WO2000072351A1 - Method of producing gas discharge panel - Google Patents

Method of producing gas discharge panel Download PDF

Info

Publication number
WO2000072351A1
WO2000072351A1 PCT/JP2000/003154 JP0003154W WO0072351A1 WO 2000072351 A1 WO2000072351 A1 WO 2000072351A1 JP 0003154 W JP0003154 W JP 0003154W WO 0072351 A1 WO0072351 A1 WO 0072351A1
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
sealing
gas
gas discharge
manufacturing
Prior art date
Application number
PCT/JP2000/003154
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetaka Higashino
Nobuaki Nagao
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR1020017000802A priority Critical patent/KR20010085293A/en
Publication of WO2000072351A1 publication Critical patent/WO2000072351A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/385Exhausting vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details

Definitions

  • the present invention relates to a method for manufacturing a gas discharge panel such as a plasma display panel used for displaying images on a computer monitor and a television.
  • FIG. 8 is a cross-sectional view schematically showing an AC-type (AC-type) plasma display panel (hereinafter, referred to as “PDP”).
  • AC-type AC-type plasma display panel
  • reference numeral 110 denotes a front glass substrate, and discharge electrodes 111 are formed on the front glass substrate 110. Further, the discharge electrode 111 is covered with a dielectric glass layer 112 and a dielectric protective layer 113 made of magnesium oxide (Mg ⁇ ) (see, for example, Japanese Patent Application Laid-Open No. 5-349291).
  • Mg ⁇ magnesium oxide
  • Reference numeral 120 denotes a rear glass substrate. On the rear glass substrate 120, an address electrode 121, a visible light reflecting layer 122, a partition wall 123, and a phosphor layer 124 that cover the address electrode 122 are provided. 130 is a discharge space for filling a discharge gas. In the phosphor layer, three color phosphor layers of red, green, and blue are sequentially arranged for color display. Each of the above-mentioned phosphor layers 124 emits and emits light by ultraviolet rays having a short wavelength (eg, a wavelength of 147 nm) generated by discharge.
  • a short wavelength eg, a wavelength of 147 nm
  • the following materials are generally used as the phosphor constituting the phosphor layer 124.
  • Green phosphor Z n 2 S i 0 4: Mn or B a A 1 12 O 19: Mn
  • Each color phosphor can be produced as follows.
  • Blue phosphor B aMg A 1 1 () 0 17: E u) , first, carbonate Bariumu (B a C_ ⁇ 3) Magnesium carbonate (Mg CO 3 ) and aluminum oxide (a—Al 2 ⁇ 3 ) are blended so that the atomic ratio of Ba, Mg, and A 1 is 1: 1: 1: 10.
  • Red phosphor (Y 2 0 3: E u ) , the hydroxide as the raw material I Tsu preparative potassium ⁇ 2 ( ⁇ ) 3 and the boron acid (H 3 B0 3) and Upsilon, so that the atomic ratio of 1: 1 of ⁇ To mix.
  • adding a predetermined amount of europium oxide with respect to the mixture (E u 2 0 3) was mixed with ball mill together with a suitable amount of flux, 1 200 ° C ⁇ 1 450 ° C for a predetermined time in the air (e.g. 1 hour) Obtained by firing.
  • Green phosphor (Z n 2 S i O 4 : Mn) is as a raw material of zinc oxide (Z n 0), so that the oxide silicofluoride-containing (S i 0 2) Z n, the atomic ratio of 2: 1 of S i To mix.
  • a predetermined amount of manganese oxide (Mn 2 O 3 ) is added to the mixture, mixed with a pole mill, and calcined in air at 1200 to 1350 ° C for a predetermined time (for example, 0.5 hour). can get.
  • the phosphor particles having the predetermined particle size distribution can be obtained by pulverizing and sieving the phosphor particles produced by the above method.
  • a discharge electrode is formed on a front glass substrate, a dielectric layer made of dielectric glass is formed so as to cover the discharge electrode, and a protective layer made of MgO is formed on the dielectric layer.
  • an address electrode is formed on the back glass substrate, and a visible light reflecting layer made of a dielectric glass and a glass partition are formed thereon at a predetermined pitch.
  • the phosphor layers are formed by disposing the phosphor pastes of the respective colors including the red phosphor, the green phosphor, and the blue phosphor prepared as described above in the spaces sandwiched by these partition walls. After the formation, the phosphor layer is fired at about 500 ° C to remove resin components and the like in the paste (a phosphor firing step).
  • a glass frit for sealing to the front glass substrate around the back glass substrate, and calcine at about 350 ° C to remove resin components etc. in the glass frit (sealing glass) Calcination process).
  • the inside of the panel is evacuated while heating to a predetermined temperature (about 350 ° C) (evacuation step), and after completion, discharge gas is introduced at a predetermined pressure.
  • the impurities gas components having a composition different from that of the discharge gas such as water vapor, oxygen, nitrogen, and carbon dioxide
  • the impurities gas components having a composition different from that of the discharge gas such as water vapor, oxygen, nitrogen, and carbon dioxide
  • the present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing a gas discharge panel that can efficiently exhaust gas in an exhaust process required for a panel manufacturing process.
  • an envelope is formed by arranging a second substrate so as to face a partition-side surface of a first substrate having a main surface on which a partition separating light-emitting cells is formed, thereby forming an envelope.
  • a method for manufacturing a gas discharge panel comprising: a filling step of filling a discharge gas, wherein the exhausting step comprises: a sub-step of evacuating the inside of the envelope; and It is characterized by including a sub-step of filling with a cleaning gas containing a gas that does not become an impurity as a substantial component, and thereafter, a sub-step of evacuating the inside of the envelope.
  • a sealing step for sealing the outer peripheral portions of both substrates in the enclosure with a sealing material
  • a method for manufacturing a gas discharge panel comprising: an exhausting step of exhausting gas inside the envelope; and an enclosing step of enclosing a discharge gas inside the envelope, wherein the exhausting step comprises: A sub-step of evacuating the interior of the envelope, and then evacuating the interior of the envelope while circulating a cleaning gas substantially containing a gas that does not become an impurity in the discharge gas through the interior of the envelope.
  • substantially means that “the main component of the cleaning gas does not become an impurity with respect to the discharge gas”. Therefore, this does not mean that “the gas contained as an impurity (usually extremely low concentration) in the main component gas from the beginning” is not excluded.
  • the sealing step may include heating the entire envelope or the sealing portion at a temperature equal to or higher than the softening point or the melting point of the sealing material, and setting the pressure inside the envelope to be lower than the external pressure. If the sealing is performed by lowering the sealing material, the sealing material is cured and sealed in a state where both substrates are uniformly pressed from the outside by the pressure difference between the inside and outside, so that the top of the partition The sealing is performed in a state where there is almost no gap between the substrate and the opposing substrate.
  • the outer peripheral part is simply clamped with a clip or the like without providing a pressure difference between the inner and outer parts of the envelope.Therefore, the center part of the envelope is not pressed, so the top of the partition and the substrate facing it Were easily or completely sealed apart.
  • FIG. 1 is a perspective view showing a configuration of an AC plasma display panel (PDP) common to the embodiments according to the present invention.
  • PDP AC plasma display panel
  • FIG. 2 is a configuration diagram of a display device in which a circuit block is mounted on the PDP.
  • FIG. 3 is a diagram schematically showing a sealing / exhausting device 50 used in the sealing step of the present embodiment, where (a) is a top cutaway view, and (b) is an A in FIG.
  • FIG. 4 is a vertical sectional view including a line A ′.
  • FIG. 4 is a diagram showing a temperature and pressure profile at the time of sealing (Example).
  • FIG. 7 is a view schematically showing a sealing / exhausting device 70 used in a sealing step according to another embodiment of the present invention.
  • FIG. 8 is a perspective view showing a configuration of a PDP common to the embodiments according to the conventional example.
  • FIG. 1 is a perspective view showing an AC surface discharge type PDP according to an embodiment
  • FIG. 2 is a configuration diagram of a display device in which a circuit block is mounted on the PDP.
  • This PDP generates a discharge in the discharge space by applying a pulsed voltage to each electrode, and transmits visible light of each color generated on the rear panel side from the main surface of the front panel due to the discharge. is there.
  • the PDP has a front glass substrate 11 on which a plurality of discharge electrodes 12 (scanning electrodes 12 a and sustain electrodes 12 b), a dielectric layer 13, and a protective layer 14 are disposed.
  • Panel 10 and rear panel 20 having a plurality of address electrodes 22 and dielectric layers 23 on rear glass substrate 21 are composed of electrodes 12 a, 12 b and address electrodes 22. Are arranged in parallel with each other at an interval in a state where they face each other.
  • the central part of the PDP is an area for displaying an image.
  • the gap between the front panel 10 and the rear panel 20 is divided into a plurality of stripe-shaped partition walls 24. 0 is formed, and the discharge space 30 is filled with a discharge gas.
  • the discharge space 30 a plurality of fluorescent light A body layer 25 is provided.
  • the phosphor layer 25 is repeatedly arranged in the order of red, green and blue.
  • the discharge electrode 12 and the address electrode 22 are both striped, and the discharge electrode 12 is arranged in a direction orthogonal to the partition wall 24 and the address electrode 22 is arranged in parallel with the partition wall 24. .
  • the panel structure is such that cells emitting red, green, and blue colors are formed where the discharge electrode 12 and the address electrode 22 intersect.
  • the dielectric layer 13 is a layer made of a dielectric material disposed over the entire surface of the front glass substrate 11 on which the discharge electrodes 12 are disposed, and is generally made of a lead-based low-melting glass. Although it is used as a material, it may be formed of bismuth-based low-melting glass or a laminate of lead-based low-melting glass and bismuth-based low-melting glass.
  • the protective layer 14 is a thin layer made of magnesium oxide (Mg ⁇ ) and covers the entire surface of the dielectric layer 13.
  • the dielectric layer 23 is mixed with TiO 2 particles so as to also serve as a visible light reflecting layer.
  • the partition wall 24 is made of a glass material, and protrudes from the surface of the dielectric layer 23 of the back panel 20.
  • the front panel 10 and the rear panel 20 are sealed with a sealing material.
  • the top of the partition wall 24 and the front panel 10 are almost in contact with each other or are joined by a joining material.
  • a discharge electrode 12 is formed on a front glass substrate 11, a dielectric layer 13 is formed so as to cover the discharge electrode 12, and a vacuum evaporation method, an electron beam evaporation method, Alternatively, it is manufactured by forming a protective layer 14 made of magnesium oxide (Mg ⁇ ) by a CVD method.
  • Mg ⁇ magnesium oxide
  • the discharge electrode 12 can be formed by applying a paste for a silver electrode by screen printing and then firing.
  • ITO Lee indium 'Tin' Okisai de
  • C at the Photo lithographic one method r- A Cu—Cr electrode may be formed.
  • the dielectric layer 1 3, the glass material (the composition of the lead-based, for example, lead oxide [P b O] 70 wt%. Boron oxide [B 2 0 3] 1 5 wt%. Silicon oxide [S I_ ⁇ 2 ] 15% by weight) is applied by screen printing and baked.
  • An address electrode 22 is formed on the rear glass substrate 21 by using a screen printing method in the same manner as the discharge electrode 12.
  • a dielectric layer 23 by applying and baking by a screen printing method of a glass material T i ⁇ 2 particles are mixed.
  • the partition walls 24 can be formed by applying a glass paste for partition walls repeatedly by a screen printing method, followed by baking.
  • the partition wall 24 can also be formed by applying a method of applying a glass paste for the partition wall to the entire surface of the rear glass substrate 21 and then shaving off a portion where the partition wall is not formed by a sand-plasting method. .
  • the phosphor layer 25 is formed in the groove between the partition walls 24.
  • the phosphor layer 25 is generally formed by applying and burning a phosphor paste containing phosphor particles of each color by a screen printing method, and continuously ejects a phosphor ink from a nozzle. However, it can also be formed by applying by a method of scanning along the groove, and baking to remove the solvent and binder contained in the phosphor ink after the application. In this phosphor ink, phosphor particles of each color are dispersed in a mixture of a binder, a solvent, a dispersant, and the like, and are adjusted to an appropriate viscosity.
  • phosphor particles include:
  • Green phosphor B a A 1 12 ⁇ 19 : Mn or Zn 2 S i ⁇ 4 : Mn
  • Red phosphor (Y X G (1 preparative x) B_ ⁇ 3: E u 3+ or YB0 3: E u 3+
  • the height of the partition walls is set to 0.06 to 0.15 mm and the pitch of the partition walls is set to 0.13 to 0.36 mm in accordance with a 40-inch class VGA or high-definition television.
  • the front panel 10 and the rear panel 20 thus manufactured are sealed.
  • the front panel 10 and the rear panel 20 are overlapped with each other with a sealing material interposed therebetween in the outer peripheral portion to form an envelope, and sealing is performed with the sealing material.
  • a bonding material may be applied to the top of the partition wall 24 of the rear panel 20.
  • a sealing material a material that is softened by externally applying energy such as heat, ordinarily a low-melting glass is used, and the sealing material is heated to be softened and then cured. To wear.
  • both panels 10 and 20 are uniformly pressed from the outside. Thereby, sealing is performed in a state where the top of the partition wall 24 and the front panel 10 are entirely in contact with or close to each other.
  • the internal space is evacuated to a high vacuum (for example, 1.3 X 10— “MPa) in order to drive out the impurity gas and the like adsorbed inside the envelope. Vacuum exhaust process).
  • a high vacuum for example, 1.3 X 10— “MPa”
  • a discharge gas for example, He-Xe system, Ne-Xe system, or Ar-Xe system inert gas
  • a discharge gas for example, He-Xe system, Ne-Xe system, or Ar-Xe system inert gas
  • the content of Xe in the discharge gas is set to about 5% by volume, and the filling pressure is set in the range of 0.067 to 0.11 MPa.
  • a circuit block When driving and displaying a PDP, a circuit block is mounted as shown in Fig. 2 to drive.
  • FIGS. 3A and 3B are diagrams schematically showing the sealing / exhausting device 50 used in the sealing step of the present embodiment, wherein FIG. 3A is a top cutaway view, and FIG. FIG. 4 is a vertical sectional view including a line A ′.
  • the sealing / exhaust device 50 includes a heating furnace 51 for housing and heating an envelope 40 on which the front panel 10 and the rear panel 20 are superimposed, and an outside of the heating furnace 51.
  • the system consists of a gas introduction system 52 and a suction / exhaust system 53 provided.
  • the heating furnace 51 can be heated by a heater 54, and the internal temperature can be controlled to a desired set temperature.
  • the rear panel 20 is provided with ventilation holes 21a and 21b on the outer peripheral portion outside the display area in advance.
  • the air hole 21 a is formed at the upper right of the rear panel 20, and the air hole 21 b is formed at the lower left of the rear panel 20.
  • a paste containing a sealing material is applied to the outer peripheral portion of one or both of the facing surfaces of the front panel 10 and the rear panel 20 and fired to form a sealing material layer 41.
  • a low-melting glass having a softening temperature lower than that of the material of the partition wall 24 and the dielectric layer 23 is used as the sealing material.
  • the sealing material is not limited to this low-melting glass, but a metal or the like can also be used.
  • the sealing temperature is a temperature at which the metal is melted, that is, a temperature equal to or higher than the melting point.
  • the low-melting glass paste include a mixture of 80 parts of a low-melting glass frit (softening point: 370 ° C), 5 parts of an ethylcellulose binder, and 15 parts of isoamyl acetate. By applying this with a dispenser, the sealing material layer 41 can be formed.
  • a separating material 42 for dividing the space formed therebetween into two is provided between the partition walls located at both ends and the sealing material layer 41.
  • the same material as the sealing material layer 41 and the partition wall can be used for the separation material 42. Due to the presence of the separating material, gas is efficiently introduced and discharged in the discharge space formed between the partition walls. Note that the separation member 42 need not be provided.
  • the front panel 10 and the rear panel 20 are overlapped while being positioned to form an envelope 40. Then, the outer peripheral portion of the envelope 40 is tightened and fixed with a clip (not shown) so that the aligned front panel 10 and rear panel 20 do not shift.
  • the envelope 40 is set in the heating furnace 51. And the vents of the enclosure 40 2 1a is connected to the gas introduction system 52 via the connection pipe 55. On the other hand, a suction / exhaust system 53 is connected to the ventilation hole 21 b of the envelope 40 via a connection pipe 56.
  • connection pipe 55 and the connection pipe 56 are glass tubes fixed to the lower surface of the rear panel 20 via adhesives 55a and 56a.
  • adhesives 55a and 56a for example, the same material as the material of the sealing material layer 41 is used, and a paste containing a low-melting glass is applied and dried with a dispenser, and clicked. And temporarily fix them together.
  • the adhesive materials 55 a and 56 a are also softened and hardened, thereby forming the connection pipe 5.
  • the connection and airtight sealing between the air holes 21a and the air holes 21b of the rear panel 20 and the connection pipe 56 and the connection pipe 56 are automatically performed.
  • the gas introduction system 52 includes a gas cylinder 52 a filled with a discharge gas and a piping system 52 b connecting the gas cylinder 52 a to the connection pipe 55.
  • An on-off valve 52c for adjusting the gas introduction amount is provided in the middle of the piping system 52b.
  • the connection pipe 55 and the piping system 52b are connected to each other in a state where airtightness is secured by a check or the like.
  • the suction / exhaust system 53 includes a manifold 53a, a turbo molecular pump 53b, an outlet pump 53c, and a connection connecting the connection pipe 56 and the manifold 53a.
  • An opening / closing valve 53 f for adjusting the suction amount of the turbo molecular pump is provided in the middle of the piping system 53 e.
  • the connecting pipe 56 and the piping system 53d are connected to each other in a state where airtightness is secured by a check or the like.
  • the front panel 10 is set so as to be on the upper side
  • the rear panel 20 is set so as to be on the lower side. However, it may be set upside down. If both panels 10 and 20 are fixed so as not to be displaced, the envelope 40 may be set up in the heating furnace.
  • the inside of the heating furnace 51 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then again.
  • the temperature between the panels 10 and 20 is sealed by lowering the temperature below the softening point, but sealing is performed while exhausting the inside of the envelope 40 with the turbo molecular pump 53b.
  • the turbo molecular pump 53b When the turbo molecular pump 53b is operated, the rotary pump 53c is simultaneously operated and the turbo molecular pump 53b is operated.
  • -Bo molecular pump 5 Reduce back pressure in 3b.
  • the sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
  • the evacuation be started after the inside of the heating furnace 51 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material softens, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 26 is also softened so that the piping member 26 and the vent hole 2 are softened. since also the connecting portion between the 1 a is hermetically sealed, since the pressure is reduced in the evacuated from within the envelope 4 0 high vacuum (1. 3 3 X 1 0- 4 MP a degree (about several T orr)) It is.
  • the panels 10-20 are uniformly pressed from the outside.
  • the suction and exhaust system 53 the sealing material is pressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front and rear panels are separated.
  • Sufficient suction and exhaust (for example, about 0.08 MPa) is enough, as long as it is close enough to allow the front panel and partition to come into contact.
  • the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
  • the process proceeds to the next evacuation step.
  • the temperature in the heating furnace 51 is set to a temperature lower than the softening point of the sealing material layer (exhaust temperature).
  • the turbo molecular pump 53 b and the rotary pump 53 c are operated while the opening / closing valve 53 f is appropriately opened, and the inside of the envelope 40 is heated.
  • the gas is suctioned to a vacuum state, and then a discharge gas is introduced from the gas introduction system 52 into the envelope 40 at a predetermined pressure (for example, 0.05 MPa). It is more desirable to maintain the pressure for the specified time (5 to 10 minutes) after charging the discharge gas. This is because it takes time to reach the equilibrium pressure because the conductance between the partitions in the envelope 40 is small.
  • the vacuum evacuation is performed while heating to the exhaust baking temperature as described above. However, it is possible to simply evacuate.
  • the exhaust baking temperature is, of course, lower than the softening point of the sealing material (or lower than the melting point of the metal when a metal is used as the sealing material).
  • the temperature is set to a temperature (for example, about 350 ° C.) at which the adsorbed water adsorbed on the inner wall surface of the envelope 40 is effectively desorbed.
  • the evacuation process can be started after the temperature of the envelope 40 has been cooled down to about room temperature.However, the process should be started when the sealing temperature in the sealing process is cooled to the exhaust baking temperature. If this is done, a heating period for heating to the exhaust baking temperature again after cooling can be omitted, which is desirable in further shortening the manufacturing process.
  • the introduction of the discharge gas from the gas introduction system 52 is stopped, the discharge gas in the envelope is sucked and discharged from the suction / exhaust system 53, and the inside of the envelope 40 is again brought into a vacuum state.
  • Such a process of evacuation, discharge gas introduction, and evacuation is usually sufficient even once, but if repeated, the impurity gas in the envelope 40 can be made lower in concentration.
  • the gas introduced into the envelope 40 is not limited to the discharge gas, and may be any gas that does not become an impurity with respect to the discharge gas.
  • the definition of an impurity is not clear, but refers to a gas that causes a reduction in brightness.
  • the gas be a dry gas, since the deterioration of the characteristics of the phosphor can be suppressed.
  • dry gas and Is a gas whose vapor partial pressure is lower than that of ordinary gas for example, a gas whose vapor partial pressure (dew point) is less than 0.027 MPa (22 ° C).
  • a discharge gas is supplied to the internal space of the envelope 40 by the gas introduction system 52 so as to have a predetermined filling pressure (for example, 0.067 MPa). Then, the ventilation holes 21 a and 21 b are sealed by melting (chip-off) the root portions of the connection pipe 55 and the connection pipe 56 with a wrench or heater.
  • the central part of the envelope 40 is not pressed, so that the top of the bulkhead on the rear panel 20 is not pressed.
  • the front panel 10 is easily or completely sealed away from the front panel 10, as described above, the envelope 40 is separated by the pressure difference between the inside and the outside.
  • the sealing material layer 41 is hardened and sealed in a state where the sealing material layer 41 is uniformly pressed from the outside, so that the sealing is performed in a state where there is almost no gap between the top of the partition wall and the front panel 10.
  • the suction / exhaust system is operated so that a pressure difference between the inside and outside of the envelope 40 is generated.
  • the above-described evacuation step makes it possible to quickly (shortly) remove the impurity gas concentration in the envelope 40 to a low concentration.
  • the residual gas in the discharge space surrounded by the partition walls in the envelope 40 is not sufficiently removed.
  • the height of the partition wall in the envelope 40 is 120 ⁇ m
  • the pitch is 200
  • the diameter of the processing hole for exhaust is about 2 mm
  • the inner diameter of the connecting pipe 57 is about 2 mm
  • the connection Assuming that the length of the pipe 57 is about 9 Omm, exhausting at an exhaust baking temperature of 350 ° C results in a pressure in the manifold 53 a of 1.3 X 1
  • the pressure in the envelope 40 is about one to two orders of magnitude higher than 0— u to 1.3 ⁇ 10— lfl MPa.
  • the baking time is lengthened, the amount of impurity gas such as water, carbon dioxide, nitrogen, and oxygen adsorbed on the inner wall of the envelope 40 is reduced, but the manufacturing cost is increased.
  • the discharge gas is sealed, and then the evacuation is performed again.
  • the impurity gas can be removed more quickly as follows.
  • the discharge gas is introduced into the envelope 40 by the gas introduction system 52, and at the same time, the interior of the envelope 40 is exhausted by the suction / exhaust system 53. Is indicated by a thick arrow.) By doing so, the flow of the discharge gas is generated in the envelope 40, so that the impurity gas can be discharged more efficiently.
  • the exhaust port is provided at the center of the envelope 40. Excellent discharge efficiency of impurity gas in the discharge space located relatively far from the (venting hole 2 lb).
  • FIG. 4 is a diagram showing a temperature and pressure profile at the time of sealing
  • FIG. FIG. 4 is a diagram showing temperature and pressure profiles in a gas process and an encapsulation process.
  • a PDP was produced according to each profile.
  • a dotted line indicates the temperature of the envelope 40
  • a solid line indicates a pressure change in the manifold 53a of the suction / exhaust system connected to the envelope 40.
  • the temperature is raised to the sealing temperature of 450 ° C over 2 to 3 hours, and this temperature is maintained for about 20 minutes.
  • the pressure in the manifold 53 a is reduced to about 0.05 MPa, the operation of the suction and exhaust system is stopped, and this is maintained.
  • the temperature is lowered to room temperature over 2 to 3 hours.
  • the pressure in the envelope In the conventional evacuation process, it takes about 2 hours to reduce the pressure in the envelope to 1.3 x 10— ”to 1.3 x 10—1 ⁇ MPa . In the evacuation step, the pressure can be reduced to the pressure more quickly than in the past in about one hour.
  • the driving force of the pump system of the suction / exhaust system is increased to suction the inside of the envelope more strongly, it is considered that the pressure can be reduced to a low pressure in a short time.
  • the phosphor in the envelope is detached from the phosphor layer and the like, which leads to deterioration of the panel characteristics.
  • the suction force is relatively weakened by intervening to make the inside of the envelope sucked. For this reason, conventionally, in the vacuum evacuation process, it usually takes a relatively long time to reduce the pressure in the envelope to a desired internal pressure.
  • the PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
  • FIG. 6 is a diagram showing a temperature and pressure profile at the time of sealing, and a temperature and pressure profile in an evacuation step and an enclosing step.
  • a PDP was produced according to each of these profiles.
  • the dotted line indicates the temperature of the envelope 40
  • the solid line indicates the pressure change in the manifold of the suction / exhaust system connected to the envelope 40.
  • the temperature is raised to a sealing temperature of 450 ° C. over 2 to 3 hours, and this temperature is maintained for about 20 minutes.
  • the pressure of the manifold 53a is reduced to about 0.05MPa, the operation of the suction / exhaust system is stopped, and this is maintained.
  • the temperature is lowered to the exhaust baking temperature (350 ° C.) over about 30 minutes while maintaining the reduced pressure state.
  • the pressure inside the envelope is reduced from 1.3 x 10— ”to 1.3 x 10—1 (It takes about 2 hours to reduce the pressure to 1 MPa.
  • the pressure can be reduced to the pressure in about one hour.
  • the PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
  • Example 2 Compared with Example 1, in the manufacturing method according to Example 2, the time from the sealing of the envelope 40 to the cooling and the heating time from room temperature for exhaust baking to the exhaust baking temperature were reduced. There is an effect that can be. Also, the degree of deterioration of the phosphor was about several percent, which was smaller than that of Example 1 and was slightly better.
  • This embodiment is the same as the embodiment except that the method in the evacuation step is different from that in the above embodiment.
  • FIG. 7 is a diagram schematically showing the sealing / exhausting device 70 used in the sealing step of the present embodiment, and is a diagram corresponding to FIG. 3 (b).
  • the sealing / exhaust device 70 is provided outside the heating furnace 71 and a heating furnace 71 for housing and heating the envelope 40 in which the front panel 10 and the rear panel 20 are overlapped.
  • Gas introduction and suction / exhaust system 72 The rear panel 20 is provided with a connecting pipe 73 so that the ventilation hole 21a communicates with the internal space, and the getter pipe 74 is provided with an adhesive 7 3a so that the ventilation hole 21b communicates with the internal space. And is temporarily fixed via the adhesive 74a in the same manner as described above.
  • connection tube 73 is a glass tube whose contact end with the rear panel 20 is open, and the getter tube 74 is a glass tube whose other end of contact with the rear panel 20 is sealed.
  • the getter tube 74 has a getter storage space 74b in which a gas is stored at the outlet of the vent hole 21b of the rear panel 20.
  • the gas introduction / suction / exhaust system 72 includes a manifold 72 a, a turbo molecular pump 72 b, a rotary pump 72 c, a gas cylinder 72 d filled with discharge gas, and the connection pipe 73. And a manifold 7 2 f for connecting the manifold 72 a to the turbo molecular pump 72 b and the gas cylinder 72 d. .
  • the branch piping system 7 2 f is a single piping system 7 2 f 1 extending from the manifold 7 2 a.
  • the two piping systems 7 2 f 2 and the piping system 7 2 are connected via the path selection valve 72 g. f3 is connected to the turbo molecular pump 72b and the gas cylinder 72d, respectively.
  • the path selection valve 72g selects the piping system 72f2, and when the discharge gas is introduced into the envelope 40 from the gas cylinder 72d, the piping system 72 7 Select 2f3.
  • the inside of the heating furnace 71 was heated by the heater 75, and the temperature was raised to a sealing temperature (for example, 450 ° C.) slightly higher than the softening temperature of the sealing material, and was maintained at the sealing temperature for a predetermined time. Thereafter, the temperature between the panels 10 and 20 is sealed by lowering the temperature again to the softening point temperature or lower, but the sealing is performed while exhausting the inside of the envelope 40 with the turbo molecular pump 72b.
  • the sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
  • the evacuation be started after the inside of the heating furnace 71 reaches the softening temperature of the sealing material. Until the softening temperature of the sealing material is reached, the airtightness of the outer periphery between both panels 10 and 20 Because there is not much air, the inside of the envelope 40 cannot be evacuated to a high degree of vacuum even if it is evacuated, but after the sealing material softens, the outer periphery between the panels 10 The part is hermetically sealed, and the adhesive layer 41 is also softened, so that the connection between the connection pipe 72 and the vent hole 21a is also hermetically sealed. (1. 3 3 X 1 0- 4 degree MP a (number T 0 rr about)) der from being reduced to Ru.
  • the panels 10 and 20 are uniformly pressed from the outside.
  • the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front panels and the rear panel approach to each other to close the front panel and the partition wall.
  • a slight suction and exhaust for example, about 0.08 MPa
  • the end portion 74c of the getter tube 74 attached to the envelope 40 is broken, and the particulate getter 76 is placed in the inner space of the envelope 40. Insert the amount corresponding to the size, seal off the end 74c and store the getter 76 in the getter storage space 74b.
  • a getter that activates the surface by heating and irreversibly chemically adsorbs the impurity gas can be used. In this case, it is desirable that the material be activated at the evacuation baking temperature in the subsequent evacuation step.
  • the inside of the envelope 40 is evacuated again, and then the heating furnace 71 is heated (baked) at a temperature lower than the softening point of the sealing material layer (exhaust baking temperature). You.
  • the exhaust baking temperature is, of course, a temperature lower than the softening point of the sealing material (or lower than the melting point of the metal when a metal is used for the sealing material). And this Here, the temperature is set to a temperature (for example, about 350 ° C.) at which the getter 76 is activated and the adsorbed water adsorbed on the inner wall surface of the envelope 40 is effectively desorbed.
  • impurity gas such as water, carbon dioxide, nitrogen, oxygen, etc. is adsorbed on the particle surface of the getter 76, so that the inside of the particle hole of the getter 76 increases more and more. It is taken in. This is because as a result of the impurity gas being taken into the getter 76, a pressure gradient (gas concentration gradient) is generated between the inner space of the envelope 40 and the storage space 74b in which the getter 76 is stored.
  • the on-off valve 72 h is appropriately opened, and the turbo molecular pump 72 b and the rotary pump 72 c are operated to further suction the inside of the envelope 40.
  • the piping 72 f 3 is selected by the selection valve 72 g, the opening and closing valve 72 i is opened, and the discharge gas is introduced into the envelope 40 at a predetermined pressure (for example, 0.05 MPa). It is more desirable that the pressure be maintained for a predetermined time (5 to 10 minutes) after filling the discharge gas. This is because the conductance between the partitions in the envelope 40 is small, and it takes time to reach the equilibrium pressure.
  • Such processes of vacuum evacuation, discharge gas introduction, and vacuum evacuation are usually sufficient even once, but if repeated, the impurity gas in the envelope 40 can be made lower in concentration.
  • the gas introduced into the envelope 40 is not limited to the discharge gas, and may be any gas that does not become an impurity with respect to the discharge gas.
  • this gas is more preferable if it is a dry gas because the deterioration of the characteristics of the phosphor can be suppressed.
  • the gas pressure introduced into the envelope 40 is 1. about 33 x 1 0- 4 MP a (number T orr) may be within pressure at which the envelope 40 does not break, the large It is desirable to be lower than the atmospheric pressure.
  • a discharge gas is supplied to the internal space of the envelope 40 so as to have a predetermined filling pressure (for example, 0.067 MPa). Then, the ventilation holes 21a and 21b are sealed by melting and cutting off (tip-off) the root portions of the connection pipe 73 and the getter pipe 74 with a wrench or heater.
  • the central part of the envelope 40 is not pressed, so that the top of the bulkhead on the rear panel 20 is not pressed.
  • the front panel 10 is easily or completely sealed away from the front panel 10, as described above, the envelope 40 is separated by the pressure difference between the inside and the outside.
  • the sealing material layer 41 is hardened and sealed in a state where the sealing material layer 41 is uniformly pressed from the outside, so that the sealing is performed in a state where there is almost no gap between the top of the partition wall and the front panel 10.
  • the suction / exhaust system is operated so that a pressure difference between the inside and outside of the envelope 40 is generated.
  • the above-described evacuation step makes it possible to quickly (shortly) remove the impurity gas concentration in the envelope 40 to a low concentration.
  • the step of raising the temperature to the exhaust baking temperature includes the step of removing the impurity gas in the envelope 40 by the getter, the vacuum exhaust “discharge gas filling” is performed.
  • the manufacturing method of the first embodiment only step of evacuation, more quickly and c rather example 3 capable of removing impurity gases from the envelope 4 inside 0 to lower concentrations>
  • PDPs were produced according to the profiles shown in FIGS.
  • the getter 76 is sealed and once cooled down to room temperature, it is stored in the getter tube 74, and the getter is made of vanadium, titanium and iron alloy particles with an activation temperature of 280 ° C. Was.
  • the pressure in the envelope In the conventional evacuation process, it takes about 2 hours to reduce the pressure in the envelope from 1.3 x 10— ”to 1.3 x 10—1 (1 MPa). In the evacuation process of the example, the pressure can be reduced to the pressure in about one hour.
  • the PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
  • the aging step is a step for stabilizing the panel characteristics after the discharge gas sealing step. It was a little less and the efficiency was a few percent better.
  • This embodiment is the same as that of the first embodiment except that the method in the sealing step is different from that in the first embodiment.
  • the inside of the heating furnace 51 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then softened again.
  • a sealing temperature slightly higher than the softening temperature of the sealing material for example, 450 ° C.
  • the gas introduction system is activated to introduce dry gas into the envelope 40.
  • a dried gas of the discharge gas filled in the gas cylinder 52a is used as a dry gas.
  • dry air, dry nitrogen gas, dry argon gas, dry neon gas (dry rare gas in general) and the like can be used.
  • the sealing material is softened, so that the outer peripheral portion of the envelope 40 becomes airtight, so that the internal pressure in the envelope 40 increases. Monitor this, Stop the introduction of the discharge gas.
  • the flow rate of the drying gas is such that when the sealing material is softened and hermetically sealed, even if the drying gas flows into the envelope 40, a sharp pressure rise occurs and the It will of course be limited to the extent that the constituent glass substrates are not damaged.
  • the drying gas is circulated in the envelope 40 until the temperature reaches the sealing temperature, the outer peripheral portion of the envelope 40 becomes airtight due to softening of the sealing material.
  • the envelope 40 is filled with dry gas.
  • the sealing temperature is held for a predetermined time while the drying gas is being filled.
  • the sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
  • the sealing temperature is maintained for a predetermined time in a state where the drying gas is filled, and at the same time, the sealing is performed while exhausting the inside of the envelope 40 by the turbo molecular pump 53b.
  • the rotary pump 53c is simultaneously operated to reduce the back pressure in the turbo molecular pump 53b.
  • the evacuation be started after the inside of the heating furnace 51 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material softens, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 56 a is also softened to form the connection pipe 56 and the vent hole. since the connection portion between the 2 1 b is also hermetically sealed, it is reduced to the envelope 4 0 when the exhaust from the internal high have vacuum (1. 3 3 X 1 0- 4 MP a degree (number T orr) about) This is because that.
  • the panels 10-20 are uniformly pressed from the outside.
  • the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front panels and the rear panel approach to each other to close the front panel and the partition wall.
  • the temperature of the sealing material becomes lower than the softening temperature and the sealing material is hardened, whereby the envelope 40 is sealed. Therefore, in the envelope 40 after the sealing, the top of the partition wall and the front panel 10 are kept in close contact with each other as a whole.
  • the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
  • the PDP is completed through the same evacuation process, sealing process, and encapsulation process as in the first embodiment.
  • PDPs were produced according to the profiles shown in FIGS.
  • the temperature is raised to a sealing temperature of 450 ° C. over 2 to 3 hours, and this temperature is maintained for about 20 minutes.
  • the dry gas is made to flow through the envelope 40 by operating the gas introduction system until the sealing temperature is reached.
  • the pressure of the manifold is stopped from operating the gas introduction system, and the pressure is reduced to about 0.05 MPa and maintained.
  • the temperature is lowered to room temperature over 2 to 3 hours.
  • the gas in the envelope 40 was sucked and evacuated again, and after the pressure became about 1.3 xl O—ul. 3 X 10—1 () MPa, the gas was discharged by the gas introduction system 52. Fill the envelope 40 with gas at about 0.067 MPa.
  • the PDP fabricated as described above had little lifting at the outer periphery and had more uniform discharge characteristics than the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
  • the light emission intensity (luminance of the PDP) of the PDP sealed after the flow of the dry gas as described above and the PDP sealed in the presence of the air without the flow of the dry gas as in the related art was compared and evaluated by irradiating the panel with a Xe excimer lamp (wavelength: 173 nm).
  • the emission intensity of the blue phosphor was improved by about 10%. . If the dry gas was non-reactive, a uniform improvement effect was observed, but dry air was particularly excellent.
  • Example 5 Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to another example will be specifically described.
  • the temperature is raised to the sealing temperature of 450 ° C over 2 to 3 hours, and this temperature is maintained for about 20 minutes.
  • the dry gas is circulated through the envelope 40 by operating the gas introduction system until the sealing temperature is reached.
  • the temperature is lowered to the exhaust baking temperature (350 ° C) in about 30 minutes over 2 to 3 hours.
  • the front panel and the rear panel have been completely sealed, but if the temperature is reduced and the pressure inside the manifold is monitored, sealing defects can be identified and poor sealing can be achieved. Outbreaks can be dealt with earlier in the manufacturing process, helping to reduce costs.
  • the pressure inside the manifold gradually decreases when sealing is performed normally, but otherwise decreases at a relatively high rate because gas leaks into the furnace.
  • suction and exhaust are continued to reduce the pressure in the manifold to 1.3 x 10— "to 1.3 x 10— lfl MPa .
  • the operation of the suction / exhaust system 53 is stopped, and the gas introduction system 52 is operated to fill the envelope 40 with the discharge gas at about 0.05 MPa, and the pressure is increased for about 5 to 10 minutes. maintain.
  • the PDP fabricated as described above had little lifting at the outer periphery and had more uniform discharge characteristics than the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the pressure was also reduced by about 5 to 10 V, the discharge current was increased by several percent to about 10%, and the efficiency was improved by several percent to about 10%.
  • Example 5 Compared with Example 4, in the manufacturing method according to Example 5, the time from the sealing of the envelope 40 to the cooling and the heating time from the room temperature for the exhaust baking to the exhaust baking temperature. There is an effect that it can be shortened. In addition, the degree of deterioration of the phosphor was about several%, which was smaller than that of Example 4, and was slightly superior.
  • This embodiment is the same as the second embodiment except that the technique in the sealing step is different from that in the second embodiment.
  • the inside of the heating furnace 71 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then softened again.
  • a sealing temperature slightly higher than the softening temperature of the sealing material for example, 450 ° C.
  • the gas introduction system is activated to introduce dry gas into the envelope 40.
  • a dried gas of the discharge gas filled in the gas cylinder 72 d is used as a dry gas.
  • dry air, dry nitrogen gas, dry argon gas, dry neon gas (dry rare gas in general) and the like can be used.
  • the sealing material softens and the outer peripheral portion of the envelope 40 becomes airtight, so that the internal pressure in the envelope 40 increases. This is monitored and the introduction of discharge gas is stopped.
  • the flow rate of the drying gas is such that when the sealing material is softened and hermetically sealed, even if the drying gas flows into the envelope 40, a sharp pressure rise occurs and the It will of course be limited to the extent that the constituent glass substrates are not damaged.
  • the drying gas is circulated in the envelope 40 until the sealing temperature is reached, the outer peripheral portion of the envelope 40 is hermetically sealed by the softening of the sealing material.
  • the envelope 40 is filled with dry gas.
  • the sealing temperature is held for a predetermined time while the drying gas is being filled.
  • the sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting-point glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
  • the sealing temperature is maintained for a predetermined time in a state where the drying gas is filled, and at the same time, the sealing is performed while exhausting the inside of the envelope 40 by the turbo molecular pump 72b.
  • the turbo molecular pump 72b When the turbo molecular pump 72b is operated, the rotary pump 72c is simultaneously operated to lower the back pressure in the turbo molecular pump 72b.
  • the evacuation be started after the inside of the heating furnace 71 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material has softened, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 73 a is also softened so that the connection pipe 73 and the vent hole are formed. since the connection portion between the 2 1 a is also hermetically sealed, it is reduced to the envelope 4 0 when the exhaust from the internal high have vacuum (1. 3 3 X 1 0- 4 MP a degree (number T orr) about) This is because that.
  • the panels 10 and 20 are uniformly pressed from the outside.
  • the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front and rear panels come close to each other and come into contact with the front panel.
  • Sufficient suction and exhaust (for example, about 0.08 MPa) is enough, as long as it is sufficient to make contact with the partition wall.
  • the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
  • a PDP was produced according to the same temperature and pressure profile as in Example 4.
  • the getter 76 is sealed and once cooled down to room temperature, is stored in a getter tube 74, and vanadium, titanium, and iron-based alloy particles having an activation temperature of 280 ° C are used as the getter. .
  • the PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like.
  • the noise level from the outer periphery was also reduced by several dB to 10 dB.
  • the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
  • the y-value of the coordinates) was compared and evaluated by irradiating the panel with a Xe excimer lamp (wavelength: 1733 nm).
  • the emission intensity of the blue phosphor was improved by about 10%. If the dry gas was non-reactive, a uniform improvement effect was observed, but dry air was particularly excellent.
  • the sealing step and the evacuation step are performed by the same apparatus.
  • the present invention is not limited to this, and the sealing step and the evacuation step may be performed by separate apparatuses.
  • a heat source such as a laser beam may be selectively irradiated to the sealed portion to selectively heat and seal the portion. it can.
  • the partition wall for separating the light emitting cells is formed on the main surface.
  • a method for manufacturing a gas discharge panel comprising: a sealing step of sealing with a material; an exhausting step of exhausting gas inside the envelope; and an enclosing step of enclosing a discharge gas inside the envelope.
  • the evacuation step includes a sub-step of evacuating the inside of the envelope, and thereafter, filling the inside of the envelope with a cleaning gas containing a gas that does not become an impurity with respect to the discharge gas as a substantial component. And a sub-step of evacuating the inside of the envelope after that.
  • a method of manufacturing a gas discharge panel comprising: an enclosing step, wherein the evacuation step includes a sub-step of evacuating the inside of the envelope, and thereafter, a gas that does not become an impurity with respect to the discharge gas inside the envelope.
  • the sealing step includes heating the entire envelope at a temperature equal to or higher than the softening point or the melting point of the sealing material with a sealing material interposed between the first substrate and the second substrate.
  • the sealing can be performed by lowering the internal pressure of the device than the external pressure and then cooling it.
  • a lead alloy can also be used as the sealing material.
  • the sealing material is hardened and sealed in a state in which the two substrates are uniformly pressed from the outside by the pressure difference between the inside and the outside, so that the gap between the top of the partition wall and the substrate opposed thereto is formed. Sealing is performed in a state where there is almost no.
  • a step of storing the getter in a container communicating with the inside of the envelope may be provided.
  • the impurity gas can be more quickly removed from the envelope.
  • the evacuation step may be performed while heating the entire envelope at a temperature equal to or lower than the softening point or the melting point of the sealing material.
  • the getter it is desirable that the activation temperature be within the range of the heating temperature in the evacuation step.
  • the cooling in the sealing step can be heating and cooling at a temperature equal to or lower than the softening point or the melting point.
  • the sealing material is interposed between the first substrate and the second substrate, and while the dry gas is circulated inside the envelope, the entire envelope is softened at a softening point of the sealing material.
  • the sub-step of heating to a temperature above the melting point heating at a temperature above the softening point or melting point of the sealing material, reducing the internal pressure of the envelope to a value lower than the external pressure, and then cooling.
  • the sealing step is performed in a state where the inside of the envelope is filled with the dry gas, so that the thermal degradation of the phosphor can be suppressed.
  • the sealing step is to heat the sealing portion of the envelope at a temperature equal to or higher than the softening point or the melting point of the sealing material with a sealing material interposed between the first substrate and the second substrate, By reducing the pressure inside the envelope below the external pressure and then cooling It can be sealed.
  • a rare gas can be used as the discharge gas.
  • the rare gas may include at least one of helium, neon, argon, and xenon.
  • the light emitting cell is formed by an electrode group arranged side by side on the first substrate and an electrode group arranged side by side on the second substrate spaced apart from each other at a predetermined distance. be able to.
  • the method for manufacturing a gas discharge panel according to the present invention can be used for manufacturing a PDP or the like used as an image display such as a television or a computer monitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A method of producing a gas discharge panel capable of an efficient exhausting in the exhaust process. In a vacuum pumping process, with an open/close valve (53f) opened to a suitable degree while heating (baking) a heating furnace (51) to a temperature (exhaust baking temperature) lower than the softening temperature of a sealant layer, a turbo-molecular pump (53b) and a rotary pump (53c) are actuated to evacuate an envelope (40) until a vacuum is created, whereupon a discharge gas is introduced from a gas introducing system (52) into the envelope (40) until a predetermined pressure (for example, 0.05 MPa) is produced therein. Thereafter, the discharge gas introduction from the gas introducing system (52) is stopped, and the discharge gas in the envelope is sucked out through a suction exhaust system (53), thereby re-establishing a vacuum state in the envelope (40).

Description

明糸田書 ガス放電パネルの製造方法 技術分野  Akira Itoda Manufacturing method of gas discharge panel
本発明はコンピュー夕のモニタおよびテレビ等の画像表示に用いるプラズマデ ィスプレパネル等のガス放電パネルの製造方法に関するものである。 背景技術  The present invention relates to a method for manufacturing a gas discharge panel such as a plasma display panel used for displaying images on a computer monitor and a television. Background art
以下では、 従来のプラズマディ スプレイパネルについて図面を参照しながら説 明する。 図 8は交流型 (AC型) のプラズマディスプレイパネル (以下、 「P D P」 と記載する。) の概略を示す断面図である。  Hereinafter, a conventional plasma display panel will be described with reference to the drawings. FIG. 8 is a cross-sectional view schematically showing an AC-type (AC-type) plasma display panel (hereinafter, referred to as “PDP”).
図 8において、 1 1 0は前面ガラス基板であり、 この前面ガラス基板 1 1 0上 に放電電極 1 1 1が形成されている。 さらに、 放電電極 1 1 1は、 誘電体ガラス 層 1 1 2及び酸化マグネシウム (Mg〇) からなる誘電体保護層 1 1 3により覆 われている (例えば特開平 5— 34299 1号公報参照)。  In FIG. 8, reference numeral 110 denotes a front glass substrate, and discharge electrodes 111 are formed on the front glass substrate 110. Further, the discharge electrode 111 is covered with a dielectric glass layer 112 and a dielectric protective layer 113 made of magnesium oxide (Mg〇) (see, for example, Japanese Patent Application Laid-Open No. 5-349291).
また、 1 20は背面ガラス基板であり、 この背面ガラス基板 1 20上には、 ァ ドレス電極 1 2 1、 これを覆う可視光反射層 1 22及び隔壁 1 23、 蛍光体層 1 24が設けられており、 1 30が放電ガスを封入する放電空間となっている。 前 記蛍光体層はカラー表示のために、 赤、 緑、 青の 3色の蛍光体層が順に配置され ている。上記の各蛍光体層 1 24は、放電によって発生する波長の短い紫外線(例 えば、 波長 1 47 nm) により励起発光する。  Reference numeral 120 denotes a rear glass substrate. On the rear glass substrate 120, an address electrode 121, a visible light reflecting layer 122, a partition wall 123, and a phosphor layer 124 that cover the address electrode 122 are provided. 130 is a discharge space for filling a discharge gas. In the phosphor layer, three color phosphor layers of red, green, and blue are sequentially arranged for color display. Each of the above-mentioned phosphor layers 124 emits and emits light by ultraviolet rays having a short wavelength (eg, a wavelength of 147 nm) generated by discharge.
蛍光体層 1 24を構成する蛍光体としては、 一般的に以下の材料が用いられて いる。  The following materials are generally used as the phosphor constituting the phosphor layer 124.
「青色蛍光体」 B a Mg A 110O17: E u "Blue phosphor" B a Mg A 1 10 O 17 : Eu
「緑色蛍光体」 Z n2S i 04 : Mnまたは B a A 112O19 : Mn "Green phosphor" Z n 2 S i 0 4: Mn or B a A 1 12 O 19: Mn
「赤色蛍光体」 Y2O3 : E u又は (YxGd1-x) BO3 : E u "Red phosphor" Y 2 O 3: E u or (Y x Gd 1-x) BO 3: E u
各色蛍光体は以下のようにして作製できる。  Each color phosphor can be produced as follows.
青色蛍光体 (B aMg A 11()017: E u) は、 まず、 炭酸バリゥム (B a C〇3) 炭酸マグネシウム (Mg CO3)、 酸化アルミ ニウム (a— A l 23) を B a, M g, A 1の原子比で 1対 1対 1 0になるように配合する。 Blue phosphor (B aMg A 1 1 () 0 17: E u) , first, carbonate Bariumu (B a C_〇 3) Magnesium carbonate (Mg CO 3 ) and aluminum oxide (a—Al 23 ) are blended so that the atomic ratio of Ba, Mg, and A 1 is 1: 1: 1: 10.
次に、 この混合物に対して所定量の酸化ユーロピウム (E u 203) を添加する。 そして、 適量のフラックス (A 1 F2. B a C 12) と共にボールミルで混合し、 1 400°C〜 1 650°Cで所定時間 (例えば、 0.5時間)、 還元雰囲気 (H2或い は N2中) で焼成して得られる。 Then added a predetermined amount of europium oxide (E u 2 0 3) with respect to the mixture. Then, mixed with an appropriate amount of a flux (A 1 F 2. B a C 1 2) with a ball mill, 1 400 ° C~ 1 650 ° C for a predetermined time (e.g., 0.5 hours), a reducing atmosphere (H 2 walking is obtained by firing in N 2).
赤色蛍光体 (Y203: E u) は、 原料として水酸化ィ ッ ト リウム Υ2(ΟΗ)3と硼 酸 (H3B03) と Υ, Βの原子比 1対 1になるように配合する。 次に、 この混合 物に対して所定量の酸化ユーロピウム (E u 203) を添加し、 適量のフラックス と共にポールミルで混合し、 空気中 1 200 °C〜 1 450 °Cで所定時間 (例えば 1時間) 焼成して得られる。 Red phosphor (Y 2 0 3: E u ) , the hydroxide as the raw material I Tsu preparative potassium Υ 2 (ΟΗ) 3 and the boron acid (H 3 B0 3) and Upsilon, so that the atomic ratio of 1: 1 of Β To mix. Then adding a predetermined amount of europium oxide with respect to the mixture (E u 2 0 3), was mixed with ball mill together with a suitable amount of flux, 1 200 ° C~ 1 450 ° C for a predetermined time in the air (e.g. 1 hour) Obtained by firing.
緑色蛍光体 (Z n2S i O4 : Mn) は、 原料として酸化亜鉛 (Z n 0)、 酸化珪 素(S i 02) を Z n, S iの原子比 2対 1になるように配合する。 次にこの混合 物に所定量の酸化マンガン (Mn2O3) を添加し、 ポールミルで混合後、 空気中 1 200°C〜 1 350°Cで所定時間 (例えば 0. 5時間) 焼成して得られる。 上記製法で作製された蛍光体粒子を粉砕後、 ふるい分けすることにより、 所定 の粒径分布を有する蛍光体材料が得られる。 Green phosphor (Z n 2 S i O 4 : Mn) is as a raw material of zinc oxide (Z n 0), so that the oxide silicofluoride-containing (S i 0 2) Z n, the atomic ratio of 2: 1 of S i To mix. Next, a predetermined amount of manganese oxide (Mn 2 O 3 ) is added to the mixture, mixed with a pole mill, and calcined in air at 1200 to 1350 ° C for a predetermined time (for example, 0.5 hour). can get. The phosphor particles having the predetermined particle size distribution can be obtained by pulverizing and sieving the phosphor particles produced by the above method.
以下従来の P D Pの製造方法について説明する。  Hereinafter, a conventional PDP manufacturing method will be described.
まず、 前面ガラス基板上に放電電極を形成し、 これを覆うように誘電体ガラス からなる誘電体層を形成し、 さらにこの誘電体層の上に Mg Oからなる保護層を 形成する。 次に、 背面ガラス基板上にア ドレス電極を形成し、 その上に誘電体ガ ラスからなる可視光反射層と、 ガラス製の隔壁を所定のピッチで作成する。  First, a discharge electrode is formed on a front glass substrate, a dielectric layer made of dielectric glass is formed so as to cover the discharge electrode, and a protective layer made of MgO is formed on the dielectric layer. Next, an address electrode is formed on the back glass substrate, and a visible light reflecting layer made of a dielectric glass and a glass partition are formed thereon at a predetermined pitch.
これらの隔壁に挟まれた各空間内に、上述したようにして作製した赤色蛍光体, 緑色蛍光体, 青色蛍光体を含む各色蛍光体ペース トをそれぞれ配設することによ つて蛍光体層を形成し、 形成後 500°C程度で蛍光体層を焼成し、 ペース ト内の 樹脂成分等を除去する (蛍光体焼成工程)。  The phosphor layers are formed by disposing the phosphor pastes of the respective colors including the red phosphor, the green phosphor, and the blue phosphor prepared as described above in the spaces sandwiched by these partition walls. After the formation, the phosphor layer is fired at about 500 ° C to remove resin components and the like in the paste (a phosphor firing step).
蛍光体焼成後、 背面ガラス基板の周囲に前面ガラス基板との封着用ガラスフリ ッ トを塗布し、 ガラスフリ ッ ト内の樹脂成分等を除去するために 350°C程度で 仮焼する (封着用ガラス仮焼工程)。 その後、 放電電極、 誘電体ガラス層および保護層を順次形成した前面ガラス基 板と、 前記背面ガラス基板を隔壁を介して表示電極とァドレス電極が直交するよ う対向配置し、 4 5 0 °C程度で焼成し、封着ガラスによって、周囲を密封する (封 着工程)。 After firing the phosphor, apply a glass frit for sealing to the front glass substrate around the back glass substrate, and calcine at about 350 ° C to remove resin components etc. in the glass frit (sealing glass) Calcination process). Thereafter, a front glass substrate on which a discharge electrode, a dielectric glass layer, and a protective layer are sequentially formed, and the rear glass substrate are arranged so as to be opposed to each other so that the display electrode and the address electrode are orthogonal to each other with a partition wall interposed therebetween. Baking is performed to a degree, and the surroundings are sealed with sealing glass (sealing process).
その後、 所定の温度 (3 5 0 °C程度) までに加熱しながらパネル内を排気し (排 気工程)、 終了後に放電ガスを所定の圧力だけ導入する。  After that, the inside of the panel is evacuated while heating to a predetermined temperature (about 350 ° C) (evacuation step), and after completion, discharge gas is introduced at a predetermined pressure.
上記のような従来のプラズマディ スプレイパネルの製造方法においては、 パネ ル作製後の発光特性及び放電特性を安定化させるエージング工程において、 及び 通常の作動時に発光特性が次第に劣化するという課題が存在する。  In the conventional method of manufacturing a plasma display panel as described above, there is a problem that the light emission characteristics gradually deteriorate in an aging process for stabilizing the light emission characteristics and discharge characteristics after panel production and during normal operation. .
これは前記排気工程において、 十分に内部空間内の不純物 (水蒸気、 酸素、 窒 素、 炭酸ガスなどの放電ガスと異なる組成のガス成分である。) が清浄されず、 内 部空間に残留しているためである。  This is because the impurities (gas components having a composition different from that of the discharge gas such as water vapor, oxygen, nitrogen, and carbon dioxide) in the internal space are not sufficiently cleaned in the evacuation process and remain in the internal space. Because it is.
発明の開示 Disclosure of the invention
本発明は、 上記した問題に鑑みてなされたものであって、 パネルの製造工程に 必要な排気工程における排気を効率良く行えるガス放電パネルの製造方法を提供 することを目的とするものである。  The present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing a gas discharge panel that can efficiently exhaust gas in an exhaust process required for a panel manufacturing process.
かかる目的を達成するために、 発光セル同士を隔てる隔壁が主表面に形成され た第 1基板の当該隔壁側表面上に第 2基板を対向配置することにより外囲器を形 成する外囲器形成ステップと、 当該外囲器における両基板の外周部同士を封着材 で封着する封着ステップと、当該外囲器の内部のガスを排気する排気ステップと、 当該外囲器の内部に放電ガスを封入する封入ステップとを備えるガス放電パネル の製造方法であって、 前記排気ステップは、 外囲器内を真空排気するサブステツ プと、 その後、 外囲器の内部に放電ガスに対して不純物とならないガスを実質的 な成分とする洗浄ガスを充填するサブステップと、 その後、 外囲器の内部を真空 排気するサブステツプを含むことを特徴とする。  In order to achieve such an object, an envelope is formed by arranging a second substrate so as to face a partition-side surface of a first substrate having a main surface on which a partition separating light-emitting cells is formed, thereby forming an envelope. A forming step, a sealing step of sealing the outer peripheral portions of both substrates in the envelope with a sealing material, an exhausting step of exhausting gas inside the envelope, A method for manufacturing a gas discharge panel comprising: a filling step of filling a discharge gas, wherein the exhausting step comprises: a sub-step of evacuating the inside of the envelope; and It is characterized by including a sub-step of filling with a cleaning gas containing a gas that does not become an impurity as a substantial component, and thereafter, a sub-step of evacuating the inside of the envelope.
また、 発光セル同士を隔てる隔壁が主表面に形成された第 1基板の当該隔壁側 表面上に第 2基板を対向配置することにより外囲器を形成する外囲器形成ステツ プと、 当該外囲器における両基板の外周部同士を封着材で封着する封着ステツプ と、 当該外囲器の内部のガスを排気する排気ステップと、 当該外囲器の内部に放 電ガスを封入する封入ステップとを備えるガス放電パネルの製造方法であって、 前記排気ステップは、 外囲器内を真空排気するサブステップと、 その後、 外囲器 の内部に放電ガスに対して不純物とならないガスを実質的な成分とする洗浄ガス を流通させながら外囲器の内部を排気するサブステツプを含むことを特徴とする。 なお、 「実質的な」 とは、 「洗浄ガスの主成分としては、 放電ガスに対して不純 物とならない」 ことを意味する。 従って、 「当該主成分ガスに初めから不純物 (通 常極めて低濃度) として含有されているガスを排除する」 ものではない。 An envelope forming step of forming an envelope by disposing a second substrate on the partition-side surface of the first substrate having a main surface on which a partition for separating the light emitting cells is formed; A sealing step for sealing the outer peripheral portions of both substrates in the enclosure with a sealing material A method for manufacturing a gas discharge panel, comprising: an exhausting step of exhausting gas inside the envelope; and an enclosing step of enclosing a discharge gas inside the envelope, wherein the exhausting step comprises: A sub-step of evacuating the interior of the envelope, and then evacuating the interior of the envelope while circulating a cleaning gas substantially containing a gas that does not become an impurity in the discharge gas through the interior of the envelope. It is characterized by including sub-steps. In addition, “substantially” means that “the main component of the cleaning gas does not become an impurity with respect to the discharge gas”. Therefore, this does not mean that “the gas contained as an impurity (usually extremely low concentration) in the main component gas from the beginning” is not excluded.
これらの製造方法によれば、 従来のように単に外囲器の内部を排気するだけで はなく、 上記のように洗浄ガスを充填してから若しくは流通させながらこれを排 気するので、 従来の製造方法と比べて外囲器内の不純物ガス濃度を迅速に (短時 間で) 低濃度にまで除去することが可能となる。  According to these manufacturing methods, not only the inside of the envelope is simply evacuated as in the related art, but also the rinsing gas is exhausted after being filled or circulated as described above. Compared with the manufacturing method, it is possible to quickly (shortly) reduce the impurity gas concentration in the envelope to a low concentration.
また、 上記製造方法において、 封着ステップを、 外囲器全体若しくは封着部を 封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲器の内部の圧力 を外部の圧力よりも低くすることによって行えば、 外囲器は、 内外の圧力差によ つて両基板が外側から均一的に押圧された状態で封着材が硬化して封着されるの で、 隔壁頂部とこれと対向する基板との隙間がほとんどない状態で封着がなされ る。 従来は外囲器の内外圧力差を設けることなく外周部をクリ ップなどで締め付 けるだけであるので、 外囲器の中央部が押圧されないため、 隔壁頂部とこれに対 向する基板とが全体的あるいは部分的に離れた状態で封着されやすかつた。  In the above manufacturing method, the sealing step may include heating the entire envelope or the sealing portion at a temperature equal to or higher than the softening point or the melting point of the sealing material, and setting the pressure inside the envelope to be lower than the external pressure. If the sealing is performed by lowering the sealing material, the sealing material is cured and sealed in a state where both substrates are uniformly pressed from the outside by the pressure difference between the inside and outside, so that the top of the partition The sealing is performed in a state where there is almost no gap between the substrate and the opposing substrate. Conventionally, the outer peripheral part is simply clamped with a clip or the like without providing a pressure difference between the inner and outer parts of the envelope.Therefore, the center part of the envelope is not pressed, so the top of the partition and the substrate facing it Were easily or completely sealed apart.
従って、 このような製造方法によれば、 P D P駆動時の振動が発生しにく く且 つ表示品位の良好な P D Pを容易に作製することができる。  Therefore, according to such a manufacturing method, it is possible to easily manufacture a PDP which is less likely to generate vibration during PDP driving and has good display quality.
更に、 上記製造方法において、 封着ステップを外囲器の内部に乾燥ガスを充填 した状態で行えば、 蛍光体の熱劣化を抑えることができる。 図面の簡単な説明  Further, in the above-mentioned manufacturing method, if the sealing step is performed in a state where the inside of the envelope is filled with a dry gas, thermal degradation of the phosphor can be suppressed. BRIEF DESCRIPTION OF THE FIGURES
図 1 ; 本発明にかかる実施の形態に共通した A C型プラズマディスプレイパネ ル (P D P ) の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of an AC plasma display panel (PDP) common to the embodiments according to the present invention.
図 2 ; 前記 P D Pに回路プロックを実装した表示装置の構成図である。 図 3 ; 本実施の形態の封着工程で用いる封着 ·排気装置 5 0を模式的に示す図 であり、 (a ) は、 上面切欠図であり、 (b ) は、 (a ) における A - A ' 線を含む 垂直断面図である。 FIG. 2 is a configuration diagram of a display device in which a circuit block is mounted on the PDP. FIG. 3 is a diagram schematically showing a sealing / exhausting device 50 used in the sealing step of the present embodiment, where (a) is a top cutaway view, and (b) is an A in FIG. FIG. 4 is a vertical sectional view including a line A ′.
図 4 ;封着時の温度及び圧力プロファイルを示す図である (実施例)。  FIG. 4 is a diagram showing a temperature and pressure profile at the time of sealing (Example).
、 図 5 : 真空排気工程 ·封入工程における温度及び圧力プロフ ァイルを示す図で ある (実施例) Figure 5: Temperature and pressure profiles in the evacuation process and the encapsulation process (Example)
図 6 ;封着時及び真空排気 ·封入工程の温度及び圧力プロファィルを示す図で ある (実施例)。  Figure 6: Temperature and pressure profiles during sealing and during evacuation and encapsulation processes (Example).
図 7 ; 本発明にかかる別な実施の形態の封着工程で用いる封着 ·排気装置 7 0 を模式的に示す図である。  FIG. 7 is a view schematically showing a sealing / exhausting device 70 used in a sealing step according to another embodiment of the present invention.
図 8:従来例にかかる実施の形態に共通した P D Pの構成を示す斜視図である。 発明を実施するための最良の形態  FIG. 8 is a perspective view showing a configuration of a PDP common to the embodiments according to the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照にしながら本発明に係るプラズマディスプレイパネルの製造 方法について具体的に説明する。  Hereinafter, a method for manufacturing a plasma display panel according to the present invention will be specifically described with reference to the drawings.
〔P D Pの全体構成及び製法について〕  [Overall configuration and manufacturing method of PDP]
図 1は、 実施の形態に係る交流面放電型 P D Pを示す斜視図であり、 図 2は、 この P D Pに回路ブロックを実装した表示装置の構成図である。  FIG. 1 is a perspective view showing an AC surface discharge type PDP according to an embodiment, and FIG. 2 is a configuration diagram of a display device in which a circuit block is mounted on the PDP.
この P D Pは、 各電極にパルス状の電圧を印加することで放電を放電空間内で 生じさせ、 放電に伴って背面パネル側で発生した各色の可視光を前面パネルの主 表面から透過させるものである。  This PDP generates a discharge in the discharge space by applying a pulsed voltage to each electrode, and transmits visible light of each color generated on the rear panel side from the main surface of the front panel due to the discharge. is there.
そして、 当該 P D Pは、 前面ガラス基板 1 1上に複数の放電電極 1 2 (走査電 極 1 2 a, 維持電極 1 2 b )、 誘電体層 1 3、 保護層 1 4が配されてなる前面パネ ル 1 0と、 背面ガラス基板 2 1上に複数のァドレス電極 2 2、 誘電体層 2 3とが 配された背面パネル 2 0とが、 電極 1 2 a , 1 2 bとアドレス電極 2 2とを対向 させた状態で間隔をおいて互いに平行に配されて構成されている。  The PDP has a front glass substrate 11 on which a plurality of discharge electrodes 12 (scanning electrodes 12 a and sustain electrodes 12 b), a dielectric layer 13, and a protective layer 14 are disposed. Panel 10 and rear panel 20 having a plurality of address electrodes 22 and dielectric layers 23 on rear glass substrate 21 are composed of electrodes 12 a, 12 b and address electrodes 22. Are arranged in parallel with each other at an interval in a state where they face each other.
P D Pの中央部は画像を表示する領域であって、 ここでは前面パネル 1 0及び 背面パネル 2 0間の間隙は、 ス トライプ状の隔壁 2 4複数本で仕切られることに よって複数の放電空間 3 0が形成され、 当該放電空間 3 0内には放電ガスが封入 されている。 また放電空間 3 0内において、 背面パネル 2 0側には、 複数の蛍光 体層 2 5が配設されている。 この蛍光体層 2 5は、 赤, 緑. 青の順で繰返し並べ られている。 The central part of the PDP is an area for displaying an image. Here, the gap between the front panel 10 and the rear panel 20 is divided into a plurality of stripe-shaped partition walls 24. 0 is formed, and the discharge space 30 is filled with a discharge gas. In the discharge space 30, a plurality of fluorescent light A body layer 25 is provided. The phosphor layer 25 is repeatedly arranged in the order of red, green and blue.
放電電極 1 2及びァドレス電極 2 2は、 共にス トライプ状であって、 放電電極 1 2は隔壁 2 4と直交する方向に、 ア ド レス電極 2 2は隔壁 2 4と平行に配され ている。  The discharge electrode 12 and the address electrode 22 are both striped, and the discharge electrode 12 is arranged in a direction orthogonal to the partition wall 24 and the address electrode 22 is arranged in parallel with the partition wall 24. .
そして、 放電電極 1 2とア ドレス電極 2 2が交差するところに、 赤, 緑, 青の 各色を発光するセルが形成されたパネル構成となっている。  The panel structure is such that cells emitting red, green, and blue colors are formed where the discharge electrode 12 and the address electrode 22 intersect.
誘電体層 1 3は、 前面ガラス基板 1 1 の放電電極 1 2が配された表面全体を覆 つて配設された誘電物質からなる層であって、 一般的に、 鉛系低融点ガラスが材 料として用いられているが、 ビスマス系低融点ガラス、 或は鉛系低融点ガラスと ビスマス系低融点ガラスの積層物で形成しても良い。  The dielectric layer 13 is a layer made of a dielectric material disposed over the entire surface of the front glass substrate 11 on which the discharge electrodes 12 are disposed, and is generally made of a lead-based low-melting glass. Although it is used as a material, it may be formed of bismuth-based low-melting glass or a laminate of lead-based low-melting glass and bismuth-based low-melting glass.
保護層 1 4は、 酸化マグネシウム (M g〇) からなる薄層であって、 誘電体層 1 3の表面全体を覆っている。 誘電体層 2 3は、 可視光反射層としての働きも兼 ねるように、 T i O 2粒子が混合されている。 隔壁 2 4は、 ガラス材料からなり、 背面パネル 2 0の誘電体層 2 3の表面上に突設されている。 The protective layer 14 is a thin layer made of magnesium oxide (Mg〇) and covers the entire surface of the dielectric layer 13. The dielectric layer 23 is mixed with TiO 2 particles so as to also serve as a visible light reflecting layer. The partition wall 24 is made of a glass material, and protrudes from the surface of the dielectric layer 23 of the back panel 20.
一方、 P D Pの外周部では、 前面パネル 1 0及び背面パネル 2 0が封着材によ つて封着されている。  On the other hand, on the outer peripheral portion of the PDP, the front panel 10 and the rear panel 20 are sealed with a sealing material.
隔壁 2 4の頂部と前面パネル 1 0とは、 ほぼ全体的に接触しているか接合材に よつて接合された状態になっている。  The top of the partition wall 24 and the front panel 10 are almost in contact with each other or are joined by a joining material.
このような P D Pを作製する方法の一例について以下に説明する。  An example of a method for producing such a PDP will be described below.
前面パネルの作製 ;  Fabrication of the front panel;
前面ガラス基板 1 1上に、 放電電極 1 2を形成し、 その上を覆うように誘電体 層 1 3を形成し、 更に誘電体層 1 3の表面に、 真空蒸着法, 電子ビーム蒸着法, あるいは C V D法で、 酸化マグネシウム (M g〇) からなる保護層 1 4を形成す ることによって作製する。  A discharge electrode 12 is formed on a front glass substrate 11, a dielectric layer 13 is formed so as to cover the discharge electrode 12, and a vacuum evaporation method, an electron beam evaporation method, Alternatively, it is manufactured by forming a protective layer 14 made of magnesium oxide (Mg〇) by a CVD method.
放電電極 1 2は、 銀電極用のペース トをスクリーン印刷で塗布した後に焼成す ることによって形成することができる。 この他に、 I T O (イ ンジウム ' スズ ' ォキサイ ド) や S n 02で透明電極を形成した後、 その上に上記のように銀電極を 形成したり、フォ ト リソグラフィ一法で C r— C u— C r電極を形成してもよい。 誘電体層 1 3は、 鉛系のガラス材料 (その組成は、 例えば、 酸化鉛 [P b O] 70重量%. 酸化硼素 [B203] 1 5重量%. 酸化硅素 [S i〇2] 1 5重量%。) を含むペース トをスクリーン印刷法で塗布し焼成することによって形成すること ができる。 The discharge electrode 12 can be formed by applying a paste for a silver electrode by screen printing and then firing. In addition, ITO (Lee indium 'Tin' Okisai de) and after forming the transparent electrode in S n 0 2, or to form a silver electrode as described above thereon, C at the Photo lithographic one method r- A Cu—Cr electrode may be formed. The dielectric layer 1 3, the glass material (the composition of the lead-based, for example, lead oxide [P b O] 70 wt%. Boron oxide [B 2 0 3] 1 5 wt%. Silicon oxide [S I_〇 2 ] 15% by weight) is applied by screen printing and baked.
背面パネルの作製 :  Fabrication of rear panel:
背面ガラス基板 2 1上に、 放電電極 1 2と同様にスク リーン印刷法を用いて、 ァドレス電極 22を形成する。  An address electrode 22 is formed on the rear glass substrate 21 by using a screen printing method in the same manner as the discharge electrode 12.
次に、 T i 〇2粒子が混合されたガラス材料をスクリーン印刷法を用いて塗布し 焼成することによって誘電体層 23を形成する。 Next, a dielectric layer 23 by applying and baking by a screen printing method of a glass material T i 〇 2 particles are mixed.
次に隔壁 24を形成する。 隔壁 24は、 スク リーン印刷法で隔壁用ガラスペ一 ス トを重ね塗布した後、焼成することによって形成することができる。 この他に、 隔壁用ガラスペース トを背面ガラス基板 2 1上の全面に塗布した後、 隔壁を形成 しない部分をサンドプラス ト法で削りとる方法を用いても隔壁 24を形成するこ とができる。  Next, the partition 24 is formed. The partition walls 24 can be formed by applying a glass paste for partition walls repeatedly by a screen printing method, followed by baking. Alternatively, the partition wall 24 can also be formed by applying a method of applying a glass paste for the partition wall to the entire surface of the rear glass substrate 21 and then shaving off a portion where the partition wall is not formed by a sand-plasting method. .
そして、 隔壁 24の間の溝に蛍光体層 25を形成する。 この蛍光体層 25は、 一般的には各色蛍光体粒子を含む蛍光体ペース トをスク リーン印刷法で塗布し焼 成することによって形成されるが、 蛍光体ィンキをノズルから連続的に噴射しな がら溝に沿って走査する方法で塗布し、 塗布後に蛍光体ィンキに含まれている溶 剤やバインダーを除去するため焼成することによって形成することもできる。 こ の蛍光体イ ンキは、 各色蛍光体粒子が、 バインダー、 溶剤、 分散剤などの混合物 に分散され、 適度な粘度に調整されたものである。  Then, the phosphor layer 25 is formed in the groove between the partition walls 24. The phosphor layer 25 is generally formed by applying and burning a phosphor paste containing phosphor particles of each color by a screen printing method, and continuously ejects a phosphor ink from a nozzle. However, it can also be formed by applying by a method of scanning along the groove, and baking to remove the solvent and binder contained in the phosphor ink after the application. In this phosphor ink, phosphor particles of each color are dispersed in a mixture of a binder, a solvent, a dispersant, and the like, and are adjusted to an appropriate viscosity.
蛍光体粒子の具体例としては、  Specific examples of the phosphor particles include:
青色蛍光体: B aMgA 11()O17 : E u2+ Blue phosphor: B aMgA 1 1 () O 17: E u 2+
緑色蛍光体: B a A 11219: Mnあるいは Z n2S i 〇4: Mn Green phosphor: B a A 1 1219 : Mn or Zn 2 S i 〇 4 : Mn
赤色蛍光体: (YXG (1ト x) B〇3: E u3+あるいは YB03: E u3+ Red phosphor: (Y X G (1 preparative x) B_〇 3: E u 3+ or YB0 3: E u 3+
を挙げることができる。  Can be mentioned.
本実施形態では、 40ィンチクラスの VGAやハイビジョンテレビに合わせて、 隔壁の高さは 0. 06~0. 1 5mm、 隔壁のピッチは 0. 1 3〜0. 36mm とする。 封着工程 ·真空排気工程 ·放電ガス封入工程: In the present embodiment, the height of the partition walls is set to 0.06 to 0.15 mm and the pitch of the partition walls is set to 0.13 to 0.36 mm in accordance with a 40-inch class VGA or high-definition television. Sealing process · Evacuation process · Discharge gas filling process:
次に、 このように作製した前面パネル 1 0と背面パネル 2 0とを封着する。 この封着工程においては、 前面パネル 1 0及び背面パネル 2 0を、 外周部に封 着材を介挿させて重ね合わせて外囲器を形成し、 当該封着材で封着を行う。 この とき、 必要に応じて背面パネル 2 0の隔壁 2 4の頂部に接合材を塗布しておいて も構わない。  Next, the front panel 10 and the rear panel 20 thus manufactured are sealed. In this sealing step, the front panel 10 and the rear panel 20 are overlapped with each other with a sealing material interposed therebetween in the outer peripheral portion to form an envelope, and sealing is performed with the sealing material. At this time, if necessary, a bonding material may be applied to the top of the partition wall 24 of the rear panel 20.
封着材としては、 熱などのエネルギーを外部から加えることによって軟化しす るもの、 通常は低融点ガラスを用い、 封着材を加熱して軟化させた後、 硬化させ ることによつて封着を行う。  As a sealing material, a material that is softened by externally applying energy such as heat, ordinarily a low-melting glass is used, and the sealing material is heated to be softened and then cured. To wear.
そして、 封着工程を行う際に、 外囲器の内部と外部とで圧力差を形成すること によって、 両パネル 1 0 · 2 0は外側から均一的に押圧されるようにする。 それ によって、 隔壁 2 4の頂部と前面パネル 1 0とが全体的に接触もしくは接近した 状態で封着がなされる。  Then, when performing the sealing step, by forming a pressure difference between the inside and the outside of the envelope, both panels 10 and 20 are uniformly pressed from the outside. Thereby, sealing is performed in a state where the top of the partition wall 24 and the front panel 10 are entirely in contact with or close to each other.
封着工程が終われば、 外囲器の内部に吸着されている不純物ガスなどを追い出 すために内部空間を高真空 (例えば、 1 . 3 X 1 0— "M P a ) にして排気する (真 空排気工程)。  After the sealing process is completed, the internal space is evacuated to a high vacuum (for example, 1.3 X 10— “MPa) in order to drive out the impurity gas and the like adsorbed inside the envelope. Vacuum exhaust process).
その後、 外囲器の内部に放電ガス (例えば H e— X e系, N e— X e系. A r 一 X e系の不活性ガス) を所定の圧力で封入する (放電ガス封入工程) ことによ つて P D Pを作製する。  Thereafter, a discharge gas (for example, He-Xe system, Ne-Xe system, or Ar-Xe system inert gas) is sealed at a predetermined pressure inside the envelope (discharge gas filling process). In this way, a PDP is produced.
なお、 本実施形態では、 放電ガスにおける X eの含有量を 5体積%程度とし、 封入圧力は 0 . 0 6 7〜 0 . 1 1 M P aの範囲に設定する。  In this embodiment, the content of Xe in the discharge gas is set to about 5% by volume, and the filling pressure is set in the range of 0.067 to 0.11 MPa.
P D Pを駆動表示する際には、 図 2のように回路プロックを実装して駆動を行 ラ。  When driving and displaying a PDP, a circuit block is mounted as shown in Fig. 2 to drive.
以下、 封着工程、 並びに真空排気工程, 放電ガス封入工程について、 実施の形 態 1 〜 4に分けて詳細に説明する。  Hereinafter, the sealing step, the evacuation step, and the discharge gas filling step will be described in detail for each of Embodiments 1 to 4.
〈実施の形態 1 >  <First Embodiment>
図 3は、 本実施形態の封着工程で用いる封着 ·排気装置 5 0を模式的に示す図 であり、 (a ) は、 上面切欠図であり、 (b ) は、 (a ) における A - A ' 線を含む 垂直断面図である。 この封着 ·排気装置 5 0は、 前面パネル 1 0及び背面パネル 2 0が重ね合わせ られた外囲器 4 0を収納してこれを加熱する加熱炉 5 1 と、 加熱炉 5 1の外部に 設けられたガス導入系統 5 2、 吸引排気系統 5 3とから構成されている。 FIGS. 3A and 3B are diagrams schematically showing the sealing / exhausting device 50 used in the sealing step of the present embodiment, wherein FIG. 3A is a top cutaway view, and FIG. FIG. 4 is a vertical sectional view including a line A ′. The sealing / exhaust device 50 includes a heating furnace 51 for housing and heating an envelope 40 on which the front panel 10 and the rear panel 20 are superimposed, and an outside of the heating furnace 51. The system consists of a gas introduction system 52 and a suction / exhaust system 53 provided.
この加熱炉 5 1 は、 ヒータ 5 4で加熱することができ、 内部の温度は所望の設 定温度に制御できるようになつている。  The heating furnace 51 can be heated by a heater 54, and the internal temperature can be controlled to a desired set temperature.
この封着 ·排気装置 5 0を用いて、 以下のように封着工程を行う。  Using this sealing / exhausting device 50, a sealing process is performed as follows.
図 3に示すように、 予め、 背面パネル 2 0には、 表示領域より外側の外周部に 通気孔 2 1 a、 2 1 bを設けておく。 通気孔 2 1 aは、 背面パネル 2 0の右上に 形成され、 通気孔 2 1 bは、 背面パネル 2 0の左下に形成されている。  As shown in FIG. 3, the rear panel 20 is provided with ventilation holes 21a and 21b on the outer peripheral portion outside the display area in advance. The air hole 21 a is formed at the upper right of the rear panel 20, and the air hole 21 b is formed at the lower left of the rear panel 20.
前面パネル 1 0及び背面パネル 2 0の対向面のどちらか一方または両方の外周 部に、 封着材を含むペース トを塗布し焼成することによって封着材層 4 1 を形成 する。 ここでは、 封着材として隔壁 2 4や誘電体層 2 3の材料よりも軟化温度の 低い低融点ガラスを用いる。 なお、 封着材としてこの低融点ガラスに限られない のは言うまでもなく、 金属などを用いることもできる。 この場合、 封着温度は、 金属が溶融する温度つまり融点以上の温度となる。  A paste containing a sealing material is applied to the outer peripheral portion of one or both of the facing surfaces of the front panel 10 and the rear panel 20 and fired to form a sealing material layer 41. Here, a low-melting glass having a softening temperature lower than that of the material of the partition wall 24 and the dielectric layer 23 is used as the sealing material. Needless to say, the sealing material is not limited to this low-melting glass, but a metal or the like can also be used. In this case, the sealing temperature is a temperature at which the metal is melted, that is, a temperature equal to or higher than the melting point.
低融点ガラスペース トの具体例としては、 低融点ガラスフ リ ッ ト (軟化点 3 7 0 °C ) 8 0部、 ェチルセルロース系バイ ンダー 5部、 酢酸ィソァミル 1 5部を混 合したもの挙げることができ、 これをディスペンザ一で塗布することによって、 封着材層 4 1 を形成することができる。  Specific examples of the low-melting glass paste include a mixture of 80 parts of a low-melting glass frit (softening point: 370 ° C), 5 parts of an ethylcellulose binder, and 15 parts of isoamyl acetate. By applying this with a dispenser, the sealing material layer 41 can be formed.
両端に位置する隔壁と封着材層 4 1 との間には、 その間に形成された空間を 2 つに区分する分離材 4 2が設けられている。 この分離材 4 2は、 封着材層 4 1、 隔壁と同じ材料を用いることができる。 この分離材の存在によって、 隔壁同士の 間に形成された放電空間内においてガスの導入 ·排出が効率良く行われることに なる。 なお、 この分離材 4 2は設けなくても構わない。  Between the partition walls located at both ends and the sealing material layer 41, a separating material 42 for dividing the space formed therebetween into two is provided. The same material as the sealing material layer 41 and the partition wall can be used for the separation material 42. Due to the presence of the separating material, gas is efficiently introduced and discharged in the discharge space formed between the partition walls. Note that the separation member 42 need not be provided.
次に、 前面パネル 1 0と背面パネル 2 0とを、 位置合わせしながら重ね合わせ て外囲器 4 0を形成する。 そして、 位置合わせされた前面パネル 1 0と背面パネ ル 2 0とが位置ずれしないように、 外囲器 4 0の外周部をクリ ップ (不図示) で 締め付けて固定する。  Next, the front panel 10 and the rear panel 20 are overlapped while being positioned to form an envelope 40. Then, the outer peripheral portion of the envelope 40 is tightened and fixed with a clip (not shown) so that the aligned front panel 10 and rear panel 20 do not shift.
この外囲器 4 0を、 加熱炉 5 1 内にセッ トする。 そして、 外囲器 4 0の通気孔 2 1 aに接続管 5 5を介して、 ガス導入系統 5 2を接続する。 一方、 外囲器 4 0 の通気孔 2 1 bに接続管 5 6を介して、 吸引排気系統 5 3を接続する。 The envelope 40 is set in the heating furnace 51. And the vents of the enclosure 40 2 1a is connected to the gas introduction system 52 via the connection pipe 55. On the other hand, a suction / exhaust system 53 is connected to the ventilation hole 21 b of the envelope 40 via a connection pipe 56.
接続管 5 5及び接続管 5 6は、 背面パネル 2 0の下面に接着材 5 5 a及び 5 6 aを介して固定されるガラス管である。 前記接着材 5 5 a及び 5 6 aには、 例え ば、 前記封着材層 4 1 の材料と同じものを用い、 低融点ガラスを含むペース トを ディ スペンザ一で塗布 ·乾燥させてクリ ップも併用して仮固定する。 これにより、 封着材層 4 1が軟化 ·硬化して外囲器 4 0が封着されるのに伴って、 接着材 5 5 a、 5 6 aも軟化 ·硬化されることによって接続管 5 5及び接続管 5 6と背面パ ネル 2 0の通気孔 2 1 a及び通気孔 2 1 bとの接続及び気密シールも自動的にな される。  The connection pipe 55 and the connection pipe 56 are glass tubes fixed to the lower surface of the rear panel 20 via adhesives 55a and 56a. For the adhesives 55a and 56a, for example, the same material as the material of the sealing material layer 41 is used, and a paste containing a low-melting glass is applied and dried with a dispenser, and clicked. And temporarily fix them together. As a result, as the sealing material layer 41 is softened and hardened and the envelope 40 is sealed, the adhesive materials 55 a and 56 a are also softened and hardened, thereby forming the connection pipe 5. The connection and airtight sealing between the air holes 21a and the air holes 21b of the rear panel 20 and the connection pipe 56 and the connection pipe 56 are automatically performed.
ガス導入系統 5 2は、 放電ガスが充填されたガスボンベ 5 2 aとこれと接続管 5 5とを接続する配管系 5 2 bとからなる。 配管系 5 2 bの途中には、 ガス導入 量を調整するための開閉バルブ 5 2 cが設けられている。 接続管 5 5と、 配管系 5 2 bとは、 チヤックなどによって気密性を確保した状態に互いに連結される。 吸引排気系統 5 3は、 マニホ一ルド 5 3 aと、 ターボ分子ポンプ 5 3 bと、 口 一タリ一ポンプ 5 3 cと、 前記接続管 5 6とマ二ホールド 5 3 aとを接続する配 管系 5 3 dと、 前記マ二ホールド 5 3 aとターボ分子ポンプ 5 3 bとを接続する 配管系 5 3 eとからなる。 配管系 5 3 eの途中には、 ターボ分子ポンプによる吸 引量を調整するための開閉バルブ 5 3 f が設けられている。 接続管 5 6と、 配管 系 5 3 dとは、チヤックなどによって気密性を確保した状態に互いに連結される。 なお、 本実施形態では、 前面パネル 1 0が上側、 背面パネル 2 0が下側になる ようセッ 卜するものとするが、 上下を逆にしてセッ ト してもよい。 また、 両パネ ル 1 0 · 2 0が位置ずれしないように固定されていれば、 加熱炉内に外囲器 4 0 を立ててセッ ト してもかまわない。  The gas introduction system 52 includes a gas cylinder 52 a filled with a discharge gas and a piping system 52 b connecting the gas cylinder 52 a to the connection pipe 55. An on-off valve 52c for adjusting the gas introduction amount is provided in the middle of the piping system 52b. The connection pipe 55 and the piping system 52b are connected to each other in a state where airtightness is secured by a check or the like. The suction / exhaust system 53 includes a manifold 53a, a turbo molecular pump 53b, an outlet pump 53c, and a connection connecting the connection pipe 56 and the manifold 53a. A pipe system 53d and a piping system 53e connecting the manifold 53a and the turbo-molecular pump 53b. An opening / closing valve 53 f for adjusting the suction amount of the turbo molecular pump is provided in the middle of the piping system 53 e. The connecting pipe 56 and the piping system 53d are connected to each other in a state where airtightness is secured by a check or the like. In the present embodiment, the front panel 10 is set so as to be on the upper side, and the rear panel 20 is set so as to be on the lower side. However, it may be set upside down. If both panels 10 and 20 are fixed so as not to be displaced, the envelope 40 may be set up in the heating furnace.
そして、加熱炉 5 1内を加熱して、封着材の軟化温度より若干高い封着温度(例 えば 4 5 0 °C ) まで昇温し、 封着温度で所定の時間保った後、 再び軟化点温度以 下に降温することによって両パネル 1 0 · 2 0間を封着するが、 ターボ分子ボン プ 5 3 bで外囲器 4 0内部から排気しながら封着を行う。 なお、 ターボ分子ボン プ 5 3 bを作動させるときには、 ロータリーポンプ 5 3 cを同時に作動させてタ ーボ分子ポンプ 5 3 b内の背圧を下げる。 封着条件は、 ガラス基板材料と封着材 との相性とで決るが、 低融点ガラスを用いる場合には、 約 4 5 0 °Cで 1 0〜2 0 分程度である。 Then, the inside of the heating furnace 51 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then again. The temperature between the panels 10 and 20 is sealed by lowering the temperature below the softening point, but sealing is performed while exhausting the inside of the envelope 40 with the turbo molecular pump 53b. When the turbo molecular pump 53b is operated, the rotary pump 53c is simultaneously operated and the turbo molecular pump 53b is operated. -Bo molecular pump 5 Reduce back pressure in 3b. The sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
排気は、 加熱炉 5 1 内が封着材の軟化温度に達した後に開始することが望まし い。 封着材の軟化温度に達するまでは、 両パネル 1 0 · 2 0間の外周部の気密性 があまりないので、 外囲器 4 0の内部空間から排気してもその内部を高い真空度 にすることができないが、 封着材が軟化した後は、 両パネル 1 0 · 2 0間の外周 部が気密シールされると共に、 接着材層 2 6 も軟化されて配管部材 2 6と通気 孔 2 1 aとの接続部分も気密シールされるので、 外囲器 4 0内部から排気すると 高い真空度 ( 1 . 3 3 X 1 0—4M P a程度 (数 T o r r程度)) に減圧されるから である。 It is desirable that the evacuation be started after the inside of the heating furnace 51 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material softens, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 26 is also softened so that the piping member 26 and the vent hole 2 are softened. since also the connecting portion between the 1 a is hermetically sealed, since the pressure is reduced in the evacuated from within the envelope 4 0 high vacuum (1. 3 3 X 1 0- 4 MP a degree (about several T orr)) It is.
このように外囲器 4 0の内部空間から排気することによって両パネル 1 0 - 2 0は外側から均一に加圧された状態となる。吸引排気系統 5 3による吸引排気は、 外囲器 4 0内の圧力と加熱炉内との圧力との差によつて封着材が押し縮められて, 2枚の前面パネルと背面パネルとが接近して前面パネルと隔壁とが接触する程度 であればよいので、 僅かに吸引排気する (例えば、 0 . 0 8 M P a程度) だけで 十分である。  By exhausting air from the internal space of the envelope 40 in this manner, the panels 10-20 are uniformly pressed from the outside. In the suction and exhaust system 53, the sealing material is pressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front and rear panels are separated. Sufficient suction and exhaust (for example, about 0.08 MPa) is enough, as long as it is close enough to allow the front panel and partition to come into contact.
両パネル 1 0 · 2 0が外側から均一に加圧されると、 図 3に示すように、 背面 パネル 2 0上の隔壁頂部と前面パネル 1 0とは、 全体的にぴったり密着した状態 となる。 そして、 この状態で降温されると、 封着材が軟化以下の温度となり硬化 することによって外囲器 4 0の封着がなされる。 従って、 封着された後の外囲器 4 0においては、 隔壁頂部と前面パネル 1 0とが全体的にぴったり密着した状態 が保たれていることになる。  When both panels 10 and 20 are uniformly pressed from the outside, as shown in Fig. 3, the top of the partition wall on the rear panel 20 and the front panel 10 are in close contact with each other as a whole. . When the temperature is lowered in this state, the temperature of the sealing material becomes lower than the softening temperature and the sealing material is hardened, whereby the envelope 40 is sealed. Therefore, in the envelope 40 after the sealing, the top of the partition wall and the front panel 10 are kept in close contact with each other as a whole.
なお、 前記封着工程において、 封着材の軟化温度より若干高い封着温度に一気 に昇温するのではなく、 封着温度よりも低い温度で一定時間、 例えば、 3 5 0 °C 程度で 3 0分程度加熱してバインダ材をバーンァゥ ト しておけば、 蛍光体の劣化 を抑える上で効果的である。  In the sealing step, the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
このようにして外囲器 4 0の封着が完了した後に次の真空排気工程に移る。 真空排気工程は、 加熱炉 5 1内の温度を封着材層の軟化点よりも低い温度 (排 気べ一キング温度) で加熱 (ベーキング) しながら、 開閉バルブ 5 3 f を適度に 開いた状態で、 ターボ分子ポンプ 5 3 b及びロータリーポンプ 5 3 cを作動させ て外囲器 4 0内を真空状態にまで吸引し、 その後、 ガス導入系統 5 2から放電ガ スを外囲器 4 0内に所定圧 (例えば、 0 . 0 5 M P a ) 導入する。 放電ガスを充 填した後、 所定時間 (5分から 1 0分) そのままの圧力を保持することがより望 ましい。 これは、 外囲器 4 0内の隔壁間のコンダクタンスが小さいため、 平衡圧 に達するまでに時間を要するためである。 After the sealing of the envelope 40 is completed in this manner, the process proceeds to the next evacuation step. In the evacuation process, the temperature in the heating furnace 51 is set to a temperature lower than the softening point of the sealing material layer (exhaust temperature). While heating (baking) at the heating temperature (baking temperature), the turbo molecular pump 53 b and the rotary pump 53 c are operated while the opening / closing valve 53 f is appropriately opened, and the inside of the envelope 40 is heated. The gas is suctioned to a vacuum state, and then a discharge gas is introduced from the gas introduction system 52 into the envelope 40 at a predetermined pressure (for example, 0.05 MPa). It is more desirable to maintain the pressure for the specified time (5 to 10 minutes) after charging the discharge gas. This is because it takes time to reach the equilibrium pressure because the conductance between the partitions in the envelope 40 is small.
なお、 上記のように真空排気工程を排気べ一キング温度に加熱しながら行うこ とで、 外囲器 4 0の内壁面に吸着した不純物がガス状となって、 放電空間内に充 満し易く より迅速に不純物を外囲器外に追い出すことができる上で望ましく一般 的にはこのように排気べ一キング温度にまで加熱しながら真空排気を行うが、 無 論、 このようにすることなく、 単に真空排気するだけであっても構わない。  By performing the evacuation process while heating to the evacuation baking temperature as described above, the impurities adsorbed on the inner wall surface of the envelope 40 become gaseous and fill the discharge space. It is preferable because impurities can be expelled out of the envelope more easily. Generally, the vacuum evacuation is performed while heating to the exhaust baking temperature as described above. However, it is possible to simply evacuate.
また、 前記排気べ一キング温度は、 封着材の軟化点よりも低い温度 (封着材に 金属を用いる場合には、 金属の融点よりも低い温度) であることは勿論である。 そして、 ここでは、 外囲器 4 0の内壁面に吸着した吸着水を効果的に脱離させる 程度の温度 (例えば、 3 5 0 °C程度) とする。  The exhaust baking temperature is, of course, lower than the softening point of the sealing material (or lower than the melting point of the metal when a metal is used as the sealing material). Here, the temperature is set to a temperature (for example, about 350 ° C.) at which the adsorbed water adsorbed on the inner wall surface of the envelope 40 is effectively desorbed.
真空排気工程には、 外囲器 4 0の温度が室温程度にまで冷却した後に移行する こともできるが、 封着工程における封着温度から排気べ一キング温度に冷却した 時点で移行するようにすれば、 冷却した後に再度排気べ一キング温度にまで加熱 する加熱期間を省略できるので製造工程をより短縮させる上では望ましい。  The evacuation process can be started after the temperature of the envelope 40 has been cooled down to about room temperature.However, the process should be started when the sealing temperature in the sealing process is cooled to the exhaust baking temperature. If this is done, a heating period for heating to the exhaust baking temperature again after cooling can be omitted, which is desirable in further shortening the manufacturing process.
そして、 次に、 ガス導入系統 5 2からの放電ガス導入を止め、 吸引排気系統 5 3から外囲器内の放電ガスを吸引排出させ、外囲器 4 0内を再び真空状態とする。 このような真空排気 ·放電ガス導入 ·真空排気という処理は、 通常は一回でも 十分であるが、 繰返し行えば、 外囲器 4 0内の不純物ガスをより低濃度とするこ とができる。  Then, the introduction of the discharge gas from the gas introduction system 52 is stopped, the discharge gas in the envelope is sucked and discharged from the suction / exhaust system 53, and the inside of the envelope 40 is again brought into a vacuum state. Such a process of evacuation, discharge gas introduction, and evacuation is usually sufficient even once, but if repeated, the impurity gas in the envelope 40 can be made lower in concentration.
このように外囲器 4 0内に導入されるガスは、 放電ガスでなく とも、 放電ガス に対して不純物とならないガスであれば何れでもよい。 不純物の定義は明確では ないが、 輝度低下などの要因となるガスをいう。 また、 このガスは、 乾燥ガスで あれば、 蛍光体の特性劣化を抑制できるのでより望ましい。 ここで、 乾燥ガスと は、 通常のガスよりも水蒸気分圧が低いガス、 例えば、 水蒸気分圧 (露点) が 0 . 0 0 2 7 M P a ( 2 2 °C ) 以下のガスである。 As described above, the gas introduced into the envelope 40 is not limited to the discharge gas, and may be any gas that does not become an impurity with respect to the discharge gas. The definition of an impurity is not clear, but refers to a gas that causes a reduction in brightness. In addition, it is more preferable that the gas be a dry gas, since the deterioration of the characteristics of the phosphor can be suppressed. Where dry gas and Is a gas whose vapor partial pressure is lower than that of ordinary gas, for example, a gas whose vapor partial pressure (dew point) is less than 0.027 MPa (22 ° C).
一旦真空にした後、 外囲器 4 0内に導入する圧は、 1 . 3 3 x 1 0— 4M P a程 度 (数 T o r r ) から外囲器 4 0が破壊しない圧力内であれば良く、 大気圧より も低い方が望ましい。 Once the vacuum was applied, pressure is introduced into the envelope 4 inside 0, if 1. 3 3 x 1 0- 4 MP a extent from (the number T orr) within the pressure enclosure 4 0 does not destroy Good, preferably below atmospheric pressure.
次に、 封入工程では、 ガス導入系統 5 2により外囲器 4 0の内部空間に放電ガ スを所定の封入圧力 (例えば、 0 . 0 6 7 M P a ) となるよう供給する。 そして、 接続管 5 5及び接続管 5 6の付根部分をパーナやヒータで溶融して封じ切る (チ ップオフ) ことによって通気孔 2 1 a、 通気孔 2 1 bを封止する。  Next, in the filling step, a discharge gas is supplied to the internal space of the envelope 40 by the gas introduction system 52 so as to have a predetermined filling pressure (for example, 0.067 MPa). Then, the ventilation holes 21 a and 21 b are sealed by melting (chip-off) the root portions of the connection pipe 55 and the connection pipe 56 with a wrench or heater.
〔本実施形態の製造方法による効果について〕  [Effects of the manufacturing method of the present embodiment]
従来のように外囲器 4 0の内外圧力差を設けることなく外周部をクリ ップなど で締め付ける場合、 外囲器 4 0の中央部を押圧されないため、 背面パネル 2 0上 の隔壁頂部と前面パネル 1 0とが全体的あるいは部分的に離れた状態で封着され やすいのに対して、 上記のように、 外囲器 4 0は、 内外の圧力差によって両パネ ル 1 0 · 2 0が外側から均一的に押圧された状態で封着材層 4 1が硬化して封着 されるので、 隔壁頂部と前面パネル 1 0との隙間がほとんどない状態で封着がな される。  When the outer periphery is tightened with a clip or the like without providing a pressure difference between the inside and outside of the envelope 40 as in the conventional case, the central part of the envelope 40 is not pressed, so that the top of the bulkhead on the rear panel 20 is not pressed. While the front panel 10 is easily or completely sealed away from the front panel 10, as described above, the envelope 40 is separated by the pressure difference between the inside and the outside. The sealing material layer 41 is hardened and sealed in a state where the sealing material layer 41 is uniformly pressed from the outside, so that the sealing is performed in a state where there is almost no gap between the top of the partition wall and the front panel 10.
従って、 本実施形態の製造方法によれば、 P D P駆動時の振動が発生しにく く 且つ表示品位の良好な P D Pを容易に作製することができる。  Therefore, according to the manufacturing method of the present embodiment, it is possible to easily manufacture a PDP with less vibration during PDP driving and good display quality.
このような効果を得るためには、 少なく とも軟化した封着材層 4 1が硬化する 時点においては、 吸引排気系統を作動させて外囲器 4 0の内外圧力差が生じてい る状態にする必要はあるが、 封着工程の始めから終わりまで連続して吸引排気系 統 5 3を作動させる必要はない。 例えば、 封着材層 4 1が軟化した後で、 吸引排 気系統 5 3の作動を開始しても、 両パネル 1 0 · 2 0の内外圧差による効果を十 分に得ることができる。  In order to obtain such an effect, at least at the time when the softened sealing material layer 41 is hardened, the suction / exhaust system is operated so that a pressure difference between the inside and outside of the envelope 40 is generated. Although necessary, it is not necessary to operate the suction and exhaust system 53 continuously from the beginning to the end of the sealing process. For example, even if the operation of the suction / discharge system 53 is started after the sealing material layer 41 is softened, the effect due to the internal / external pressure difference between the panels 10 and 20 can be sufficiently obtained.
また、上記真空排気工程によつて、外.囲器 4 0内の不純物ガス濃度を迅速に(短 時間で) 低濃度にまで除去することが可能となる。  In addition, the above-described evacuation step makes it possible to quickly (shortly) remove the impurity gas concentration in the envelope 40 to a low concentration.
これは、 1 ) 大量の放電ガスの充填による不純物ガスの希釈効果、 2 ) ガス充 填、 再排気時の粘性流により残留不純物ガスが外囲器 4 0外に排出される効果、 3 ) 排気べ一キング時に加熱されることで高温となった放電ガス分子が蛍光体や 保護層等の外囲器 4 0の内壁面に衝突することにより吸着ガスを離脱させる効果 などによるものと考えられる。 第三の理由からすれば、 排気工程において外囲器 内に導入する放電ガス (洗浄ガス) には予め加熱したものを用いることが望まし いと言える。 This is due to 1) the effect of diluting the impurity gas by filling a large amount of discharge gas, 2) the effect of discharging the residual impurity gas out of the envelope 40 by viscous flow during gas filling and re-evacuation, 3) Discharge gas molecules that have become hot due to heating during exhaust baking collide with the inner wall surface of the envelope 40, such as the phosphor and the protective layer, to release the adsorbed gas. Conceivable. For the third reason, it can be said that it is desirable to use a preheated discharge gas (cleaning gas) to be introduced into the envelope during the exhaust process.
排気べ一キング温度に保持した状態で外囲器 4 0内を真空排気した後では、 外 囲器 4 0内の隔壁に囲まれた放電空間内の残留ガスが十分に抜け切れていない。 例えば、 外囲器 4 0内の隔壁の高さが 1 2 0 u m , ピッチが 2 0 0 で、 排気 用の加工穴の直径が約 2 m m、 接続管 5 7の内径が約 2 m m、 接続管 5 7の長さ が約 9 O m mとする場合には、 3 5 0 °Cの排気べ一キング温度で排気を行うと、 マ二ホール ド 5 3 a内の圧力が 1 . 3 X 1 0—u〜 1 . 3 x 1 0—lflM P a程度にな つていても、 外囲器 4 0内の圧力はこれよりも約 1桁〜 2桁程高い。 After the inside of the envelope 40 is evacuated while maintaining the exhaust baking temperature, the residual gas in the discharge space surrounded by the partition walls in the envelope 40 is not sufficiently removed. For example, the height of the partition wall in the envelope 40 is 120 μm, the pitch is 200, the diameter of the processing hole for exhaust is about 2 mm, the inner diameter of the connecting pipe 57 is about 2 mm, and the connection Assuming that the length of the pipe 57 is about 9 Omm, exhausting at an exhaust baking temperature of 350 ° C results in a pressure in the manifold 53 a of 1.3 X 1 The pressure in the envelope 40 is about one to two orders of magnitude higher than 0— u to 1.3 × 10— lfl MPa.
勿論、 ベーキング時間を長くすれば、 外囲器 4 0の内壁に吸着した水、 炭酸ガ ス、 窒素、 酸素等の不純物ガス量は減少されるが、 製造コス トが増加することに なる。  Of course, if the baking time is lengthened, the amount of impurity gas such as water, carbon dioxide, nitrogen, and oxygen adsorbed on the inner wall of the envelope 40 is reduced, but the manufacturing cost is increased.
上記した真空排気工程では、 放電ガスを封入した後、 再び真空排気したが、 以 下のようにすればより迅速に、 不純物ガスを除去することができる。  In the above-described evacuation step, the discharge gas is sealed, and then the evacuation is performed again. However, the impurity gas can be removed more quickly as follows.
即ち、 ガス導入系統 5 2で外囲器 4 0内に放電ガスを導入しながら、 同時に、 吸引排気系統 5 3で外囲器 4 0内を排気する (図 3 ( a ) 中にガスの流れを太矢 印で示す。) ようにすることもできる。 このようにすることで、 外囲器 4 0内に放 電ガスの流れが生じるので、 より効率良く不純物ガスを排出することができ、 特 に、 外囲器 4 0の中央部分で、 排気口 (通気孔 2 l b ) から比較的離れて位置す る放電空間内の不純物ガスの排出効率に優れる。  In other words, the discharge gas is introduced into the envelope 40 by the gas introduction system 52, and at the same time, the interior of the envelope 40 is exhausted by the suction / exhaust system 53. Is indicated by a thick arrow.) By doing so, the flow of the discharge gas is generated in the envelope 40, so that the impurity gas can be discharged more efficiently. In particular, the exhaust port is provided at the center of the envelope 40. Excellent discharge efficiency of impurity gas in the discharge space located relatively far from the (venting hole 2 lb).
そして、 この場合、 放電ガスを封入する封入工程の前に、 外囲器内を敢えて一 度真空排気する必要はことなく、 そのままの状態で封入することも可能である。 く実施例 1 >  In this case, there is no need to evacuate the envelope once before the filling step of filling the discharge gas, and it is possible to fill the envelope as it is. Example 1>
次に、 上記実施の形態に基づいて各製造工程を行って実施例に係る P D Pを作 製した実施例について具体的に説明する。  Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to the example will be specifically described.
図 4は、 封着時の温度及び圧力プロフ ァイルを示す図であり、 図 5は、 真空排 気工程 ·封入工程における温度及び圧力プロフアイルを示す図であり、 本実施例 では、 この各プロファイルに従って、 PDPを作製した。 なお、 各図中、 点線は、 外囲器 40の温度を示し、 実線は外囲器 40に接続された吸引排気系統のマニホ ールド 53 a内の圧力変化を示す。 FIG. 4 is a diagram showing a temperature and pressure profile at the time of sealing, and FIG. FIG. 4 is a diagram showing temperature and pressure profiles in a gas process and an encapsulation process. In this example, a PDP was produced according to each profile. In each figure, a dotted line indicates the temperature of the envelope 40, and a solid line indicates a pressure change in the manifold 53a of the suction / exhaust system connected to the envelope 40.
まず、 封着工程において、 封着温度 450°Cまで 2時間から 3時間をかけて昇 温し、 この温度を 20分程度維持する。 同時に、 450 °Cに達するとマ二ホール ド 53 aの圧力を 0. 05 MP a程度に減圧し吸引排気系統の作動を停止してこ れを維持する。  First, in the sealing process, the temperature is raised to the sealing temperature of 450 ° C over 2 to 3 hours, and this temperature is maintained for about 20 minutes. At the same time, when the temperature reaches 450 ° C, the pressure in the manifold 53 a is reduced to about 0.05 MPa, the operation of the suction and exhaust system is stopped, and this is maintained.
そして、 減圧状態を維持したまま、 2時間から 3時間をかけて室温に降温させ る。  Then, while maintaining the reduced pressure, the temperature is lowered to room temperature over 2 to 3 hours.
この段階では、 前面パネルと背面パネルとは完全に封着が完了している。  At this stage, the front panel and the rear panel have been completely sealed.
次に、 図 5にいって、 更に吸引排気を継続してマ二ホールド 53 a内の圧力が 1. 3 x 1 0— 11〜; I . 3 X 1 0— lflMP a程度になった後、 加熱を開始し 2時間か ら 3時間をかけて排気べ一キング温度 (350°C) まで加熱する。 そして、 排気 ベーキング温度に達すると再び吸引排気を開始し、 加熱昇温時にマ二ホールド内 に流入したガスを排気する。 吸引排気を再開するときには、 接続管 56内壁や外 囲器 40内壁からの脱ガスによりマ二ホールド 53 a内の圧力が図 5の符号 60 で示す部分のように上昇しているが、 吸引排気を再開することにより減少に転じ る。 Next, go to 5, further pressure of the suction exhaust continue to Ma two hold 53 in a a is 1. 3 x 1 0- 11 ~; after becoming I about 3 X 1 0- lfl MP a. Start heating and heat to exhaust baking temperature (350 ° C) over 2 to 3 hours. Then, when the exhaust baking temperature is reached, suction exhaust is started again, and the gas flowing into the manifold at the time of heating and heating is exhausted. When the suction and exhaust are restarted, the pressure in the manifold 53a has risen as indicated by reference numeral 60 in FIG. 5 due to degassing from the inner wall of the connection pipe 56 and the inner wall of the envelope 40. It will start to decrease by restarting.
そして、 マ二ホールド 53 a内の圧力が 1. 3 X 1 0— 〜 1. 3 x 1 0 1()Μ Ρ a程度のなった段階で、 吸引排気系統 53の作動を停止して、 ガス導入系統 52 を作動させて外囲器 40内に放電ガスを 0. 05 MP a程度充填しこの圧力を 5 分から 1 0分程度維持する。 When the pressure in the manifold 53a reaches about 1.3 X 10— to 1.3 x 10 1 () Μ Ρa, the operation of the suction / exhaust system 53 is stopped, The introduction system 52 is operated to fill the envelope 40 with the discharge gas at about 0.05 MPa, and the pressure is maintained for about 5 to 10 minutes.
その後、 冷却させながら、 外囲器 40内のガスを吸引排気を再開し、 1. 3 x 1 0 n~ 1. 3 X 1 0—1()MP a程度になった後、 ガス導入系統 52により放電ガ スを外囲器 40内に 0. 067MP a程度充填する。 Thereafter, while cooled, the gas in the envelope 40 to resume suction exhaust, 1. 3 x 1 0 n ~ 1. 3 X 1 0- 1 () after becoming about MP a, the gas introduction system 52 With this, the discharge gas is filled into the envelope 40 at about 0.067 MPa.
従来の真空排気工程では、 外囲器内の圧力を 1. 3 x 1 0— "〜1. 3 x 1 0— MP aにまで減圧するには、 2時間程度かかるが、 上記実施例の真空排気工程に おいては 1時間程度で従来よりも迅速に当該圧力まで減圧することができる。 ここで、 吸引排気系統のポンプ系の駆動力をより大きく して、 より強力に外囲 器内を吸引するようにすれば、短時間に低圧に減圧することも可能と考えられる。 しかし、 このようにすると外囲器内の蛍光体が蛍光体層から脱離等するようにな ることから、 パネルの特性の劣化につながるので、 一般には、 上記したように、 マ二ホール ドを介在させて吸引力を比較的弱く して外囲器内を吸引するようにす る。 このため、 従来、 真空排気工程においては、 通常、 所望の内圧にまで外囲器 内を減圧するには比較的長い時間を要していた。 In the conventional evacuation process, it takes about 2 hours to reduce the pressure in the envelope to 1.3 x 10— ”to 1.3 x 10—1ϋMPa . In the evacuation step, the pressure can be reduced to the pressure more quickly than in the past in about one hour. Here, if the driving force of the pump system of the suction / exhaust system is increased to suction the inside of the envelope more strongly, it is considered that the pressure can be reduced to a low pressure in a short time. However, in this case, the phosphor in the envelope is detached from the phosphor layer and the like, which leads to deterioration of the panel characteristics. The suction force is relatively weakened by intervening to make the inside of the envelope sucked. For this reason, conventionally, in the vacuum evacuation process, it usually takes a relatively long time to reduce the pressure in the envelope to a desired internal pressure.
以上のようにして作製した P D Pは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0 %程度し、効率が数% から約 1 0 %程度向上した。  The PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. In addition, the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
〈実施例 2 >  <Example 2>
次に、 上記実施の形態に基づいて各製造工程を行って別な実施例に係る P D P を作製した実施例について具体的に説明する。  Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to another example will be specifically described.
図 6は、 封着時の温度及び圧力プロフ ァイル、 真空排気工程 ·封入工程におけ る温度及び圧力プロフ ァイルを示す図であり、 本実施例では、 この各プロフアイ ルに従って、 P D Pを作製した。 なお、 各図中、 点線は、 外囲器 4 0の温度を示 し、 実線は外囲器 4 0に接続された吸引排気系統のマ二ホールド内の圧力変化を 示す。  FIG. 6 is a diagram showing a temperature and pressure profile at the time of sealing, and a temperature and pressure profile in an evacuation step and an enclosing step. In the present example, a PDP was produced according to each of these profiles. In each figure, the dotted line indicates the temperature of the envelope 40, and the solid line indicates the pressure change in the manifold of the suction / exhaust system connected to the envelope 40.
まず、 封着工程において、 封着温度 4 5 0 °Cまで 2時間から 3時間をかけて昇 温し、 この温度を 2 0分程度維持する。 同時に、 4 5 0 °Cに達するとマ二ホール ド 5 3 aの圧力を 0 . 0 5 M P a程度に減圧し吸引排気系統の作動を停止してこ れを維持する。  First, in the sealing step, the temperature is raised to a sealing temperature of 450 ° C. over 2 to 3 hours, and this temperature is maintained for about 20 minutes. At the same time, when the temperature reaches 450 ° C, the pressure of the manifold 53a is reduced to about 0.05MPa, the operation of the suction / exhaust system is stopped, and this is maintained.
そして、 減圧状態を維持したまま、 3 0分程度かけて排気べ一キング温度 (3 5 0 °C ) まで降温させる。  Then, the temperature is lowered to the exhaust baking temperature (350 ° C.) over about 30 minutes while maintaining the reduced pressure state.
この段階では、 前面パネルと背面パネルとは完全に封着が完了しているが、 温 度低下と共に、 マ二ホールド 5 3 a内の圧力を監視しておけば、 封着の欠陥が分 り、 封着不良発生に対して製造段階の早い段階で対処することができ、 コス ト低 下に役立つ。 At this stage, the front panel and the rear panel have been completely sealed, but if the temperature is monitored and the pressure inside the manifold 53a is monitored, a sealing defect can be identified. In addition, it is possible to deal with the occurrence of sealing failure at an early stage Help below.
次に、 排気べ一キング温度に降温された後、 吸引排気を継続してマ二ホールド Next, after the temperature is reduced to the exhaust baking temperature, the suction and exhaust are continued and manifold
53 a内の圧力を 1. 3 x 1。 1〜:!. 3 x 1 0— 1DM F a程度まで吸引排気する。 次に、 吸引排気系統 53の作動を停止して、 ガス導入系統 52を作動させて外囲 器 40内に放電ガスを 0. 05MP a程度充填しこの圧力を 5分から 1 0分程度 維持する。 1.3 x 1 pressure within 53 a. 1 ~ :! 3 x 10—Suction and exhaust to about 1D MF a. Next, the operation of the suction / exhaust system 53 is stopped, the gas introduction system 52 is operated, and the envelope 40 is filled with the discharge gas at about 0.05 MPa, and the pressure is maintained for about 5 to 10 minutes.
その後、 冷却させながら、 外囲器 40内のガスを吸引排気を再開し、 1. 3 x 1 0— 〜 1. 3 X 1 0— ΜΡ a程度になった後、 ガス導入系統 52により放電ガ スを外囲器 40内に 0. 067MP a程度充填する。 Thereafter, while cooled, the gas in the envelope 40 to resume suction exhaust, 1. 3 x 1 0- ~ 1. Once in about 3 X 1 0- 1β ΜΡ a, discharged by the gas introduction system 52 Fill the envelope 40 with gas at about 0.067 MPa.
従来の真空排気工程では、 外囲器内の圧力を 1. 3 x 1 0— "〜 1. 3 x 1 0— 1(1 MP aにまで減圧するには、 一般的には 2時間程度かかるが、 上記実施例の真空 排気工程においては 1時間程度で当該圧力まで減圧することができる。 In the conventional evacuation process, the pressure inside the envelope is reduced from 1.3 x 10— ”to 1.3 x 10—1 (It takes about 2 hours to reduce the pressure to 1 MPa. However, in the evacuation step of the above embodiment, the pressure can be reduced to the pressure in about one hour.
以上のようにして作製した P D Pは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0%程度し、効率が数% から約 1 0%程度向上した。  The PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. Also, the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
実施例 1 と比較すると、 実施例 2による製造方法では、 外囲器 40の封着時か ら冷却までの時間と排気べ一キングのための室温から排気べ一キング温度までの 加熱時間が短縮できるという効果がある。 また、 蛍光体の劣化の程度も数%程度 実施例 1のものと比べて少なく、 若干優れていた。  Compared with Example 1, in the manufacturing method according to Example 2, the time from the sealing of the envelope 40 to the cooling and the heating time from room temperature for exhaust baking to the exhaust baking temperature were reduced. There is an effect that can be. Also, the degree of deterioration of the phosphor was about several percent, which was smaller than that of Example 1 and was slightly better.
く実施の形態 2>  Embodiment 2>
本実施の形態では、 前記真空排気工程における手法が上記実施の形態における ものと異なる他は、 それと同じである。  This embodiment is the same as the embodiment except that the method in the evacuation step is different from that in the above embodiment.
図 7は、 本実施形態の封着工程で用いる封着 ·排気装置 70を模式的に示す図 であり、 図 3 (b) に相当する図である。  FIG. 7 is a diagram schematically showing the sealing / exhausting device 70 used in the sealing step of the present embodiment, and is a diagram corresponding to FIG. 3 (b).
この封着 ·排気装置 70は、 前面パネル 1 0及び背面パネル 20が重ね合わせ られた外囲器 40を収納してこれを加熱する加熱炉 7 1 と、 加熱炉 7 1外部に設 けられたガス導入 ·吸引排気系統 72とから構成されている。 背面パネル 2 0には、通気孔 2 1 aと内部空間が連通するように接続管 7 3が、 通気孔 2 1 bと内部空間が連通するようにゲッター管 7 4がそれぞれ接着材 7 3 a及び接着材 7 4 aを介して上記同様に仮固定されている。 The sealing / exhaust device 70 is provided outside the heating furnace 71 and a heating furnace 71 for housing and heating the envelope 40 in which the front panel 10 and the rear panel 20 are overlapped. Gas introduction and suction / exhaust system 72 The rear panel 20 is provided with a connecting pipe 73 so that the ventilation hole 21a communicates with the internal space, and the getter pipe 74 is provided with an adhesive 7 3a so that the ventilation hole 21b communicates with the internal space. And is temporarily fixed via the adhesive 74a in the same manner as described above.
接続管 7 3は、 背面パネル 2 0との接触端が開放されたガラス管であり、 ゲッ ター管 7 4は、 背面パネル 2 0との接触他端が封止されたガラス管である。 そし て、 ゲッタ一管 7 4は、 背面パネル 2 0の通気孔 2 1 bの出口部分には、 ゲッ夕 —が収納されるゲッター収納空間 7 4 bが形成されている。  The connection tube 73 is a glass tube whose contact end with the rear panel 20 is open, and the getter tube 74 is a glass tube whose other end of contact with the rear panel 20 is sealed. The getter tube 74 has a getter storage space 74b in which a gas is stored at the outlet of the vent hole 21b of the rear panel 20.
ガス導入 · 吸引排気系統 7 2は、 マ二ホールド 7 2 aと、 ターボ分子ポンプ 7 2 bと、 ロータリーポンプ 7 2 cと、放電ガスが充填されたガスボンベ 7 2 dと、 前記接続管 7 3とマ二ホールド 7 2 aとを接続する配管系 7 2 eと、 前記マニホ —ルド 7 2 aとターボ分子ポンプ 7 2 b及びガスボンベ 7 2 dとを接続する分岐 配管系 7 2 f とからなる。 分岐配管系 7 2 f は、 マ二ホールド 7 2 aから伸びた 一本の配管系 7 2 f 1が経路選択バルブ 7 2 gを介して 2本の配管系 7 2 f 2、 配管系 7 2 f 3がターボ分子ポンプ 7 2 b及びガスボンベ 7 2 dそれぞれに接続 されている。 配管系 7 2 f 2及び配管系 7 2 f 3の途中には、 それぞれターボ分 子ポンプによる吸引量を調整するための開閉バルブ 7 2 h、 放電ガスの流量を調 整する開閉バルブ 7 2 i が設けられている。 そして、 接続管 7 3と、 配管系 7 2 eとは、 チャ ックなどによって気密性を確保した状態に互いに連結される。 経路 選択バルブ 7 2 gは、 ターボ分子ポンプ 7 2 bが作動時には、 配管系 7 2 f 2を 選択し、 ガスボンベ 7 2 dから放電ガスを外囲器 4 0に導入する場合には、 配管 系 7 2 f 3を選択する。  The gas introduction / suction / exhaust system 72 includes a manifold 72 a, a turbo molecular pump 72 b, a rotary pump 72 c, a gas cylinder 72 d filled with discharge gas, and the connection pipe 73. And a manifold 7 2 f for connecting the manifold 72 a to the turbo molecular pump 72 b and the gas cylinder 72 d. . The branch piping system 7 2 f is a single piping system 7 2 f 1 extending from the manifold 7 2 a.The two piping systems 7 2 f 2 and the piping system 7 2 are connected via the path selection valve 72 g. f3 is connected to the turbo molecular pump 72b and the gas cylinder 72d, respectively. In the middle of the piping system 7 2 f 2 and the piping system 7 2 f 3, an opening and closing valve for adjusting the suction amount by the turbo molecular pump 72 h, an opening and closing valve for adjusting the flow rate of the discharge gas 72 i Is provided. Then, the connection pipe 73 and the piping system 72 e are connected to each other in a state where airtightness is ensured by a chuck or the like. When the turbo molecular pump 72b is operated, the path selection valve 72g selects the piping system 72f2, and when the discharge gas is introduced into the envelope 40 from the gas cylinder 72d, the piping system 72 7 Select 2f3.
そして、 加熱炉 7 1内をヒータ 7 5によって加熱して、 封着材の軟化温度より 若干高い封着温度 (例えば 4 5 0 °C ) まで昇温し、 封着温度で所定の時間保った 後、 再び軟化点温度以下に降温することによって両パネル 1 0 · 2 0間を封着す るが、 ターボ分子ポンプ 7 2 bで外囲器 4 0内部から排気しながら封着を行う。 封着条件は、 ガラス基板材料と封着材との相性とで決るが、 低融点ガラスを用い る場合には、 約 4 5 0 °Cで 1 0〜2 0分程度である。  Then, the inside of the heating furnace 71 was heated by the heater 75, and the temperature was raised to a sealing temperature (for example, 450 ° C.) slightly higher than the softening temperature of the sealing material, and was maintained at the sealing temperature for a predetermined time. Thereafter, the temperature between the panels 10 and 20 is sealed by lowering the temperature again to the softening point temperature or lower, but the sealing is performed while exhausting the inside of the envelope 40 with the turbo molecular pump 72b. The sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
排気は、 加熱炉 7 1内が封着材の軟化温度に達した後に開始することが望まし い。 封着材の軟化温度に達するまでは、 両パネル 1 0 · 2 0間の外周部の気密性 があまりないので、 外囲器 4 0の内部空間から排気してもその内部を高い真空度 にすることができないが、 封着材が軟化した後は、 両パネル 1 0 · 2 0間の外周 部が気密シールされると共に、 接着材層 4 1 も軟化されて接続管 7 2と通気孔 2 1 aとの接続部分も気密シールされるので、 外囲器 4 0内部から排気すると高い 真空度 ( 1 . 3 3 X 1 0— 4M P a程度 (数 T 0 r r程度)) に減圧されるからであ る。 It is desirable that the evacuation be started after the inside of the heating furnace 71 reaches the softening temperature of the sealing material. Until the softening temperature of the sealing material is reached, the airtightness of the outer periphery between both panels 10 and 20 Because there is not much air, the inside of the envelope 40 cannot be evacuated to a high degree of vacuum even if it is evacuated, but after the sealing material softens, the outer periphery between the panels 10 The part is hermetically sealed, and the adhesive layer 41 is also softened, so that the connection between the connection pipe 72 and the vent hole 21a is also hermetically sealed. (1. 3 3 X 1 0- 4 degree MP a (number T 0 rr about)) der from being reduced to Ru.
このように外囲器 4 0の内部空間から排気することによって両パネル 1 0 · 2 0は外側から均一に加圧された状態となる。 吸引排気は、 外囲器 4 0内の圧力と 加熱炉内との圧力との差によって封着材が押し縮められて、 2枚の前面パネルと 背面パネルとが接近して前面パネルと隔壁とが接触する程度であればよいので、 僅かに吸引排気する (例えば、 0 . 0 8 M P a程度) だけで十分である。  By exhausting air from the inner space of the envelope 40 in this manner, the panels 10 and 20 are uniformly pressed from the outside. In the suction and exhaust, the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front panels and the rear panel approach to each other to close the front panel and the partition wall. However, it is sufficient that only a small amount of gas comes into contact with the gas, so that a slight suction and exhaust (for example, about 0.08 MPa) is sufficient.
両パネル 1 0 · 2 0が外側から均一に加圧されると、 上記のように背面パネル 2 0上の隔壁頂部と前面パネル 1 0とは、全体的にぴったり密着した状態となる。 そして、 この状態で降温されると、 封着材が軟化以下の温度となり硬化すること によって外囲器 4 0の封着がなされる。 従って、 封着された後の外囲器 4 0にお いては、 隔壁頂部と前面パネル 1 0とが全体的にぴったり密着した状態が保たれ ていることになる。  When the two panels 10 and 20 are uniformly pressed from the outside, the top of the partition on the rear panel 20 and the front panel 10 are in close contact with each other as described above. Then, when the temperature is lowered in this state, the temperature of the sealing material becomes lower than the softening temperature and the sealing material is hardened, whereby the envelope 40 is sealed. Therefore, in the envelope 40 after the sealing, the top of the partition wall and the front panel 10 are kept in close contact with each other.
次いで、 室温程度にまで冷却した後に、 外囲器 4 0に取り付けられたゲッター 管 7 4の端部 7 4 cを破断して、 粒子状のゲッター 7 6を外囲器 4 0の内部空間 の大きさに応じた量投入し、 端部 7 4 cを封じ切ってゲッター 7 6をゲッター収 納空間 7 4 bに収納する。 投入するゲッター 7 6には、 加熱により表面が活性化 して不純物ガスを非可逆的に化学吸着するものを用いることができる。 そして、 この場合、 後工程の真空排気工程の排気べ一キング温度で活性化させられるもの が望ましい。  Next, after cooling to about room temperature, the end portion 74c of the getter tube 74 attached to the envelope 40 is broken, and the particulate getter 76 is placed in the inner space of the envelope 40. Insert the amount corresponding to the size, seal off the end 74c and store the getter 76 in the getter storage space 74b. As the getter 76 to be charged, a getter that activates the surface by heating and irreversibly chemically adsorbs the impurity gas can be used. In this case, it is desirable that the material be activated at the evacuation baking temperature in the subsequent evacuation step.
次に、 外囲器 4 0内を再び真空に排気した後、 加熱炉 7 1内の温度を封着材層 の軟化点よりも低い温度 (排気べ一キング温度) で加熱 (ベーキング) を開始す る。  Next, the inside of the envelope 40 is evacuated again, and then the heating furnace 71 is heated (baked) at a temperature lower than the softening point of the sealing material layer (exhaust baking temperature). You.
排気べ一キング温度は、 封着材の軟化点よりも低い温度 (封着材に金属を用い る場合には、 金属の融点よりも低い温度) であることは勿論である。 そして、 こ こでは、 ゲッター 76を活性化させ及び外囲器 40の内壁面に吸着した吸着水を 効果的に脱離させる程度の温度 (例えば、 350°C程度) とする。 The exhaust baking temperature is, of course, a temperature lower than the softening point of the sealing material (or lower than the melting point of the metal when a metal is used for the sealing material). And this Here, the temperature is set to a temperature (for example, about 350 ° C.) at which the getter 76 is activated and the adsorbed water adsorbed on the inner wall surface of the envelope 40 is effectively desorbed.
排気べ一キング温度に昇温中にゲッター 76の活性温度に達すると、 ゲッター 76の粒子表面に水、 炭酸ガス、 窒素、 酸素等などの不純物ガスが吸着し、 どん どんゲッター 76の粒子孔内に取り込まれて行く。 これは、 不純物ガスがゲッタ - 76に取り込まれる結果、 外囲器 40の内部空間とゲッター 76が収納された 収納空間 74 bとの間に圧力勾配 (ガス濃度勾配) が生じるからである。  When the temperature reaches the activation temperature of the getter 76 while the temperature rises to the exhaust baking temperature, impurity gas such as water, carbon dioxide, nitrogen, oxygen, etc. is adsorbed on the particle surface of the getter 76, so that the inside of the particle hole of the getter 76 increases more and more. It is taken in. This is because as a result of the impurity gas being taken into the getter 76, a pressure gradient (gas concentration gradient) is generated between the inner space of the envelope 40 and the storage space 74b in which the getter 76 is stored.
次に、排気べ一キング温度を保持した状態で、 開閉バルブ 72 hを適度に開き、 ターボ分子ポンプ 72 b及びロータリーポンプ 72 cを作動させて外囲器 40内 を更に吸引し、 その後、 配管選択バルブ 72 gで配管 72 f 3を選択し、 開閉バ ルブ 72 i を開いて放電ガスを外囲器 40内に所定圧 (例えば、 0. 05MP a) 導入する。 放電ガスを充填した後、 所定時間 (5分から 1 0分) そのままの圧力 を保持することがより望ましい。 これは、 外囲器 40内の隔壁間のコンダクタン スが小さいため、 平衡圧に達するまでに時間を要するためである。  Next, with the exhaust baking temperature maintained, the on-off valve 72 h is appropriately opened, and the turbo molecular pump 72 b and the rotary pump 72 c are operated to further suction the inside of the envelope 40. The piping 72 f 3 is selected by the selection valve 72 g, the opening and closing valve 72 i is opened, and the discharge gas is introduced into the envelope 40 at a predetermined pressure (for example, 0.05 MPa). It is more desirable that the pressure be maintained for a predetermined time (5 to 10 minutes) after filling the discharge gas. This is because the conductance between the partitions in the envelope 40 is small, and it takes time to reach the equilibrium pressure.
そして、 次に、 放電ガス導入を止め、 外囲器内の放電ガスを吸引排出させ、 外 囲器 40内を再び真空状態とする。  Then, the introduction of the discharge gas is stopped, the discharge gas in the envelope is sucked and discharged, and the inside of the envelope 40 is again brought into a vacuum state.
このような真空排気 ·放電ガス導入 ·真空排気という処理は、 通常は一回でも 十分であるが、 繰返し行えば、 外囲器 40内の不純物ガスをより低濃度とするこ とができる。  Such processes of vacuum evacuation, discharge gas introduction, and vacuum evacuation are usually sufficient even once, but if repeated, the impurity gas in the envelope 40 can be made lower in concentration.
このように外囲器 40内に導入されるガスは、 放電ガスでなく とも、 放電ガス に対して不純物とならないガスであれば何れでもよい。 また、 このガスは、 乾燥 ガスであれば、 蛍光体の特性劣化を抑制できるのでより望ましい。  As described above, the gas introduced into the envelope 40 is not limited to the discharge gas, and may be any gas that does not become an impurity with respect to the discharge gas. In addition, this gas is more preferable if it is a dry gas because the deterioration of the characteristics of the phosphor can be suppressed.
一旦真空にした後、 外囲器 40内に導入するガス圧は、 1. 33 x 1 0— 4MP a程度 (数 T o r r) から外囲器 40が破壊しない圧力内であれば良く、 大気圧 よりも低い方が望ましい。 Once the vacuum was applied, the gas pressure introduced into the envelope 40 is 1. about 33 x 1 0- 4 MP a (number T orr) may be within pressure at which the envelope 40 does not break, the large It is desirable to be lower than the atmospheric pressure.
次に、 封入工程では、 外囲器 40の内部空間に放電ガスを所定の封入圧力 (例 えば 0. 067MP a) となるよう供給する。 そして、 接続管 73及びゲッター 管 74の付根部分をパーナやヒータで溶融して封じ切る (チップオフ) ことによ つて通気孔 2 1 a、 通気孔 2 1 bを封止する。 〔本実施形態の製造方法による効果について〕 Next, in the filling step, a discharge gas is supplied to the internal space of the envelope 40 so as to have a predetermined filling pressure (for example, 0.067 MPa). Then, the ventilation holes 21a and 21b are sealed by melting and cutting off (tip-off) the root portions of the connection pipe 73 and the getter pipe 74 with a wrench or heater. [Effects of the manufacturing method of the present embodiment]
従来のように外囲器 4 0の内外圧力差を設けることなく外周部をクリ ップなど で締め付ける場合、 外囲器 4 0の中央部を押圧されないため、 背面パネル 2 0上 の隔壁頂部と前面パネル 1 0とが全体的あるいは部分的に離れた状態で封着され やすいのに対して、 上記のように、 外囲器 4 0は、 内外の圧力差によって両パネ ル 1 0 · 2 0が外側から均一的に押圧された状態で封着材層 4 1が硬化して封着 されるので、 隔壁頂部と前面パネル 1 0との隙間がほとんどない状態で封着がな される。  When the outer periphery is tightened with a clip or the like without providing a pressure difference between the inside and outside of the envelope 40 as in the conventional case, the central part of the envelope 40 is not pressed, so that the top of the bulkhead on the rear panel 20 is not pressed. While the front panel 10 is easily or completely sealed away from the front panel 10, as described above, the envelope 40 is separated by the pressure difference between the inside and the outside. The sealing material layer 41 is hardened and sealed in a state where the sealing material layer 41 is uniformly pressed from the outside, so that the sealing is performed in a state where there is almost no gap between the top of the partition wall and the front panel 10.
従って、 本実施形態の製造方法によれば、 P D P駆動時の振動が発生しにく く 且つ表示品位の良好な P D Pを容易に作製することができる。  Therefore, according to the manufacturing method of the present embodiment, it is possible to easily manufacture a PDP with less vibration during PDP driving and good display quality.
このような効果を得るためには、 少なく とも軟化した封着材層 4 1が硬化する 時点においては、 吸引排気系統を作動させて外囲器 4 0の内外圧力差が生じてい る状態にする必要はあるが、 封着工程の始めから終わりまで連続して吸引する必 要はない。 例えば、 封着材層 4 1が軟化した後で、 吸引の動作を開始しても、 両 パネル 1 0 · 2 0の内外圧差による効果を十分に得ることができる。  In order to obtain such an effect, at least at the time when the softened sealing material layer 41 is hardened, the suction / exhaust system is operated so that a pressure difference between the inside and outside of the envelope 40 is generated. Although necessary, it is not necessary to aspirate continuously from the beginning to the end of the sealing process. For example, even if the suction operation is started after the sealing material layer 41 is softened, the effect due to the difference between the inside and outside pressures of both panels 10 and 20 can be sufficiently obtained.
また、上記真空排気工程によって、外囲器 4 0内の不純物ガス濃度を迅速に(短 時間で) 低濃度にまで除去することが可能となる。  In addition, the above-described evacuation step makes it possible to quickly (shortly) remove the impurity gas concentration in the envelope 40 to a low concentration.
これは、 1 ) 大量の放電ガスの充填による不純物ガスの希釈効果、 2 ) ガス充 填、 再排気時の粘性流により残留不純物ガスが外囲器 4 0外に排出される効果、 3 ) 排気べ一キング時に加熱されることで高温となった放電ガス分子が蛍光体や 保護層等の外囲器 4 0の内壁面に衝突することにより吸着ガスを離脱させる効果 などによるものと考えられる。 第三の理由からすれば、 排気工程において外囲器 内に導入する放電ガス (洗浄ガス) には予め加熱したものを用いることが望まし いと言える。  This is due to 1) the effect of diluting the impurity gas by filling a large amount of discharge gas, 2) the effect that the residual impurity gas is discharged out of the envelope 40 by viscous flow during gas filling and re-evacuation, and 3) the exhaust. This is considered to be due to the effect of releasing the adsorbed gas by colliding the discharge gas molecules heated to a high temperature during the baking with the inner wall surface of the envelope 40 such as the phosphor and the protective layer. For the third reason, it can be said that it is desirable to use a preheated discharge gas (cleaning gas) to be introduced into the envelope during the exhaust process.
更に、 本実施形態では、 排気べ一キング温度までに昇温させる段階で、 ゲッタ —によって外囲器 4 0内の不純物ガスを除去する工程を含んでいるため、 真空排 気'放電ガス充填'真空排気という工程だけの実施の形態 1の製造方法と比べて、 より迅速かつより低濃度に不純物ガスを外囲器 4 0内から除去することができる c く実施例 3〉 次に、 上記実施の形態 2に基づいて各製造工程を行って実施例に係る P D Pを 作製した実施例について具体的に説明する。 Further, in the present embodiment, since the step of raising the temperature to the exhaust baking temperature includes the step of removing the impurity gas in the envelope 40 by the getter, the vacuum exhaust “discharge gas filling” is performed. compared with the manufacturing method of the first embodiment only step of evacuation, more quickly and c rather example 3 capable of removing impurity gases from the envelope 4 inside 0 to lower concentrations> Next, an example in which each manufacturing process is performed based on the second embodiment to produce a PDP according to the example will be specifically described.
本実施例では、 図 4及び図 5に示した各プロフ ァイルに従って、 P D Pを作製 した。 ゲッター 7 6は、 封着を行い一旦室温にまで降温された段階でゲッター管 7 4に収納し、 ゲッタ一には活性化温度が 2 8 0 °Cのバナジウム、 チタン、 鉄系 合金粒子を用いた。  In this example, PDPs were produced according to the profiles shown in FIGS. The getter 76 is sealed and once cooled down to room temperature, it is stored in the getter tube 74, and the getter is made of vanadium, titanium and iron alloy particles with an activation temperature of 280 ° C. Was.
従来の真空排気工程では、 外囲器内の圧力を 1 . 3 x 1 0— "〜 1 . 3 x 1 0— 1(1 M P aにまで減圧するには、 2時間程度かかるが、 上記実施例の真空排気工程に おいては 1時間程度で当該圧力まで減圧することができる。 In the conventional evacuation process, it takes about 2 hours to reduce the pressure in the envelope from 1.3 x 10— ”to 1.3 x 10—1 (1 MPa). In the evacuation process of the example, the pressure can be reduced to the pressure in about one hour.
以上のようにして作製した P D Pは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0 %程度し、効率が数% から約 1 0 %程度向上した。  The PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. In addition, the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
実施例 1 と比較すると、 実施例 3による製造方法では、 エージング工程 (エー ジング工程とは、 放電ガス封入工程の後、 パネル特性を安定化させるための工程 である。) 後の特性の劣化が若干少なく、 効率も数%程度良かった。  Compared with Example 1, in the manufacturing method according to Example 3, deterioration of the characteristics after the aging step (the aging step is a step for stabilizing the panel characteristics after the discharge gas sealing step). It was a little less and the efficiency was a few percent better.
く実施の形態 3 >  Embodiment 3>
本実施の形態では、 封着工程における手法が上記実施の形態 1 におけるものと 異なる他は、 それと同じである。  This embodiment is the same as that of the first embodiment except that the method in the sealing step is different from that in the first embodiment.
まず、 加熱炉 5 1内を加熱して、 封着材の軟化温度より若干高い封着温度 (例 えば 4 5 0 °C ) まで昇温し、 封着温度で所定時間保った後、 再び軟化点温度以下 に降温することによって両パネル 1 0 · 2 0間を封着するが、 封着温度に昇温さ せるときには、 ガス導入系統を作動させて外囲器 4 0内に乾燥ガスを導入しなが ら昇温させる。 なお、 ここでは、 前記ガスボンベ 5 2 aに充填する放電ガスを乾 燥させたものを乾燥ガスとして用いる。 この他にも乾燥空気、 乾燥窒素ガス、 乾 燥アルゴンガス、 乾燥ネオンガス (総じて乾燥希ガス) 等を用いることができる。 そして封着温度までに加熱されると封着材が軟化することによつて外囲器 4 0の 外周部が気密になるので、 外囲器 4 0内の内圧が上昇する。 これをモニタして、 放電ガスの導入を停止する。 First, the inside of the heating furnace 51 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then softened again. By sealing the gap between the panels 10 and 20 by lowering the temperature below the point temperature, when the temperature is raised to the sealing temperature, the gas introduction system is activated to introduce dry gas into the envelope 40. Then raise the temperature. Here, a dried gas of the discharge gas filled in the gas cylinder 52a is used as a dry gas. In addition, dry air, dry nitrogen gas, dry argon gas, dry neon gas (dry rare gas in general) and the like can be used. When heated to the sealing temperature, the sealing material is softened, so that the outer peripheral portion of the envelope 40 becomes airtight, so that the internal pressure in the envelope 40 increases. Monitor this, Stop the introduction of the discharge gas.
なお、 乾燥ガスの流量は、 封着材が軟化して気密封止された時点において、 外 囲器 4 0内に乾燥ガスが流れても、 急激な圧力上昇が起こって外囲器 4 0を構成 するガラス基板が破損しない程度に無論制限されよう。  Note that the flow rate of the drying gas is such that when the sealing material is softened and hermetically sealed, even if the drying gas flows into the envelope 40, a sharp pressure rise occurs and the It will of course be limited to the extent that the constituent glass substrates are not damaged.
このように、 封着温度に達するまでの期間に外囲器 4 0内に乾燥ガスを流通さ せることから、 封着材が軟化することによって外囲器 4 0の外周部が気密になつ た段階では、 外囲器 4 0内には乾燥ガスが充填されている。 そして、 乾燥ガスが 充填されている状態で封着温度を所定時間保持する。 この封着条件は、 ガラス基 板材料と封着材との相性とで決るが、低融点ガラスを用いる場合には、約 4 5 0 °C で 1 0〜 2 0分程度である。  As described above, since the drying gas is circulated in the envelope 40 until the temperature reaches the sealing temperature, the outer peripheral portion of the envelope 40 becomes airtight due to softening of the sealing material. At this stage, the envelope 40 is filled with dry gas. Then, the sealing temperature is held for a predetermined time while the drying gas is being filled. The sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
このように乾燥ガスを内部空間に充填した状態で封着することによって、 蛍光 体の熱劣化が防止される。  By sealing in a state where the dry gas is filled in the internal space in this way, thermal degradation of the phosphor is prevented.
更に、乾燥ガスが充填されている状態で封着温度を所定時間保持すると同時に、 ターボ分子ポンプ 5 3 bで外囲器 4 0内部から排気しながら封着を行う。 なお、 ターボ分子ポンプ 5 3 bを作動させるときには、 ロータリーポンプ 5 3 cを同時 に作動させてターボ分子ポンプ 5 3 b内の背圧を下げる。  Further, the sealing temperature is maintained for a predetermined time in a state where the drying gas is filled, and at the same time, the sealing is performed while exhausting the inside of the envelope 40 by the turbo molecular pump 53b. When operating the turbo molecular pump 53b, the rotary pump 53c is simultaneously operated to reduce the back pressure in the turbo molecular pump 53b.
排気は、 加熱炉 5 1 内が封着材の軟化温度に達した後に開始することが望まし い。 封着材の軟化温度に達するまでは、 両パネル 1 0 · 2 0間の外周部の気密性 があまりないので、 外囲器 4 0の内部空間から排気してもその内部を高い真空度 にすることができないが、 封着材が軟化した後は、 両パネル 1 0 · 2 0間の外周 部が気密シールされると共に、 接着材層 5 6 aも軟化されて接続管 5 6と通気孔 2 1 bとの接続部分も気密シールされるので、 外囲器 4 0内部から排気すると高 い真空度 ( 1 . 3 3 X 1 0— 4M P a程度 (数 T o r r ) 程度) に減圧されるから である。 It is desirable that the evacuation be started after the inside of the heating furnace 51 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material softens, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 56 a is also softened to form the connection pipe 56 and the vent hole. since the connection portion between the 2 1 b is also hermetically sealed, it is reduced to the envelope 4 0 when the exhaust from the internal high have vacuum (1. 3 3 X 1 0- 4 MP a degree (number T orr) about) This is because that.
このように外囲器 4 0の内部空間から排気することによって両パネル 1 0 - 2 0は外側から均一に加圧された状態となる。 吸引排気は、 外囲器 4 0内の圧力と 加熱炉内との圧力との差によって封着材が押し縮められて、 2枚の前面パネルと 背面パネルとが接近して前面パネルと隔壁とが接触する程度であればよいので、 僅かに吸引排気する (例えば、 0 . 0 8 M F a程度) だけで十分である。 両パネル 1 0 . 2 0が外側から均一に加圧されると、 図 3に示すように、 背面 パネル 2 0上の隔壁頂部と前面パネル 1 0とは、 全体的にぴったり密着した状態 となる。 そして、 この状態で降温されると、 封着材が軟化以下の温度となり硬化 することによって外囲器 4 0の封着がなされる。 従って、 封着された後の外囲器 4 0においては、 隔壁頂部と前面パネル 1 0とが全体的にぴったり密着した状態 が保たれていることになる。 By exhausting air from the internal space of the envelope 40 in this manner, the panels 10-20 are uniformly pressed from the outside. In the suction and exhaust, the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front panels and the rear panel approach to each other to close the front panel and the partition wall. However, it is sufficient that only slight suction and exhaust (for example, about 0.08 MFa) occur. When both panels 10.2 0 are uniformly pressed from the outside, as shown in Fig. 3, the top of the partition wall on the back panel 20 and the front panel 10 are in close contact with each other as a whole. . When the temperature is lowered in this state, the temperature of the sealing material becomes lower than the softening temperature and the sealing material is hardened, whereby the envelope 40 is sealed. Therefore, in the envelope 40 after the sealing, the top of the partition wall and the front panel 10 are kept in close contact with each other as a whole.
なお、 前記封着工程において、 封着材の軟化温度より若干高い封着温度に一気 に昇温するのではなく、 封着温度よりも低い温度で一定時間、 例えば、 3 5 0 °C 程度で 3 0分程度加熱してバインダ材をバーンァゥ ト しておけば、 蛍光体の劣化 を抑える上で効果的である。  In the sealing step, the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
これ以降、 実施の形態 1 と同様の真空排気工程 ·封着工程 ·封入工程を経て P D Pが完成する。  Thereafter, the PDP is completed through the same evacuation process, sealing process, and encapsulation process as in the first embodiment.
く実施例 4 >  Example 4>
次に、 上記実施の形態に基づいて各製造工程を行って実施例に係る P D Pを作 製した実施例について具体的に説明する。  Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to the example will be specifically described.
本実施例では、 図 4及び図 5に示す各プロファイルに従って、 P D Pを作製し た。  In this example, PDPs were produced according to the profiles shown in FIGS.
まず、 封着工程において、 封着温度 4 5 0 °Cまで 2時間から 3時間をかけて昇 温し、 この温度を 2 0分程度維持する。 同時に、 封着温度に達するまでの間に乾 燥ガスをガス導入系統を作動させて外囲器 4 0内に流通させる。  First, in the sealing step, the temperature is raised to a sealing temperature of 450 ° C. over 2 to 3 hours, and this temperature is maintained for about 20 minutes. At the same time, the dry gas is made to flow through the envelope 40 by operating the gas introduction system until the sealing temperature is reached.
次に、 封着温度 4 5 0 °Cに達するとマ二ホールドの圧力をガス導入系統の作動 を停止し、 0 . 0 5 M P a程度に減圧しこれを維持する。  Next, when the sealing temperature reaches 450 ° C., the pressure of the manifold is stopped from operating the gas introduction system, and the pressure is reduced to about 0.05 MPa and maintained.
そして、 減圧状態を維持したまま、 2時間から 3時間をかけて室温に降温させ る。  Then, while maintaining the reduced pressure, the temperature is lowered to room temperature over 2 to 3 hours.
この段階では、 前面パネルと背面パネルとは完全に封着が完了しているが、 温 度低下と共に、 マ二ホールド内の圧力を監視しておけば、 封着の欠陥が分り、 封 着不良発生に対して製造段階の早い段階で対処することができ、 コス ト低下に役 立つ。 マ二ホールド内圧力は、 封着が正常に行われると徐々に減少するがそうで なければ、 加熱炉内にガスがリークするので比較的早い速度で減少する。 次に、 図 5にいって、 更に吸引排気を継続してマ二ホールド 53 a内の圧力が 1. 3 x 1 0— 11〜; 1. 3 X 1 0— 1()MP a程度になった後、 加熱を開始し 2時間か ら 3時間をかけて排気べ一キング温度 (350°C) まで加熱する。 そして、 排気 ベーキング温度に達すると再び吸引排気を開始する。 加熱昇温時にマ二ホールド 内に流入したガスを排気する。 吸引排気を再開するときには、 接続管内壁や外囲 器 40内壁からの脱ガスによりマ二ホールド 53 a内の圧力が図 5の符号 60で 示すように上昇しているが、 吸引排気を再開することにより減少に転じる。 At this stage, the front panel and the rear panel have been completely sealed, but if the temperature is reduced and the pressure inside the manifold is monitored, sealing defects can be identified and poor sealing can be achieved. Outbreaks can be dealt with earlier in the manufacturing process, helping to reduce costs. The pressure in the manifold decreases gradually when sealing is performed normally, but otherwise decreases at a relatively fast rate due to gas leaking into the furnace. Next, go to 5, further pressure is 1. 3 x 1 0- 11 ~ suction exhaust continue to Ma two hold 53 in a a; 1. 3 X 1 0- 1 ( ) becomes about MP a After that, start heating and heat to exhaust baking temperature (350 ° C) over 2 to 3 hours. Then, when the exhaust baking temperature is reached, the suction and exhaust is started again. Exhaust gas flowing into the manifold during heating. When resuming suction and exhaust, the pressure in the manifold 53a has risen as indicated by reference numeral 60 in FIG. 5 due to degassing from the inner wall of the connection pipe and the inner wall of the envelope 40. It turns to decrease.
そして、 マ二ホールド 53 a内の圧力が 1. 3 X 1 0 1〜 1. 3 x 1 0— 10ΜΡ a程度のなった段階で、 吸引排気系統 53の作動を停止して、 ガス導入系統 52 を作動させて外囲器 40内に放電ガスを 0. 05MP a程度充填しこの圧力を 5 分から 1 0分程度維持する。 Then, when the pressure in the manifold 53a reaches about 1.3 x 10 1 to 1.3 x 10—10 ΜΡa, the operation of the suction / exhaust system 53 is stopped and the gas introduction system is stopped. Activate 52 and fill the envelope 40 with about 0.05 MPa of discharge gas, and maintain this pressure for about 5 to 10 minutes.
その後、 冷却させながら、 外囲器 40内のガスを吸引排気を再開し、 1. 3 x l O—u l . 3 X 1 0—1()MP a程度になった後、 ガス導入系統 52により放電ガ スを外囲器 40内に 0. 067MP a程度充填する。 Thereafter, while cooling, the gas in the envelope 40 was sucked and evacuated again, and after the pressure became about 1.3 xl O—ul. 3 X 10—1 () MPa, the gas was discharged by the gas introduction system 52. Fill the envelope 40 with gas at about 0.067 MPa.
従来の真空排気工程では、 外囲器内の圧力を 1. 3 x 1 0— "〜1. 3 x 1 0— 1Q MP aにまで減圧するには、 2時間程度かかるが、 上記実施例の真空排気工程に おいては 1時間程度で当該圧力まで減圧することができる。 In conventional vacuum evacuation step, to vacuum until the pressure within the envelope 1. 3 x 1 0- "~1. 3 x 1 0- 1Q MP a is takes about 2 hours, the above-described embodiment In the evacuation step, the pressure can be reduced to the pressure in about one hour.
以上のようにして作製した PDPは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0%程度し、効率が数% から約 1 0 %程度向上した。  The PDP fabricated as described above had little lifting at the outer periphery and had more uniform discharge characteristics than the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. In addition, the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
また、 上記のようにして乾燥ガスを流通させた後に封着した PDPと、 従来の ように乾燥ガスを流通させることなく大気存在下で封着した PD Pの蛍光体の発 光強度 (輝度ノ色度座標の y値) を、 パネルを破壊して X eエキシマランプ (波 長 1 73 nm)を照射して比較評価すると、特に青色蛍光体の発光強度が約 1 0% 程度改善されていた。 乾燥ガスは非反応性のものであれば一様に改善効果が認め られたが、 特に乾燥空気が優れていた。  In addition, the light emission intensity (luminance of the PDP) of the PDP sealed after the flow of the dry gas as described above and the PDP sealed in the presence of the air without the flow of the dry gas as in the related art. The y-value of the chromaticity coordinates) was compared and evaluated by irradiating the panel with a Xe excimer lamp (wavelength: 173 nm). The emission intensity of the blue phosphor was improved by about 10%. . If the dry gas was non-reactive, a uniform improvement effect was observed, but dry air was particularly excellent.
く実施例 5 > 次に、 上記実施の形態に基づいて各製造工程を行って別な実施例に係る P D P を作製した実施例について具体的に説明する。 Example 5> Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to another example will be specifically described.
本実施例では、 図 6に示すプロフ ァイルに従って、 PDPを作製した。  In this example, a PDP was produced according to the profile shown in FIG.
まず、 封着工程において、 封着温度 450°Cまで 2時間から 3時間をかけて昇 温し、 この温度を 20分程度維持する。 同時に、 封着温度に達するまでの間に乾 燥ガスをガス導入系統を作動させて外囲器 40内に流通させる。  First, in the sealing process, the temperature is raised to the sealing temperature of 450 ° C over 2 to 3 hours, and this temperature is maintained for about 20 minutes. At the same time, the dry gas is circulated through the envelope 40 by operating the gas introduction system until the sealing temperature is reached.
次に、 封着温度 450 °Cに達するとマ二ホールドの圧力をガス導入系統の作動 を停止し、 0. 05MP a程度に減圧しこれを維持する。  Next, when the sealing temperature reaches 450 ° C, the pressure of the manifold is stopped from operating the gas introduction system, and the pressure is reduced to about 0.05 MPa and maintained.
そして、 減圧状態を維持したまま、 2時間から 3時間をかけて 30分程度かけ て排気べ一キング温度 (350°C) まで降温させる。  While maintaining the reduced pressure, the temperature is lowered to the exhaust baking temperature (350 ° C) in about 30 minutes over 2 to 3 hours.
この段階では、 前面パネルと背面パネルとは完全に封着が完了しているが、 温 度低下と共に、 マ二ホールド内の圧力を監視しておけば、 封着の欠陥が分り、 封 着不良発生に対して製造段階の早い段階で対処することができ、 コス ト低下に役 立つ。 マ二ホールド内圧力は、 封着が正常に行われると次第に徐々に減少するが そうでなければ、 加熱炉内にガスがリークするので比較的早い速度で減少する。 次に、 排気べ一キング温度に降温された後、 吸引排気を継続してマ二ホールド 内の圧力を 1. 3 x 1 0— "〜1. 3 X 1 0— lflMP a程度まで吸引排気する。 次に、 吸引排気系統 53の作動を停止して、 ガス導入系統 52を作動させて外囲器 40 内に放電ガスを 0. 05 MP a程度充填しこの圧力を 5分から 1 0分程度維持す る。 At this stage, the front panel and the rear panel have been completely sealed, but if the temperature is reduced and the pressure inside the manifold is monitored, sealing defects can be identified and poor sealing can be achieved. Outbreaks can be dealt with earlier in the manufacturing process, helping to reduce costs. The pressure inside the manifold gradually decreases when sealing is performed normally, but otherwise decreases at a relatively high rate because gas leaks into the furnace. Next, after the temperature is lowered to the exhaust baking temperature, suction and exhaust are continued to reduce the pressure in the manifold to 1.3 x 10— "to 1.3 x 10— lfl MPa . Next, the operation of the suction / exhaust system 53 is stopped, and the gas introduction system 52 is operated to fill the envelope 40 with the discharge gas at about 0.05 MPa, and the pressure is increased for about 5 to 10 minutes. maintain.
その後、 冷却させながら、 外囲器 40内のガスを吸引排気を再開し、 1. 3 x 1 0"11- 1. 3 X 1 0— 1QMP a程度になった後、 ガス導入系統により放電ガスを 外囲器 40内に 0. 067MP a程度充填する。 Thereafter, while cooled, the gas in the envelope 40 to resume suction exhaust, 1. 3 x 1 0 "11 - after it becomes about 1. 3 X 1 0- 1Q MP a , a gas introduction system discharge The gas is filled into the envelope 40 at about 0.067 MPa.
従来の真空排気工程では、 外囲器内の圧力を 1. 3 X 1 —11〜 1. 3 X 1 0 10 MP aにまで減圧するには、 2時間程度かかるが、 上記実施例の真空排気工程に おいては 1時間程度で当該圧力まで減圧することができる。 In the conventional evacuation process, it takes about 2 hours to reduce the pressure in the envelope to 1.3 X 1 — 11 to 1.3 X 10 MPa. In the process, the pressure can be reduced to the pressure in about one hour.
以上のようにして作製した PDPは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0 %程度し、効率が数% から約 1 0 %程度向上した。 The PDP fabricated as described above had little lifting at the outer periphery and had more uniform discharge characteristics than the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. In addition, The pressure was also reduced by about 5 to 10 V, the discharge current was increased by several percent to about 10%, and the efficiency was improved by several percent to about 10%.
実施例 4と比較すると、 実施例 5による製造方法では、 外囲器 4 0の封着時か ら冷却までの時間と排気べ一キングのための室温から排気べ一キング温度までの 加熱時間が短縮できるという効果がある。 また、 蛍光体の劣化の程度も数%程度 実施例 4のものと比べて少なく、 若干優れていた。  Compared with Example 4, in the manufacturing method according to Example 5, the time from the sealing of the envelope 40 to the cooling and the heating time from the room temperature for the exhaust baking to the exhaust baking temperature. There is an effect that it can be shortened. In addition, the degree of deterioration of the phosphor was about several%, which was smaller than that of Example 4, and was slightly superior.
く実施の形態 4 >  Embodiment 4>
本実施の形態では、 封着工程における手法が上記実施の形態 2におけるものと 異なる他は、 それと同じである。  This embodiment is the same as the second embodiment except that the technique in the sealing step is different from that in the second embodiment.
まず、 加熱炉 7 1 内を加熱して、 封着材の軟化温度より若干高い封着温度 (例 えば 4 5 0 °C ) まで昇温し、 封着温度で所定時間保った後、 再び軟化点温度以下 に降温することによって両パネル 1 0 · 2 0間を封着するが、 封着温度に昇温さ せるときには、 ガス導入系統を作動させて外囲器 4 0内に乾燥ガスを導入しなが ら昇温させる。 なお、 ここでは、 前記ガスボンベ 7 2 dに充填する放電ガスを乾 燥させたものを乾燥ガスとして用いる。 この他にも乾燥空気、 乾燥窒素ガス、 乾 燥アルゴンガス、 乾燥ネオンガス (総じて乾燥希ガス) 等を用いることができる。 そして封着温度までに加熱されると封着材が軟化することによって外囲器 4 0の 外周部が気密になるので、 外囲器 4 0内の内圧が上昇する。 これをモニタ して、 放電ガスの導入を停止する。  First, the inside of the heating furnace 71 is heated to a sealing temperature slightly higher than the softening temperature of the sealing material (for example, 450 ° C.), kept at the sealing temperature for a predetermined time, and then softened again. By sealing the gap between the panels 10 and 20 by lowering the temperature below the point temperature, when the temperature is raised to the sealing temperature, the gas introduction system is activated to introduce dry gas into the envelope 40. Then raise the temperature. Here, a dried gas of the discharge gas filled in the gas cylinder 72 d is used as a dry gas. In addition, dry air, dry nitrogen gas, dry argon gas, dry neon gas (dry rare gas in general) and the like can be used. When heated to the sealing temperature, the sealing material softens and the outer peripheral portion of the envelope 40 becomes airtight, so that the internal pressure in the envelope 40 increases. This is monitored and the introduction of discharge gas is stopped.
なお、 乾燥ガスの流量は、 封着材が軟化して気密封止された時点において、 外 囲器 4 0内に乾燥ガスが流れても、 急激な圧力上昇が起こって外囲器 4 0を構成 するガラス基板が破損しない程度に無論制限されよう。  Note that the flow rate of the drying gas is such that when the sealing material is softened and hermetically sealed, even if the drying gas flows into the envelope 40, a sharp pressure rise occurs and the It will of course be limited to the extent that the constituent glass substrates are not damaged.
このように、 封着温度に達するまでの期間に外囲器 4 0内に乾燥ガスを流通さ せることから、 封着材が軟化することによつて外囲器 4 0の外周部が気密になつ た段階では、 外囲器 4 0内には乾燥ガスが充填されている。 そして、 乾燥ガスが 充填されている状態で封着温度を所定時間保持する。 この封着条件は、 ガラス基 板材料と封着材との相性とで決るが、低融点ガラスを用いる場合には、約 4 5 0 °C で 1 0〜2 0分程度である。  As described above, since the drying gas is circulated in the envelope 40 until the sealing temperature is reached, the outer peripheral portion of the envelope 40 is hermetically sealed by the softening of the sealing material. At the next stage, the envelope 40 is filled with dry gas. Then, the sealing temperature is held for a predetermined time while the drying gas is being filled. The sealing conditions are determined by the compatibility between the glass substrate material and the sealing material. When low-melting-point glass is used, the temperature is about 450 ° C. for about 10 to 20 minutes.
このように乾燥ガスを内部空間に充填した状態で封着することによって、 蛍光 体の熱劣化が防止される。 By sealing in a state where the dry gas is filled in the internal space, the fluorescent light Thermal degradation of the body is prevented.
更に、乾燥ガスが充填されている状態で封着温度を所定時間保持すると同時に、 ターボ分子ポンプ 7 2 bで外囲器 4 0内部から排気しながら封着を行う。 なお、 ターボ分子ポンプ 7 2 bを作動させるときには、 ロータリーポンプ 7 2 cを同時 に作動させてターボ分子ポンプ 7 2 b内の背圧を下げる。  Further, the sealing temperature is maintained for a predetermined time in a state where the drying gas is filled, and at the same time, the sealing is performed while exhausting the inside of the envelope 40 by the turbo molecular pump 72b. When the turbo molecular pump 72b is operated, the rotary pump 72c is simultaneously operated to lower the back pressure in the turbo molecular pump 72b.
排気は、 加熱炉 7 1内が封着材の軟化温度に達した後に開始することが望まし い。 封着材の軟化温度に達するまでは、 両パネル 1 0 · 2 0間の外周部の気密性 があまりないので、 外囲器 4 0の内部空間から排気してもその内部を高い真空度 にすることができないが、 封着材が軟化した後は、 両パネル 1 0 · 2 0間の外周 部が気密シールされると共に、 接着材層 7 3 aも軟化されて接続管 7 3と通気孔 2 1 aとの接続部分も気密シールされるので、 外囲器 4 0内部から排気すると高 い真空度 ( 1 . 3 3 X 1 0— 4M P a程度 (数 T o r r ) 程度) に減圧されるから である。 It is desirable that the evacuation be started after the inside of the heating furnace 71 reaches the softening temperature of the sealing material. Until the temperature reaches the softening temperature of the sealing material, the outer periphery between the panels 10 and 20 is not very airtight. However, after the sealing material has softened, the outer periphery between the panels 10 and 20 is hermetically sealed, and the adhesive layer 73 a is also softened so that the connection pipe 73 and the vent hole are formed. since the connection portion between the 2 1 a is also hermetically sealed, it is reduced to the envelope 4 0 when the exhaust from the internal high have vacuum (1. 3 3 X 1 0- 4 MP a degree (number T orr) about) This is because that.
このように外囲器 4 0の内部空間から排気することによって両パネル 1 0 · 2 0は外側から均一に加圧された状態となる。 吸引排気は、 外囲器 4 0内の圧力と 加熱炉内との圧力との差によつて封着材が押し縮められて、 2枚の前面パネルと 背面パネルとが接近して前面パネルと隔壁とが接触する程度であればよいので、 僅かに吸引排気する (例えば、 0 . 0 8 M P a程度) だけで十分である。  By exhausting air from the inner space of the envelope 40 in this manner, the panels 10 and 20 are uniformly pressed from the outside. In the suction and exhaust, the sealing material is compressed and shrunk by the difference between the pressure in the envelope 40 and the pressure in the heating furnace, and the two front and rear panels come close to each other and come into contact with the front panel. Sufficient suction and exhaust (for example, about 0.08 MPa) is enough, as long as it is sufficient to make contact with the partition wall.
両パネル 1 0 · 2 0が外側から均一に加圧されると、 図 3に示すように、 背面 パネル 2 0上の隔壁頂部と前面パネル 1 0とは、 全体的にぴったり密着した状態 となる。 そして、 この状態で降温されると、 封着材が軟化以下の温度となり硬化 することによって外囲器 4 0の封着がなされる。 従って、 封着された後の外囲器 0においては、 隔壁頂部と前面パネル 1 0とが全体的にぴったり密着した状態 が保たれていることになる。  When both panels 10 and 20 are uniformly pressed from the outside, as shown in Fig. 3, the top of the partition wall on the rear panel 20 and the front panel 10 are in close contact with each other as a whole. . When the temperature is lowered in this state, the temperature of the sealing material becomes lower than the softening temperature and the sealing material is hardened, whereby the envelope 40 is sealed. Therefore, in the envelope 0 after the sealing, the top of the partition wall and the front panel 10 are kept in close contact with each other.
なお、 前記封着工程において、 封着材の軟化温度より若干高い封着温度に一気 に昇温するのではなく、 封着温度よりも低い温度で一定時間、 例えば、 3 5 0 °C 程度で 3 0分程度加熱してバインダ材をバーンァゥ ト しておけば、 蛍光体の劣化 を抑える上で効果的である。  In the sealing step, the temperature is not increased at a stretch to a sealing temperature slightly higher than the softening temperature of the sealing material, but at a temperature lower than the sealing temperature for a certain time, for example, about 350 ° C. Burning the binder material by heating for about 30 minutes is effective in suppressing deterioration of the phosphor.
これ以降、 実施の形態 1 と同様の真空排気工程 ·封着工程 ·封入工程を経て P D Pが完成する。 After this, the vacuum evacuation process, sealing process, and encapsulation process DP is completed.
く実施例 6 >  Example 6>
次に、 上記実施の形態に基づいて各製造工程を行って実施例に係る P D Pを作 製した実施例について具体的に説明する。  Next, an example in which each manufacturing process is performed based on the above embodiment to produce a PDP according to the example will be specifically described.
本実施例では、 実施例 4と同じ温度 '圧力プロファイルに従って、 P D Pを作 製した。 ゲッター 7 6は、 封着を行い一旦室温にまで降温された段階でゲッター 管 7 4に収納し、 ゲッターには活性化温度が 2 8 0 °Cのバナジウム、 チタン、 鉄 系合金粒子を用いた。  In this example, a PDP was produced according to the same temperature and pressure profile as in Example 4. The getter 76 is sealed and once cooled down to room temperature, is stored in a getter tube 74, and vanadium, titanium, and iron-based alloy particles having an activation temperature of 280 ° C are used as the getter. .
従来の真空排気工程では、 外囲器内の圧力を 1 . 3 x 1 0— "〜 1 . 3 x 1 0 M P aにまで減圧するには、 2時間程度かかるが、 上記実施例の真空排気工程に おいては 1時間程度で当該圧力まで減圧することができる。  In the conventional evacuation process, it takes about two hours to reduce the pressure in the envelope to 1.3 × 10— ”to 1.3 × 10 MPa. In the process, the pressure can be reduced to the pressure in about one hour.
以上のようにして作製した P D Pは、 外周部の浮きが少なく、 放電特性も従来 のクリ ップ等の押圧だけによる方法よりも均一な特性が得られた。 また、 外周部 からの雑音レベルも数 d Bから 1 0 d B程度低く抑えられた。 また、 放電開始電 圧も約 5から 1 0 V程度低くなり、放電電流が数%から 1 0 %程度し、効率が数% から約 1 0 %程度向上した。  The PDP fabricated as described above had less lifting of the outer peripheral portion, and the discharge characteristics were more uniform than those of the conventional method using only a clip or the like. In addition, the noise level from the outer periphery was also reduced by several dB to 10 dB. In addition, the discharge starting voltage was reduced by about 5 to 10 V, the discharge current was increased by several percent to 10%, and the efficiency was improved by several percent to about 10%.
また、 上記のようにして乾燥ガスを流通させた後に封着した P D Pと、 従来の ように乾燥ガスを流通させることなく大気存在下で封着した P D Pの蛍光体の発 光強度 (輝度 色度座標の y値) を、 パネルを破壊して X eエキシマランプ (波 長 1 7 3 n m)を照射して比較評価すると、特に青色蛍光体の発光強度が約 1 0 % 程度改善されていた。 乾燥ガスは非反応性のものであれば一様に改善効果が認め られたが、 特に乾燥空気が優れていた。  In addition, the emission intensity (luminance, chromaticity) of the PDP sealed after the flow of the dry gas as described above and the PDP sealed in the presence of the air without the flow of the dry gas as in the past. The y-value of the coordinates) was compared and evaluated by irradiating the panel with a Xe excimer lamp (wavelength: 1733 nm). In particular, the emission intensity of the blue phosphor was improved by about 10%. If the dry gas was non-reactive, a uniform improvement effect was observed, but dry air was particularly excellent.
なお、 上記各実施の形態では、 封着工程及び排気工程を同じ装置で行ったが、 これに限られず、 封着工程と排気工程とを別々の装置で行うこともできる。 また、 封着工程では、 外囲器全体を加熱するのではなく、 封着部分にレーザ光 線などの熱源を選択的に照射して、 その部分を選択的に加熱して封着させること もできる。 この場合、 蛍光体は直接加熱されないため、 乾燥ガスを放電空間内に 導入しなくても封着工程に伴う蛍光体の熱劣化はさほど生じないと考えられる。 以上説明したように、 本発明は要すれば、 発光セル同士を隔てる隔壁が主表面 に形成された第 1基板の当該隔壁側表面上に第 2基板を対向配置することにより 外囲器を形成する外囲器形成ステツプと、 当該外囲器における両基板の外周部同 士を封着材で封着する封着ステップと、 当該外囲器の内部のガスを排気する排気 ステップと、 当該外囲器の内部に放電ガスを封入する封入ステツプとを備えるガ ス放電パネルの製造方法であって、 前記排気ステップは、 外囲器内を真空排気す るサブステップと、 その後、 外囲器の内部に放電ガスに対して不純物とならない ガスを実質的な成分とする洗浄ガスを充填するサブステップと、 その後、 外囲器 の内部を真空排気するサブステップを含むことを特徴とする。 In the above embodiments, the sealing step and the evacuation step are performed by the same apparatus. However, the present invention is not limited to this, and the sealing step and the evacuation step may be performed by separate apparatuses. Also, in the sealing process, instead of heating the entire envelope, a heat source such as a laser beam may be selectively irradiated to the sealed portion to selectively heat and seal the portion. it can. In this case, since the phosphor is not directly heated, even if the dry gas is not introduced into the discharge space, thermal degradation of the phosphor due to the sealing step is not likely to occur. As described above, according to the present invention, if necessary, the partition wall for separating the light emitting cells is formed on the main surface. An envelope forming step of forming an envelope by disposing a second substrate on the partition-side surface of the first substrate formed in the above, and sealing the outer peripheral portions of both substrates in the envelope. A method for manufacturing a gas discharge panel, comprising: a sealing step of sealing with a material; an exhausting step of exhausting gas inside the envelope; and an enclosing step of enclosing a discharge gas inside the envelope. The evacuation step includes a sub-step of evacuating the inside of the envelope, and thereafter, filling the inside of the envelope with a cleaning gas containing a gas that does not become an impurity with respect to the discharge gas as a substantial component. And a sub-step of evacuating the inside of the envelope after that.
また、 発光セル同士を隔てる隔壁が主表面に形成された第 1基板の当該隔壁側 表面上に第 2基板を対向配置することにより外囲器を形成する外囲器形成ステツ プと、 当該外囲器における両基板の外周部同士を封着材で封着する封着ステツプ と、 当該外囲器の内部のガスを排気する排気ステップと、 当該外囲器の内部に放 電ガスを封入する封入ステップとを備えるガス放電パネルの製造方法であって、 前記排気ステップは、 外囲器内を真空排気するサブステップと、 その後、 外囲器 の内部に放電ガスに対して不純物とならないガスを実質的な成分とする洗浄ガス を流通させながら外囲器の内部を排気するサブステツプを含むことを特徴とする ( これらの製造方法によれば、 従来のように単に外囲器の内部を排気するだけで はなく、 上記のように洗浄ガスを充填してから若しくは流通させながらこれを排 気するので、 従来の製造方法と比べて外囲器内の不純物ガス濃度を迅速に (短時 間で) 低濃度にまで除去することが可能となる。 かかる効果は、 ガス放電パネル が高精細なものであるほど有効である。 何故なら、 高精細のものほど、 不純物ガ スの濃度を低減するのに、 一般に時間がかかるからである。 An envelope forming step of forming an envelope by disposing a second substrate on the partition-side surface of the first substrate having a main surface on which a partition for separating the light emitting cells is formed; A sealing step of sealing the outer peripheral portions of both substrates in the envelope with a sealing material, an exhausting step of exhausting gas inside the envelope, and filling a discharge gas inside the envelope. A method of manufacturing a gas discharge panel comprising: an enclosing step, wherein the evacuation step includes a sub-step of evacuating the inside of the envelope, and thereafter, a gas that does not become an impurity with respect to the discharge gas inside the envelope. It is characterized by including a sub-step of exhausting the inside of the envelope while allowing the cleaning gas as a substantial component to flow ( according to these manufacturing methods, simply exhausting the inside of the envelope as in the conventional method). Not just above The exhaust gas is exhausted after the cleaning gas is filled or distributed as shown in the figure above, so that the impurity gas concentration in the envelope can be quickly (shortly) reduced to a low concentration compared to the conventional manufacturing method. This effect is more effective as the definition of the gas discharge panel is higher, because the higher the definition, the longer it generally takes to reduce the concentration of the impurity gas. Because.
なお、洗浄ガスを充填してから排気する場合には、充填直後に排気するよりも、 しばらく時間をおいてから排気するようにする方が望ましい。  When exhausting after filling with the cleaning gas, it is preferable to exhaust after a while rather than exhausting immediately after filling.
ここで、 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させ て外囲器全体を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲 器の内部の圧力を外部の圧力よりも低く し、 その後に冷却することによって封着 するものとすることができる。 なお、 封着材としては、 鉛合金を用いることもで きる。 これにより、 外囲器は、 内外の圧力差によって両基板が外側から均一的に押圧 された状態で封着材が硬化して封着されるので、 隔壁頂部とこれと対向する基板 との隙間がほとんどない状態で封着がなされる。 Here, the sealing step includes heating the entire envelope at a temperature equal to or higher than the softening point or the melting point of the sealing material with a sealing material interposed between the first substrate and the second substrate. The sealing can be performed by lowering the internal pressure of the device than the external pressure and then cooling it. Note that a lead alloy can also be used as the sealing material. As a result, the sealing material is hardened and sealed in a state in which the two substrates are uniformly pressed from the outside by the pressure difference between the inside and the outside, so that the gap between the top of the partition wall and the substrate opposed thereto is formed. Sealing is performed in a state where there is almost no.
ここで、 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した 容器内にゲッターを収納するステップを備えるものとすることができる。  Here, between the sealing step and the exhausting step, a step of storing the getter in a container communicating with the inside of the envelope may be provided.
これにより、 更により迅速に不純物ガスを外囲器内から除去することが可能と なる。  As a result, the impurity gas can be more quickly removed from the envelope.
ここで、 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下 の温度で加熱しながら行うものとすることができる。 なお、 上記のようにゲッタ 一を用いる場合には、 その活性化温度が当該排気ステップにおける加熱温度の範 囲内に入るものとすることが望ましい。  Here, the evacuation step may be performed while heating the entire envelope at a temperature equal to or lower than the softening point or the melting point of the sealing material. When the getter is used as described above, it is desirable that the activation temperature be within the range of the heating temperature in the evacuation step.
これにより、 より迅速に外囲器内から外部に不純物を除去することが可能とな る。  This makes it possible to remove impurities from the envelope to the outside more quickly.
ここで、 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度で の加熱冷却とすることができる。  Here, the cooling in the sealing step can be heating and cooling at a temperature equal to or lower than the softening point or the melting point.
これにより、 一旦、 室温付近にまで冷却してから排気べ一キング温度にまで再 び加熱するという工程を経ない分、 次の排気ステップに早く移行することが可能 となる。  As a result, it is possible to quickly move to the next evacuation step without performing the process of once cooling to around room temperature and then reheating to the exhaust baking temperature.
ここで、 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させ て乾燥ガスを外囲器の内部に流通させながら外囲器全体を封着材の軟化点若しく は融点以上の温度まで加熱するサブステップと、 封着材の軟化点若しくは融点以 上の温度で加熱すると共に、 外囲器の内部の圧力を外部の圧力よりも低く し、 そ の後に冷却することによつて封着するサブステップとを含むものとすることがで きる。  Here, in the sealing step, the sealing material is interposed between the first substrate and the second substrate, and while the dry gas is circulated inside the envelope, the entire envelope is softened at a softening point of the sealing material. Or the sub-step of heating to a temperature above the melting point, heating at a temperature above the softening point or melting point of the sealing material, reducing the internal pressure of the envelope to a value lower than the external pressure, and then cooling. A sub-step of sealing.
これにより、 封着ステップを外囲器の内部に乾燥ガスを充填した状態で行うこ とになるので、 蛍光体の熱劣化を抑えることができる。  Thus, the sealing step is performed in a state where the inside of the envelope is filled with the dry gas, so that the thermal degradation of the phosphor can be suppressed.
ここで、 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させ て外囲器の封着部を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲器の内部の圧力を外部の圧力よりも低く し、 その後に冷却することによって 封着するものとすることができる。 Here, the sealing step is to heat the sealing portion of the envelope at a temperature equal to or higher than the softening point or the melting point of the sealing material with a sealing material interposed between the first substrate and the second substrate, By reducing the pressure inside the envelope below the external pressure and then cooling It can be sealed.
ここで、 前記洗浄ガスには放電ガスを用いるのが最も望ましい。  Here, it is most desirable to use a discharge gas as the cleaning gas.
これは、 排気ステップの後に行う封入ステップで封入される放電ガスに対して 洗浄ガスが不純物ガスとなる可能性が全くないからである。  This is because there is no possibility that the cleaning gas becomes an impurity gas with respect to the discharge gas sealed in the sealing step performed after the evacuation step.
ここで、 前記放電ガスには希ガスを用いることができる。  Here, a rare gas can be used as the discharge gas.
ここで、 前記希ガスは、 ヘリウム、 ネオン、 アルゴン及びキセノンのうち何れ かを少なく とも含むものとすることができる。  Here, the rare gas may include at least one of helium, neon, argon, and xenon.
ここで、 前記発光セルは第一基板に並設された電極群と、 第二基板に並設され た電極群とが一定の距離をおいて互いに離間交差することによって形成されてい るものとすることができる。  Here, it is assumed that the light emitting cell is formed by an electrode group arranged side by side on the first substrate and an electrode group arranged side by side on the second substrate spaced apart from each other at a predetermined distance. be able to.
産業上の利用可能性 Industrial applicability
本発明のガス放電パネルの製造方法は、 テレビ、 コンピュータのモニタ等の画 像表示として用いられる P D P等の製造に利用できる。  INDUSTRIAL APPLICABILITY The method for manufacturing a gas discharge panel according to the present invention can be used for manufacturing a PDP or the like used as an image display such as a television or a computer monitor.

Claims

請求の範囲 The scope of the claims
1 . 発光セル同士を隔てる隔壁が主表面に形成された第 1基板の当該隔壁側表面 上に第 2基板を対向配置することにより外囲器を形成する外囲器形成ステップと, 当該外囲器における両基板の外周部同士を封着材で封着する封着ステップと、 当 該外囲器の内部のガスを排気する排気ステツプと、 当該外囲器の内部に放電ガス を封入する封入ステップとを備えるガス放電パネルの製造方法であって、  1. an envelope forming step of forming an envelope by disposing a second substrate on the partition-side surface of the first substrate on which a partition wall for separating the light emitting cells is formed on the main surface; A sealing step of sealing the outer peripheral portions of both substrates of the container with a sealing material, an exhausting step of exhausting gas inside the envelope, and enclosing a discharge gas inside the envelope. And a method for manufacturing a gas discharge panel comprising:
前記排気ステップは、 外囲器内を真空排気するサブステップと、 その後、 外囲 器の内部に放電ガスに対して不純物とならないガスを実質的な成分とする洗浄ガ スを充填するサブステップと、 その後、 外囲器の内部を真空排気するサブステツ プを含む  The evacuation step includes a sub-step of evacuating the inside of the envelope, and thereafter, a sub-step of filling the inside of the envelope with a cleaning gas having a gas that does not become an impurity in the discharge gas as a substantial component. , Followed by a sub-step to evacuate the interior of the envelope
ことを特徴とするガス放電パネルの製造方法。  A method for manufacturing a gas discharge panel, comprising:
2 . 発光セル同士を隔てる隔壁が主表面に形成された第 1基板の当該隔壁側表面 上に第 2基板を対向配置することにより外囲器を形成する外囲器形成ステップと, 当該外囲器における両基板の外周部同士を封着材で封着する封着ステップと、 当 該外囲器の内部のガスを排気する排気ステップと、 当該外囲器の内部に放電ガス を封入する封入ステツプとを備えるガス放電パネルの製造方法であって、 2. An envelope forming step of forming an envelope by arranging a second substrate on the partition-side surface of the first substrate having a main surface on which a partition for separating the light emitting cells is formed; A sealing step of sealing the outer peripheral portions of both substrates of the container with a sealing material, an exhausting step of exhausting a gas inside the envelope, and an encapsulation for filling a discharge gas inside the envelope. A method for manufacturing a gas discharge panel comprising:
前記排気ステップは、 外囲器内を真空排気するサブステップと、 その後、 外囲 器の内部に放電ガスに対して不純物とならないガスを実質的な成分とする洗浄ガ スを流通させながら外囲器の内部を排気するサブステツプを含む  The evacuation step includes a sub-step of evacuating the inside of the envelope, and then enclosing the inside of the envelope while flowing a cleaning gas containing a gas that does not become an impurity to the discharge gas as a substantial component. Includes sub-step to evacuate interior of vessel
ことを特徴とするガス放電パネルの製造方法。  A method for manufacturing a gas discharge panel, comprising:
3 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて外囲 器全体を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲器の内 部の圧力を外部の圧力よりも低く し、 その後に冷却することによって封着する ことを特徴とする請求の範囲 1 に記載のガス放電パネルの製造方法。 3. In the sealing step, a sealing material is interposed between the first substrate and the second substrate, and the entire envelope is heated at a temperature equal to or higher than the softening point or melting point of the sealing material. 2. The method for manufacturing a gas discharge panel according to claim 1, wherein the internal pressure is made lower than the external pressure, and then the sealing is performed by cooling.
4 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて外囲 器全体を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲器の内 部の圧力を外部の圧力よりも低く し、 その後に冷却することによって封着する ことを特徴とする請求の範囲 2に記載のガス放電パネルの製造方法。 4. The sealing step includes surrounding a sealing material between the first substrate and the second substrate. The entire vessel is heated at a temperature higher than the softening point or melting point of the sealing material, the pressure inside the envelope is made lower than the external pressure, and then the vessel is cooled and then sealed. 3. The method for manufacturing a gas discharge panel according to claim 2.
5 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器内 にゲッターを収納するステップを備える 5. Between the sealing step and the exhausting step, a step of storing a getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 1 に記載のガス放電パネルの製造方法。  2. The method for manufacturing a gas discharge panel according to claim 1, wherein:
6 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器内 にゲッターを収納するステップを備える 6. Between the sealing step and the exhausting step, a step of storing a getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 2に記載のガス放電パネルの製造方法。  3. The method for manufacturing a gas discharge panel according to claim 2, wherein:
7 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器内 にゲッターを収納するステップを備える 7. A step is provided between the sealing step and the evacuation step for storing the getter in a container communicating with the inside of the envelope.
ことを特徴とする請求の範囲 3に記載のガス放電パネルの製造方法。  4. The method for manufacturing a gas discharge panel according to claim 3, wherein:
8 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器内 にゲッターを収納するステップを備える 8. Between the sealing step and the exhausting step, a step of storing the getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 4に記載のガス放電パネルの製造方法。  5. The method for manufacturing a gas discharge panel according to claim 4, wherein:
9 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温度 で加熱しながら行う 9. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 1 に記載のガス放電パネルの製造方法。  2. The method for manufacturing a gas discharge panel according to claim 1, wherein:
1 0 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 10. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 2に記載のガス放電パネルの製造方法。  3. The method for manufacturing a gas discharge panel according to claim 2, wherein:
1 1 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 1. In the evacuation step, the entire envelope is heated to a temperature below the softening point or melting point of the sealing material. Perform while heating
ことを特徴とする請求の範囲 3に記載のガス放電パネルの製造方法。  4. The method for manufacturing a gas discharge panel according to claim 3, wherein:
1 2. 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 2. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 4に記載のガス放電パネルの製造方法。  5. The method for manufacturing a gas discharge panel according to claim 4, wherein:
1 3. 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 3. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 5に記載のガス放電パネルの製造方法。  6. The method for manufacturing a gas discharge panel according to claim 5, wherein:
1 4. 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 4. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 6に記載のガス放電パネルの製造方法。  7. The method for manufacturing a gas discharge panel according to claim 6, wherein:
1 5. 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 5. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 7に記載のガス放電パネルの製造方法。  8. The method for manufacturing a gas discharge panel according to claim 7, wherein:
1 6. 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 1 6. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 8に記載のガス放電パネルの製造方法。  9. The method for manufacturing a gas discharge panel according to claim 8, wherein:
1 7. 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 1 7. The cooling in the sealing step is heating and cooling at a temperature below the softening point or melting point.
ことを特徴とする請求の範囲 3に記載のガス放電パネルの製造方法。  4. The method for manufacturing a gas discharge panel according to claim 3, wherein:
1 8. 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である ことを特徴とする請求の範囲 4に記載のガス放電パネルの製造方法。 1 8. Cooling in the sealing step is heating and cooling at a temperature below the softening point or melting point. 5. The method for manufacturing a gas discharge panel according to claim 4, wherein:
1 9 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 19. Cooling in the sealing step is heating cooling at a temperature lower than the softening point or the melting point.
ことを特徴とする請求の範囲 1 1 に記載のガス放電パネルの製造方法。  The method for manufacturing a gas discharge panel according to claim 11, wherein
2 0 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 20. The cooling in the sealing step is heating cooling at a temperature lower than the softening point or the melting point.
ことを特徴とする請求の範囲 1 2に記載のガス放電パネルの製造方法。  13. The method for manufacturing a gas discharge panel according to claim 12, wherein:
2 1 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて乾 燥ガスを外囲器の内部に流通させながら外囲器全体を封着材の軟化点若しくは融 点以上の温度まで加熱するサブステップと、 封着材の軟化点若しくは融点以上の 温度で加熱すると共に、 外囲器の内部の圧力を外部の圧力よりも低く し、 その後 に冷却することによって封着するサブステップとを含む 21. In the sealing step, the sealing material is interposed between the first substrate and the second substrate, and a dry gas is allowed to flow through the inside of the envelope. Or a sub-step of heating to a temperature higher than the melting point, heating at a temperature higher than the softening point or melting point of the sealing material, reducing the pressure inside the envelope below the external pressure, and then cooling. Sub-step of sealing with
ことを特徴とする請求の範囲 1 に記載のガス放電パネルの製造方法。  2. The method for manufacturing a gas discharge panel according to claim 1, wherein:
2 2 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて乾 燥ガスを外囲器の内部に流通させながら外囲器全体を封着材の軟化点若しくは融 点以上の温度まで加熱するサブステップと、 封着材の軟化点若しくは融点以上の 温度で加熱すると共に、 外囲器の内部の圧力を外部の圧力よりも低く し、 その後 に冷却することによつて封着するサブステツプとを含む 22. In the sealing step, the sealing material is interposed between the first substrate and the second substrate, and a dry gas is allowed to flow through the inside of the envelope. Or a sub-step of heating to a temperature higher than the melting point, heating at a temperature higher than the softening point or melting point of the sealing material, reducing the pressure inside the envelope below the external pressure, and then cooling. Substeps to be sealed by
ことを特徴とする請求の範囲 2に記載のガス放電パネルの製造方法。  3. The method for manufacturing a gas discharge panel according to claim 2, wherein:
2 3 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器 内にゲッターを収納するステップを備える 23. Between the sealing step and the exhausting step, a step of storing a getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 2 1 に記載のガス放電パネルの製造方法。  21. The method for manufacturing a gas discharge panel according to claim 21, wherein:
2 4 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器 内にゲッ夕一を収納するステツプを備える 2 4. A container communicating with the inside of the envelope between the sealing step and the exhausting step Equipped with a step for storing the inside
ことを特徴とする請求の範囲 2 2に記載のガス放電パネルの製造方法。  The method for producing a gas discharge panel according to claim 22, characterized in that:
2 5 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 25. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 2 1 に記載のガス放電パネルの製造方法。  21. The method for manufacturing a gas discharge panel according to claim 21, wherein:
2 6 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 26. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 2 2に記載のガス放電パネルの製造方法。  The method for producing a gas discharge panel according to claim 22, characterized in that:
2 7 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 27. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 2 3に記載のガス放電パネルの製造方法。  24. The method for manufacturing a gas discharge panel according to claim 23, wherein:
2 8 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 28. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 2 4に記載のガス放電パネルの製造方法。  25. The method for manufacturing a gas discharge panel according to claim 24, wherein:
2 9 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 29. Cooling in the sealing step is heating cooling at a temperature lower than the softening point or the melting point.
ことを特徴とする請求の範囲 2 1 に記載のガス放電パネルの製造方法。  21. The method for manufacturing a gas discharge panel according to claim 21, wherein:
3 0 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 30. The cooling in the sealing step is heating and cooling at a temperature lower than the softening point or the melting point.
ことを特徴とする請求の範囲 2 2に記載のガス放電パネルの製造方法。  The method for producing a gas discharge panel according to claim 22, characterized in that:
3 1 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である ことを特徴とする請求の範囲 2 5に記載のガス放電パネルの製造方法。 31. The cooling in the sealing step is heating cooling at a temperature below the softening point or melting point. 26. The method for manufacturing a gas discharge panel according to claim 25, wherein:
3 2 . 前記封着ステップにおける冷却は、 軟化点若しくは融点以下の温度での加 熱冷却である 3 2. The cooling in the sealing step is heating and cooling at a temperature below the softening point or melting point.
ことを特徴とする請求の範囲 2 6に記載のガス放電パネルの製造方法。  27. The method for manufacturing a gas discharge panel according to claim 26, wherein:
3 3 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて外 囲器の封着部を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲 器の内部の圧力を外部の圧力よりも低く し、 その後に冷却することによって封着 する 33. In the sealing step, a sealing material is interposed between the first substrate and the second substrate, and the sealing portion of the envelope is heated at a temperature equal to or higher than the softening point or the melting point of the sealing material. Sealing by lowering the pressure inside the envelope than the outside pressure and then cooling
ことを特徴とする請求の範囲 1 に記載のガス放電パネルの製造方法。  2. The method for manufacturing a gas discharge panel according to claim 1, wherein:
3 4 . 前記封着ステップは、 第一基板及び第二基板の間に封着材を介在させて外 囲器の封着部を封着材の軟化点若しくは融点以上の温度で加熱すると共に、 外囲 器の内部の圧力を外部の圧力よりも低く し、 その後に冷却することによって封着 する 34. In the sealing step, a sealing material is interposed between the first substrate and the second substrate, and the sealing portion of the envelope is heated at a temperature equal to or higher than the softening point or the melting point of the sealing material. Sealing by lowering the pressure inside the envelope than the outside pressure and then cooling
ことを特徴とする請求の範囲 2に記載のガス放電パネルの製造方法。  3. The method for manufacturing a gas discharge panel according to claim 2, wherein:
3 5 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器 内にゲッターを収納するステップを備える 35. Between the sealing step and the evacuation step, a step of storing a getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 3 3に記載のガス放電パネルの製造方法。  34. The method for manufacturing a gas discharge panel according to claim 33, wherein:
3 6 . 前記封着ステップと排気ステップとの間に、 外囲器の内部と連通した容器 内にゲッターを収納するステップを備える 36. Between the sealing step and the exhausting step, a step of storing a getter in a container communicating with the inside of the envelope is provided.
ことを特徴とする請求の範囲 3 4に記載のガス放電パネルの製造方法。  35. The method for manufacturing a gas discharge panel according to claim 34, wherein:
3 7 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 37. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 3 3に記載のガス放電パネルの製造方法。 34. The method for manufacturing a gas discharge panel according to claim 33, wherein:
3 8 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 38. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 3 4に記載のガス放電パネルの製造方法。  35. The method for manufacturing a gas discharge panel according to claim 34, wherein:
3 9 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 39. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 3 5に記載のガス放電パネルの製造方法。  36. The method for manufacturing a gas discharge panel according to claim 35, wherein:
4 0 . 前記排気ステップは、 外囲器全体を封着材の軟化点若しくは融点以下の温 度で加熱しながら行う 40. The evacuation step is performed while heating the entire envelope at a temperature lower than the softening point or melting point of the sealing material.
ことを特徴とする請求の範囲 3 6に記載のガス放電パネルの製造方法。  37. The method for manufacturing a gas discharge panel according to claim 36, wherein:
4 1 . 前記洗浄ガスには放電ガスを用いる 4 1. Use discharge gas for the cleaning gas
ことを特徴とする請求の範囲 1乃至 4 0に記載のガス放電パネルの製造方法。  The method for manufacturing a gas discharge panel according to any one of claims 1 to 40, characterized in that:
4 2 . 前記放電ガスは希ガスからなる 4 2. The discharge gas consists of rare gas
ことを特徴とする請求の範囲 4 1 に記載のガス放電パネルの製造方法。  The method for producing a gas discharge panel according to claim 41, characterized by that:
4 3 . 前記希ガスは、 ヘリウム、 ネオン、 アルゴン及びキセノンのうち何れかを 少なく とも含む 4 3. The rare gas contains at least one of helium, neon, argon and xenon
ことを特徴とする請求の範囲 4 2に記載のガス放電パネルの製造方法。  The method for producing a gas discharge panel according to claim 42, wherein the method is characterized in that:
4 4 . 前記発光セルは第一基板に並設された電極群と、 第二基板に並設された電 極群とが一定の距離をおいて互いに離間交差することによって形成されている ことを特徴とする請求の範囲 1乃至 4 0に記載のガス放電パネルの製造方法。 44. The light emitting cell is formed by an electrode group arranged side by side on the first substrate and an electrode group arranged side by side on the second substrate, which are separated from each other at a fixed distance. The method for manufacturing a gas discharge panel according to any one of claims 1 to 40, wherein
4 5 . 前記発光セルは第一基板に並設された電極群と、 第二基板に並設された電 極群とが一定の距離をおいて互いに離間交差することによって形成されている ことを特徴とする請求の範囲 4 1 に記載のガス放電パネルの製造方法。 45. The light emitting cell is formed by an electrode group arranged side by side on the first substrate and an electrode group arranged side by side on the second substrate, spaced apart from each other at a certain distance. The method for producing a gas discharge panel according to claim 41, characterized by that:
4 6 . 前記発光セルは第一基板に並設された電極群と、 第二基板に並設された電 極群とが一定の距離をおいて互いに離間交差することによつて形成されている ことを特徴とする請求の範囲 4 2に記載のガス放電パネルの製造方法。 46. The light emitting cell is formed by an electrode group arranged side by side on a first substrate and an electrode group arranged side by side on a second substrate, which are separated from each other at a certain distance. The method for producing a gas discharge panel according to claim 42, wherein the method is characterized in that:
4 7 . 前記発光セルは第一基板に並設された電極群と、 第二基板に並設された電 極群とが一定の距離をおいて互いに離間交差することによって形成されている ことを特徴とする請求の範囲 4 3に記載のガス放電パネルの製造方法。 47. The light emitting cell is formed in such a manner that the electrode group arranged side by side on the first substrate and the electrode group arranged side by side on the second substrate cross each other at a predetermined distance. 43. The method for manufacturing a gas discharge panel according to claim 43, wherein
PCT/JP2000/003154 1999-05-20 2000-05-17 Method of producing gas discharge panel WO2000072351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020017000802A KR20010085293A (en) 1999-05-20 2000-05-17 Method of producing gas discharge panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP13971999 1999-05-20
JP11/139719 1999-05-20
JP14793799 1999-05-27
JP11/147937 1999-05-27

Publications (1)

Publication Number Publication Date
WO2000072351A1 true WO2000072351A1 (en) 2000-11-30

Family

ID=26472430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003154 WO2000072351A1 (en) 1999-05-20 2000-05-17 Method of producing gas discharge panel

Country Status (4)

Country Link
KR (1) KR20010085293A (en)
CN (1) CN1318204A (en)
TW (1) TW451258B (en)
WO (1) WO2000072351A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006019032A1 (en) * 2004-08-17 2008-05-08 松下電器産業株式会社 Plasma display panel and manufacturing method thereof
KR101100117B1 (en) * 2010-03-23 2011-12-29 (주)씨앤켐 Ac plasma display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713649A (en) * 1980-06-27 1982-01-23 Fujitsu Ltd Manufacturing method for gas discharge panel
JPH05342991A (en) * 1992-06-05 1993-12-24 Fujitsu Ltd Ac type plasma display panel and its aging method
JPH09251839A (en) * 1996-01-11 1997-09-22 Chugai Ro Co Ltd Manufacture of plasma display panel
JPH10334816A (en) * 1997-06-03 1998-12-18 Okaya Electric Ind Co Ltd Gas discharge display panel and its manufacture
JPH11285628A (en) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd Gas mixing device and production of gas discharge panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713649A (en) * 1980-06-27 1982-01-23 Fujitsu Ltd Manufacturing method for gas discharge panel
JPH05342991A (en) * 1992-06-05 1993-12-24 Fujitsu Ltd Ac type plasma display panel and its aging method
JPH09251839A (en) * 1996-01-11 1997-09-22 Chugai Ro Co Ltd Manufacture of plasma display panel
JPH10334816A (en) * 1997-06-03 1998-12-18 Okaya Electric Ind Co Ltd Gas discharge display panel and its manufacture
JPH11285628A (en) * 1998-04-02 1999-10-19 Matsushita Electric Ind Co Ltd Gas mixing device and production of gas discharge panel

Also Published As

Publication number Publication date
CN1318204A (en) 2001-10-17
TW451258B (en) 2001-08-21
KR20010085293A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
US6332821B1 (en) Method for fabricating plasma display device
EP1258899B1 (en) Plasma display panel and method of manufacturing thereof
JP2001035372A (en) Plasma display panel, manufacture and manufacturing device thereof
JP2001043802A (en) Manufacture of gas discharge panel
WO2000072351A1 (en) Method of producing gas discharge panel
JP3553903B2 (en) Method for manufacturing plasma display panel
JP2002367520A (en) Plasma display panel and its manufacturing method
JP2002075202A (en) Display panel and its manufacturing method
JP3420218B2 (en) Method for manufacturing plasma display panel
JP3199069B1 (en) Plasma display panel and method of manufacturing the same
JP3564418B2 (en) Method and apparatus for manufacturing plasma display panel
JP2002150938A (en) Plasma display panel and its manufacturing method and manufacturing device
JP2002134019A (en) Manufacturing method and manufacturing apparatus for plasma display panel and plasma display panel manufactured by using them
JP3553902B2 (en) Method and apparatus for manufacturing plasma display panel
JP3540764B2 (en) Plasma display panel
JP2004146231A (en) Method of manufacturing plasma display panel
JP3183290B1 (en) Plasma display panel and method of manufacturing the same
JP2001351532A (en) Plasma display panel
JP2002134026A (en) Plasma display panel and method and device for manufacturing it
JP2002358899A (en) Vacuum vessel and its manufacturing method
JP2002140984A (en) Display panel and its manufacturing method
JP2002075217A (en) Plasma display member, plasma display and its manufacturing method
JP2002134021A (en) Method for manufacturing plasma display panel and plasma display panel manufactured by the same
JP2003151436A (en) Method for manufacturing plasma display panel
JP2002140988A (en) Manufacturing method of plasma display panel, and plasma display panel manufactured using it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801454.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 1020017000802

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09744227

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017000802

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020017000802

Country of ref document: KR