WO2000063544A1 - Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine - Google Patents

Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine Download PDF

Info

Publication number
WO2000063544A1
WO2000063544A1 PCT/DE2000/001250 DE0001250W WO0063544A1 WO 2000063544 A1 WO2000063544 A1 WO 2000063544A1 DE 0001250 W DE0001250 W DE 0001250W WO 0063544 A1 WO0063544 A1 WO 0063544A1
Authority
WO
WIPO (PCT)
Prior art keywords
valves
circuit
circuit according
control
communication computer
Prior art date
Application number
PCT/DE2000/001250
Other languages
English (en)
French (fr)
Inventor
Volker Eichenseher
Andreas Hartke
Thomas Vogt
Markus Teiner
Achim Koch
Frank Queisser
Wolfgang Menzel
Thomas Seidenfuss
Karl-Heinz Ebeling
Original Assignee
Siemens Aktiengesellschaft
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7905360&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000063544(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Aktiengesellschaft, Bayerische Motoren Werke Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP00936636A priority Critical patent/EP1171702B1/de
Priority to DE50007133T priority patent/DE50007133D1/de
Priority to JP2000612610A priority patent/JP2002542423A/ja
Publication of WO2000063544A1 publication Critical patent/WO2000063544A1/de
Priority to US10/033,236 priority patent/US6505113B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2167Sensing means
    • F01L2009/2169Position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation

Definitions

  • the invention relates to a circuit for controlling at least one electromechanically operated inlet and outlet valve of an internal combustion engine.
  • Electro-mechanical actuators for gas exchange valves are known for example from DE 297 12 502 U1 or EP 0 724 067 AI. They have a rest position lying between a closed and an open position, from which they can be deflected by means of electromagnets.
  • the respective winding is energized, the current required in the catching phase being greater than m in the holding phase in which the valve is held in an end position.
  • the energization is suitably controlled, which, however, requires a relatively complex control algorithm, since this regulation must take place in real time. - for example, the time available to control the speed of impact is only a few milliseconds.
  • the invention is based on the knowledge that the regulation of the impact speed should be separated from the communication with the operating control device and the generation of a tent control signal from the specifications of the operating control device.
  • the communication computer preferably carries out the communication with the operating control device of the internal combustion engine via a CAN bus and generates the timing signals for the touchdown regulators from the crankshaft signal likewise supplied and the requirements of the operating control device.
  • These tent control signals are each n usually a digital signal in which the increasing Flank indicates a valve opening and the falling flank indicates valve closing.
  • a separate timing signal ⁇ em is applied to the corresponding touchdown control in a unidirectional communication.
  • Tent control signal can be provided to give greater freedom when operating the coils.
  • the communication computer evaluates the crankshaft signal, communicates with the operating control device of the internal combustion engine and generates the tent control signals for the slip-on controllers depending on the data received from the operating control device, the latter are kept free for the control application and the control is not used by others (communication ) Tasks interrupted. Furthermore, the tasks of the touchdown control can be parallelized by using several touchdown regulators, which means that a control algorithm is less time-critical. Because a central communication and timing control unit is provided with the communication computer, there is only one communication partner for other control devices and there is no possibility of incorrect synchronization of the individual touchdown regulators and therefore of the electromechanically operated gas exchange valves. Since the touchdown regulators advantageously work digitally and are additionally connected to the communication computer via a serial interface and report the states of the electromechanically actuated gas exchange valves to the communication computer, all states are centrally known and available.
  • the communication computer can instruct the other two valves of the cylinder to be shut down, ie to move to the closed position.
  • the internal combustion engine can then run in an emergency mode without this cylinder, without unburned fuel m getting into the exhaust tract or combustion gases into the intake tract.
  • the provision of several touchdown regulators further enables mutual monitoring of all processors used in the circuit, in particular that of the communication computer and that of the touchdown regulators.
  • the coils of the electromechanical gas exchange valves are actuated by the add-on regulators via AND gates, the second input of which can be actuated by the time control signal which the communication computer supplies to the add-on regulator if the add-on regulator does so by a corresponding blocking element has unlocked.
  • Fig. 1 is a schematic representation of the circuit with electromechanically operated gas exchange valves for a
  • Fig. 2 is a schematic representation of the control of two
  • Fig. 3 shows the time course of a timing signal and the energization control of a gas exchange valve for different operating states.
  • the circuit of FIG. 1 is used to control electromechanically driven gas exchange valves 5a, 5b, 6a, 6b.
  • electromechanically driven gas exchange valve is described, for example, in German utility model 297 12 502 U1. It is only essential for the understanding of this invention that the electromechanically actuated gas exchange valve is actuated by energizing two coils, one coil being responsible for closing and the other for opening the gas exchange valve. In order to hold the gas exchange valve in the open or the closed position, the respective coil is energized with a holding current. In order to bring the gas exchange valve into the open or closed position, the coil required in each case is supplied with current, the current being greater in a catching phase than in the subsequent holding phase.
  • Cylinder internal combustion engine shown but this number of cylinders is only to be understood as an example.
  • a cylinder has two intake valves 5a, 5b and two exhaust valves 6a, 6b.
  • a separate touchdown regulator 2 and 3 is provided for the inlet and outlet valves 5a, 5b and 6a, 6b.
  • the Aufsetzregier 2, 3 controls output stages, which bring about the energization of the respective coils of the gas exchange valve 5a, 5b, 6a, 6b.
  • a separate output stage is provided for each coil.
  • the Aufsetzregier 2, 3 and the output stages are housed in a housing that is connected to the cooling circuit of the internal combustion engine to ensure uniform heat dissipation.
  • the touchdown control 2, 3 controls the output stages of a valve 5, 6 as a function of a time control signal TS which indicates when the valve has to open or close.
  • a time control signal TS which indicates when the valve has to open or close.
  • a separate time control signal TS can also be provided for each valve.
  • the tent control signal TS is, for example, a rectangular signal, in which the falling edge indicates the closing and the rising edge indicates the opening of the associated valve. It is fed to the touchdown regulator 2, 3 via a unidirectional communication line 4 from a communication computer 1, which will be described later.
  • the placement controller 2, 3 has a digital processor which controls the energization of the coils through the output stages in such a way that the valve 5a, 5b, 6a, 6b gently touches the desired end position.
  • the energization of the coil of the end position to be left is switched off and the energization of the winding of the electromagnet is switched on for the new end position to be assumed.
  • the current is regulated by the processor of the touchdown controller 2, 3 so that the valve touches the new end position gently.
  • the touchdown regulator 2, 3 uses a position signal which provides information about the position of the respective valve 5a, 5b, 6a, 6b.
  • each electromechanically actuated valve 5a, 5b, 6a, 6b is provided with a suitable position sensor, as described, for example, in German application 197 53 275 or DE 195 18 056 AI.
  • the guide and control size of the add-on controller can also be any other size.
  • the regulation of the coil current for catching the valve 5a, 5b, 6a, 6b is described in principle, for example, in DE 195 26 683 AI.
  • the touchdown regulator measures the actual current through the coil and outputs the TARGET value to the output stage.
  • another size can be used which expresses the actuation of the actuator, e.g. the driver voltage of the output stage.
  • Winding energization a plausibility check of the signals, ie the position signal and the coil energization From the latter, as is known from DE 195 26 683 AI, a further signal can be derived, which enables statements about the position of the corresponding gas exchange valve 5a, 5b, 6a, 6b, so that the position signal by means of this further signal can be checked.
  • the touchdown control 2, 3 is connected to the communication computer 1 via a further serial SPI-BUS interface and reports the status of the valves 5a, 5b, 6a, 6b or a possible valve failure via this interface.
  • the communication computer 1 is connected to a CAN bus 8 and uses it to communicate with the operating control device 9 of the internal combustion engine.
  • a BUS connection is described, for example, in W. Lawrenz, CAN
  • the communication computer 1 is advantageously housed in the same cooled housing as the Aufsetzregier 2, 3 and the output stages. He also receives the crankshaft signal and uses it to calculate the timing signals TS for the touchdown regulators 2, 3 together with the requirements of the operating control device and outputs them via the unidirectional communication lines 4 to the touchdown regulators 2, 3. It also communicates with touchdown controllers 2, 3 via the SPI-BUS 7 and exchanges the status information or error information. Furthermore, the communication computer 1 monitors the entire electromechanical valve train, i.e.
  • the temperature of the output stages for the gas exchange valves 5a, 5b, 6a, 6b, the supply voltage of these output stages usually 42 V
  • the supply voltage of the position sensors usually 15 V
  • the supply voltage of the touchdown regulator 2, 3 usually 3.3 V
  • a touchdown control for example touchdown control 2 of intake valves 5a, 5b of cylinder number 1
  • This enables emergency operation of the internal combustion engine without the unburned fuel m reaching the exhaust tract through the cylinder concerned, which could lead to undesirable deflagrations and pollutant emissions.
  • FIG. 2 shows an example of a control method between a touchdown regulator 3 and the valves 6a, 6b.
  • the normally open coils 11a, 11b of the gas exchange valves 6a, 6b are connected to the final stages integrated in the mounting regulator 2, 3 via an AND gate 16a, 16b each.
  • the AND gates 16a, 16b can also be provided to control the output stages.
  • the second input of the AND gates 16a, 16b is connected via an inverter 14 to a branch 12 of the communication line 4 for the tent control signal TS, which the communication computer 1 supplies to the touchdown control 3.
  • An AND element 13 is also connected in branch 12, the second input of which is controlled by touchdown control 3.
  • the opener coils 10a, 10b of the gas exchange valves 6a, 6b are connected to the output of the AND gate 13 via AND gates 15a, 15b, with no inverter 14 being provided here.
  • this circuit is as follows: if the Aufsetzregier 3 releases the AND gate 13 via a suitable high-level signal, the timing control signal TS is present at its output, as it is sent from the communication computer 1 via the communication line 4 to the Aufsetzregier 3 for the Valves 6a, 6b is supplied. A falling edge of this time control signal TS is shown in FIG. 3, it indicates that the exhaust valves 6a, 6b are closing.
  • the embarksetzregier 3 recognizes the falling edge of the tent control signal TS, it normally takes a certain time offset t (see FIG. 3) until the energization of the respective winding, in this case the windings 10 of the make coils, is ended.
  • This time offset t is caused by program run times in the processor of the set-up controller 3 and by time constants of the control.
  • the resultant time profile of the energization of the windings 10 is shown in FIG. 3 with curve 20. If the placement controller 3 has now activated the AND element 13, the falling edge of the tent control signal TS via the AND elements 15 causes the energization of the opening coils to end prematurely. This results in the current flow curve shown schematically in curve 21 on the windings 10 of FIG. 3. As can be seen in FIG. 3, the energization then ends without the time offset t.
  • This design enables the Aufsetzregier 3 via the AND gate 13 to have a direct effect of the tent control signal TS on the energization of the windings 10, 11.
  • the communication computer 1 can therefore instruct the Aufsetzregier 3 via the SPI-BUS 7 depending on the operating state to enable this direct access of the tent control signal TS.
  • the inverter 14 in the wiring of the second inputs of the AND gates 16 for the windings 11 of the make coils results in a behavior inverse to that of the opener coils and simultaneously energizes the windings 11 of the make coils.
  • the Aufsetzregier 3 can then suitably initiate the energization of the closer coils.
  • the control described can be provided in all touchdown controllers 2, 3.
  • separate landing gauges 2, 3 are provided for the intake valves 5a, 5b and exhaust valves 6a, 6b of each cylinder, but a different division is also possible, in particular a single landing girder can meet the requirements.
  • at least one further communication computer can be provided, for example, a separate communication computer can be provided for all intake valves 5 and all exhaust valves 6 of the internal combustion engine. This structure provides a certain level of redundancy, since if one of the communication computers fails, the other can take over the tasks of the failed one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Zur Steuerung elektromechanisch betätigter Gaswechselventile (5, 6) ist eine Schaltung vorgesehen, in der Aufsetzregler (2, 3) die Endstufe der elektromechanisch betätigten Gaswechselventile (5, 6) ansteuern und ein sanftes Aufsetzen der Gaswechselventile (5, 6) in der jeweiligen Endstellung regeln. Zur Kommunikation mit dem Betriebssteuergerät (9) der Brennkraftmaschine ist ein digitaler Kommunikationsrechner (1) vorgesehen, der dem Aufsetzregler (2, 3) Zeitsteuersignale vorgibt. Dadurch sind die Aufsetzregler (2, 3) von Kommunikationsaufgaben freigehalten und können sich der Aufsetzregelung in Echtzeit widmen.

Description

Beschreibung
Schaltung zur Steuerung mindestens eines jeweils elektromechanisch betätigten Ein- und Auslaßventils einer Brennkraft- maschine
Die Erfindung betrifft eine Scnaltung zur Steuerung mindestens eines jeweils elektromecnamsch betätigten Ein- und Auslaßventils einer Brennkraftmaschine.
Brennkraftmaschinen, deren Gaswechselventile elektromechanisch betätigt werden, sind bekannt. Im Gegensatz zu nocken- wellenbetatigten Ventilen werden diese Ventile zum Offnen und Schließen m Abhängigkeit von der Drehlage der Kurbelwelle angesteuert; eine feste mechanische Kopplung mit der Kurbelwelle liegt nicht vor. Elektro echanische Stellglieder für Gaswechselventile sind beispielsweise aus DE 297 12 502 Ul oder EP 0 724 067 AI bekannt. Sie weisen eine zwischen einer geschlossenen und einer offenen Stellung liegende Ruhestel- lung auf, aus der sie mittels Elektromagneten ausgelenkt werden können.
Um ein Ventil zu offnen oder zu schließen, wird die jeweilige Wicklung bestromt, wobei der erforderliche Strom in der Fang- phase großer ist als m der Haltephase, in der das Ventil in einer Endstellung gehalten wird.
Wird der entsprechende Elektromagnet dabei einfach mit Strom beaufschlagt, so trifft der Ventilteller mit hoher Geschwin- digkeit auf den Ventilsitz, was larmerzeugend und verschleißfordernd ist. Um dies zu vermeiden, sollte die Auftreffge- schwmdigkeit verringert werden. Dazu wurden mechanische Anschlagdampfungen untersucht.
Vorteilhafterweise wird jedoch die Bestromung geeignet geregelt, was jedoch einen relativ komplexen Regelalgorithmus erfordert, da diese Regelung in Echtzeit erfolgen muß. Bei- spielsweise betragt die zur Regelung der Auftreffgeschwmdig- keit zur Verfugung stehende Zeitspanne nur wenige Millisekunden.
Wahrend bei herkömmlichem, nockenwellenbetatigten Ventiltrieb eine Vorgabe der Steuerzeiten im Betriebssteuergerat der Brennkraftmaschine nicht anfallt, müssen bei elektromechanisch betätigten Ventilen entsprechende Steuerzeiten berechnet und vorgegeben werden.
Es ist Aufgabe der vorliegenden Erfindung, eine Schaltung zur Steuerung elektromechanisch betätigter Gaswechselventile einer Brennkraftmaschine anzugeben, die eine Betätigung der Gaswechselventile nach Vorgabe durch das Betriebssteuergerat der Brennkraftmaschine mit einer Regelung der Auftreffgeschwindigkeit in Echtzeit ermöglicht.
Diese Aufgabe wird durch die im Anspruch 1 definierte Erfindung gelost.
Die Erfindung geht von der Erkenntnis aus, daß die Regelung der Auftreffgeschwindigkeit von der Kommunikation mit dem Betriebssteuergerat sowie der Erzeugung eines Zeltsteuersignals aus den Vorgaben des Betriebssteuergerates getrennt werden soll.
Separate Aufsetzregier, die jeweils einem oder mehreren elek- tromechanischen Stellgliedern zugeordnet sind, regeln den Bewegungsablauf der Stellglieder und bewirken so ein sanftes, gerauscharmes, d.h. gedämpftes Aufsetzen des jeweiligen Gas- wechselventils in der Endstellung. Der Kommunikationsrechner fuhrt vorzugsweise über einen CAN-BUS die Kommunikation mit dem Betriebssteuergerat der Brennkraftmaschine durch und erzeugt aus dem ebenfalls zugefuhrten Kurbelwellensignal und den Anforderungen des Betriebssteuergerats die Zeitsteuersi- gnale für die Aufsetzregier . Diese Zeltsteuersignale sind jeweils n der Regel ein Digitalsignal, bei dem die steigende Flanke eine Ventiloffnung und die fallende Flanke ein Ventil- schließen anweist. Für die Einlaß- und die Auslaßventile jedes Zylinders wird ein eigenes Zeitsteuersignal αem entsprechenden Aufsetzregier in einer unidirektionalen Kommunikation zugeführt. Optional kann auch für jede Spule ein eigenes
Zeltsteuersignal vorgesehen werden, um größere Freiheit beim Betatigen der Spulen zu erhalten.
Da der Kommunikationsrechner das Kurbelwellensignal auswer- tet, die Kommunikation mit dem Betriebssteuergerat der Brennkraftmaschine vornimmt und abhangig von den vom Betriebssteuergerat erhaltenen Daten die Zeltsteuersignale für die Aufsetzregler erzeugt, werden letztere für die Regelanwendung freigehalten und die Regelung wird nicht von anderen (Kommu- nikations-) Aufgaben unterbrochen. Weiter kann die Aufgaben der Aufsetzregelung durch Verwendung mehrerer Aufsetzregier parallelisiert werden, wodurch ein Regelalgoπthmus weniger zeitkritisch ausfallt. Dadurch, daß mit dem Kommunikationsrechner eine zentrale Kommunikat10ns- und Zeitsteuereinheit vorgesehen ist, gibt es nur einen Kommunikationspartner für andere Steuergerate und es sind keine Fehlsynchronisationen der einzelnen Aufsetzregier und mithin der elektromechanisch betätigten Gaswechselventile möglich. Da vorteilhafterweise die Aufsetzregier digital arbeiten und mit dem Kommunikati- onsrechner zusatzlich auch über eine serielle Schnittstelle verbunden sind und über diese die Zustande der elektromechanisch betätigten Gaswechselventile an den Kommunikationsrechner melden, sind alle Zustande zentral bekannt und verfugbar.
Bei Ausfall eines Aufsetzreglers kann der Kommunikationsrechner anweisen, die anderen zwei Ventile des Zylinders stillzulegen, d.h. in die Geschlossen-Stellung zu fahren. Dann kann die Brennkraftmaschine in einem Notbetrieb ohne diesen Zylinder laufen, ohne daß unverbrannter Kraftstoff m den Abga- strakt oder Verbrennungsgase in den Ansaugtrakt gelangen wurden. Das Vorsehen mehrerer Aufsetzregier ermöglicht weiter eine gegenseitige Überwachung aller m der Schaltung verwendeten Prozessoren, insbesondere der des Kommunikationsrechners und der der Aufsetzregier .
In einer vorteilhaften Ausbildung werden die Spulen der elek- tromechanischen Gaswechselventile von den AufSetzreglern über UND-Glieder angesteuert, deren zweiter Eingang mit dem Zeitsteuersignal, das der Kommunikationsrechner an den Auf- setzregier liefert, angesteuert werden kann, wenn der Aufsetzregler dies durch ein entsprechendes Sperrglied freige- schaltet hat. Dies hat den Vorteil, daß die Bestromung einer Spule des elektromechanisch betätigten Ventils zeitgleich mit einer fallenden Flanke des jeweiligen Zeitsteuersignals be- endet wird. Ein etwaiger Versatz durch Programmlaufzeiten im Aufsetzregier kann somit wahlweise ausgeschaltet werden.
Vorteilhafte Ausgestaltungen der Erfindung sind m den Un- teranspruchen gekennzeichnet.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung naher erläutert. Die Zeichnung zeigt:
Fig. 1 eine schematische Darstellung der Schaltung mit elek- tromechanisch betätigten Gaswechselventilen für eine
4 -Zylinderbrennkraf maschine,
Fig. 2 eine schematische Darstellung der Ansteuerung zweier
Gaswechselventile durch einen Aufsetzregier m Verbin- düng mit dem Kommunikationsrechner und
Fig. 3 den zeitlichen Verlauf eines Zeitsteuersignals sowie der Bestromungsansteuerung eines Gaswechselventils für verschiedene Betriebszustande.
Die Schaltung der Fig. 1 dient zur Ansteuerung elektromechanisch angetriebener Gaswechselventile 5a, 5b, 6a, 6b. Ein solches elektromechanisch angetriebenes Gaswechselventil ist beispielsweise in dem deutschen Gebrauchsmuster 297 12 502 Ul beschrieben. Für das Verständnis dieser Erfindung ist dabei nur wesentlich, daß das elektromechanisch betätigte Gaswech- selventil durch die Bestromung zweier Spulen betätigt wird, wobei eine Spule für das Schließen, die andere für das Offnen des Gaswechselventils verantwortlich ist. Um das Gaswechselventil in der offenen oder der geschlossenen Stellung zu halten, wird die jeweilige Spule mit einem Haltestrom bestromt. Um das Gaswechselventil in die offene oder geschlossene Stellung zu bringen, wird die jeweils erforderliche Spule mit Strom beaufschlagt, wobei in einer Fangphase der Strom großer ist als in der nachfolgenden Haltephase.
In Fig. 1 ist schematisch die Schaltung für eine 4-
Zylinderbrennkraftmaschine dargestellt, jedoch ist diese Zylinderzahl nur beispielhaft zu verstehen. Ein Zylinder hat in diesem Beispiel zwei Einlaßventile 5a, 5b sowie zwei Auslaßventile 6a, 6b. Für die Einlaß- bzw. die Auslaßventile 5a, 5b bzw. 6a, 6b ist jeweils ein eigener Aufsetzregier 2 bzw. 3 vorgesehen. Der Aufsetzregier 2, 3 steuert Endstufen an, die die Bestromung der jeweiligen Spulen des Gaswechselventils 5a, 5b, 6a, 6b bewerkstelligen. Dabei ist beispielsweise für jede Spule eine eigene Endstufe vorgesehen. Der Aufsetzregier 2, 3 und die Endstufen sind in einem Gehäuse untergebracht, das an den Kuhlkreislauf der Brennkraftmaschine angeschlossen ist, um gleichmaßige Warmeabfuhr zu gewahrleisten.
Der Aufsetzregier 2, 3 steuert die Endstufen eines Ventils 5, 6 abhangig von einem Zeitsteuersignal TS an, das anzeigt, wann das Ventil zu offnen oder zu schließen hat. Für die Einlaß- und die Auslaßventile jedes Zylinders gibt es ein eigenes Zeitsteuersignal TS. Bei einer Brennkraftmaschine mit mehr als zwei Ventilen pro Zylinder kann auch für jedes Ven- til ein eigenes Zeitsteuersignal TS vorgesehen werden. Das Zeltsteuersignal TS ist beispielsweise ein Rechtecksi- gna_-, bei dem die fallende Flanke das Schließen und die steigende Flanke das Offnen des zugehörigen Ventils anzeigt. Es wird dem Aufsetzregier 2, 3 über eine unidirektionale Kommu- nikationsleitung 4 von einem Kommunikationsrechner 1 zugeführt, der spater noch beschrieben werden wird. Der Aufsetzregler 2, 3 hat einen digitalen Prozessor, der die Bestromung der Spulen durch die Endstufen so regelt, daß das Ventil 5a, 5b, 6a, 6b m der gewünschten Endstellung sanft aufsetzt. Ub- licherweise wird, um das Ventil aus einer Endstellung in die andere zu bringen, die Bestromung der Spule der zu verlassenden Endstellung abgeschaltet und die Bestromung der Wicklung des Elektromagneten für die neu einzunehmende Endstellung eingeschaltet. Der Strom wird vom Prozessor des Aufsetzreg- lers 2, 3 so geregelt, daß das Ventil sanft m der neuen Endstellung aufsetzt. Für diese Regelung jedes Ventils verwendet der Aufsetzregier 2, 3 ein Positionssignal, das Auskunft über die Stellung des jeweiligen Ventils 5a, 5b, 6a, 6b gibt. Zur Erzeugung der Positionssignale ist jedes elektromechanisch betätigte Ventil 5a, 5b, 6a, 6b mit einem geeigneten Positionssensor versehen, wie er beispielsweise m der deutschen Anmeldung 197 53 275 oder der DE 195 18 056 AI beschrieben ist. Die Fuhrungs- und Regelgroße des Aufset zreglers können alternativ zu der Position auch ede beliebige andere Große sein.
Die Regelung des Spulenstroms zum Fangen des Ventils 5a, 5b, 6a, 6b ist beispielsweise in der DE 195 26 683 AI prinzipiell beschrieben. Der Aufsetzregier mißt dazu den IST-Strom durch die Spule und gibt den SOLL-Wert an die Endstufe aus. Statt des Stromes kann jedoch auch eine andere Große verwendet werden, die die Betätigung des Stellgliedes ausdruckt, z.B. die Treiberspannung der Endstufe.
Der Aufsetzregier 2, 3 fuhrt zusätzlich zur Regelung der
Wicklungsbestromung noch eine Plausibilitatskontrolle der Signale durch, d.h. des Positionssignais und der Spulenbestrom- ung. Aus letzterer kann, wie aus der DE 195 26 683 AI bekannt ist, ein weiteres Signal abgeleitet werden, das Aussagen über die Position des entsprechenden Gaswechselventils 5a, 5b, 6a, 6b ermöglicht, so daß mittels dieses weiteren Signals das Po- sitionssignal überprüft werden kann.
Der Aufsetzregier 2, 3 ist über eine weitere, serielle SPI- BUS Schnittstelle mit dem Kommunikationsrechner 1 verbunden und meldet den Zustand der Ventile 5a, 5b, 6a, 6b bzw. einen eventuellen Ventilausfall über diese Schnittstelle.
Der Kommunikationsrechner 1 ist an einen CAN-BUS 8 angeschlossen und führt darüber die Kommunikation mit dem Betriebssteuergerat 9 der Brennkraftmaschine durch. Eine solche BUS-Verbindung ist beispielsweise in W. Lawrenz, CAN-
Controller Area Network, Hüthig Verlag, 1994, ISBN 3-7785- 2263-7 beschrieben. Der Kommunikationsrechner 1 ist vorteilhafterweise im selben gekühlten Gehäuse untergebracht wie die Aufsetzregier 2, 3 und die Endstufen. Weiter erhält er das Kurbelwellensignal und berechnet daraus zusammen mit den Anforderungen des Betriebssteuergerätes die Zeitsteuersignale TS für die Aufsetzregier 2, 3 und gibt sie über die unidirek- tionalen Kommunikationsleitungen 4 an die Aufsetzregier 2, 3 aus. Über den SPI-BUS 7 kommuniziert er zusätzlich mit den Aufsetzreglern 2, 3 und tauscht die Zustandsinformationen bzw. Fehlerinformationen aus. Weiter überwacht der Kommunikationsrechner 1 den gesamten elektromechanischen Ventiltrieb, d.h. die Temperatur der Endstufen für die Gaswechselventile 5a, 5b, 6a, 6b, die Versorgungsspannung dieser Endstufen (üb- licherweise 42 V) , die Versorgungsspannung der Positionssensoren (üblicherweise 15 V) sowie die Versorgungsspannung der Aufsetzregier 2, 3 (üblicherweise 3,3 V).
Meldet ein Aufsetzregier, beispielsweise der Aufsetzregier 2 der Einlaßventile 5a, 5b des Zylinders Nummer 1 einen Ausfall entweder einer der Endstufen oder eines der Ventile 5a, 5b oder einen sonstigen Schaden über den SPI-BUS 7 an den Kommu- nikationsrechner 1, veranlaßt dieser den anderen Aufsetzregler dieses Zylinders, in diesem Beispiel den Aufsetzregier 3 die anderen Gaswechselventile des betroffenen Zylinders, in diesem Fall die Auslaßventile 6a, 6b, m der Geschlossenstellung stillzulegen. Dadurch ist ein Notbetrieb der Brennkraftmaschine möglich, ohne daß durch den betroffenen Zylinder unverbrannter Kraftstoff m den Auspufftrakt gelangen wurde, was zu unerwünschten Verpuffungen und Schadstoffemissionen fuhren konnte.
In Fig. 2 ist eine beispielhafte Ansteuerveromdung zwischen einem Aufsetzregier 3 und den Ventilen 6a, 6b genauer dargestellt. Die Schließerspulen 11a, 11b der Gaswechselventile 6a, 6b sind mit den im Aufsetzregier 2, 3 integrierten End- stufen über je ein UND-Glied 16a, 16b verbunden. Alternativ können die UND-Glieder 16a, 16b auch m der Ansteuerung der Endstufen vorgesehen sein. Der zweite Eingang der UND-Glieder 16a, 16b ist über einen Invertierer 14 an einen Abzweig 12 der Kommunikationsleitung 4 für das Zeltsteuersignal TS ange- schlössen, das der Kommunikationsrechner 1 dem Aufsetzregier 3 zufuhrt. In den Abzweig 12 ist noch ein UND-Glied 13 geschaltet, dessen zweiter Eingang vom Aufsetzregier 3 angesteuert wird.
Auf ähnliche Weise sind die Offnerspulen 10a, 10b der Gaswechselventile 6a, 6b über UND-Glieder 15a, 15b an den Ausgang des UND-Gliedes 13 angeschlossen, wobei hier kein Invertierer 14 vorgesehen ist.
Die Funktionsweise dieser Schaltung ist folgende: schaltet der Aufsetzregier 3 über ein geeignetes High-Pegel-Signal das UND-Glied 13 frei, so liegt an dessen Ausgang das Zeitsteuersignal TS an, wie es vom Kommunikationsrechner 1 über die Kommunikationsleitung 4 dem Aufsetzregier 3 für die Ventile 6a, 6b zugeführt wird. Eine fallende Flanke diese Zeitsteuersignals TS ist in Fig. 3 dargestellt, sie weist ein Schließen der Auslaßventile 6a, 6b an. Erkennt der Aufsetzregier 3 die fallende Flanke des Zeltsteuersignals TS, dauert es normalerweise einen gewissen Zeitversatz t (vgl. Fig. 3), bis die Bestromung der jeweiligen Wicklung, in diesem Fall der Wicklungen 10 der Schließerspulen beendet wird. Dieser Zeitversatz t ist durch Programmlaufzeiten im Prozessor des Aufset zreglers 3 und durch Zeit konstanten der Ansteuerung bedingt. Der sich dadurch ergebende Zeitverlauf der Bestromung der Wicklungen 10 ist in Fig. 3 mit Kurve 20 dargestellt. Hat nun der Aufsetzregler 3 das UND-Glied 13 freigeschaltet, bewirkt die fallende Flanke des Zeltsteuersignals TS über die UND-Glieder 15 ein vorzeitiges Ende der Bestromung der Offnerspulen. Es ergibt sich an den Wicklungen 10 der Fig. 3 schematisch in Kurve 21 dargestellte Bestromungsverlauf . Wie in Fig. 3 zu sehen ist, endet die Bestromung dann ohne den Zeitversatz t.
Diese Ausbildung ermöglicht es, daß der Aufsetzregier 3 über das UND-Glied 13 eine direkte Wirkung des Zeltsteuersignals TS auf die Bestromung der Wicklungen 10, 11 zulaßt. Der Kommunikationsrechner 1 kann deshalb den Aufsetzregier 3 über den SPI-BUS 7 betriebszustandsabhangig anweisen, diesen direkten Durchgriff des Zeltsteuersignals TS freizuschalten.
Durch den Invertierer 14 in der Beschaltung der zweiten Eingange der UND-Glieder 16 für die Wicklungen 11 der Schließer- spulen ergibt sich ein zu den Offnerspulen inverses Verhalten und es wird zeitgleich eine Bestromung der Wicklungen 11 der Schließerspulen freigeschaltet . Der Aufsetzregier 3 kann die Bestromung der Schließerspulen dann geeignet einleiten.
Die beschriebene Ansteuerung kann bei allen Aufsetzreglern 2, 3 vorgesehen sein.
Vorteilhafterweise sind für die Einlaßventile 5a, 5b und die Auslaßventile 6a, 6b jedes Zylinders eigenständige Aufsetz- regier 2, 3 vorgesehen, es ist aber auch eine andere Aufteilung möglich, insbesondere kann ein einziger Aufsetzregier den Anforderungen genügen. Weiter kann zusätzlich zu einem Kommunikationsrechner 1 noch mindestens ein weiterer Kommunikationsrechner vorgesehen werden, beispielsweise kann für alle Einlaßventile 5 sowie alle Auslaßventile 6 der Brennkraftmaschine ein eigener Kommunikationsrechner vorgesehen werden. Durch diesen Aufbau erhalt man eine gewisse Redundanz, da bei Ausfall eines der Kommunikationsrechner der andere die Aufgaben des ausgefallenen übernehmen kann.

Claims

Patentansprüche
1. Schaltung zur Steuerung mindestens eines elektromechanisch betätigten Einlaßventils (5) und mindestens eines elektrome- chanisch betätigten Auslaßventils (6) eines Zylinders einer Brennkraftmaschine, mit mindestens einem Aufsetzregier (2, 3) mit mindestens einer Endstufe für jeden Elektromagneten der elektromechanisch betätigten Ventile (5, 6), der die Endstufen oer Ventile (5, 6) in Abhängigkeit von Zeitsteuersignalen ansteuert und unter
Verarbeitung von die Stellung der Ventile (5, 6) anzeigenden Positionssignalen die Bestromung der Elektromagneten regelt, um ein sanftes, gerauscharmes Aufsetzen der ventile (5, 6) in den Endstellungen zu bewirken, und einem digital arbeitenden Kommunikationsrechner (1), der ein Kurbelwellenstellungssignal auswertet, über eine Kommunikationsverbindung (8) mit einem Betriebssteuergerat (9) der Brennkraftmaschine Daten austauscht und abhangig vom Kurbelwellenstellungssignal und von den vom Betneossteuergerat (9) erhaltenen Daten die Zeltsteuersignale für oen Aufsetzregier (2, 3) erzeugt.
2. Schaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß für das Einlaßventil (5) und für das Auslaßventil (6) jeweils ein eigener Aufsetzregier (2, 3) vorhanden ist.
3. Schaltung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der Auf setzregier (2, 3) ei- nen Prozessor aufweist und der Kommunikationsrechner (1) mit dem mindestens einen Aufsetzregier (2, 3) zusätzlich über eine bidirektionale Kommunikationsschnittstelle (7) zum Datenaustausch verbunden ist.
4. Schaltung nach einem der vorhergehenden Ansprüche m Verbindung mit Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß jeder Aufsetzregier (2, 3) die Stellung der Ventile (5, 6) erkennt und eine Fehlfunxtion eines der Ventile (5, 6) an den Kommunikationsrechner (1; meldet .
5. Schaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Kommunikationsrechner (1) mindestens einen der folgenden Betriebspa- rameter der Schaltung und der elektromechanisch betätigten Ventile (5, 6) überwacht: Temperatur der Endstufen, Versorgungsspannung der Endstufen, Versorgungsspannung verwendeter Positionssensoren, Versorgungsspannung aller Aufsetzregier (2, 3) .
6. Schaltung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mehrere Kommunikationsrechner (1).
7. Schaltung nach Anspruch 6, g e k e n n z e i c h n e t d u r c h einen eigenen Kommu- nikationsrechner (1) für alle Einlaßventile (5) und einen eigenen Kommunikationsrechner (1) für alle Auslaßventile (6).
8. Schaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß mehrere Auf- setzregier (2, 3) mit den zugehörigen Endstufen m einem Gehäuse vereint sind, das an ein aktives Kuhlsystem angeschlos¬
9. Schaltung nach einem der vorhergehenden Ansprüche in Ver- bindung mit Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß der Kommunikationsrechner (1) bei Anzeige eines Ventilausfalls durch einen der Aufsetzregier (2,3) die Stillegung der anderen Ventile (6, 5) des betroffenen Zylinders in der Geschlossen-Stellung bewirkt.
10. Schaltung nach einem der vorhergehenden Ansprüche in Verbindung mit Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß eine Schaltung (13, 14, 15, 16) in der Zuleitung zu jeder Wicklung (10, 11) eines Elektromagneten vorgesehen ist, welcher Schaltung (13,14, 15, 16) das entsprechende Zeitsteuersignal zugeführt ist, so daß die Schaltung (13, 14, 15, 16) direkt durch das Zeitsteuersignal eine direkte Abschaltung der Bestromung der entsprechenden Wicklung (10, 11) bewirkt.
11. Schaltung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß die Schaltung (13, 14, 15, 16) jeweils ein UND-Glied (15, 16) m der Zuleitung zu jeder Wicklung (10, 11) aufweist, dessen Ausgang an die jeweilige Wicklung (10, 11) angeschlossen ist, dessen einer Eingang mit dem Aufsetzregier (2, 3) und dessen anderer Eingang mit der Kommunikationsleitung (4) für das entsprechende Zeitsteuersignal, welche vom Kommunikationsrechner (1) zum Aufsetzregier (2, 3) fuhrt, über ein UND-Glied (13) verbunden ist, welches zusätzlich an den Aufsetzregier (2, 3) angeschlossen ist, so daß bei Freischaltung des UND-Gliedes (13) durch den Aufsetz- regier (2, 3) das Zeitsteuersignal die direkte Abschaltung der Bestromung der entsprechenden Wicklung (10, 11) bewirkt.
PCT/DE2000/001250 1999-04-21 2000-04-20 Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine WO2000063544A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00936636A EP1171702B1 (de) 1999-04-21 2000-04-20 Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine
DE50007133T DE50007133D1 (de) 1999-04-21 2000-04-20 Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine
JP2000612610A JP2002542423A (ja) 1999-04-21 2000-04-20 内燃機関のそれぞれ電気機械式に作動する吸/排気弁のうちの少なくとも1つを制御するための回路
US10/033,236 US6505113B2 (en) 1999-04-21 2001-10-22 Circuit for controlling at least one electromechanically activated inlet valve and at least one electromechanically activated outlet valve of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19918095.4 1999-04-21
DE19918095A DE19918095C1 (de) 1999-04-21 1999-04-21 Schaltung zur Steuerung mindestens eines jeweils elektromechanisch betätigten Ein- und Auslaßventils einer Brennkraftmaschine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/033,236 Continuation US6505113B2 (en) 1999-04-21 2001-10-22 Circuit for controlling at least one electromechanically activated inlet valve and at least one electromechanically activated outlet valve of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2000063544A1 true WO2000063544A1 (de) 2000-10-26

Family

ID=7905360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001250 WO2000063544A1 (de) 1999-04-21 2000-04-20 Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US6505113B2 (de)
EP (1) EP1171702B1 (de)
JP (1) JP2002542423A (de)
DE (2) DE19918095C1 (de)
WO (1) WO2000063544A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108055C1 (de) * 2001-02-20 2002-08-08 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine
JP4115131B2 (ja) * 2002-01-09 2008-07-09 三菱重工業株式会社 ディーゼル機関制御装置、ディーゼル機関及び船舶
DE10234091A1 (de) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Verfahren zur Überwachung von wenigstens zwei elektromagnetischen Ventilen einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
JP4147917B2 (ja) * 2002-11-28 2008-09-10 トヨタ自動車株式会社 内燃機関の電磁駆動バルブ制御装置および電磁駆動バルブ制御方法
DE10259133A1 (de) * 2002-12-18 2004-07-01 Aft Atlas Fahrzeugtechnik Gmbh Anordnung zum Verstellen der Drehwinkelrelation zwischen Nockenwelle und Kurbelwelle
US7585306B2 (en) * 2003-12-24 2009-09-08 Maquet Cardiovascular Llc Anastomosis device, tools and methods of using
US7128043B2 (en) * 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7128687B2 (en) * 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7032581B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Engine air-fuel control for an engine with valves that may be deactivated
US7072758B2 (en) * 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7240663B2 (en) * 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7383820B2 (en) * 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7032545B2 (en) 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7555896B2 (en) * 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7559309B2 (en) * 2004-03-19 2009-07-14 Ford Global Technologies, Llc Method to start electromechanical valves on an internal combustion engine
US7194993B2 (en) * 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7079935B2 (en) * 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7066121B2 (en) * 2004-03-19 2006-06-27 Ford Global Technologies, Llc Cylinder and valve mode control for an engine with valves that may be deactivated
US7140355B2 (en) * 2004-03-19 2006-11-28 Ford Global Technologies, Llc Valve control to reduce modal frequencies that may cause vibration
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7063062B2 (en) * 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7028650B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7165391B2 (en) * 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US20070118269A1 (en) * 2005-11-18 2007-05-24 Alex Gibson Engine control unit to valve control unit interface
JP4618273B2 (ja) * 2007-05-25 2011-01-26 トヨタ自動車株式会社 内燃機関の制御装置
FR2916799B1 (fr) * 2007-05-30 2013-06-07 Valeo Sys Controle Moteur Sas Procede et dispositif de commande de soupape avec plusieurs phases de levee, procede d'alimentation d'un moteur
DE102007025619B4 (de) 2007-06-01 2012-11-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers
US7913128B2 (en) * 2007-11-23 2011-03-22 Mosaid Technologies Incorporated Data channel test apparatus and method thereof
CN105508694A (zh) * 2015-12-31 2016-04-20 安徽马钢自动化信息技术有限公司 电动阀门开度控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176713A (ja) * 1984-09-21 1986-04-19 Mazda Motor Corp エンジンのバルブ制御装置
EP0376716A1 (de) * 1988-12-28 1990-07-04 Isuzu Motors Limited Vorrichtung zur Steuerung eines elektromagnetisch angetriebenen Ventils
EP0724067A1 (de) 1995-01-27 1996-07-31 Honda Giken Kogyo Kabushiki Kaisha Steuervorrichtung für Brennkraftmaschinen
DE19526683A1 (de) 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Ankerauftreffens an einem elektromagnetisch betätigbaren Stellmittel
DE29712502U1 (de) 1997-07-15 1997-09-18 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit Gehäuse

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190013A (en) * 1992-01-10 1993-03-02 Siemens Automotive L.P. Engine intake valve selective deactivation system and method
DE19518056B4 (de) * 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
JPH10274016A (ja) * 1997-03-28 1998-10-13 Fuji Heavy Ind Ltd 電磁式動弁制御装置
DE19753275C2 (de) 1997-12-01 2001-05-23 Siemens Ag Elektromechanisches Stellgerät
DE59910632D1 (de) * 1998-07-17 2004-11-04 Bayerische Motoren Werke Ag Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176713A (ja) * 1984-09-21 1986-04-19 Mazda Motor Corp エンジンのバルブ制御装置
EP0376716A1 (de) * 1988-12-28 1990-07-04 Isuzu Motors Limited Vorrichtung zur Steuerung eines elektromagnetisch angetriebenen Ventils
EP0724067A1 (de) 1995-01-27 1996-07-31 Honda Giken Kogyo Kabushiki Kaisha Steuervorrichtung für Brennkraftmaschinen
DE19526683A1 (de) 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Ankerauftreffens an einem elektromagnetisch betätigbaren Stellmittel
DE29712502U1 (de) 1997-07-15 1997-09-18 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit Gehäuse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 246 (M - 510) 23 August 1986 (1986-08-23) *

Also Published As

Publication number Publication date
JP2002542423A (ja) 2002-12-10
DE50007133D1 (de) 2004-08-26
EP1171702B1 (de) 2004-07-21
US20020072846A1 (en) 2002-06-13
DE19918095C1 (de) 2000-10-12
EP1171702A1 (de) 2002-01-16
US6505113B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
EP1171702B1 (de) Schaltung zur steuerung mindestens eines jeweils elektromechanisch betätigten ein- und auslassventils einer brennkraftmaschine
EP1171694B1 (de) Steueranlage und verfahren zum betrieb einer brennkraftmaschine
EP3371662B1 (de) Applikationsbasierte steuerung von pneumatischen ventilanordnungen
EP1543389A1 (de) Verfahren und rechnersystem zum betreiben von mindestens zwei miteinander verbundenen steuergeräten
EP0391930A1 (de) Verfahren und einrichtung zur erkennung und lockerung verklemmter stellelemente.
DE102007025619A1 (de) Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers
EP0170018A2 (de) Verfahren und Vorrichtung zur Eigendiagnose von Stellgliedern
WO2011015198A1 (de) Mehrmotorenanlage und verfahren zum betreiben dieser
EP1171693B1 (de) Schaltung zur laststeuerung und verfahren zum notlaufbetrieb einer brennkraftmaschine
DE19531435B4 (de) Verfahren zur Anpassung der Steuerung eines elektromagnetischen Aktuators an betriebsbedingte Veränderungen
EP0437559B1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung der motorleistung einer brennkraftmaschine eines kraftfahrzeugs
DE102011088764A1 (de) Verfahren zum Betreiben eines Steuergeräts
WO2001023737A1 (de) Vorrichtung und verfahren zur steuerung einer antriebseinheit
EP1171704A1 (de) Steuerungsanlage für eine brennkraftmaschine mit elektromechanisch betätigten gaswechselventilen
EP1526268B1 (de) Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
DE10242790A1 (de) Verfahren zum Regeln des Stroms durch ein elektromagnetisches Stellglied
EP1061238B1 (de) Verfahren zur Überwachung des Betriebs einer Kolbenbrennkraftmaschine mit vollvariable Gaswechselventilen
DE102005048346A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine mit einer elektrohydraulischen Ventilsteuerung
EP1171703B1 (de) Steuervorrichtung für stellantriebe einer brennkraftmaschine
DE10305987A1 (de) Elektromagnetisches Aktuatorensystem und Verfahren für die Betätigung von Ventilen von Motoren
EP1733284B1 (de) Ablaufsteuerung von funktionen auf miteinander wechselwirkenden geräten
EP1812693B1 (de) Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine
DE19938749B4 (de) Verfahren zum Bestimmen des Ventilspiels
DE102004063543A1 (de) Vorrichtung und Verfahren zur Steuerung variabler Gaswechselventile einer Brennkraftmaschine
EP1231360B1 (de) Verfahren zum Starten einer Brennkraftmaschine mit elektromagnetischen Ventiltrieben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000936636

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 612610

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10033236

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000936636

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000936636

Country of ref document: EP