EP1812693B1 - Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine - Google Patents

Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine Download PDF

Info

Publication number
EP1812693B1
EP1812693B1 EP05803031A EP05803031A EP1812693B1 EP 1812693 B1 EP1812693 B1 EP 1812693B1 EP 05803031 A EP05803031 A EP 05803031A EP 05803031 A EP05803031 A EP 05803031A EP 1812693 B1 EP1812693 B1 EP 1812693B1
Authority
EP
European Patent Office
Prior art keywords
electric motor
gas exchange
function
time
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05803031A
Other languages
English (en)
French (fr)
Other versions
EP1812693A1 (de
Inventor
Rudolf Dr. SEETHALER
Martin Lamprecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1812693A1 publication Critical patent/EP1812693A1/de
Application granted granted Critical
Publication of EP1812693B1 publication Critical patent/EP1812693B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors

Definitions

  • the present invention relates to an apparatus and a method for controlling the Hubverlaufes an exhaust gas exchange valve of an internal combustion engine according to the preamble of the independent claims.
  • the camshaft is mechanically driven via a timing chain or timing belt from the crankshaft.
  • a so-called electromagnetic valve train for example, a so-called electromagnetic valve train.
  • an "actuator unit” is assigned to each valve or "valve group" of a cylinder.
  • a valve or a valve group is associated with an opening and a closing magnet.
  • valves By energizing the magnets, the valves can be moved axially, ie opened or closed.
  • a control shaft is provided with a cam, wherein the control shaft is pivotable by an electric motor back and forth.
  • a Drehaktuatorvorraum for stroke control of a gas exchange valve described.
  • the stroke control takes place here via a map-controlled electric motor, to whose rotor a shaft is arranged with a rotatably connected control cam.
  • the motor oscillates or reciprocates and the control cam periodically presses the gas exchange valve into its open position via a pivoting lever.
  • the gas exchange valve is closed by the spring force of a valve spring. So that the electric motor does not have to overcome the entire spring force of the valve spring when opening the gas exchange valve, an additional spring is attached to the shaft.
  • valve spring and additional spring are such that during periodic operation of the rotary actuator device according to the position of the gas exchange valve, the kinetic energy is stored either in the valve spring or in the additional spring.
  • a similar device is in the US-A-5,873,335 described.
  • a development of a Drehaktuatorvortechnische according to the DE 101 40 461 A1 is in the DE 102 52 991 A1 described.
  • the existing Drehaktuatorvoruze is extended here by a second actuator (second control cam) in the opposite direction with a smaller stroke compared to the main cam.
  • This second actuator does not open the valve completely and is only for small Strokes used in low engine speeds.
  • the Drehaktuatorvortechnisch is energized such that the shaft pivots only in the direction of the second actuating element, while at high speeds is pivoted exclusively in the direction of the first actuating element. Due to the small stroke, the rotary actuator device advantageously consumes less power at low speeds.
  • the object of the invention is to provide a device for controlling the Hubverlaufes an exhaust gas exchange valve, which ensures an improvement in terms of electrical energy consumption of an actuator.
  • the opening operation of the outlet valve takes place to the desired extent in each operating state.
  • the object is achieved by the entirety of the features of claim 1.
  • at least two set paths are provided for controlling the speed of the rotor of an electric motor driving an exhaust gas exchange valve.
  • the nominal paths differ in that they generate different high kinetic energies due to their design and the associated acceleration of the rotor during the valve opening operation and transmitted via the actuator connected to the rotor to the outlet gas exchange valve.
  • At least one first setpoint path is provided for generating and transmitting a lower kinetic energy, wherein the setpoint path is used when, for example, due to a smaller current load or load requirement (load within a predetermined load range of lower load) a smaller gas back pressure prevails in the combustion chamber.
  • at least one second desired path is provided, which is the generation and transmission of a compared to Kinetic energy of the first setpoint path generates and transmits increased kinetic energy.
  • the kinetic energy component is generated by using a second setpoint path, the rotor angular velocity - at least in the Wegphase to the vertex of the stroke curve of the outlet gas exchange valve (in particular a predetermined period before the start of the valve movement, ie during the so-called freewheeling phase of the actuating element) - during the opening process is increased in comparison with the rotor angular velocity (in the same path phase or in the same time period) in regulation according to the first nominal path.
  • the second desired path either from the beginning of the route (of the rotor) (and thus a defined time before the start of the actual valve movement) or from a predetermined time or a certain distance (of the rotor) (also a defined time before the start of the actual valve movement) increases the speed specification for the rotor in comparison to the speed specification according to the first desired path such that in the freewheeling phase of the rotor an increased kinetic energy in comparison with the first desired path is generated.
  • the invention preferably finds application in rotary actuator systems with an electric cam drive, in which the cam drive driving the outlet gas exchange valve and driven via the rotor of the electric motor has a freewheeling section.
  • the freewheeling section ensures that the rotor, starting from the closing position of the outlet gas exchange valve, in which the rotor with the smallest stroke - in particular the zero stroke predetermined by the cam base circle - acts on the outlet gas exchange valve, for a defined run-up section on the Cam base circle moves. Over the entire path of the Anlaufwegabiteses the cam actuator can be accelerated with the lowest energy consumption by the electric motor and thus generated kinetic energy for transmission to the outlet gas exchange valve.
  • FIG. 1 shows the schematic representation of a Drehaktuatorvoriques for driving an exhaust gas exchange valve 2 (hereinafter referred to gas exchange valve) of an internal combustion engine, not shown.
  • the essential components of this device are, in particular designed as a servomotor electric motor 4 (drive means), a driven by this, preferably two cams 6a, 6b different strokes camshaft 6 (actuator), one with the camshaft 6 on the one hand and with the gas exchange valve 2 on the other operatively connected rocker arm 8 (transmission element) for transmitting movement of the predetermined by the cam 6a, 6b lifting height on the gas exchange valve 2 and one, the gas exchange valve 2 in the closing direction with a spring force acting and designed as a closing spring first energy storage means 10 and, via the camshaft 6 and the drag lever 8, the gas exchange valve 2 acted upon by an opening force and designed as an opening spring second energy storage means 12.
  • a servomotor electric motor 4 drive means
  • actuator driven by this, preferably two cams 6a, 6b
  • the electric motor 4 via a control device 20 according to a nominal path, which maps the ideal swing-out behavior of the spring-mass-spring system regulated.
  • this control is done by controlling the rotor profile of the, the at least one actuator 6, 6a, 6b driving electric motor 4.
  • the ideal path of the rotor, which resonates as part of the vibration system is calculated analogously to the ideal waveform of the overall system and forms the Target path for controlling the electric motor 4.
  • a not shown displacement sensor is present, which transmits a sensor signal S to the control device 20 or another control device.
  • the electric motor 4 is controlled by the control device 20 such that the at least one gas exchange valve 2 from a first Ventilendlage E1, which corresponds for example to the closed valve position, in a second Ventilendlage E2, E2 ', for example, a partial (E2': Generalhub) or maximum opened (E2: full stroke) valve position corresponds, is transferred and vice versa.
  • the system is ideally designed so that the actuator 6, 6a, 6b in the exclusion (targeted disregard) of the environmental influences (in particular friction and gas back pressure) the way between two end positions R1 - R2 (full stroke) or R1 '- R2' (partial stroke) without Infeed additional energy, ie without active drive by the drive device 4, travels and thus engages supportive only in the environmental conditions occurring in practice.
  • the system is preferably designed in such a way that in the maximum end positions R1, R2 of the rotor (oscillation end positions at maximum oscillation stroke) each is in a torque-neutral position, in which the forces occurring are in an equilibrium of forces and in which the rotor without application of an additional Holding force is held.
  • the gas exchange valve 2 is closed and thus the closing spring 10 while maintaining a residual preload maximum relaxed while the opening spring 12 is biased to the maximum.
  • the force of the prestressed opening spring 12 is transmitted to the camshaft 6 via a stationary support element 6c and is directed in the position R1 exactly through the center of the camshaft 6 and thus virtually neutralized.
  • the existing due to the residual bias force of the closing spring 10 is neutralized in the described position, as this is also directed via the cam followers 8 in the center of the camshaft 6.
  • the gas exchange valve 2 In the second torque-neutral position R2, not shown, the gas exchange valve 2 would be opened with its maximum stroke according to the main cam 6b and the gas exchange valve 2 arranged around the closing spring 10 maximum biased while the opening spring 12 would be maximally relaxed while maintaining a residual bias.
  • the arrangement of the individual components is chosen such that again the force of the maximum prestressed spring means (now: closing spring 10) and the maximum relaxed spring means (now: opening spring 12) respectively directed through the center of the camshaft 6 and thus virtually neutralized in this position are.
  • a third, also not shown, torque-neutral position R0 is present when the system assumes a so-called dropped state in which the camshaft 6 occupies a position between the two first torque-neutral positions R1, R2. From the fallen position, the system can be brought out again only by high energy expenditure, in which, for example, by swinging or swinging the rotor, the camshaft 6 is again transferred to one of the two first torque-neutral positions R1, R2 or the camshaft 6 at least up to a partial stroke is swung, in which a regular operation of the rotary actuator device is possible again.
  • the rotor thus oscillates from one end position E1, E1 'into the other end position E2, E2' solely on the basis of the forces stored in the energy storage means 10, 12 without the introduction of additional energy, for example by the electric motor 4.
  • FIG. 2a the target specification of a speed profile for the rotor of an electric motor 4 for actuating an outlet gas exchange valve 2 is shown schematically.
  • the setpoint path SB1 shown in bold is a setpoint path for controlling the rotor speed on the basis of which is to be controlled when only lower gas back pressures within the combustion chamber during the opening operation of the outlet gas exchange valve 2 are present or expected.
  • the second target web SB2, which is not shown in bold, is a target web in the event that increased gas counterpressures are present or to be expected in the combustion chamber, so that this target web has an increased speed specification for the rotor, in particular in the travel range shortly before the actual valve opening movement of the exhaust Gas exchange valve 2, pretends.
  • the rotor speed is increased in such a way that by means of the second setpoint path SB2 a kinetic energy E kin_accelerated in comparison is generated and can be transmitted to the outlet gas exchange valve 2.
  • the speed specification based on the second setpoint path SB2 can be either over the entire travel range of the rotor and at any time - compared to the first desired course - be increased, or increased only over individual parts of the path range.
  • the rotor speed is increased specifically. Both the time period .DELTA.t accelerated and the magnitude of the acceleration are preferably predefined as a function of the respective load request.
  • the speed of the rotor in the starting phase of the rotor accordingly lower than in the desired path for a lower or an average load request.
  • Essential to the invention is only that the increase in speed has an increase in the kinetic energy result, which ensures that occurring at each operating time Gasumbledrücke can be overcome during the opening process of the outlet gas exchange valve 2.
  • a plurality of setpoint paths for controlling the rotor speed are present, wherein each setpoint path is assigned a predetermined load range or a predetermined gas backpressure range.
  • additional nominal paths can be generated by interpolation in a region between two adjacent stored nominal paths.
  • FIG. 2b in each case shows the rotor angle of the electric motor 4 which adjusts itself due to the regulation of the rotor angular velocity.
  • the curve segment shown by dashed lines is the rotor angle profile due to the increased rotor angular velocity. Accordingly, the increased rotor angular velocity leads analogously directly to an increased rotor angle.
  • the early increased rotor angle does not lead to an immediate output of the gas exchange valve 2 due to the freewheeling section described above, but allows in the inventive way the construction of an additional kinetic energy E kin_be instructt (by acceleration of moving during the freewheel masses, such as rotor mass and mass of the actuator) Support of the electric motor 4 during the opening operation of the exhaust gas exchange valve 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Regelung des Hubverlaufes eines Auslass-Gaswechselventils einer Brennkraftmaschine gemäß dem Oberbegriff der unabhängigen Ansprüche.
  • Bei herkömmlichen Verbrennungsmotoren wird die Nockenwelle mechanisch über eine Steuerkette oder einen Steuerriemen von der Kurbelwelle angetrieben. Zur Steigerung der Motorleistung und zur Senkung des Kraftstoffverbrauchs bringt es erhebliche Vorteile, die Ventile der einzelnen Zylinder individuell anzusteuern. Dies ist durch einen sogenannten vollvariablen (veränderbare Steuerzeiten und veränderbarer Ventilhub), beispieisweise einen sogenannten elektromagnetischen Ventiltrieb möglich. Bei einem vollvariablen Ventiltrieb ist jedem Ventil bzw. jeder "Ventilgruppe" eines Zylinders eine "Aktuatoreinheit" zugeordnet. Derzeit werden unterschiedliche Grundtypen von Aktuatoreinheiten erforscht.
    Bei einem Grundtyp (sogenannte Hubaktuatoren) sind einem Ventil oder einer Ventilgruppe ein Öffnungs- und ein Schließmagnet zugeordnet. Durch Bestromen der Magneten können die Ventile axial verschoben, d.h. geöffnet bzw. geschlossen werden.
    Bei dem anderen Grundtyp (sogenannter Drehaktuator) ist eine Steuerwelle mit einem Nocken vorgesehen, wobei die Steuerwelle durch einen Elektromotor hin und her schwenkbar ist.
  • Ferner ist aus der DE 101 40 461 A1 eine Drehaktuatorvorrichtung zur Hubsteuerung eines Gaswechselventils beschrieben. Die Hubsteuerung erfolgt hier über einen kennfeldgesteuerten Elektromotor, an dessen Rotor eine Welle mit einem drehfest verbundenen Steuernocken angeordnet ist. Beim Betrieb der Brennkraftmaschine schwenkt, bzw. pendelt der Motor hin und her und der Steuernocken drückt über einen Schwenkhebel periodisch das Gaswechselventil in seine Öffnungsstellung. Geschlossen wird das Gaswechselventil durch die Federkraft einer Ventilfeder. Damit der Elektromotor nicht die gesamte Federkraft der Ventilfeder beim Öffnen des Gaswechselventils überwinden muss, ist an die Welle eine zusätzliche Feder angebracht. Die Kräfte von Ventilfeder und zusätzlicher Feder sind dergestalt, dass beim periodischen Betrieb der Drehaktuatorvorrichtung entsprechend der Stellung des Gaswechselventils die kinetische Energie entweder in der Ventilfeder oder in der zusätzlichen Feder gespeichert ist. Durch diese Maßnahme wird der Strombedarf beim Betrieb der Drehaktuatorvorrichtung reduziert. Nachteilig bei der beschriebenen Drehaktuatorvorrichtung ist der hohe Strombedarf bei niedrigen Drehzahlen.
  • Eine ähnliche Vorrichtung ist in der US-A-5,873,335 beschrieben. Hierbei wirkt ein von einem Elektromotor angetriebener Steuernocken üblicher Bauart einerseits mit dem von einer Schließfeder belasteten Tellerventil zusammen und steht andererseits mit einem orthogonal zum Tellerventil angeordneten, über eine Öffnungsfeder federbelasteten Stößel in Verbindung.
  • Eine Weiterbildung einer Drehaktuatorvorrichtung gemäß der DE 101 40 461 A1 ist in der DE 102 52 991 A1 beschrieben. Die bestehende Drehaktuatorvorrichtung wird hier durch ein zweites Betätigungselement (zweiter Steuernocken) in gegenläufiger Drehrichtung mit einem geringeren Hub gegenüber dem Hauptnocken erweitert. Dieses zweite Betätigungselement öffnet das Ventil nicht komplett und wird nur für kleine Hübe im Bereich niedriger Motordrehzahlen verwendet. Bei niedrigen Drehzahlen der Brennkraftmaschine wird die Drehaktuatorvorrichtung derart bestromt, dass die Welle nur in Richtung des zweiten Betätigungselementes schwenkt, während bei hohen Drehzahlen ausschließlich in Richtung des ersten Betätigungselementes geschwenkt wird. Durch den geringen Hub verbraucht die Drehaktuatorvorrichtung bei niedrigen Drehzahlen in vorteilhafter Weise weniger Strom.
  • Aufgabe der Erfindung ist es, eine Vorrichtung zur Regelung des Hubverlaufes eines Auslass-Gaswechselventils zu schaffen, die eine Verbesserung hinsichtlich des elektrischen Energieverbrauchs einer Aktuatorvorrichtung gewährleistet. Insbesondere soll durch den Gegenstand der Erfindung auch sichergestellt werden, dass in jedem Betriebszustand der Öffnungsvorgang des Auslassventils in dem gewünschten Ausmaß erfolgt. Erfindungsgemäß wird die Aufgabe durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Gemäß der Erfindung sind mindestens zwei Sollbahnen zur Regelung der Geschwindigkeit des Rotors eines ein Auslass-Gaswechselventil antreibenden Elektromotors vorgesehen. Dabei unterscheiden sich die Sollbahnen dadurch, dass sie aufgrund ihrer Ausgestaltung und der damit verbundenen Beschleunigung des Rotors während des Ventil-Öffnungsvorgangs unterschiedlich hohe kinetische Energien erzeugen und über das mit dem Rotor verbundene Betätigungselement auf das Auslass-Gaswechselventil übertragen.
  • So ist mindestens eine erste Sollbahn zur Erzeugung und Übertragung einer geringeren kinetischen Energie vorgesehen, wobei die Sollbahn dann Anwendung findet, wenn beispielsweise aufgrund einer kleineren aktuellen Last bzw. Lastanforderung (Last innerhalb eines vorbestimmten Lastbereiches geringerer Last) ein kleinerer Gasgegendruck in der Brennkammer vorherrscht. Ferner ist mindestens eine zweite Sollbahn vorgesehen, die die Erzeugung und Übertragung einer im Vergleich zur kinetischen Energie der ersten Sollbahn vergrößerte kinetische Energie erzeugt und überträgt. Diese findet dann Anwendung, wenn bei einer größeren aktuellen Last oder Lastanforderung (für eine vorliegende Last innerhalb eines vorbestimmten Lastbereiches höherer Last), die Öffnung des Auslass-Gaswechselventils aufgrund des größeren Gasgegendruckes in der Brennkammer bei Steuerung des Rotors anhand der ersten Sollbahn nicht mehr mit Sicherheit gewährleistet werden kann, weil der Elektromotor nicht ausreichend Energie zur Verfügung stellen kann. In diesem Fall wird der dem Elektromotor fehlende Energieanteil durch Erzeugung eines zusätzlichen kinetischen Energieanteils ausgeglichen. Der kinetische Energieanteil wird erzeugt, indem anhand einer zweiten Sollbahn die Rotorwinkelgeschwindigkeit - zumindest in der Wegphase bis zum Scheitelpunkt des Hubverlaufes des Auslass-Gaswechselventils (insbesondere einen vorbestimmten Zeitraum vor dem Beginn der Ventilbewegung, also während der sogenannten Freilaufphase des Betätigungselements) - während des Öffnungsvorgangs im Vergleich zur Rotorwinkelgeschwindigkeit (in der gleichen Wegphase bzw. in dem gleichen Zeitraum) bei Regelung gemäß der ersten Sollbahn erhöht wird. Hierfür ist bei der zweiten Sollbahn entweder von Beginn des Wegverlaufes (des Rotors) an (und damit eine definierte Zeit vor Beginn der eigentlichen Ventilbewegung) oder von einem vorbestimmten Zeitpunkt oder einer bestimmten Wegstrecke (des Rotors) an (ebenfalls eine definierte Zeit vor Beginn der eigentlichen Ventilbewegung) die Geschwindigkeitsvorgabe für den Rotor im Vergleich zur Geschwindigkeitsvorgabe gemäß der ersten Sollbahn derart erhöht, dass in der Freilaufphase des Rotors eine im Vergleich zur ersten Sollbahn vergrößerte kinetische Energie erzeugt wird.
  • Herkömmliche Drehaktuatorvorrichtungen mit einem Elektromotor als Antriebseinheit für Gaswechselventile kompensieren auftretende Störkräfte generell zu dem Zeitpunkt, zu dem sie auftreten. Sollten Störkräfte in Form von Gasgegendrücken ausgeglichen werden, sind hierfür in der Regel Elektromotoren höherer Leistung erforderlich. Durch den Gegenstand der Erfindung können im Vergleich zum Stand der Technik in Leistung (und somit im Energieverbrauch) und Baugröße verkleinerte Elektromotoren verwendet werden.
  • Bevorzugt findet die Erfindung ihre Anwendung bei Drehaktuatorsystemen mit einem elektrischen Nockenantrieb, bei denen der das Auslass-Gaswechselventil antreibende und über den Rotor des Elektromotors angetriebene Nockenantrieb einen Freilaufabschnitt aufweist. Der Freilaufabschnitt gewährleistet, dass der Rotor ausgehend von der Schließposition des Auslass-Gaswechselventils, in der der Rotor mit dem kleinsten Hub - insbesondere dem durch den Nockengrundkreis vorgegebenen Nullhub - auf das Auslass-Gaswechselventil wirkt, sich für einen definierten Anlaufwegabschnitt bzw. Freilaufabschnitt auf dem Nockengrundkreis bewegt. Über den gesamten Weg des Anlaufwegabschnittes kann das Nockenbetätigungselement mit geringstem Energieeinsatz durch den Elektromotor beschleunigt und so kinetische Energie für die Übertragung auf das Auslass-Gaswechselventil erzeugt werden.
  • Im Folgenden wird die Erfindung anhand von Figuren näher erläutert. Es zeigen:
  • Figur 1:
    die schematische Darstellung einer Drehaktuatorvorrichtung für den Antrieb eines Gaswechselventils einer nicht dargestellten Brennkraftmaschine, und
    Figur 2a, 2b:
    die Sollvorgabe eines Geschwindigkeitsverlaufes für den Rotor eines Elektromotors zur Betätigung eines Auslass-Gaswechselventils sowie den hierzu korrespondierenden sich einstellenden Rotorwinkel.
  • Figur 1 zeigt die schematische Darstellung einer Drehaktuatorvorrichtung für den Antrieb eines Auslass-Gaswechselventils 2 (im Folgenden Gaswechselventil genannt) einer nicht dargestellten Brennkraftmaschine. Die wesentlichen Bestandteile dieser Vorrichtung sind ein, insbesondere als Servomotor ausgebildeter Elektromotor 4 (Antriebseinrichtung), eine von diesem angetriebene, vorzugsweise zwei Nocken 6a, 6b unterschiedlichen Hubs aufweisende Nockenwelle 6 (Betätigungselement), ein mit der Nockenwelle 6 einerseits und mit dem Gaswechselventil 2 andererseits in Wirkverbindung stehender Schlepphebel 8 (Übertragungselement) zur Bewegungsübertragung der durch die Nocken 6a, 6b vorgegebenen Hubhöhe auf das Gaswechselventil 2 sowie ein, das Gaswechselventil 2 in Schließrichtung mit einer Federkraft beaufschlagendes und als Schließfeder ausgebildetes erstes Energiespeichermittel 10 und ein, über die Nockenwelle 6 und den Schlepphebel 8 das Gaswechselventil 2 mit einer Öffnungskraft beaufschlagendes und als Öffnungsfeder ausgebildetes zweites Energiespeichermittel 12. Für die genaue Wirkungsweise und mechanische Ausgestaltung der Drehaktuatorvorrichtung wird auf die DE 102 52 991 A1 verwiesen.
  • Um einen energiearmen Betrieb des Elektromotors 4, der über die Nockenwelle 6 das vorhandene Gaswechselventil 2 antreibt, zu gewährleisten, wird neben der optimalen Auslegung der einander entgegenwirkenden Federn (Schließfeder 10, Öffnungsfeder 12) und der idealen Positionierung von Dreh- und Anlenkpunkten in der Geometrie der Vorrichtung selbst, der Elektromotor 4 über eine Regeleinrichtung 20 gemäß einer Sollbahn, die das ideale Ausschwingverhalten des Feder-Masse-FederSystems abbildet geregelt. Insbesondere erfolgt diese Regelung durch Regelung des Rotorverlaufes des, das mindestens eine Betätigungselement 6, 6a, 6b antreibenden Elektromotors 4. Der ideale Wegverlauf des Rotors, der als Teil des Schwingungssystems mitschwingt, wird analog zum idealen Schwingungsverlauf des Gesamtsystems rechnerisch ermittelt und bildet die Sollbahn zur Regelung des Elektromotors 4. Zur Überwachung der Istposition des Rotors ist ein nicht dargestellter Wegsensor vorhanden, der ein Sensorsignal S an die Regeleinrichtung 20 oder eine andere Steuereinrichtung übermittelt. Der Elektromotor 4 wird derart durch die Regeleinrichtung 20 angesteuert, dass das zumindest eine Gaswechselventil 2 von einer ersten Ventilendlage E1, die beispielsweise der geschlossenen Ventilposition entspricht, in eine zweite Ventilendlage E2, E2', die beispielsweise einer teilweise (E2': Teilhub) oder maximal geöffneten (E2: Vollhub) Ventilposition entspricht, überführt wird und umgekehrt. Bei der Regelung des Elektromotors 4 wird der Rotor und damit das mit dem Rotor wirkverbundene Betätigungselement 6, 6a, 6b in seiner Position entsprechend gesteuert, so dass der Rotor bzw. das Betätigungselement 6, 6a, 6b analog zur Schließposition E1 des Gaswechselventils 2 eine Position im Wegebereich des Nockengrundkreises, z.B. im Wegebereich zwischen R1 und R1' einnehmen wird und analog zur zweiten Endlage E2, E2' eine Position im Wegebereich des Nockens 6a, 6b, z.B. im Wegebereich zwischen R2 und R2' einnehmen wird. Das System ist idealerweise so ausgelegt, dass das Betätigungselement 6, 6a, 6b bei Ausschluss (gezielter Nichtberücksichtigung) der Umgebungseinflüsse (insbesondere Reibung und Gasgegendruck) den Weg zwischen zwei Endpositionen R1 - R2 (Vollhub) oder R1' - R2' (Teilhub) ohne Einspeisung zusätzlicher Energie, also ohne aktiven Antrieb durch die Antriebseinrichtung 4, zurücklegt und somit nur bei den in der Praxis auftretenden Umgebungseinflüssen unterstützend eingreift. Das System ist vorzugsweise derart ausgebildet, dass es in den Maximalendlagen R1, R2 des Rotors (Schwingungsendlagen bei maximalem Schwingungshub) sich jeweils in einer momentenneutralen Position befindet, in der sich die auftretenden Kräfte in einem Kräftegleichgewicht befinden und in der der Rotor ohne Aufbringung einer zusätzlichen Haltekraft gehalten ist.
  • Im Besonderen ist in der ersten momentenneutralen Position R1 (in Figur 1 dargestellt) das Gaswechselventil 2 geschlossen und somit die Schließfeder 10 unter Beibehaltung einer Rest-Vorspannung maximal entspannt, während die Öffnungsfeder 12 maximal vorgespannt ist. Die Kraft der vorgespannten Öffnungsfeder 12 wird über ein ortsfestes Abstützelement 6c der Nockenwelle 6 auf diese übertragen und ist in der Position R1 genau durch den Mittelpunkt der Nockenwelle 6 gerichtet und somit quasi neutralisiert. Auch die aufgrund der Rest-Vorspannung vorhandene Kraft der Schließfeder 10 wird in der beschriebenen Position neutralisiert, da diese über den Schlepphebel 8 ebenfalls in den Mittelpunkt der Nockenwelle 6 gerichtet ist.
  • In der nicht dargestellten zweiten momentenneutralen Position R2 wäre das Gaswechselventil 2 mit seinem Maximalhub gemäß dem Hauptnocken 6b geöffnet und die um das Gaswechselventil 2 herum angeordnete Schließfeder 10 maximal vorgespannt, während die Öffnungsfeder 12 unter Beibehaltung einer Rest-Vorspannung maximal entspannt wäre. Die Anordnung der einzelnen Komponenten ist derart gewählt, dass wiederum die Kraft des maximal vorgespannten Federmittels (jetzt: Schließfeder 10) und des maximal entspannten Federmittels (jetzt: Öffnungsfeder 12) jeweils genau durch dem Mittelpunkt der Nockenwelle 6 gerichtet und somit in dieser Position quasi neutralisiert sind.
  • Eine dritte, ebenfalls nicht dargestellte, momentenneutrale Position R0 ist dann vorhanden, wenn das System einen sogenannten abgefallen Zustand einnimmt, in dem die Nockenwelle 6 eine Position zwischen den beiden ersten momentenneutralen Positionen R1, R2 einnimmt. Aus der abgefallenen Position kann das System lediglich mittels hohem Energieaufwand wieder herausgebracht werden, in dem beispielsweise durch ein Anschwingen oder Hochschwingen der Rotors die Nockenwelle 6 wieder in eine der beiden ersten momentenneutralen Positionen R1, R2 überführt wird oder die Nockenwelle 6 zumindest bis zu einem Teilhub angeschwungen wird, bei dem ein regulärer Betrieb der Drehaktuatorvorrichtung wieder möglich ist.
  • Analog zu den beschriebenen drei momentenneutralen Positionen R0, R1, R2 für den Betrieb der Vorrichtung mittels dem Hauptnocken 6b können weitere Positionen (nicht dargestellt) für den Minimalhubbetrieb bei Betätigung des zweiten Nocken 6a vorhanden sein. Für diese weiteren momentenneutralen Positionen gilt das gleiche, wie für die zuvor beschrieben momentenneutralen Positionen R0, R1, R2.
  • Bei dem berechneten idealen Ausschwingverhalten schwingt der Rotor also von einer Endposition E1, E1' in die andere Endposition E2, E2' allein aufgrund der in den Energiespeichermitteln 10, 12 gespeicherten Kräfte ohne Einspeisung einer zusätzlichen Energie, etwa durch den Elektromotor 4.
  • In dem Fall, dass der Rotor im Teilhubbereich von einer ersten Endlage R1' zu einer korrespondierenden zweiten Endlage R2' schwingt (insbesondere bei hohen Drehzahlen der Brennkraftmaschine), wäre das ideale Ausschwingverhalten somit das eines Perpetuum mobile (unendliche gleichbleibende Schwingung).
  • Für den Fall, dass der Rotor im Vollhubbereich von einer ersten Endlage R1 zu einer korrespondierenden zweiten Endlage R2 schwingt (insbesondere bei niedrigen Drehzahlen der Brennkraftmaschine), wäre er jeweils in den Endlagen R1, R2 in einer momentenneutralen Position gehalten und müsste aus dieser Position jeweils durch Einbringung einer Anstoßenergie (Motorimpuls) wieder veranlasst werden die nächste Schwingung in die andere Endlage vorzunehmen.
  • Dadurch, dass die Sollbahnen für Vollhub und für Teilhub dem Ausschwingverhalten der Drehaktuatorvorrichtung ohne Reibungsverluste und ohne Gasgegendrücke entsprechen wird gewährleistet, dass die Regeleinrichtung 20 den Elektromotor 4 ausschließlich zum Ausgleich der in der Praxis stets vorhandenen Reibungsverluste und der auftretenden Gasgegendrücke ansteuert. Da Reibungsverluste hauptsächlich bei hohen Rotordrehzahlen auftreten, muss der Elektromotor 4 bei hohen Drehzahlen die größte Leistung abgeben. Da dies mit dem energieoptimalen Betriebspunkt des Elektromotors 4 zusammenfällt, kann durch die Regelung anhand idealisierter Sollbahnen des zu betreibenden Aktuatorsystems ein energiesparsamer Betrieb des selben gewährleistet werden.
  • In Figur 2a ist die Sollvorgabe eines Geschwindigkeitsverlaufes für den Rotor eines Elektromotors 4 zur Betätigung eines Auslass-Gaswechselventils 2 schematisch dargestellt. Die fett dargestellte Sollbahn SB1 ist eine Sollbahn zur Regelung der Rotorgeschwindigkeit anhand der geregelt werden soll, wenn lediglich niedrigere Gasgegendrücke innerhalb der Brennkammer während des Öffnungsvorgangs des Auslass-Gaswechselventils 2 vorhanden oder zu erwarten sind. Die zweite, nicht fett dargestellte Sollbahn SB2 ist eine Sollbahn für den Fall, dass erhöhte Gasgegendrücke in der Brennkammer vorhanden oder zu erwarten sind, so dass diese Sollbahn eine erhöhte Geschwindigkeitsvorgabe für den Rotor, insbesondere im Wegbereich kurz vor Beginn der tatsächlichen Ventilöffnungsbewegung des Auslass-Gaswechselventils 2, vorgibt. Die Rotorgeschwindigkeit wird dabei derart erhöht, dass mittels der zweiten Sollbahn SB2 eine im Vergleich erhöhte kinetische Energie Ekin_beschleunigt erzeugt und auf das Auslass-Gaswechselventil 2 übertragen werden kann. Hierfür kann die Geschwindigkeitsvorgabe anhand der zweiten Sollbahn SB2 entweder über den gesamten Wegbereich des Rotors und zu jedem Zeitpunkt - im Vergleich zur ersten Sollbahn - erhöht sein, oder nur über einzelne Teile des Wegbereiches erhöht werden. Insbesondere in einem definierten Zeitraum Δtbeschleunigt vor dem Beginn der Ventil-Öffnungsbewegung (im Punkt VÖ) wird die Rotorgeschwindigkeit gezielt erhöht. Sowohl der Zeitraum Δtbeschleunigt als auch die Höhe der Beschleunigung werden vorzugsweise in Abhängigkeit von der jeweils vorliegenden Lastanforderung vorgegeben. Um vorgegebene Steuerzeiten einzuhalten ist dann die Geschwindigkeit des Rotors in der Startphase des Rotors dementsprechend geringer als bei der Sollbahn für eine geringere oder eine mittlere Lastanforderung. Erfindungswesentlich ist lediglich, dass die Geschwindigkeitserhöhung eine Erhöhung der kinetischen Energie zur Folge hat, die gewährleistet, dass zu jedem Betriebszeitpunkt auftretende Gasgegendrücke beim Öffnungsvorgang des Auslass-Gaswechselventils 2 überwunden werden können.
    Bevorzugt sind eine Vielzahl von Sollbahnen zur Regelung der Rotorgeschwindigkeit vorhanden, wobei jeder Sollbahn ein vorbestimmter Lastbereich bzw. ein vorbestimmter Gasgegendruckbereich zugeordnet ist. Ferner können zusätzliche Sollbahnen durch Interpolation in einem Bereich zwischen zwei benachbarten hinterlegten Sollbahnen erzeugt werden.
  • Figur 2b zeigt jeweils den sich aufgrund der Regelung der Rotorwinkelgeschwindigkeit einstellenden Rotorwinkel des Elektromotors 4. Dabei ist der gestrichelt dargestellte Kurvenabschnitt der Rotorwinkelverlauf aufgrund der erhöhten Rotorwinkelgeschwindigkeit. Demnach führt die erhöhte Rotorwinkelgeschwindigkeit analog unmittelbar zu einem erhöhten Rotorwinkel. Der frühzeitig erhöhte Rotorwinkel führt aufgrund des vorstehend beschriebenen Freilaufabschnittes nicht zu einem unmittelbaren Abtrieb des Gaswechselventils 2, sondern ermöglicht auf erfindungsgemäße Weise den Aufbau einer zusätzlichen kinetischen Energie Ekin_beschleunigt (durch Beschleunigung der während des Freilaufs bewegten Massen, wie Rotormasse und Masse des Betätigungselements) zur Unterstützung des Elektromotors 4 während des Öffnungsvorgangs des Auslass-Gaswechselventils 2.

Claims (4)

  1. Vorrichtung zur Regelung des Hubverlaufes eines Auslass-Gaswechselventils (2) einer Brennkraftmaschine, umfassend
    - einen steuerbaren Elektromotor (4) mit einem Betätigungselement (6, 6a, 6b) zur Betätigung des Auslass-Gaswechselventils (2),
    - eine Regeleinrichtung (20) zur Ansteuerung des Elektromotors (4),
    - und zwei in entgegengesetzte Antriebsrichtungen auf das Auslass-Gaswechselventil (2) wirkende Energiespeichermittel (10, 12),
    wobei die Regeleinrichtung (20) den Elektromotor (4) gemäß einer hinterlegten Sollbahn (SB1; SB2) ansteuert, anhand der das Auslass-Gaswechselventil (2) durch Hin- und Herschwenken des Rotors des Elektromotors (4) von einer ersten Endlage (E1) in eine zweite Endlage (E2; E2') überführt wird und umgekehrt,
    dadurch gekennzeichnet, dass
    - für die Ansteuerung des Elektromotors (4) mindestens zwei unterschiedliche Sollbahnen (SB1, SB2) zur Regelung der Geschwindigkeit des Rotors des Elektromotors (4) vorhanden sind,
    wobei bei Regelung anhand der einen Sollbahn (SB1; SB2) während des Ventil-Öffnungsvorgangs eine niedrigere kinetische Energie auf das Auslass-Gaswechselventil (2) übertragen wird als bei Regelung anhand der anderen Sollbahn (SB2; SB1).
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass die mindestens zwei Sollbahnen (SB1, SB2) vorhanden sind, die der gleichen Anzahl unterschiedlicher Lastanforderungsbereiche zugeordnet sind.
  3. Vorrichtung nach einem oder mehreren der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Regeleinheit (20) oder eine andere Steuereinheit derart ausgebildet ist, dass mindestens eine weitere, vorzugsweise eine Mehrzahl von weiteren Sollbahn(en) (SBn) im Regelbereich zwischen zwei benachbarten hinterlegten Sollbahnen (SB1, SB2) durch Interpolation erzeugbar ist.
  4. Verfahren zur Regelung des Hubverlaufes eines Auslass-Gaswechselventils (2) einer Brennkraftmaschine,
    - wobei der Rotor eines für den Antrieb eines Auslass-Gaswechselventils (2) bestimmten Elektromotors (4) gemäß einer hinterlegten Sollbahn (SB1; SB2) als Sollvorgabe für die Rotorgeschwindigkeit ansteuert wird
    - und wobei für die Ansteuerung des Elektromotors (4) mindestens zwei Sollbahnen (SB1, SB2) zur Regelung der Geschwindigkeit des Elektromotorrotors (4) vorhanden sind, wobei bei Regelung anhand der einen Sollbahn (SB1) sich eine niedrigere Rotormaximalgeschwindigkeit (vmax_SB1) einstellt als bei Regelung anhand der anderen Sollbahn (SB2).
EP05803031A 2004-11-12 2005-10-19 Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine Not-in-force EP1812693B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054775A DE102004054775B4 (de) 2004-11-12 2004-11-12 Vorrichtung und Verfahren zur Regelung des Hubverlaufes eines Auslass-Gaswechselventils einer Brennkraftmaschine
PCT/EP2005/011246 WO2006050795A1 (de) 2004-11-12 2005-10-19 Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1812693A1 EP1812693A1 (de) 2007-08-01
EP1812693B1 true EP1812693B1 (de) 2009-10-07

Family

ID=35709014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05803031A Not-in-force EP1812693B1 (de) 2004-11-12 2005-10-19 Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US7753015B2 (de)
EP (1) EP1812693B1 (de)
AT (1) ATE445086T1 (de)
DE (2) DE102004054775B4 (de)
WO (1) WO2006050795A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0920152D0 (en) * 2009-11-18 2009-12-30 Camcon Ltd Rotary electromagnetic actuator
EP2336508B1 (de) * 2009-12-16 2012-07-04 Iveco Motorenforschung AG Mechanisches variables Betätigungssystem für Zweitakt- und Viertaktmotorbetrieb
GB2563064B (en) * 2017-06-02 2022-05-18 Camcon Auto Ltd Valve actuators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327856A (en) * 1992-12-22 1994-07-12 General Motors Corporation Method and apparatus for electrically driving engine valves
US5873335A (en) * 1998-01-09 1999-02-23 Siemens Automotive Corporation Engine valve actuation control system
DE10140461A1 (de) * 2001-08-17 2003-02-27 Bayerische Motoren Werke Ag Drehaktor-Vorrichtung zur Hubsteuerung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine
DE10252991A1 (de) * 2002-11-14 2004-05-27 Bayerische Motoren Werke Ag Schwenkaktor-Vorrichtung zur Hubsteuerung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE102004054775B4 (de) 2006-09-21
DE502005008295D1 (de) 2009-11-19
US7753015B2 (en) 2010-07-13
WO2006050795A1 (de) 2006-05-18
DE102004054775A1 (de) 2006-05-24
ATE445086T1 (de) 2009-10-15
US20070209620A1 (en) 2007-09-13
EP1812693A1 (de) 2007-08-01

Similar Documents

Publication Publication Date Title
EP1298300B1 (de) Momentenneutrale Zylinderabschaltung durch Deaktivierung von Gaswechselventilen
EP2547876B1 (de) Verfahren und vorrichtung zum betreiben eines verbrennungsmotors bei einer störung eines kurbelwellensensors
EP2339150B1 (de) Brennkraftmaschine und zugehöriges Betriebsverfahren
EP1561011A1 (de) Schwenkaktor-vorrichtung zur hubsteuerung eines gaswechselventils im zylinderkopf einer brennkraftmaschine
EP1812693B1 (de) Vorrichtung und verfahren zur regelung des hubverlaufes eines auslassgaswechselventils einer brennkraftmaschine
WO2006050796A1 (de) Verfahren zur kalibrierung eines wegsensors einer drehaktuatorvorrichtung zur ansteuerung eines gaswechselventils einer brennkraftmaschine
EP1815110B1 (de) Verfahren zur kalibrierung eines wegsensors einer drehaktuatorvorrichtung zur ansteuerung eines gaswechselventils einer brennkraftmaschine
EP1812692B1 (de) Vorrichtung zur regelung des hubverlaufes eines gaswechselventils einer brennkraftmaschine
EP1608852B1 (de) Vorrichtung zur variablen bet tigung der gaswechselventile v on verbrennungsmotoren und verfahren zum betreiben einer derartigen vorrichtung
DE102018119458A1 (de) Verfahren zur durchführung von einlassnockenhubzustandsübergängen
WO2017174353A1 (de) Ventiltrieb sowie motorbaugruppe
DE102017200824A1 (de) Verfahren und Vorrichtung zur Adaption einer Ventilhubverstellung eines Ladungswechselventils eines Verbrennungsmotors
DE102004054774B4 (de) Vorrichtung zur Regelung des Hubverlaufes eines Gaswechselventils einer Brennkraftmaschine
EP1573178B1 (de) Verfahren zum verändern der ventilsteuerzeiten einer brennkr aftmaschine
DE102021124416A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
DE102007003997A1 (de) Verstellvorrichtung zur axialen Verstellung einer Nockenwelle mittels eines Verstellaktuators
DE102004054740B4 (de) Verfahren zur Erkennung eines Fehlers in einem Wegsignal eines Wegsensors einer Drehaktuatorvorrichtung
DE10308101A1 (de) Motormanagement-System und Verfahren zur Einstellung des Drehwinkels einer Nockenwelle gegenüber dem Drehwinkel einer Kurbelwelle eines Kraftfahrzeugs
DE102012008488B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
DE10244337B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE102011116737A1 (de) Verbrennungsmotor für ein Kraftfahrzeug
DE102007029411A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine mit variabler Ventilsteuerung
DE20317382U1 (de) Vorrichtung zur variablen Betätigung der Gaswechselventile von Verbrennungsmotoren
DE102010032425A1 (de) Stelleinrichtung für eine Hubkolbenmaschine, Hubkolbenmaschine sowie Verfahren zum Betreiben einer solchen Hubkolbenmaschine
DE102011018397A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Stelleinrichtung zum variablen Einstellen wenigstens eines Verdichtungsverhältnisses einer solchen Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008295

Country of ref document: DE

Date of ref document: 20091119

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091007

BERE Be: lapsed

Owner name: BAYERISCHE MOTOREN WERKE A.G.

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100207

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

26N No opposition filed

Effective date: 20100708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100108

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131028

Year of fee payment: 9

Ref country code: GB

Payment date: 20131031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141017

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008295

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503