WO2000069926A1 - Verfahren zur herstellung inhärent mikrobizider polymeroberflächen - Google Patents

Verfahren zur herstellung inhärent mikrobizider polymeroberflächen Download PDF

Info

Publication number
WO2000069926A1
WO2000069926A1 PCT/EP2000/002813 EP0002813W WO0069926A1 WO 2000069926 A1 WO2000069926 A1 WO 2000069926A1 EP 0002813 W EP0002813 W EP 0002813W WO 0069926 A1 WO0069926 A1 WO 0069926A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
radiation
antimicrobial
substrate
minutes
Prior art date
Application number
PCT/EP2000/002813
Other languages
English (en)
French (fr)
Inventor
Peter Ottersbach
Friedrich Sosna
Original Assignee
Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creavis Gesellschaft Für Technologie Und Innovation Mbh filed Critical Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority to AU45204/00A priority Critical patent/AU4520400A/en
Priority to EP00920629A priority patent/EP1183281A1/de
Publication of WO2000069926A1 publication Critical patent/WO2000069926A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/204Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with nitrogen-containing functional groups, e.g. aminoxides, nitriles, guanidines
    • A61L2300/208Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents

Definitions

  • the invention relates to a process for the preparation of antimicrobial polymers by polymerizing amino-functionalized monomers and the use of the antimicrobial polymers thus produced.
  • the invention relates to a process for the preparation of antimicrobial polymers by graft polymerization of amino-functionalized monomers on a substrate and the use of the antimicrobial substrates thus produced.
  • Mucus layers often form, which cause microbial populations to rise extremely, which have a lasting impact on the quality of water, beverages and food, and can even lead to product spoilage and consumer health damage.
  • Bacteria must be kept away from all areas of life where hygiene is important. This affects textiles for direct body contact, especially for the genital area and for nursing and elderly care. In addition, bacteria must be kept away from furniture and device surfaces in care stations, in particular in the area of intensive care and the care of small children, in hospitals, in particular in rooms for medical interventions and in isolation stations for critical infections and in toilets.
  • Tert-butylaminoethyl methacrylate is a commercially available monomer of methacrylate chemistry and is used in particular as a hydrophilic component in copolymerizations.
  • EP-PS 0 290 676 describes the use of various polyacrylates and polymethacrylates as a matrix for the immobilization of bactericidal quaternary ammonium compounds
  • US Pat. No. 4,532,269 discloses a terpolymer of butyl methacrylate, tributyltin methacrylate and tert-butylaminoethyl methacrylate. This polymer is used as an antimicrobial coating for ships, the hydrophilic tert-butylaminoethyl methacrylate demanding the slow erosion of the polymer and thus the highly toxic tributyltin methacrylate active ingredient releases
  • the copolymer made with aminomethacrylates is only a matrix or carrier for added microbicidal agents that can diffuse or migrate from the carrier.
  • Polymers of this type lose their effect more or less quickly if the necessary "minimal inhibitory concentration" () MIK) is no longer achieved
  • the present invention is therefore based on the object of developing novel, antimicrobial polymers which, if necessary, are intended as a coating to prevent the settling and spreading of bacteria on surfaces
  • the present invention relates to a process for the preparation of antimicrobial polymers, characterized in that aliphatic unsaturated monomers which are functionalized at least once by a quaternary amino group are polymerized
  • Suitable monomer units are all aliphatic unsaturated monomers which have at least one quaternary amino function, such as, for example, 3-methacryloylaminopropyltrimethylammonium chloride, 2-methacryloyloxyethyltrimethylammonium chloride, 2-methacryloyloxyethyltrimethylammoniummethosulfate, 3-acrylamidopropyltrimethylzimethylchloride ammonium chloride, 2-acryloyloxyethyl-4-benzoylbenzyl-dimethylammonium bromide, 2-acryloyloxyethyl-trimethylammonium methosulfate, N, N, N-trimethylammonium ethenobromide, 2-hydroxy-N, N, N-trimethyl-3 - [(2-methyl- l-oxo-2-propenyl) oxy] -ammonium propane chloride, N, N, N-trimethyl-2 - [(1-oxo-2
  • the aliphatic unsaturated monomers functionalized at least once by a quaternary amino group in the process according to the invention can have a hydrocarbon radical of up to 50, preferably up to 30, particularly preferably up to 22 carbon atoms.
  • the substituents of the amino group can have aliphatic or vinyl hydrocarbon radicals such as methyl, ethyl -, Propyl or acrylic radicals or cyclic hydrocarbon radicals, such as substituted or unsubstituted phenyl or cyclohexyl radicals having up to 25 carbon atoms.
  • the amino group can also be substituted by keto or aldehyde groups such as acryloyl or oxo groups.
  • halides such as quaternary ammonium ions can be substituted Chlorides, bromides or fluorides, the salts of mineral acids such as nitrides or sulfates and methyl sulfate are used
  • the monomers used in the process according to the invention should have a molar mass below 900, preferably below 550 g / mol
  • aliphatic unsaturated monomers of the general formula which are functionalized simply by a quaternary amino group are functionalized simply by a quaternary amino group
  • Ri branched, unbranched or cyclic, saturated or unsaturated hydrocarbon radical with up to 50 C atoms, which can be substituted by O, N or S atoms
  • R 2 , R 3 , K branched, unbranched or cyclic, saturated or unsaturated hydrocarbon radical with up to 25 C atoms, which can be substituted by O, N or S atoms
  • the process according to the invention can also be carried out by polymerizing the monomers functionalized at least once by a quaternary amino group on a substrate. A physisorbed coating of the antimicrobial copolymer is obtained on the substrate
  • All polymeric plastics such as polyurethanes, polyamides, polyesters and ethers, polyether block amides, polystyrene, polyvinyl chloride, polycarbonates, polyorganosiloxanes, polyolefins, polysulfones, polyisoprene, polychloroprene, polytetrafluoroethylene (PTFE), are suitable as substrate materials Copolymers and blends as well as natural and synthetic rubbers, with or without radiation-sensitive groups
  • the method according to the invention can also be applied to surfaces of lacquered or otherwise plastic, metal, glass or wood bodies
  • the antimicrobial polymers can be obtained by graft polymerization of a substrate with an aliphatic unsaturated monomer functionalized at least simply by a quaternary amino group.
  • the grafting of the substrate enables the antimicrobial polymer to be covalently bound to the substrate how the plastics already mentioned are used
  • the surfaces of the substrates can be activated before the graft copolymerization using a number of methods. All standard methods for activating polymeric surfaces can be used here.
  • the activation of the substrate before the graft polymerization is carried out by UV radiation, plasma treatment, corona treatment, flame treatment, ozonization, electrical discharge of ⁇ -radiation, methods used
  • the surfaces are expediently freed of oils, fats or other contaminants beforehand in a known manner by means of a solvent
  • the substrates can be activated by UV radiation in the wavelength range 170-400 nm, preferably 170-250 nm.
  • a suitable radiation source is, for example, a UV excimer device HERAEUS Noblelight, Hanau, Germany.
  • mercury vapor lamps are also suitable for substrate activation if they are emit significant amounts of radiation in the areas mentioned
  • the exposure time is generally 0 1 seconds to 20 minutes, preferably 1 second to 10 minutes
  • the activation of the standard polymers with UV radiation can also be carried out with an additional photosensitizer.
  • the photosensitizer such as benzophenone
  • the activation can also be achieved by plasma treatment using an RF or microwave plasma (Hexagon, Fa Technics Plasma, 85551 Kirchheim, Germany) in air, nitrogen or argon atmosphere.
  • the exposure times are generally 2 seconds to 30 minutes, preferably 5 seconds up to 10 minutes
  • the energy input for laboratory devices is between 100 and 500 W, preferably between 200 and 300 W.
  • Corona devices SOFTAL, Hamburg, Germany
  • the exposure times in this case are generally 1 to 10 minutes, preferably 1 to 60 seconds
  • Activation by electrical discharge, electron or ⁇ -rays (e.g. from a cobalt 60 source) and ozonization enable short exposure times, which are generally 0 1 to 60 seconds
  • Flaming substrate surfaces also leads to their activation.
  • Suitable devices in particular those with a barrier flame front, can be easily built or, for example, obtained from ARCOTEC, 71297 Monsheim, Germany. They can be operated with hydrocarbons or hydrogen as fuel gas In any case, damaging overheating of the substrate must be avoided, which is easily achieved by intimate contact with a cooled metal surface on the surface of the substrate facing away from the flame side.
  • Activation by flame is accordingly limited to relatively thin, flat substrates.
  • the exposure times generally amount to 0 1 second to 1 minute, preferably 0 5 to 2 seconds, all of which are non-luminous flames and the distances between the substrate surfaces and the outer flame front are 0 2 to 5 cm, preferably 0 5 to 2 cm
  • the substrate surfaces activated in this way are coated using known methods, such as dipping, spraying or brushing, with aliphatic unsaturated monomers which are at least simply functionalized by a quaternary amino group, if appropriate in solution.
  • Water and water / ethanol mixtures have retained as solvents, however are also other solvents can be used, provided they have sufficient bulk for the monomers and wet the substrate surfaces well.
  • Other solvents are, for example, ethanol, methanol, methyl ethyl ketone, diethyl ether, dioxane, hexane, heptane, benzene, toluene, chloroform, dichloromethane, tetrahydrofuran and acetonitrile solutions with monomer-containing substances from 1 to 10% by weight, for example with about 5% by weight, have been found to be effective in practice and generally give coherent coatings covering the substrate surface with layer thicknesses which can be more than 0.1 ⁇ m in one pass Monomers
  • Mercury vapor lamps are also suitable here, provided they emit considerable amounts of radiation in the areas mentioned.
  • the exposure times are generally 10 seconds to 30 minutes, preferably 2 to 15 minutes
  • graft copolymerization can also be achieved by a process which is described in European patent application 0 872 512 and is based on a graft polymerization of swollen monomer and initiator molecules
  • aliphatically unsaturated monomers can be used, in addition to the monomers functionalized by a quaternary amino group.
  • an aliphatic unsaturated monomer functionalized at least once by a quaternary amine group with acrylates or methacrylates for example acrylic acid, tert-butyl methacrylate or methyl methacrylate, can be used as the monomer mixture.
  • Styrene, vinyl chloride, vinyl ether, acrylamides, acrylonitriles, olefins (ethylene, propylene, butylene, isobutylene), allyl compounds, vinyl ketones, vinyl acetic acid, vinyl acetate or vinyl esters can be used
  • the antimicrobial polymers made from aliphatic unsaturated monomers, which are functionalized at least simply by a quaternary amino group, produced by the process according to the invention show a microbicidal or antimicrobial behavior even without grafting onto a substrate surface If the process according to the invention is used directly on the substrate surface without grafting, customary free-radical initiators can be added.
  • the initiators are azonitriles, alkyl peroxides, hydroperoxides, acyl peroxides, peroxoketones, peresters, peroxocarbonates, peroxodisulfate, persulfate and all customary photoinitiators such as, for example, ⁇ -acetophenone -Using hydroxy ketones, dimethyl ketals and benzophenone.
  • the polymerization can also be initiated thermally or, as already stated, by electromagnetic radiation, such as UV light or ⁇ radiation
  • the present invention further relates to the use of the antimicrobial polymers produced according to the invention for the production of antimicrobially active products and the products thus produced as such.
  • the products can contain or consist of modified polymer substrates according to the invention.
  • modified polymer substrates according to the invention are preferably based on polyamides, polyurethanes, Polyether block amides, polyester amides or imides, PVC, polyolefins, silicones, polysiloxanes, polymethacrylate or polyterephthalates, which have surfaces modified with the polymers produced according to the invention
  • Antimicrobial products of this type are, for example, and in particular machine parts for food processing, components of air conditioning systems, roofing, bathroom and toilet articles, cake articles, components of sanitary facilities, components of animal cages and dwellings, toys, components in water systems, food packaging, operating elements (touch panel ) of devices and contact lenses
  • the present invention also relates to the use of the polymer substrates modified on the surface with the antimicrobial polymers produced according to the invention for the production of hygiene products or medical articles.
  • hygiene products are, for example, toothbrushes, toilet seats, combs and packaging materials also other objects that may come into contact with many people, such as telephone listeners, Handrails of stairs, door and window handles as well as holding straps and handles in public transport.
  • Medical technology articles are eg catheters, tubes, cover foils or surgical cutlery
  • Graft polymers can be used wherever bacteria-free, ie microbicidal surfaces or surfaces with non-stick properties are important
  • microbicidal polymers produced by the process according to the invention are, in particular, lacquers, protective coatings or coatings in the following
  • Machine parts air conditioning systems ion exchangers, process water, solar systems,
  • example 1 A polyamide 12 film is exposed for 2 minutes at a pressure of 1 mbar to 172 nm radiation from an excimer radiation source from Heraeus.
  • the film activated in this way is placed in an irradiation reactor under protective gas and fixed thereupon the film is countercurrently flowed with 20 ml of a mixture of 3 g of 2-methacryloyloxyethyltrimethylammonium chloride (Aldrich), 57 g of demineralized water and 40 g of methanol are coated.
  • the radiation chamber is closed and placed at a distance of 10 cm under an excimer radiation unit from Heraeus, which has an emission of the wavelength 308 nm.
  • the radiation is started, the exposure time is 15 minutes.
  • the film is then removed and rinsed with a mixture of 15 ml of methanol and 15 ml of demineralized water.
  • the film is then dried in vacuo for 12 hours at 50 ° C.
  • the film is then 5 times 6 hours in water Extracted 30 ° C, then dried at 50 ° C for 12 hours
  • a coated piece of film from Example 1 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Staphylococcus aureus and shaken. After a contact time of 30 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test batch is determined dropped from 10 7 to 10 3
  • a coated piece of film from Example 1 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Pseudomonas aeruginosa and shaken. After a contact time of 60 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test mixture is determined dropped from 10 7 to 10 4
  • Example 2 A polyamide 12 film is exposed for 2 minutes at a pressure of 1 mbar to 172 nm radiation from an excimer radiation source from Heraeus.
  • the film activated in this way is placed in an irradiation reactor under protective gas and fixed thereupon the film is exposed to 20 ml of a mixture in a protective gas countercurrent 3 g of 2-methacryloyloxyethyltrimethylammonium methosulfate (from Aldrich), 57 g of demineralized water and 40 g of methanol are coated.
  • the radiation chamber is closed and placed at a distance of 10 cm under an excimer radiation unit from Heraeus, which has an emission of the wavelength 308 nm.
  • the radiation is started, the exposure time is 15 minutes.
  • the film is then removed and rinsed with a mixture of 15 ml of methanol and 15 ml of demineralized water.
  • the film is then dried in vacuo at 50 ° C. for 12 hours.
  • the film is then 5 times 6 hours in water extracted at 30 ° C, then dried at 50 ° C for 12 hours net
  • a coated piece of film from Example 2 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Staphylococcus aureus and shaken. After a contact time of 15 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test batch is determined more detectable from Staphylococcus aureus
  • a coated piece of film from Example 2 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Pseudomonas aeruginosa and shaken. After a contact time of 60 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test batch is determined dropped from 10 7 to 10 2
  • a polyamide 12 film is exposed to the 172 nm radiation of an excimer radiation source from Heraeus for 2 minutes at a pressure of 1 mbar.
  • the film activated in this way is placed under The protective gas is placed in a radiation reactor and fixed.
  • the film is then coated in a protective gas countercurrent with 20 ml of a mixture of 3 g of 3-acrylamidopropyltrimethylammonium chloride (Aldrich), 57 g of demineralized water and 40 g of methanol.
  • Aldrich 3-acrylamidopropyltrimethylammonium chloride
  • the radiation chamber is closed and at a distance of 10 cm placed under an excimer radiation unit from Heraeus, which has an emission of the wavelength 308 nm.
  • the radiation is started, the exposure time is 15 minutes.
  • the film is then removed and rinsed with a mixture of 15 ml of methanol and 15 ml of demineralized water.
  • the film is then 12 Hours dried at 50 ° C under vacuum Then the film is extracted 5 times 6 hours in water at 30 ° C, then dried at 50 ° C for 12 hours
  • Example 3a A coated piece of film from example 3 (5 ⁇ 4 cm) is placed in 30 ml of a test germ suspension of Staphylococcus aureus and shaken. After a contact time of 15 minutes, 1 ml of the test germ suspension is removed, and the number of germs in the test mixture is determined Staphylococcus aureus germs no longer detectable
  • a coated piece of film from Example 3 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Pseudomonas aeruginosa and shaken. After a contact time of 60 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test mixture is determined dropped from 10 7 to 10 3
  • Example 4 A polyamide 12 film is exposed to the 172 nm radiation of an excimer radiation source from Heraeus for 2 minutes at a pressure of 1 mbar.
  • the film activated in this way is placed in an irradiation reactor under protective gas and fixed thereupon Shielding gas countercurrent with 20 ml of a mixture of 3 g of 2-methacryloyloxyethyltrimethylammonium chloride (Aldrich), 2 g of methyl methacrylate (Aldrich) and 95 g of methanol.
  • Aldrich 2-methacryloyloxyethyltrimethylammonium chloride
  • Aldrich 2-methacryloyloxyethyltrimethylammonium chloride
  • Aldrich methyl methacrylate
  • the radiation chamber is closed and placed 10 cm below an excimer radiation unit from Heraeus, which has an emission of the wavelength 308 nm.
  • the irradiation is started, the exposure time is 15 minutes.
  • the film is then removed and rinsed with 30 ml of methanol.
  • the film is then dried in vacuo for 12 hours at 50 ° C.
  • the film is then 5 times 6 in water Extracted for hours at 30 ° C, then dried at 50 ° C for 12 hours.
  • the back of the film is then treated in the same way, so that a polyamide film coated with grafted polymer on both sides is finally obtained
  • a coated piece of film from example 4 (5 ⁇ 4 cm) is placed in 30 ml of a test germ suspension of Staphylococcus aureus and shaken. After a contact time of 15 minutes, 1 ml of the test germ suspension is removed, and the number of germs in the test mixture is determined. After this time there are no germs more detectable from Staphylococcus aureus
  • Example 4b A coated piece of film from example 4 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Pseudomonas aeruginosa and shaken. After a contact time of 60 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test batch is determined the bacterial count dropped from 10 7 to 10 3
  • a polyamide 12 film is exposed for 2 minutes at a pressure of 1 mbar to 172 nm radiation from an excimer radiation source from Heraeus.
  • the film activated in this way is placed in an irradiation reactor under protective gas and fixed thereupon the film is exposed to 20 ml of a mixture in a protective gas countercurrent 3 g of 2-methacryloyloxyethyltrimethylammonium methosulfate (from Aldrich), 2 g of methyl methacrylate (from Aldrich) and 95 g of methanol
  • the radiation chamber is closed and placed at a distance of 10 cm under an excimer radiation unit from Heraeus, which has an emission of 308 nm.
  • the radiation is started, the exposure time is 15 minutes.
  • the film is then removed and rinsed with 30 ml of methanol.
  • the film is then dried in vacuo for 12 hours at 50 ° C.
  • the film is extracted 5 times 6 hours in water at 30 ° C., then dried at 50 ° C. for 12 hours.
  • the back of the film is then treated in the same way so that finally a polyamide film coated with grafted polymer on both sides
  • a coated piece of film from Example 5 (5 ⁇ 4 cm) is placed in 30 ml of a test microbial suspension of Staphylococcus aureus and shaken. After a contact time of 15 minutes, 1 ml of the test microbial suspension is removed, and the number of bacteria in the test batch is determined more detectable from Staphylococcus aureus
  • a coated piece of film from Example 5 (5 ⁇ 4 cm) is placed in 30 ml of a test germ suspension from Pseudomonas aeruginosa and shaken. After a contact time of 60 minutes, 1 ml of the test germ suspension is removed, and the number of bacteria in the test mixture is determined dropped from 10 7 to 10 3

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von antimikrobiellen Polymeren durch Polymerisation von aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine quartäre Aminogruppe funktionalisiert sind. Die erfindungsgemäss hergestellten antimikrobiellen Polymere können als mikrobizide Lacke, Schutzanstriche oder Beschichtungen z. B. auf Hygieneartikeln oder im medizinischen Bereich verwendet werden.

Description

Verfahren zur Herstellung inhärent mikrobizider Polvmeroberflächen
Die Erfindung betrifft ein Verfahren zur Herstellung antimikrobielier Polymere durch Polymerisation von aminofunktionalisierten Monomeren und die Verwendung der so hergestellten antimikrobiellen Polymere.
Desweiteren betrifft die Erfindung ein Verfahren zur Herstellung antimikrobielier Polymere durch Pfropfpolymerisation von aminofunktionalisierten Monomeren auf einem Substrat und die Verwendung der so hergestellten antimikrobiellen Substrate.
Besiedlungen und Ausbreitungen von Bakterien auf Oberflächen von Rohrleitungen, Behältern oder Verpackungen sind im hohen Maße unerwünscht. Es bilden sich häufig Schleimschichten, die Mikrobenpopulationen extrem ansteigen lassen, die Wasser-, Getränke- und Lebensmittelqualitäten nachhaltig beeinträchtigen und sogar zum Verderben der Ware sowie zur gesundheitlichen Schädigung der Verbraucher fuhren können.
Aus allen Lebensbereichen, in denen Hygiene von Bedeutung ist, sind Bakterien fernzuhalten. Davon betroffen sind Textilien für den direkten Körperkontakt, insbesondere für den Intimbereich und für die Kranken- und Altenpflege. Außerdem sind Bakterien fernzuhalten von Möbel- und Geräteoberflächen in Pflegestationen, insbesondere im Bereich der Intensivpflege und der Kleinstkinder-Pflege, in Krankenhäusern, insbesondere in Räumen für medizinische Eingriffe und in Isolierstationen für kritische Infektionsfälle sowie in Toiletten.
Gegenwärtig werden Geräte, Oberflächen von Möbeln und Textilien gegen Bakterien im Bedarfsfall oder auch vorsorglich mit Chemikalien oder deren Lösungen sowie Mischungen behandelt, die als Desinfektionsmittel mehr oder weniger breit und massiv antimikrobiell wirken. Solche chemischen Mittel wirken unspezifisch, sind häufig selbst toxisch oder reizend oder bilden gesundheitlich bedenkliche Abbauprodukte. Häufig zeigen sich auch Unverträglichkeiten bei entsprechend sensibilisierten Personen.
Eine weitere Vorgehensweise gegen oberflächige Bakterienausbreitungen stellt die Einarbeitung antimikrobiell wirkender Substanzen in eine Matrix dar. Tert -Butylaminoethylmethacrylat ist ein handelsübliches Monomer der Methacrylatchemie und wird insbesondere als hydrophiler Bestandteil in Copolymerisationen eingesetzt So wird in EP-PS 0 290 676 der Einsatz verschiedener Polyacrylate und Polymethacrylate als Matrix für die Immobilisierung von bakteriziden quaternaren Ammoniumverbindungen beschrieben
Aus einem anderen technischen Bereich offenbart US-PS 4 532 269 ein Terpolymer aus Butylmethacrylat, Tributylzinnmethacrylat und tert -Butylaminoethylmethacrylat Dieses Polymer wird als antimikrobielier Schiffsanstrich verwendet, wobei das hydrophile tert - Butylaminoethylmethacrylat die langsame Erosion des Polymers fordert und so das hochtoxische Tributylzinnmethacrylat als antimikrobiellen Wirkstoff freisetzt
In diesen Anwendungen ist das mit Aminomethacrylaten hergestellte Copolymer nur Matrix oder Tragersubstanz für zugesetzte mikrobizide Wirkstoffe, die aus dem Tragerstoff diffundieren oder migrieren können Polymere dieser Art verlieren mehr oder weniger schnell ihre Wirkung, wenn an der Oberfläche die notwendige „minimale inhibitorische Konzentration,, (MIK) nicht mehr erreicht wird
Aus den europaischen Patentanmeldungen 0 862 858 und 0 862 859 ist bekannt, daß Homo- und Copolymere von tert -Butylaminoethylmethacrylat, einem Methacrylsaureester mit quartarer Aminofunktion, inhärent mikrobizide Eigenschaften besitzen Um unerwünschten Anpassungsvorgangen der mikrobiellen Lebensformen, gerade auch in Anbetracht der aus der Antibiotikaforschung bekannten Resistenzentwicklungen von Keimen, wirksam entgegenzutreten, müssen auch zukunftig Systeme auf Basis neuartiger Zusammensetzungen und verbesserter Wirksamkeit entwickelt werden
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, neuartige, antimikrobiell wirksame Polymere zu entwickeln Diese sollen ggf als Beschichtung die Ansiedelung und Verbreitung von Bakterien auf Oberflachen verhindern
Es wurde nun überraschend gefunden, daß durch Polymerisation von aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine quartare Aminogruppe fünktionalisiert sind, Polymere mit einer Oberflache erhalten werden, die dauerhaft mikrobizid ist, durch Losemittel und physikalische Beanspruchung nicht angegriffen wird und keine Migration zeigen Dabei ist es nicht notig, weitere biozide Wirkstoffe einzusetzen
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von antimikrobiellen Polymeren, dadurch gekennzeichnet, daß aliphatisch ungesättigte Monomere, die mindestens einfach durch eine quartare Aminogruppe funktionahsiert sind, polymerisiert werden
Als Monomerbausteine eignen sich alle aliphatisch ungesättigten Monomere, die zumindest eine quartare Aminofunktion besitzen, wie z B 3-Methacryloylaminopropyl-trimethylammo- niumchlorid, 2- Methacryloyloxyethyl-trimethylammoniumchlorid, 2-Methacryloyloxyethyl- trimethylammoniummetho sulfat, 3 - Acrylamidopropyl-trimethylammoniumchlorid, Trime- thylvinylbenzyl-ammoniumchlorid, 2-Acryloyloxyethyl-4-benzoylbenzyl-dimethylammoni- umbromid, 2-Acryloyloxyethyl-trimethylammoniummethosulfat, N,N,N-Trimethylammonium- ethenbromid, 2-Hydroxy-N,N,N-trimethyl-3-[(2-methyl-l-oxo-2-propenyl)oxy]-ammo- niumpropanchlorid, N,N,N-Trimethyl-2-[( 1 -oxo-2-propenyl)oxy]-ammoniumethan-methyl- sulfate, N,N-Diethyl-N-methyl-2-[( 1 -oxo-2-propenyl)oxy]-ammoniumethan-methylsulfate, N,N,N-Trimethyl-2-[(l-oxo-2-propenyl)oxy]-ammoniumethanchlorid, N,N,N-Trimethyl-2-[(2- methyl-l-oxo-2-propenyl)oxy]-ammoniumethanchlorid, N,N,N-Trimethyl-2-[(2-methyl-l-oxo- 2-propenyl)oxy]-ammoniumethan-methylsulfat, N,N,N-triethyl-2-[( 1 -oxo-2-propenyl)amιno]- ammoniumethan
Die im erfindungsgemaßen Verfahren eingesetzten mindestens einfach durch eine quartare Aminogruppe fünktionalisierten, aliphatisch ungesättigten Monomeren können einen Kohlenwasserstoffrest von bis zu 50, bevorzugt bis zu 30, besonders bevorzugt bis zu 22 Kohlenstoffatomen aufweisen Die Substituenten der Aminogruppe können aliphatische oder vinylische Kohlenwasserstoffreste wie Methyl-, Ethyl-, Propyl- oder Acrylreste oder cyclische Kohlenwasserstoffreste wie substituierte oder unsubstituierte Phenyl- oder Cyclohexylreste mit bis zu 25 Kohlenstoffatomen aufweisen Weiterhin kann die Aminogruppe auch durch Keto- oder Aldehydgruppen wie Acryloyl- oder Oxogruppen substituiert sein Als Gegenion der quartaren Amoniumionen können z B Halogenide wie Chloride, Bromide oder Fluoride, die Salze der Mineralsauren wie Nitride oder Sulfate sowie Methylsulfat eingesetzt werden Um eine ausreichende Polymerisationsgeschwindigkeit zu erreichen, sollten die im erfindungsgemaßen Verfahren eingesetzten Monomere eine Molmasse unter 900, bevorzugt unter 550 g/mol aufweisen
In einer besonderen Ausführungsform der vorliegenden Erfindung können einfach durch eine quartare Aminogruppe fünktionalisierte aliphatische ungesättigte Monomere der allgemeinen Formel
Figure imgf000006_0001
mit Ri Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 50 C-Atomen, die durch O-, N- oder S-Atome substituiert sein können, R2, R3, K. Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 25 C-Atomen, die durch O-, N- oder S-Atome substituiert sein können, wobei R2, R3, t gleich oder verschieden sind und X F, Cl", Br_, F, SO4 2", SO3 2", CH,SO,\ CH,CO2 ", C2O4 2", CO,2", PO,1", PO3 2", NO3 ", NO2 ", NO", CN", SCN", CNO", CIO", ClO2 ", ClO3 ", ClO4 " eingesetzt werden
Das erfindungsgemaße Verfahren kann auch durch Polymerisation der mindestens einfach durch eine quartare Aminogruppe fünktionalisierten Monomere auf einem Substrat durchgeführt werden Es wird eine physisorbierte Beschichtung aus dem antimikrobiellen Copolymer auf dem Substrat erhalten
Als Substratmaterialien eigenen sich vor allem alle polymeren Kunststoffe, wie z B Polyurethane, Polyamide, Polyester und -ether, Polyetherblockamide, Polystyrol, Poly- vinylchlorid, Polycarbonate, Polyorganosiloxane, Polyolefine, Polysulfone, Polyisopren, Poly- Chloropren, Polytetrafluorethylen (PTFE), entsprechende Copolymere und Blends sowie naturliche und synthetische Kautschuke, mit oder ohne strahlungssensitive Gruppen Das erfindungsgemaße Verfahren laßt sich auch auf Oberflachen von lackierten oder anderweitig mit Kunststoffbeschichteten Metall-, Glas- oder Holzkorpern anwenden
In einer weiteren Ausführungsform der vorliegenden Erfindung können die antimikrobiellen Polymere durch Pfropfpolymerisation eines Substrats mit einem mindestens einfach durch eine quartare Aminogruppe fünktionalisierten, aliphatisch ungesättigten Monomeren erhalten werden Die Pfropfung des Substrats ermöglicht eine kovalente Anbindung des antimikrobiellen Polymers an das Substrat Als Substrate können alle polymeren Materialien, wie die bereits genannten Kunststoffe eingesetzt werden
Die Oberflachen der Substrate können vor der Pfropfcopolymerisation nach einer Reihe von Methoden aktiviert werden Hier können alle Standardmethoden zur Aktivierung von polymeren Oberflachen zum Einsatz kommen, Beispielsweise ist die Aktivierung des Substrats vor der Pfropfpolymerisation durch UV- Strahlung, Plasmabehandlung, Coronabehandlung, Beflammung, Ozonisierung, elektrische Entladung der γ-Strahlung, eingesetzte Methoden Zweckmäßig werden die Oberflachen zuvor in bekannter Weise mittels eines Losemittels von Ölen, Fetten oder anderen Verunreinigungen befreit
Die Aktivierung der Substrate kann durch UV-Strahlung im Wellenlangenbereich 170- 400 nm, bevorzugt 170-250 nm erfolgen Eine geeignete Strahlenquelle ist z B ein UV-Excimer-Gerat HERAEUS Noblelight, Hanau, Deutschland Aber auch Quecksilberdampflampen eignen sich zur Substrataktivierung, sofern sie erhebliche Strahlungsanteile in den genannten Bereichen emittieren Die Expositionszeit betragt im allgemeinen 0 1 Sekunden bis 20 Minuten, vorzugsweise 1 Sekunde bis 10 Minuten
Die Aktivierung der Standardpolymeren mit UV-Strahlung kann weiterhin mit einem zusatzlichen Photosensibilisator erfolgen Hierzu wird der Photosensibilisator, wie z B Benzophenon auf die Substratoberflache aufgebracht und bestrahlt Dies kann ebenfalls mit einer Quecksilberdampflampe mit Expositionszeiten von 0 1 Sekunden bis 20 Minuten, vorzugsweise 1 Sekunde bis 10 Minuten, erfolgen Die Aktivierung kann erfindungsgemaß auch durch Plasmabehandlung mittels eines RF- oder Mikrowellenplasma (Hexagon, Fa Technics Plasma, 85551 Kirchheim, Deutschland) in Luft, Stickstoff- oder Argon-Atmosphare erreicht werden Die Expositionszeiten betragen im allgemeinen 2 Sekunden bis 30 Minuten, vorzugsweise 5 Sekunden bis 10 Minuten Der Energieeintrag liegt bei Laborgeraten zwischen 100 und 500 W, vorzugsweise zwischen 200 und 300 W
Weiterhin lassen sich auch Corona-Gerate (Fa SOFTAL, Hamburg, Deutschland) zur Aktivierung verwenden Die Expositionszeiten betragen in diesem Falle in der Regel 1 bis 10 Minuten, vorzugsweise 1 bis 60 Sekunden
Die Aktivierung durch elektrische Entladung, Elektronen- oder γ-Strahlen (z B aus einer Kobalt-60-Quelle) sowie die Ozonisierung ermöglicht kurze Expositionszeiten, die im allgemeinen 0 1 bis 60 Sekunden betragen
Eine Beflammung von Substrat-Oberflachen führt ebenfalls zu deren Aktivierung Geeignete Gerate, insbesondere solche mit einer Barriere-Flammfront, lassen sich auf einfache Weise bauen oder beispielsweise beziehen von der Fa ARCOTEC, 71297 Monsheim, Deutschland Sie können mit Kohlenwasserstoffen oder Wasserstoff als Brenngas betrieben werden In jedem Fall muß eine schädliche Uberhitzung des Substrats vermieden werden, was durch innigen Kontakt mit einer gekühlten Metallflache auf der von der Beflammungsseite abgewandten Substratoberflache leicht erreicht wird Die Aktivierung durch Beflammung ist dementsprechend auf verhältnismäßig dünne, flachige Substrate beschrankt Die Expositionszeiten belaufen sich im allgemeinen auf 0 1 Sekunde bis 1 Minute, vorzugsweise 0 5 bis 2 Sekunden, wobei es sich ausnahmslos um nicht leuchtende Flammen behandelt und die Abstände der Substratoberflachen zur äußeren Flammenfront 0 2 bis 5 cm, vorzugsweise 0 5 bis 2 cm betragen
Die so aktivierten Substratoberflachen werden nach bekannten Methoden, wie Tauchen, Sprühen oder Streichen, mit aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine quartare Aminogruppe funktionahsiert sind, gegebenenfalls in Losung, beschichtet Als Losemittel haben sich Wasser und Wasser-Ethanol-Gemische bewahrt, doch sind auch andere Losemittel verwendbar, sofern sie ein ausreichendes Losevermogen für die Monomeren aufweisen und die Substratoberflachen gut benetzen Weitere Losungsmittel sind beispielsweise Ethanol, Methanol, Methylethylketon, Diethylether, Dioxan, Hexan, Heptan, Benzol, Toluol, Chloroform, Dichlormethan, Tetrahydrofüran und Acetonitril Losungen mit Monomerengehahen von 1 bis 10 Gew -%, beispielsweise mit etwa 5 Gew -% haben sich in der Praxis bewahrt und ergeben im allgemeinen in einem Durchgang zusammenhangende, die Substratoberflache bedeckende Beschichtungen mit Schichtdicken, die mehr als 0 1 μm betragen können Die Propfcopolymerisation der auf die aktivierten Oberflächen aufgebrachten Monomeren kann zweckmäßig durch Strahlen im kurzwelligen Segment des sichtbaren Bereiches oder im langwelligen Segment des UV-Bereiches der elektromagnetischen Strahlung initiiert werden Gut geeignet ist z B die Strahlung eines UV-Excimers der Wellenlangen 250 bis 500 nm, vorzugsweise von 290 bis 320 nm Auch hier sind Quecksilberdampflampen geeignet, sofern sie erhebliche Strahlungsanteile in den genannten Bereichen emittieren Die Expositionszeiten betragen im allgemeinen 10 Sekunden bis 30 Minuten, vorzugsweise 2 bis 15 Minuten
Weiterhin laßt sich eine Pfropfcopolymerisation auch durch ein Verfahren erreichen, das in der europaischen Patentanmeldung 0 872 512 beschrieben ist, und auf einer Pfropfpolymerisation von eingequollenen Monomer- und Initiatormolekulen beruht
Im erfindungsgemaßen Verfahren können weitere aliphatisch ungesättigte Monomere, neben den durch eine quartare Aminogruppe fünktionalisierten Monomeren, verwendet werden So kann als Monomerenmischung ein mindestens einfach durch eine quartare Amingruppe fünktionalisiertes aliphatisch ungesättigtes Monomer mit Acrylaten oder Methacrylaten, z B Acrylsaure, tert -Butylmethacrylat oder Methylmethacrylat, Styrol, Vinylchlorid, Vinylether, Acrylamide, Acrylnitrile, Olefine (Ethylen, Propylen, Butylen, Isobutylen), Allylverbindungen, Vinylketonen, Vinylessigsaure, Vinylacetat oder Vinylester eingesetzt werden
Die nach den erfindungsgemaßen Verfahren hergestellten antimikrobiellen Polymere aus aliphatisch ungesättigten Monomeren, die mindestens einfach durch eine quartare Aminogruppe fünktionalisiert sind, zeigen auch ohne Pfropfung auf eine Substratoberflache ein mikrobizides oder antimikrobielles Verhalten Wird das erfmdungsgemaße Verfahren ohne Pfropfung direkt auf der Substratoberflache angewendet, so können übliche Radikalinitiatoren zugesetzt werden Als Initiatoren lassen sich u a Azonitrile, Alkylperoxide, Hydroperoxide, Acylperoxide, Peroxoketone, Perester, Peroxocarbonate, Peroxodisulfat, Persulfat und alle üblichen Photoinitiatoren wie z B Acetophenone, α-Hydroxyketone, Dimethylketale und und Benzophenon verwenden Die Polymerisationsinitiierung kann weiterhin auch thermisch oder wie bereits ausgeführt, durch elektromagnetische Strahlung, wie z B UV-Licht oder γ-Strahlung erfolgen
Verwendung der modifizierten Polymersubstrate Weitere Gegenstande der vorliegenden Erfindung sind die Verwendung der erfindungsgemaß hergestellten antimikrobiellen Polymere zur Herstellung von antimikrobiell wirksamen Erzeugnissen und die so hergestellten Erzeugnisse als solche Die Erzeugnisse können erfindungsgemaß modifizierte Polymersubstrate enthalten oder aus diesen bestehen Solche Erzeugnisse basieren vorzugsweise auf Polyamiden, Polyurethanen, Polyetherblockamiden, Polyesteramiden oder -imiden, PVC, Polyolefinen, Silikonen, Polysiloxanen, Polymethacrylat oder Polyterephthalaten, die mit erfindungsgemaß hergestellten Polymeren modifizierte Oberflachen aufweisen
Antimikrobiell wirksame Erzeugnisse dieser Art sind beispielsweise und insbesondere Maschinenteile für die Lebensmittelverarbeitung, Bauteile von Klimaanlagen, Bedachungen, Badezimmer- und Toilettenartikel, Kuchenartikel, Komponenten von Sanitareinrichtungen, Komponenten von Tierkafigen und -behausungen, Spielwaren, Komponenten in Wassersystemen, Lebensmittelverpackungen, Bedienelemente (Touch Panel) von Geraten und Kontaktlinsen
Außerdem sind Gegenstande der vorliegenden Erfindung die Verwendung der mit erfindungsgemaß hergestellten antimikrobiellen Polymeren an der Oberflache modifizierten Polymersubstrate zur Herstellung von Hygieneerzeugnissen oder medizintechnischen Artikeln Die obigen Ausführungen über bevorzugte Materialien gelten entsprechend Solche Hygieneerzeugnisse sind beispielsweise Zahnbürsten, Toilettensitze, Kamme und Verpackungsmaterialien Unter die Bezeichnung Hygieneartikel fallen auch andere Gegenstande, die u U mit vielen Menschen in Berührung kommen, wie Telefonhorer, Handlaufe von Treppen, Tur- und Fenstergriffe sowie Haltegurte und -griffe in öffentlichen Verkehrsmitteln Medizintechnische Artikeln sind z B Katheter, Schlauche, Abdeckfolien oder auch chirurgische Bestecke
Die durch das erfmdungsgemaße Verfahren hergestellten Polymere, Copolymere oder
Pfropfpolymere können überall verwendet werden, wo es auf möglichst bakterienfreie d h mikrobizide Oberflachen oder Oberflachen mit Antihafteigenschaften ankommt
Verwendungsbeispiele für nach dem erfindungsgemaßen Verfahren hergestellte mikrobizide Polymere sind insbesondere Lacke, Schutzanstriche oder Beschichtungen in den folgenden
Bereichen
Marine Schiffsrumpfe, Hafenanlagen, Bojen, Bohrplattformen, Ballastwassertanks - Haus Bedachungen, Keller, Wände, Fassaden, Gewächshäuser, Sonnenschutz,
Gartenzaune, Holzschutz
Sanitär Öffentliche Toiletten, Badezimmer, Duschvorhange, Toilettenartikel,
Schwimmbad, Sauna, Fugen, Dichtmassen
Lebensmittel Maschinen, Küche, Kuchenartikel, Schwämme, Spielwaren, Lebensmittelverpackungen, Milchverarbeitung, Trinkwassersysteme, Kosmetik
Maschinenteile Klimaanlagen, Ionentauscher, Brauchwasser, Solaranlagen,
Wärmetauscher, Bioreaktoren, Membranen
Medizintechnik Kontaktlinsen, Windeln, Membranen, Implantate
Gebrauchsgegenstande Autositze, Kleidung (Strumpfe, Sportbekleidung) Krankenhauseinrichtungen, Türgriffe, Telefonhorer, Öffentliche Verkehrsmittel,
Tierkafige, Registrierkassen, Teppichboden, Tapeten
Zur weiteren Beschreibung der vorliegenden Erfindung werden die folgenden Beispiele gegeben, die die Erfindung weiter erläutern, nicht aber ihren Umfang begrenzen sollen, wie er in den Patentansprüchen dargelegt ist
Beispiel 1 Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa Heraeus ausgesetzt Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung von 3 g 2-Methacryloyloxyethyl- trimethylammoniumchlorid (Fa Aldrich), 57 g entmineralisiertem Wasser und 40 g Methanol uberschichtet Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa Heraeus gestellt, die eine Emission der Wellenlange 308 nm aufweist Die Bestrahlung wird gestartet, die Belichtungsdauer betragt 15 Minuten Die Folie wird anschließend entnommen und mit einer Mischung aus 15 ml Methanol und 15 ml entmineralisiertem Wasser abgespult Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet
Im Anschluß wird die Ruckseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhalt
Beispiel la
Eine beschichtetes Folienstuck aus Beispiel 1 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt Nach einer Kontaktzeit von 30 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen
Beispiel lb
Eine beschichtetes Folienstuck aus Beispiel 1 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 104 abgefallen
Beispiel 2 Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa Heraeus ausgesetzt Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g 2-Methacryloyloxyethyl- trimethylammoniummetho sulfat (Fa Aldrich), 57 g entmineralisiertem Wasser und 40 g Methanol uberschichtet Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa Heraeus gestellt, die eine Emission der Wellenlange 308 nm aufweist Die Bestrahlung wird gestartet, die Belichtungsdauer betragt 15 Minuten Die Folie wird anschließend entnommen und mit einer Mischung aus 15 ml Methanol und 15 ml entmineralisiertem Wasser abgespult Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet
Im Anschluß wird die Ruckseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhalt
Beispiel 2a
Eine beschichtetes Folienstuck aus Beispiel 2 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar
Beispiel 2b
Eine beschichtetes Folienstuck aus Beispiel 2 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 102 abgefallen
Beispiel 3
Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa Heraeus ausgesetzt Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g 3-Acrylamidopropyl- trimethylammoniumchlorid (Fa Aldrich), 57 g entmineralisiertem Wasser und 40 g Methanol uberschichtet Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa Heraeus gestellt, die eine Emission der Wellenlange 308 nm aufweist Die Bestrahlung wird gestartet, die Belichtungsdauer betragt 15 Minuten Die Folie wird anschließend entnommen und mit einer Mischung aus 15 ml Methanol und 15 ml entmineralisiertem Wasser abgespult Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet
Im Anschluß wird die Ruckseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhalt
Beispiel 3a Eine beschichtetes Folienstuck aus Beispiel 3 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar
Beispiel 3b
Eine beschichtetes Folienstuck aus Beispiel 3 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen
Beispiel 4 Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa Heraeus ausgesetzt Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g 2-Methacryloyloxyethyltrimethyl- ammoniumchlorid (Fa Aldrich), 2 g Methylmethacrylat (Fa Aldrich) und 95 g Methanol uberschichtet Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa Heraeus gestellt, die eine Emission der Wellenlange 308 nm aufweist Die Bestrahlung wird gestartet, die Belichtungsdauer betragt 15 Minuten Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespult Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet Im Anschluß wird die Ruckseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhalt
Beispiel 4a
Eine beschichtetes Folienstuck aus Beispiel 4 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar
Beispiel 4b Eine beschichtetes Folienstuck aus Beispiel 4 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen
Beispiel 5
Eine Polyamid 12-Folie wird 2 Minuten bei einem Druck von 1 mbar der 172 nm-Strahlung einer Excimerstrahlungsquelle der Fa Heraeus ausgesetzt Die so aktivierte Folie wird unter Schutzgas in einen Bestrahlungsreaktor gelegt und fixiert Daraufhin wird die Folie im Schutzgasgegenstrom mit 20 ml einer Mischung auf 3 g 2-Methacryloyloxyethyltrimethyl- ammoniummethosulfat (Fa Aldrich), 2 g Methylmethacrylat (Fa Aldrich) und 95 g Methanol uberschichtet Die Bestrahlungskammer wird verschlossen und im Abstand von 10 cm unter eine Excimerbestrahlungseinheit der Fa Heraeus gestellt, die eine Emission der Wellenlange 308 nm aufweist Die Bestrahlung wird gestartet, die Belichtungsdauer betragt 15 Minuten Die Folie wird anschließend entnommen und mit 30 ml Methanol abgespult Die Folie wird dann 12 Stunden bei 50° C im Vakuum getrocknet Anschließend wird die Folie in Wasser 5 mal 6 Stunden bei 30° C extrahiert, dann bei 50° C 12 Stunden getrocknet Im Anschluß wird die Ruckseite der Folie in gleicher Weise behandelt, so daß man abschließend eine beidseitig mit gepfropftem Polymer beschichtete Polyamidfolie erhalt
Beispiel 5a
Eine beschichtetes Folienstuck aus Beispiel 5 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Staphylococcus aureus eingelegt und geschüttelt Nach einer Kontaktzeit von 15 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit sind keine Keime von Staphylococcus aureus mehr nachweisbar
Beispiel 5b
Eine beschichtetes Folienstuck aus Beispiel 5 (5 mal 4 cm) wird in 30 ml einer Testkeimsuspension von Pseudomonas aeruginosa eingelegt und geschüttelt Nach einer Kontaktzeit von 60 Minuten wird 1 ml der Testkeimsuspension entnommen, und die Keimzahl im Versuchsansatz bestimmt Nach Ablauf dieser Zeit ist die Keimzahl von 107 auf 103 abgefallen
Zusatzlich zur oben beschriebenen mikrobiziden Wirksamkeit gegenüber Zellen von Pseudomonas aeruginosa und Staphylococcus aureus zeigten alle Proben ebenfalls eine mikrobizide Wirkung gegenüber Zellen von Klebsieila pneumoniae, Escherichia coli, Rhizopus oryzae, Candida tropicalis und Tetrahymena pyriformis

Claims

Patentansprüche
1 Verfahren zur Herstellung von antimikrobiellen Polymeren, dadurch gekennzeichnet, daß aliphatisch ungesättigte Monomere, die mindestens einfach durch eine quartare
Aminogruppe funktionahsiert sind, polymerisiert werden
2 Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch eine quartare Aminogruppe fünktionalisierte aliphatische ungesättigte
Monomere der allgemeinen Formel
Figure imgf000017_0001
mit Ri Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 50 C-Atomen, die durch O-, N- oder S-Atome substituiert sein können, R2, R3, R Verzweigter, unverzweigter oder cyclischer, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 25 C-Atomen, die durch O-, N- oder S-Atome substituiert sein können, wobei R2, Ri, R4 gleich oder verschieden sind und
X F", Cf, B , T, SO4 2", SO3 2", CH3SO3\ CH3CO2 ", C2O4 2\ CO3 2", PO4 3",
PO3 2", NO3 ", NO2\ NO", CN\ SCN", CNO", CIO", ClO2 ", ClO3 ", ClO4 " eingesetzt werden
3 Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Polymerisation mit weiteren, aliphatisch ungesättigten Monomeren durchgeführt wird
4 Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Polymerisation auf einem Substrat durchgeführt wird
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Polymerisation als Pfropfpolymerisation eines Substrats durchgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Substrat vor der Pfropfpolymerisation durch UV-Strahlung, Plasmabehandlung, Koronabehandlung, Beflammung, Ozonisierung, elektrische Entladung oder γ- Strahlung aktiviert wird.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Substrat vor der Pfropfpolymerisation durch UV-Strahlung mit einem Photosensibilisator aktiviert wird.
8. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Erzeugnissen mit einer antimikrobiellen Beschichtung aus dem Polymer.
9. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von medizintechnischen Artikeln mit einer antimikrobiellen Beschichtung aus dem Polymer.
10. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Hygieneartikeln mit einer antimikrobiellen Beschichtung aus dem Polymer.
11. Verwendung von nach einem der Ansprüche 1 bis 7 hergestellten antimikrobiellen Polymeren zur Herstellung von Lacken, Schutzanstrichen oder Beschichtungen.
PCT/EP2000/002813 1999-05-12 2000-03-30 Verfahren zur herstellung inhärent mikrobizider polymeroberflächen WO2000069926A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU45204/00A AU4520400A (en) 1999-05-12 2000-03-30 Method for producing inherently microbicidal polymer surfaces
EP00920629A EP1183281A1 (de) 1999-05-12 2000-03-30 Verfahren zur herstellung inhärent mikrobizider polymeroberflächen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19921904.4 1999-05-12
DE19921904A DE19921904A1 (de) 1999-05-12 1999-05-12 Verfahren zur Herstellung inhärent mikrobizider Polymeroberflächen

Publications (1)

Publication Number Publication Date
WO2000069926A1 true WO2000069926A1 (de) 2000-11-23

Family

ID=7907838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/002813 WO2000069926A1 (de) 1999-05-12 2000-03-30 Verfahren zur herstellung inhärent mikrobizider polymeroberflächen

Country Status (4)

Country Link
EP (1) EP1183281A1 (de)
AU (1) AU4520400A (de)
DE (1) DE19921904A1 (de)
WO (1) WO2000069926A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080674A1 (de) * 2001-04-06 2002-10-17 Creavis Gesellschaft Für Technologie Und Innovation Mbh Antimikrobielle konservierungssysteme für lebensmittel
US7001933B2 (en) 2002-08-09 2006-02-21 Akzo Nobel N.V. Acid-capped quaternized polymer and compositions comprising such polymer
US7005031B2 (en) 2002-01-16 2006-02-28 3M Innovative Properties Company Pressure sensitive adhesives having quaternary ammonium functionality, articles, and methods
US7553881B2 (en) 2006-04-28 2009-06-30 Ivoclar Vivadent Ag Dental materials based on radically polymerizable macromers with antimicrobial effect

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131371A1 (de) * 2001-06-28 2003-01-16 Clariant Gmbh Verwendung von quaternierten (Meth)Acrylsäuredialkylaminoalkylestern als Soil Release Polymere für harte Oberflächen, sowie ein Verfahen zu deren Herstellung
DE10062201A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Verfahren zum Einsatz antimikrobieller Polymere im Bauten- und Denkmalschutz
DE10110885A1 (de) * 2001-03-07 2002-09-12 Creavis Tech & Innovation Gmbh Mokrobizide Trennsysteme
DE10123000B4 (de) * 2001-05-11 2007-10-18 Basf Ag Verfahren zur Herstellung eines Verbundbauteils, danach hergestellte Verbundbauteile und Produktionsanlage zur Herstellung dieser Verbundbauteile
DE10123195A1 (de) * 2001-05-12 2002-11-14 Creavis Tech & Innovation Gmbh Elutionsfreie antimikrobielle Polymere
US6746711B2 (en) 2002-01-29 2004-06-08 Clariant Gmbh Polymers with biocidal action, process for their preparation and their use
DE10203342A1 (de) * 2002-01-29 2003-08-07 Clariant Gmbh Polymere mit biozider Wirkung, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2005084436A1 (en) * 2004-02-05 2005-09-15 Quick-Med Technologies, Inc. Silicates and other oxides with bonded antimicrobial polymers
DE102006038809A1 (de) * 2006-08-18 2008-02-21 Basf Construction Polymers Gmbh Wasserlösliche und biologisch abbaubare Copolymere auf Polyamidbasis und deren Verwendung
WO2013110566A1 (de) 2012-01-27 2013-08-01 Basf Se Strahlungshärtbare antimikrobielle beschichtungsmasse
WO2013110504A1 (en) 2012-01-27 2013-08-01 Basf Se Radiation-curable antimicrobial coatings
WO2013110530A1 (de) * 2012-01-27 2013-08-01 Basf Se Strahlungshärtbare antimikrobielle beschichtungen
US8728455B2 (en) 2012-01-27 2014-05-20 Basf Se Radiation-curable antimicrobial coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646965A1 (de) * 1996-11-14 1998-06-04 Roehm Gmbh Biophobe Polymere
FR2757866A1 (fr) * 1996-12-30 1998-07-03 Catalyse Polymeres comportant des groupes ammoniums quaternaires, leur utilisation pour la fabrication d'un materiau a propretes antibacteriennes et leurs procedes de preparation
EP0862859A1 (de) * 1997-03-06 1998-09-09 Hüls Aktiengesellschaft Verfahren zur Herstellung antimikrobieller Kunststoffe
EP0872512A2 (de) * 1997-04-14 1998-10-21 Hüls Aktiengesellschaft Verfahren zur Modifizierung der Oberfläche von Polymersubstraten durch Pfropfpolymerisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646965A1 (de) * 1996-11-14 1998-06-04 Roehm Gmbh Biophobe Polymere
FR2757866A1 (fr) * 1996-12-30 1998-07-03 Catalyse Polymeres comportant des groupes ammoniums quaternaires, leur utilisation pour la fabrication d'un materiau a propretes antibacteriennes et leurs procedes de preparation
EP0862859A1 (de) * 1997-03-06 1998-09-09 Hüls Aktiengesellschaft Verfahren zur Herstellung antimikrobieller Kunststoffe
EP0872512A2 (de) * 1997-04-14 1998-10-21 Hüls Aktiengesellschaft Verfahren zur Modifizierung der Oberfläche von Polymersubstraten durch Pfropfpolymerisation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080674A1 (de) * 2001-04-06 2002-10-17 Creavis Gesellschaft Für Technologie Und Innovation Mbh Antimikrobielle konservierungssysteme für lebensmittel
US7005031B2 (en) 2002-01-16 2006-02-28 3M Innovative Properties Company Pressure sensitive adhesives having quaternary ammonium functionality, articles, and methods
US7001933B2 (en) 2002-08-09 2006-02-21 Akzo Nobel N.V. Acid-capped quaternized polymer and compositions comprising such polymer
USRE41208E1 (en) 2002-08-09 2010-04-06 Akzo Nobel N.V. Acid-capped quaternized polymer and compositions comprising such polymer
US7553881B2 (en) 2006-04-28 2009-06-30 Ivoclar Vivadent Ag Dental materials based on radically polymerizable macromers with antimicrobial effect

Also Published As

Publication number Publication date
AU4520400A (en) 2000-12-05
EP1183281A1 (de) 2002-03-06
DE19921904A1 (de) 2000-11-16

Similar Documents

Publication Publication Date Title
EP0862858B1 (de) Verfahren zur Herstellung antimikrobieller Kunststoffe
WO2000069926A1 (de) Verfahren zur herstellung inhärent mikrobizider polymeroberflächen
WO2001085813A2 (de) Antimikrobielle, aminofunktionalisierte copolymere
EP1183282A1 (de) Verfahren zur herstellung inharent mikrobizider polymeroberflächen
WO2001072859A1 (de) Antimikrobielle beschichtungen, enthaltend polymere von acrylsubstituierten alkylsulfonsäuren
WO2000069933A1 (de) Verfahren zur herstellung inhärent mikrobizider polymeroberflächen
WO2001016193A1 (de) Copolymere von acryloyloxyalkylaminoverbindungen
WO2001019878A1 (de) Copolymere von acryloylaminoalkylverbindungen
WO2001087998A2 (de) Antimikrobielle polymere und polymerblends aus polymeren alkylacrylamiden
EP1183291A1 (de) Antimikrobielle copolymere
DE19940023A1 (de) Copolymere des Aminopropylvinylethers
WO2000069938A1 (de) Mikrobizide copolymere
WO2001062810A1 (de) Copolymere von allylphosphoniumsalzen
WO2000069934A1 (de) Mikrobizide copolymere
EP1183290A1 (de) Verfahren zur herstellung inhärent mikrobizider polymeroberflächen
WO2000069937A1 (de) Mikrobizide copolymere
DE19940697A1 (de) Copolymere von Acryloyloxyalkylammoniumsalzen
DE19952222A1 (de) Copolymere von Acryloylaminoalkylammoniumsalzen
DE19943344A1 (de) Copolymere von Dialkylaminoalkylacrylamiden
DE19955992A1 (de) Copolymere von Acryloyloxyalkylbenzophenonammoniumsalzen
DE19952221A1 (de) Copolymere von Acryloyloxyalkyldialkylaminen
DE10123195A1 (de) Elutionsfreie antimikrobielle Polymere
WO2004033568A1 (de) Antimikrobielle beschichtungen und ein verfahren zu deren herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN IL JP KR NO NZ PL RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000920629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09926506

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000920629

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000920629

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP