EP1042371B1 - Geträgertes katalysatorsystem zur polymerisation von olefinen - Google Patents

Geträgertes katalysatorsystem zur polymerisation von olefinen Download PDF

Info

Publication number
EP1042371B1
EP1042371B1 EP98965805A EP98965805A EP1042371B1 EP 1042371 B1 EP1042371 B1 EP 1042371B1 EP 98965805 A EP98965805 A EP 98965805A EP 98965805 A EP98965805 A EP 98965805A EP 1042371 B1 EP1042371 B1 EP 1042371B1
Authority
EP
European Patent Office
Prior art keywords
indenyl
phenyl
methyl
butyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98965805A
Other languages
English (en)
French (fr)
Other versions
EP1042371A1 (de
Inventor
Cornelia Fritze
Hans Bohnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Polyolefine GmbH filed Critical Basell Polyolefine GmbH
Publication of EP1042371A1 publication Critical patent/EP1042371A1/de
Application granted granted Critical
Publication of EP1042371B1 publication Critical patent/EP1042371B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a supported catalyst system obtainable from at least one metallocene, a cocatalyst, a support, a Lewis base and an organometallic compound.
  • the catalyst system can advantageously Polymerization of olefins can be used. This will focus on use of aluminoxanes such as methylaluminoxane (MAO) as a cocatalyst and nevertheless achieved high catalyst activity and good polymer morphology.
  • MAO methylaluminoxane
  • MAO as an effective cocatalyst has the disadvantage of having to be used in a large excess.
  • the representation of cationic alkyl complexes opens the way to MAO-free catalysts with comparable activity, whereby the co-catalyst can be used almost stoichiometrically.
  • the synthesis of "cation-like" metallocene polymerization catalysts is described in J. Am. Chem. Soc. 1991, 113, 3623.
  • a process for the preparation of salts of the general form LMX + XA - according to the principle described above is claimed in EP 520 732.
  • EP 558158 describes zwitterionic catalyst systems which are prepared from metallocene dialkyl compounds and salts of the form [R 3 NH] + [B (C 6 H 5 ) 4 ] - .
  • the reaction of such a salt with, for example, Cp 2 ZrMe 2 provides an intermediate zirconocenemethyl cation by protolysis with elimination of methane. This reacts via CH activation to the zwitterion Cp 2 Zr + - (mC 6 H 4 ) -BPh 3 -.
  • the Zr atom is covalently bound to a carbon atom of the phenyl ring and is stabilized via agostic hydrogen bonds.
  • the Support for cationic metallocene catalysts based on borate anions is described in WO 91/09882.
  • the catalyst system is through Application of a dialkyl metallocene compound and a Bronsted acid quaternary Ammonium compound with a noncoordinating anion like Tetrakispentafluorophenylborate formed on an inorganic support.
  • the Carrier material is previously reacted with a trialkyl aluminum compound.
  • the disadvantage of this carrier method is that only a small part of the one used Metallocens is fixed to the carrier material by physisorption. When dosing the catalyst system in the reactor, the metallocene can easily from the Carrier surface are detached. This leads to a partially homogeneous ongoing polymerization, resulting in an unsatisfactory morphology of the polymer has the consequence.
  • WO 96/04319 describes a catalyst system in which the Cocatalyst is covalently bound to the support material. This However, catalyst system has low polymerization activity, moreover can the high sensitivity of the supported cationic metallocene catalysts problems with the introduction into the polymerization system to lead.
  • WO 97/19959 discloses supported catalyst systems in which ionic Activator compounds via reactive surface hydroxyl groups inorganic oxide are bound as a carrier.
  • the task was to provide a supported catalyst system provide, which avoids the disadvantages of the prior art and still high polymerization activities and good polymer morphology guaranteed.
  • the present invention thus relates to a supported catalyst system and a Process for its production.
  • the catalyst system according to the invention is obtainable by a) reaction of a Lewis base of the formula I and one Organometallic compound of formula II as a cocatalyst with a support and b) subsequent reaction of the reaction product obtained in step a) (modified carrier material) with a solution or suspension containing one Metallocene compound and at least one organometallic compound of the formula III, the organometallic compound of the formula II covalently attached to the support is bound.
  • reaction product can optionally be introduced into the reactor be made or carried out only in the reactor.
  • a process for producing an olefin polymer can also be an advantage.
  • the carrier is a porous inorganic or organic solid.
  • the carrier preferably contains at least one inorganic oxide, such as silicon oxide, aluminum oxide, aluminosilicates, zeolites, MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, ThO 2 , Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ) 2 , Al (NO 3 ) 3 , Na 2 O, K 2 O or Li 2 O, in particular Silicon oxide and / or aluminum oxide.
  • inorganic oxide such as silicon oxide, aluminum oxide, aluminosilicates, zeolites, MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, ThO 2 , Na 2 CO 3 , K 2 CO 3 , CaCO 3 , M
  • the carrier can also contain at least one polymer, for example a homo- or copolymer, a crosslinked polymer or polymer blends.
  • polymers are polyethylene, polypropylene, polybutene, polystyrene, polystyrene crosslinked with divinylbenzene, polyvinyl chloride, acrylic-butadiene-styrene copolymer, polyamide, polymethacrylate, polycarbonate, polyester, polyacetal or polyvinyl alcohol.
  • the carrier has a specific surface area in the range from 10 to 1000 m 2 / g, preferably from 150 to 500 m 2 / g.
  • the average particle size of the carrier is 1 to 500 ⁇ m, preferably 5 to 350 ⁇ m.
  • the carrier is preferably porous with a pore volume of the carrier of 0.5 to 4.0 ml / g, preferably 1.0 to 3.5 ml / g.
  • a porous carrier has a certain proportion cavities (pore volume).
  • the shape of the pores is usually irregular, often spherical. The pores can pass through small pore openings be connected.
  • the pore diameter is preferably approximately 2 to 50 nm.
  • the particle shape of the porous support can be irregular or spherical his.
  • the particle size of the carrier can e.g. B. by cryogenic grinding and / or Sieving can be set arbitrarily.
  • the Lewis base corresponds to the general formula 1, in which M 2 R 3 R 4 R 5 R 3 , R 4 and R 5 are identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 20 alkyl, C 6 -C 40 aryl, C 7 -C 40 alkylaryl or C 7 - C 40 arylalkyl group.
  • either two radicals or all three radicals R 3 , R 4 and R 5 can be connected to one another via C 2 -C 20 carbon units.
  • M 2 is an element of the 5th main group of the Periodic Table of the Elements, in particular nitrogen or phosphorus.
  • the organometallic compounds of the formula II are strong, neutral Lewis acids M 3 R 6 R 7 R 8 wherein M 3 is an element of III.
  • Main group of the Periodic Table of the Elements is, preferably boron and aluminum and R 6 , R 7 and R 8 may be the same or different and a hydrogen atom, a halogen atom or a C 1 -C 40 -halogen-containing group, such as C 1 -C 40 -halogenoalkyl, C 6 -C 40 -halogen- Aryl, C 7 -C 40 halo-alkyl-aryl or C 7 -C 40 halo-aryl-alkyl group, where at least one of the radicals R 6 , R 7 and R 8 is a C 1 -C 40 is a halogen-containing group.
  • organometallic compounds of the formula II are trispentafluorophenylborane and trispentafluorophenylalane.
  • the organometallic compounds of the formula III are neutral Lewis acids, in which [M 4 R 9 j ] k M 4 is an element of I., II. And III. Main group of the Periodic Table of the Elements is.
  • the elements magnesium and aluminum are preferred. Aluminum is particularly preferred.
  • the radicals R 9 can be identical or different and are a hydrogen atom, a halogen atom, a C 1 -C 40 hydrocarbon group such as a C 1 -C 20 alkyl, C 6 -C 40 aryl, C 7 - C 40 aryl alkyl or C 7 -C 40 alkyl aryl group.
  • j is an integer from 1 to 3 and k is an integer from 1 to 4.
  • organometallic compounds of the formula III are trimethylaluminum triethylaluminum triisopropyl trihexylaluminum trioctyl Tri-n-butyl Tri-n-propyl Triisoprenaluminium dimethylaluminum diethylaluminum diisobutylaluminum monochloride methylalulminum ethylaluminum dimethylaluminum Diethytaluminiumhydrid diisopropyl Dimethylaluminum (trimethylsiloxide) Dimethylaluminum (triethylsiloxid) Phenylalan Pentafluorphenylalan o-Tolylalan.
  • Metallocene compounds can e.g. bridged or unbridged Biscyclopentadienyl complexes, e.g. in EP 129 368, EP 561 479, EP 545 304 and EP 576 970 are described, monocyclopentadienyl complexes such as bridged amidocyclopentadienyl complexes which e.g. in EP 416 815 are multinuclear cyclopentadienyl complexes as described in EP 632 063, ligand substituted tetrahydropentalenes as described in EP 659 758 or ligand substituted tetrahydroindenes as described in EP 661 300.
  • bridged or unbridged Biscyclopentadienyl complexes e.g. in EP 129 368, EP 561 479, EP 545 304 and EP 576 970 are described, monocyclopentadienyl complexes such as bridged amidocyclopentadienyl complexe
  • Organometallic compounds can also be used in which the complexing ligand contains no cyclopentadienyl ligand. Examples of this are diamine complexes of III. and IV. Subgroup of the Periodic Table of the Elements, as described, for example, in DH McConville, et al., Macromolecules, 1996, 29, 5241 and DH McConville, et al., J. Am. Chem. So., 1996, 118, 10008. In addition, diimine complexes of subgroup VIII of the Periodic Table of the Elements (eg Ni 2+ or Pd 2+ complexes), as described by Brookhart et al., J. Am. Chem. So.
  • Z is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge.
  • Z can also form a mono- or polycyclic ring system with one or more radicals R 'and / or R ".
  • Chiral bridged metallocene compounds of the formula IV are preferred, in particular those in which one or both cyclopentadienyl rings are substituted so that they represent an indenyl ring.
  • the indenyl ring is preferably substituted, in particular in the 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 or 2,4,5,6-position, with C 1 -C 20 carbon-containing groups, such as C 1 -C 10 alkyl or C 6 -C 20 aryl, where two or more substituents of the indenyl ring can together form a ring system.
  • corresponding zirconium dimethyl compounds and the corresponding zirconium- 4- butadiene compounds are also preferred, as well as the corresponding compounds with 1,2- (1-methyl-ethanediyl) -, 1,2- (1,1-dimethyl-ethanediyl) ) - and 1,2- (1,2-dimethyl-ethanediyl) bridge.
  • the carrier material is used to produce the catalyst system according to the invention suspended in an organic solvent.
  • Suitable solvents are aromatic or aliphatic solvents such as hexane, heptane, dodecane, toluene or xylene or halogenated hydrocarbons, such as methylene chloride or halogenated aromatic hydrocarbons, such as o-dichlorobenzene.
  • the carrier can previously with an organometallic compound Formula III are pretreated. Then one or more Lewis bases of formula I added to this suspension, the reaction time between 1 Minute and 48 hours, a reaction time of 10 minutes is preferred and 2 hours.
  • the reaction solution can be isolated and then resuspended be or also directly with an organometallic compound of the formula II are implemented.
  • the response time is between 1 minute and 48 hours, a reaction time of 10 minutes and 2 hours is preferred.
  • the catalyst system according to the invention can have one or more Lewis bases of formula I in any stoichiometric ratio with or several organometallic compounds of the formula II are implemented.
  • Prefers is the amount of 1 to 4 equivalents of a Lewis base of formula I with one equivalent to an organometallic compound of the formula II. Particularly preferred the amount of one equivalent of a Lewis base of formula I with one equivalent an organometallic compound of formula II.
  • the reaction product of this Implementation is a metallocenium-forming compound that is covalent to the Carrier material is fixed. It is subsequently called a modified carrier material designated. The reaction solution is then filtered and with one of the above mentioned solvents washed. Then the modified carrier material in the Vacuum dried.
  • the reaction of the mixture of one or more metallocene compounds of the formula IV and one or more organometallic compounds of the formula III with the modified carrier material preferably takes place in such a way that one or more metallocene compounds of the formula IV is dissolved or suspended in a solvent described above and then one or several organometallic compounds of the formula III, which are preferably also dissolved or suspended, are reacted.
  • the stoichiometric ratio of metallocene compound of the formula IV and an organometallic compound of the formula III is 100 1 to 10 -4 : 1.
  • the ratio is preferably 1: 1 to 10 -2 : 1.
  • the modified carrier material can be reacted with a mixture of a metallocene compound of the formula IV and an organometallic compound of the formula III either directly in the polymerization reactor or before being added to the polymerization reactor in a reaction vessel.
  • the addition of an organometallic compound of the formula III has a positive influence on the activity of the catalyst system.
  • Polymerization catalysts consisting of a modified carrier material as described above and a metallocene compound, for example of the formula IV, show significantly lower activities compared to the catalyst system according to the invention which contains a mixture of the modified carrier material described above, a metallocene compound of the formula IV and an organometallic compound of the formula III.
  • the amount of modified carrier to a metallocene compound of formula IV is preferably 10 g: 1 ⁇ mol to 10 -3 : 1 ⁇ mol.
  • the stoichiometric ratio of metallocene compound of the formula IV to the organometallic compound of the formula II fixed on the support is 100: 1 to 10 -4 : 1, preferably 1: 1 to 10 -2 : 1.
  • the supported catalyst system can be used directly for the polymerization. However, it can also be resuspended for polymerization after removal of the solvent be used.
  • the advantage of this activation method is that it Option offers, the polymerization-active catalyst system only in the reactor let develop. This prevents that when the air-sensitive catalyst, some decomposition occurs.
  • a process for producing an olefin polymer is carried out Polymerization of one or more olefins in the presence of the invention Described catalyst system.
  • the polymerization can be a homo- or a Be copolymerization.
  • olefins examples include 1-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, styrene, cyclic olefins such as norbornene, vinylnorbornene, tetracyclododecene, ethylidene norbornene, dienes such as 1, 3-butadiene or 1,4-hexadiene, biscyclopentadiene or methyl methacrylate.
  • 1-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, styrene, cyclic olefins such as norbornene, vinylnorbornene, tetracyclododecene, ethylidene norbornene, dienes such as 1, 3-butadiene or 1,4-hexadiene
  • propylene or ethylene are homopolymerized, ethylene is copolymerized with one or more C 3 -C 20 -1-olefins, in particular propylene, and / or one or more C 4 -C 20 -dienes, in particular 1,3-butadiene, or norbornene and Ethylene copolymerized.
  • the polymerization is preferably carried out at a temperature of from -60 to 300.degree. C., particularly preferably from 30 to 250.degree.
  • the pressure is 0.5 to 2500 bar, preferably 2 to 1500 bar.
  • the polymerization can be carried out continuously or batchwise, in one or more stages, in solution, in suspension, in the gas phase or in a supercritical medium.
  • the supported catalyst system can either be formed directly in the polymerization system or it can be resuspended as a powder or solvent, and metered into the polymerization system as a suspension in an inert suspension medium.
  • olefin polymers with a broad molecular weight distribution preferably uses catalyst systems that are two or more different Transition metal compounds, e.g. B. contain metallocenes.
  • an aluminum alkyl for example trimethyl aluminum, triethyl aluminum or Triisobutyl aluminum advantageous. This cleaning can be done both in Polymerization system itself or the olefin is added to the Polymerization system contacted with the Al compound and then separated again.
  • the total pressure in the polymerization system is 0.5 to 2500 bar, preferably 2 to 1500 bar.
  • the compound according to the invention is used in a concentration, based on the transition metal, of preferably 10 -3 to 10 -8 , preferably 10 -4 to 10 -7 mol, transition metal per dm 3 solvent or per dm 3 reactor volume.
  • Suitable solvents for the preparation of both the supported chemical compound according to the invention and the catalyst system according to the invention are aliphatic or aromatic solvents such as hexane or toluene, ethereal solvents such as tetrahydrofuran or diethyl ether or halogenated hydrocarbons such as methylene chloride or halogenated aromatic hydrocarbons such as o- dichlorobenzene.
  • another alkyl aluminum compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum or isoprenyl aluminum
  • another alkyl aluminum compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum or isoprenyl aluminum
  • This is added to the polymerization system in a concentration of 100 to 0.01 mmol AI per kg reactor content.
  • Triisobutylaluminum and triethylaluminum are preferably used in a concentration of 200 to 0.001 mmol AI per kg reactor content.
  • the molar Al / M ratio can be chosen to be small in the synthesis of a supported catalyst system.
  • an additive such as an antistatic can be used in the process according to the invention, for example to improve the grain morphology of the olefin polymer.
  • antistatic agents that are suitable for the polymerization can be used. Examples of these are salt mixtures of calcium salts of medialanic acid and chromium salts of N-stearylanthranilic acid, which are described in DE-A-3543360.
  • suitable antistatic agents are, for example, C 12 to C 22 fatty acid soaps of alkali or alkaline earth metals, salts of sulfonic acid esters, esters of polyethylene glycols with fatty acids, polyoxyethylene alkyl ethers, etc. An overview of antistatic agents is given in EP-A 107127.
  • a mixture of a metal salt can be used as an antistatic Medialanklare, a metal salt of anthranilic acid and a polyamine used as described in EP-A 636636.
  • the antistatic is preferably used as a solution, in the preferred case of Stadis® 450 preferably 1 to 50% by weight of this solution, preferably 5 to 25% by weight, based on the mass of the supported catalyst used (support with covalently fixed metallocenium-forming compound and one or more metallocene compounds, for example of the formula IV), are used.
  • the required amounts of antistatic can vary widely.
  • the actual polymerization is preferably carried out in liquid monomer (bulk) or in the gas phase.
  • the antistatic can be metered in at any time for the polymerization become.
  • a preferred practice is that the supported Catalyst system in an organic solvent, preferably alkanes such as heptane or isododecane, is resuspended. Then it is stirred into the Polymerization autoclave added. Then the antistatic is added. The Polymerization is carried out at temperatures in the range from 0 to 100 ° C.
  • a another preferred procedure is that the antistatic before adding the supported catalyst system is metered into the polymerization autoclave. The resuspended supported catalyst system is then stirred metered in at temperatures in the range from 0 to 100 / C.
  • the polymerization time can range from 00.1 to 24 hours.
  • a polymerization time is preferred Range from 0.1 to 5 hours.
  • a dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene. Then 4 cm 3 of a 20% triisobutyl aluminum solution in Varsol diluted with 30 cm 3 of heptane were added to the reactor and the mixture was stirred at 30 ° C. for 15 minutes. The catalyst from Example 2 was then resuspended in heptane and this suspension was added to the reactor. The reaction mixture was heated to the polymerization temperature of 65 ° C. (4 ° C./min) and the polymerization system was kept at 65 ° C. for 1 hour by cooling. The polymerization was stopped by venting the remaining propylene. The polymer was dried in a vacuum drying cabinet.
  • the result is 1.1 kg of polypropylene powder.
  • the reactor showed no deposits Inner wall or stirrer.
  • the catalyst activity was 132 kg PP / g metallocene x h.
  • a dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene.
  • the result is 0.33 kg of polypropylene powder.
  • the reactor showed no deposits Inner wall or stirrer.
  • the catalyst activity was 40 kg PP / g metallocene x h.
  • a dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene.
  • the result is 1.0 kg of polypropylene powder.
  • the reactor showed no deposits Inner wall or stirrer.
  • the catalyst activity was 118 kg PP / g metallocene x h.

Description

Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem, erhältlich aus mindestens einem Metallocen, einem Co-Katalysator, einem Träger, einer Lewis-Base und einer Organometallverbindung. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden. Hierbei wird auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO) als Cokatalysator verzichtet und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt.
Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H.H. Brintzinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283).
MAO als wirksamer Co-Katalysator hat den Nachteil, in hohem Überschuß eingesetzt werden zu müssen. Die Darstellung katonischer Alkylkomplexe eröffnet den Weg MAO freier Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchiometrisch eingesetzt werden kann.
Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991, 113, 3623 beschrieben. Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX+XA- nach dem oben beschriebenen Prinzip wird in EP 520 732 beansprucht.
EP 558158 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form [R3NH]+[B(C6H5)4]- dargestellt werden. Die Umsetzung eines solchen Salzes mit z.B. Cp2ZrMe2 liefert durch Protolyse unter Methanabspaltung intermediär ein Zirkonocenmethyl-Kation. Dieses reagiert über C-H-Aktivierung zum Zwitterion Cp2Zr+-(m-C6H4)-BPh3- ab. Das Zr-Atom ist dabei kovalent an ein Kohlenstoffatom des Phenylrings gebunden und wird über agostische Wasserstoffbindungen stabilisiert.
US 5, 348, 299 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form [R3NH]+[B(C6H5)4] durch Protolyse dargestellt werden. Die C-H-Aktivierung als Folgereaktion unterbleibt dabei. EP 426 637 beschreibt ein Verfahren in dem das Lewis-saure CPh3 + Kation zur Abstraktion der Methylgruppe vom Metallzentrum eingesetzt wird. Als schwach koordinierendes Anion fungiert ebenfalls B(C6F5)4-.
Für eine industrielle Nutzung von Metallocen-Katalysatoren ist eine Trägerung vorteilhaft, um die Morphologie des resultierenden Polymers zu beeinflussen. Die Trägerung von kationischen Metallocen-Katalysatoren auf Basis von Borat-Anionen ist in WO 91/09882 beschrieben. Dabei wird das Katalysatorsystem durch Aufbringen einer Dialkylmetallocen-Verbindung und einer Brönsted-sauren quartären Ammonium Verbindung mit einem nichtkoordinierenden Anion wie Tetrakispentafluorphenylborat auf einem anorganischen Träger gebildet. Das Trägermaterial wird zuvor mit einer Trialkylaluminium-Verbindung umgesetzt.
Nachteil dieses Trägerungsverfahren ist, daß nur ein geringer Teil des eingesetzten Metallocens durch Physisorption an dem Trägermaterial fixiert ist. Bei der Dosierung des Katalysatorsystems in den Reaktor kann das Metallocen leicht von der Trägeroberfläche abgelöst werden. Dies führt zu einer teilweise homogen verlaufenden Polymerisation, was eine unbefriedigende Morphologie des Polymers zur Folge hat.
In WO 96/04319 wird ein Katalysatorsystem beschrieben, in welchem der Cokatalysator kovalent an das Trägermaterial gebunden ist. Dieses Katalysatorsystem weist jedoch eine geringe Polymerisationsaktivität auf, zudem kann die hohe Empfindlichkeit der geträgerten kationischen Metallocen-Katalysatoren zu Problemen bei der Einschleusung in das Polymerisationssystem führen.
WO 97/19959 offenbart geträgerte Katalysatorsysteme, in denen ionische Aktivatorverbindungen über reaktive Oberflächen-Hydroxylgruppen an ein anorganisches Oxid als Träger gebunden sind.
Die Aufgabe bestand darin ein geträgertes Katalysatorsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymerisationsaktivitäten und eine gute Polymermorphologie garantiert. Zudem bestand die Aufgabe, ein Verfahren zur Herstellung eines Katalysatorsystems zu entwickeln, das es ermöglicht die Aktivierung des Katalysatorsystems wahlweise vor dem Einschleusen oder aber erst im Polymerisationssystem durchzuführen.
Die vorliegende Erfindung betrifft somit ein geträgertes Katalysatorsystem und ein Verfahren zu dessen Herstellung. Das erfindungsgemäße Katalysatorsystem ist erhältlich durch a) Umsetzung einer Lewis-Base der Formel I und einer Organometallverbindung der Formel II als Cokatalysator mit einem Träger und b) anschließende Umsetzung des in Schritt a) erhaltenen Reaktionsproduktes (modifiziertes Trägermaterial) mit einer Lösung oder Suspension, enthaltend eine Metallocen-Verbindung und mindestens eine Organometall-Verbindung der Formel III, wobei die Organometallverbindung der Formel II kovalent an den Träger gebunden ist.
Die Aktivierung des Metallocens durch Umsetzung mit dem in Schritt a) erhaltenen Reaktionsprodukt kann wahlweise vor dem Einschleusen in den Reaktor vorgenommen werden oder aber erst im Reaktor durchgeführt werden. Ferner wird ein Verfahren zur Herstellung eines Olefinpolymers beschrieben. Die Zugabe eines Additivs, z.B. Antistatikums, welches zum Polymerisationssystem zudosiert wird, kann zusätzlich von Vorteil sein.
Der Träger ist ein poröser anorganischer oder organischer Feststoff. Bevorzugt enthält der Träger mindestens ein anorganisches Oxid, wie Siliziumoxid, Aluminiumoxid, Aluminosilicate, Zeolithe, MgO, ZrO2, TiO2, B2O3, CaO, ZnO, ThO2, Na2CO3, K2CO3, CaCO3, MgCO3, Na2SO4, Al2(SO4)3, BaSO4, KNO3, Mg(NO3)2, Al(NO3)3, Na2O, K2O oder Li2O, insbesondere Siliziumoxid und/oder Aluminiumoxid. Der Träger kann auch mindestens ein Polymer enthalten, z.B. ein Homo- oder Copolymer, ein vernetztes Polymer oder Polymerblends. Beispiele für Polymere sind Polyethylen, Polypropylen, Polybuten, Polystyrol, mit Divinylbenzol vernetztes Polystyrol, Polyvinylchlorid, Acryl-Butadien-Styrol-Copolymer, Polyamid, Polymethacrylat, Polycarbonat, Polyester, Polyacetal oder Polyvinylalkohol.
Der Träger weist eine spezifische Oberfläche im Bereich von 10 bis 1 000 m2/g, bevorzugt von 150 bis 500 m2/g auf. Die mittlere Partikelgröße des Trägers beträgt 1 bis 500 µm, bevorzugt 5 bis 350 µm.
Bevorzugt ist der Träger porös mit einem Porenvolumen des Trägers von 0,5 bis 4,0 ml/g, bevorzugt 1,0 bis 3,5 ml/g. Ein poröser Träger weist einen gewissen Anteil an Hohlräumen (Porenvolumen) auf. Die Form der Poren ist meist unregelmäßig, häufig sphärisch ausgebildet. Die Poren können durch kleine Porenöffnungen miteinander verbunden sein. Der Porendurchmesser beträgt vorzugsweise etwa 2 bis 50 nm. Die Partikelform des porösen Trägers kann irregulär oder sphärisch sein. Die Teilchengröße des Trägers kann z. B. durch kryogene Mahlung und/oder Siebung beliebig eingestellt werden.
Die Lewis-Base entspricht der allgemeinen Formel 1, worin M2R3R4R5 R3, R4 und R5 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1-C20-Alkyl-, C6-C40-Aryl-, C7-C40-Alkylaryl- oder C7-C40-Arylalkyl-Gruppe bedeuten. Außerdem können entweder zwei Reste oder alle drei Reste R3, R4 und R5 über C2-C20-Kohlenstoffeinheiten miteinander verbunden sein. M2 ist ein Element der V. Hauptgruppe des Periodensystems der Elemente, insbesondere Stickstoff oder Phosphor.
Beispiele für Verbindungen der Formel I sind:
  • Triethylamin
  • Triisopropylamin
  • Triisobutylamin
  • Tri(n-butyl)amin
  • N,N-Dimethylanilin
  • N,N-Diethylanilin
  • N, N-2,4,6-Pentamethylanilin
  • Dicyclohexylamin
  • Pyridin
  • Pyrazin
  • Triphenylphosphin
  • Tri (methylphenyl)phosphin
  • Tri (dimethylphenyl)phosphin.
  • Bei den Organometall-Verbindungen der Formel II handelt es sich um starke, neutrale Lewissäuren M3R6R7R8 worin
    M3 ein Element der III. Hauptgruppe des Periodensystems der Elemente ist, bevorzugt Bor und Aluminium und
    R6, R7 und R8 gleich oder verschieden sein kann und ein Wasserstoffatom, ein Halogenatom oder eine C1-C40-halogenhaltige Gruppe, wie C1-C40-Halogen-Alkyl-, C6-C40-Halogen-Aryl-, C7-C40-Halogen-Alkyl-Aryl- oder C7-C40-Halogen-Aryl-Alkyl-Gruppe bedeuten, wobei mindestens einer der Reste R6, R7 und R8 eine C1-C40-halogenhaltige Gruppe ist.
    Beispiele für bevorzugte Organometall-Verbindungen der Formel II sind Trispentafluorphenylboran und Trispentafluorphenylalan.
    Bei den Organometallverbindungen der Formel III handelt es sich um neutrale Lewissäuren, worin [M4R9j]k M4 ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist. Bevorzugt sind dabei die Elemente Magnesium und Aluminium. Besonders bevorzugt ist Aluminium.
    Die Reste R9 können gleich oder verschieden sein und sind ein Wasserstoffatom, ein Halogenatom, eine C1-C40-Kohlenwasserstoff-Gruppe wie eine C1-C20-Alkyl-, C6-C40-Aryl-, C7-C40-Aryl-alkyl oder C7-C40-Alkyl-aryl-Gruppe.
    j ist eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4.
    Beispiele für bevorzugte Organometall-Verbindungen der Formel III sind
    Trimethylaluminium
    Triethylaluminium
    Triisopropylaluminium
    Trihexylaluminium
    Trioctylaluminium
    Tri-n-butylaluminium
    Tri-n-propylaluminium
    Triisoprenaluminium
    Dimethylaluminiummonochlorid
    Diethylaluminiummonochlorid
    Diisobutylaluminiummonochlorid
    Methylaluminiumsesquichlorid
    Ethylaluminiumsesquichlorid
    Dimethylaluminiumhydrid
    Diethytaluminiumhydrid
    Diisopropylaluminiumhydrid
    Dimethylaluminium(trimethylsiloxid)
    Dimethylaluminium(triethylsiloxid)
    Phenylalan
    Pentafluorphenylalan
    o-Tolylalan.
    Metallocenverbindungen können z.B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie z.B. in EP 129 368, EP 561 479, EP 545 304 und EP 576 970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die z.B. in EP 416 815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie in EP 632 063 beschreiben,-Ligand substituierte Tetrahydropentalene wie in EP 659 758 beschrieben oder-Ligand substituierte Tetrahydroindene wie in EP 661 300 beschrieben.
    Außerdem können Organometallverbindungen eingesetzt werden, in denen der komplexierende Ligand kein Cyclopentadienyl-Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. und IV. Nebengruppe des Periodensystems der Elemente, wie sie z.B. bei D.H. McConville, et al., Macromolecules, 1996, 29, 5241 und D.H. McConville, et al., J. Am. Chem. So., 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni2+ oder Pd2+ Komplexe), wie sie bei Brookhart et al., J. Am. Chem. So. 1995, 117, 6414 und, Brookhart et al., J. Am. Chem. So., 1996, 118, 267 beschrieben werden, eingesetzt weden. Ferner lassen sich 2,6-bis(imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co2+ oder Fe2+ Komplexe), wie sie bei Brookhart et al., J. Am. Chem. So. 1998, 120, 4049 und Gibson et al., Chem. Commun. 1998, 849 beschrieben werden, einsetzen.
    Die Metallocenverbindungen sind verbrückte Verbindungen der Formel IV,
    Figure 00080001
    worin
    M1
    ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf,
    R'
    gleich oder verschieden sind und ein Wasserstoffatom oder SiRx 3 sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe wie C1-C20-Alkyl, C1-C10-Fluoralkyl, C1-C10-Alkoxyl C6-C20-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R' sind eine C1-C30-kohlenstoffhaltige Gruppe wie C1-C25-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges C1-C25-Alkyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder C1-C12-Alkoxy ist, oder zwei oder mehrere Reste R' können so miteinander verbunden sein, daß die Reste R' und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
    R"
    gleich oder verschieden sind und ein Wasserstoffatom oder SiR x 3 sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe wie C1-C20-Alkyl, C1-C10-Fluoralkyl, C1-C10-Alkoxy, C6-C14-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R" sind eine C1-C30-kohlenstoffhaltige Gruppe wie C1-C25-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24-Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges C1-C25-Alkyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder C1-C12-Alkoxy ist, oder zwei oder mehrere Reste R" können so miteinander verbunden sein, daß die Reste R" und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
    l
    gleich 4 ist,
    m
    gleich 4 ist,
    L1
    gleich oder verschieden sein können und ein Wasserstoffatom, ein Halogenatom, oder ORy, SRy, OSiRy 3, SiRy 3, PRy 2 oder NRy 2 bedeuten, worin Ry ein Halogenatom, eine C1-C10 Alkylgruppe, eine halogenierte C1-C10-Alkylgruppe, eine C6-C20 Arylgruppe oder eine halogenierte C6-C20 Arylgruppe sind, oder L1 sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,
    o
    eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
    Z
    ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und
    v
    ist 1.
    Beispiele für Z sind Gruppen M2RZRZ=, worin M2 Kohlenstoff, Silizium, Germanium oder Zinn ist und RZ und Rz= gleich oder verschieden eine C1-C20-kohlenwasserstoffhaltige Gruppe wie C1-C10-Alkyl, C6-C14-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist Z gleich CH2, CH2CH2, CH(CH3)CH2, CH(C4H9)C(CH3)2, C(CH3)2, (CH3)2Si, (CH3)2Ge. (CH3)2Sn, (C6H5)2Si, (C6H5)(CH3)Si, (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2,2'-(C6H4)2. Z kann auch mit einem oder mehreren Resten R' und/oder R" ein mono- oder polycyclisches Ringsystem bilden.
    Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel IV, insbesondere solche in denen einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit C1-C20-kohlenstoffhaltigen Gruppen, wie C1-C10-Alkyl oder C6-C20-Aryl, wobei auch zwei oder mehrere Substituenten des Indenylrings zusammen ein Ringsystem bilden können.
    Beispiele für Metallocenverbindungen sind:
  • Dimethylsilandiylbis(indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-acenaphth-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
  • Dimethyisilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid
  • Dimethylsjlandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichiorid
  • Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid
  • Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
  • 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
  • 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
  • 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
  • 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
  • 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
  • 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
  • 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
  • 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid
  • 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid
  • [4-(η5-Cyclopentadienyl)-4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dichlorozirconium
  • [4-(η5-3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dichlorozirconium
  • [4-(η5-3'-isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dichlorozirconium
  • [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
  • [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium
  • [4-(η5-Cyclopentadienyl)4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorohafnium
  • [4-(η5-3'-tert.Butyl-cyclopentadienyl)4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
  • 4-(η5-3'-Isopropylcyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
  • 4-(η5-3'-Methylcyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
  • 4-(η5-3'-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorotitan
  • 4-(η5-3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium
  • (Tertbutylamido)-(tetramethyl-η5-cyclopentadienyl)-dimethylsilyl-dichlorotitan
  • (Tertbutylamido)-(tetramethyl-η5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan
  • (Methylamido)-(tetramethyl-η5-cyclopentadienyl)-dimethylsilyl-dichlorotitan
  • (Methylamido)-(tetramethyl-η5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan
  • (Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan
  • Bis-(cyclopentadienyl)-zirkoniumdichlorid
  • Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid
  • Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid
  • Tetrachloro-[1-[bis(η5-1 H-inden-1-yliden)methylsilyl]-3-η5-cyclopenta-2,4-dien-1-yliden)-3-η5-9H-fluoren-9-yliden)butan]di-zirkonium
  • Tetrachloro-[2-[bis(η5-2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(η5-2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yliden)-5-(η5-9H-fluoren-9-yliden)hexan]dizirkonium
  • Tetrachloro-[1-[bis(η5-1H-inden-1-yliden)methylsilyl]-6-(η5-cyclopenta-2,4-dien-1-yliden)-6-(η5-9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium
  • Dimethylsilandiylbis(indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-methyl
  • Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdimethyl
  • Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl
  • 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
  • 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
  • 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
  • 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
  • 1 ,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
  • 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
  • 1,2-Ethandiylbis(2,4,7-trimethy(-indenyl)zirkoniumdimethyl
  • 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdimethyl
  • 1,4-Butandiylbis(2-methyl-indenyl)zirkomumdimethyl
  • [4-(η5-Cyclopentadienyl)4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dimethylzirconium
  • [4-(η5-3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dimethylzirconium
  • [4-(η5-3'-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η5-4,5-tetrahydropentalen)]-dimethylzirconium
  • [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dimethyltitan
  • [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dimethylzirkonium
  • [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dimethylhafnium
  • [4-(η5-3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dimethyltitan
  • 4-(η5-3'-Isopropylcyclopentadienyl)-4,7,7-trimethyl-(η5-4,5,6,7-tetrahydroindenyl)]-dimethyltitan
  • Dimethylsilandiylbis(2-methyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethyisilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdimethyl
  • Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethyisilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethyisilandlylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilanddiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexy(-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid)
  • Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
  • Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl
  • Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid
  • Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid
  • Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Ethylidenbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid
  • Ethylidenbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl
  • Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl
  • Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl
  • Ethylidenbis(2-n-propyl-4-phenyl)-indenyl)titandimethyl
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid)
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid)
  • Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid)
  • Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid
  • Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
  • Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid
  • Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid
  • Weiterhin bevorzugt sind die entsprechenden Zirkondimethyl-Verbindungen und die entsprechenden Zirkon-η4-Butadien-Verbindungen, sowie die entsprechenden Verbindungen mit 1,2-(1-methyl-ethandiyl)-,1,2-(1,1-dimethyl-ethandiyl)- und 1,2-(1,2-dimethyl-ethandiyl)-Brücke.
    Zur Herstellung des erfindungsgemäßen Katalysatorsystems wird das Trägermaterial in einem organischen Lösemittel suspendiert. Geeignete Lösemittel sind aromatische oder aliphatische Lösemittel, wie beispielsweise Hexan, Heptan, Dodecan, Toluol oder Xylol oder halogenierte Kohlenwasserstoffe, wie Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe, wie o-Dichlorbenzol. Der Träger kann zuvor mit einer Organometall-Verbindung der Formel III vorbehandelt werden. Anschließend wird eine oder mehrere Lewis-Basen der Formel I zu dieser Suspension gegeben, wobei die Reaktionszeit zwischen 1 Minute und 48 Stunden liegen kann, bevorzugt ist eine Reaktionszeit von 10 Minuten und 2 Stunden. Die Reaktionslösung kann isoliert und anschließend resuspendiert werden oder aber auch direkt weiter mit einer Organometall-Verbindung der Formel II umgesetzt werden. Die Reaktionszeit liegt zwischen 1 Minute und 48 Stunden, bevorzugt ist eine Reaktionszeit von 10 Minuten und 2 Stunden. Zur Herstellung des erfindungsgemäßen Katalysatorsystems kann die eine oder können mehrere Lewis-Basen der Formel I in jedem beliebigen stöchiometrischen Verhältnis mit einer oder mehreren Organometall-Verbindungen der Formel II umgesetzt werden. Bevorzugt ist die Menge von 1 bis 4 Äquivalenten einer Lewis-Base der Formel I mit einem äquivalent einer Organometall-Verbindung der Formel II. Besonders bevorzugt ist die Menge von einem Äquivalent einer Lewis-Base der Formel I mit einem Äquivalent einer Organometall-Verbindung der Formel II. Das Reaktionsprodukt dieser Umsetzung ist eine metalloceniumbildende Verbindung, die kovalent an das Trägermaterial fixiert ist. Es wird nachfolgend als modifiziertes Trägermaterial bezeichnet. Die Reaktionslösung wird anschließend filtriert und mit einem der oben genannten Lösemittel gewaschen. Danach wird das modifizierte Trägermaterial im Vakuum getrocknet.
    Die Umsetzung der Mischung einer oder mehrerer Metallocenverbindungen der Formel IV und einer oder mehrerer Organometallverbindungen der Formel III mit dem modifizierten Trägermaterial geht vorzugsweise so vonstatten, daß eine oder mehrere Metallocenverbindung der Formel IV in einem oben beschriebenen Lösemittel gelöst bzw. suspendiert wird und anschließend eine oder mehrere Organometall-Verbindungen der Formel III, die vorzugsweise ebenfalls gelöst bzw. suspendiert ist, umgesetzt werden. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel IV und einer Organometallverbindung der Formel III beträgt 100 1 bis 10-4: 1. Vorzugsweise beträgt das Verhältnis 1:1 bis 10-2:1.
    Das modifizierte Trägermaterial kann entweder direkt im Polymerisationsreaktor oder vor der Zugabe zum Polymerisationsreaktor in einem Reaktionsgefäß mit einer Mischung aus einer Metallocenverbindung der Formel IV und einer Organometallverbindung der Formel III umgesetzt werden. Die Zugabe einer Organometallverbindung der Formel III hat einen positiven Einflu8 auf die Aktivität des Katalysatorsystems. Polymerisationskatalysatoren bestehend aus einem wie oben beschriebenen modifizierten Trägermaterial und einer Metallocenverbindung z.B. der Formel IV zeigen deutlich niedrigere Aktivitäten verglichen mit dem erfindungsgemäßen Katalysatorsystem, das eine Mischung aus dem oben beschriebenen modifizierten Trägermaterial, einer Metallocenverbindung der Formel IV und einer Organometallverbindung der Formel III enthält.
    Die Menge an modifiziertem Träger zu einer Metallocenverbindung der Formel IV beträgt vorzugsweise 10 g : 1 µmol bis 10-3: 1 µmol. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel IV zu der auf dem Träger fixierten Organometallverbindung der Formel II beträgt 100: 1 bis 10-4 : 1, vorzugsweise 1: 1 bis 10-2: 1.
    Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden. Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisation eingesetzt werden. Der Vorteil dieser Aktivierungsmethode liegt darin, daß es die Option bietet, das polymerisationsaktive Katalysatorsystem erst im Reaktor entstehen zu lassen. Dadurch wird verhindert, daß beim Einschleusen des luftempfindlichen Katalysators zum Teil Zersetzung eintritt.
    Weiterhin wird ein Verfahren zur Herstellung eines Olefinpolymers durch Polymerisation eines oder mehrerer Olefine, in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.
    Bevorzugt werden Olefine der Formel Rα-CH=CH-Rβ polymerisiert, worin Rα und Rβ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure-oder Carbonsäureestergruppe substituiert sein kann, oder Rα und Rβ mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele für solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbornen, Diene wie 1,3-Butadien oder 1,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.
    Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C3-C20-1-Olefinen, insbesondere Propylen, und /oder einem oder mehreren C4-C20-Diene, insbesondere 1,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.
    Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300°C, besonders bevorzugt 30 bis 250°C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.
    Das geträgerte Katalysatorsystem kann entweder direkt im Polymerisationssystem gebildet werden oder es kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.
    Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z. B. Metallocene enthalten.
    Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.
    Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.
    Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10-3 bis 10-8, vorzugsweise 10-4 bis 10-7 mol Übergangsmetall pro dm3 Lösemittel bzw. pro dm3 Reaktorvolumen angewendet. Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel, wie beispielsweise Hexan oder Toluol, etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol.
    Vor Zugabe des erfindungsgemäßen Katalysatorsystems kann zusätzlich eine andere Alkylaluminiumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 100 bis 0,01 mmol AI pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt.
    Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 200 bis 0,001 mmol AI pro kg Reaktorinhalt eingesetzt. Dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M-Verhältnis klein gewählt werden.
    Weiterhin kann bei dem erfindungsgemäßen Verfahren ein Additiv wie ein Antistatikum verwendet werden z.B. zur Verbesserung der Kornmorphologie des Olefinpolymers. Generell können alle Antistatika, die für die Polymerisation geeignet sind, verwendet werden. Beispiele hierfür sind Salzgemische aus Calciumsalzen der Medialansäure und Chromsalze der N-Stearylanthranilsäure, die in DE-A-3543360 beschrieben werden. Weitere geeignete Antistatika sind z.B. C12- bis C22-Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonsäureestern, Ester von Polyethylenglycolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine Übersicht über Antistatika wird in EP-A 107127 angegeben.
    Außerdem kann als Antistatikum eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in EP-A 636636 beschrieben.
    Kommerziell erhältliche Produkte wie Stadis® 450 der Fa. DuPont, eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfonsäure, einem Polyamin, einem Copolymer aus Dec-1-en und SO2 sowie Dec-1-en oder ASA®-3 der Fa. Shell und ATMER® 163 der Firma ICI können ebenfalls verwendet werden.
    Vorzugsweise wird das Antistatikum als Lösung eingesetzt, im bevorzugten Fall von Stadis® 450 werden bevorzugt 1 bis 50 Gew.-% dieser Lösung, vorzugsweise 5 bis 25 Gew.-%, bezogen auf die Masse des eingesetzten Trägerkatalysators (Träger mit kovalent fixierter metalloceniumbildende Verbindung und eine oder mehrere Metallocenverbindungen z.B. der Formel IV) eingesetzt. Die benötigten Mengen an Antistatikum können jedoch, je nach Art des eingesetzten Antistatikums, in weiten Bereichen schwanken.
    Die eigentliche Polymerisation wird vorzugsweise in flüssigen Monomer (bulk) oder in der Gasphase durchgeführt.
    Das Antistatikum kann zu jedem beliebigen Zeitpunkt zur Polymerisation zudosiert werden. Zum Beispiel ist eine bevorzugte Verfahrensweise die, daß das geträgerte Katalysatorsystem in einem organischen Lösemittel, bevorzugt Alkane wie Heptan oder Isododekan, resuspendiert wird. Anschließend wird es unter Rühren in den Polymerisationsautoklav zugegeben. Danach wird das Antistatikum zudosiert. Die Polymerisation wird bei Temperaturen im Bereich von 0 bis 100°C durchgeführt. Eine weitere bevorzugte Verfahrensweise ist, daß das Antistatikum vor Zugabe des geträgerten Katalysatorsystems in den Polymerisationsautoklav zudosiert wird. Anschließend wird das resuspendierte geträgerte Katalysatorsystem unter Rühren bei Temperaturen im Bereich von 0 bis 100/C zudosiert. Die Polymerisationszeit kann im Bereich von 00.1 bis 24 Stunden. Bevorzugt ist eine Polymerisationszeit im Bereich von 0.1 bis 5 Stunden.
    Bei dem erfindungsgemäßen Verfahren treten keine Reaktorbeläge auf, es bilden sich keine Agglomerate und die Produktivität des eingesetzten Katalysatorsystems ist hoch. Die mit dem erfindungsgemäßen Verfahren hergestellten Polymere zeichnen sich durch eine enge Molekulargewichtsverteilung und gute Kornmorphologie aus.
    Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung haben jedoch keinen limitierenden Charakter.
    Beispiel 1 Darstellung modifizierter Träger
    5 g SiO2 (PQ MS 3030, vorbehandelt bei 140°C, 10 mbar, 10 h) wurden in 30 ml Toluol suspendiert. Dazu wurden 0,25 ml N,N-Dimethylanilin gegeben und die Reaktionsmischung 1 h gerührt. Danach wurde die Reaktionsmischung mit 1,02 g Tris(pentafluorophenyl)boran versetzt und eine Stunde gerührt. Die Reaktionsmischung wurde filtriert und dreimal mit Toluol gewaschen.
    Lösemittelreste wurden vom Rückstand im Ölpumpenvakuum entfernt.
    Beispiel 2 Darstellung des Katalysators A
    In 3 ml Toluol wurden 8,3 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdimethyl gelöst und mit 1 ml 20%iger Trimethylaluminiumlösung in Varsol versetzt. Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im Ölpumpenvakuum. Man erhielt 1,15 g eines freifließenden geträgerten Katalysators.
    Beispiel 3
    Polymerisation von Propen
    Ein trockener 16-dm3-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
    Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3 Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30°C 15 Minuten gerührt.
    Anschließend wurde der Katalysator aus Beispiel 2 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 65°C aufgeheizt (4°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 65°C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet.
    Es resultieren 1,1 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 132 kg PP/g Metallocen x h.
    Beispiel 4 Darstellung des Katalysators B
    3 ml Toluol wurden 8,3 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdimethyl.
    Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im Ölpumpenvakuum. Man erhielt 1,05 g eines freifließenden geträgerten Katalysators.
    Beispiel 5 Polymerisation von Propen
    Ein trockener 16-dm3 -Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
    Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3 Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30°C 15 Minuten gerührt.
    Anschließend wurde der Katalysator aus Beispiel 4 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 65°C aufgeheizt (40°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 65°C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet.
    Es resultieren 0,33 kg Polypropylen-Pulver, Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 40 kg PP/g Metallocen x h.
    Beispiel 6 Darstellung des Katalysators C
    3 ml Toluol wurden 9,1 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdichlorid gelöst und mit 1 ml 20%iger Trimethylaluminiumlösung in Varsol versetzt. Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im Ölpumpenvakuum. Man erhielt 1,16 g eines freifließenden geträgerten Katalysators.
    Beispiel 7 Polymerisation von Propen
    Ein trockener 16-dm3-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
    Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3 Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30°C 15 Minuten gerührt. Anschließend wurde der Katalysator aus Beispiel 6 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 65°C aufgeheizt (4°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 65°C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet.
    Es resultieren 1,0 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 118 kg PP/g Metallocen x h.

    Claims (3)

    1. Geträgertes Katalysatorsystem, erhältlich durch
      a) Umsetzung einer Lewis-Base der Formel I, worin M2R3R4R5 R3, R4 und R5 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1-C20-Alkyl-, C6-C40-Aryl-, C7-C40-Alkylaryl- oder C7-C40-Arylalkyl-Gruppen bedeutet und/oder zwei Reste oder alle drei Reste R3, R4 und R5 über C2-C20-Kohlenstoffeinheiten miteinander verbunden sind und M2 ein Element der V. Hauptgruppe des Periodensystems der Elemente ist und einer Organometallverbindung der Formel II M3R6R7R8 worin
      M3 ein Element der III. Hauptgruppe des Periodensystems der Elemente ist, und
      R6, R7 und R8 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C1-C40-halogenhaltige Gruppe bedeutet, wobei mindestens einer der Reste R6, R7 und R8 eine C1-C40-halogenhaltige Gruppe ist, mit einem Träger und
      b) anschließende Umsetzung mit einer Lösung oder Suspension enthaltend eine Metallocen-Verbindung der Formel IV
      Figure 00270001
      worin
      M1
      ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist,
      R'
      gleich oder verschieden sind und ein Wasserstoffatom oder SiRX 3 sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe sind, oder R' sind eine C1-C30-kohlenstoffhaltige Gruppe oder zwei oder mehrere Reste R' können so miteinander verbunden sein, daß die Reste R' und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
      R"
      gleich oder verschieden sind und ein Wasserstoffatom oder siRx 3 sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe sind oder R" sind eine C1-C30-kohlenstoffhaltige Gruppe oder zwei oder mehrere Reste R" können so miteinander verbunden sein, daß die Reste R" und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
      l
      gleich 4 ist,
      m
      gleich 4 ist,
      L1
      gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, oder ORy, SRy, OSiRy 3, SiRy 3, PRy 2 oder NRy 2 bedeuten, worin Ry ein Halogenatom, eine C1-C10-Alkylgruppe, eine halogenierte C1-C10-Akylgruppe, eine C6-C20-Arylgruppe oder eine halogenierte C6-C20-Arylgruppe sind, oder L1 sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,
      o
      eine ganze Zahl von 1 bis 4 ist,
      Z
      ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und
      v
      ist 1,
      und mindestens eine Organometallverbindung der Formel III
      Figure 00280001
      worin
      M4
      ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist und die Reste R9 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C1 -C40-Kohlenwasserstoff-Gruppe bedeuten und j eine ganze Zahl von 1 bis 3 und k eine ganze Zahl von 1 bis 4 ist, dadurch gekennzeichnet, daß die Metallocen-Verbindung (IV) eine chirale, verbrückte Mono- oder Bis-Indenylverbindung ist, worin der Indenylring substituiert ist,
      wobei die Organometallverbindung der Formel II kovalent an den Träger gebunden ist.
    2. Verwendung eines geträgerten Katalysatoraystems gemäß Anspruch 1 zur Herstellung eines Olefinpolymers.
    3. Verfahren zur Herstellung eines Olefinpolymers in Gegenwart eines geträgerten Katalysatorsystems gemäß Anspruch 1.
    EP98965805A 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen Expired - Lifetime EP1042371B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19757540 1997-12-23
    DE19757540A DE19757540A1 (de) 1997-12-23 1997-12-23 Geträgertes Katalysatorsystem zur Polymerisation von Olefinen
    PCT/EP1998/008050 WO1999033881A1 (de) 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen

    Publications (2)

    Publication Number Publication Date
    EP1042371A1 EP1042371A1 (de) 2000-10-11
    EP1042371B1 true EP1042371B1 (de) 2003-10-01

    Family

    ID=7853188

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98965805A Expired - Lifetime EP1042371B1 (de) 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen

    Country Status (7)

    Country Link
    US (1) US7202190B1 (de)
    EP (1) EP1042371B1 (de)
    JP (1) JP2001527135A (de)
    BR (1) BR9814410A (de)
    DE (2) DE19757540A1 (de)
    ES (1) ES2210860T3 (de)
    WO (1) WO1999033881A1 (de)

    Families Citing this family (31)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19828271A1 (de) 1998-06-25 1999-12-30 Elenac Gmbh Verfahren zur Herstellung eines geträgerten Katalysatorsystems
    WO2000020466A1 (de) * 1998-10-01 2000-04-13 Targor Gmbh Katalysatorsystem
    CA2356261C (en) * 1998-12-30 2009-11-17 Bp Chemicals Limited Process for preparing a supported polymerization catalyst using reduced amounts of solvent and polymerization process
    DE19917985A1 (de) 1999-04-21 2000-10-26 Targor Gmbh Katalysatorsystem
    WO2001036499A1 (en) * 1999-11-19 2001-05-25 Exxon Chemical Patents Inc. Preparation of supported polymerization catalysts
    US6395847B2 (en) * 1999-11-19 2002-05-28 Exxonmobil Chemical Patents Inc. Supported organometallic catalysts and their use in olefin polymerization
    DE19962910A1 (de) 1999-12-23 2001-07-05 Targor Gmbh Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen
    US7122498B2 (en) 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
    US6414095B1 (en) 2000-06-30 2002-07-02 Exxon Mobil Chemical Patents Inc. Metallocene compositions
    US6380334B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376407B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380121B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380330B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376408B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376410B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376413B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6399723B1 (en) 2000-06-30 2002-06-04 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376411B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376409B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376412B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380331B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6870016B1 (en) 2000-06-30 2005-03-22 Exxonmobil Chemical Patents Inc. Polymerization process and polymer composition
    US6380123B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380124B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6380120B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
    US6376627B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
    EP1527108A2 (de) 2002-07-15 2005-05-04 Basell Polyolefine GmbH Herstellung von trägerkatalysatorsystemen
    WO2005063831A2 (en) 2003-12-23 2005-07-14 Basell Polyolefine Gmbh Preparation of supported cocatalysts
    EP1650231A1 (de) * 2004-10-21 2006-04-26 Total Petrochemicals Research Feluy Polyolefine hergestellt mit Metallocen- und neuen Single-Site-Katalysatorkomponenten in einem Reaktor
    JP2019156896A (ja) * 2018-03-08 2019-09-19 日本ポリエチレン株式会社 オレフィン重合触媒及びオレフィン重合体の製造方法

    Family Cites Families (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5964604A (ja) 1982-10-06 1984-04-12 Sumitomo Chem Co Ltd ポリオレフインの製造方法
    IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
    US5017714A (en) * 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
    NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
    DE69033368T3 (de) 1990-01-02 2008-07-03 Exxon Chemical Patents, Inc. Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
    CA2069995C (en) * 1991-05-31 1996-04-09 Mitsui Chemicals, Incorporated Olefin polymerization solid catalyst, olefin polymerization catalyst and olefin polymerization
    DE4120009A1 (de) * 1991-06-18 1992-12-24 Basf Ag Loesliche katalysatorsysteme zur herstellung von polyalk-1-enen mit hohen molmassen
    US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
    US5444134A (en) * 1991-07-11 1995-08-22 Idemitsu Kosan Co., Ltd. Process for producing olefin based polymers and olefin polymerization catalyst
    TW309523B (de) 1991-11-30 1997-07-01 Hoechst Ag
    JP3194438B2 (ja) * 1992-01-08 2001-07-30 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
    TW294669B (de) 1992-06-27 1997-01-01 Hoechst Ag
    US5372980A (en) 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
    DE4325824A1 (de) 1993-07-31 1995-02-02 Basf Ag Verfahren zur Herstellung von Homopolymerisaten des Ethylens oder Copolymerisaten des Ethylens
    FI945958A (fi) 1993-12-21 1995-06-22 Hoechst Ag Menetelmä polyolefiinien valmistamiseksi
    FI945959A (fi) 1993-12-21 1995-06-22 Hoechst Ag Metalloseenejä ja niiden käyttö katalyytteinä
    EP0737694B1 (de) * 1993-12-28 2001-06-06 Idemitsu Kosan Company Limited Verfahren zur herstellung eines olefinpolymers und eines ethylenpolymers
    EP0775164B1 (de) 1994-08-03 2001-11-07 ExxonMobil Chemical Patents Inc. Ionische katalysatorzusammensetzung auf träger
    DE69500763T2 (de) * 1994-10-13 1998-03-26 Japan Polyolefins Co Ltd Katalysatorkomponent zur Olefinpolymerisation, dieses enthaltenden Katalysator und Verfahren zur Olefinpolymerisation in Gegenwart dieses Katalysators
    US5939347A (en) * 1995-01-25 1999-08-17 W.R. Grace & Co. -Conn. Supported catalytic activator
    EP0727443B1 (de) * 1995-02-20 2001-01-17 Tosoh Corporation Katalysator für die Polymerisation von Olefinen und Verfahren zur Herstellung von Olefinpolymerisaten
    IT1275777B1 (it) * 1995-07-06 1997-10-17 Enichem Spa Catalizzatore metallocenico per la (co)polimerizzazione delle olefine
    DE69610992T2 (de) 1995-11-27 2001-06-07 Dow Chemical Co Trägerkatalysator, enthaltend einen davon gebundenen kationenbildenden aktivator

    Also Published As

    Publication number Publication date
    DE59809824D1 (de) 2003-11-06
    JP2001527135A (ja) 2001-12-25
    ES2210860T3 (es) 2004-07-01
    WO1999033881A1 (de) 1999-07-08
    DE19757540A1 (de) 1999-06-24
    EP1042371A1 (de) 2000-10-11
    BR9814410A (pt) 2000-10-10
    US7202190B1 (en) 2007-04-10

    Similar Documents

    Publication Publication Date Title
    EP1042371B1 (de) Geträgertes katalysatorsystem zur polymerisation von olefinen
    EP1023334B1 (de) Katalysatorsystem
    EP1053263B1 (de) Katalysatorsystem
    EP1280600B1 (de) Geträgertes katalysatorsystem enthaltend ein metallocen, eine lewis-base und eine elementorganische verbindung der iii. hauptgruppe, sowie dessen verwendung
    EP1175262B1 (de) Katalysatorsystem
    EP1250363B1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
    EP0824113B1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
    EP1003753B1 (de) Bor und aluminium enthaltende verbindungen
    EP0811627B1 (de) Chemische Verbindung, neutral oder ionisch aufgebaut, geeignet als Katalysatorkomponente für die Olefinpolymerisation
    EP1058694B1 (de) Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
    EP1290002B1 (de) Als cokatalysator geeignete chemische produkte, verfahren zu ihrer herstellung und ihre verwendung in katalysator-systemen zur herstellung von polyolefinen
    EP1272532B1 (de) Salzartige chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
    DE19823168A1 (de) Katalysatorsystem
    DE19758306A1 (de) Katalysator für die Polyolefinsynthese
    WO2000020466A1 (de) Katalysatorsystem
    DE19917984A1 (de) Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystem zur Herstellung von Polyolefinen
    DE19632557A1 (de) Chemische Verbindung
    DE19845240A1 (de) Katalysatorsystem

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000522

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE ES FI FR GB IT NL

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BASELL POLYOLEFINE GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BASELL POLYOLEFINE GMBH

    17Q First examination report despatched

    Effective date: 20020822

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BASELL POLYOLEFINE GMBH

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE ES FI FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59809824

    Country of ref document: DE

    Date of ref document: 20031106

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040301

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2210860

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040702

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20051116

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060202

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070701

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070701

    BERE Be: lapsed

    Owner name: *BASELL POLYOLEFINE G.M.B.H.

    Effective date: 20061231

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20071226

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20071228

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20071228

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081210

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20081211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081211

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20091229

    Year of fee payment: 12

    Ref country code: FR

    Payment date: 20100106

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20091222

    Year of fee payment: 12

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20101210

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110103

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59809824

    Country of ref document: DE

    Effective date: 20110701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101210

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081210