a copper ammonia rayon yarn content of 38
. 8 %、 強度、 伸度、 弾性率、 伸縮伸長率、 1 0 %伸長時の伸長回 復率は、 各々、 2 . 6 c NZ d t e x、 2 0 %、 2 6 . 2 c N / d .8%, strength, elongation, elastic modulus, elongation at stretch, and elongation recovery at 10% elongation are 2.6 c NZ d tex, 20%, 26.2 c N / d, respectively.
2 o t e x、 8 0 %、 8 5 %であり、 強度、 ス ト レ ッ チ性、 伸長回復性 共に良好なものであった。 ぐ本発明の織物 · 編物の実施例〉 2 o The tex was 80% and 85%, and both strength, stretchability, and elongation recovery were good. Examples of the woven and knitted fabrics of the present invention>
〔実施例 8〕  (Example 8)
実施例 3で得られた 8 4 d t e x/ 2 4 f のポリ ト リ メ チ レ ンテ レフタ レー ト繊維の先撚仮撚加工糸を、 経糸及び緯糸と して使用し 、 1 5 0 c m幅のエアージヱ ッ トルーム (津田駒工業社製、 タイプ Z A - 2 0 9 i ) を用いて経 8 7本 Z2. 5 4 c m、 緯 9 0本 / 2 . 5 4 c m密度の平織組織の生機を得た。 この生機を、 9 5 °Cで液 流染色機にて精練リ ラ ッ クス後、 テンタ一を用い 1 7 0 °Cで中間セ ッ 卜 した後、 液流染色機にて 1 2 0 °Cの分散染料による染色を行い 、 1 7 0 °Cでフ ァイ ナルセ ッ ト し、 経 1 1 7本ノ 2. 5 4 c m、 緯 1 2 0本 / 2. 5 4 c m密度の布帛を得た。  The pretwisted false twisted yarn of 84 dtex / 24 f polytrimethyl terephthalate fiber obtained in Example 3 was used as a warp and a weft, and had a width of 150 cm. Using an air jet room (type ZA-209i, manufactured by Tsudakoma Kogyo Co., Ltd.), a green fabric having a density of 87 pieces Z2.54 cm and a density of 90 pieces / 2.54 cm was obtained. . This greige was scoured and relaxed at 95 ° C with a liquid jet dyeing machine, then intermediate set at 170 ° C using a tenter, and then set at 120 ° C with a liquid jet dyeing machine. Dyed with a disperse dye, and final set at 170 ° C to obtain a cloth with a density of 117 pieces 2.54 cm and a density of 120 pieces / 2.54 cm. Was.
得られた布帛は、 経方向のス ト レ ッ チ率及び伸長回復率は、 それ ぞれ、 2 4 %、 8 8 %、 緯方向のス ト レ ッ チ率及び伸長回復率は、 2 7 %、 8 7 %であり、 経緯共に優れたス ト レッチ性と伸長回復性 を有する布帛であった。  The obtained fabric had a stretch ratio in the warp direction of 24% and 88%, respectively, and a stretch ratio in the weft direction of 27% and 88%, respectively. % And 87%, and the fabric has excellent stretchability and elongation recovery in both cases.
〔実施例 9〕  (Example 9)
実施例 5 で得られたポリ ト リ メ チレンテレフタ レー 卜繊維 8 4 d t e x / 2 4 f と銅ア ンモニア レーヨ ン糸 8 4 d t e x / 4 5 f 力、 らなる複合先撚仮撚加工糸を、 経糸及び緯糸と して用い、 前記エア 一ジ ヱ ッ トルームにて、 経 7 8本/ / 2. 5 4 c m、 緯 6 5本/ ^ 2. The composite pretwisted false twisted yarn composed of 84 dtex / 24 f of the polytrimethylene terephthalate fiber obtained in Example 5 and 84 dtex / 45 f of copper ammonia rayon was used as the warp yarn. In the air jet room, with a warp of 78 // 2.54 cm and a weft of 65 / ^ 2.
5 4 c m密度の 2 Z 2ツイル組織の生機を得た。 この生機を、 実施 例 8で用いた染料を分散染料及び直接染料併用型に変える以外は、 実施例 8 と同様の染色加工を行い、 経 1 0 1 本 Z 2. 5 4 c m、 緯A green body of 2 Z 2 twill tissue of 54 cm density was obtained. This greige was dyed in the same manner as in Example 8, except that the dye used in Example 8 was changed to a disperse dye and a direct dye combined type.
8 5本 2. 5 4 c m密度の布帛を得た。 得られた布帛は、 風合いは銅ア ンモニア レ一ョ ン独特の清涼感を 有し、 経方向のス ト レ ッ チ率 2 2 %、 伸長回復率 8 3 %、 緯方向の ス ト レ ッチ率 2 0 %、 伸長回復率 8 5 %であり、 優れたス ト レ ッチ 性と伸長回復性を有する ものであった。 8 5 pieces of 2.54 cm density cloth were obtained. The resulting fabric has a cool feel unique to copper ammonia, a stretch ratio of 22% in the warp direction, a stretch recovery ratio of 83%, and a stretch in the weft direction. As a result, the stretch ratio was 20% and the elongation recovery rate was 85%, indicating that it had excellent stretchability and elongation recovery.
〔実施例 1 0〕  (Example 10)
実施例 6 で得られたポ リ ト リ メ チレンテレフタ レー ト繊維 5 6 d t e x/ 2 4 f とポリエチレンテレフタ レ一 ト繊維の W型断面糸 8 4 d t e X 3 0 f からなる複合先撚仮撚加工糸を、 経糸及び緯糸 と して用い、 前記エアージヱ ッ トルームにて、 経 8 本 Z 2. 5 4 c m、 緯 7 2本ノ 2. 5 4 c m密度の 2 Z 2 ツイル組織の生機を得 た。 この生機を、 実施例 9 と同様の染色加工を行い、 経 1 1 5本 Z 2. 5 4 c m、 緯 9 7本 2. 5 4 c m密度の布帛を得た。  A composite twisted false twist consisting of the polymethylene terephthalate fiber 56 dtex / 24 f obtained in Example 6 and the polyethylene terephthalate fiber W-shaped cross-section yarn 84 dte X 30 f The processed yarn was used as a warp and a weft, and a green fabric having a density of 2Z2 twill with a density of 8 warps Z2.54 cm and a density of 72 wps 2.54 cm was obtained in the air jet room. Was. The greige fabric was subjected to the same dyeing processing as in Example 9 to obtain a cloth having a density of 115 pieces and a thickness of 2.54 cm and a density of 97 pieces and a density of 2.54 cm.
得られた布帛は、 風合いはソフ 卜で、 吸水性、 速乾性に優れ、 経 方向のス ト レ ッ チ率 2 3 %、 伸長回復率 8 5 %、 緯方向のス ト レ ツ チ率 2 2 %、 伸長回復率 8 Ί %であり、 優れたス ト レ ッ チ性と伸長 回復性を有するものであった。  The resulting fabric is soft in texture, excellent in water absorbency and quick drying, with a stretch ratio of 23% in the longitudinal direction, a stretch recovery ratio of 85%, and a stretch ratio in the weft direction of 2%. The elongation / recovery rate was 2% and the elongation / recovery rate was 8%.
〔実施例 1 1 〕  (Example 11)
実施例 7 で得られたポリ ト リ メ チ レンテレフタ レー ト繊維 8 4 d t e x / 2 4 f の先撚仮撚加工糸と銅ア ンモニア レーヨ ン糸 5 6 d t e x / 3 0 f からなる複合加工糸を、 経糸及び緯糸と して用い、 前記エアージ ヱ ッ トル一ムにて、 経 8 6本/ 2. 5 4 c m、 緯 7 2 本 / 2. 5 4 c m密度の 2 Z 2 ツイル組織の生機を得た。 この生機 を、 実施例 9 と同様の染色加工を行い、 経 1 1 2本 Z 2. 5 4 c m 、 緯 9 4本 Z 2. 5 4 c m密度の布帛を得た。  The composite yarn composed of the polytrimethylene terephthalate fiber 84 dtex / 24 f of the pretwisted false twisted yarn and the copper ammonia rayon yarn 56 dtex / 30 f obtained in Example 7 was used. The woven fabric having a density of 86 / 2.54 cm and a density of 72 / 2.54 cm 2Z2 twill is used as the warp and weft in the air jetting machine. Obtained. The greige fabric was subjected to the same dyeing processing as in Example 9 to obtain a cloth having a density of warp 112 pieces Z2.54 cm and a degree of weft 94 pieces Z2.54 cm.
得られた布帛は、 風合いは銅ア ンモニア レーョ ン独特の清涼感が あり、 経方向のス ト レ ッ チ率 2 0 %、 伸長回復率 8 3 %、 緯方向の ス ト レ ッ チ率 1 9 %、 伸長回復率 8 4 %であり、 優れたス ト レ ッ チ 性と伸長回復性を有していた。 The texture of the obtained fabric has a refreshing feeling unique to copper ammonia, a stretch ratio of 20% in the warp direction, a recovery ratio of 83% in elongation, and a stretch ratio of 1 in the weft direction. Excellent stretch with 9% growth recovery rate of 84% It had properties and elongation recovery.
〔実施例 1 2〕  (Example 12)
実施例 3 で得られた 8 4 d t e x / 2 4 f のポ リ ト リ メ チレンテ レフタ レ一 ト繊維の先撚仮撚加工糸を、 3 2 ゲ一ジの丸編機にて 4 5 コース、 4 4 ゥ ヱルの密度で、 スムース編地を作製した。 このス ムース編地を精練後、 サーキユラ一染色機を用い 1 2 0 °Cで 3 0分 間染色を行い、 次いで乾燥した。 乾燥後、 解反して有り幅で 1 7 0 °C X 1 分間のファイナルセッ トを行ない、 4 9 コース、 5 4 ゥエル の布帛を得た。  The pretwisted false twisted yarn of 84 dtex / 24 f polymethylene terephthalate fiber obtained in Example 3 was subjected to 45 courses using a 32 gage circular knitting machine, A smooth knitted fabric was produced at a density of 44 mm. After scouring the smooth knitted fabric, it was dyed at 120 ° C. for 30 minutes using a Circular dyeing machine, and then dried. After drying, a final set was performed at 170 ° C. for 1 minute with a width to obtain a 49-course, 54-well cloth.
この布帛は、 緯方向のス ト レ ッチ率、 伸長回復率は、 それぞれ、 2 0 0 %、 9 8 %であり、 ス ト レ ッ チ性、 伸長回復性共に良好な性 能を示した。 産業上の利用の可能性  This fabric had a stretch ratio in the weft direction and an elongation recovery ratio of 200% and 98%, respectively, indicating good performance in both stretchability and elongation recovery. . Industrial applicability
本発明の先撚仮撚加工糸、 複合先撚仮撚加工糸、 複合加工糸は、 ソフ 卜な風合いを有し、 ス ト レツチ性及び伸長回復性に優れている ため、 ス ト レッチ素材と して好適である。  The twisted false twisted yarn, the composite twisted false twisted yarn, and the composite yarn of the present invention have a soft texture, and have excellent stretchability and elongation recovery properties. It is suitable.
本発明の加工糸を用いることにより、 ス ト レツチ性および伸長回 復性に優れた布帛が得られる。  By using the processed yarn of the present invention, a fabric excellent in stretchability and stretch recovery can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. ポ リ ト リ メ チ レ ンテ レフ タ レー ト繊維のマルチフ ィ ラ メ ン ト で構成された先撚仮撚加工糸であつて、 先撚の撚方向と仮撚の撚方 向が異方向であることを特徴とする先撚仮撚加工糸。 1. Pre-twisted false twisted yarn composed of multi-filament multi-filament fibers and the twist direction of the false twist is different from the twist direction of the false twist. A twisted false twisted yarn characterized by being in the direction.
2. ポ リ 卜 リ メ チ レ ンテ レフ タ レー ト繊維のマルチフ ィ ラメ ン ト と他繊維で構成された複合先撚仮撚加工糸であって、 先撚の撚方向 と仮撚の撚方向が異方向であり、 且つ、 該複合先撚仮撚加工糸中に おける他繊維の含有量が 8 0 w t %未満であるこ とを特徴とする複 合先撚仮撚加工糸。  2. A composite twisted false twisted yarn composed of multifilament multifilament fibers and other fibers, the twist direction of the twist and the twist direction of the false twist Are in different directions, and the content of other fibers in the composite twisted false twisted yarn is less than 80 wt%.
3. 請求項 1 に記載の先撚仮撚加工糸と他繊維で構成された複合 加工糸であって、 該複合加工糸中における他繊維の含有量が 5 0 w t %未満であることを特徴とする複合加工糸。  3. A composite yarn comprising the twisted false twisted yarn according to claim 1 and another fiber, wherein the content of the other fiber in the composite yarn is less than 50 wt%. And composite processing yarn.
4. 請求項 1 に記載の先撚仮撚加工糸、 請求項 2 に記載の複合先 撚仮撚加工糸、 請求項 3 に記載の複合加工糸から選ばれる少なく と も一つを経糸およびノまたは緯糸に用いてなることを特徵とする布 r i  4. At least one selected from the twisted false twisted yarn according to claim 1, the composite twisted false twisted yarn according to claim 2, and the composite twisted yarn according to claim 3, Or a cloth ri characterized by being used for wefts
5. 次式 ( I ) で計算される先撚数の係数 K 1 が 2 7 0 0以上、 1 4 0 0 0以下である請求項 1 に記載の先撚仮撚加工糸。  5. The twisted false twisted yarn according to claim 1, wherein the coefficient K1 of the number of twists calculated by the following formula (I) is not less than 2700 and not more than 1400.
K 1 = T 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) K 1 = T 1 X [fineness of thread (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
6. 次式 ( I ) で計算される先撚数の係数 K 1 が 2 7 0 0以上、 1 4 0 0 0以下、 次式 (II) で計算される仮撚数の係数 K 2が 2 0 0 0 0以上、 3 5 0 0 0以下である請求項 1 に記載の先撚仮撚加工 糸。  6. The coefficient K1 of the number of twists calculated by the following equation (I) is 2700 or more and 1400 or less, and the coefficient K2 of the number of false twists calculated by the following equation (II) is 2 The false twisted twisted yarn according to claim 1, wherein the yarn is not less than 0000 and not more than 350 000.
K 1 = T 1 〔糸の繊度 (dtex) ] 1/2 … ( I ) (但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 ) K 1 = T 1 [Yarn fineness (dtex)] 1/2 … (I) (However, in the above formula (I), T 1 indicates the number of twists per unit length (T / m).)
K 2 = (T 2 - T 1 ) X 〔糸の繊度 (dtex) 〕 1/2 … (II) (但し、 上記式 (II) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)、 T 2 は単位長さ当たりの仮撚数 (T/m)を示す。 ) K 2 = (T 2-T 1) X [Fiber fineness (dtex)] 1/2 … (II) (In the above formula (II), T 1 is the number of twists per unit length (T / m) and T 2 indicate the number of false twists per unit length (T / m).)
7. ポリ ト リ メ チ レンテ レフ タ レー ト繊維マルチフ ィ ラ メ ン ト糸 を先撚した後、 該先撚の撚方向と異なる方向で仮燃する工程を含む 先撚仮撚加工糸の製造方法。  7. Manufacture of a pre-twisted false twisted yarn including a process of pre-twisting a multifilament multi-filament multi-filament yarn and calcining in a direction different from the twist direction of the pre-twist. Method.
8. 次式 ( I ) で計算される先撚数の係数 K 1が 2 7 0 0以上、 8. The coefficient K1 of the number of twists calculated by the following formula (I) is 2700 or more,
1 4 0 0 0以下である請求項 7 に記載の先撚仮撚加工糸の製造方法 o The method for producing a false twisted twisted yarn according to claim 7, which is not more than 1400.
K 1 = T 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) K 1 = T 1 X [fineness of thread (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
9. 次式 ( I ) で計算される先撚数の係数 K 1が 2 7 0 0以上、 1 4 0 ひ 0以下、 次式 (II) で計算される仮撚数の係数 K 2が 2 0 0 0 0以上、 3 5 0 0 0以下である請求項 7 に記載の先撚仮撚加工 糸の製造方法。  9. The coefficient K1 of the number of twists calculated by the following equation (I) is 2700 or more, 140 or less 0, and the coefficient K2 of the number of false twists calculated by the following equation (II) is 2 The method for producing a false-twisted false twisted yarn according to claim 7, wherein the yarn is no less than 0000 and no more than 350,000.
K 1 = T 1 X 〔糸の繊度 (dtex) 〕 1/2 … ( I ) K 1 = T 1 X [fineness of thread (dtex)] 1/2 … (I)
(但し、 上記式 ( I ) 中において、 T 1 は単位長さ当たりの先撚数 (T/m)を示す。 )  (However, in the above formula (I), T 1 represents the number of twists per unit length (T / m).)
K 2 = (T 2 - T 1 ) X 〔糸の繊度 (dtex) 〕 1/2 … (II) (但し、 上記式 (II) 中において、 T 1 は単位長さ当たりの先撚数 (T/m). T 2 は単位長さ当たりの仮撚数 (T/m)を示す。 ) K 2 = (T 2-T 1) X [Fiber fineness (dtex)] 1/2 … (II) (In the above formula (II), T 1 is the number of twists per unit length (T / m). T 2 indicates the number of false twists per unit length (T / m).
PCT/JP2000/004158 1999-06-25 2000-06-23 Preliminarily twisted and false twisted yarn WO2001000912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU55690/00A AU5569000A (en) 1999-06-25 2000-06-23 Preliminarily twisted and false twisted yarn
JP2001506309A JP3444871B2 (en) 1999-06-25 2000-06-23 Yarn false twisted yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/179203 1999-06-25
JP17920399 1999-06-25

Publications (1)

Publication Number Publication Date
WO2001000912A1 true WO2001000912A1 (en) 2001-01-04

Family

ID=16061740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004158 WO2001000912A1 (en) 1999-06-25 2000-06-23 Preliminarily twisted and false twisted yarn

Country Status (4)

Country Link
JP (1) JP3444871B2 (en)
AU (1) AU5569000A (en)
TW (1) TW495570B (en)
WO (1) WO2001000912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201548A (en) * 2000-11-06 2002-07-19 Asahi Kasei Corp Uphostery fabric
JP2004308080A (en) * 2003-04-10 2004-11-04 Solotex Corp Method for producing woven fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971446A (en) * 1982-08-25 1984-04-23 東洋ポリエステル株式会社 Fancy processed yarn and production thereof
WO1996000808A1 (en) * 1994-06-30 1996-01-11 E.I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
JPH0978373A (en) * 1995-09-07 1997-03-25 Nippon Ester Co Ltd Polyester-based false twist crimped textured yarn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971446A (en) * 1982-08-25 1984-04-23 東洋ポリエステル株式会社 Fancy processed yarn and production thereof
WO1996000808A1 (en) * 1994-06-30 1996-01-11 E.I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
JPH0978373A (en) * 1995-09-07 1997-03-25 Nippon Ester Co Ltd Polyester-based false twist crimped textured yarn

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201548A (en) * 2000-11-06 2002-07-19 Asahi Kasei Corp Uphostery fabric
JP2004308080A (en) * 2003-04-10 2004-11-04 Solotex Corp Method for producing woven fabric

Also Published As

Publication number Publication date
AU5569000A (en) 2001-01-31
JP3444871B2 (en) 2003-09-08
TW495570B (en) 2002-07-21

Similar Documents

Publication Publication Date Title
JP5155162B2 (en) Knitted fabric and sports clothing
EP1288356B1 (en) Dyed yarn
JP3885468B2 (en) Bulky polyester composite yarn, production method thereof and fabric
JP2002180332A (en) Polyester-based conjugated yarn, method for producing the same and fabric
JP4073273B2 (en) Twisted yarn and knitted fabric
JP2001303378A (en) Conjugate yarn
JP4197981B2 (en) Stretch yarn and stretch knitted fabric
WO2001000912A1 (en) Preliminarily twisted and false twisted yarn
JP3963774B2 (en) fabric
JP2001081639A (en) Combined filament yarn
JP2006219796A (en) Woven fabric
JP2002013034A (en) Elastic composite yarn and elastic woven fabric
JP2003096642A (en) Composite fabric and method for producing the same
JP2005009015A (en) Blended article
JP2005089892A (en) Composite yarn
JP4863483B2 (en) Composite yarn
JP3847144B2 (en) Stretch interwoven fabric
JP2004003042A (en) Covered yarn and knitted or woven fabric thereof
JP4130782B2 (en) High density fabric
JP3996822B2 (en) fabric
JP2005256199A (en) Method for producing woven fabric
JP2004256932A (en) Composite yarn
JP2003193343A (en) Plied yarn and knitted or woven fabric
JP2003147661A (en) Twill woven fabric
JP2004044063A (en) Yarn-dyed fabric

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase