WO2000054354A1 - Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage - Google Patents

Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage Download PDF

Info

Publication number
WO2000054354A1
WO2000054354A1 PCT/DE2000/000566 DE0000566W WO0054354A1 WO 2000054354 A1 WO2000054354 A1 WO 2000054354A1 DE 0000566 W DE0000566 W DE 0000566W WO 0054354 A1 WO0054354 A1 WO 0054354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
housing
heat
air
cell system
Prior art date
Application number
PCT/DE2000/000566
Other languages
English (en)
French (fr)
Inventor
Willi Bette
Christian Merkel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7900491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000054354(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA002367099A priority Critical patent/CA2367099C/en
Priority to EP00912393A priority patent/EP1159770B1/de
Priority to DE50000454T priority patent/DE50000454D1/de
Priority to JP2000604478A priority patent/JP2002539584A/ja
Publication of WO2000054354A1 publication Critical patent/WO2000054354A1/de
Priority to US09/950,429 priority patent/US6841277B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for operating a fuel cell system and to a fuel cell system.
  • the technical implementation of the principle of the fuel cell has led to different solutions, namely with different types of electrolytes and with operating temperatures between 80 ° C and 1000 ° C. Depending on their operating temperature, the fuel cells are divided into low, medium and high temperature fuel lines, which in turn differ from one another in different technical embodiments.
  • a fuel cell alone supplies an operating voltage of less than one volt.
  • a large number of fuel cells are therefore stacked on top of one another and combined to form a fuel cell block.
  • such a rather block also called "stack *".
  • One or more fuel cells cannot be operated by themselves. They are therefore operated in a fuel cell system which comprises a fuel cell block, an operating part and system electronics.
  • the operating part comprises devices for supplying the fuel cells with operating gases, ie with oxygen - or air - and fuel gas.
  • the operating section includes devices for product water removal, for heat removal, and for the discharge of the electrical current generated in the fuel cells.
  • the system electronics control the interaction of the various facilities of the fuel cell system.
  • a fuel cell system works particularly effectively and inexpensively when its overall efficiency is high.
  • the overall efficiency of a fuel cell system is additive from the electrical and thermal efficiency of the system.
  • the electrical and thermal efficiency results from the electrical and thermal energy generated and usable per quantity of fuel.
  • the aim should be to utilize as much of the electrical and thermal energy generated as possible.
  • the cooling water circuit is, for example, thermally connected to a heating water circuit that absorbs the heat of the cooling water.
  • the water in the heating water circuit is routed through the heating in a house, for example, and therefore warms the House.
  • part of the heat generated by the fuel cell block leaves the block as radiant heat. It is radiated into the room in which the fuel cell system is installed. This radiation heat is not used in a conventional fuel cell system.
  • the fuel cell block is the component of a fuel cell system that emits the most heat.
  • other components of the fuel cell system for example a circulation pump, an air compressor or components of the system electronics, radiate a considerable amount of heat into the environment. This heat of radiation is also not used by a conventional fuel cell system.
  • the invention is based on the object of specifying a method for operating a fuel cell system in which heat radiated by components of the fuel cell system is made usable.
  • the invention is also based on the object of specifying a fuel cell system which makes it possible to utilize heat radiated by components of the fuel cell system.
  • the first-mentioned object is achieved by a method for operating a fuel cell system which comprises a fuel cell block, a cooling water circuit and a housing which surrounds heat-radiating components of the fuel cell system, in which air according to the invention is fed into the housing for the operation of the fuel cells of the fuel cell block is, the air in the housing components of the fuel cell system flows around and then the
  • Fuel cell block is supplied, and in which the fuel cell block gives off heat to the cooling water of the cooling water circuit and warming the cooling water heats water from a heating water circuit.
  • the invention is based on the consideration that components of the fuel cell system radiated heat is made usable by supplying it to a heating water circuit.
  • the invention is based on the consideration that air is supplied to the fuel cells as the operating gas. This air is heated in the fuel cell block to the temperature of the fuel cell block, whereby heat is extracted from the fuel cell block.
  • the invention is based on the consideration that warm radiating components of the fuel cell system heat the air surrounding them. When this preheated air is used as the operating gas of the fuel cells, less energy is withdrawn from the fuel cell block when the air is heated to the operating temperature of the fuel cells. As a result, the fuel cell block emits more heat to the cooling water, which transfers this heat to the water in the heating circuit.
  • the invention is based on the consideration that a housing which surrounds the heat-radiating components of the fuel cell system prevents the warm air from dissipating into the surroundings of the system. Air from the surroundings of the housing is conducted into this housing. This happens, for example, in that an air compressor sucks in air inside the housing, whereby air flows through an opening in the housing into the interior of the housing. This post-flowing air flows around the heat radiating components of the fuel cell system, is warms, sucked in by the compressor and fed to the fuel cell block.
  • the air is compressed in a liquid compressor before it is fed to the fuel cell block.
  • the air is not only compressed to a predetermined density, which has an advantageous effect on the operation of the fuel cell system, but is also humidified at the same time.
  • This moistening results in a considerable extension of the lifespan of electrolyte membranes, such as those used in so-called PEM fuel cells (polymer electrolyte membranes).
  • Cooling water is expediently conducted from the cooling water circuit into the liquid compressor. This has the advantage that the air in the liquid compressor is heated to the temperature of the cooling water, that is to say approximately the operating temperature of the fuel cells, before it is fed to the fuel cell block. In addition, the air is humidified with the very pure cooling water, which has an advantageous effect on the operation of the fuel cell system.
  • a fuel cell system which, according to the invention, comprises a fuel cell block, an air compressor, a cooling water circuit which is thermally connected to a heating water circuit, and a housing which surrounds heat-radiating components of the fuel cell system, the air compressor having an intake opening , which is inside the housing and through the air from inside the housing into the Air compressor can be introduced, and wherein the housing has an opening through which air surrounding the housing can be emitted into the interior of the housing.
  • Such a fuel cell system makes it possible, in the manner described above, to utilize the heat radiated by components of the fuel cell system.
  • the thermal efficiency of the fuel cell system is all the greater, the more heat-emitting components are surrounded by the housing. If the housing encloses the entire fuel cell system, it can serve both as sound insulation and as a cabinet for the system. Operating elements, display elements or a screen can act as components of the housing.
  • the thermal connection between the cooling water and the heating water circuit is established, for example, by a heat exchanger, with the aid of which heat from the cooling water is transferred to water in the heating circuit.
  • the housing is thermally insulated. This largely prevents the warm air in the housing from heating the outer wall of the housing and the housing itself emitting heat into the surroundings.
  • the housing is advantageously designed as a double-walled housing. With this configuration of the housing, too, it is largely avoided that the warm air in the housing heats the outer wall of the housing and the housing itself radiates heat into the surroundings.
  • the air compressor is expediently a liquid compressor.
  • the air is humidified before it is supplied to the fuel cells, without the need to add another component to the fuel cell system.
  • the fuel cell block comprises PEM fuel cells.
  • PEM fuel cells are operated at a low operating temperature of around 80 ° C, have a favorable overload behavior and a long service life. In addition, they show a favorable behavior with fast load changes and can be operated with air instead of pure oxygen. All of these properties make PEM fuel cells particularly suitable for use in the mobile sector, such as for driving a wide variety of vehicles.
  • FIG. 1 shows a fuel cell system 1 in a very simplified representation.
  • a thermally insulated housing 2 surrounds all other components of the
  • a fuel cell block 4 is arranged in the housing 2 and comprises 80 PEM fuel cells.
  • the fuel cell block 4 is cooled by water from a cooling circuit 6, which flows from the fuel cell block 4 to a heat exchanger 8, from there to a circulating pump 10, further to a liquid ring compressor and back into the fuel cell block 4.
  • the cooling water in the heat exchanger 8 gives heat to water from a heating water circuit 14 from.
  • the water in the heating water circuit 14 heats the heaters of a house.
  • the PEM fuel cells are operated with the operating gases air and hydrogen. Approximately 20 ° C. warm air from the surroundings of the fuel cell system 1 - caused by a slight negative pressure generated by the liquid ring compressor 12 inside the housing - is passed through an opening 16 in the housing 2 into the interior of the housing 2. The air flows around heat-emitting components of the fuel cell system 1, such as, for example, the heat exchanger 8, the fuel cell block 4, an electronic system controller 18, the circulation pump 10 and the liquid ring compressor 12. It heats up to about 40 ° C. Subsequently it is drawn in through a suction opening 20 and flows through a suction pipe 22 into the liquid compressor 12. There the air is compressed and humidified to 100% air humidity with the cooling water.
  • the approximately 75 ° warm cooling water heats the air in the liquid compressor 12 to approximately 75 ° C.
  • the air is then compressed, humidified and heated up through the air supply line 24 to the fuel cell block 4. After flowing through the fuel cell block 4, it is led out of the fuel cell block 4 through the exhaust air line 26.
  • Components of the fuel cell system 1 such as, for example, heat exchangers in the air outlet, fuel gas inlet and outlet, water separators and pumps are not shown in the figure for the sake of clarity.
  • the air flowing through the housing 2 of the fuel cell system 1 flows around all the heat-radiating components of the fuel cell system 1, including pipes and connections, and removes heat from the components.
  • the heat is supplied from the air to the fuel cell block 4 and thus made usable. In this way, heat penetrates from the inside of the heat-insulated housing 2 to the outside only to an insignificant extent. With this air function, it is no longer necessary to isolate individual components of the fuel cell system 1 in order to prevent heat radiation.
  • the manufacture of a fuel cell system is therefore considerably simplified by the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Der thermische Wirkungsgrad einer Brennstoffzellenanlage (1) ergibt sich aus der pro Menge Brennstoff erzeugten nutzbaren Wärme. Von der Brennstoffzellenanlage (1) in die Umgebung abgestrahlte Wärme ist für die Nutzung verloren. Es ist ein Verfahren angegeben, das die Wärmeabstrahlung der Brennstoffzellenanlage (1) minimiert. Bei diesem Verfahren wird die Luft für den Betrieb der Brennstoffzellen in ein Gehäuse (2) geleitet, das wärmeabstrahlende Komponenten der Brennstoffzellenanlage (1) umgibt. Die Luft umströmt die Komponenten, nimmt die abgestrahlte Wärme auf und führt sie dem Brennstoffzellenblock (4) zu. Dort wird die Wärme an den Brennstoffzellenblock (4) kühlendes Kühlwasser abgegeben, das die Wärme an Wasser eines Heizwasserkreislaufs (4) überträgt.

Description

Beschreibung
Verfahren zum Betreiben einer Brennstoffzellenanlage und BrennstoffZellenanlage
Die Erfindung bezieht sich auf ein Verfahren zum Betreiben einer Brennstoffzellenanlage und auf eine Brennstoffzellenanlage.
Es ist bekannt, daß bei der Elektrolyse von Wasser die Wassermoleküle durch elektrischen Strom in Wasserstoff (H2) und Sauerstoff (02) zerlegt werden. In einer Brennstoffzelle läuft dieser Vorgang in umgekehrter Richtung ab. Durch eine elektrochemische Verbindung von Wasserstoff und Sauerstoff zu Wasser entsteht elektrischer Strom mit hohem Wirkungsgrad und, wenn als Brenngas reiner Wasserstoff eingesetzt wird, ohne Emission von Schadstoffen und Kohlendioxid (C02) • Auch mit einem technischen Brenngas, beispielsweise Erdgas oder Kohlegas und mit Luft anstelle von reinem Sauerstoff, wobei die Luft zusätzlich mit Sauerstoff angereichert sein kann, erzeugt eine Brennstoffzelle deutlich weniger Schadstoffe und weniger Kohlendioxid als andere Energieerzeuger, die mit fossilen Energieträgern arbeiten.
Die technische Umsetzung des Prinzips der Brennstoffzelle hat zu unterschiedlichen Lösungen und zwar mit verschiedenartigen Elektrolyten und mit Betriebstemperaturen zwischen 80 °C und 1000°C geführt. In Abhängigkeit von ihrer Betriebstemperatur werden die Brennstoffzellen in Nieder-, Mittel- und Hochtem- peratur-BrennstoffZeilen eingeteilt, die sich wiederum durch verschiedene technische Ausführungsformen voneinander unterscheiden.
Eine Brennstoffzelle alleine liefert eine Betriebsspannung von unter einem Volt. Daher werden eine Vielzahl von Brennstoffzellen aufeinander gestapelt und zu einem Brennstoffzel- lenblock zusammengefaßt. In der Fachliteratur wird ein sol- eher Block auch „Stack* genannt. Durch das In-Reihe-Schalten der Brennstoffzellen des BrennstoffZellenblocks kann die Betriebsspannung einer Brennstoffzellenanlage einige 100 Volt betragen.
Eine oder mehrere Brennstoffzellen sind für sich alleine nicht betreibbar. Sie werden daher in einer Brennstoffzellenanlage betrieben, die einen Brennstoffzellenblock, einen Betriebsteil und eine Anlagenelektronik umfaßt. Der Betπebs- teil umfaßt Einrichtungen für die Versorgung der Brennstoffzellen mit Betπebsgasen, also mit Sauerstoff - oder Luft - und Brenngas. Ferner umfaßt der Betriebsteil Einrichtungen für die Produktwasserabfuhr, für die Warmeabfuhr, und die Ableitung des in den Brennstoffzellen erzeugten elektrischen Stroms. Die Anlagenelektronik steuert das Zusam enspiel der verschiedenen Einrichtungen der Brennstoffzellenanlage .
Eine Brennstoffzellenanlage arbeitet dann besonders effektiv und kostengünstig, wenn ihr Gesamtwirkungsgrad hoch ist. Der Gesamtwirkungsgrad einer Brennstoffzellenanlage setzt sich additiv aus dem elektrischen und dem thermischen Wirkungsgrad der Anlage zusammen. Der elektrische und thermische Wirkungsgrad ergibt sich aus der pro Menge Brennstoff erzeugten und nutzbaren elektrischen bzw. thermischen Energie. Um einen be- sonders effektiven Betrieb der Brennstoffzellenanlage zu erreichen, ist es anzustreben, möglichst viel der erzeugten elektrischen und thermischen Energie nutzbar zu machen.
Beim Betrieb einer Brennstoffzellenanlage entsteht viel ther- mische Energie, also viel Warme. Der weitaus größte Teil der Warme wird im Brennstoffzellenblock erzeugt. Ein Teil dieser Warme wird durch einen Kühlwasserkreislauf vom Brennstoffzellenblock abgeführt. Um diese Warme nutzbar zu machen wird der Kühlwasserkreislauf beispielsweise thermisch mit einem Heizwasserkreislauf verbunden, der die Warme des Kuhlwassers aufnimmt. Das Wasser des Heizwasserkreislaufs wird beispielsweise durch Heizungen eines Hauses geleitet und wärmt somit das Haus. Ein Teil der vom Brennstoffzellenblock erzeugten Warme verlaßt den Block jedoch als Strahlungswarme. Sie wird in den Raum abgestrahlt, in dem die Brennstoffzellenanlage aufgebaut ist. Bei einer herkömmlichen Brennstoffzellenanlage wird diese Strahlungswarme nicht genutzt.
Der Brennstoffzellenblock ist die Komponenten einer Brennstoffzellenanlage, die am meisten Warme abstrahlt. Aber auch andere Komponenten der Brennstoffzellenanlage, beispielsweise eine Umwälzpumpe, ein Luftverdichter oder Bauteile der Anlagenelektronik, strahlen zusammen in erheblichem Umfang Warme in die Umgebung ab. Auch diese Strahlungswarme wird von einer herkömmlichen Brennstoffzellenanlage nicht genutzt.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Brennstoffzellenanlage anzugeben, bei dem von Komponenten der Brennstoffzellenanlage abgestrahlte Warme nutzbar gemacht wird. Der Erfindung liegt ferner die Aufgabe zugrunde, eine Brennstoffzellenanlage anzugeben, die es er- moglicht, von Komponenten der Brennstoffzellenanlage abgestrahlte Warme nutzbar zu machen.
Die erstgenannte Aufgabe wird von einem Verfahren zum Betreiben einer Brennstoffzellenanlage gelost, die einen Brenn- stoffzellenblock, einen Kühlwasserkreislauf und ein Gehäuse, das Warme abstrahlende Komponenten der Brennstoffzellenanlage umgibt, umfaßt, bei dem erfindungsgemaß Luft für den Betrieb der Brennstoffzellen des Brennstoffzellenblocks in das Gehäuse geleitet wird, die Luft im Gehäuse befindliche Komponenten der Brennstoffzellenanlage umströmt und anschließend dem
Brennstoffzellenblock zugeführt wird, und bei dem der Brennstoffzellenblock Warme an das Kuhlwasser des Kühlwasserkreislaufs abgibt und Warme- des Kuhlwassers Wasser eines Heizwasserkreislaufs erwärmt.
In einem ersten Schritt geht die Erfindung von der Überlegung aus, daß von Komponenten der Brennstoffzellenanlage abge- strahlte Warme nutzbar gemacht wird, indem sie einem Heizwasserkreislauf zugeführt wird.
Dies kann dadurch erreicht werden, daß Warme abstrahlende Komponenten der Brennstoffzellenanlage warmeisoliert und wassergekühlt werden. Diese Maßnahme unterbindet weitgehend die Abstrahlung der Wärmeenergie der isolierten Komponenten in die Umgebung und fuhrt dazu, daß die Warme durch den Kühlwasserkreislauf abgeführt wird und anschließend einem Heizwas- serkreislauf übertragen werden kann. Diese Maßnahme ist jedoch sehr aufwendig.
In einem zweiten Schritt geht die Erfindung von der Überlegung aus, daß Luft den Brennstoffzellen als Betriebsgas zuge- fuhrt wird. Diese Luft wird im Brennstoffzellenblock auf die Temperatur des Brennstoffzellenblocks erwärmt, wodurch dem Brennstoffzellenblock Warme entzogen wird. Außerdem geht die Erfindung von der Überlegung aus, daß Warme abstrahlende Komponenten der Brennstoffzellenanlage die sie umgebende Luft erwarmen. Bei Verwendung dieser vorgewärmten Luft als Betriebsgas der Brennstoffzellen wird dem Brennstoffzellenblock beim Heizen der Luft auf die Betriebstemperatur der Brennstoffzellen weniger Energie entzogen. Dadurch gibt der Brennstoffzellenblock mehr Warme an das Kuhlwasser ab, das diese Warme dem Wasser des Heizkreislaufs übertragt.
In einem dritten Schritt geht die Erfindung von der Überlegung aus, daß ein Gehäuse, das die Warme abstrahlenden Komponenten der Brennstoffzellenanlage umgibt, die Dissipation der warmen Luft in die Umgebung der Anlage verhindert. In dieses Gehäuse wird Luft aus der Umgebung des Gehäuses geleitet. Dies geschieht beispielsweise dadurch, daß ein Luftverdichter im Inneren des Gehäuses Luft ansaugt, wodurch Luft durch eine Öffnung des Gehäuses in das Innere des Gehäuses nachstromt. Diese nachstromende Luft umfließt die Warme abstrahlenden Komponenten der Brennstoffzellenanlage, wird von ihnen er- wärmt, von dem Verdichter angesaugt und dem Brennstoffzellenblock zugeführt.
Durch dieses Verfahren wird von Komponenten der Brennstoff- zellenanlage abgestrahlte Wärmeenergie dem Brennstoffzellenblock zugeführt, von dem sie mittels des Kuhlwassers auf das Wasser des Heizkreislaufs übertragen wird. Die abgestrahlte Warme wird somit nutzbar gemacht.
In vorteilhafter Ausgestaltung der Erfindung wird die Luft, bevor sie dem Brennstoffzellenblock zugeführt wird, in einem Flussigkeitsnngverdichter verdichtet. Hierdurch wird die Luft nicht nur auf eine vorgegebene Dichte verdichtet, was sich vorteilhaft auf den Betrieb der Brennstoffzellenanlage auswirkt, sondern auch gleichzeitig befeuchtet. Durch diese Befeuchtung wird eine erhebliche Verlängerung der Lebensdauer von Elektrolytmembranen erreicht, wie sie beispielsweise m sogenannten PEM-Brennstoffzellen (Polymer Electrolyte Membrane) eingesetzt werden.
Zweckmaßigerweise wird Kuhlwasser aus dem Kühlwasserkreislauf in den Flussigkeitsnngverdichter geleitet. Dies hat den Vorteil, daß die Luft im Flussigkeitsnngverdichter auf die Temperatur des Kuhlwassers, also annähernd die Betriebstempera- tur der Brennstoffzellen erwärmt wird bevor sie dem Brennstoffzellenblock zugeführt wird. Außerdem wird die Luft mit dem sehr reinen Kuhlwasser befeuchtet, was sich vorteilhaft für den Betrieb der Brennstoffzellenanlage auswirkt.
Die zweitgenannte Aufgabe wird von einer Brennstoffzellenanlage gelost, die erfindungsgemaß einen Brennstoffzellenblock, einen Luftverdichter, einen Kühlwasserkreislauf, der mit einem Heizwasserkreislauf thermisch verbunden ist, und ein Gehäuse, das Warme abstrahlende Komponenten der Brennstoff- zellenanlage umgibt, umfaßt, wobei der Luftverdichter eine Ansaugoffnung aufweist, die sich im Inneren des Gehäuses befindet und durch die Luft aus dem Inneren des Gehäuses in den Luftverdichter einleitbar ist, und wobei das Gehäuse eine Öffnung aufweist, durch die das Gehäuse umgebende Luft in das Innere des Gehäuses emleitbar ist.
Eine solche Brennstoffzellenanlage ermöglicht es auf die oben beschriebene Art und Weise, die von Komponenten der Brennstoffzellenanlage abgestrahlte Warme nutzbar zu machen. Dabei ist der thermische Wirkungsgrad der Brennstoffzellenanlage um so großer, e mehr Warme abstrahlende Komponenten von dem Ge- hause umgeben sind. Umschließt das Gehäuse die gesamte Brennstoffzellenanlage, kann sie gleichzeitig als Schallschutz und als Schrank für die Anlage dienen. Dabei können Bedienelemente, Anzeigeelemente oder ein Bildschirm als Bestandteile des Gehäuses fungieren.
Die thermische Verbindung zwischen dem Kuhlwasser- und dem Heizwasserkreislauf ist beispielsweise durch einen Wärmetauscher hergestellt, mit dessen Hilfe Warme des Kuhlwassers auf Wasser des Heizkreislaufes übertragen wird.
In zweckmäßiger Ausgestaltung der Erfindung ist das Gehäuse thermisch isoliert. Hierdurch wird weitgehend vermieden, daß die im Gehäuse befindliche warme Luft die Außenwand des Gehäuses erwärmt und das Gehäuse selber Warme in die Umgebung abstrahlt.
Vorteilhafterweise ist das Gehäuse als ein doppelwandiges Gehäuse ausgestaltet. Auch bei dieser Ausgestaltung des Gehäuses wird weitgehend vermieden, daß die im Gehäuse befindliche warme Luft die Außenwand des Gehäuses erwärmt und das Gehäuse selber Warme in die Umgebung abstrahlt.
Zweckmaßigerweise ist der Luftverdichter ein Flussigkeitsnngverdichter. Durch diese Ausgestaltung der Erfindung wird die Luft, bevor sie den Brennstoffzellen zugeführt wird, befeuchtet, ohne daß dafür ein weiteres Bauteil der Brennstoff- zellenanlage hinzugefugt werden muß. In weiterer vorteilhafter Ausgestaltung der Erfindung umfaßt der Brennstoffzellenblock PEM-Brennstoffzellen. PEM-Brenn- stoffzellen werden bei einer niedrigen Betriebstemperatur von etwa 80°C betrieben, weisen ein günstiges Überlastverhalten und eine hohe Lebensdauer auf. Außerdem zeigen sie ein günstiges Verhalten bei schnellen Lastwechseln und sind mit Luft anstelle von reinem Sauerstoff betreibbar. Alle diese Eigenschaften machen PEM-Brennstoffzellen besonders geeignet für eine Anwendung im mobilen Bereich, wie beispielsweise für den Antrieb von Fahrzeuge verschiedenster Art.
Ein Ausführungsbeispiel der Erfindung ist anhand einer Figur erläutert. Die Figur zeigt in einer sehr stark vereinfachten Darstellung eine Brennstoffzellenanlage 1. Ein thermisch iso- liertes Gehäuse 2 umgibt sämtliche weitere Komponenten der
Brennstoffzellenanlage 1. Im Gehäuse 2 ist ein Brennstoffzellenblock 4 angeordnet, der 80 PEM-Brennstoffzellen umfaßt. Der Brennstoffzellenblock 4 wird von Wasser eines Kühlkreislaufes 6 gekühlt, das vom Brennstoffzellenblock 4 zu einem Wärmetauscher 8 fließt, von dort zu einer Umwälzpumpe 10, weiter zu einem Flüssigkeitsringverdichter und zurück in den Brennstoffzellenblock 4. Das Kühlwasser gibt im Wärmetauscher 8 Wärme an Wasser eines Heizwasserkreislaufs 14 ab. Das Wasser des Heizwasserkreislaufs 14 erwärmt Heizungen eines Wohn- hauses.
Die PEM-Brennstoffzellen werden mit den Betriebsgasen Luft und Wasserstoff betrieben. Etwa 20°C warme Luft aus der Umgebung der Brennstoffzellenanlage 1 wird - hervorgerufen durch einen vom Flüssigkeitsringverdichter 12 erzeugten leichten Unterdruck im Inneren des Gehäuses - durch eine Öffnung 16 des Gehäuses 2 in das Innere des Gehäuses 2 geleitet. Die Luft umströmt dort Wärme abgebende Komponenten der Brennstoffzellenanlage 1, wie beispielsweise den Wärmetauscher 8, den Brennstoffzellenblock 4, eine elektronische Anlagensteuerung 18, die Umwälzpumpe 10 und den Flüssigkeitsringverdichter 12. Dabei heizt sie sich auf etwa 40°C auf. Anschließend wird sie durch eine Ansaugoffnung 20 angesaugt und strömt durch ein Ansaugrohr 22 in den Flussigkeitsnngverdichter 12. Dort wird die Luft verdichtet und mit dem Kuhlwasser auf 100% Luftfeuchte befeuchtet. Das etwa 75° warme Kuhlwasser heizt die Luft im Flussigkeitsnngverdichter 12 auf etwa 75°C auf. Verdichtet, befeuchtet und aufgeheizt wird die Luft nun durch die Luftzuleitung 24 dem Brennstoffzellenblock 4 zugef hrt. Nach dem Durchströmen des BrennstoffZellenblocks 4 wird sie durch die Abluftleitung 26 aus dem Brennstoffzellenblock 4 herausgeleitet. Weitere, zum Teil auch Warme abstrahlende
Bauteile der Brennstoffzellenanlage 1 wie beispielsweise Wärmetauscher im Luftabweg, Brenngaszu- und abweg, Wasserabscheider und Pumpen sind der Übersichtlichkeit halber in der Figur nicht dargestellt.
Die durch das Gehäuse 2 der Brennstoffzellenanlage 1 strömende Luft umströmt alle Warme abstrahlenden Komponenten der Brennstoffzellenanlage 1, auch Rohre und Anschlüsse, und fuhrt Warme von den Komponenten ab. Die Warme wird von der Luft dem Brennstoffzellenblock 4 zugeführt und somit nutzbar gemacht. Aus dem Inneren des warmeisolierten Gehäuses 2 dringt Warme auf diese Weise nur in unwesentlicnem Umfang durch das Gehäuse 2 nach außen hindurch. Durch diese Luftfun- rung ist es nicht mehr notig, einzelne Komponenten der Brenn- stoffzellenanlage 1 zu isolieren, um Wärmeabstrahlung zu verhindern. Daher wird die Herstellung einer Brennstoffzellenanlage durch die Erfindung erheblich vereinfacht.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Brennstoffzellenanlage (1), die einen Brennstoffzellenblock (4), einen Kuhlwasserkreis- lauf (6) und ein Gehäuse (2), das Warme abstrahlende Komponenten der Brennstoffzellenanlage (1) umgibt, umfaßt, bei dem Luft für den Betrieb der Brennstoffzellen des Brennstoffzel- lenblocks (4) in das Gehäuse (2) geleitet wird, die Luft im Gehäuse ^befindliche Komponenten der Brennstoffzellenanlage (1) umströmt und anschließend dem Brennstoffzellenblock (4) zugeführt wird, und bei dem der Brennstoffzellenblock (4) Warme an das Kuhlwasser des Kühlwasserkreislaufs (6) abgibt und Warme des Kuhlwassers Wasser eines Heizwasserkreislaufs (14) erwärmt.
2. Verfahren nach Anspruch 1, bei dem die Luft, bevor sie dem Brennstoffzellenblock (4) zugeführt wird, in einem Flussigkeitsnngverdichter (12) verdichtet wird.
3. Verfahren nach Anspruch 2, bei dem Kuhlwasser aus dem Kühlwasserkreislauf (6) in den Flussigkeitsnngverdichter (12) geleitet wird.
4. Brennstoffzellenanlage (1), die einen Brennstoffzellen- block (4) , einen Luftverdichter, einen Kuhlwasserkreislauf (6), der mit einem Heizwasserkreislauf (14) thermisch verbunden ist, und ein Gehäuse (2) , das Warme abstrahlende Komponenten der Brennstoffzellenanlage (1) umgibt, umfaßt, wobei der Luftverdichter eine Ansaugoffnung (20) aufweist, die sich im Inneren des Gehäuses (2) befindet und durch die Luft aus dem Inneren des Gehäuses (2) in den Luftverdichter emleitbar ist, und wobei das Gehäuse (2) eine Öffnung (16) aufweist, durch die das Gehäuse (2) umgebende Luft in das Innere des Gehäuses (2) emleitbar ist.
5. Brennstoffzellenanlage (1) nach Anspruch 4, bei der das Gehäuse (2) thermisch isoliert ist.
6. Brennstoffzellenanlage (1) nach Anspruch 4 oder 5, bei der das Gehäuse (2) ein doppelwandiges Gehäuse (2) ist.
7. Brennstoffzellenanlage (1) nach einem der Ansprüche 4 bis 6, bei der der Luftverdichter ein Flüssigkeitsringverdichter
(12) ist.
8. Brennstoffzellenanlage (1) nach einem der Anspruch 4 bis 7, bei der der Brennstoffzellenblock (4) PEM-Brennstoffzellen umfaßt.
PCT/DE2000/000566 1999-03-10 2000-02-28 Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage WO2000054354A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002367099A CA2367099C (en) 1999-03-10 2000-02-28 Method for operating a fuel cell facility, and fuel cell facility
EP00912393A EP1159770B1 (de) 1999-03-10 2000-02-28 Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage
DE50000454T DE50000454D1 (de) 1999-03-10 2000-02-28 Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage
JP2000604478A JP2002539584A (ja) 1999-03-10 2000-02-28 燃料電池設備の作動方法及び燃料電池設備
US09/950,429 US6841277B2 (en) 1999-03-10 2001-09-10 Method for operating a fuel cell plant and fuel cell plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910695.9 1999-03-10
DE19910695A DE19910695C1 (de) 1999-03-10 1999-03-10 Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/950,429 Continuation US6841277B2 (en) 1999-03-10 2001-09-10 Method for operating a fuel cell plant and fuel cell plant

Publications (1)

Publication Number Publication Date
WO2000054354A1 true WO2000054354A1 (de) 2000-09-14

Family

ID=7900491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000566 WO2000054354A1 (de) 1999-03-10 2000-02-28 Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage

Country Status (6)

Country Link
US (1) US6841277B2 (de)
EP (1) EP1159770B1 (de)
JP (1) JP2002539584A (de)
CA (1) CA2367099C (de)
DE (3) DE19964497B4 (de)
WO (1) WO2000054354A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037595A2 (de) * 2000-10-31 2002-05-10 Vaillant Gmbh Unterdruckkammer für brennstoffzellenanlage
WO2002093673A1 (en) * 2001-05-11 2002-11-21 Cellex Power Products, Inc. Fuel cell thermal management system and method
JP2002373684A (ja) * 2001-06-18 2002-12-26 Yamaha Motor Co Ltd 燃料電池システム
EP1724867A1 (de) * 2005-05-18 2006-11-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brennstoffzellensystems sowie Brennstoffzellensystem
EP1724866A1 (de) * 2005-05-18 2006-11-22 Siemens Aktiengesellschaft Verfahren zur Befeuchtung eines Gases sowie Gasbefeuchtungseinrichtung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935719C2 (de) * 1999-07-29 2003-01-30 Forschungszentrum Juelich Gmbh Kühlsystem für Brennstoffzellen
AT409683B (de) * 2000-11-02 2002-10-25 Vaillant Gmbh Verfahren zur wirkungsgradsteigerung und gefahrenvermeidung bei brennstoffzellenanordnungen
DE10200404A1 (de) * 2002-01-08 2003-07-17 H2 Interpower Brennstoffzellen Vorrichtung zur Erwärmung von Luft mit einer Brennstoffzelle
DE102005007180B4 (de) * 2005-02-14 2011-11-17 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Ein begrenzt wärmebelastbares System mit einem Brennstofffzellenstapel und Verfahren zum Betreiben eines begrenzt wärmebelastbaren Systems mit einem Brennstoffzellenstapel
AT503009B1 (de) * 2006-01-13 2007-10-15 Vaillant Austria Gmbh Anlage zur rekuperativen wärmenutzung mit zumindest einer brennstoffzelle
JP4932265B2 (ja) * 2006-01-30 2012-05-16 京セラ株式会社 燃料電池システム
EP1826858A1 (de) * 2006-02-23 2007-08-29 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Brennstoffzellenanlage sowie Brennstoffzellenanlage
EP1865569A1 (de) * 2006-06-07 2007-12-12 Siemens Aktiengesellschaft Verfahren zur Wärmeabfuhr aus einer Brennstoffzellenanlage sowie Brennstoffzellenanlage
DE102006031866A1 (de) * 2006-07-10 2008-01-17 Webasto Ag Brennstoffzellensystem und Verfahren zum Beeinflussen des Wärmehaushaltes eines Brennstoffzellensystems
US8298713B2 (en) * 2006-10-25 2012-10-30 GM Global Technology Operations LLC Thermally integrated fuel cell humidifier for rapid warm-up
JP4636028B2 (ja) * 2007-01-24 2011-02-23 カシオ計算機株式会社 燃料電池装置及び電子機器
DE102007007605A1 (de) * 2007-02-13 2008-08-14 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
DE102007039017A1 (de) * 2007-08-17 2009-02-19 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
DE102008019981B4 (de) 2008-04-21 2020-10-08 Adkor Gmbh Schrank mit wenigstens einem modularen, integrierten Energieversorgungssystem mit Brennstoffzellenstapel
DE102008019979B3 (de) 2008-04-21 2009-10-01 Futuree Fuel Cell Solutions Gmbh Energieversorgungsmodul und Stromschrank
DE102023201605A1 (de) 2023-02-22 2024-08-22 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellenvorrichtung und Verfahren zum Betrieb der Brennstoffzellenvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333583A (ja) * 1993-05-21 1994-12-02 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電装置
US5647534A (en) * 1994-09-22 1997-07-15 Mercedes-Benz Ag Device for heating an interior of an electric vehicle
WO1998004011A2 (en) * 1996-07-19 1998-01-29 Ztek Corporation Fuel cell system for electric generation, heating, cooling and ventilation

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500612A (en) * 1982-04-21 1985-02-19 Mitsubishi Denki Kabushiki Kaisha Temperature control device for a fuel cell
JPS6217962A (ja) 1985-03-08 1987-01-26 Hitachi Ltd 燃料電池
JPH01320775A (ja) * 1988-06-22 1989-12-26 Tokyo Gas Co Ltd 燃料電池ユニット
JPH0475263A (ja) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd パッケージ型燃料電池発電装置
JPH053044A (ja) * 1991-06-26 1993-01-08 Toshiba Corp 燃料電池発電プラント
JPH05290868A (ja) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd パッケ−ジ型燃料電池発電装置の換気構造
JPH05343083A (ja) 1992-06-12 1993-12-24 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JP3432575B2 (ja) * 1994-03-28 2003-08-04 株式会社東芝 燃料電池発電設備
DE9405466U1 (de) 1994-03-31 1994-06-09 Sächsische Landesgewerbeförderungsgesellschaft mbH, 09131 Chemnitz Blockheizkraftwerk
US5641585A (en) * 1995-03-21 1997-06-24 Lockheed Idaho Technologies Company Miniature ceramic fuel cell
JPH08264199A (ja) 1995-03-24 1996-10-11 Sanyo Electric Co Ltd ポータブル燃料電池
JPH08315837A (ja) * 1995-05-23 1996-11-29 Toshiba Corp 燃料電池発電プラント
WO1997010619A1 (de) * 1995-09-11 1997-03-20 Siemens Aktiengesellschaft Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage zum durchführen des verfahrens
ATE189341T1 (de) 1995-12-19 2000-02-15 Sulzer Hexis Ag Vorrichtung mit brennstoffzellen
DE19608738C1 (de) * 1996-03-06 1997-06-26 Siemens Ag Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens
JPH1064566A (ja) * 1996-08-14 1998-03-06 Shikoku Sogo Kenkyusho:Kk 燃料電池発電装置および該装置の廃熱回収方法
JPH10208755A (ja) * 1997-01-28 1998-08-07 Matsushita Electric Works Ltd 電力発生装置
DE19718970A1 (de) 1997-05-05 1998-11-12 Zsw Integraler PEM-Brennstoffzellen-Heizungsmodul und dessen Verwendung sowie PEM-Brennstoffzellenstapel
AT409177B (de) * 1998-10-02 2002-06-25 Vaillant Gmbh Heizanordnung
AT407590B (de) 1998-10-08 2001-04-25 Vaillant Gmbh Blockheizkraftwerk
AT411387B (de) * 1999-01-11 2003-12-29 Vaillant Gmbh Heizeinrichtung
AT411792B (de) 1999-01-11 2004-05-25 Vaillant Gmbh Heizeinrichtung
US6610431B1 (en) * 2000-02-11 2003-08-26 Plug Power Inc. Method and apparatus for establishing a negative pressure inside an enclosure that houses a fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333583A (ja) * 1993-05-21 1994-12-02 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電装置
US5647534A (en) * 1994-09-22 1997-07-15 Mercedes-Benz Ag Device for heating an interior of an electric vehicle
WO1998004011A2 (en) * 1996-07-19 1998-01-29 Ztek Corporation Fuel cell system for electric generation, heating, cooling and ventilation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 03 28 April 1995 (1995-04-28) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037595A2 (de) * 2000-10-31 2002-05-10 Vaillant Gmbh Unterdruckkammer für brennstoffzellenanlage
WO2002037595A3 (de) * 2000-10-31 2004-01-08 Vaillant Gmbh Unterdruckkammer für brennstoffzellenanlage
WO2002093673A1 (en) * 2001-05-11 2002-11-21 Cellex Power Products, Inc. Fuel cell thermal management system and method
US6649290B2 (en) 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
JP2002373684A (ja) * 2001-06-18 2002-12-26 Yamaha Motor Co Ltd 燃料電池システム
EP1724867A1 (de) * 2005-05-18 2006-11-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brennstoffzellensystems sowie Brennstoffzellensystem
EP1724866A1 (de) * 2005-05-18 2006-11-22 Siemens Aktiengesellschaft Verfahren zur Befeuchtung eines Gases sowie Gasbefeuchtungseinrichtung

Also Published As

Publication number Publication date
EP1159770B1 (de) 2002-09-04
DE19964497B4 (de) 2017-04-27
DE19964497A1 (de) 2006-11-23
DE50000454D1 (de) 2002-10-10
CA2367099C (en) 2008-05-06
US20020037444A1 (en) 2002-03-28
EP1159770A1 (de) 2001-12-05
JP2002539584A (ja) 2002-11-19
US6841277B2 (en) 2005-01-11
CA2367099A1 (en) 2000-09-14
DE19910695C1 (de) 2000-08-10

Similar Documents

Publication Publication Date Title
EP1159770B1 (de) Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage
DE10392693B4 (de) Verfahren zur Kühlung einer Brennstoffzelle sowie Brennstoffzelle und Kühlsystem
DE19722598B4 (de) Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems sowie dessen Verwendung in einer Anordnung zur unterbrechungsfreien Stromversorgung
DE102009012993B4 (de) Integrierter Ladeluft-Wärmetauscher, damit ausgestattetes Brennstoffzellensystem sowie Verfahren zum Regeln der Temperatur eines Brennstoffzellenstapels
DE102009009243B4 (de) Vorrichtung und Verfahren zum optimierten Kühlen einer Antriebseinheit und einer Brennstoffzelle in einem Brennstoffzellenfahrzeug
DE112004001762T5 (de) Speicherung von Brennstoffzellenenergie während des Anfahrens und Abschaltens
DE102009012994A1 (de) Vorrichtung zur optimierten Ausführung von Erwärmungsaufgaben in Brennstoffzellenfahrzeugen
DE102018214640A1 (de) Kühlsystem für Brennstoffzellenstacks
EP1849203B1 (de) Verfahren zum betreiben von brennstoffzellen für begrenzt wärmebelastbare systeme und brennstoffzellenstack zur durchführung des verfahrens
DE102011088566A1 (de) Brennstoffzellensystem
DE102004022052B4 (de) Brennstoffzelle, System und Verfahren zum Anpassen der Stapeltemperatur
DE60305596T3 (de) Festoxid-Brennstoffzellensystem und elektronische Steuerungseinheit in einem gemeinsamen Gehäuse
DE102015216513A1 (de) Kühlsystem für eine Brennstoffzelle und Brennstoffzellensystem
DE102006046256A1 (de) Wasserstoffheizung
EP2038951A1 (de) Brennstoffzellensystem und verfahren zum beeinflussen des wärmehaushaltes eines brennstoffzellensystems
DE102007006963A1 (de) Brennstoffzellensystem für ein Fahrzeug
WO2018189368A1 (de) Brennstoffzelleneinheit mit gestapelten hilfsvorrichtungen
DE102018214643A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems für ein Kraftfahrzeug
DE102014118826A1 (de) Einrichtung mit einer Brennstoffzelle und Verwendung von Produktwasser einer Brennstoffzelle
DE102015117055B4 (de) Stapelgehäuse-Belüftung, Brennstoffzellensystem sowie Fahrzeug
WO2001070530A1 (de) Heizsystem zum beheizen des innenraums eines kraftfahrzeugs
DE102020101292A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Kraftfahrzeug
DE102012018712A1 (de) Luftfördereinrichtung und Brennstoffzellensystem
DE102021131243B3 (de) Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen Brennstoffzellenvorrichtung
DE102012018107A1 (de) Vorrichtung zum Erwärmen von Wasserstoff

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000912393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 604478

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2367099

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2367099

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09950429

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000912393

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000912393

Country of ref document: EP