DE102011088566A1 - Brennstoffzellensystem - Google Patents

Brennstoffzellensystem Download PDF

Info

Publication number
DE102011088566A1
DE102011088566A1 DE201110088566 DE102011088566A DE102011088566A1 DE 102011088566 A1 DE102011088566 A1 DE 102011088566A1 DE 201110088566 DE201110088566 DE 201110088566 DE 102011088566 A DE102011088566 A DE 102011088566A DE 102011088566 A1 DE102011088566 A1 DE 102011088566A1
Authority
DE
Germany
Prior art keywords
reformer
fuel cell
cell system
voltage
auxiliary burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE201110088566
Other languages
English (en)
Inventor
Karsten Reiners
Andreas Kaupert
Valentin Notemann
Markus Willkommen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Climate Control Systems GmbH and Co KG
Original Assignee
J Eberspaecher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Eberspaecher GmbH and Co KG filed Critical J Eberspaecher GmbH and Co KG
Priority to DE201110088566 priority Critical patent/DE102011088566A1/de
Priority to US13/547,541 priority patent/US9142959B2/en
Publication of DE102011088566A1 publication Critical patent/DE102011088566A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

Die vorliegende Erfindung betrifft ein Brennstoffzellensystem (1) mit einer Brennstoffzelle (2) und einem Reformer (33). Ein schonender Betrieb des Brennstoffzellensystems (1), insbesondere während eines Starts des Brennstoffzellensystems (1), ergibt sich, wenn das Brennstoffzellensystem (1) mit einem Zusatzbrenner (11) ausgestattet ist und die Wärme eines Zusatzbrennerabgases des Zusatzbrenners (11) dem Reformer (9) zuführbar ist.

Description

  • Die vorliegende Erfindung betrifft ein Brennstoffzellensystem mit einem Reformer sowie einen Reformer für ein derartiges Brennstoffzellensystem.
  • Ein Brennstoffzellensystem weist eine Brennstoffzelle auf, die in der Regel als ein Brennstoffzellenstack aufgebaut ist. Die Brennstoffzelle fungiert als galvanische Zelle, welche die bei der chemischen Reaktion von Wasserstoff und Sauerstoff zu Wasser entstehende chemische Energie in elektrische Energie umwandelt und in Form einer elektrischen Spannung elektrischen Verbrauchern zur Verfügung stellt. Hierzu weist die Brennstoffzelle eine Anodenseite und eine Kathodenseite auf, die zumindest eine Anode bzw. zumindest eine Kathode aufweisen. Als ein Kathodengas kommen gewöhnlich sauerstoffhaltige Gase, insbesondere Luft, zum Einsatz. Als ein Anodengas werden häufig Kohlenwasserstoffe bzw. kohlenwasserstoffhaltige Gase verwendet. Zur Erzeugung eines Anodengases weist das Brennstoffzellensystem gewöhnlich einen Reformer auf, der ein Reformatgas als Anodengas erzeugt, das mittels einer Reformatgasleitung der Anodenseite zuführbar ist. Hierzu erfolgt eine chemische Reaktion von einem Brennstoff mit einem Oxidatorgas bei hohen Temperaturen, in Folge dessen das Reformatgas entsteht. Der Reformer kann zudem einen Katalysator aufweisen, der die Umsetzung des Oxidatorgases und des Brennstoffs zum Reformatgas realisiert. Als Oxidatorgas kommt häufig Luft zum Einsatz, während fossile Brennstoffe als Brennstoff zum Einsatz kommen. Bei einem Startvorgang des Reformers, insbesondere bei einem Kaltstart des Reformers, entstehen dabei unerwünschte Beiprodukte im Reformatgas, die sich auf der Anodenseite, insbesondere auf der Anode, der Brennstoffzelle ablagern können und somit die Effizienz der Brennstoffzelle reduzieren. Diese Ablagerung wird insbesondere dadurch verstärkt, dass auch die Anodenseite bei dem Startvorgang des Brennstoffzellensystems bzw. bei dem Kaltstart niedrige Temperaturen aufweist, die unterhalb einer Betriebstemperatur liegt.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Brennstoffzellensystem der eingangs genannten Art, eine verbesserte oder zumindest alternative Ausführungsform anzugeben, die sich insbesondere durch einen verbesserten Startvorgang des Brennstoffzellensystems auszeichnet.
  • Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der unabhängigen Ansprüche.
  • Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, ein Brennstoffzellensystem mit einer Zusatzbrennereinrichtung auszustatten und ein Zusatzbrennerabgas der Zusatzbrennereinrichtung dazu zu nutzen, den Reformer, insbesondere bei einem Startvorgang bzw. bei einem Kaltstart des Reformers bzw. des Brennstoffzellensystems, aufzuwärmen. Das warme Zusatzbrennerabgas ist also dem Reformer wärmeübertragend zuführbar. Die Erfindung nutzt dabei die Kenntnis, dass unerwünschte Beiprodukte innerhalb eines vom Reformer erzeugten Reformatgases, insbesondere während des Startvorganges bzw. während des Kaltstarts, durch die niedrige Temperatur des Reformers bedingt sind. Die Konzentration derartiger Beiprodukte im Reformatgas nimmt beim Erreichen einer Betriebstemperatur des Reformers stark ab. Da sich diese Beiprodukte auf einer Anodenseite, insbesondere auf einer Anode, einer Brennstoffzelle des Brennstoffzellensystems absetzen können, führt dies zu einer reduzierten Effizient des Brennstoffzellensystems. Der Produktion dieser Beiprodukte im Reformatgas wird erfindungsgemäß entgegengewirkt, indem der Reformer während des Startvorgangs mittels der Zusatzbrennereinrichtung bzw. des Zusatzbrennerabgases aufgewärmt wird. Dieses Aufwärmen des Reformers kann dabei vor einem Beginn der entsprechenden chemischen Reaktionen innerhalb des Reformers erfolgen. Das heißt insbesondere, dass das Aufwärmen des Reformers bereits vor einem Start des Reformers, insbesondere eines Katalysators des Reformers, erfolgen kann.
  • Die Zusatzbrennereinrichtung weist vorzugsweise zumindest einen Zusatzbrenner auf, der das Zusatzbrennerabgas durch einen Brennvorgang produziert. Zur vereinfachten Beschreibung wird im Folgenden der Begriff Zusatzbrenner sowohl für die Zusatzbrennereinrichtung, als auch für den Zusatzbrenner verwendet.
  • Dem Erfindungsgedanken entsprechend weist das Brennstoffzellensystem die Brennstoffzelle auf. Die Brennstoffzelle umfasst außer der Anode zumindest eine Kathode auf einer Kathodenseite auf. Das Brennstoffzellensystem weist weiter den Reformer zur Erzeugung und Zuführung des Reformatgases auf, das mittels einer Reformatgasleitung der Anodenseite zuführbar ist. Zur Übertragung der Wärme des Zusatzbrennerabgases auf dem Reformer weist das Brennstoffzellensystem zudem eine Reformerzuführeinrichtung auf. Hierzu ist die Reformerzuführeinrichtung insbesondere wärmeübertragend mit dem Reformer gekoppelt. Die Wärmeübertragung erfolgt dabei nicht zwangsweise durch einen Eintritt des Zusatzbrennerabgases in den Reformer. Vielmehr kann die Wärmeübertragung auch dadurch realisiert sein, dass das Zusatzbrennerabgas an/um den Reformer vorbeiströmt.
  • Bei einer bevorzugten Ausführungsform umfasst die Reformerzuführeinrichtung einen Zulauf sowie einen Rücklauf. Der Zulauf der Reformerzuführeinrichtung dient der Zuführung des Zusatzbrennerabgases zum Reformer, während der Rücklauf der Reformerzuführeinrichtung der Rückführung des Zusatzbrennerabgases vom Reformer dient. Hierzu sind der Zulauf und der Rücklauf zweckmäßig fluidisch miteinander verbunden, wobei diese Verbindung vorzugsweise im Bereich des Reformers bzw. in der Nähe des Reformers realisiert ist. Dabei heißt auch hier die Zuführung bzw. die Abführung des Zusatzbrennerabgases zum bzw. vom Reformer nicht zwingend, dass das Zusatzbrennerabgas in den Reformer eindringt. Bevorzugt sind Ausführungsformen, bei denen das Zusatzbrennerabgas außen am Reformer, das heißt insbesondere an einem Gehäuse des Reformers, vorbeiströmt. Eine mögliche Realisierung ist also, den Zulauf und/oder den Rücklauf der Reformerzuführeinrichtung, insbesondere im Bereich des Reformers, schlauchartig auszubilden und umhüllend an dem Reformer anzuordnen.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist der Reformer zumindest teilweise von einem durchströmbaren Heiz-Mantel umgeben. Der Reformer ist folglich und zumindest teilweise von dem durchströmbaren Heiz-Mantel umhüllt. Der Heiz-Mantel ist weiter wärmeübertragend mit dem Reformer gekoppelt. Hierzu ist der Heiz-Mantel beispielsweise als einen den Reformer umhüllenden Hohlkörper ausgebildet, wobei eine dem Reformer benachbarte Wand des Heiz-Mantels den Reformer kontaktiert. Alternativ ist eine Ausführungsform vorstellbar, bei der das Gehäuse des Reformers, insbesondere eine äußere Wand des Reformers, eine Innenwand des Heiz-Mantels ausbildet. Zur Realisierung der Durchströmbarkeit weist der Heiz-Mantel zudem zumindest eine Öffnung auf, die als ein Einlass und/oder als ein Auslass dient.
  • Der Heiz-Mantel ist vorzugsweise fluidisch vom Reformer getrennt. Das heißt, dass ein Pfad des den Reformer aufwärmenden Zusatzbrennerabgases fluidisch von einem Pfad des Reformatgases getrennt ist. Diese fluidische Trennung gilt hierbei auch für Eduktzuführungen zum Reformer. Das heißt insbesondere, dass eine Brennstoffzuführung zum Reformer bzw. eine Oxidatorgaszuführung zum Reformer jeweils fluidisch von der Reformerzuführeinrichtung getrennt sind.
  • Bei einer vorteilhaften Weiterbildung ist die Reformerzuführeinrichtung fluidisch mit dem durchströmbaren Heiz-Mantel verbunden und überträgt somit die Wärme des Zusatzbrennerabgases auf den Reformer. Hierzu sind beispielsweise der Zulauf und der Rücklauf der Reformerzuführeinrichtung fluidisch mit dem durchströmbaren Heiz-Mantel verbunden. Diese Verbindungen sind vorzugsweise über zwei Öffnungen des Heiz-Mantels realisiert. Das heißt, dass der Zulauf fluidisch mit einer ersten Öffnung verbunden ist und der Rücklauf fluidisch mit einer zweiten Öffnung verbunden ist. Das Zusatzbrennerabgas fließt somit über den Zulauf zum Reformer bzw. zum Heiz-Mantel und über den Rücklauf vom Reformer bzw. von Heiz-Mantel weg, womit eine Wärmeübertragung auf den Reformer gewährleistet ist. Sind die Öffnungen des Reformers und somit die fluidischen Verbindungen des Zulaufs bzw. des Rücklaufs mit dem Heiz-Mantel zudem auf gegenüberliegende Seiten des Heiz-Mantels angeordnet, so führt dies zu einer verbesserten Wärmeübertragung auf dem Reformer, weil ein Pfad des Zusatzbrennerabgases innerhalb des Heiz-Mantels vergrößert bzw. maximiert ist. Hierzu kann der Heiz-Mantel, insbesondere der Hohlraum des Heiz-Mantels, mit Leitelementen erweitert sein, die einen vorgegebenen Pfad des Zusatzbrennerabgases bestimmen. Natürlich kann der Heiz-Mantel auch mehrere erste Öffnungen und/oder mehrere zweite Öffnungen aufweisen, die jeweils fluidisch mit dem Zulauf bzw. dem Rücklauf verbunden sind.
  • Zur Zuführung eines Kathodengases bzw. einer Brennstoffzellenluft zur Kathodenseite der Brennstoffzelle weist das Brennstoffzellensystem bei einer weiteren Ausführungsform eine Brennstoffzellenluftleitung auf. Um die Wärme des Zusatzbrennerabgases auch dem Kathodengas zuführbar zu machen, weist das Brennstoffzellensystem bei einer bevorzugten Ausführungsform einen Zusatzbrenner-Wärmeübertrager auf. Der Zusatzbrenner-Wärmeübertrager ist wärmeübertragend mit einer Zusatzbrennerabgasleitung oder einfach Zusatzabgasleitung gekoppelt bzw. innerhalb der Zusatzabgasleitung angeordnet und zudem wärmeübertragend mit der Brennstoffzellenluftleitung verbunden. Die Zusatzabgasleitung dient der Abführung des vom Zusatzbrenner produzierten Zusatzbrennerabgases. Die Zusatzabgasleitung führt demnach insbesondere einen Teil des Zusatzbrennerabgase, der nicht zum Aufwärmen des Reformers genutzt wird und/oder das vom Reformer zurückgeführte Zusatzbrennerabgas ab.
  • Bei einer weiteren bevorzugten Ausführungsform weist der Reformer in seinem inneren einen Mischraum und einen zum Mischraum benachbarten Katalysator auf. Im Mischraum wird ein Reformerbrennstoff mit Reformerluft gemischt und verbrannt bzw. vorgeheizt, während die Umsetzung des Gemisches zum Reformatgas mittels des Katalysators erfolgt. Zweckmäßig ist der Mischraum stromauf des Katalysators angeordnet. Bevorzugt umgibt der Heiz-Mantel den Reformer im Bereich des Katalysators und wärmt bzw. heizt somit vorwiegend den Katalysator. Der Mischraum wird hierbei folglich durch die Wärmeübertragung vom Katalysator bzw. durch die Wärmeübertragung des vom Heiz-Mantel umgebenden Bereichs gewärmt.
  • Gemäß einer weiteren Ausführungsform umgibt ein Misch-Mantel den Reformer im Bereich des Mischraums. Der Misch-Mantel ist zudem fluidisch mit einer Reformerluftleitung zur Versorgung des Reformers mit Reformerluft verbunden. Der Misch-Mantel dient der Vordkonditionierung der Reformerluft und ist zweckmäßig fluidisch mit dem Reformer, insbesondere dem Mischraum, verbunden. Diese fluidische Verbindung ist mittels zumindest eines Misch-Mantel-Auslasses realisiert, der auf der dem Reformer bzw. dem Mischraum zugewandten Innenseite des Misch-Mantels angeordnet ist. Entprechend kann die fluidische Verbindung mit der Reformerluftleitung auf der vom Reformer bzw. vom Mischraum abgewandten Außenseite des Misch-Mantels realisiert sein. Bevorzugt weist der Misch-Mantel mehrere Misch-Mantel-Auslässe auf, die gleichmäßig entlang der Umfangsrichtung des Reformers bzw. des Mischraums verteilt sind, so dass die Reformerluft gleichmäßig bzw. homogen in den Mischraum einströmt.
  • Der Reformer kann in seinem inneren auch einen Verdampferraum aufweisen, der auf der vom Katalysator abgewandten Seite des Mischraums bzw. stromauf des Mischraums angeordnet ist. Der Verdampferraum dient dem Verdampfen des meist flüssigen Brennstoffs und ist zwekmäßig mit einer Brennstoffleitung zur Zuführung des Brennstoffes zum Reformer fluidisch verbunden.
  • Bevorzugt ist eine Ausführungsform, bei welcher der Zulauf der Reformerzuführeinrichtung einerseits mit der Zusatzabgasleitung und andererseits mit dem den Reformer umhüllenden und durchströmbaren Heiz-Mantel fluidisch verbunden ist. Die fluidische Verbindung mit der Zusatzabgasleitung ist vorzugsweise stromauf des Zusatzbrenner-Wärmeübertragers realisiert, wobei der Begriff stromauf hier bezüglich der Strömungsrichtung des Zusatzbrennerabgases innerhalb der Zusatzabgasleitung gegeben ist. Der Zulauf der Reformerzuführeinrichtung führt also das Zusatzbrennerabgas stromauf des Zusatzbrenner-Wärmeübertragers zum Reformer. Alternativ oder zusätzlich ist der Rücklauf der Reformerzuführeinrichtung einerseits fluidisch mit dem Heiz-Mantel und andererseits fluidisch mit der Zusatzabgasleitung verbunden. Die fluidische Verbindung zwischen dem Rücklauf und der Zusatzabgasleitung ist vorzugsweise stromab des Zusatzbrenner-Wärmeübertragers realisiert. Der Rücklauf führt also das Zusatzbrennerabgas, insbesondere das vom Zulauf zugeführte Zusatzbrennerabgas, vom Heiz-Mantel bzw. vom Reformer zurück zur Zusatzabgasleitung. Dabei sind Ausführungsformen bevorzugt, bei denen sowohl der Rücklauf als auch der Zulauf der Reformerzuführeinrichtung derart realisiert sind.
  • Bei einer vorteilhaften Weiterbildung ist die Wärme des Zusatzbrennerabgases der Brennstoffzelle zuführbar. Hierzu kann das Brennstoffzellensystem einen Zweig aufweisen, der das Zusatzbrennerabgas von der Zusatzabgasleitung abzweigt und der Zusatzabgasleitung wieder zurückführt. Der Zweig ist zudem wärmeübertragend mit der Brennstoffzelle gekoppelt. Diese wärmeübertragende Kopplung ist beispielsweise mittels einer Endplatte bzw. Abschlussplatte der Brennstoffzelle realisiert, welche die Brennstoffzelle abschließt und mit dem Zweig wärmeübertragend gekoppelt ist.
  • Die Abzweigung bzw. Rückführung des Zusatzbrennerabgases durch den Zweig erfolgt nicht zwingend direkt von der Zusatzabgasleitung. Insbesondere kann die Abzweigung und/oder die Rückführung über die Reformerzuführeinrichtung erfolgen.
  • Bei einer weiteren Ausführungsform weist das Brennstoffzellensystem neben der besagten Brennstoffleitung eine weitere Brennstoffleitung auf, welche den Zusatzbrenner mit einem Zusatzbrennerbrennstoff versorgt. Die Brennstoffe des Reformers und des Zusatzbrenners können im Allgemeinen unterschiedlich sein. Bevorzugt wird jedoch eine Ausführungsform, bei dem der Reformerbrennstoff und der Zusatzbrennerbrennstoff identisch sind. Folglich verbrauchen der Reformer und die Zusatzbrenner den gleichen Brennstoff bzw. setzen diesen um. Zweckmäßig und vorzugsweise ist der gemeinsame Brennstoff dabei einem gemeinsamen Behälter, insbesondere einem Tank bzw. einem Druckbehälter, entnehmbar. Der Brennsoff entspricht zudem bevorzugt dem Brennstoff einer Brennkraftmaschine eines Fahrzeuges in bzw. an dem das Brennstoffzellensystem angeordnet ist.
  • Entsprechendes gilt für eine Luftversorgungsleitung zur Versorgung des Zusatzbrenners mit Luft als Oxidatorgas. Das heißt, das Oxidatorgas des Zusatzbrenners und die Reformerluft sind identisch und insbesondere Luft. Zudem kann die Zuführung der Luft zum Zusatzbrenner bzw. zum Reformer durch eine gemeinsame Fördereinrichtung, beispielsweise eine Pumpe, erfolgen.
  • Es sei darauf hingewiesen, dass der Zusatzbrenner zweckmäßig regel- bzw. steuerbar sein kann. Der Zusatzbrenner ist also insbesondere beim Bedarf betreibbar. So erfolgt die Übertragung der Wärme des Zusatzbrennerabgases auf den Reformer lediglich bei Bedarf, insbesondere beim dem Startvorgang des Brennstoffzellensystems. Dementsprechend kann der Zusatzbrenner während eines Normalbetriebs des Brennstoffzellensystems abgeschaltet werden. Insbesondere kann eine Steuereinrichtung vorgesehen sein, die den zusatzbrenner steuert bzw. regelt. Auch ist es vorstellbar zusätzlich oder optional ein Ventil in der Reformerzuführeinrichtung anzuordnen, das eine Dosierung der Strömung des Zusatzbrennerabgases zum Reformer, insbesondere zum Heiz-Mantel, regelt.
  • Gemäß einem Betriebsverfahren für den Start bzw. Kaltstart des Brennstoffzellensystems kann zudem Restgas, das in gasführenden Komponenten des Brennstoffzellensystems enthalten ist, von der Anodenseite der Brennstoffzelle zum Reformer und vom Reformer zur Anodenseite zirkulieren werden, insbesondere solange sich die Anode bzw. Anodenseite der Brennstoffzelle unterhalb einer Anodengrenztemperatur befindet. Mit anderen Worten, in einem Abschnitt des Brennstoffzellensystems wird Restgas zwischen dem Reformer und der Anodenseite der Brennstoffzelle im Kreis gefördert. Da die mit Hilfe des Zusatzbrenners vorgeheizte Brennstoffzellenluft die Kathodenseite der Brennstoffzelle aufheizt, ergibt sich dadurch automatisch auch eine Aufheizung der Anodenseite, so dass auch eine Wärmeübergabe an das im Kreis geförderte Restgas erfolgt. Dieses zirkulierende Restgas transportiert die Wärme zum Reformer und bewirkt dort ein Vorwärmen des Reformers und insbesondere des Katalysators des Reformers.
  • Die hier vorgestellte Startprozedur realisiert mit Hilfe des Zusatzbrenners somit gleichzeitig eine Vorwärmung der Brennstoffzelle und des Reformers. Hierdurch wird der Reformer schneller einsatzbereit, was die Startprozedur insgesamt verkürzt, wobei gleichzeitig eine Material schonende Vorgehensweise realisiert wird, um Beschädigungen der einzelnen Komponenten aufgrund überhöhter thermischer Belastung vermeiden zu können.
  • Durch die Verwendung des Zusatzbrenners kann beispielsweise ein Restgasbrenner auf einen Nennbetrieb der Brennstoffzelle ausgelegt werden, da der Zusatzbrenner am Ende des Kaltstartbetriebs ausgeschaltet werden kann. Folglich ergibt sich für den Nennbetrieb des Brennstoffzellensystems ein verbesserter Wirkungsgrad.
  • Gemäß einer vorteilhaften Ausführungsform kann vor Erreichen einer vorbestimmten (ersten) Anodengrenztemperatur, die beispielsweise bei etwa 250°C liegen kann, der Reformer zumindest vorübergehend in einem Reformerbetriebszustand betrieben werden. Ein derartiger Reformerbetrieb lässt sich bei ausreichend hoher Temperatur beispielsweise dadurch realisieren, dass dem Reformer vorübergehend Kraftstoff und Reformerluft bei einer entsprechenden Luftzahl zugeführt werden. Auf diese Weise kann gegebenenfalls im weiterhin zirkulierenden Restgas enthaltener Sauerstoff umgesetzt bzw. verbraucht werden. Wichtig ist, dass während dieses vorübergehenden Reformerbetriebszustandes des Reformers das Restgas weiterhin zwischen Anodenseite und Reformer im Kreis zirkuliert wird. Auf diese Weise kann zuverlässig das gesamte im Restgas enthaltene Sauerstoffgas verbraucht werden. Dieser vorübergehende Reformerbetriebszustand wird durchgeführt, um das Restgas auch bei steigenden Temperaturen weiterhin im Kreis zirkulieren zu können, ohne dass es dabei zu einer Beschädigung der Anode der Brennstoffzelle kommt. Bei höheren Temperaturen, beispielsweise ab 300°C, erhöht sich die Gefahr einer bleibenden Beschädigung der Anode durch einen Kontakt mit Sauerstoff signifikant.
  • Falls ein Warmstart des Reformers mit sofortigem Reformerbetriebszustand nicht möglich sein sollte, muss ein Kaltstart des Reformers durchgeführt werden, bei dem er zunächst in einem Brennerbetriebszustand betrieben wird. Gemäß einer Weiterbildung der hier vorgestellten Startprozedur kann somit unterhalb einer vorbestimmten Grenztemperatur des Katalysators des Reformers der Reformer in einem Brennerbetriebszustand betrieben werden, wobei dem Reformer Reformerluft zugeführt wird und im Reformer gebildetes Reformerabgas über die Abgasleitung abgeführt wird. Der Reformer dient dann als zusätzliche Wärmequelle, nämlich als zusätzlicher Brenner zum Aufheizen des Katalysators. Sobald dann die Katalysatorgrenztemperatur erreicht ist, die zwischen 350°C und 900°C liegen kann, kann der Betrieb des Reformers auf den Reformerbetriebszustand umgestellt werden.
  • Solange die Temperatur an der Anodenseite unterhalb einer Reoxidationsgrenze liegt, die beispielsweise bei etwa 300°C liegen kann, kann das vom Reformer kommende Gas durch die Anodenseite geführt werden. Optional kann das vom Reformer kommende Gas unter Umgehung der Anodenseite zur Abgasleitung geführt werden, wodurch eine Kontaktierung der Anode mit in dem vom Reformer kommenden Gas mitgeführtem Sauerstoff vermieden werden kann.
  • Unabhängig davon, ob das Reformerabgas die Anodenseite durchströmt oder umgeht, kann das Reformerabgas zum Vorwärmen von Brennstoffzellenluft verwendet werden.
  • Sobald der Katalysator des Reformers seine vorbestimmte Betriebstemperatur erreicht hat, die beispielsweise bei 900°C liegt, kann der Reformer besonders effektiv in seinem Reformerbetriebszustand betrieben werden. Das Reformatgas enthält üblicherweise keinen Sauerstoff und kann durch die Anodenseite geführt werden, was zusätzlich zu einer Aufheizung der Brennstoffzelle führt. Darüber hinaus kann das Reformatgas in dem Restgasbrenner zusammen mit der aus der Kathodenseite abgeführten Brennstoffzellenluft umgesetzt werden, also verbrannt werden, wodurch weitere Wärme freigesetzt wird, die zum Vorheizen der Brennstoffzellenluft genutzt werden kann.
  • Der Zusatzbrenner kann nun deaktiviert werden, sobald der Restgasbrenner die Vorwärmung der Brennstoffzellenluft übernimmt oder sobald eine vorbestimmte (zweite) Anodengrenztemperatur oder Anodenbetriebstemperatur erreicht ist.
  • Bei einer anderen Ausführungsform kann vorgesehen sein, den Reformer bei Erreichen einer vorbestimmten weiteren (dritten) Anodengrenztemperatur wieder auszuschalten und das nun sauerstofffreie Restgas weiter zwischen Anodenseite und Reformer zu zirkulieren. Diese dritte Anodengrenztemperatur liegt deutlich unterhalb der zweiten Anodengrenztemperatur bzw. unterhalb der Anodenbetriebstemperatur. Die dritte Anodengrenztemperatur liegt jedoch auch oberhalb der ersten Anodengrenztemperatur. Unterhalb der Anodenbetriebstemperatur, die beispielsweise bei 650°C liegen kann, besteht die Gefahr von Rußbildung bzw. von Rußablagerungen an der Anode der Brennstoffzelle. Durch Ausschalten des Reformers kann diese Gefahr erheblich reduziert werden, da der für die Rußbildung kritische Temperaturbereich umgangen wird.
  • Gemäß einer vorteilhaften Weiterbildung kann dann bei Erreichen einer vorbestimmten weiteren (vierten) Anodengrenztemperatur der Reformer wieder eingeschaltet werden und dann sofort im Reformerbetriebszustand betrieben werden. Die vierte Anodengrenztemperatur ist jedenfalls höher als die dritte Anodengrenztemperatur. Die dritte Anodengrenztemperatur kann beispielsweise bei etwa 350°C liegen. Die vierte Anodengrenztemperatur kann etwa bei 650°C liegen. Sie kann daher insbesondere gleich groß gewählt sein wie die zuvor genannte zweite Anodengrenztemperatur bzw. wie die Anodenbetriebstemperatur. Das erneute Einschalten des Reformers bei vorliegender vierter Anodengrenztemperatur ermöglicht einen Warmstart des Reformers, also ein sofortiges Betreiben des Reformers im Reformerbetriebszustand. Bei den nun vorliegenden, vergleichsweise hohen Temperaturen ist die Gefahr der Rußbildung bzw. Rußablagerung an der Anode erheblich reduziert.
  • Sobald dann die Anodenseite bzw. die Brennstoffzelle eine Mindesttemperatur erreicht, kann die Brennstoffzelle in Betrieb genommen werden. Die Startprozedur ist dann beendet.
  • Entsprechend einer anderen vorteilhaften Ausführungsform kann zum Regulieren einer Temperatur der Brennstoffzelle Luft von einer Bypass-Luftleitung, die den in der Brennstoffzellenluftleitung angeordneten Restgas-Wärmeübertrager umgeht, über eine Umgehungsleitung, die den in der Bypass-Luftleitung angeordneten Zusatz-Wärmeübertrager umgeht, in die Brennstoffzellenluftleitung stromab des Restgas-Wärmeübertragers eingeleitet werden. Der Restgas-Wärmeübertrager kann mit dem Abgasstrom des Restgasbrenners zusammenwirken, um die Brennstoffzellenluft aufzuheizen. Der Zusatz-Wärmeübertrager kann mit dem Zusatzbrenner zusammenwirken, um mit dem heißen Zusatzbrennerabgas die Brennstoffzellenluft vorzuheizen. Falls es erforderlich ist, eine Temperatur der Brennstoffzelle, z. B. die Temperatur des Elektrolyten oder eine Kathodentemperatur oder eine Anodentemperatur, zu reduzieren oder zu begrenzen, um eine Überhitzung der jeweiligen Komponente der Brennstoffzelle zu vermeiden, ist es nun möglich, unter Umgehung beider Wärmeübertrager aus der Umgebung angesaugte Kühlluft der Brennstoffzelle kathodenseitig zuzuführen. Dies wird mit Hilfe der Umgehungsleitung ermöglicht, welche die Bypass-Luftleitung mit der Brennstoffzellenluftleitung zwischen den beiden Wärmeübertragern verbindet.
  • Zweckmäßig kann die durch ein derartiges Brennstoffzellensystem erzeugte elektrische Spannung bzw. elektrischer Strom elektrischen Verbrauchern zugeführt werden. Hierzu kann das Brennstoffzellensystem beispielsweise Teil einer Anordnung sein und mindestens eine von einer Verbrauchernetzbatterie eines Verbrauchersystems der Anordnung unterschiedlichen Systembatterie aufweisen, wobei die Systembatterie eine elektrische Systemspannung auf einem Systemspannungsniveau aufweist. Die Systembatterie fungiert dabei insbesondere als ein Speicher bzw. als ein Puffer zwischen einer Brennstoffzelle des Brennstoffzellensystems und elektrischen Verbrauchern des Brennstoffzellensystems bzw. der Anordnung, wobei die Brennstoffzelle mittels Brennstoffzellenelemente eine Zellspannung auf einem Zellenspannungsniveau erzeugt. Die Ergänzung des Brennstoffzellensystems durch die Systembatterie führt nun insbesondere dazu, dass die von der Systembatterie zur Verfügung gestellte Systemspannung Systemverbrauchern, das heißt elektrischen Verbrauchern des Brennstoffzellensystems, zuführbar ist. Damit ist beispielsweise auch ein Starten des Brennstoffzellensystems ohne Zuführung externer elektrischer Energie durchführbar. Handelt es sich also um ein Brennstoffzellensystem mit einer Festoxidbrennstoffzelle (SOFC), so ist insbesondere ein Aufheizen der Bestandteile des Brennstoffzellensystems, insbesondere das Aufheizen von Elektroden bzw. einer Anode und/oder einer Kathode der Brennstoffzelle, während des Startvorgangs ohne äußere Zuführung von elektrischer Energie möglich bzw. ist die für den Startvorgang benötigte elektrische Energie reduziert. Weist das Brennstoffzellensystem eine Niedertemperatur-Brennstoffzelle, beispielsweise PEM-Brennstoffzelle, auf, so ist der Startvorgang, insbesondere die Versorgung der Systemverbraucher mit elektrischer Spannung, ohne äußere Zuführung von elektrischer Energie realisierbar. Zudem ist die Systemspannung auch anderen elektrischen Verbrauchern, insbesondere dem Verbrauchersystem der Anordnung und somit Erstverbrauchern, zuführbar.
  • Dementsprechend weist das Brennstoffzellensystem eine Spannungswandlereinrichtung auf, die das Zellenspannungsniveau auf das Systemspannungsniveau und/oder das Systemspannungsniveau auf das Zellenspannungsniveau umwandelt. Die Spannungswandlereinrichtung dient also insbesondere dem Zweck, die von der Brennstoffzelle erzeugte Zellenspannung der Systembatterie zuführbar zu machen. Alternativ oder zusätzlich kann die Spannungswandlereinrichtung die an der Systembatterie anliegende Systemspannung der Brennstoffzelle zuführbar machen. Hierzu ist die Spannungswandlereinrichtung zweckmäßig elektrisch mit der Brennstoffzelle und der Systembatterie verbunden, wobei die jeweiligen elektrischen Verbindungen nicht zwangsläufig direkt von der Spannungswandlereinrichtung zur Brennstoffzelle bzw. zur Systembatterie verlaufen. Das heißt insbesondere, dass andere Einrichtungen bzw. Komponenten zwischen der Brennstoffzelle, der Spannungswandlereinrichtung und der Systembatterie geschaltet sein können. Der Begriff Verbrauchersystem heißt dabei keinesfalls, dass das Verbrauchersystem keine vom Brennstoffzellensystem getrennte Energieversorgung bzw. elektrische Spannungsversorgung aufweist. Vielmehr kann das Verbrauchersystem eine vom Brennstoffzellensystem unterschiedliche Energieversorgung aufweisen bzw. mit einem derartigen Versorger verbunden sein.
  • Die elektrische Verbindung mit der Brennstoffzelle ist vorzugsweise und zweckmäßig mittel den Elektroden der Brennstoffzelle realisiert. Entsprechend wird die Zellspannung an den Elektroden abgegriffen oder die Systemspannung vorzugsweise den Elektroden zugeführt.
  • Als Systemverbraucher des Brennstoffzellensystems sei hier beispielsweise auf Luftversorgungseinrichtungen, Brennstoffversorgungseinrichtungen, eine Heizung, Steuereinrichtungen sowie Ventile und dergleichen hingewiesen.
  • Zur Versorgung von elektrischen Zweitverbrauchern, also auch Verbrauchern, die nicht zur Anordnung gehören, ist die Systembatterie zudem mit zumindest einem Zusatzspannungswandler verbunden, wobei der jeweilige Zusatzspannungswandler die an der Systembatterie anliegende Systemspannung auf ein zugehöriges Zusatzspannungsniveau anpasst. Das jeweilige Zusatzspannungsniveau kann oberhalb oder unterhalb der Systemspannung liegen. Der jeweilige Zusatzspannungswandler stellt dem Zweitverbraucher oder den Zweitverbrauchern die zugehörige Zusatzspannung auf dem zugehörigen Zusatzspannungsniveau zur Verfügung, wobei das jeweilige Zusatzspannungsniveau oberhalb oder unterhalb des Systemspannungsniveaus liegt.
  • Für die elektrische Versorgung des Verbrauchernetzes ist zudem ein mit der Systembatterie elektrisch verbundener Verbraucherspannungswandler vorgesehen, der die an der Systemsbatterie anliegende Systemspannung an das Verbrauchernetzspannungsniveau anpasst. Der Verbraucherspannungswandler dient folglich dem Zweck, die vom Brennstoffzellensystem erzeugte elektrische Spannung dem Verbrauchersystem zur Verfügung zu stellen. Das Verbrauchernetzspannungsniveau liegt oberhalb oder unterhalb des Systemsspannungsniveaus, wobei der Verbraucherspannungswandler das Systemspannungsniveau auf das Verbrauchernetzspannungsniveau erhöht oder reduziert.
  • Es sei darauf hingewiesen, dass die von der Brennstoffzelle erzeugte Zellenspannung sowie die an der Systembatterie anliegende Systemspannung in der Regel Gleichspannungen sind. Dementsprechend und zweckmäßig sind die Systemverbraucher für den Betrieb mit einer Gleichspannung geeignet. Somit weist die Spannungswandlereinrichtung vorzugsweise zumindest einen Gleichspannungswandler, also insbesondere einen sogenannten „DC/DC-Wandler”, auf. Ist Verbrauchernetzspannung auch eine Gleichspannung, so kann der der Verbraucherspannungswandler ebenfalls einen derartigen Gleichspannungswandler aufweisen.
  • Es sei ferner vermerkt, dass die Brennstoffzelle in der Regel als ein Stack aus Brennstoffzellenelementen ausgebildet ist. Die Zellspannung der Brennstoffzelle ergibt sich bei einer Reihenschaltung der einzelnen Brennstoffzellenelementen folglich als die Summe der von den einzelnen Brennstoffzellenelementen erzeugten elektrische Spannung. Beträgt die Zellenspannung bei einer Ausführungsform der Anordnung beispielsweise 42 V und erzeugt das jeweilige Brennstoffzellenelement eine elektrische Spannung von 0,7 V, so weist die Brennstoffzelle sechzig in Reihe geschaltete Brennstoffzellenelemente auf. Die von der jeweiligen Brennstoffzelle erzeugte elektrische Spannung hängt jedoch unter anderem von der abgegebenen Leistung, also von einer Last, ab. Fällt die Spannung des jeweiligen Brennstoffzellenelements bei einer Volllast beispielsweise auf 0,6 V, so reduziert sich die Zellenspannung entsprechend auf 36 V. Steigt die Spannung des jeweiligen Brennstoffzellenelements bei einem Leerlauf, also ohne Last, auf 1,0 V, so steigt die Zellenspannung entsprechend auf 60 V. Die Spannungswandlereinrichtung dient somit insbesondere auch dem Zweck, diese Schwankungen der Zellenspannung auszugleichen und die lastabhängige Zellenspannung und somit das lastabhängige Zellenspannungsniveau in das im Wesentlichen konstante Systemspannungsniveau zu wandeln.
  • Bevorzugt ist eine Ausführungsform, bei der die Verbrauchernetzbatterie ähnlich wie die Systemsbatterie als ein Speicher bzw. als ein Puffer fungiert, mittels welcher die Erstverbraucher elektrisch versorgt werden.
  • Gemäß einer weiteren bevorzugten Ausführungsform weist das Brennstoffzellensystem eine elektrische Ladeeinrichtung auf. Die Ladeeinrichtung dient insbesondere dem Zweck, die Systembatterie mittels der von der Brennstoffzelle erzeugten elektrischen Zellenspannung aufzuladen. Die Ladeeinrichtung erlaubt somit insbesondere, die von der Brennstoffzelle erzeugte elektrische Energie mittels der Systembatterie zu speichern. Die somit gespeicherte elektrische Energie ist nun insbesondere bei einem Startvorgang des Brennstoffzellensystems den Systemverbrauchern zuführbar, womit ein von außen, das heißt also von externen Spannungs- bzw. elektrischen Energielieferanten, unabhängiges Starten des Brennstoffzellensystems gewährleistet ist. Dabei ist die Ladeeinrichtung vorzugsweise zwischen der Spannungswandlereinrichtung und der Systembatterie angeordnet. Die Ladeeinrichtung kann auch innerhalb der Spannungswandlereinrichtung angeordnet sein bzw. Bestandteil der Spannungswandlereinrichtung sein. Alternativ kann die Ladeeinrichtung an der Systembatterie angeordnet bzw. ein Bestandteil der Systembatterie sein.
  • Bei einer weiteren bevorzugten Ausführungsform weist zumindest einer der Zusatzspannungswandler einen Wechselrichter auf. Zumindest einer der Zusatzspannungswandler ist folglich derart ausgebildet, dass er die an der Systembatterie anliegende und gleichspannungsartige Systemspannung an das entsprechende Zusatzspannungsniveau anpasst und in eine Wechselspannung umwandelt. Dies dient nun insbesondere der elektrischen Versorgung von Zweitverbrauchern, die mit einer Wechselspannung betrieben werden. Die Zweitverbraucher können dabei externe Verbraucher sein, die mit haushaltsüblichen Spannungen betrieben werden. Die Zusatzspannung beträgt also insbesondere 220 V bzw. 110 V. Als Beispiele für derartige Zweitverbraucher sei hier auf Kühlschränke bzw. Kühlboxen, Fernseher bzw. Displays sowie elektrisch betriebene Klimaeinrichtungen, insbesondere Klimakompressoren, hingewiesen.
  • Die jeweiligen Zusatzspannungsniveaus können sowohl unterhalb, als auch oberhalb des Systemspannungsniveaus liegen. Es sind beispielsweise Ausführungsformen vorstellbar, bei denen jeweils ein Zusatzspannungsniveau oberhalb und ein Zusatzspannungsniveau unterhalb des Systemspannungsniveaus liegt. Entsprechend weist die Anordnung zwei Zusatzspannungswandler auf, wobei einer der Zusatzspannungswandler das Systemspannungsniveaus auf das erste Zusatzspannungsniveau erhöht und somit die erste Zusatzspannung ersten Zweitverbrauchern zuführbar macht während der zweite Zusatzspannungswandler das Systemspannungsniveaus auf das zweite Zusatzspannungsniveau reduziert und zweiten Zweitverbrauchern zuführbar macht. Auch sind Ausführungsformen bevorzugt, bei denen zumindest ein derartiger Zusatzspannungswandler das Systemspannungsniveau auf ein Zusatzspannungsniveau mit einer Hochspannung erhöht. Eine derartige Hochspannung dient beispielsweise dem Betrieb von Klimaeinrichtungen.
  • Es sind auch Ausführungsformen vorstellbar, bei denen ein derartiger Zusatzspannungswandler lediglich einen Wechselrichter der besagten Art aufweist. Dieser Zusatzspannungswandler wandelt also die an der Systembatterie anliegende Systemspannung lediglich in eine Wechselspannung um.
  • Bei einer weiteren bevorzugten Ausführungsform ist die an der Systembatterie anliegende Systemspannung Elektroden der Brennstoffzelle und somit der Anode der Brennstoffzelle zuführbar. Die Zuführung der an der Systembatterie anliegenden Systemspannung an die Brennstoffzelle dient insbesondere dem Zweck, die Elektroden sowie insbesondere die Anode, vor einer Oxidation zu schützen. Diese sogenannte „Schutzspannung” ist, wie beispielsweise aus der US 2002/0028362 A1 bekannt, insbesondere dann sinnvoll, wenn die Anode oxidierenden Bedingungen ausgesetzt ist. Dazu ist das Brennstoffzellensystem, insbesondere die Spannungswandlereinrichtung, derart ausgebildet, dass die Systemspannung bzw. das Systemspannungsniveau den Elektroden der Brennstoffzelle zuführbar ist. Die Zuführung der Systemspannung an den Elektroden bzw. an die Anode ist vorzugsweise steuer- und regelbar. Eine derartige Übertragung der Systemspannung auf die Elektroden kann also insbesondere bei Bedarf, beispielsweise bei dem Start bzw. bei einem Herunterfahren des Brennstoffzellensystems, aktiviert und anschließend wieder deaktiviert werden. Die Spannungswandlereinrichtung ist zudem optional derart ausgebildet, dass sie die auf dem Systemspannungsniveau liegende Systemspannung in eine elektrische Spannung auf einem anderen elektrischen Spannungsniveau umwandeln kann. Dies dient nun insbesondere dem Zweck, die der Elektroden zuzuführende Spannung an die jeweiligen Gegebenheiten, insbesondere den oxidierenden Bedingungen an der Anodenseite, anzupassen. Hierzu weist das Brennstoffzellensystem vorzugsweise eine Einrichtung auf, die eine Bestimmung der entsprechenden Bedingungen an den Elektroden und insbesondere an der Anodenseite erlaubt. Eine derartige Einrichtung kann insbesondere eine Temperaturmesseinrichtung sowie eine Einrichtung zur Bestimmung der Sauerstoffkonzentration bzw. der Sauerstoffionenkonzentration aufweisen. Zudem kann eine Steuereinrichtung vorgesehen sein, welche die Schutzspannung abhängig von den entsprechenden Parametern regelt und steuert.
  • Es sei darauf hingewiesen, dass die Ergänzung des Brennstoffzellensystems durch die Spannungswandlereinrichtung und den Verbraucherspannungswandler sowie den zumindest einen Zusatzspannungswandler auch die Wirtschaftlichkeit des Brennstoffzellensystems bzw. der zugehörigen Anordnung erhöht. Dies ist insbesondere deshalb der Fall, weil diese Bestandteile der Erfindung hinlänglich bekannt sind und eine einfache sowie günstige Montage bzw. Herstellung erlauben.
  • Bei einer bevorzugten Ausführungsform ist die Anordnung Bestandteil eines Fahrzeuges, insbesondere eines Kraftfahrzeuges. In diesem Fall kann das Verbrauchersystem einem Bordnetz des Fahrzeugs entsprechen. Somit sind die Erstverbraucher insbesondere Steuergeräte, Glühbirnen sowie ein Radio des Fahrzeugs. Folglich ist die Verbrauchernetzbatterie eine Bordnetzbatterie des Kraftfahrzeugs. Die bei einer Anwendung in einem Fahrzeug erzeugte Zellspannung liegt dabei in der Regel im Bereich zwischen 42 und 100 V liegt, während die Systemspannung vorzugsweise einen Wert von 24 V aufweist, womit auch die Systemverbraucher auf einem Systemspannungsniveau von 24 V betrieben werden. Weiter weist die Bordnetzspannung in der Regel einen Wert von 12 V auf, womit die Erstverbraucher auf einem Verbrauchernetzspannungsniveau von 12 V betrieben werden. In diesem Fall wandelt die Spannungswandlereinrichtung die von der Brennstoffzelle erzeugte Zellenspannung auf das Systemspannungsniveau von 24 V um und führt die umgewandelte Spannung der Systembatterie zu. Weiter wandelt in diesem Fall der Verbraucherspannungswandler die Systemspannung von 24 V auf das Verbrauchernetzspannungsniveau von 12 V um und führt die umgewandelte Spannung dem Bordnetz, insbesondere der Bordnetzbatterie zu. Der Verbraucherspannungswandler ist also insbesondere als ein Abwärtswandler ausgebildet. Dabei fungiert die Bordnetzbatterie ähnlich wie die Systemsbatterie als ein Speicher bzw. als ein Puffer, von dem aus die Erstverbraucher elektrisch versorgt werden. Eine Umwandlung der Systemspannung auf das Hochspannungsniveau bzw. in eine Wechselspannung durch einen Zusatzspannungswandler der besagten Art kann dem Betrieb von Zweitverbrauchern mit einem entsprechenden Spannungsbedarf, wie beispielsweise eine Klimaanlage des Fahrzeugs bzw. einem Klimakompressor sowie einem Fernseher, dienen. Dies ist insbesondere auch dann möglich, wenn das Fahrzeug, insbesondere eine Brennkraftmaschine des Fahrzeugs, nicht betrieben werden und somit das Brennstoffzellensystem für eine entsprechende Versorgung der Verbraucher sorgt. Der weitere Zusatzspannungswandler kann zudem eine haushaltsübliche Spannung zur Verfügung stellen, um Beispielsweise einen Fernseher, eine Kaffeemaschine usw. zu betreiben.
  • Es ist klar, dass die hier angegebenen Werte der jeweiligen Spannungen bzw. Spannungsniveaus keine Einschränkungen der vorliegenden Erfindung darstellen. Es sind daher auch andere Werte der jeweiligen Spannungen vorstellbar. Weiter können die jeweiligen Spannung auch eine Wechselspannung sein, ohne den Umfang dieser Erfindung zu verlassen.
  • Eine derartige Anordnung kann auch Bestandteil eines stationären Systems sein. Dabei dient die Systembatterie, wie bereits erwähnt, insbesondere dem unabhängigen Starten des Brennstoffzellensystems sowie dem Zweck, Elektroden der Brennstoffzelle die Systemspannung, insbesondere als Schutzspannung, zuführbar zu machen.
  • Es sei vermerkt, dass ein Reformer mit einem Heiz-Mantel der besagten Art für ein derartiges Brennstoffzellensystem auch als Solcher zum Umfang dieser Erfindung gehört. Der Reformer kann zudem einen Misch-Mantel und/oder einen Verdampferraum der besagten Art aufweisen.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen
  • Es zeigen, jeweils schematisch
  • 1 eine schaltplanartige und stark vereinfachte Ausführungsform einer Anordnung mit einem Brennstoffzellensystem und elektrischen Verbrauchern,
  • 2 einen Schnitt durch einen Reformer.
  • 1 zeigt eine Anordnung 0 mit einem Brennstoffzellensystem 1, das in einem Kraftfahrzeug oder in einer beliebigen anderen mobilen oder stationären Anwendung als einzige oder als zusätzliche elektrische Energiequelle angeordnet sein kann, mit einer Brennstoffzelle 2 und einen Restgasbrenner 3. Die Brennstoffzelle 2 generiert im Betrieb aus Anodengas und Kathodengas elektrischen Strom, der über Elektroden 4 abgreifbar ist. Die Brennstoffzelle 2 ist bevorzugt als SOFC-Brennstoffzelle ausgestaltet. Der Restgasbrenner 3 setzt im Betrieb Anodenabgas mit Kathodenabgas um, wobei er Brennerabgas erzeugt. Die Umsetzung kann dabei mit offener Flamme erfolgen. Ebenso ist eine katalytische Umsetzung denkbar.
  • Eine Anodenabgasleitung 5 verbindet eine Anodenseite 6 der Brennstoffzelle 2, die zumindest eine Anode 95 aufweist, mit dem Restgasbrenner 3. Eine Kathodenabgasleitung 7 verbindet eine Kathodenseite 8 der Brennstoffzelle 2, die zumindest eine Kathode 104 aufweist, mit dem Restgasbrenner 3. In einem Brennraum 9 des Restgasbrenners 3 erfolgt dann die Umsetzung der Brennstoffzellenabgase. Der Restgasbrenner 3 kann mit der Brennstoffzelle 2 eine baulich integrierte Einheit bilden. Die Anodenabgasleitung 5 und die Kathodenabgasleitung 7 sind dann interne Leitungen bzw. Pfade.
  • In der Brennstoffzelle 2 trennt ein Elektrolyt 10 die Anodenseite 6 von der Kathodenseite 8. Über eine Reformatgasleitung 11 oder eine Anodengasleitung 11 erfolgt die Zuführung von Anodengas zur Anodenseite 6 der Brennstoffzelle 2. Über eine Brennstoffzellenluftleitung 12 erfolgt die Zuführung von Kathodengas zur Kathodenseite 8 der Brennstoffzelle 2. Beim Kathodengas handelt es sich bevorzugt um Luft. Eine Brennerabgasleitung 13 führt das vom Restgasbrenner 3 erzeugte Brennerabgas vom Restgasbrenner 3 bzw. aus dessen Brennraum 9 ab. In diese Brennerabgasleitung 13 ist ein Restgas-Wärmeübertrager 14 eingebunden, der außerdem in die Brennstoffzellenluftleitung 12 eingebunden ist. Der Restgas-Wärmeübertrager 14 erzeugt eine mediengetrennte wärmeübertragende Kopplung zwischen der Brennstoffzellenluftleitung 12 und der Brennerabgasleitung 13. Der Restgas-Wärmeübertrager 14 kann dabei baulich in den Restgasbrenner 3 integriert sein.
  • Im Beispiel ist das Brennstoffzellensystem 1 mit einem Brennstoffzellenmodul 15 ausgestattet, das die Brennstoffzelle 2, den Restgasbrenner 3 und den Restgas-Wärmeübertrager 14 umfasst. Ferner ist dieses Brennstoffzellenmodul 15 mit einer thermisch isolierenden Hülle 16 ausgestattet, welche die Komponenten des Brennstoffzellenmoduls 15 umschließt.
  • Das Brennstoffzellensystem 1 ist außerdem mit einer Luftfördereinrichtung 17 ausgestattet, die bspw. ein Gebläse oder ein Verdichter oder ein elektrisch betriebener Turbolader oder eine Pumpe sein kann. Im Betrieb führt diese Luftfördereinrichtung 17 über die Brennstoffzellenluftleitung 12 der Brennstoffzelle 2 Luft als Kathodengas zu. Die Luftfördereinrichtung 17 ist dabei Bestandteil eines Luftversorgungsmoduls 18, das über eine eigene thermisch und/oder akustisch isolierende Hülle 19 verfügt, in welcher die Luftfördereinrichtung 17 angeordnet ist. Die Luftfördereinrichtung 17 kann vorzugsweise mit einer Filtereinrichtung 71 ausgestattet sein, um Partikel und/oder Aerosole aus der geförderten Luft herauszufiltern.
  • Das Brennstoffzellensystem 1 ist außerdem mit einer Zusatzbrennereinrichtung 20 bzw. einem Zusatzbrenner 20 ausgestattet, der so konfiguriert ist, dass er im Betrieb Luft mit einem Zusatzbrennerbrennstoff oder einfach Brennstoff zu Zusatzbrennerabgas umsetzt. Besagtes Zusatzbrennerabgas wird dabei über eine Zusatzbrennerabgasleitung 21 oder kurz Zusatzabgasleitung 21 vom Zusatzbrenner 20 bzw. von einem Brennraum 22 des Zusatzbrenners 20 abgeführt. Die Zusatzabgasleitung 21 enthält vorzugsweise ein Absperrorgan 67 zur Entkopplung des Zusatzbrenners 20 während eines Normalbetriebs des Brennstoffzellensystems 1, bei dem der Zusatzbrenner 20 ausgeschaltet ist. Das Absperrorgan 67 wirkt dann als Rückschlagsperre. In diese Zusatzabgasleitung 21 ist ein Zusatzbrenner-Wärmeübertrager 23 oder kurz Zusatz-Wärmeübertrager 23 eingebunden. Außerdem ist der Zusatz-Wärmeübertrager 23 in eine Bypassluftleitung 24 eingebunden. Der Zusatz-Wärmeübertrager 23 erzeugt somit eine mediengetrennte, wärmeübertragende Kopplung zwischen der Zusatzabgasleitung 21 und der Bypass-Luftleitung 24. Der Zusatz-Wärmeübertrager 23 kann dabei baulich in den Zusatzbrenner 20 integriert sein.
  • Die Bypass-Luftleitung 24 umgeht den Restgas-Wärmeübertrager 14 luftseitig. Hierzu ist die Bypass-Luftleitung 24 eingangsseitig über eine Entnahmestelle 25 zwischen der Luftfördereinrichtung 17 und dem Restgas-Wärmeübertrager 14 an die Brennstoffzellenluftleitung 12 angeschlossen. Ausgangsseitig ist die Bypass-Luftleitung 24 über eine Einleitstelle 26 zwischen dem Restgas-Wärmeübertrager 14 und der Brennstoffzelle 2 an die Brennstoffzellenluftleitung 12 angeschlossen. Ein erster Abschnitt der Brennstoffzellenluftleitung 12, der von der Luftfördereinrichtung 17 zur Einleitstelle 26 führt, wird im Folgenden mit 12' bezeichnet, während ein von der Einleitstelle 26 zur Brennstoffzelle 2 bzw. zur Kathodenseite 8 führender zweiter Abschnitt der Brennstoffzellenluftleitung 12 im Folgenden mit 12'' bezeichnet wird.
  • Entsprechend der hier gezeigten Ausführungsform kann optional eine Umgehungsleitung 72 vorgesehen sein, die eine stromauf des Zusatz-Wärmeübertragers 23 angeordnete Entnahmestelle 73 der Bypass-Luftleitung 24 mit der Einleitstelle 26, also mit der Brennstoffzellenzuluftleitung 12 verbindet. Diese Umgehungsleitung 72 ermöglicht dadurch eine Umgehung des Zusatz-Wärmeübertragers 23 innerhalb der Bypass-Luftleitung 24. Ein erster Abschnitt der Bypass-Luftleitung 24, der von der Entnahmestelle 25 bis zur weiteren Entnahmestelle 73 führt, wird im Folgenden mit 24' bezeichnet, während ein von der weiteren Entnahmestelle 73 bis zur Einleitstelle 26 führender zweiter Abschnitt der Bypass-Luftleitung 24 im Folgenden mit 24'' bezeichnet wird. Zum Steuern der Umgehungsleitung 72 kann ein weiteres Ventil 74 vorgesehen sein, das im Beispiel zweckmäßig an der weiteren Entnahmestelle 73 angeordnet ist.
  • Im Normalbetrieb des Brennstoffzellensystems 1, also bei ausgeschaltetem Zusatzbrenner 20, erfolgt ausschließlich über den Restgas-Wärmeübertrager 14 eine Vorheizung der Brennstoffzellenluft. In bestimmten Betriebssituationen kann es erforderlich sein, eine weitere Temperaturzunahme der Brennstoffzelle 2 zu vermeiden bzw. eine Abkühlung der Brennstoffzelle 2 zu erzielen. Dies kann beispielsweise erforderlich sein, um eine Komponente der Brennstoffzelle 2, wie z. B. den Elektrolyten 10, vor einer Überhitzung zu schützen. Die jeweilige Temperatur der Brennstoffzelle 2 kann durch kalte Umgebungsluft reguliert werden, die der Brennstoffzellenluft zugeführt wird, um deren Temperatur zu reduzieren. Die kalte Umgebungsluft kann dabei über die Bypass-Luftleitung 24 dem zweiten Abschnitt 12'' der Brennstoffzellenluftleitung 12 zugeführt werden, wobei die Bypass-Luftleitung 24 den Restgas-Wärmeübertrager 14 umgeht. Ist jedoch, z. B. während des Startbetriebs, der Zusatzbrenner 20 noch aktiv, muss auch der in der Bapyss-Luftleitung 24 angeordnete Zusatz-Wärmeübertrager 23 umgangen werden, um eine Kühlung der Brennstoffzellenluft erzielen zu können. Hierzu wird die Umgehungsleitung 72 verwendet. Die Kühlluft strömt dann über den ersten Abschnitt 24' der Bypass-Luftleitung 24 bis zur Umgehungsleitung 72 und von der Umgehungsleitung 72 in den zweiten Abschnitt 12' der Brennstoffzellenluftleitung 12. Die Kühlluft umgeht dadurch einerseits den Restgas-Wärmeübertrager 14 und andererseits den Zusatz-Wärmeübertrager 23.
  • Die Versorgung des Zusatzbrenners 20 mit Luft erfolgt über eine Zusatzluftfördereinrichtung 27 und eine entsprechende Luftversorgungsleitung 28. Die Zusatzfördereinrichtung 27 kann vorzugsweise mit einer Filtereinrichtung 75 ausgestattet sein, um Partikel und/oder Aerosole aus der geförderten Luft herauszufiltern. Die Luft für den Zusatzbrenner 20 wird dabei bevorzugt aus einer Umgebung 52 des Brennstoffzellensystems angesaugt. Die Versorgung des Zusatzbrenners 20 mit Brennstoff erfolgt mit Hilfe einer Brennstofffördereinrichtung 29 über eine entsprechende Brennstoffleitung 30. Beim Brennstoff kann es sich bspw. um beliebige Kohlenwasserstoffe handeln. Bevorzugt wird jedoch ein Kraftstoff, mit dem auch beispielsweise eine Brennkraftmaschine des mit dem Brennstoffzellensystem 1 ausgestatteten Fahrzeugs betrieben wird. Insbesondere handelt es sich beim Brennstoff somit um Diesel oder Biodiesel oder Heizöl. Ebenso ist Benzin oder Erdgas oder ein beliebiger Biokraftstoff sowie synthetische Kohlenwasserstoffe denkbar. Folglich ist die Brennstoffleitung 30 zweckmäßig an einen hier nicht näher dargestellten Kraftstofftank 53 des Fahrzeugs angeschlossen.
  • Der Zusatzbrenner 20 und der Zusatz-Wärmeübertrager 23 sind hier Bestandteil eines Zusatzbrennermoduls 31, das über eine eigene thermisch isolierende Hülle 32 verfügt, in welcher der Zusatzbrenner 20 und der Zusatz-Wärmeübertrager 23 angeordnet sind. Außerdem sind im Beispiel die Zusatzluftfördereinrichtung 27 und die Brennstofffördereinrichtung 29 des Zusatzbrenners 20 Bestandteil des Zusatzbrennermoduls 31. Diese Bestandteile sind jedoch außerhalb der zugehörigen Hülle 32 angeordnet.
  • Das Brennstoffzellensystem 1 ist in dem gezeigten Beispiel außerdem mit einem Reformer 33 ausgestattet, der im Betrieb Luft mit einem Reformerbrennstoff bzw. Brennstoff unterstöchiometrisch, also bei einem Luftverhältnis < 1 umsetzt und dabei wasserstoffhaltiges und kohlenmonoxidhaltiges Reformatgas erzeugt. Dieses Reformatgas wird über die Reformatgasleitung 11 als Anodengas der Anodenseite 6 der Brennstoffzelle 2 zugeführt. Zur Versorgung des Reformers 33 mit Reformerluft ist eine Reformerluftleitung 34 vorgesehen, die hier ebenfalls von der Luftfördereinrichtung 17 gespeist wird. Darüber hinaus ist bei der hier gezeigten Ausführungsform in der Reformerluftleitung 34 stromab der Luftfördereinrichtung 17 eine weitere Fördereinrichtung 35 angeordnet, die im Folgenden als Reformerluftfördereinrichtung 35 bezeichnet wird. Mit Hilfe dieser Reformerluftfördereinrichtung 35 kann die dem Reformer 33 zugeführte Luft auf ein erhöhtes Druckniveau gebracht werden. Zusätzlich kann diese Reformerluftfördereinrichtung 35 als Heißgasfördereinrichtung ausgestaltet sein. Bspw. kann sie nach Art eines Gebläses, Kompressors, Verdichters, elektrisch betriebenem Turboladers oder einer Pumpe ausgestaltet sein.
  • Zur Versorgung des Reformers 33 mit Brennstoff ist eine Brennstofffördereinrichtung 36 vorgesehen, die über eine entsprechende Brennstoffleitung 37 dem Reformer 33 einen geeigneten Brennstoff zuführt. Hierbei kann es sich wieder um einen beliebigen Kohlenwasserstoff handeln.
  • Bevorzugt wird derjenige Kraftstoff, der auch der Brennkraftmaschine des mit dem Brennstoffzellensystem 1 ausgestatteten Fahrzeugs zugeführt wird. Dementsprechend ist auch die zur Versorgung des Reformers 33 vorgesehene Brennstoffleitung 37 zweckmäßig an den Tank 53 des Fahrzeugs angeschlossen.
  • Der Reformer 33 enthält einen Brennraum 38 bzw. Mischraum 38, in den sich die Reformerluft und der Brennstoff vermischen bzw. verbrannt werden. Der Reformer 33 enthält außerdem einen Katalysator 40, mit dessen Hilfe das Reformatgas mittels partieller Oxidation erzeugt werden kann.
  • Der Reformer 33 ist Bestandteil eines Reformermoduls 41, das eine separate bzw. eigene thermisch isolierende und/oder gasdichte Hülle 42 aufweist, in welcher der Reformer 33 angeordnet ist. Im Beispiel gehört die Reformerbrennstofffördereinrichtung 36 zum Reformermodul 41. Besagte Fördereinrichtung 36 ist hierzu jedoch außerhalb der Hülle 42 des Reformermoduls 41 angeordnet.
  • Die Brennerabgasleitung 13 oder kurz Abgasleitung 13 enthält stromab des Restgas-Wärmeübertragers 14 einen Oxidationskatalysator 43 zur Abgasnachbehandlung. In die Abgasleitung 13 kann außerdem ein Heizungswärmeübertrager 44 eingebunden sein, der im Betrieb einen durch einen Pfeil angedeuteten Fluidstrom 45 aufheizen kann. Hierbei kann es sich um einen Luftstrom 45 handeln, der einem hier nicht gezeigten Fahrzeuginnenraum zugeführt werden kann. Alternativ kann der Fluidstrom 45 auch ein Kühlmittel eines Kühlkreises sein, wobei der Kühlkreis einen Wärmeübertrager zum Beheizen eines Luftstroms enthält, der dann z. B. zum Fahrzeuginnenraum geführt sein kann. Der Heizungswärmeübertrager 44 ist dabei zweckmäßig stromab des Oxidationskatalysators 43 angeordnet. Hierdurch kann die im Oxidationskatalysator 43 beim Umsetzen von Schadstoffen ggf. freigesetzte Wärme zum Beheizen des Fahrzeuginnenraums genutzt werden.
  • Die Entnahmestelle 25, bei welcher die Bypass-Luftleitung 24 von der Brennstoffzellenluftleitung 12 abzweigt, ist zweckmäßig als Ventil ausgestaltet bzw. an einem Ventil 46 angeordnet. Dieses Ventil 46 ermöglicht bspw. eine quasi beliebige Aufteilung des von der Luftfördereinrichtung 17 geförderten Luftstroms auf den durch den Restgas-Wärmeübertrager 14 geführten Abschnitt der Brennstoffzellenluftleitung 12 und auf die Bypass-Luftleitung 24. Das Ventil 46 ist zweckmäßig Bestandteil einer Ventileinrichtung 47, welche über eine Verteilerleiste 48, die druckseitig von der Luftfördereinrichtung 17 geförderte Luft auf die Brennstoffzellenluftleitung 12 und auf die Reformerluftleitung 34 aufteilt. Zum Steuern der dem Reformer 33 zugeführten Luftmenge kann ein weiteres Ventil 49 vorgesehen sein, das ebenfalls zur Ventileinrichtung 47 gehören kann. Ferner ist im Beispiel eine Kühlgasleitung oder Kühlluftleitung 50 vorgesehen, über die dem Restgasbrenner 3 Kühlluft zuführbar ist. Die Kühlluftleitung 50 ist mit einem Ventil 51 steuerbar, das im Beispiel ebenfalls zur Ventileinrichtung 47 gehört. Die Luftfördereinrichtung 17 saugt die Luft ebenfalls aus der Umgebung 52 des Brennstoffzellensystems 1 über eine Saugleitung 53 an. Die Ventileinrichtung 47 ist im Beispiel ebenfalls Bestandteil des Luftversorgungsmoduls 18 und ist dabei innerhalb der zugehörigen Hülle 19 angeordnet.
  • Die Ventile der Ventileinrichtung 47 und die Luftfördereinrichtungen 17, 35 sind bevorzugt temperaturgesteuert bzw. temperaturgeregelt. Beispielsweise werden das Ventil 49, die Fördereinrichtung 17 und die Reformerluftfördereinrichtung 35 abhängig von der Temperatur des Mischraums 38 und/oder abhängig von der Temperatur des Katalysators 40 geregelt. Das Ventil 51 und die Luftfördereinrichtung 17 können z. B. abhängig von der Temperatur des Brennraums 9 geregelt werden. Das Ventil 46 und die Luftfördereinrichtung 17 können z. B. abhängig von der Temperatur der Kathodenseite 8 geregelt werden. Die Luftfördereinrichtung 35 kann z. B. abhängig von der Temperatur des Mischraums 38 und/oder abhängig von der Temperatur des Katalysators 40 geregelt werden.
  • Der mit Hilfe des Brennstoffzellensystems 1 generierte, elektrische Strom dient zweckmäßig zur Versorgung von elektrischen Verbrauchern mit elektrischem Strom bzw. mit elektrischer Energie. Die Anordnung 0 umfasst dabei ein Verbrauchersystem 54, das eine Verbrauchernetzbatterie 82 sowie Erstverbraucher 78 aufweist, der über eine Verbrauchernetzspannung der Verbrauchernetzbatterie 82 elektrisch versorgt wird. Die Anordnung 0 kann beispielsweise Teil eines Fahrzeugs, insbesondere eines Kraftfahrzeugs, sein. In diesem Fall entspricht das Verbrauchersystem 54 beispielsweise dem Bordnetz 54 des Fahrzeugs während die Verbrauchernetzbatterie 82 einer Bordnetzbatterie 82 des Fahrzeugs entspricht. Die Verbrauchernetzspannung der Verbrauchernetzbatterie 82 liegt auf einem Verbrauchernetzspannungsniveau, das bei einem Fahrzeug beispielsweise 12 V betragen kann. Die Erstverbraucher 78 sind zum Beispiel Steuergeräte, Glühbirnen sowie ein Radio des Fahrzeugs.
  • An den Elektroden 4 der Brennstoffzelle 2 kann eine Zellspannung auf einem Zellspannungsniveau abgegriffen werden. Das Zellspannungsniveau liegt bei der gezeigten Ausführungsform beispielsweise bei 42 V und kann, insbesondere abhängig von einer Belastung der Brennstoffzelle 2, beispielsweise zwischen 36 V und 60 V schwanken. Das Zellenspannungsniveau kann jedoch, insbesondere abhängig von der Bauart und der Belastung der Brennstoffzelle 2, einen beliebigen Wert aufweisen.
  • Das Brennstoffzellensystem 1 ist zudem mit einem als Systembatterie 56 ausgebildeten Energiespeicher 56 ausgestattet, an der eine Systemspannung auf einem Systemspannungsniveau anliegt, wobei das Systemspannungsniveau beispielsweise einen Wert von 24 V aufweist. Die Systembatterie 56 dient insbesondere dem Zweck, die von der Brennstoffzelle 2 erzeugte Zellenspannung bzw. eine damit verbundene elektrische Energie zu speichern. Hierzu ist eine Ladeeinrichtung 79 elektrisch mit der Systembatterie 56 verbunden. Die Zuführung der Zellenspannung der Brennstoffzelle 2 an die Systembatterie 56 bzw. der Ladeeinrichtung 79 erfolgt über eine Spannungswandlereinrichtung 57 des Brennstoffzellensystems 1. Die Spannungswandlereinrichtung 57 ist hierzu zwischen der Brennstoffzelle 2 und der Systembatterie 56 bzw. der Ladeeinrichtung 79 angeordnet und ist elektrisch mit diesen verbunden. Um die Zellenspannung der Brennstoffzelle 2 der Systembatterie 56 zuführbar zu machen, wandelt die Spannungswandlereinrichtung 57 die Zellenspannung auf dem Zellenspannungsniveau in die auf dem niedrigeren Systemspannungsniveau liegende Systemspannung um. Die Spannungswandlereinrichtung 57 wandelt also beispielsweise die Zellenspannung von 42 V in eine Spannung von 24 V um, die der Systemspannung entspricht. Um die an der Systembatterie 56 anliegende Systemspannung auch der Brennstoffzelle 2, insbesondere den Elektroden 4 sowie der Anode 95 der Brennstoffzelle 2, zuführbar zu machen, ist die Spannungswandlereinrichtung 57 zudem entsprechend ausgebildet. Dabei ist die Spannungswandlereinrichtung 57 bei Bedarf in der Lage, die auf dem Systemspannungsniveau liegende Systemspannung in eine andere Spannung auf einem anderen Spannungsniveau umzuwandeln und anschließend der Brennstoffzelle 2 zuzuführen. Dies dient dem Zweck, insbesondere die Anode 95 vor einer Oxidation zu schützen. Die Oxidation ist dabei insbesondere bei oxidierenden Bedingungen an den Anodenseite 6 relevant, wobei das Brennstoffzellensystem 1 einerseits eine Einrichtung zur Bestimmung der entsprechenden Bedingungen aufweisen kann und andererseits vorzugsweise derart ausgebildet ist, dass die an den Elektroden 4 anzuliegende elektrische Spannung regelbar ist.
  • Die an der Systembatterie 56 anliegende Systemspannung ist zudem an Systemverbrauchern 80 des Brennstoffzellensystems 1 zuführbar. Das heißt, dass die Systembatterie 56 als ein elektrischer Puffer bzw. als ein elektrischer Speicher fungiert, über welche die elektrische Versorgung von Systemverbrauchern 80 erfolgt. Als Systemverbraucher 80 kommen z. B. die Fördereinrichtungen 17, 27, 29, 35, 36, die Ventile 46, 49, 51, 67, 74, 76 sowie Zündeinrichtungen, wie z. B. Glühstifte und Zündkerzen, mit denen im Restgasbrenner 3, im Zusatzbrenner 20 und im Reformer 33 eine Verbrennungsreaktion initiiert werden kann, zum Einsatz. Ebenso kann eine Steuereinrichtung 55, mit deren Hilfe die einzelnen Komponenten des Brennstoffzellensystems 1, beispielsweise in Abhängigkeit von Temperaturen, Drücke, elektrische Ströme usw. des Brennstoffzellensystems, betätigt werden können, einen Systemverbraucher 80 des Brennstoffzellensystems 1 repräsentieren, wobei die Systemverbraucher 80 auf dem Systemspannungsniveau, also beispielsweise bei 24 V, betrieben werden. Die in Form der Systemspannung gespeicherte elektrische Energie der Systembatterie 56 kann dabei insbesondere dafür genutzt werden, das Brennstoffzellensystem 1 ohne äußere elektrische Energie- bzw. Spannungszuführung zu starten.
  • Um die an der Systembatterie 56 anliegende Systemspannung auch für das Verbrauchersystem 54, insbesondere für die Verbrauchernetzbatterie 82 des Verbrauchersystems 54 zuführbar bzw. nutzbar zu machen, ist zudem ein Verbraucherspannungswandler 77 vorgesehen, der die auf dem Systemspannungsniveau liegende Systemspannung der Systembatterie 56 auf die auf dem Verbrauchernetzspannungsniveau liegende Bordnetzspannung bzw. Verbrauchernetzspannung umwandelt und der Verbrauchernetzbatterie 82 zuführt. In der gezeigten Ausführungsform liegt das Verbrauchernetzspannungsniveau niedriger als das Systemspannungsniveau. Der Verbraucherspannungswandler 77 ist folglich als Abwärtswandler ausgebildet und reduziert das Systemspannungsniveau auf das Verbrauchernetzspannungsniveau. Zur Versorgung von Erstverbrauchern 78 des Verbrauchersystems 54 mit der Systemspannung ist zusätzlich eine Ladeeinrichtung 79 an der Verbrauchernetzbatterie 82 angeordnet, wobei die Ladeeinrichtung 79 im gezeigten Beispiel in die Verbrauchernetzbatterie 82 integriert ist. Die Verbrauchernetzbatterie 82 fungiert also ähnlich wie die Systembatterie 56 als Puffer bzw. Speicher, über die eine elektrische Versorgung der Erstverbraucher 78 erfolgt. Die von der Brennstoffzelle 2 erzeugte Zellenspannung sowie die an der Systembatterie 56 anliegende Systemspannung und die Systemnetzspannung des Verbrauchersystems 54 sind gewöhnlich Gleichspannungen. Das, dass sich die Polarität dieser Spannungen mit der Zeit nicht ändert. Zweckmäßig weisen die Spannungswandlereinrichtung 57 sowie der Verbraucherspannungswandler 77 jeweils einen Gleichspannungswandler 83 auf.
  • Für die Versorgung von elektrischen Zweitverbrauchern 84, 85, die mit einer Zusatzspannung auf zumindest einem Zusatzspannungsniveau betrieben werden, durch die Systembatterie 56, ist zudem zumindest ein Zusatzspannungswandler 86 vorgesehen. In der gezeigten Ausführungsform sind zwei Zusatzspannungswandler 86', 86'' vorgesehen, die das Systemspannungsniveau auf zwei unterschiedliche Zusatzspannungsniveaus umwandeln, wobei beide Zusatzspannungsniveaus höher liegen als das Systemspannungsniveau. Die Zusatzspannungswandler 86', 86'' sind also als Aufwärtswandler 86', 86'' ausgebildet.
  • Der erste Zusatzspannungswandler 86' wandelt die auf dem Systemspannungsniveau liegende Systemspannung der Systembatterie 56 in die auf dem höheren ersten Zusatzspannungsniveau liegende erste Zusatzspannung um. Als Zweitverbraucher 84 seien dabei insbesondere externe elektrische Verbraucher, beispielsweise ein Kühlschrank, eine Kühlbox, ein Fernseher und eine Kaffeemaschine, die üblicherweise ein Zusatzspannungsniveau von 110 V bzw. 220 V benötigen und zudem mit einer Wechselspannung betrieben werden, erwähnt. Hierzu weist der erste Zusatzspannungswandler 86' einen Wechselrichter 87 auf. Der erste Zusatzspannungswandler 86' wandelt also zusätzlich zur Erhöhung der Systemspannung auf das erste Zusatzspannungsniveau, die gleichspannungsartige Systemspannung der Systembatterie 56 in die wechselspannungsartige erste Zusatzspannung um und stellt diese den entsprechenden elektrischen Zweitverbrauchern 84 zur Verfügung.
  • Der zweite Zusatzspannungswandler 86'' wandelt die auf dem Systemspannungsniveau liegende Systemspannung der Systembatterie 56 in ein zweites Zusatzspannungsniveau um, wobei die somit umgewandelte Spannung beispielsweise einer Hochspannung, also einer Spannung höher als 300 V, entspricht. Somit liegt das zweite Zusatzspannungsniveau höher als das erste Zusatzspannungsniveau des ersten Zusatzspannungswandlers 86'. Als Zweitverbraucher 85 auf dem von zweiten Zusatzspannungswandler 86'' zur Verfügung gestellten zweiten Zusatzspannungsniveau werden beispielsweise Klimaeinrichtungen, bei einem Fahrzeug also insbesondere eine Klimaanlage des Fahrzeugs, elektrisch versorgt.
  • Die Zusatzabgasleitung 21 ist bei den hier gezeigten Ausführungsformen über eine Einleitstelle 60 an die Abgasleitung 13 angeschlossen, und zwar stromab des Restgas-Wärmeübertragers 14. Dabei ist diese Einleitstelle 60 zweckmäßig so positioniert, dass sie sich stromauf des Oxidationskatalysators 43 befindet. Hierdurch kann die Restwärme des Zusatzbrennerabgases zum Aufheizen des Oxidationskatalysators 43 genutzt werden. Gleichzeitig kann die Restwärme des Zusatzbrennerabgases zum Beheizen des Heizungswärmeübertragers 44 genutzt werden.
  • Das Brennstoffzellensystem 1 weist eine Reformerzuführeinrichtung 88 auf, die wärmeübertragend mit dem Reformer 33 gekoppelt ist. Diese Wärmeübertragung ist über einen Zulauf 89 der Reformerzuführeinrichtung 88, einen durchströmbaren Heiz-Mantel 90 und einen Rücklauf 91 der Reformerzuführeinrichtung 88 realisiert. Dabei ist der Zulauf 89 einenends stromauf des Zusatz-Wärmeübertragers 23 mit der Zusatzabgasleitung 21 und anderenends über eine erste Öffnung 97 des Heiz-Mantels 90 fluidisch mit dem Heiz-Mantels 90 verbunden. Der Heiz-Mantel 90 ist durchströmbar ausgebildet und wärmeübertragend mit dem Reformer 33 gekoppelt. Zudem ist der Heiz-Mantel 90 fluidisch von dem Reformer 33 getrennt bzw. isoliert. Der durchströmbare Heiz-Mantel 90 weist zusätzlich einen mit der ersten Öffnung 97 fluidisch verbundenen Hohlraum auf. Das über den Zulauf 89 von der Zusatzabgasleitung 21 zum Heiz-Mantel 90 geführte Zusatzbrennerabgas fließt also durch die erste Öffnung 97 in den Heiz-Mantel 90, insbesondere in den Hohlraum des Heiz-Mantels 90, ohne dabei in den Reformer 33 einzudringen. Weiter ist der Rücklauf 91 der Reformerzuführeinrichtung 88 einenends durch eine zweite Öffnung 98 des Heiz-Mantels 90 fluidisch mit dem Heiz-Mantel 90 und anderenends stromab des Zusatz-Wärmeübertragers 23 fluidisch mit der Zusatzabgasleitung 21 verbunden. Das durch den Zulauf 89 in den Heiz-Mantel 90, insbesondere in den Hohlraum des Heiz-Mantels 90, geströmte Zusatzbrennerabgas des Zusatzbrenners 20 strömt folglich durch den Rücklauf 91 der Reformerzuführeinrichtung 88 zur Zusatzabgasleitung 21 zurück. Somit wird der Heiz-Mantel 90, insbesondere der Hohlraum des Heiz-Mantels 90, vom warmen Zusatzbrennerabgas durchflossen und die Wärme des Zusatzbrennerabgases des Zusatzbrenners 20 auf den Reformer 33 übertragen. Ein Absperrorgan 94 zur Entkopplung des Zusatzbrenners 20 vom Heiz-Mantel 90 während des Normalbetriebs des Brennstoffzellensystems 1 ist zudem im Zulauf 89 angeordnet.
  • Der Heiz-Mantel 90 umgibt den Reformer 33 im Bereich des Katalysators 40. Die erste Öffnung 97 des Heiz-Mantels 90 ist, wie im Schnitt des 2 zu sehen, an der vom Mischraum 38 abgewandten Seite des Heiz-Mantels 90 angeordnet, während die zweite Öffnung 98 an der dem Mischraum 38 zugewandten Seite des Heiz-Mantels 90 angeordnet ist, so dass das Zusatzbrennerabgas in den Heiz-Mantel 90 zirkuliert und einen möglichst langen Strömungspfad aufweist. Der Mischraum 38 ist von einem dem Heiz-Mantel 90 benachbarten Misch-Mantel 92 umgeben. Der Misch-Mantel 92 weist einen Hohlraum auf und ist an seiner dem Reformer 33 abgewandten Seite fluidisch mit der Reformerluftleitung 34 verbunden, während er an seiner dem Reformer 33 zugewandten Seite Misch-Mantel-Auslässe 99 aufweist, die den Misch-Mantel 92 fluidisch mit dem Mischraum 38 verbinden. Somit strömt die Reformerluft über den Misch-Mantel 92 ist den Mischraum 38 des Reformers 33, wobei im Misch-Mantel 92 eine Vorkonditionierung erfolgen kann. Eine gleichmäßige Verteilung der Misch-Mantel-Auslässe 99 entlang des Umfangs des Misch-Mantels 92 sorgt zudem für das gleichmäßige Einströmen der Reformerluft in den Mischraum 38.
  • Der hier gezeigte Reformer 33 umfasst weiter einen Verdampferraum 93, der fluidisch mit der Brennstoffleitung 37 verbunden ist. Der Brennstoff strömt demzufolge über den Verdampferraum 93 in den Mischraum 38, wobei der Verdampferraum 93 dem Zweck dient, den meist flüssigen Brennstoff vor dem Eintreten in den Mischraum 38 zu verdampfen. Der Verdampferraum 93, der Mischraum 38 und der Katalysator 40 sind folglich fluidisch miteinander verbunden.
  • Zusätzlich oder alternativ kann ein von der Zusatzabgasleitung 21 abgezweigter Zweig 100 mit einer Endplatte 101 der Brennstoffzelle 2 wärmeübertragend gekoppelt sein. Im gezeigten Beispiels ist der Zweig 100 an einer am Ventil 94 des Zulaufs 89 angeordneten Entnahmestelle 102 angeschlossen und führt das Zusatzbrennerabgas zur Endplatte 101 und anschließend über eine Einleitstell 103 zurück zum Rücklauf 91 der Reformerzuführeinrichtung 88, womit das Zusatzbrennerabgas zurück in die Zusatzabgasleitung 21 gelangt. Damit ist es möglich, auch die Brennstoffzelle 2 mit Hilfe des Zusatzbrenners 20 zu wärmen. Die an dem Ventil 94 angeordnete Entnahmestelle 102 erlaubt hierbei eine quasi beliebige Aufteilung des Zusatzbrennerabgases zum Wärmen des Reformers 33 bzw. der Brennstoffzelle 2.
  • Die Brennstoffzelle 2 kann typischerweise einen stapelförmigen Aufbau aufweisen, bei dem eine Vielzahl plattenförmiger Brennstoffzellenelemente aufeinandergestapelt sind und dadurch einen Brennstoffzellenstapel oder Stack bilden. An seinen Enden ist der Brennstoffzellenstapel durch zwei Endplatten abgeschlossen, nämlich durch besagte Endplatte 101 sowie durch eine weitere Endplatte. Diese weitere Endplatte weist im Beispiel einen Anodengasanschluss 61, an den die Anodengasleitung 11 oder Reformatgasleitung 11 angeschlossen ist, einen Kathodengaseinlass 62, an den die Kathodengasleitung 12 oder Brennstoffzellenluftleitung 12 angeschlossen ist, einen Anodenabgasauslass 63, an den die Anodenabgasleitung 5 angeschlossen ist, sowie einen Kathodenabgasauslass 64 auf, an dem die Kathodenabgasleitung 7 angeschlossen ist. Da sämtliche Eduktanschlüsse somit an dieser weiteren Endplatte angeordnet sind, kann diese auch als Anschlussplatte bezeichnet werden. Im Unterschied dazu bildet die andere Endplatte 101 lediglich einen Abschluss des Brennstoffzellenstapels, sodass sie auch als Abschlussplatte bezeichnet werden kann.
  • Bei einer anderen Ausführungsform kann in der thermisch isolierenden Hülle 16 des Brennstoffzellenmoduls 15 eine weitere Hülle angeordnet sein, die insbesondere gasdicht ausgestaltet ist. Diese innere Hülle kann ebenfalls thermisch isolierend wirken. Ebenso ist denkbar, die äußere Hülle 16 gasdicht auszugestalten. Ferner kann eine Hülle ausreichend sein, wenn sie thermisch isolierend und gasdicht ausgestaltet ist. Insbesondere ist es nun möglich, den zuvor genannten Zweig 100 der Zusatzabgasleitung 21 an einen von der inneren Hülle umschlossenen Innenraum des Brennstoffzellenmoduls 15 anzuschließen. Dabei mündet der Zweig 100 an einer Eintrittsstelle in besagten Innenraum ein und tritt an einer davon entfernten Austrittsstelle wieder aus dem Innenraum aus. Hierdurch kann mit dem Zusatzbrennerabgas das Brennstoffzellenmodul 15 beheizt werden. Insbesondere kann dies mit der Beheizung der Brennstoffzelle 2 kombiniert werden. Z. B. kann das Zusatzbrennerabgas zunächst über den Zweig 100 bis zur Abschlussplatte geführt sein und von dieser in den Innenraum austreten, um über die Austrittstelle wieder aus dem Innenraum abgeführt zu werden.
  • Das Brennstoffzellensystem 1 ist bei der hier gezeigten bevorzugten Ausführungsform ferner mit einer Rezirkulationsleitung ausgestattet, die eingangsseitig an die Anodenabgasleitung 5 und ausgangsseitig über eine Einleitstelle 66 an die Reformerluftleitung 34 angeschlossen ist, und zwar stromauf der Reformerluftfördereinrichtung 35. Da das rückgeführte Anodenabgas im Betrieb des Brennstoffzellensystems 1 vergleichsweise hohe Temperaturen aufweisen kann, ist die Reformerluftfördereinrichtung 35 zweckmäßig für eine Beaufschlagung mit heißen Gasen ausgestaltet, wobei diese Gase außerdem toxisch und/oder explosiv sein können.
  • Die Ventileinrichtung 47 ist im Beispiel dazu ausgestaltet, die von der Luftfördereinrichtung 17 angesaugte Luft druckseitig auf die Brennstoffzellenluftleitung 12, auf die Bypass-Luftleitung 24, auf die Kühlluftleitung 50 und auf die Reformerluftleitung 34 aufzuteilen.
  • Bei einer anderen nicht gezeigten Ausführungsform, kann die Luftfördereinrichtung 17 über die Ventileinrichtung 47 außerdem zur Luftversorgung des Zusatzbrenners 20 verwendet werden. Hierzu kann an eine Verteilerleiste 48 über ein weiteres Ventil die Zusatzbrennerluftleitung 28 angeschlossen sein. Alternativ kann die Zusatzluftfördereinrichtung 27 in der Zusatzbrennerluftleitung 28 auch entfallen.
  • Zusätzlich zur Vorheizung der Brennstoffzellenluft mit Hilfe des Zusatzbrenners 20 kann bei einem Kaltstart des Brennstoffzellensystems 1, bei dem insbesondere auch der Reformer 33 Umgebungstemperatur besitzt, eine Restgaszirkulation in einem Zirkulationskreis 68 realisiert werden, der in 1 durch eine unterbrochene Linie angedeutet ist.
  • Ferner ist eine zusätzliche Umgehungsleitung 69 vorgesehen, die von der Reformatgasleitung 11 abzweigt und die Anodenseite 6 der Brennstoffzelle 2 umgeht. Hierdurch ist es möglich, den Reformer 33 materialschonend aufzuheizen, ohne dass dabei die Gefahr einer Beschädigung der Anode 95 durch Restsauerstoff aus dem Reformer 33 besteht. Im Beispiel ist diese Umgehungsleitung 69 an die Anodenabgasleitung 5 angeschlossen, so dass Reformerabgas stromauf des Restgasbrenners 3 wieder in den ursprünglichen Pfad eingeleitet wird. Die Umgehungsleitung 69 kann mit einem entsprechenden Ventil 70 gesteuert werden. Zweckmäßig ist die Umgehungsleitung 69 hierzu so konzipiert, dass ihr Durchströmungswiderstand geringer ist als der Durchströmungswiderstand der Anodenseite 6 der Brennstoffzelle 2. Bei geöffnetem Ventil 70 strömt das Reformerabgas dann dem Weg des geringsten Widerstands folgend nicht durch die Anodenseite 6, sondern durch die Umgehungsleitung 69. Bei dieser Variante kann der Reformer 33 ohne weiteres überstöchiometrisch betrieben werden, da eine Kontaktierung der Anodenseite 6 mit Restsauerstoff im Reformerabgas nicht zu erwarten ist. Diese quasi beliebige überstöchiometrische Betriebsweise des Reformers 33 vereinfacht den Startbetrieb des Reformers 33, insbesondere zur Einhaltung niedrigerer Temperaturen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2002/0028362 A1 [0048]

Claims (15)

  1. Brennstoffzellensystem (1), – mit einer Brennstoffzelle (2), die eine Anodenseite (6) und eine Kathodenseite (8) aufweist, – mit einem Reformer (33) zur Erzeugung von Reformatgas, – mit einer Brennstoffleitung (37) zu Versorgung des Reformers (33) mit Reformerbrennstoff, – mit einer Reformerluftleitung (34) zur Versorgung des Reformers (33) mit Reformerluft, – mit einer Reformatgasleitung (11) zum Zuführen des Reformatsgases zur Anodenseite (6), – mit einer Zusatzbrennereinrichtung (20) zur Erzeugung von Zusatzbrennerabgas, – mit einer Reformerzuführeinrichtung (88), die zur Wärmeübertragung des Zusatzbrennerabgases auf den Reformer (33) mit dem Reformer (33) gekoppelt ist.
  2. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, – dass die Reformerzuführeinrichtung (88) einen Zulauf (89) zur Zuführung des Zusatzbrennerabgases zu dem Reformer (33) aufweist, und – dass die Reformerzuführeinrichtung (88) einen Rücklauf (91) zur Rückführung des Zusatzbrennerabgases von dem Reformer (33) aufweist.
  3. Brennstoffzellensystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reformer (33) zumindest teilweise von einem durchströmbaren Heiz-Mantel (90) umgeben ist, wobei der Heiz-Mantel (90) wärmeübertragend mit dem Reformer (33) gekoppelt ist.
  4. Brennstoffzellensystem nach Anspruch 3, dadurch gekennzeichnet, dass der Reformer (33) einen Mischraum (38) und einen Katalysator (40) aufweist, wobei der Heiz-Mantel (90) den Reformer (33) insbesondere im Bereich des Katalysators (40) umgibt.
  5. Brennstoffzellensystem nach Anspruch 4, dadurch gekennzeichnet, dass der Reformer (33) einen Misch-Mantel (92) aufweist, den an seiner dem Refomer (33) abgewandten Außenseite fluidisch mit der Reformerluftleitung (34) verbunden ist und an seiner dem Reformer (33) zugewandten Innenseite mittels zumindest eines Misch-Mantel-Auslasses (99) fluidisch mit dem Reformer (33), insbesondere dem Mischraum (38), verbunden ist.
  6. Brennstoffzellensystem nach Anspruch 5, dadurch gekennzeichnet, dass mehrere Misch-Mantel-Auslässe (99) entlang der Umfangsrichtung des Reformers (33), insbesondere geleichmäßig, verteilt sind.
  7. Brennstoffzellensystem nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass der Heiz-Mantel (90) fluidisch vom Reformer (33) getrennt ist.
  8. Brennstoffzellensystem nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass ein Zweig (100) des Brennstoffzellensystems (1) von einer Zusatzbrennerabgasleitung (21) oder der Reformerzuführeinrichtung (88) abzweigt und wärmeübertragend mit der Brennstoffzelle (2) gekoppelt ist.
  9. Brennstoffzellensystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Brennstoffzellensystem (1) eine Brennstoffzellenluftleitung (12) zur Zuführung eines Kathodengases zur Kathodenseite (8) aufweist.
  10. Brennstoffzellensystem nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass das Zusatzbrennerabgas über die Zusatzbrennerabgasleitung (21) einem Zusatzbrenner-Wärmeübertrager (23) des Brennstoffzellensystems (1) zuführbar ist.
  11. Brennstoffzellensystem nach Anspruch 10, dadurch gekennzeichnet, – dass der Zulauf (89) der Reformerzuführeinrichtung (88) einerseits stromauf des Zusatzbrenner-Wärmeübertragers (23) mit der Zusatzbrennerabgasleitung (21) fluidisch verbunden ist, und – dass der Zulauf (89) andererseits fluidisch mit dem Heiz-Mantel (90) verbunden ist.
  12. Brennstoffzellensystem nach Anspruch 10 oder 11, dadurch gekennzeichnet, – dass der Rücklauf (91) der Reformerzuführeinrichtung (88) einerseits stromab des Zusatzbrenner-Wärmeübertragers (23) mit der Zusatzbrennerabgasleitung (21) fluidisch verbunden ist, – dass der Rücklauf (91) andererseits fluidisch mit dem Heiz-Mantel (90) verbunden ist.
  13. Brennstoffzellensystem nach einem der Ansprüche 1 bis 12, gekennzeichnet durch, – eine erste Brennstoffleitung (30) zur Versorgung des Zusatzbrenners (20) mit einem Zusatzbrennerbrennstoff, und – eine zweite Brennstoffleitung (37) zur Versorgung des Reformers (33) mit einem Reformerbrennstoff, wobei der Reformerbrennstoff dem Zusatzbrennerbrennstoff entspricht.
  14. Reformer (33) für ein Brennstoffzellensystem (1) gemäß einem der vorherigen Ansprüche, mit einem Heiz-Mantel (90).
  15. Reformer nach Anspruch 14, dadurch gekennzeichnet, dass der Reformer einen Misch-Mantel (92) und/oder einen Verdampferraum (93) aufweist.
DE201110088566 2011-07-13 2011-12-14 Brennstoffzellensystem Pending DE102011088566A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201110088566 DE102011088566A1 (de) 2011-07-13 2011-12-14 Brennstoffzellensystem
US13/547,541 US9142959B2 (en) 2011-07-13 2012-07-12 Fuel cell system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102011079104 2011-07-13
DE102011079104.3 2011-07-13
DE102011079169.8 2011-07-14
DE102011079169 2011-07-14
DE201110088566 DE102011088566A1 (de) 2011-07-13 2011-12-14 Brennstoffzellensystem

Publications (1)

Publication Number Publication Date
DE102011088566A1 true DE102011088566A1 (de) 2013-01-17

Family

ID=47425518

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102011088563.3A Active DE102011088563B4 (de) 2011-07-13 2011-12-14 Anordnung mit Brennstoffzellensystem
DE201110088566 Pending DE102011088566A1 (de) 2011-07-13 2011-12-14 Brennstoffzellensystem

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE102011088563.3A Active DE102011088563B4 (de) 2011-07-13 2011-12-14 Anordnung mit Brennstoffzellensystem

Country Status (3)

Country Link
US (2) US9722424B2 (de)
DE (2) DE102011088563B4 (de)
WO (1) WO2013007681A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115096A1 (de) 2014-10-16 2016-04-21 Eberspächer Climate Control Systems GmbH & Co. KG System zur versorgung eines fahrzeugs mit elektrischer energie

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347924B2 (en) * 2016-09-13 2019-07-09 General Electric Company Integrated fuel cell systems
JP6910179B2 (ja) * 2017-03-31 2021-07-28 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
TWI763812B (zh) * 2017-03-31 2022-05-11 日商大阪瓦斯股份有限公司 電化學裝置、能源系統、及固態氧化物型燃料電池
DE102018212532A1 (de) * 2018-07-27 2020-01-30 Audi Ag Elektrisches Energiesystem mit Brennstoffzellen
EP4218454A1 (de) * 2018-09-19 2023-08-02 Japan Tobacco Inc. Geschmackserzeugungsvorrichtung, stromversorgungseinheit, verfahren zur steuerung der geschmackserzeugungsvorrichtung und programm
CN111463453B (zh) * 2020-04-14 2022-09-27 吉林大学 一种具有相变蓄热及预加热功能的燃料电池热管理系统
WO2023158425A1 (en) * 2022-02-16 2023-08-24 HyPoint Inc. Air-cooled fuel cell system and method for operating same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020028362A1 (en) 2000-09-01 2002-03-07 Dennis Prediger Anode oxidation protection in a high-temperature fuel cell
US7367996B2 (en) * 2001-05-30 2008-05-06 Nuvera Fuel Cells, Inc. Heat transfer optimization in multi shelled reformers
DE102009030236A1 (de) * 2009-06-23 2010-12-30 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und Betriebsverfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545285B2 (ja) 2000-06-12 2010-09-15 本田技研工業株式会社 燃料電池車両の起動制御装置
DE20205813U1 (de) 2002-04-12 2003-02-20 Hymer Ag Freizeitfahrzeug mit Bordstromversorgung über Brennstoffzelle
US7410016B2 (en) * 2002-06-24 2008-08-12 Delphi Technologies,Inc. Solid-oxide fuel cell system having a fuel combustor to pre-heat reformer on start-up
US6792341B2 (en) * 2002-10-23 2004-09-14 Ford Motor Company Method and system for controlling power distribution in a hybrid fuel cell vehicle
DE102005002506A1 (de) 2005-01-19 2006-07-27 Robert Bosch Gmbh Energieversorgungssystem
CN1893216B (zh) 2005-06-30 2010-10-27 松下电器产业株式会社 电子设备和该电子设备所用的电池组件及负载装置
JP5167645B2 (ja) * 2007-01-30 2013-03-21 富士通株式会社 電子機器および直流電圧変換システム
KR100902508B1 (ko) * 2007-04-23 2009-06-15 삼성전자주식회사 전력 조절장치 및 그 운영방법
DE102008018152B4 (de) * 2008-04-10 2019-03-07 Eberspächer Climate Control Systems GmbH & Co. KG Brennstoffzellensystem und zugehöriges Betriebsverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020028362A1 (en) 2000-09-01 2002-03-07 Dennis Prediger Anode oxidation protection in a high-temperature fuel cell
US7367996B2 (en) * 2001-05-30 2008-05-06 Nuvera Fuel Cells, Inc. Heat transfer optimization in multi shelled reformers
DE102009030236A1 (de) * 2009-06-23 2010-12-30 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und Betriebsverfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115096A1 (de) 2014-10-16 2016-04-21 Eberspächer Climate Control Systems GmbH & Co. KG System zur versorgung eines fahrzeugs mit elektrischer energie
DE102014115096B4 (de) * 2014-10-16 2021-01-14 Eberspächer Climate Control Systems GmbH System zur versorgung eines fahrzeugs mit elektrischer energie

Also Published As

Publication number Publication date
US20140375117A1 (en) 2014-12-25
WO2013007681A2 (de) 2013-01-17
US20130017463A1 (en) 2013-01-17
WO2013007681A3 (de) 2013-04-04
DE102011088563A1 (de) 2013-01-17
US9142959B2 (en) 2015-09-22
US9722424B2 (en) 2017-08-01
DE102011088563B4 (de) 2024-01-11

Similar Documents

Publication Publication Date Title
DE102011088563B4 (de) Anordnung mit Brennstoffzellensystem
DE102009060679A1 (de) Betriebsverfahren für ein Brennstoffzellensystem
EP1679757B1 (de) Brennstoffzellensystem
DE102016203792B4 (de) Brennstoffzellenmodul
DE102009030236B4 (de) Brennstoffzellensystem und Betriebsverfahren
EP1855342B1 (de) Brennstoffzellensystem
DE102008018152A1 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE102006046256A1 (de) Wasserstoffheizung
EP1947723A2 (de) Energiebereitstellungssystem
DE102007019359A1 (de) Brennstoffzellensystem und zugehöriges Startverfahren
EP2028709B1 (de) Brennstoffzellensystem
EP1739777B1 (de) Brennstoffzellensystem für ein Fahrzeug
DE102012220082B4 (de) Fahrzeugbrennstoffzellensystem und zugehöriges Betriebsverfahren
DE102007033150B4 (de) Betriebsverfahren für ein Brennstoffzellensystem
DE202006008898U1 (de) Brennstoffzellensystem für ein Fahrzeug
DE102014115096B4 (de) System zur versorgung eines fahrzeugs mit elektrischer energie
EP1845577B1 (de) Brennstoffzellensystem
DE102010047523A1 (de) Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
DE102016214866A1 (de) Brennstoffzellen-Kogenerationssystem, Verfahren zum Betriebsstart des Brennstoffzellen-Kogenerationssystems und Verfahren zum Betreiben des Brennstoffzellen-Kogenerationssystems
AT519834B1 (de) Brennstoffzelleneinheit mit gestapelten Hilfsvorrichtungen
DE102008008907A1 (de) Brennstoffzellensystem
EP1944823B1 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE102021126708B3 (de) Verfahren zum Starten einer Festoxidbrennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
EP1968150B1 (de) Brennstoffzellensystem
DE102007033151B4 (de) Betriebsverfahren für ein Brennstoffzellensystem

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO, DE

Free format text: FORMER OWNER: J. EBERSPAECHER GMBH & CO. KG, 73730 ESSLINGEN, DE

Effective date: 20131212

R082 Change of representative

Representative=s name: BRP RENAUD UND PARTNER MBB, DE

Effective date: 20131212

Representative=s name: BRP RENAUD UND PARTNER MBB RECHTSANWAELTE PATE, DE

Effective date: 20131212

Representative=s name: BRP RENAUD & PARTNER, DE

Effective date: 20131212

R016 Response to examination communication