WO2000064906A1 - Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen - Google Patents

Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen Download PDF

Info

Publication number
WO2000064906A1
WO2000064906A1 PCT/EP2000/003315 EP0003315W WO0064906A1 WO 2000064906 A1 WO2000064906 A1 WO 2000064906A1 EP 0003315 W EP0003315 W EP 0003315W WO 0064906 A1 WO0064906 A1 WO 0064906A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
indenyl
zirconium dichloride
phenyl
dichloride dimethylsilanediyl
Prior art date
Application number
PCT/EP2000/003315
Other languages
English (en)
French (fr)
Inventor
Jörg SCHOTTEK
Patricia Becker
Original Assignee
Basell Polyolefine Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Polyolefine Gmbh filed Critical Basell Polyolefine Gmbh
Priority to EP00920700A priority Critical patent/EP1175424A1/de
Priority to JP2000614257A priority patent/JP2002543082A/ja
Priority to AU41181/00A priority patent/AU4118100A/en
Publication of WO2000064906A1 publication Critical patent/WO2000064906A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention describes a chemical compound which has a neutral structure.
  • this can form a new catalyst system which is advantageously used for the polymerization of olefins.
  • aluminum oxane such as methyl aluminum oxane (MAO) as a cocatalyst can be dispensed with and a high catalyst activity can nevertheless be achieved.
  • MAO methyl aluminum oxane
  • MAO as the most effective cocatalyst to date has the disadvantage of being used in a large excess, which leads to a high undesirable aluminum content in the polymer.
  • EP-A-0 427 697 claims this synthesis principle and a corresponding catalyst system consisting of a neutral metallocene species (eg Cp 2 ZrMe), a Lewis acid (eg B (C 6 F 5 ) 3 ) and aluminum alkyls .
  • a process for the preparation of salts of the general form LMX + XA ⁇ according to the principle described above is disclosed in EP-A-0 520 732.
  • the task was therefore to find a chemical compound with a low tendency to coordinate, which avoids the disadvantages of the prior art and nevertheless enables high polymerization activities.
  • the present invention thus relates to a chemical compound, a process for its preparation and its use in a catalyst system for the production of polyolefins. Furthermore, it relates to a catalyst system containing at least one chemical compound according to the invention as a cocatalyst.
  • R 1 , R 2 are the same or different and a hydrogen atom, a halogen atom, a boron-free -CC-carbon-containing
  • Group such as C 1 -C 2 n-alkyl, C 1 -C 2 o-haloalkyl, C 1 -C 10 alkoxy, C 6 -C 20 aryl, C 5 -C 20 haloaryl, C 6 -C 0 aryloxy , C 7 -C o-arylalkyl, C 7 -C 4 o-haloarylalkyl, C -C 4 o -alkylaryl, C 7 -C 4 o -haloalkylaryl or an Si (R 4 ) 3 group,
  • R 4 is a boron-free -CC 4 o-carbon-containing group such as -C-C 2 o-alkyl, -C-C 2 o-haloalkyl, -C-C ⁇ o-alkoxy, C 6 -C 2 o-aryl, C 5 -C 2 o haloaryl, C 6 -C 20 aryloxy, C 7 -C 4 may be o _ o-haloalkylaryl arylalkyl, C 7 -C 4 o-Halogenarylalky, C 7 -C 40 -alkylaryl, C 7 -C 4,
  • R3 can be identical to or different from R 1 and R 2 , a hydrogen atom, a halogen atom, a C 4 -C 4 -carbon-containing group such as CC ⁇ alkyl, C 1 -C 2 o-haloalkyl, C 1 -C 8 alkoxy, C 6 - C 20 aryl, C 6 -C 0 haloaryl, C 6 -C 20 -Ary- loxy, C 7 -C 4 o ⁇ arylalkyl, C -C 4 o-Halogenarylalky, C 7 -C 4 o ⁇ alkylene laryl , C 7 -C 4 o-haloalkylaryl or an OSi (R 4 ) 3 group,
  • X identically or differently denotes an element from group IV, V or Via of the periodic table of the elements or an NH group
  • M 1 is an element of the purple group of the Periodic Table of the Elements and
  • k is a natural number from 1 to 100 and
  • the index k is the result of Lewis acid-base interactions of the chemical compound according to the invention, these mutually forming dimers, trimers or higher oligomers.
  • Compounds in which X is an oxygen atom or an NH group are particularly preferred.
  • R 1 and R 2 are particularly preferably a boron-free C 1 -C 40 hydrocarbon radical which can be halogenated, preferably perhalogenated, with halogen such as fluorine, chlorine, bromine or iodine, in particular a halogenated, in particular perhalogenated C 1 -C 3 o-alkyl group such as trifluoromethyl, pentachloroethyl, heptafluoroisopropyl or monofluoroisobutyl or a halogenated C ⁇ -C o-aryl group such as pentafluorophenyl, 2, 4, 6-trifluorophenyl, heptachloronaphtyl, heptafluoronaphthyl, heptafluorotolyl, 3-heptafluorotolyl , 5-bis (trifluoromethyl) phenyl-, 2, 4, 6-tris (trifluoromethyl-phenyl, nonafluorobiphen
  • R 1 and R 2 are radicals such as phenyl, naphthyl, anisyl, Methyl, ethyl, isopropyl, butyl, tolyl, biphenyl or 2, 3-dimethylphenyl, with R 1 and R 2 particularly preferably the radicals pentafluorophenyl, phenyl, biphenyl, bisphenylmethylene, 3 , 5-bis (trifluoromethyl) phenyl, 4- (trifluoromethyl) phenyl, nonafluorobiphenyl, bis (pe ntafluorophenyDmethylene and 4-methylphenyl.
  • R 1 and R 2 particularly preferably the radicals pentafluorophenyl, phenyl, biphenyl, bisphenylmethylene, 3 , 5-bis (trifluoromethyl) phenyl, 4- (trifluoromethyl) phenyl, nonafluorobiphenyl, bis (pe ntafluoroph
  • R 3 is particularly preferably a boron-free C 1 -C 4 -hydrocarbon residue which can be halogenated, preferably perhalogenated, with halogen such as fluorine, chlorine, bromine or iodine, in particular a halogenated, in particular perhalogenated C 3 -C 3 o- Alkyl group such as trifluoromethyl, pentachloroethyl, heptafluoroisopropyl or monofluoroisobutyl or a halogenated C 6 -C 3 o-aryl group such as pentafluorophenyl, 2, 4, 6-trifluorophenyl, heptachloronaphtyl, heptafluoronaphthyl, heptafluorotolyl, 3 , 5-bis (trifluoromethyl) phenyl-, 2, 4, 6-tris (trifluoromethyl-phenyl, nonafluorobiphenyl- or 4- (tri
  • R 3 are radicals such as phenyl, naphthyl, anisyl, methyl, Ethyl, isopropyl, butyl, tolyl, biphenyl or 2, 3-dimethyl-phen yl.
  • Particularly preferred for R 3 are methyl, ethyl, isopropyl, butyl-pentafluorophenyl, phenyl, biphenyl, Bisphenylmethylene, 3,5-bis (trifluoromethyl) phenyl, 4- (trifluoromethyl) phenyl, nonafluorobiphen yl-, bis (penta-fluorophenyDmethylene and 4-methyl-phenyl.
  • Non-limiting examples to illustrate the formula I can also be non-fluorinated):
  • the compounds of the formula (I) according to the invention are prepared from organoaluminum or organoboron compounds of the formula (II).
  • R 5 is a hydrogen atom or a boron-free C ⁇ -C 4 o carbon-containing group such as C ⁇ -C n-alkyl, Cg-C o-aryl, C 7 -C 4 o-arylalkyl, C -C 4 o-alkylaryl or halogen atom can be,
  • Y is boron or aluminum.
  • Nonlimiting examples of the preferred compounds of formula (II) are:
  • Trimethyl aluminum triethyl aluminum, triisobutyl aluminum, tri-hexyl aluminum,
  • Trioctyl aluminum tri-n-butyl aluminum, tri-n-propyl aluminum, triisoprene aluminum,
  • the compound of the formula (I) according to the invention is prepared by reacting the compound of the formula (II) with compounds of the formula (III).
  • R 1 and R 2 have the meaning described under formula (I),
  • X is an oxygen, sulfur or an NH group, preferably oxygen or an NH group
  • R 6 is hydrogen, -CC 4 o-carbon-containing group or a p-toluenesulfonic acid radical.
  • Non-limiting examples of the compound of formula (III) are:
  • Pentaflourophenol phenol, bis (pentafluorophenyl) carbinol, bis (phenyl) carbinol, pentafluoroaniline, tris (pentaflourophenyl) silanol, bis (nonafluorodiphenyl) carbinol, tris (nonafluorodi - phenyl) silanol, nonafluorophenyl, nonafluorodiphenyl, nonafluorodiphenyl phenyl) silanol, 3,5 bis (trifluoromethyl) aniline, 3,5 bis (trifluoromethyl) phenol, bis (2, 3, 4 trifluorophenyl) carbinol, bis (3, 5 trifluoromethylphenyl) carbinol, 2, 3, 4, Trifluorophenol, 2, 3, 4, trifluoroaniline, tris (2, 3, 4 trifluorophenyl) silanol, 2, 4, 6 trifluoroaniline, 2,
  • one or more compounds of the formula (II) are placed in a reaction vessel.
  • the compounds can either be dissolved or suspended in a solvent, or else be in bulk.
  • Aliphatic or aromatic hydrocarbons such as n-pentane, isopentane, n-hexane, n-heptane, cyclohexane, isododecane, n-octane, n-nonane, n-decanoate, petreleomether, toluene, benzene, o-xylene serve as solvents.
  • One or more compounds of the formula (II) are initially introduced at temperatures between -100 ° C. and 300 ° C.
  • one or more compounds of the formula (III) are added. These can also be dissolved or suspended in a solvent, but can also be in substance.
  • the solvents already described above are used as solvents, preferably the same solvent is used.
  • the addition takes place over a period of 1 minute to 96 hours. An addition time of 10 minutes to 8 hours is preferred.
  • the temperature of the sample is between -100 ° C and 200 ° C when added. Temperatures between -80 ° C and 100 ° C are preferred. Temperatures between -80 ° C and 40 ° C are particularly preferred.
  • the temperature is chosen so that at least one reactant is in the liquid phase. Furthermore, the reaction is carried out at normal pressure.
  • cooling is carried out with an intensive cooler, which is optionally operated with refrigerants.
  • the reaction temperature is between -100 ° C and 200 ° C.
  • a reaction temperature between -80 ° C and 150 ° C is preferred.
  • a reaction temperature between -80 ° C and 40 ° C is particularly preferred.
  • At least one reactant is preferably in the liquid phase.
  • the reaction time is between 1 minute and up to 96 hours. A reaction time of 10 minutes to 8 hours is preferred.
  • the resulting compounds of formula (I) can be obtained in step B) using known technologies such as e.g. Distillation, recrystallization, extraction or sublimation can be isolated.
  • the chemical compounds of formula (I) according to the invention can be used together with an organometallic transition compound as a catalyst system, which is also the subject of the present invention.
  • Metallocene compounds for example, are used as the organometallic transition compound.
  • These can be, for example, bridged or unbridged biscyclopentadienyl complexes, as described, for example, in EP-A-0 129 368, EP-A-0 561 479, EP-A-0 545 304 and EP-A-0 576 970, monocyclopentadienyl complexes such as bridged amidocyclopentadienyl complexes, which are described, for example, in EP-A-0 416 815, multinuclear cyclopentadienyl complexes, as described for example in EP-A-0 632 063, ⁇ -ligand-substituted tetrahydropentalenes, as described for example in EP-A-0 659 758 or ⁇ -
  • Organometallic compounds can also be used in which the complexing ligand contains no cyclopentadienyl ligand. Examples of this are diamine complexes of III. And IV. Subgroup of the Periodic Table of the Elements, as described, for example, in DH McConville, et al, Macromolecules, 1996, 29, 5241 and DH McConville, et al, J. Am. Chem. Soc, 1996, 118, 10008. In addition, diimine complexes of subgroup VIII of the Periodic Table of the Elements (for example Ni 2+ or Pd 2+ complexes), as described by Brookhart et al, J. Am. Chem. Soc. 1995, 117, 6414 and, Brookhart et al, J.
  • Preferred metallocene compounds are unbridged or bridged compounds of the formula (IV), R 0 ,
  • M is a metal of III., IV., V. or VI.
  • Subgroup of the periodic system of the elements is, in particular Ti, Zr or
  • R 10 are the same or different and are a hydrogen atom or Si (R 12 ) 3 , in which R 12 is the same or different a hydrogen atom or a C 1 -C 4 o -carbon-containing group, preferably C 1 -C 20 alkyl, C 1 -C 2 -o -Fluoroalkyl, -C-C ⁇ o-alkoxy, C ⁇ -C 2 o-aryl, C 6 -C ⁇ 0 -Fluoroaryl, C 6 -C ⁇ o-aryloxy, C 2 -C ⁇ 0 -alkenyl, C -C 4 o-arylalkyl , C 7 -C 4 o -arylaryl or Cs-C 4 o-arylalkenyl, or R 10 is a C 1 -C 30 - carbon-containing group, preferably C 1 -C 25 -alkyl, such as methyl, ethyl, tert-butyl
  • R 11 are the same or different and are a hydrogen atom or Si (R 12 ) 3 , in which R 12, identical or different, is a hydrogen atom or a C 1 -C 4 o -carbon-containing group, preferably C 1 -C o -alkyl, C ⁇ -C ⁇ o- fluoroalkyl, Ci-CiRj-alkoxy, Cs-C ⁇ 4 aryl, Cg-Cio-fluoroaryl, C 6 ⁇ C ⁇ o-aryloxy, C -C ⁇ o-nyl alkenyl, C 7 -C 4 o-arylalkyl, C 4 -C o Alkylaryl or Cs-C 4 o-arylalkenyl, or R 11 is a C 1 -C 30 carbon-containing group, preferably C 1 -C 25 -alkyl, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C
  • radicals R 11 can be linked to one another in such a way that the radicals R 11 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C 4 ring system, which in turn can be substituted,
  • L 1 can be the same or different and a hydrogen atom, a -C-C ⁇ o-hydrocarbon group such as C ⁇ -C ⁇ o-alkyl or Cg-Cio-aryl, a halogen atom, or OR 16 , SR 16 , OSi (R 16 ) 3 , Si (R 16 ) 3 , P (R 16 ) 2 or N (R 16 ) mean in which
  • R 16 is a halogen atom, a C 3 -C 10 alkyl group, a halogenated C 1 -C 10 alkyl group, a C 6 -C 20 aryl group or a halogenated C 6 -Co aryl group, or L 1 is a toluenesulfonyl, trifluoroacetyl, , Trifluoroacetoxyl, trifluoromethanesulfonyl, nonafluorobutanesulfonyl or 2,2,2-trifluoroethanesulfonyl group,
  • o is an integer from 1 to 4, preferably 2,
  • Z denotes a bridging structural element between the two cyclopentadienyl rings and v is 0 or 1.
  • Z examples are groups M 2 R 13 R 14 , in which M 2 is carbon, silicon, germanium or tin and R 13 and R 14 are identical or different to a C 1 -C 8 -hydrocarbon-containing group such as C ⁇ -C ⁇ o-alkyl , C 6 -C 4 aryl or trimethylsilyl mean.
  • Z is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, (C 6 H 5 ) 2 Ge, (C 6 H 5 ) 2 Sn , (CH 2 ) 4 Si, CH 2 Si (CH 3 ) 2 , oC 6 H 4 or 2, 2 '- (C 6 H 4 ) 2 .
  • Z can also form a mono- or polycyclic ring system with one or more radicals R 10 and / or R 11 .
  • Chiral bridged metallocene compounds of the formula (IV) are preferred, in particular those in which v is 1 and one or both cyclopentadienyl rings are substituted so that they represent an indenyl ring.
  • the indenyl ring is preferably substituted, in particular in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 or 2, 4, 5, 6-position, with -C ⁇ Co-carbon-containing groups, such as Ci-Cirj-alkyl or C 5 -C 2 o-aryl, where two or more substituents of the indenyl ring together can form a ring system.
  • Chiral bridged metallocene compounds of the formula (IV) can be used as pure racemic or pure meso compounds. Mixtures of a racemic compound and a meso compound can also be used.
  • metallocene compounds examples are:
  • zirconium dichloride meanings
  • Zirconium monochloro mono neopentyl has examples of the metallocenes according to the invention.
  • corresponding zirconium dimethyl compounds the corresponding zirconium- 4- butadiene compounds, and the corresponding compounds with 1, 2- (1-methyl-ethanediyl) -, 1,2- (1, 1-dimethyl) -ethanediyl) - and 1, 2 (1, 2-dimethyl-ethanediyl) bridge.
  • one or more compounds of the formulas (I) can be reacted with an organometallic transition compound of the formula (IV) in any stoichiometric ratio.
  • the catalyst system according to the invention can additionally contain an aluminum compound of the formula (V)
  • the radicals R 20 in formula (V) may be the same or different and are a halogen atom, a hydrogen atom, a C ⁇ -C 4 o-carbon ⁇ containing group, preferably C ⁇ -C2o ⁇ alkyl, C ⁇ -C rj haloalkyl, C 6 -C o-aryl, C 6 -C o-haloaryl, C 7 -C 4 o-arylalkyl, C 7 -C 4 o-haloarylalkyl, C 7 -C 4 o ⁇ alkylaryl or C 7 -C 4 o -Halogenalkylaryl mean.
  • R 20 are Ci-C ⁇ -alkyl groups, particularly preferred for R 20 are -CC 4 alkyl groups.
  • the compound of formula (V) can be added in any stoichiometric ratio.
  • a molar ratio B: M between the compounds of the formulas (I) and the formula (IV) of 0.01 to 10,000 is used in the preparation of the catalyst system according to the invention.
  • a molar ratio of 0.1 to 1000 is preferred, very particularly preferably a molar ratio of 1 to 100 is used.
  • a compound of formula (V) in an Al: M molar ratio of from 0.01 to 10,000 can also be added.
  • a molar ratio of 0.1 to 1000 is preferred, and a molar ratio of 1 to 100 is very particularly preferably used.
  • the connections can be brought into contact with one another in any conceivable combination.
  • One possible procedure is that an organic transition metal compound of the formula (IV) is dissolved or suspended in an aliphatic or aromatic solvent.
  • a compound of the formula (V) is then added in dissolved or in suspended form.
  • the reaction time is between 1 minute and 24 hours, with a reaction time between 5 minutes and 120 minutes being preferred.
  • the reaction temperature is between -10 ° C and + 200 ° C, with a temperature between 0 ° C and 50 ° C being preferred.
  • An organoboron compound of the formula (I) is then added either in bulk or in dissolved or suspended form.
  • the reaction time is between 1 minute and 24 hours, with a reaction time between 5 minutes and 120 minutes being preferred.
  • the reaction temperature is between -10 ° C and + 200 ° C, with a temperature between 0 ° C and 50 ° C being preferred.
  • the individual components can also be added to the polymerization kettle one after the other in any order.
  • the catalyst systems according to the invention can also be used in supported form.
  • the carrier component of the catalyst system according to the invention can be any organic or inorganic, inert solid, in particular a porous carrier such as talc, inorganic oxides and finely divided polymer powders (e.g. polyolefins).
  • Suitable inorganic oxides can be found in groups 2, 3, 4, 5, 13, 14, 15 and 16 of the Periodic Table of the Elements.
  • oxides preferred as carriers include silicon dioxide, aluminum oxide, and mixed oxides of the two elements and corresponding oxide mixtures.
  • Other inorganic oxides that can be used alone or in combination with the last-mentioned preferred oxide carriers are, for example, MgO, Zr0 2 , Ti0 or B 2 0, to name just a few.
  • the carrier materials used have a specific surface area in the range from 10 to 1000 m 2 / g, a pore volume in the range from 0.1 to 5 ml / g and an average particle size from 1 to 500 ⁇ m.
  • Carriers with a specific surface area in the range from 50 to 500 ⁇ m, a pore volume in the range between 0.5 and 3.5 ml / g and an average particle size in the range from 5 to 350 ⁇ m are preferred.
  • Carriers with a specific surface area in the range from 200 to 400 m 2 / g, a pore volume in the range between 0.8 to 3.0 ml / g and an average particle size of 10 to 200 ⁇ m are particularly preferred.
  • the carrier material used naturally has a low moisture content or residual solvent content, dehydration or drying can be avoided before use. If this is not the case, as is the case when using silica gel as the carrier material, dehydration or drying is recommended.
  • the thermal dehydration or drying of the carrier material can take place under vacuum and at the same time inert gas blanket (e.g. nitrogen).
  • the drying temperature is in the range between 100 and 1000 ° C, preferably between 200 and 800 ° C. In this case, the pressure parameter is not critical.
  • the drying process can take between 1 and 24 hours. Shorter or longer drying times are possible, provided that under the chosen conditions the equilibrium can be established with the hydroxyl groups on the support surface, which normally requires between 4 and 8 hours.
  • Suitable inerting agents are, for example, silicon halides and silanes, such as silicon tetrachloride, chlorotrimethylsilane, dimethylaminotrichlorosilane or organometallic compounds of aluminum, boron and magnesium, such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, triethyl borane and dibutyl magnesium.
  • the chemical dehydration or inertization of the carrier material takes place, for example, by reacting a suspension of the carrier material in a suitable solvent with the inerting reagent in pure form or dissolved in a suitable solvent with exclusion of air and moisture.
  • suitable solvents are, for example, aliphatic or aromatic hydrocarbons such as pentane, hexane, Heptane, toluene or xylene.
  • the inerting takes place at temperatures between 25 ° C and 120 ° C, preferably between 50 ° C and 70 ° C. Higher and lower temperatures are possible.
  • the duration of the reaction is between 30 minutes and 20 hours, preferably 1 to 5 hours.
  • the support material is isolated by filtration under inert conditions, washed one or more times with suitable inert solvents as described above and then dried in an inert gas stream or in vacuo.
  • Organic carrier materials such as finely divided polyolefin powders (e.g. polyethylene, polypropylene or polystyrene) can also be used and should also be freed from adhering moisture, solvent residues or other contaminants by appropriate cleaning and drying operations before use.
  • polyolefin powders e.g. polyethylene, polypropylene or polystyrene
  • the catalyst systems according to the invention can be brought into contact with the support in any conceivable combination.
  • a conceivable variant is that an organometallic compound of the formula IV is placed in an aliphatic or aromatic solvent such as toluene, heptane, tetrahydrofuran or diethyl ether. Then one or more compounds of the formula (V) are added either in bulk or in dissolved form.
  • the reaction time is between 1 minute and 24 hours, with a reaction time between 5 minutes and 120 minutes being preferred.
  • the reaction temperature is between -10 ° C and + 200 ° C, with a temperature between 0 ° C and 50 ° C being preferred.
  • one or more compounds of the formula (I) are added either in bulk or in dissolved form.
  • reaction time is between 1 minute and 24 hours, a reaction time between 5 minutes and 120 minutes being preferred.
  • the reaction temperature is between -10 ° C and + 200 ° C, with a temperature between 0 ° C and 50 ° C being preferred. All starting materials can be used in any stoichiometric ratio.
  • a molar ratio ADM 1 between the compounds of the formula (V) and the formula (IV) of 0.1 to 10000 is preferred, and a molar ratio of 1 to 100 is very particularly preferably used.
  • a molar ratio B: M1 between the compounds of the formula (I) and the formula (IV) of 0.1 to 1000 is preferred; a molar ratio of 1 to 100 is very particularly preferably used.
  • the preparation thus obtained is then mixed with the dehydrated or rendered inert carrier material, the solvent is removed and the resulting supported metallocene catalyst system is dried to ensure that the solvent is completely dig or for the most part is removed from the pores of the carrier material.
  • the supported catalyst is obtained as a free-flowing powder.
  • the present invention also relates to a process for the preparation of a polyolefin by polymerizing one or more olefins in the presence of the catalyst system according to the invention, comprising at least one transition metal component of the formula (IV).
  • polymerisation is understood to mean homopolymerization as well as copolymerization.
  • olefins examples include I-01efins with 2 - 40, preferably 2 to 10 carbon atoms, such as ethene, propene, 1-butene,
  • propene or ethene are preferably homopolymerized, or
  • 1-olefins with 4 to 20 C atoms such as hexene
  • dienes with 4 to 20 C atoms such as 1, 4-butadiene, norbornadiene, ethylidene - copolymerized norbones or ethyl norbornadiene.
  • Examples of such copolymers are ethene / propene copolymers or ethene / pro-
  • the polymerization is carried out at a temperature of from -60 ° C. to 300 ° C., preferably from 50 ° C. to 200 ° C., very particularly preferably from 50 ° C. to 80 ° C.
  • the pressure is 0.5 to 2000 bar, preferably 5 to 35 64 bar.
  • the polymerization can be carried out in solution, in bulk, in suspension or in the gas phase, continuously or batchwise, in one or more stages.
  • the catalyst system shown according to the invention can be used as the only catalyst component for the polymerization of olefins having 2 to 20 carbon atoms, or preferably in combination with at least one alkyl compound of the elements from 5 I. to III.
  • Main group of the periodic table such as an aluminum, magnesium or lithium alkyl or an aluminoxane can be used.
  • the alkyl compound is the monomer or Sus- added pensionsstoff and serves to purify the monomer of substances that can impair the catalyst activity. The amount of alkyl compound added depends on the quality of the monomers used.
  • hydrogen is added as a molecular weight regulator and / or to increase the activity.
  • an antistatic can also be metered into the polymerization system together with or separately from the catalyst system used.
  • the polymers shown with the catalyst system according to the invention have a uniform grain morphology and have no fine grain fractions. No deposits or caking occur in the polymerization with the catalyst system according to the invention.
  • the isotactic polypropylene which has been produced with the catalyst system according to the invention, is characterized by a proportion of 2-1-inserted propene units RI ⁇ 0.5% with a triad tacticity TT> 98.0% and a melting point> 156 ° C, where M w / M n of the polypropylene according to the invention is between 2.5 and 3.5.
  • copolymers which can be prepared using the catalyst system according to the invention are distinguished by a significantly higher molar mass compared to the prior art. At the same time, such copolymers can be produced with high productivity and technically relevant process parameters without the formation of deposits by using the catalyst system according to the invention.
  • the polymers produced by the process according to the invention are particularly suitable for producing tear-resistant, hard and rigid moldings such as fibers, filaments, injection molded parts, foils, sheets or large hollow bodies (e.g. pipes).
  • Example 6 Synthesis of bis (nonanfluorodiphenyloxy) methyalan 5 (6) 5.0 ml of trimethyl aluminum (2.1 M in Exxol, 10.5 mmol) are placed in 40 ml of toluene and cooled to -40 ° C. 7.0 g (21.0 mmol) of nonafluorodiphenyl-1-ol in 40 ml of toluene are added dropwise to this solution over a period of 40 minutes. The mixture is stirred at -40 ° C. for 30 minutes and then the reaction solution is allowed to warm to room temperature. The mixture is stirred for one hour at room temperature. The slightly cloudy solution is filtered off via a G4 frit. The result is a clear solution (0.13 M based on Al) of bis (nonanfluorodiphenyloxy) methyalane.
  • a dry 16 dm 3 reactor is first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propene. Then 0.5 cm 3 of a 20% tri-0-sobutylaluminum solution in Varsol diluted with 30 cm 3 Exxol were added to the reactor and the mixture was stirred at 30 ° C. for 15 minutes. The catalyst suspension was then added to the reactor. The reaction mixture was heated to the polymerization temperature of 60 ° C. (4 ° C./min) and the polymerization system lh 5 was kept at 60 ° C. by cooling. The polymerisation was stopped tion by exhausting the remaining porpylene. The polymer was dried in an oven.

Abstract

Die vorliegende Erfindung beschreibt eine chemische Verbindung, welche neutral aufgebaut ist. In Kombination mit einer Organometallverbindung kann diese ein neues Katalysatorsystem bilden, welches vorteilhaft zur Polymerisation von Olefinen eingesetzt wird. Hierbei kann auf die Verwendung von Aluminiumoxan wie Methylaluminiumoxan (MAO) als Cokatalysator verzichtet werden und dennoch eine hohe Katalysatoraktivität erzielt werden.

Description

Chemische Verbindung, Verfahren zur deren Herstellung und deren Verwendung in Katalysatorsystem zur Herstellung von Polyolefinen
Die vorliegende Erfindung beschreibt eine chemische Verbindung, welche neutral aufgebaut ist. In Kombination mit einer Organometallverbindung kann diese ein neues Katalysatorsystem bilden, welches vorteilhaft zur Polymerisation von Olefinen eingesetzt wird. Hierbei kann auf die Verwendung von Aluminiumoxan wie Me- thylaluminiumoxan (MAO) als Cokatalysator verzichtet werden und dennoch eine hohe Katalysatoraktivität erzielt werden.
Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Poly- merisation mit Metallocenen ist allgemein anerkannt (H.H. Brint- zinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283).
MAO als bislang wirksamster Co-Katalysator hat den Nachteil in hohem Überschuß eingesetzt zu werden, was zu einem hohen uner- wünschten Aluminiumanteil im Polymer führt. Die Darstellung kationischer Alkylkomplexe eröffnet den Weg MAO freier Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchio etrisch eingesetzt werden kann.
Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisations - katalysatoren, wird im J. Am. Chem. Soc. 1991, 113, 3623 beschrieben. Darin erfolgt die Alkylabstraktion von einer Metallo- cenalkylVerbindung mittels Trispentafluorphenylboran. In EP-A-0 427 697 wird dieses Syntheseprinzip und ein entsprechendes Kata- lysatorsystem, bestehend aus einer neutralen Metallocenspezies (z.B. Cp2ZrMe ) , einer Lewis-Säure (z.B. B(C6F5)3) und Aluminiu- malkylen beansprucht. Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX+ XA~ nach dem oben beschriebenen Prinzip wird in EP-A-0 520 732 offenbart.
Nachteile der bestehenden alternativen Co-Katalysatorsystemen sind ihre hohe Empfindlichkeit gegenüber Katalysatorgiften und das Problem des "leaching" bei der Trägerung der Katalysatorsysteme.
Die Aufgabe bestand also darin eine chemische Verbindung mit geringer Koordinationsneigung zu finden, welche die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymerisations - aktivitäten ermöglicht. Die vorliegende Erfindung betrifft somit eine chemische Verbindung, ein Verfahren zur deren Herstellung und deren Verwendung in Katalysatorsystem zur Herstellung von Polyolefinen. Ferner betrifft sie ein Katalysatorsystem enthaltend mindestens eine er- findungsgemäße chemische Verbindung als Cokatalysator.
Die erfindungsgemäße chemische Verbindung entspricht der allgemeinen Formel (I) ,
[(Rl)-X-M R3)-X-(R2)]k (I)
worin
R1, R2 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie Cι-C o-kohlenstoffhaltige
Gruppe wie Cι-C2n-Alkyl, Cι-C2o-Halogenalkyl , Cι-C10-Al- koxy, C6-C o-Aryl, C5-C20-Halogenaryl, C6-C 0-Aryloxy, C7-C o-Arylalky, C7-C4o-Halogenarylalky, C -C4o-Alkylaryl, C7-C4o-Halogenalkylaryl oder eine Si (R4) 3-Gruppe bedeutet,
R4 eine borfreie Cι-C4o-kohlenstoffhaltige Gruppe wie Cι-C2o-Alkyl, Cι-C2o-Halogenalkyl, Cι-Cιo-Alkoxy, C6-C2o-Aryl, C5-C2o-Halogenaryl , C6-C20-Aryloxy, C7-C4o-Arylalky, C7-C4o-Halogenarylalky, C7-C40-Alkylaryl, C7-C4o_Halogenalkylaryl sein kann,
R3 kann gleich oder verschieden zu R1 und R2, ein Wasserstoffatom, ein Halogenatom, eine Cι-C4o-kohlenstoffhaltige Gruppe wie C-C^-Alkyl , Cι-C2o-Halogenalkyl , Cι-Cιo-Alkoxy, C6-C20-Aryl, C6-C 0-Halogenaryl, C6-C20-Ary- loxy, C7-C4o~Arylalky, C -C4o-Halogenarylalky, C7-C4o~Alky- laryl, C7-C4o-Halogenalkylaryl oder eine OSi (R4) 3-Gruppe bedeutet,
X gleich oder verschieden ein Element der Gruppe IV, V oder Via des Periodensystems der Elemente oder eine NH-Gruppe bedeutet,
M1 ein Element der Gruppe lila des Periodensystems der Ele- mente bedeutet und
k eine natürliche Zahl von 1 bis 100 bedeutet und
Der Index k ist das Ergebnis von Lewis Säure-Base Wechselwirkun- gen der erfindungsgemäßen chemischen Verbindung, wobei diese untereinander Dimere, Trimere oder höhere Oligomere bilden. Insbesondere bevorzugt sind Verbindungen in denen X ein Sauerstoff Atom oder eine NH-Gruppe ist.
Zudem sind besonders bevorzugt Verbindungen in denen M1 Aluminium oder Bor ist.
R1 und R2 sind besonders bevorzugt ein borfreier Cι-C40-Kohlenwas- serstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod ha- logeniert, bevorzugt perhalogeniert, sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte Cι-C3o-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Mono- fluorisobutyl oder eine halogenierte Cς-C o-Arylgruppe wie Penta- fluorphenyl-, 2 , 4 , 6-Trifluorphenyl , Heptachlornaphtyl-, Heptaflu- ornaphthyl-, Heptafluortolyl-, 3 , 5-bis (trifluormehtyl) phenyl- , 2, 4, 6-tris (trifluormethyDphenyl, Nonafluorbiphenyl- oder 4-(tri- fluormethyDphenyl . Ebenfalls bevorzugt für R1und R2 sind Reste wie Phenyl-, Naphthyl-, Anisyl-, Mehtyl-, Ethyl-, Isopropyl-, Bu- tyl-, Tolyl-, Biphenyl oder 2 , 3-Dimethyl-phenyl . Besonders bevorzugt für R1 und R2 die Reste Pentafluorphenyl- , Phenyl-, Biphe- nyl , Bisphenylmethylen, 3 , 5-bis (trifluormethyl) phenyl-, 4-(tri- fluor-methyl) phenyl, Nonafluorbiphenyl-, Bis (pentafluorophe- nyDmethylen und 4-Methyl-phenyl .
R3 ist besonders bevorzugt ein borfreier Cι-C4o-Kohlenwasser- Stoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod halo- geniert, bevorzugt perhalogeniert, sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte Cι-C3o-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Mono- fluorisobutyl oder eine halogenierte C6-C3o-Arylgruppe wie Penta- fluorphenyl-, 2 , 4 , 6-Trifluorphenyl, Heptachlornaphtyl-, Heptaflu- ornaphthyl-, Heptafluortolyl-, 3 , 5-bis (trifluormehtyl) phenyl-, 2 , 4, 6-tris (trifluormethyDphenyl , Nonafluorbiphenyl- oder 4-(tri- fluormethyDphenyl . Ebenfalls bevorzugt für R3 sind Reste wie Phenyl-, Naphthyl-, Anisyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-, Tolyl-, Biphenyl oder 2 , 3-Dimethyl-phen yl . Besonders bevorzugt für R3 sind die Reste Mehtyl-, Ethyl-, Isopropyl-, Butyl-Pentafluorphenyl-, Phenyl-, Biphenyl, Bisphenylmethylen, 3,5-bis(tri- fluor-methyl) phenyl-, 4- (trifluor-methyl) phenyl, Nonafluorbiphenyl-, Bis (penta-fluorophenyDmethylen und 4-Methyl-phenyl . Nicht einschränkende Beispiele zur Verdeutlichung der Formel I (können auch unfluoriert sein) :
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0003
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
Figure imgf000007_0004
Die erfindungsgemäßen Verbindungen der Formel (I) werden aus Or- ganoaluminium- oder Organoborverbindungen der Formel (II) hergestellt.
(R5)3Y (II)
worin
R5 ein Wasserstoffatom oder eine borfreie Cχ-C4o-kohlen- stoffhaltige Gruppe wie Cι-C n-Alkyl, Cg-C o-Aryl, C7-C4o-Arylalky, C -C4o-Alkylaryl oder Halogenatom sein kann,
Y Bor oder Aluminium ist. Nicht einschränkende Beispiele für die bevorzugten Verbindungen der Formel (II) sind:
Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Tri- hexylaluminium,
Trioctylaluminium, Tri-n-butylaluminium, Tri-n-propylaluminium, Triisoprenaluminium,
Aluminiumtrichlorid, Aluminiumtribromid, Trimethylboran, Trie- thylboran, Triisobutylboran, Bortrichlorid, Bortribromid, Bortri- jodid, Pentafluorophenyldimethylboran und Pentafluorophenyldime- thylaluminium
Die Herstellung der erfindungsgemäßen Verbindung der Formel (I) erfolgt durch Umsetzung der Verbindung der Formel (II) mit Verbindungen der Formel (III) .
(R6) X(R!R2) (III)
worin,
R1und R2 die unter Formel (I) beschriebene Bedeutung haben,
X ein Sauerstoff, Schwefel oder eine NH-Gruppe ist, bevorzugt Sauerstoff oder eine NH-Gruppe,
R6 Wasserstoff, Cι-C4o-kohlenstoffhaltige Gruppe oder ein p-Toluolsulfonsäure-Rest ist.
Nicht einschränkende Beispiele für die Verbindung der Formel (III) sind:
Pentaflourophenol, Phenol, Bis (pentafluorophenyl) carbinol, Bis (phenyl) carbinol, Pentafluoroanilin, Tris (pentaflourophe- nyl) silanol, Bis (nonafluorodiphenyl) carbinol , Tris (nonafluorodi - phenyl) silanol, Nonafluorodiphenyll-ol, Nonafluorodiphenyl1-amin, Tris (phenyl) silanol, 3,5 Bis (trifluoromethyl) anilin, 3,5 Bis(tri- fluoromethyl) phenol, Bis(2, 3, 4 Trifluorophenyl) carbinol, Bis(3, 5 trifluoromethylphenyl) carbinol, 2, 3, 4, Trifluorophenol, 2, 3, 4, Trifluoroanilin, Tris (2, 3, 4 Trifluorophenyl) silanol, 2, 4, 6 Trifluoroanilin, 2, 4, 6 Trifluorophenol, Tris (2, 4, 6 Trifluoro- phenyl) silanol, 3, 5 Difluorophenol, 3,5 Difluoroanilin, Bis (3 , 5-difluorophenyl) carbinol , Bis (2, 4, 6 difluorophenyl) car- binol Die Herstellung der erfindungsgemäßen Verbindung der Formel (I) wird nachfolgend näher beschrieben:
Im Schritt A) werden eine oder mehrere Verbindung der Formel (II) in einem Reaktionsgefäß vorgelegt. Die Verbindungen können entweder in einem Lösemittel gelöst oder suspendiert sein, oder aber auch in Substanz vorliegen. Als Lösemittel dienen aliphatische oder aromatische Kohlenwasserstoffe wie n-Pentan, Isopentan, n- Hexan, n-Heptan, Cyclohexan, Isododekan, n-Octan, n-Nonan, n-De- can, Petreleomether, Toluol, Benzol, o-Xylol, m-Xylol, p-Xylol, 1,2, 3-Trimethylbenzol , 1,2, 4-Trimethylbenzol , 1,2, 5-Trimethylben- zol, 1, 3 , 5-Trimethylbenzol, Ethylbenzol, Propylbenzol u.s.w. sowie Mischungen von diesen. Eine oder mehrere Verbindung der Formel (II) werden bei Temperaturen zwischen -100°C und 300°C vorge- legt.
Bevorzugt sind Temperaturen zwischen -80°C und 200°C. Besonders bevorzugt sind Temperaturen zwischen -80°C und 40°C. Die Verbindung der Formel (II) sollte in flüssiger Phase vorliegen.
Anschließend erfolgt die Zugabe einer oder mehrerer Verbindung der Formel (III) . Diese können ebenfalls in einem Lösemittel gelöst oder suspendiert sein können aber auch in Substanz vorliegen. Als Lösemittel dienen die bereits oben beschriebenen, vor- zugsweise wird das gleiche Lösemittel verwendet. Die Zugabe erfolgt über einen Zeitraum von 1 Minute bis zu 96 Stunden. Bevorzugt ist eine Zugabezeit von 10 Minuten bis zu 8 Stunden. Die Temperatur der Vorlage liegt bei der Zugabe zwischen -100°C und 200°C. Bevorzugt sind Temperaturen zwischen -80°C und 100°C. Besonders bevorzugt sind Temperaturen zwischen -80°C und 40°C. Die Temperatur wird so gewählt, daß zumindest ein Reaktionspartner in flüssiger Phase vorliegen. Des weiteren wird die Umsetzung bei Normaldruck durchgeführt. Je nach physikalische Eigenschaften der Verbindungen der Formel (II) wird mit einem In- tensivkühler gekühlt, der gegebenenfalls mit Kältemitteln betrieben wird.
Das stöchiometrische Verhältnis zwischen Verbindungen der Formel
(II) und Verbindungen der Formel (III) liegt zwischen 1 : 1000 und 1 : 100. Bevorzugt ist ein stöchiometrisches Verhältnis zwischen Verbindungen der Formel (II) und Verbindungen der Formel
(III) zwischen 1 : 100 und 1 : 1, besonders bevorzugt ist 1 : 2.
Die Reaktionstemperatur liegt zwischen -100°C und 200°C. Bevorzugt ist eine Reaktionstemperatur zwischen -80°C und 150°C. Besonders bevorzugt ist eine Reaktionstemperatur zwischen -80°C und 40°C. Mindestens ein Reaktionspartner liegt vorzugsweise in flüssiger Phase vor. Die Reaktionsdauer liegt in Abhängigkeit von der gewählten Reaktionstemperatur und der gewählten Verbindungen der Formel (III) zwischen 1 Minute und bis zu 96 Stunden. Bevorzugt ist eine Reaktionszeit von 10 Minuten bis zu 8 Stunden.
Die resultierenden Verbindungen der Formel (I) können gemäß Schritt B) mittels bekannter Technologien wie z.B. Destillation, Umkristallisation, Extraktion oder Sublimation isoliert werden.
Die erfindungsgemäßen chemischen Verbindungen der Formel (I) können zusammen mit einer Organometallübergangsverbindung als Katalysatorsystem verwendet werden, welches ebenfalls Gegenstand der vorliegenden Erfindung ist. Als Organometallübergangsverbindung werden z.B. Metallocenverbindungen eingesetzt. Dies können z.B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie beispielsweise in EP-A-0 129 368, EP-A-0 561 479, EP-A-0 545 304 und EP-A-0 576 970 beschrieben sind, Monocyclopentadie- nylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die beispielsweise in EP-A-0 416 815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie beispielsweise in EP-A-0 632 063 beschrieben, π-Ligand substituierte Tetrahydropentalene wie beispielsweise in EP-A-0 659 758 beschrieben oder π-Ligand substituierte Tetrahydroindene wie beispielsweise in EP-A-0 661 300 be- schrieben. Außerdem können OrganometallVerbindungen eingesetzt werden in denen der komplexierende Ligand kein Cyclopentadienyl- Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. Und IV. Nebengruppe des Periodensystems der Elemente, wie sie z.B. bei D.H. McConville, et al, Macromolecules , 1996, 29, 5241 und D.H. McConville, et al , J. Am. Chem. Soc, 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni2+ oder Pd2+ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1995, 117, 6414 und , Brookhart et al, J. Am. Chem. Soc, 1996, 118, 267 beschrieben werden, eingesetzt werden. Ferner lassen sich 2 , 6-bis (imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co2+ oder Fe2+ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1998, 120, 4049 und Gibson et al, Chem. Commun. 1998, 849 beschrieben werden, einsetzen. Weiterhin können Metallocenverbindungen eingesetzt werden, deren komplexierender Ligand Heterocyclen enthält. Beispiele hierfür sind in WO 98/22486 beschrieben.
Bevorzugte Metallocenverbindungen sind unverbrückte oder ver- brückte Verbindungen der Formel (IV) , R0,
Figure imgf000011_0001
worin
M ein Metall der III., IV., V. oder VI. Nebengruppe des Pe- riodensystems der Elemente ist, insbesondere Ti, Zr oder
Hf,
R10 gleich oder verschieden sind und ein Wasserstoffatom oder Si(R12)3 sind, worin R12 gleich oder verschieden ein Was - serstoffatom oder eine Cι-C4o-kohlenstoffhaltige Gruppe, bevorzugt Cι-C20-Alkyl, Cι-Cιo-Fluoralkyl, Cι-Cιo-Alkoxy, Cδ-C2o-Aryl, C6-Cι0-Fluoraryl , C6-Cιo-Aryloxy, C2-Cι0-Alke- nyl, C -C4o-Arylalkyl, C7-C4o-Alkylaryl oder Cs-C4o-Arylal- kenyl, oder R10 eine C1-C30 - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl,
Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Ci5-Alkylalke- nyl, C6-C 4-Aryl, C5-C24-Heteroaryl, C7-C30-Arylalkyl, C -C3o-Alkylaryl, fluorhaltiges Cι-C25-Alkyl, fluorhalti- ges C6-C24-Aryl, fluorhaltiges C7-C3o-Arylalkyl, fluorhal- tiges C7_C3o-Alkylaryl oder Cχ-Cι2-Alkoxy ist, oder zwei oder mehrere Reste R10 können so miteinander verbunden sein, daß die Reste R10 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C 4-Ringsystem bilden, welches seinerseits substituiert sein kann,
R11 gleich oder verschieden sind und ein Wasserstoffatom oder Si(R12)3 sind, worin R12 gleich oder verschieden ein Wasserstoffatom oder eine Cι-C4o-kohlenstoffhaltige Gruppe, bevorzugt C1-C o-Alkyl, Cι-Cιo-Fluoralkyl, Ci-Cirj-Alkoxy, Cs-Cι4-Aryl, Cg-Cio-Fluoraryl , C6~Cιo-Aryloxy, C -Cιo-Alke- nyl, C7-C4o-Arylalkyl, C -C4o-Alkylaryl oder Cs-C4o-Arylal- kenyl, oder R11 eine C1-C30 - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Ci5-Alkylalke- nyl, C6"C4-Aryl, Cs-C4-Heteroaryl, C5-C24-Alkylheteroa- ryl, C5-C24-Alkylheteroaryl C7-C3o-Arylalkyl , C7-C3o-Alky- laryl, fluorhaltiges Cχ-C 5-Alkyl, fluorhaltiges
Cδ-C4-Aryl, fluorhaltiges C7-C3o-Arylalkyl, fluorhaltiges C7-C o-Alkylaryl oder C1-C12-Alkoxy ist, oder zwei oder mehrere Reste R11 können so miteinander verbunden sein, daß die Reste R11 und die sie verbindenden Atome des Cy- clopentadienylringes ein C4-C4-Ringsystem bilden, welches seinerseits substituiert sein kann,
1 gleich 5 für v = 0, und 1 gleich 4 für v = 1 ist,
m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,
L1 gleich oder verschieden sein können und ein Wasserstoffa- tom, eine Cι-Cιo-Kohlenwasserstoffgruppe wie Cχ-Cιo-Alkyl oder Cg-Cio-Aryl, ein Halogenatom, oder OR16, SR16, OSi(R16)3 , Si(R16)3 , P(R16)2 oder N(R16) bedeuten, worin
R16 ein Halogenatom, eine C3.-C10 Alkylgruppe, eine halogenierte C1-C10 Alkylgruppe, eine C6-C20 Arylgruppe oder eine halogenierte C6-Co Arylgruppe sind, oder L1 sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2, 2-Trifluorethansulfonyl-Gruppe,
o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
Z ein verbrückendes Strukturelement zwischen den beiden Cy- clopentadienylringen bezeichnet und v ist 0 oder 1.
Beispiele für Z sind Gruppen M2R13R14, worin M2 Kohlenstoff, Silizium, Germanium oder Zinn ist und R13 und R14 gleich oder ver- schieden eine Cι-C o-kohlenwasserstoffhaltige Gruppe wie Cχ-Cιo-Al- kyl, C6-Cι4-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist Z gleich CH2, CH2CH2, CH(CH3)CH2, CH (C4H9) C (CH3) 2, C(CH3)2, (CH3)2Si, (CH3)2Ge, (CH3)2Sn, (C6H5)2Si, (C6H5) (CH3) Si , (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2 , 2 ' - (C6H4) 2. Z kann auch mit ei- nem oder mehreren Resten R10 und/oder R11 ein mono- oder polycy- clisches Ringsystem bilden.
Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel (IV) , insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2 , 4 , 5, 6-Stellung, mit Cι~Co-kohlenstoffhaltigen Gruppen, wie Ci-Cirj-Alkyl oder C5-C2o-Aryl, wobei auch zwei oder mehrere Substi- tuenten des Indenylrings zusammen ein Ringsystem bilden können.
Chirale verbrückte Metallocenverbindungen der Formel (IV) können als reine racemische oder reine meso Verbindungen eingesetzt werden. Es können aber auch Gemische aus einer racemischen Verbindung und einer meso Verbindung verwendet werden.
Beispiele für Metallocenverbindungen sind:
Dimethylsilandiylbis (indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (4-naphthyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (1-naphthyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (2-naphthyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methy1-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-t-butyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-isopropyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-ethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- -acenaphth-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2 , 4-dimethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4-ethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiybis (2-methyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4 , 6 diisopropyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4 , 5 diisopropyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2,4, 6-trimethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2,5, 6-trimethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2,4, 7-trimethyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-5-isobutyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-5-t-butyl-indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4 , 6 diisopropyl-indenyl) zir- koniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4-isopropyl-indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4, 5-benzo-indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4 , 5- (methylbenzo) -indenyl) zirkoniumdi-chlorid
Methyl (phenyl) silandiylbis (2-methyl-4, 5- (tetramethylbenzo) -indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4- -acenaphth-indenyl) zirko- niumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-indenyl) zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-5-isobutyl-indenyl) zirkonium- dichlorid 1, 2-Ethandiylbis (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
1, 4-Butandiylbis (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
1, 2-Ethandiylbis (2-methyl-4 , 6 diisopropyl-indenyl) zirkoniumdichlorid
1, 4-Butandiylbis (2-methyl-4-isopropyl-indenyl) zirkoniumdichlorid
1, 4-Butandiylbis (2-methyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
1, 2-Ethandiylbis (2-methyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
1, 2-Ethandiylbis (2,4, 7-trimethyl-indenyl) zirkoniumdichlorid
1, 2-Ethandiylbis (2-methyl-indenyl) zirkoniumdichlorid
1, 4-Butandiylbis (2-methyl-indenyl) zirkoniumdichlorid
[4- (η5-Cyclopentadienyl) -4,6, 6-trimethyl- (η5-4 , 5-tetrahydropenta- len) ] -dichlorozirconium
[4- (η5-3 ' -Trimethylsilyl-cyclopentadienyl) -4,6, 6-trimethyl- (η5-4 , 5-tetrahydropentalen) ] -dichlorozirconium
[4- (η5-3 ' -Isopropyl-cyclopentadienyl) -4,6, 6-trimethyl- (η5-4, 5-te- trahydropentalen) ] -dichlorozirconium
[4- (η5-Cyclopentadienyl) -4 , 7 , 7-trimethyl- (η5-4, 5 , 6 , 7-tetrahydroin- denyl) ] -dichlorotitan
[4- (η5-Cyclopentadienyl) -4, 7 , 7-trimethyl- (η5-4, 5, 6 , 7-tetrahydroin- denyl) ] -dichlorozirkonium
[4- (η5-Cyclopentadienyl) -4 , 7 , 7-trimethyl- (η5-4, 5 , 6 , 7-tetrahydroin- denyl) ] -dichlorohafnium
[4- (η5-3 ' -tert.Butyl-cyclopentadienyl) -4,7, 7-trimethyl- (η5-4 ,5,6, 7-tetrahydroindenyl) ] -dichlorotitan
4- (η5-3 ' -Isopropylcyclopentadienyl) -4,7, 7-trimethyl- (η5-4, 5,6, 7-tetrahydroindenyl) ] -dichlorotitan
4- (η5-3' -Methylcyclopentadienyl) -4, 7 , 7-trimethyl- (η5-4, 5 , 6, 7-te- trahydroindenyl) ] -dichlorotitan 4- (η5-3 ' -Trimethylsilyl-cyclopentadienyl) -2-trimethylsi- lyl-4 , 7 , 7-trimethyl- (η5-4 ,5,6, 7-tetrahydroindenyl) ] -dichlorotitan
4- (η5-3 ' -tert .Butyl-cyclopentadienyl) -4,7, 7-trime- thyl- (η5-4 ,5,6, 7-tetrahydroindenyl) ] -dichlorozirkonium
(Tertbutylamido) - ( tetramethyl-η5-cyclopentadienyl) -dimethylsilyl- dichlorotitan
(Tertbutylamido) - (tetramethyl-η5-cyclopentadienyl) -1, 2-ethandiyl- dichlorotitan-dichlorotitan
(Methylamido) - ( tetramethyl-η5-cyclopentadienyl) -dimethylsilyl- dichlorotitan
(Methylamido) - ( tetramethyl-η5-cyclopentadienyl) -1, 2-ethandiyl- dichlorotitan
(Tertbutylamido) - (2 , 4-dimethyl-2 , 4-pentadien-l-yl) -dimethylsilyl- dichlorotitan
Bis- (cyclopentadienyl) -zirkoniumdichlorid
Bis- (n-butylcyclopentadienyl) -zirkoniumdichlorid
Bis- (1, 3-dimethylcyclopentadienyl) -zirkoniumdichlorid
Tetrachloro- [1- [bis (η5-lH-inden-l-yliden) methylsilyl] -3-η5-cyclo- penta-2 , 4-dien-l-yliden) -3-η5-9H-fluoren-9-yliden) butan] di-zirko- nium
Tetrachloro- [2- [bis (η5-2-methyl-lH-inden-l-yliden)methoxysi- lyl] -5- (η5-2 ,3,4, 5-tetramethylcyclopenta-2 , 4-dien-l-yli- den) -5- (η5-9H-fluoren-9-yliden) hexan] di-zirkonium
Tetrachloro- [1- [bis (η5-lH-inden-l-yliden) methylsilyl] -6- (η5-cyclo- penta-2 , 4-dien-l-yliden) -6- (η5-9H-fluoren-9-yliden) -3-oxahep- tan] di-zirkonium
Dimethylsilandiylbis (2-methyl-4- (tert-butyl-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- ( 4-methyl-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (4-ethyl-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4-trifluormethyl-phenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-tert-butyl-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-methyl-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-ethyl-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-trifluormethyl-phenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-methoxy-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4-tert-butyl-phenyl-indenyl) zir- koniumdime hyl
Dimethylsilandiylbis (2-methyl-4- (4-methyl-phenyl-indenyl) zirkoni- umdimethyl
Dimethylsilandiylbis (2-methyl-4- (4-ethyl-phenyl-indenyl) zirkoni- umdimethyl
Dimethylsilandiylbis (2-methyl-4- (4-trifluormethyl-phenyl-inde- nyl) zirkoniumdimethyl
Dimethylsilandiylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) zirkoniumdimethyl
Dimethylsilandiylbis (2-ethyl-4- (4-tert-butyl-phenyl-indenyl) zirkoniumdimethyl
Dimethylsilandiylbis (2-ethyl-4- (4-methyl-phenyl-indenyl) zirkoniumdimethyl Dimethylsilandiylbis (2-ethyl-4- (4-ethyl-phenyl-indenyl) zirkonium- diethyl
Dimethylsilandiylbis (2-ethyl-4- (4-trifluormethyl-phenyl-inde- nyl) zirkoniumdimethyl
Dimethylsilandiylbis (2-ethyl-4- (4-methoxy-phenyl-indenyl) zirkoniumdimethyl
Dimethylsilandiylbis (2-methyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -tert. -butyl-phenyl) -indenyl) hafnuimdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) titandichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -methyl-phenyl) -indenyl) zirko- niumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -n-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -n-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -hexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -sec-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -methyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -ethyl-phenyl) -indenyl) zirkoni- umdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -n-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -n-butyl-phenyl) -indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-4- (4 ' -hexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -pentyl-phenyl) -indenyl) zirko- niumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -cyclohexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -sec-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -tert .-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -methyl-phenyl) -indenyl) zir- koniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -ethyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -iso-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -n-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -hexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -cyclohexyl-phenyl) -inde- nyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -sec-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -tert . -butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4-phenyl) -indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-n-butyl-4- (4' -methyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -ethyl-phenyl) -indenyl) zirko- niumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4' -n-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4' -iso-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -n-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -hexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -cyclohexyl-phenyl) -inde- nyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -sec-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -methyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -ethyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -n-propyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -iso-propyl-phenyl) -inde- nyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -n-butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -hexyl-phenyl) -indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-hexyl-4- (4' -cyclohexyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -sec-butyl-phenyl) -indenyl) zir- koniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4' -tert . -butyl-phenyl) -indenyl) zirkoniumbis (dimethylamid)
Dimethylsilandiylbis (2-ethyl-4- (4' -tert .-butyl-phenyl) -indenyl) zirkoniumdibenzyl
Dimethylsilandiylbis (2-methyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkoniumdimethyl
Dirnethylger andiylbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -inde- nyl) zirkoniumdichlorid
Dimethylgermandiylbis (2-ethyl-4- (4' -tert. -butyl-phenyl) -indenyl) hafniumdichlorid
Dimethylgermandiylbis (2-propyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) titandichlorid
Dimethylgermandiylbis (2-methyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Ethylidenbis (2-ethyl-4-phenyl) -indenyl) zirkoniumdichlorid
Ethylidenbis (2-ethyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Ethylidenbis (2-n-propyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkoniumdichlorid
Ethylidenbis (2-n-butyl-4- (4' -tert. -butyl-phenyl) -indenyl) titan- dichlorid
Ethylidenbis (2-hexyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdibenzyl
Ethylidenbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -indenyl) afniumdi- benzyl Ethylidenbis (2-methyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) titandi- benzyl
Ethylidenbis (2-methyl-4- (4' -tert . -butyl-phenyl) -indenyl) zirkoni- umdichlorid
Ethylidenbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -indenyl) hafniumdi- methyl
Ethylidenbis (2-n-propyl-4—phenyl) -indenyl) titandimethyl
Ethylidenbis (2-ethyl-4- (4' -tert .-butyl-phenyl) -indenyl) zirkonium- bis (dimethylamid)
Ethylidenbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -indenyl) hafnium- bis (dimethylamid)
Ethylidenbis (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) titan- bis (dimethylamid)
Methylethylidenbis (2-ethyl-4- (4' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Methylethylidenbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -indenyl) haf- niumdichlorid
Phenylphosphandiyl (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkoniumdichlorid
Phenylphosphandiyl (2-methyl-4- (4 ' -tert. -butyl-phenyl) -indenyl) zirkoniumdichlorid
Phenylphosphandiyl (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkoniumdichlorid
Dirnethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -methyl- phenyl-indenyl ) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-rtιe- thyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-me hyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4'-ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 '-ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-me- thyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-me- thyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-me- thyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-me- thyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-me- thyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-me- thyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4'-isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-me- thyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-me- thyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-me- thyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-me- thyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6~thiapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-me- thyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-me- thyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-me- thyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -s-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) ( -methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-me- thyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- ( ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -n-he- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- ( ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -cyclo- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4'-cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -trimethylsilylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -trime- thy1silylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- ( ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4'-adaman- tylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapenta- len) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 '-adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -ada- mantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl) ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -tris (trifluor ethyDmethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl)methylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -tris (trifluormethyDmethylphenyl-indenyl) Zirkonium- dichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -tris (trifluormethyDmethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -tris (trifluormethyDmethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyD ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-me¬ thyl-4- (4' -tris (trifluormethyD ethylphenyl-indenyl) zirkonium- dichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -tris (trifluormethyDmethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-me- thyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkonium- dichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl)methylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5 , 6-di-hydro-4-azapenta- len) (2-ethyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4 ' -tert-bu- tylphenyl-tetrahydroindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-n-butyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Ethyliden (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-trimethylsilyl-4-azapentalen) (2-me- thyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-tolyl-5-azapentalen) (2-n-pro- pyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Di ethylgermyldiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Methylethyliden(2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-di-iso-propyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2 , 6-dime- thyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (6 ' -tert-butylnaphthyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-me- thyl-4- (6' -tert-butylanthracenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-phosphapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Diphenylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Methylphenylsilandiyl (2-methyl-6-thiapentalen) (2-me- thyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Methyliden(2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethyl ethyliden (2 , 5-dimethyl-6-thiapentalen) (2-ιtιe- thyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Diphenylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Diphenylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methylindenyl) zirko- niumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methylinde- nyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methy- lindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2-methy- lindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methylindenyl) zirko- niumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methylindenyl) zirko- niumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methylindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (indenyl) zirkoniumdich- lorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (indenyl) zirkonium- dichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (indenyl) zirkoniumdich- lorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (indenyl) zirkoniumdich- lorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4-phenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlo id
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4-phenyl-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-me hyl-4-phenyl-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4-phenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4-phenyl- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4, 5-benzo-in- denyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4, 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4, 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-me- thyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-me- thyl-4, 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-me- thyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-me'thyl-4 , 5-benzo- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4 , 5-benzo- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-me- thyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-me- thyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4 , 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4 , 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4, 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-me- thyl-4 , 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-me- thyl-4, 5-benzo-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4, 5-benzo-in- denyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4 , 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl- , 5-benzo-in- denyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4 , 5-benzo- indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4, 5-benzo- indenyl) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-5-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-N-phenyl-4-azapentalen) zirkonium- dichlorid
Dimethylsilandiylbis (2-methyl-N-phenyl-5-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-N-phenyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2 , 5-dimethyl-4-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2, 5-dimethyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2 , 5-dimethyl-N-phenyl-4-azapentalen) zirko- niumdichlorid
Dimethylsilandiylbis (2 , 5-dimethyl-N-phenyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-5-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-6-thiapentalen) zirkoniumdichlorid Dimethylsilandiylbis (2 , 5-dimethyl-4-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2, 5-dimethyl-6-thiapentalen) zirkoniumdich- lorid
Dimethylsilandiylbis (2-methyl-4-oxapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-5-oxapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-6-oxapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2 , 5-dimethyl-4-oxapentalen) zirkoniumdichlorid
Dimethylsilandiylbis (2, 5-dimethyl-6-oxapentalen) zirkoniumdichlorid
Des weiteren sind die Metallocene, bei denen das Zirkoniumfrag- ment "-zirkonium-dichlorid" die Bedeutungen
Zirkonium- onochloro-mono- (2 , 4-di-tert .-butyl-phenolat)
Zirkonium-monochloro-mono- (2 , 6-di-tert . -butyl-phenolat)
Zirkonium-monochloro-mono- (3 , 5-di-tert . -butyl-phenolat)
Zirkonium-monochloro-mono- (2 , 6-di-sec . -butyl-phenolat)
Zirkonium-monochloro-mono- (2 , 4-di-methylphenolat)
Zirkonium-monochloro-mono- (2 , 3-di-methylphenolat)
Zirkonium-monochloro-mono- (2 , 5-di-methylphenolat)
Zirkonium-monochloro-mono- (2, 6-di-methylphenolat)
Zirkonium-monochloro-mono- (3 , 4-di-methylphenolat)
Zirkonium-monochloro-mono- (3 , 5-di-methylphenolat)
Zirkonium-monochloro-monophenolat
Zirkonium-monochloro-mono- (2-methylphenolat)
Zirkonium-monochloro-mono- (3-methylphenolat) Zirkonium-monochloro-mono- 4-methylphenolat)
Zirkonium-monochloro-mono- 2-ethylphenolat)
Zirkonium-naonochloro-mono- 3-ethylphenolat)
Zirkonium-monochloro-mono- 4-ethylphenolat)
Zirkonium-monochloro-mono- 2-sec . -butylphenolat)
Zirkonium-monochloro-mono- 2-tert . -butylphenolat)
Zirkonium-monochloro-mono- 3-tert . -butylphenolat)
Zirkonium-monochloro-mono- 4-sec . -butylphenolat)
Zirkonium-monochloro-mono- 4-tert . -butylphenolat)
Zirkonium-monochloro-mono- 2-isopropyl-5-methylphenolat)
Zirkonium-monochloro-mono- 4-isopropyl-3-methylphenolat)
Zirkonium-monochloro-mono- 5-isopropyl-2-methylphenolat)
Zirkonium-monochloro-mono- 5-isopropyl-3-methylphenolat)
Zirkonium-monochloro-mono- 2 , 4-bis- (2-methyl-2-butyl) -phenolat)
Zirkonium-monochloro-mono- 2 , 6-di-tert . -butyl-4-methyl-phenolat)
Zirkonium-monochloro-mono- 4-nonylphenolat)
Zirkonium-monochloro-mono- 1-naphtholat)
Zirkonium-monochloro-mono- 2-naphtholat)
Zirkonium-monochloro-mono- 2-phenylphenolat)
Zirkonium-monochloro-mono- tert. butoxid)
Zirkonium-monochloro-mono- N-methylanilid)
Zirkonium-monochloro-mono- 2-tert . -butylanilid)
Zirkonium-monochloro-mono- tert . -butylamid) Zirkonium-monochloro-mono- (di-iso. -propylamid)
Zirkonium-monochloro-mono-methyl
Zirkonium-monochloro-mono-benzyl
Zirkonium-monochloro-mono-neopentyl, hat, Beispiele für die erfindungsgemäßen Metallocene.
Weiterhin bevorzugt sind die entsprechenden Zirkondimethyl-Verbindungen, die entsprechenden Zirkon-η4-Butadien-Verbindungen, sowie die entsprechenden Verbindungen mit 1, 2- (1-methyl-ethan- diyl)-, 1,2- (1, 1-dimethyl-ethandiyl) - und 1, 2 (1, 2-dimethyl-ethan- diyl) -Brücke.
Zur Herstellung des erfindungsgemäßen Katalysatorsystems kann eine oder mehrere Verbindungen der Formeln (I) mit einer Organo- metallübergangsverbindung der Formel (IV) in jedem beliebigen stöchiometrischen Verhältnis umgesetzt werden. Das erfindungsgemäße Katalysatorsystem kann zusätzlich eine Alu- miniumverbindung der Formel (V)
(V)
Figure imgf000050_0001
R10
enthalten.
Die Reste R20 in Formel (V) können gleich oder verschieden sein und ein Halogenatom, ein Wasserstoffatom, eine Cι-C4o-kohlenstoff haltige Gruppe, bevorzugt Cι-C2o~Alkyl, Cι-C rj-Halogenalkyl, C6-C o-Aryl, C6-C o-Halogenaryl , C7-C4o-Arylalkyl, C7-C4o-Halogena- rylalkyl, C7-C4o~Alkylaryl oder C7-C4o-Halogenalkylaryl, bedeuten.
Bevorzugt für R20 sind Ci-Cς-Alkyl-Gruppen, besonders bevorzugt für R20 sind Cι-C4-Alkyl-Gruppen.
Die Verbindung der Formel (V) in jedem beliebigen stöchiometrischen Verhältnis zugegeben werden. Bei der Herstellung des erfindungsgemäßen Katalysatorsystems wird ein Mol-Verhältnis B : M zwischen den Verbindungen der Formeln (I) und der Formel (IV) von 0,01 bis 10000 eingesetzt. Bevorzugt wird ein Mol-Verhältnis von 0.1 bis 1000, ganz besonders bevor- zugt wird ein Mol-Verhältnis von 1 bis 100 eingesetzt. Hierzu kann eine Verbindung der Formel (V) in einem Mol-Verhältnis AI : M von 0.01 bis 10000 zusätzlich zugegeben werden. Bevorzugt wird ein Mol-Verhältnis von 0.1 bis 1000, ganz besonders bevorzugt wird ein Mol-Verhältnis von 1 bis 100 eingesetzt.
Die Verbindungen können in jeder denkbaren Kombination miteinander in Kontakt gebracht werden. Eine mögliche Verf hrensweise ist, daß eine Organoübergangsmetallverbindung der Formel (IV) in einem aliphatischen oder aromatischen Lösemittel gelöst bzw. sus- pendiert wird. Danach wird eine Verbindung der Formel (V) in gelöster bzw. in suspendierter Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktions- temperatur liegt zwischen -10°C und + 200°C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Im Anschluß daran wird eine Organoborverbindung der Formel (I) entweder in Substanz oder in gelöster bzw. in suspendierter Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10 °C und + 200 °C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Die einzelnen Komponeneten können auch nacheinander, in einer beliebigen Reihenfolge, in den Polymerisationskessel eingegeben werden.
Die erfindungsgemäßen Katalysatorsysteme können auch geträgert eingesetzt werden.
Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems kann ein beliebiger organischer oder anorganischer, inerter Fest- stoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver (z.B. Polyolefine) .
Geeignete anorganische Oxide finden sich in den Gruppen 2, 3, 4, 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxiden Trägern eingesetzt werden können, sind z.B. MgO, Zr02 , Ti0 oder B20 ,um nur einige zu nennen. Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 bis 1000 m2/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 μm , einem Porenvolumen im Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikel - große im Bereich von 5 bis 350 μm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 400 m2/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 μm.
Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und gleichzeitiger Inertgasüberlagerung (z.B. Stickstoff) erfolgen. Die Trocknungstemperatur liegt im Bereich zwischen 100 und 1000 °C, vorzugsweise zwischen 200 und 800 °C . Der Parameter Druck ist in diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichge- wichtseinstellung mit den Hydroxylgruppen auf der Trägeroberfläche erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.
Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungs- mitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner nega- tiven Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Inertisierungsmittel sind beispielsweise Siliciumhalo- genide und Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, Dimethylaminotrichlorsilan oder metallorganische Verbindungen von Aluminium- , Bor und Magnesium wie beispielsweise Trimethylalu- minium, Triethylaluminium, Triisobutylaluminium, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder Inertisie- rung des Trägermaterials erfolgt beispielsweise dadurch, daß man unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösemittel mit dem Inertisie- rungsreagenz in reiner Form oder gelöst in einem geeigneten Lösemittel zur Reaktion bringt. Geeignete Lösemittel sind z.B. ali- phatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 25°C und 120°C, bevorzugt zwischen 50°C und 70°C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösemitteln wie sie bereits zuvor beschrieben worden sind gewaschen und anschließend im Inertgasstrom oder am Vakuum getrock- net.
Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaften- der Feuchtigkeit, Lösemittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden .
Die erfindungsgemäßen Katalysatorsysteme können in jeder denkba- ren Kombination mit dem Träger in Kontakt gebracht werden. Eine denkbare Variante ist, daß eine Organometallverbindung der Formel IV in einem aliphatischen oder aromatischen Lösemittel wie Toluol, Heptan, Tetrahydrofuran oder Diethylether vorgelegt wird. Anschließend wird eine oder mehrere Verbindungen der Formel (V) entweder in Substanz oder in gelöster Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuetn und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10°C und +200°C, wobei eine Temperatur zwischen 0°C und 50°C bevorzugt wird. Danach erfolgt die Zugabe einer oder mehrerer Verbindungen der Formel (I) entweder in Substanz oder in gelöster Form. Auch hier liegt die Reaktionszeit zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuetn und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10°C und +200°C, wobei eine Tempe- ratur zwischen 0°C und 50°C bevorzugt wird. Alle Edukte können in jedem beliebigen stöchiometrischen Verhältnis eingesetzt werden. Bevorzugt wird ein Molverhältnis ADM1 zwischen den Verbindungen der Formel (V) und der Formel (IV) von 0,1 bis 10000, ganz besonders bevorzugt wird ein Molverhältnis von 1 bis 100 eingesetzt. Bevorzugt wird ein Molverhältnis B:M1 zwischen den Verbindungen der Formel (I) und der Formel (IV) von 0.1 bis 1000, ganz besonders bevorzugt wird ein Molverhältnis von 1 bis 100 eingesetzt.
Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösemittel entfernt und das resultierende geträgerte Metallocen-Katalysatorsy- stem getrocknet, um sicherzustellen, daß das Lösemittel vollstän- dig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der geträgerte Katalysator wird als frei fließendes Pulver erhalten.
5 Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Polyolefins durch Polymerisation einer oder mehrerer Olefine in Gegenwart des erfindungsgemäßen Katalysatorsystems, enthaltend mindestens eine Übergangsmetallkomponente der Formel (IV) . Unter dem Begriff Polymerisaton wird eine Homopoly- 10 merisation wie auch eine Copolymerisation verstanden.
Bevorzugt werden Olefine der Formel Rm-CH=CH-Rn polymerisiert, worin Rm und Rn gleich oder verschieden sind und ein Wasserstoffatom oder einen kohlenstoffhaltigen Rest mit 1 bis 20 C-Atomen, insbe- 15 sondere 1 bis 10 C-Atome, bedeuten, und Rm und Rn zusammen mit den sie verbindenden Atomen einen oder mehrere Ringe bilden können.
Beispiele für solche Olefine sind l-01efine mit 2 - 40, vorzugsweise 2 bis 10 Kohlenstoffatomen, wie Ethen, Propen, 1-Buten,
20 1-Penten, 1-Hexen, 4-Methyl-l-penten oder 1-Octen, Styrol, Diene wie 1, 3-Butadien, 1, 4-Hexadien, Vinylnorbornen , Norbornadien, Ethylnorbornadien und cyclische Olefine wie Norbornen, Tetracy- clododecen oder Methylnorbornen . Bevorzugt werden in dem erfindungsgemäßen Verfahren Propen oder Ethen homopolymerisiert, oder
25 Propen mit Ethen und/oder mit einem oder mehreren 1-Olefinen mit 4 bis 20 C-Atomen, wie Hexen, und/oder einem oder mehreren Dienen mit 4 bis 20 C-Atomen, wie 1, 4-Butadien, Norbornadien, Ethyliden- norbonen oder Ethylnorbornadien, copolymerisiert . Beispiele solcher Copolymere sind Ethen/Propen-Copolymere oder Ethen/Pro-
30 pen/l,4-Hexadien-Terpolymere.
Die Polymerisation wird bei einer Temperatur von -60°C bis 300 °C bevorzugt 50°C bis 200 °C, ganz besonders bevorzugt 50°C - 80 °C durchgeführt. Der Druck beträgt 0,5 bis 2000 bar, bevorzugt 5 bis 35 64 bar.
Die Polymerisation kann in Lösung, in Masse, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig durchgeführt werden. 0
Das erfindungsgemäß dargestellte Katalysatorsystem kann als einzige Katalysatorkomponente für die Polymerisation von Olefinen mit 2 bis 20 C-Atomen eingesetzt werden, oder bevorzugt in Kombination mit mindestens einer AlkylVerbindung der Elemente aus der 5 I. bis III. Hauptgruppe des Periodensystems, wie z.B. einem Aluminium-, Magnesium- oder Lithiumalkyl oder einem Aluminoxan eingesetzt werden. Die Alkyl erbindung wird dem Monomeren oder Sus- pensionsmittel zugesetzt und dient zur Reinigung des Monomeren von Substanzen, die die Katalysatoraktivität beeinträchtigen können. Die Menge der zugesetzten Alkylverbindung hängt von der Qualität der eingesetzten Monomere ab.
Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben.
Bei der Polymerisation kann außerdem ein Antistatikum zusammen mit oder getrennt von dem eingesetzten Katalysatorsystem in das Polymerisationssystem eindosiert werden.
Die mit dem erfindungsgemäßen Katalysatorsystem dargestellten Polymere zeigen eine gleichmäßige Kornmorphologie und weisen keine Feinkornanteile auf. Bei der Polymerisation mit dem erfindungsgemäßen Katalysatorsyatem treten keine Beläge oder Verbackungen auf .
Mit dem erfindungsgemäßen Katalysatorsystem werden Polymere, wie Polypropylen mit außerordentlich hoher Stereo- und Regiospezifi - tat erhalten.
Das isotaktische Polypropylen, das mit dem erfindungsgemäßen Katalysatorsystem hergestellt worden ist, zeichnet sich durch einen Anteil an 2-1-insertierten Propeneinheiten RI < 0.5% bei einer Triaden-Taktizität TT > 98.0% und einen Schmelzpunkt > 156°C aus, wobei Mw/Mn des erfindungsgemäßen Polypropylens zwischen 2.5 und 3.5 liegt.
Die mit dem erfindungsgemäßen Katalysatorsystem herstellbaren Co- polymere zeichnen sich durch eine gegenüber dem Stand der Technik deutlich höhere Molmasse aus. Gleichzeitig sind solche Copolymere durch Einsatz des erfindungsgemäßen Katalysatorsystems mit hoher Produktivität bei technisch relevanten Prozessparametern ohne Be- lagsbildung herstellbar.
Die nach dem erfindungsgemäßen Verfahren hergestellten Polymere sind insbesondere zur Herstellung reißfester, harter und steifer Formkörper wie Fasern, Filamente, Spritzgußteile, Folien, Platten oder Großhohlkörpern (z.B. Rohre) geeignet.
Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung.
Allgemeine Angaben: Herstellung und Handhabung der Verbindungen erfolgten unter Ausschulß von Luft und Feuchtigkeit unter Argonschutz (Schlenk-Technik) . Alle benötigten Lösemittel wurden vor Gebrauch durch mehrstündiges Sieden über geeignete Trockenmittel und anschließende Destillation unter Argon absolutiert. Zur Charakterisierung der Verbindungen wurden Proben aus den einzelnen Reaktions-mischungen entnommen und im Ölpumpenvakuum getrocknet.
Beispiel 1: Synthese von Bis (pentafluorophenyloxy)methylalan (1)
5.2 ml Trimethylaluminium (2M in Exxol, 10.8 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 4.0 g (21.6 mmol) Pentafluorophenol in 40 ml Toluol über einen Zeitraum von 30 Minuten zugetropft. Man rührt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird eine Stunde bei Raumtemperatur nachgerührt. Es resultiert eine farblose Lösung (0.14 M bezogen auf AI) von Bis (pentafluoro-phenyloxy) methylalan.
19F-NMR (C6D6) : δ = -160.5 ppm ( , 4F,o-C6F5); -161.8 ppm (m, 2F, p-C6F5) ; -166.3 ppm (m, 4F, m-C6F5) .
1H-NMR (C5D5) : δ = -0.4 ppm (s, 3H, CH3) .
Beispiel 2: Synthese von Bis (pentafluorophenyloxy) ethylalan (2)
5.0 ml Triethylaluminium (2.1 M in Vasol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 4.0 g (21.0 mmol) Pentafluorophenol in 40 ml Toluol über einen Zeitraum von 30 Minuten zugetropft. Man rührt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird eine Stunde bei Raumtemperatur nachgerührt. Es resultiert eine farblose Lösung (0.13 M bezogen auf AI) von Bis (pentafluoro-phenyloxy) ethylalan.
19F-NMR (C6D6) : δ = -160.9 ppm (m, 4F,o-C6F5); -162.1 ppm (m, 2F, p-C6F5) ; -167.3 ppm (m, 4F, m-C6F5)
1H-NMR (C6D6) : δ = 0.5 ppm (t, 3H, CH3) , 1.6 ppm (q, 2H, CH2) .
Beispiel 3: Synthese von Bis (pentafluoroanilin) methyalan (3)
5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 3.8 g (21.0 mmol) Pentafluoroanilin in 40 ml Toluol über einen Zeitraum von 30 Minuten zugetropft. Man rührt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtem- peratur erwärmen. Es wird zwei Stunde bei Raumtemperatur nachge- rührt. Es resultiert eine gelbliche Lösung (0.13 M bezogen auf AI) von Bis (pentafluoro-anilin) methylalan.
19F-NMR (C6D6) : δ = -162.9 ppm (m, 4F,o-C5F5); -164.1 ppm (m, 2F, 5 p-C5F5) ; -171.3 ppm (m, 4F, m-C6F5)
1H-NMR (C6D6) : δ = -0.4 ppm (t, 3H, CH3) , 5.6 ppm (s, 1H, NH)
Beispiel 4: Synthese von Bis (bis (pentafluorophenyl)methylenme - 10 thyalan (4)
5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 7.6 g (21.0 mmol) Bis (pentafluorophenyl) carbinol in 40 ml
15 Toluol über einen Zeitraum von 30 Minuten zugetropft. Man rührt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird zwei Stunde bei Raumtemperatur nachgerührt. Es resultiert eine gelbliche Lösung (0.13 M bezogen auf AI) von Bis (bis (pentafluorophenyl) methylenmethyalan.
20
19F-NMR (C6D6) : δ = -140.6 ppm (m, 4F, o-CH (C6F5) 2) ; -151.7 ppm (m, 2F, p-CH(C6F5)2) ; -159.5 ppm (m, 4F, m-CH (C6F5) 2) .
1H-NMR (C6D6) : δ = 6.2 ppm (s, 1H, CH) . 25
Beispiel 5: Synthese von Bis(3,5 bis (trifluoromethyl) anilin) me- thyalan (5)
5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in 30 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 4.8 g (21.0 mmol) 3,5 Bis (trifluoromethyl) anilinin 40 ml Toluol über einen Zeitraum von 45 Minuten zugetropft. Man rührt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird vier Stunde bei Raumtempera- 35 tur nachgerührt. Die leicht trübe Lösung wird über eine G4-Fritte abfiltriert. Es resultiert eine gelbliche klare Lösung (0.13 M bezogen auf AI) von Bis (3,5 bis (trifluoromethyl) anilin) methyalan.
19F-NMR (C6D6) : δ = -61.5 ppm (s, 12F, CF3). 0
1H-NMR (C6D6) : δ = 5.5 ppm (s, 1H, NH) , 6.3 ppm (s, 2H, Ar-H) , 7.2 ppm (s, 1H, Ar-H) .
Beispiel 6: Synthese von Bis (nonanfluorodiphenyloxy) methyalan 5 (6) 5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 7.0 g (21.0 mmol) Nonafluorodiphenyl-1-ol in 40 ml Toluol über einen Zeitraum von 40 Minuten zugetropft. Man rührt 30 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird einer Stunde bei Raumtemperatur nachgerührt. Die leicht trübe Lösung wird über eine G4-Fritte ab- filtriert. Es resultiert eine klare Lösung (0.13 M bezogen auf AI) von Bis (nonanfluorodiphenyloxy) methyalan.
10
19F-NMR (C6D6) : δ = -134.0 ppm (m, 2F, 2,2'-F); -137.2 ppm (m, 2F, 3, 3'-F); -154.6 ppm (m, 2F, 4, 4'-F); 157.0 ppm (m, 1F, 6-F) ; 161.7 (m, 2F, 5, 5'-F) .
15 1H-NMR (C6D6) : δ = -0.3 ppm (s, 3H, CH3) .
Allgemeine Beschreibung der Katalysatorherstellung und Polymerisations-durchführung
20 Herstellung des Katalysatorsystems:
Zu einer Lösung von 157 mg (250 μmol) Dimethylsilandiylbis (2-me- thyl-4-phenyl-indenyl) -zirconiumdichlorid in 25 ml Toluol werden 1.25 ml Trimethylaluminium (2M in Toluol) gegeben und die Lösung
25 30 Minuten bei Raumtemperatur gerührt. Anschließend werden 2 Äquivalente der entsprechenden Cokatalysatorsverbindung (500 μmol) zugetropft. Danach wird eine Stunde bei Raumtemperatur ge¬ rührt. Zu dieser Lösung werden portionsweise 10.0g Si02 (XPO2107, getrocknet bei 600 °C im Argonstrom) zugegeben. Man läßt 30 Minu-
30 ten bei RT rühren und entfernt dann das Lösungsmittel im Ölpum- penvakuum. Es resultiert ein freifließendes Pulver. Zum Einschleusen in das Polymerisationssystem wird lg des geträgerten Katalysatorsystems in 30 ml Exxol resuspendiert.
35 Polymerisationsdurchführung:
Parallel dazu wird ein trockener 16-dm3-Reaktor zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propen befüllt. Dann wurden 0.5 cm3 einer 20%igen Trii- 0 sobutylaluminiumlösung in Varsol mit 30 cm3 Exxol verdünnt in den Reaktor gegeben und der Ansatz bei 30 °C 15 Minuten gerührt. Anschließend wurde die Katalysatorsuspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60 °C aufgeheizt (4°C/min) und das Polymerisationssytem lh 5 durch Kühlung bei 60 °C gehalten. Gestoppt wurde die Polymerisa- tion durch Abgasen des restlichen Porpylens. Das Polymer wurde im Trockenschrank getrocknet.
Polymerisationsergebnisse
Figure imgf000059_0001
1) Aktivität: kg (PP) / g Metallocen x h

Claims

Patentansprüche
1. Verbindung der allgemeinen Formel (I),
[(Rl)-X-Mi(R3)-X-(R2)]k (I)
worin
R1, R2 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie Cι-C4o-kohlenstoffhaltige Gruppe wie Cι-C2o-Alkyl, Cι-C2o-Halogenalkyl , Cι-C10-Alkoxy, C6-C20-Aryl, C6-C2o-Halogenaryl, C6~C2o~Aryloxy, C -C4o-Arylalky, C -C4o-Halogenary- lalky, C -C4o-Alkylaryl, C7-C4o-Halogenalkylaryl oder eine Si (R4) 3-Gruppe bedeutet,
R4 eine borfreie Cι-C4o-kohlenstoffhaltige Gruppe wie Cχ-C2o-Alkyl, Cι-C20-Halogenalkyl, Cχ-Cιo-Alkoxy, C6-C2o-Aryl, C3-C 0-Halogenaryl, C6-C20-Aryloxy,
C7-C4o-Arylalky, C7-C4o-Halogenarylalky, C7-C4o-Alky- laryl, C7-C4o-Halogenalkylaryl ,
R3 kann gleich oder verschieden zu R1 und R2, ein Was - serstoffatom, ein Halogenatom, eine Cι~C4o-kohlen- stoffhaltige Gruppe wie Cι-C o-Alkyl, Cχ-C2o-Haloge- nalkyl, Cι-Cι0-Alkoxy, C6-C2o-Aryl, C6-C20-Halogena- ryl, C6-C o-Aryloxy, C -C4o-Arylalky, C7-C4o-Halogena- rylalky, C -C4o-Alkylaryl, C7-C4o-Halogenalkylaryl oder eine OSi (R4) 3-Gruppe bedeutet,
X gleich oder verschieden ein Element der Gruppe IV, V oder Via des Periodensystems der Elemente oder eine NH-Gruppe bedeutet,
M1 ein Element der Gruppe lila des Periodensystems der Elemente bedeutet und
k eine natürliche Zahl von 1 bis 100 bedeutet und
2. Verfahren zur Herstellung der Verbindung der Formel (I) gemäß Anspruch 1, worin eine der Verbindungen der Formel (II)
(R5)3Y (II)
worin R5 ein Wasserstoffatom oder eine borfreie Cι-C4o-kohlen- stoffhaltige Gruppe wie Cι-C2o-Alkyl , C6-C2o_Aryl, C7-C4o~Arylalky, C7-C4o-Alkylaryl oder Halogenatom sein kann,
Y Bor oder Aluminium ist
mit einer Verbindung (III) umgesetzt wird
(R6) X^R2) (III)
worin,
R1und R2 die unter Formel (I) beschriebene Bedeutung haben,
X ein Sauerstoff, Schwefel oder eine NH-Gruppe ist,
R6 Wasserstoff, Cι-C4o-kohlenstoffhaltige Gruppe oder ein p-Toluolsulfonsäure-Rest ist.
3. Katalysatorsystem enthaltend
A) mindestens eine chemische Verbindung der Formel (I) gemäß Anspruch 1
B) mindestens eine Übergangsmetallverbindung
4. Katalysatorsystem gemäß Anspruch 3 zusätzlich enthaltend einen Träger.
5. Verfahren zur Herstellung eines Polyolefins in Gegenwart ei¬ nes Katalysatorsystem nach Anspruch 3 oder 4.
6. Verwendung eines Katalysatorsystems gemäß Anspruch 3 oder 4 zur Olefinpolymerisation.
PCT/EP2000/003315 1999-04-21 2000-04-13 Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen WO2000064906A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00920700A EP1175424A1 (de) 1999-04-21 2000-04-13 Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen
JP2000614257A JP2002543082A (ja) 1999-04-21 2000-04-13 化合物、その製造法及びポリオレフィン製造用触媒組成物における使用法
AU41181/00A AU4118100A (en) 1999-04-21 2000-04-13 Chemical compound, method for the production thereof, and its use in a catalyst system for producing polyolefins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999117984 DE19917984A1 (de) 1999-04-21 1999-04-21 Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystem zur Herstellung von Polyolefinen
DE19917984.0 1999-04-21

Publications (1)

Publication Number Publication Date
WO2000064906A1 true WO2000064906A1 (de) 2000-11-02

Family

ID=7905293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/003315 WO2000064906A1 (de) 1999-04-21 2000-04-13 Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen

Country Status (5)

Country Link
EP (1) EP1175424A1 (de)
JP (1) JP2002543082A (de)
AU (1) AU4118100A (de)
DE (1) DE19917984A1 (de)
WO (1) WO2000064906A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090112A1 (de) * 2000-05-24 2001-11-29 Basell Polyolefine Gmbh Als cokatalysator geeignete chemische produkte, verfahren zu ihrer herstellung und ihre verwendung in katalysatorsystemen zur herstellung von polyolefinen
US7618912B2 (en) 2002-07-15 2009-11-17 Basell Polyolefine Gmbh Preparation of supported catalyst systems
FR2986717A1 (fr) * 2012-02-10 2013-08-16 IFP Energies Nouvelles Composition catalytique et procede d'oligomerisation des olefines utilisant ladite composition catalytique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG74749A1 (en) * 1998-09-09 2000-08-22 Sumitomo Chemical Co Modified aluminium oxy compound polymerization catalyst and process for producing olefin polymer and alkenyl aromatic hydrocaron polymer
GB0520085D0 (en) * 2005-10-03 2005-11-09 Sasol Tech Pty Ltd Oligomerisation of olefinic compounds in the presence of an oligomerisation catalyst, and a catalyst activator including a halogenated -AR group

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474391A2 (de) * 1990-08-21 1992-03-11 Nippon Oil Co. Ltd. Polyolefine
EP0510602A1 (de) * 1991-04-22 1992-10-28 Kansai Paint Co., Ltd. Lebendes Polymerisationsverfahren
EP0653443A1 (de) * 1993-11-04 1995-05-17 SOLVAY (Société Anonyme) Katalysatorsystem für die Polymerisation von Alpha-Olefinen und Verfahren zu dieser Polymerisation
JPH07173223A (ja) * 1993-12-21 1995-07-11 Tokuyama Corp 低立体規則性ポリプロピレンの製造方法
EP0781783A1 (de) * 1995-12-27 1997-07-02 Basf Aktiengesellschaft Metallocenkatalysatorsysteme mit sterisch gehinderten Lewis-Basen
JPH09194521A (ja) * 1996-01-24 1997-07-29 Idemitsu Kosan Co Ltd オレフィン重合用触媒及びそれを用いたオレフィン系重合体の製造方法
JPH09255710A (ja) * 1996-03-27 1997-09-30 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH10316695A (ja) * 1997-05-20 1998-12-02 Sumitomo Chem Co Ltd アルミニウム化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
EP0906920A1 (de) * 1997-10-02 1999-04-07 Elf Atochem S.A. Fester Aktivierungsträger für die Metallocenkatalysatoren in der Olefinpolymerisation, Herstellungsverfahren, Katalysatorsystem und entsprechendes Polymerisationsverfahren
EP0950670A2 (de) * 1998-04-17 1999-10-20 Bayer Inc. Verfahren zur Polymerisation von Olefin und Katalysatorsystem dafür

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474391A2 (de) * 1990-08-21 1992-03-11 Nippon Oil Co. Ltd. Polyolefine
EP0510602A1 (de) * 1991-04-22 1992-10-28 Kansai Paint Co., Ltd. Lebendes Polymerisationsverfahren
EP0653443A1 (de) * 1993-11-04 1995-05-17 SOLVAY (Société Anonyme) Katalysatorsystem für die Polymerisation von Alpha-Olefinen und Verfahren zu dieser Polymerisation
JPH07173223A (ja) * 1993-12-21 1995-07-11 Tokuyama Corp 低立体規則性ポリプロピレンの製造方法
EP0781783A1 (de) * 1995-12-27 1997-07-02 Basf Aktiengesellschaft Metallocenkatalysatorsysteme mit sterisch gehinderten Lewis-Basen
JPH09194521A (ja) * 1996-01-24 1997-07-29 Idemitsu Kosan Co Ltd オレフィン重合用触媒及びそれを用いたオレフィン系重合体の製造方法
JPH09255710A (ja) * 1996-03-27 1997-09-30 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH10316695A (ja) * 1997-05-20 1998-12-02 Sumitomo Chem Co Ltd アルミニウム化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
EP0906920A1 (de) * 1997-10-02 1999-04-07 Elf Atochem S.A. Fester Aktivierungsträger für die Metallocenkatalysatoren in der Olefinpolymerisation, Herstellungsverfahren, Katalysatorsystem und entsprechendes Polymerisationsverfahren
EP0950670A2 (de) * 1998-04-17 1999-10-20 Bayer Inc. Verfahren zur Polymerisation von Olefin und Katalysatorsystem dafür

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ISHIHARA, KAZUAKI ET AL: "Reductive cleavage of chiral acetals using a new aluminum catalyst", SYNLETT (1993), (2), 127-9, XP000930003 *
NOETH, HEINRICH ET AL: "Alkoxyalanes and alkoxyaluminum borohydrides", Z. ANORG. ALLG. CHEM. (1968), 358(1-2), 44-66, XP002048656 *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10 30 November 1995 (1995-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11 28 November 1997 (1997-11-28) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090112A1 (de) * 2000-05-24 2001-11-29 Basell Polyolefine Gmbh Als cokatalysator geeignete chemische produkte, verfahren zu ihrer herstellung und ihre verwendung in katalysatorsystemen zur herstellung von polyolefinen
US7034173B2 (en) 2000-05-24 2006-04-25 Basell Polyolefine Gmbh Chemical products suited for use as co-catalysts, method for the preparation thereof and their use in catalyst systems for producing polyolefins
US7618912B2 (en) 2002-07-15 2009-11-17 Basell Polyolefine Gmbh Preparation of supported catalyst systems
FR2986717A1 (fr) * 2012-02-10 2013-08-16 IFP Energies Nouvelles Composition catalytique et procede d'oligomerisation des olefines utilisant ladite composition catalytique
US9050590B2 (en) 2012-02-10 2015-06-09 IFP Energies Nouvelles Catalytic composition and process for oligomerization of olefins using said catalytic composition

Also Published As

Publication number Publication date
EP1175424A1 (de) 2002-01-30
JP2002543082A (ja) 2002-12-17
DE19917984A1 (de) 2000-11-09
AU4118100A (en) 2000-11-10

Similar Documents

Publication Publication Date Title
EP1175262B1 (de) Katalysatorsystem
EP1250363B1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
EP1280600B1 (de) Geträgertes katalysatorsystem enthaltend ein metallocen, eine lewis-base und eine elementorganische verbindung der iii. hauptgruppe, sowie dessen verwendung
EP1023334B1 (de) Katalysatorsystem
EP1053263B1 (de) Katalysatorsystem
EP1042371B1 (de) Geträgertes katalysatorsystem zur polymerisation von olefinen
EP1290002B1 (de) Als cokatalysator geeignete chemische produkte, verfahren zu ihrer herstellung und ihre verwendung in katalysator-systemen zur herstellung von polyolefinen
EP1003753A1 (de) Bor und aluminium enthaltende verbindungen
DE19622207A1 (de) Chemische Verbindung
EP1272532B1 (de) Salzartige chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
WO1999061488A1 (de) Katalysatorsystem
WO2000064906A1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen
EP1084159B1 (de) Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
WO2000020466A9 (de) Katalysatorsystem
DE19632557A1 (de) Chemische Verbindung
WO2000018773A1 (de) Chemische verbindung
DE19632558A1 (de) Geträgerte chemische Verbindung
DE19845240A1 (de) Katalysatorsystem
DE19647070A1 (de) Geträgerte chemische Verbindung
DE19817725A1 (de) Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten
DE19817726A1 (de) Katalysatorsystem mit Metallocenen mit fluorhaltigen Substituenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000920700

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 614257

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10030299

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000920700

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000920700

Country of ref document: EP