WO2000054259A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2000054259A1
WO2000054259A1 PCT/JP1999/001141 JP9901141W WO0054259A1 WO 2000054259 A1 WO2000054259 A1 WO 2000054259A1 JP 9901141 W JP9901141 W JP 9901141W WO 0054259 A1 WO0054259 A1 WO 0054259A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuit
output
signal
input
Prior art date
Application number
PCT/JP1999/001141
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Yamakido
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001141 priority Critical patent/WO2000054259A1/en
Priority to JP2000604406A priority patent/JP3687046B2/en
Publication of WO2000054259A1 publication Critical patent/WO2000054259A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals

Definitions

  • the present invention relates to an analog signal processing technology and a signal processing system for converting an analog data signal into a digital data signal.
  • the present invention relates to a technology effective for a hard disk drive that processes a signal read from a magnetic disk.
  • the speed and power consumption of read channels that generate read and write signals are increased, and as shown in Fig. 11, the speed and size of electronic devices, including hard disk devices, are reduced. It relates to technologies that are effective for economic and economic development.
  • a hard disk drive is one of the recording devices that meet such demands.
  • the hard disk drive generates a pulse current to drive the magnetic head HD and write the binarized digital data to the magnetic recording disk as shown in Fig. 12, for example.
  • Read / write execution unit 11 including a write amplifier to read and a read amplifier to amplify the data signal read via the magnetic head HD, and the data read by the read / write execution unit 11
  • a signal processing unit 12 that performs data collation, a format control unit 13 that has functions such as converting the data into a format suitable for data exchange with external devices, and a disk rotation axis.
  • Driving spindle motor that moves the arm (big-up) that holds the SPM and magnetic head Servo controller that controls the VCM and adjusts the disk rotation speed and the position of J and H 1 ⁇ Host computer overnight 2 It comprises a disk control unit 15 for connecting to external devices such as 0 and controlling the entire disk device.
  • the signal processing unit 12 that performs data collation of data read from the disk requires particularly high-speed signal processing because it affects the read / write speed of the disk, so amplifiers, filters, analog / digital conversion, etc.
  • Integrated circuit hereinafter referred to as read channel LSI that optimally incorporates an analog signal processing circuit (referred to as a read channel) including a digital signal processor (hereinafter referred to as an A / D converter). Is realized.
  • FIG. 13 shows a schematic configuration example on the read processing side of the function blocks built in the read channel LSI.
  • the variable gain amplifying circuit V GA is a read signal amplifying circuit, and is a functional circuit that variably amplifies the amplitude of the read signal degraded and attenuated by nonlinear electromagnetic characteristics of a magnetic head or the like to a predetermined amplitude level.
  • the filter circuit FIL removes the aliasing noise caused by the A / D conversion operation in the subsequent A / D converter ADC in advance, and also extracts the maximum effective information from the read signal in order to extract the maximum useful information from the read signal. It is required to switch the cutoff frequency frequently, specifically at intervals of about 1 MHz, in accordance with the different data rates between the outer part and the outer part.
  • the digital signal processing unit DSP detects the amplitude level of the read signal, the data speed, etc., and performs the above-mentioned variable gain amplification circuit VGA and filter circuit FIL so that the write data can be compared with the read signal.
  • the timing information such as the sampling clock of the A / D converter is generated and supplied to the timing control circuit TGC in the same semiconductor integrated circuit or a control LSI such as an external microcomputer, etc.
  • the feedback control of the variable gain amplifier VGA is performed so that the detected level becomes a desired value.
  • each functional circuit is realized by a circuit configuration of voltage input and voltage output.
  • I'S 'S' 98 Digest to Technical Vapor Paper
  • 3 papers published in Session 9, 3 A As shown in 9.6 to 9.8, February 1998 (ISSCC98, Digest of Technical Papers, February 1998, FA 9.6-9.8), both input analog signals are voltages.
  • non-sampling (continuous 'time') current-driven filter circuits which have excellent high-frequency characteristics and can be realized with low power consumption using a low power supply voltage, have been widely used in recent years.
  • many of them are so-called gm-C circuits or OTAs (Operational Transconductance) that convert input-voltage to current and charge / discharge the current to / from the capacity C to convert it to voltage.
  • Amplifier It is realized by one C circuit.
  • An example of this is the second of the literature; eye I over-I - - I -, journal O blanking Sori' Dosutetosa - Kidzudzu, 3 2 Certificates No. 4, 5 12 pages from 499 pages, April 1997 (IEEE Journal of Solid -State Circuits, VOL. 32, NO. 4, April 1997, pp. 499-513).
  • a circuit using a current mirror circuit as a primary complete integration circuit and a coefficient circuit has been proposed.
  • the input signal and the output signal are current.
  • a voltage signal is used as an input signal for the higher-order filter required for a read channel LSI configured by combining these basic circuits, specifically for the 7th-order single-pass filter.
  • a voltage / current conversion circuit is added before the filter.
  • I-II-II-II Journal of Solid State Circuits, Vol. 33, No. 3, pages 427 to 438, March 1998 (IEEE Journal of Solid-State Circuits, VOL. 33, NO. 3, March 1998, pp. 427-438).
  • a current / voltage converter is indispensable between the filter circuit and the A / D converter.
  • the above-described configuration of the conventional analog 'front' end section has the following problems. That is, it is necessary to provide a plurality of voltage-Z current conversion circuits or current / voltage conversion circuits inside each functional circuit or between the circuits, thereby increasing the circuit scale and power consumption. What is even more problematic is that the voltage / current conversion causes deterioration of signal amplitude and frequency band and signal phase shift, and it is necessary to respond to the demand for higher-speed hard disk drive devices, which will increase in the future. It is difficult.
  • the complete integration circuit used in the filter circuit has a characteristic that the input / output current gain is inversely proportional to the signal frequency in a range not limited by the power supply voltage, so that the design of the filter circuit is relatively easy. is there.
  • the complete integration circuit cannot be used alone as a filter circuit because, for example, if a DC current is input or an unintended input offset occurs, the gain becomes infinite and the output signal is saturated.
  • a separate feedback circuit is required for stabilization. Therefore, since the primary complete current integrator has a feedback path inside it and also has a separate feedback circuit as the primary filter, a larger number of filters are required to realize higher-order filters. It requires transistors and power consumption.
  • An object of the present invention is to realize an electronic device capable of performing analog signal processing by high-speed and low-frequency operation without increasing a circuit scale and power consumption. For example, a high-speed and high-speed processing of a read / write signal of a magnetic disk is realized. An object of the present invention is to provide a low power consumption read channel LSI.
  • Another object of the present invention is to contribute to the realization of a hard disk drive device that can respond to a demand for high-speed operation in a field by using the above-described high-speed read channel LSI, and furthermore, a hard disk device.
  • a current input / current output circuit is used as a filter circuit constituting the system, and a current input circuit is used as an A / D converter.
  • a voltage / current conversion circuit (or voltage input / current output type amplifier) that converts the received analog input signal into a current and outputs the current, in front of the filter circuit.
  • the filter circuit is configured using an incomplete current integration circuit.
  • a voltage / current converter is provided before the filter circuit, the filter circuit is a current output type, and the A / D converter is a current input type.
  • the filter circuit is a current output type
  • the A / D converter is a current input type.
  • the output signal of the read amplifier that is, the input signal to the read channel LSI is a voltage signal.
  • the voltage / current conversion means is provided in the variable gain amplifier VGA provided at the first stage of the analog signal processing unit, and the amplitude of the output current signal of the variable gain amplifier VGA is registered from the external microcomputer and the like described above. Rewriting REG settings And the output current signal of the variable gain amplifier circuit VGA can be directly input to the input terminal of the current input / current output filter circuit at the subsequent stage.
  • the track 'hold circuit (also called sample' hold circuit) required to minimize the conversion accuracy degradation of the high-speed A / D converter circuit is a current signal track-hold circuit, and the current input 'current Output type filter The output current signal of the circuit can be directly input to the AZD conversion circuit. As a result, it is possible to minimize the deterioration of the amplitude and frequency band of the output signal from each of the functional circuits.
  • the current input / current output filter circuit is configured using a first-order imperfect integration circuit having no feedback path as a coefficient circuit.
  • the imperfect integration circuit can realize a stable first-order filter by itself because the output converges to a constant value for DC current input, similar to a single-pass filter consisting of a resistor and a capacitor, which is a passive element. .
  • the number of transistors is significantly reduced in order to achieve higher-order filtering compared to using a first-order complete integration circuit with a feedback path in the integration circuit as in a conventional filtering circuit. And power consumption can be reduced.
  • variable gain circuit the voltage / current conversion circuit, the current integration circuit, the filter circuit, and the current signal track / hold circuit included in the description of the above-described means will be described later in the description of the embodiments. Will be revealed in BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram of a lead channel LSI used in a hard disk drive according to the present invention.
  • FIG. 2 is a circuit diagram showing a voltage / current conversion circuit constituting the read channel LSI
  • FIG. 3 is a circuit diagram showing an embodiment of a voltage / current conversion circuit constituting a read channel LSI and a bias current circuit
  • Figure 4 is a circuit diagram showing the current offset compensation circuit of the voltage / current conversion circuit that constitutes the read channel LSI.
  • Fig. 5 shows the input / voltage-drain current characteristic diagram showing the simulation results of the voltage / current conversion circuit shown in Fig. 3.
  • Figure 6 is a block diagram of a secondary filter circuit using an incomplete current integration circuit.
  • Figure 7 shows a block diagram of a primary filter circuit using an incomplete current integration circuit.
  • Figure 8 is a block diagram of an equiripple 7th-order low-pass filter circuit configured using an incomplete current integration circuit.
  • FIG. 9 is a frequency characteristic diagram of the group delay and current gain showing the analysis simulation result of the seventh-order low-pass filter circuit shown in FIG.
  • FIG. 10 is a circuit diagram of a current track / hold circuit for an AZD converter.
  • FIG. 11 is a block diagram of an electronic device according to the present invention.
  • FIG. 12 is a block diagram showing a configuration example of a hard disk drive device according to the present invention.
  • FIG. 13 is a block diagram showing the function of a conventional read channel for a hard disk.
  • FIG. 14 is a circuit diagram showing an example of a conventional voltage / current conversion circuit
  • FIG. 15 is a circuit diagram showing another example of a conventional voltage / current conversion circuit.
  • FIG. 16 is a circuit diagram of an incomplete integration circuit used for a current input / current output type filter constituting the device of the present invention.
  • FIG. 17 is a circuit diagram showing an example of a conventional complete current integration circuit.
  • Fig. 18 is a block diagram of a conventional secondary filter circuit using a complete current integration circuit.
  • Fig. 19 is a block diagram of a conventional primary filter circuit using a complete current integration circuit.
  • FIG. 1 is a block diagram showing an example of the configuration of a read channel LSI 10 used in a hard disk device effective according to the present invention.
  • VGA is a variable gain amplifying circuit that amplifies a read signal from a magnetic disk, and has a function of variably amplifying the amplitude of a read signal degraded and attenuated by nonlinear electromagnetic characteristics of a magnetic head or the like to a predetermined amplitude level.
  • FIL is a filter circuit for removing in advance the aliasing noise caused by the AZD conversion operation in the subsequent A / D converter ADC, and for extracting the maximum useful information from the read signal.
  • the DSP detects the read signal level and data rate, etc., and controls the variable gain amplifier circuit VGA and filter circuit FIL control information and A / D converter so that the write data can be compared with the read signal.
  • This is a digital signal processing circuit that generates timing information such as the sampling clock of ADC.
  • TGC is a timing control circuit that forms and outputs control signals to the variable gain amplifier circuit VGA, filter circuit FIL, and A / D converter ADC based on control information from the digital signal processing circuit DSP.
  • the variable gain amplifier circuit VGA is feedback-controlled by the control signal so that the detected level becomes a desired value.
  • the filter circuit FIL the cut-off frequency is switched at intervals of approximately 1 MHz according to different data rates at the inner and outer peripheral portions of the disk by a control signal from the timing control circuit portion TGC. .
  • the timing of the sampling clock 0 s is adjusted by the timing control circuit unit TGC to correct the deviation of the sampling point of the read signal waveform.
  • a resistor REG is provided in association with the variable gain amplifier circuit VGA.
  • the variable gain amplifier circuit VGA adjusts the amplitude of the output current signal from an external microcomputer or the like. It is configured to be controlled by rewriting the set value of.
  • the above filter circuit FIL For this purpose, a register is provided that can rewrite the set value from an external microcomputer, etc., and the frequency characteristics such as the power-off frequency of the filter circuit can be changed by the set value of the register. You may.
  • variable gain amplifier circuit VGA variable gain amplifier circuit
  • resistor circuit REG resistor circuit REG
  • filter circuit FIL filter circuit
  • a / D converter ADC digital signal processing section
  • DSP digital signal processing section
  • timing control circuit section TGC timing control circuit section
  • the read-related circuit described above and the write-related circuit that forms and outputs a write signal to be supplied to a write amplifier that drives the magnetic head HD and writes data to a disk are the same semiconductor. Formed on a chip. In the system shown in Fig.
  • the magnetically recorded information on the disk is converted into an electric signal by a magnetic head (hereinafter referred to as MR head) HD using, for example, a magnetoresistive element, and amplified by a read amplifier 11 Is done.
  • the output signal of the read amplifier 11 is generally a voltage signal.
  • the output signal of the read amplifier 11, that is, the input signal of the read channel LSI is a voltage signal
  • the variable gain amplifier circuit VGA to which the signal is input corresponds to, for example, Using a voltage input / current output type amplifier circuit as shown in Fig. 2 to Fig. 4, the output current signal of the variable gain amplifier circuit VGA is configured to be directly input to the subsequent filter circuit FIL.
  • a current input / current output type filter circuit as shown in Figs. 6 to 8 is used as the filter circuit FIL.
  • the A / D converter ADC uses a current signal track and hold circuit as shown in Figure 10 to minimize the deterioration of the conversion accuracy of the circuit during high-speed operation. It is configured so that the output current signal of the FIL filter circuit can be directly input to the A / D converter ADC.
  • a voltage input / current output type amplifier circuit as shown in Fig. 2 as a variable gain amplifier circuit VGA
  • a configuration in which a voltage / current conversion circuit is provided before the variable gain current amplifier circuit It is also possible.
  • the following conventional techniques are known as voltage / current conversion circuits.
  • FIG. 14 shows a first example of a conventional voltage / current conversion circuit.
  • the drain terminal is connected to the current mirror circuit CM for positive and negative symmetric voltage input signals Vin + and Vin_. It combines the drain currents of the two MOS transistors Ml and M3 and the drain currents of M2 and M4, and converts the current flowing through M1 and M3 corresponding to the positive voltage input signal Vin + to the negative voltage input signal ViiT It is configured to subtract the current flowing through M4 and M2.
  • a linear current output signal lout with respect to the voltage input signals Vin + and ViiT can be obtained.
  • the amplitude of the current output signal lout is controlled by the value of the bias potential difference VB between the gates of Ml and M3 and between the gates of M2 and M4.
  • VB bias potential difference
  • FIG. 15 shows a second example of the voltage / current conversion circuit according to the prior art described in the third document.
  • This circuit has two MOS transistors Ml and M2 that operate in a triode region (non-saturation region) with different bias operation points between the drain and source for positive and negative symmetric voltage input signals Vin + and ViiT.
  • the drain currents of M3 and M4 are combined, and the current flowing to M1 and M4 corresponding to the positive input voltage signal Vin + is subtracted from the negative input current flowing to M2 and M3 corresponding to the voltage signal ViiT. By subtracting, a linear current output signal I out with respect to the voltage input signal can be obtained.
  • the output current amplitude is in series with the drain side of M1 to M4. It is controlled by the difference between the bias voltage Vwp and V TM applied to the gate terminals of the inserted MOS transistors M5 to M8.
  • the linear output current signal is obtained as the difference between the drain current and the positive / negative symmetric voltage input signal, and sufficient linearity is obtained with a single-phase voltage input signal. I can't.
  • the current difference it is necessary to invert one of the positive and negative current signals and add them.
  • the simplest and most practical circuit for current inversion and addition uses a current mirror circuit, but inverting only one of the signals is an AC signal, especially for signals in the high-frequency region. This causes a delay difference between the positive and negative current signals, making it impossible to obtain an accurate difference between the positive and negative current signals. Therefore, in the circuits of FIGS. 14 and 15, the differential input type is used, which increases the number of constituent elements of the circuit.
  • FIG. 2 shows a first embodiment of a voltage / current conversion circuit according to the present invention, which has been made to solve the above-mentioned problems of the prior art.
  • a first constant current source (current value IB), a first MOS transistor Ml having a fixed potential (V GC) applied to its gate, and a second MOS transistor Ml having a gate connected to the drain of the MOS transistor Ml.
  • the MOS transistor M2 is connected in series between the power supply potential and the ground potential. Then, in parallel with the first constant current source and the transistors Ml and M2, the same constant potential (VGC) as above is applied to the second constant current source (current value IB) and the gate.
  • a third MOS transistor M3 and a fourth MOS transistor M4 having a gate connected to the gate of the MOS transistor! ⁇ 2 are connected in series between a power supply potential and a ground potential to form a cascode.
  • a mirror circuit is configured.
  • the cascode mirror circuit is provided for the MOS transistor M3.
  • the current signal lout corresponding to the input signal Vin is obtained from the drain.
  • the MOS transistors M1 and M3 with the bias voltage VGC applied to the gate have the function of extending the frequency characteristics of the circuit.
  • the above-mentioned cascode-mirror circuit is introduced in the third known document as an application example to a current integration circuit as shown in FIG. 16, for example. That is, in the integrating circuit of FIG. 16, the capacitor C1 is connected between the gate of the transistor M2 corresponding to the MOS transistor M2 of FIG. 2 and the ground potential, and the current I input to the drain of the MOS transistor M1 is in is integrated by the capacitor C1 to obtain a current output lout from the drain of the MOS transistor M3.
  • the input current Iin is input to the drain of the MOS transistor Ml, and the change in the input current Iin causes the drain potential of the MOS transistor M1 to rise to, for example, a high value.
  • the drain voltage of M2 that is, the source potential of the MOS transistor M1 decreases, and this feed-packing action operates to reduce the change in the drain potential of the MOS transistor M1.
  • the club dance can be made smaller.
  • the conductance of the input section composed of the MOS transistors Ml and M2 can be increased, thereby improving the high-frequency characteristics.
  • the circuit can be used as a current inverting amplifier except for the integration capacitance C1 of the above circuit.
  • the source potential of the MOS transistor Ml is maintained at a stable value with a lower impedance than the drain potential.
  • the source potential of the MOS transistor M1 is too low to be used as a current input point. Voltage / current converter is characterized by low source potential Is preferred.
  • the voltage input signal Vin is input to the gate of the MOS transistor M5 connected in parallel with the MOS transistor M2, and the gate voltage signal of the M ⁇ S transistor M5 is input.
  • Vin requires a relatively high voltage in the range necessary and sufficient to operate the MOS transistor M5 in the unsaturated region (triode region) exhibiting linear characteristics.
  • the relationship between the drain current ID5, the drain voltage VD5, and the gate voltage Vin of the MOS transistor M5 operating in the unsaturated region is as follows:
  • K5VD5Vin-K5VD5 (Vth5 + VD5 / 2) It is expressed by eleven (1).
  • Vth5 is the threshold voltage of transistor M5
  • K5 is the transconductance constant of transistor M5.
  • ID5B + iD5 K5VD5 (VIB-Vth5-VD5 / 2) + K5VD5vin (4) Therefore, if the drain voltage VD5 of M5 is constant, the AC signal component iD5 of the drain current ID5 is the AC signal component vin of the gate voltage Vin. It can be seen that it is completely proportional to That is,
  • the voltage / current conversion circuit in Fig. 2 can obtain a sufficiently linear current output even with a single-phase voltage input signal without taking the difference between the positive and negative input current signals, and can operate at high speed and high frequency Obviously, the voltage / current conversion circuit in Fig. 2 can obtain a sufficiently linear current output even with a single-phase voltage input signal without taking the difference between the positive and negative input current signals, and can operate at high speed and high frequency Obviously, the voltage / current conversion circuit in Fig. 2 can obtain a sufficiently linear current output even with a single-phase voltage input signal without taking the difference between the positive and negative input current signals, and can operate at high speed and high frequency Becomes
  • the source of the S-transistor M1 has a low impedance, that is, a change in potential can be suppressed in response to a change in current, so that the gate voltage signal of the fifth MOS transistor M5 operating in the unsaturated region Can be directly and linearly converted to Vin.
  • means for changing the bias voltage VGC can be easily obtained.
  • it can be configured by using a digital / analog conversion circuit that changes the value of the register by an external control signal and generates a voltage corresponding to the value.
  • the current IB of a plurality of constant current sources is supplied to a predetermined resistance circuit via a selection switch or the like to generate a voltage, and The configuration may be such that the VGC is changed by selecting the value of the current IB in accordance with the set value of the resistor, in addition to the voltage VGC.
  • the gain control of the voltage / current conversion circuit can be realized by changing the bias current IB in addition to the gate voltage VGC of the MOS transistor Ml.
  • the output current lout includes a DC component ID5B, and this DC component is obtained by the following equation from equations (4) and (5).
  • the bias for generating the bias voltage of the constant current transistors (MB8 to MB11, MB14 to MB17) for flowing the constant current IB of the voltage / current conversion circuit in FIG.
  • the circuit section 21 the DC component of the output current lout is eliminated.
  • a pre-piase stage composed of the MOS transistors MB 1 to MB 3 connected in series between the power supply voltage terminals, and a MOS transistor similarly connected in series between the power supply terminals.
  • a main bias stage comprising transistors MB4 to MB7, wherein the MB1 and MB4 are connected to a current mirror, and a drain voltage of MB4 is applied to an inverting input terminal, and a drain voltage of MB1 is applied to a non-inverting input terminal.
  • the bias circuit 21 is constituted by the differential amplifier AMP B which generates the gate voltage of the MB 5 when applied.
  • a constant current source for supplying a bias constant current IB2 is provided between the drain terminal and the ground terminal of MB1, and a constant current transistor MB2 with VGC applied to the gate and VIB applied to the gate. Due to the cascode configuration of the constant current transistor MB3, the drain potential of the MB3 becomes substantially equal to the drain potential of the input transistor M5. Thus, the DC component represented by the above equation (6) is subtracted from the output currents + Iout and -lout so as to be cancelable.
  • the differential amplifier AMPB and the main bias stage are not particularly limited, but are not limited to variations in the power supply voltage AVDD, changes in the ambient temperature, and input current signals. It is used to stabilize the current values of the constant current sources M8 to M19 of the units 22 and 23 and the offset adjustment units 24 and 25.
  • the constant current source of the voltage / current conversion circuit shown in FIG. 2 is constituted by two P-channel MS transistors connected in series to improve the constant current characteristics.
  • the signal conversion unit includes a positive signal conversion unit 22 and a negative signal conversion unit 23. These signal conversion units each have a configuration corresponding to the above-described voltage / current conversion circuit in FIG.
  • the offset adjusters 24 and 25 are used to cancel the DC component of the output current lout with higher accuracy in combination with a current offset compensating circuit shown in FIG. 4 described later. This cancellation operation will be described in detail below.
  • the offset adjuster 24 is composed of four MOS transistors MB12, MB13, M6, and M7 connected in series between the power supply voltage terminals, and each of the MOS transistors constituting the signal converter 22.
  • the same voltage as the gate voltage of the transistors MB 10, MB 11, M 3, and M 4 is applied to the gate, whereby the output current of the positive signal converter 22 from the drain of M 6 + Outputs the same current as Iout. Further, the same current as the output current -lout of the negative signal converter is output from the drain of M16.
  • the offset adjustment unit 25 is composed of four MOS transistors MB 18, MB 19, M 16, and M 17 connected in series between the power supply voltage terminals. The same voltage as the gate voltage of the MOS transistors MB 16, MB 17, M 13, and M 14 constituting the MOS transistor 3 is applied to the gate. Outputs the same current as the output current-lout of the negative signal converter 23.
  • Both of these outputs are set to the monitor current of the DC offset, + Iofs, and -Iofs.
  • Each is supplied to the current offset compensation circuit of FIG.
  • the offset adjustment signal from the current offset compensation circuit + V ⁇ F, one V0F is provided between the terminal from which each of the output currents + lout, -lout, + Iofs, and -Iofs is output and the ground terminal.
  • the MOS offset transistors Ml8 to M21 whose gates are controlled by the current o are connected.o
  • the current offset compensation circuit shown in Fig. 4 is a first cascode mirror composed of M0S transistors MC1 to MC7.
  • the differential amplifier 34 is current-mirror-connected to the MOS transistor MC 15 of the bias circuit 33, and is supplied with the same bias current as the current flowing to the constant current source IC by the current mirror IC. It is composed of common source-coupled MOS transistors MC 17 and MC 18 and current mirror-coupled MOS transistors MC 19 and MC 20.
  • the element MC 21 connected between the drain of the transistor MC 3 and the ground potential is a capacitance element using the gate capacitance of the MOS transistor, and is connected to the monitor current. Functions as an element that removes AC signal components included in + Iofs or -Iofs.
  • the first and second cascode mirror circuits 31 and 32 are different from the above-described current integration circuit of FIG. 16 in that the drain voltages VC 5 and VC 12 of MC 5 and MC 12 are different.
  • the output is output to the gate of each of the input MOS transistors MC 17 and MC 18 constituting the differential amplifier 34.
  • the outputs + Iofs and -Iofs of the offset adjustment units 24 and 25 become the output currents + Iout and -Iouts. It is the value of the DC offset current included in lout.
  • the first cascode mirror circuit 31 in FIG. 4 has the offset current + Iofs or less. Or ⁇ Iofs is input, while the second cascode mirror circuit 32 has no input, that is, the input current is 0, so the input MOS transistors of the differential amplifier 34 are connected to the MS 17 and MS 18. A potential difference occurs between the gates.
  • the drain voltage of MC5 and MC12 is VC5 ⁇ VC12
  • the drain potential + V0F of MC19 which is the output of the differential amplifier 34 is MC5. It is higher than the drain potential of 20.
  • This output potential + V0F is fed back to the gates of the MOS transistors M18 and M20 for offset adjustment in the circuit of FIG. 3, and is output from each output current + lout and + Iofs according to the potential of the output potential + VOF.
  • the differential operation is performed by applying a current corresponding to the output potential + V0F to each output current + Iout and + Iofs by the feed pack, conversely to the above. It operates so that the input potential of the amplifier 34 becomes equal. The same applies to the output currents -lout and -Iofs.
  • Fig. 5 shows the simulation results of confirming the input voltage Vin and the output current lout when changing the gain by changing the gate voltage VGC of the voltage / current conversion circuit in Fig. 3.
  • the solid line A shows the input / output characteristics when the gain is 72 ⁇ S (microdimens)
  • the broken line B shows the input / output characteristics when the gain is 59 S
  • the dotted line C shows the input / output characteristics when the gain is 42 zS.
  • Output characteristics, dashed line D is the input / output characteristics when the gain is 27.5
  • dashed line E is the input / output characteristics when the gain is 7.4 zS. From the figure, it can be seen that the voltage / current conversion circuit of the embodiment can obtain good conversion characteristics (linearity) over a gain range of 0 to 45 S or more.
  • the gain control of the voltage / current conversion circuit can be realized by changing the bias current IB2 in addition to the gate voltage VGC.
  • the bias currents (corresponding to the constant current IB of FIG. 2) of the signal converters 22 and 23 are given by the M0S transistors MB8, MB10, MB14 and MB16.
  • Transistor is a Piase circuit 21 MOS transistor MB
  • the current flowing through MB1 is the sum of the drain current of the MOS transistor MB2 connected in series with this and the bias current IB2, so that the gate voltage VGC of MB2 is
  • the current of MB1 that is, the bias current of the signal converters 22, 23 can be changed.
  • the gain of the voltage / current conversion circuit can be changed.
  • the filter circuit FIL constituting the read channel of FIG. 1 will be described.
  • FIG. 17 shows a known complete current integration circuit introduced in the third document.
  • This complete current integrator has two imperfect current integrators as shown in Fig. 16 and integrates them using the positive and negative symmetrical current input signals +1 in and -I in with the capacity CI of each integrator.
  • the first mirror current outputs + If and -If are fed-packed to the opposite input nodes, respectively.
  • the second mirror current outputs +1 out and -lout of each integration circuit are completely integrated with respect to the input current.
  • the sizes of the MOS transistors M1, M3, and M5, M2, M4, and M6 are made equal to each other, and the constant current bias values IB supplied through the transistors M1, M3, and M5 are made equal.
  • the channel conductances gm of the MOS transistors M2, M4 and M6 are equal. Therefore, the current gains of the feedback current I and the output current Iout with respect to the input current Iin are equal, and
  • a gm / C is the integration time constant
  • s is the complex angular frequency represented by.
  • the input / output gain is inversely proportional to s, that is, inversely proportional to the signal frequency, which indicates that the circuit in FIG. 17 is a complete current integration circuit.
  • the channel conductance gm of the MOS transistor is Since it is proportional to the square root of the value of the bias current IB, the integration time constant can be varied by changing the bias current IB, and a filter circuit with a variable cut-off frequency is realized.
  • the filter circuit required for hard disk drive devices needs to vary the cut-off frequency in accordance with the data read rate from the disk. It is required that the phase delay, that is, the group delay characteristic of each frequency component to be applied is flat to a frequency close to twice the cutoff frequency.
  • a transfer function of the fifth or higher order of the equi-ripple characteristic is used.
  • the high-order fill circuit can be realized by connecting the secondary fill and the primary fill in multiple stages.
  • FIG. 18 shows a block configuration of a secondary filter used to realize a high-order mouth-to-pass filter using the complete current integration circuit of FIG.
  • the transfer function is expressed as follows.
  • the coefficients ⁇ and ⁇ in FIGS. 18 and 19 are determined by appropriately setting the size ratio of the MOS transistors in the incomplete current integration circuit (that is, the current mirror ratio). Thus, a desired coefficient can be realized.
  • the related art has the following problems. That is, a mirror current output stage for the feed pack is required in the integration circuit. Also complete Since the integrator has an infinite gain in principle when the angular frequency s is 0, that is, for a DC input, it cannot be used alone. Therefore, the figure
  • This imperfect current integration circuit has a finite gain with respect to DC current input, like a resistor-capacitance circuit of a passive element. Can be used as The second-order filter and the first-order filter using this imperfect current integration circuit have block configurations as shown in Figs. 6 and 7, respectively, and the transfer function of the second-order filter is expressed as follows: .
  • equation (11) becomes the same as equation (8), and it can be seen that the same characteristics can be realized.
  • the first-order filter can be composed of an incomplete integrator alone, and no coefficient circuit is required. No return path is required. And its transfer function is as follows, as in equation (10). H (s): (1 3)
  • the second-order filter using the incomplete current integration circuit has a coefficient whose coefficient is the same as that of the complete integration circuit described above (Figs. 18 and 19). It can generally be smaller than the coefficient.
  • an incomplete current integration circuit shown in FIG. 16 is used as the filter circuit FIL. This makes it possible to greatly reduce the number of transistors and power consumption as compared with the case where a filter is formed using a complete integration circuit as in the conventional technique (FIG. 17).
  • Figure 8 shows the block configuration of a 7th-order equiripple low-pass filter designed by combining the primary and secondary filters ( Figures 6 and 7) using the above-mentioned CMOS imperfect current integration circuit. It is used as the fill circuit FIL of the read channel LSI shown in Fig. 1.
  • the one with the transfer function described in the block is the incomplete current integration circuit, and the one with "-1" in the block is the inverted current amplifier.
  • the inverting current amplifier is similar in basic configuration to the circuit shown in Figure 16 and is obtained by simply removing the integration capacity CI. Note that in FIG. The numerical value added to each output terminal of the incomplete integrator and the inverting current amplifier indicates the mirror current gain.
  • the total number of bias current sources in the entire low-pass filter is 30.32 times that when the input bias of each integration circuit and the inverting current amplifier is set to the unit bias current value.
  • the unit bias current value is 0.2 mA.
  • the analog circuit section is positive-negative and symmetrical in order to avoid interference of digital noise. Is desirably provided. Therefore, in the filter circuit F IL of the present embodiment, it is preferable to provide the incomplete integration circuit shown in FIG. 16 corresponding to the positive current input and the negative current input from the voltage / current conversion circuit V GA in the preceding stage. In this case, the maximum current consumption of the entire filter circuit when the effects of semiconductor process variations and ambient temperature fluctuations are ignored is 12.1 mA for both the positive and negative sides. This is about 70% or less of the current consumption of the filter circuit designed separately using the conventional complete integration circuit in Fig. 17.
  • Fig. 9 shows the frequency characteristics of the group delay (phase) and current gain obtained as a result of simulation by a computer for the above-mentioned 7th-order equal ripple port one-pass fill.
  • the group delay ripple is 4 ⁇ 0.1 nS up to a frequency 1.7 times or more of the cut-off frequency fc (127 MHz), and the fluctuation is suppressed to 3% or less.
  • the phase hardly shifts even if the signal passes through this filter or exceeds the cutoff frequency.
  • FIG. 10 shows a 6-bit A / D conversion circuit constituting a read channel according to the present invention. Shows current track / hold circuit (sample / hold circuit).
  • the reference constant current source IB and the N-MOS transistors Ml and M 2 are connected in series between the power supply potential AV DD and the ground potential AGND, and the drain of the MOS transistor M 1 serves as an input node of the input current signal I in. ing.
  • the change in the drain potential of the MOS transistor M1 is performed via the source follower including the N-MOS transistor M5 and the constant current source Is connected between the source and the ground potential. It is configured to be transmitted to the gate electrode of the S transistor M2.
  • the constant current sources IRi (i l to 63) connected in series between the power supply potential AVDD and the ground potential AGND and the N-MO A current mirror circuit composed of S transistors M3 i and M4 i is provided.
  • the output current Ici is taken out from the drain side of the MOS transistor M3i, and supplied to each of the 63 current comparison circuits (not shown) at the subsequent stage.
  • the same gate voltage of the MOS transistor M1 is applied to the gates of the MOS transistors M301 to M363, and the gate potential of the MOS transistor M2 is N ⁇ It is configured to be transmitted to the gate electrodes of 63 N-MOS transistors M401 to M463 provided in parallel during the ON period of the CMOS transmission switch composed of the MOS transistor M6 and the P-MOS transistor M7. I have. Therefore, if the sizes of M301 to M363 and M2 and M401 to M463 provided in parallel with the above MOS transistor M1 are made equal to each other, the current flowing in M2 will be less than that of M401 to M463. It is.
  • the output currents Icl to Ic63 when the input current signal Iin changes from + 32 / A to -32 A It changes to the value in the following range.
  • “+” represents each of the source currents to the subsequent 63 parallel current comparison circuits not shown in FIG. 10, and “one” represents the sink current from the current comparison circuits.
  • the track-hold circuit shown in FIG. Provided for each of 1 in and the negative input current signal -I in.
  • the output current Icl for the positive input current signal +1 in is supplied.
  • the first current comparison circuit is supplied with the output current Ic63 for the negative input current signal -Iin, and the magnitudes thereof are compared. It is configured to Similarly, the second current comparison circuit determines the magnitude of the current corresponding to Ic2 on the positive signal input side and Ic62 on the negative signal input side, and the third current comparison circuit determines the magnitude of the current corresponding to Ic32 on the positive signal input side. It is configured to compare the magnitude of the current corresponding to Ic33 on the signal input side.
  • the difference outputs Icl to Ic63 between the input current signal Iin and the reference currents IR1 to IR63 are set so as to change to the positive and negative sides with respect to the analog ground AGND, respectively.
  • the above reference current values may be changed so as to conform to the configuration, so that the output signal is always positive or always negative.
  • any known current comparison circuit such as the circuit proposed in ISSCC 99, Digest of Technical Papers, February 1999, WA 18.5, can be used.
  • Any known current comparison circuit such as the circuit proposed in ISSCC 99, Digest of Technical Papers, February 1999, WA 18.5
  • the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it is needless to say that various modifications can be made without departing from the gist of the invention. Nor.
  • the cascode's mirror circuit is composed of N-channel MOS transistors, it can be realized by switching the conductivity type of the MOS transistor depending on the target specification.
  • the primary fill-in connection is connected after the secondary fill-in step 3, but each fill-in screen can be arranged in any order. In other words, the first fill evening may be arranged before the second fill evening or before the second fill evening.
  • the present invention can be widely used not only in a signal processing system such as a read channel of a hard disk drive but also in a signal processing system in a communication system for processing received serial data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

A signal processing system that converts an analog data signal to a digital data signal comprises a current-input/current-output circuit as a filter circuit (FIL), and a current-input circuit as an analog-to-digital converter (ADC). The front stage of the filter circuit includes a voltage-to-current converting circuit or voltage-input/current-output amplifier (VGA) to convert received analog input signals to electric current.

Description

明 細  Details
技術分野 Technical field
本発明は、 アナログ信号処理技術さらにはアナログデ一夕信号をデイジ夕 ルデ一夕信号に変換する信号処理システムに関し、 例えば磁気ディスクから 読み出した信号を処理するハードディスク ドライブ装置に利用して有効な技 術に係わり、 特に読み出し信号や書き込み信号を生成するリ一ドチャネルの 高速化かつ低消費電力化、 さらには図 1 1に示されるように、 ハ一ドデイス ク装置を含む電子装置の高速化、 小型化、 経済化に有効な技術に関するもの である。  The present invention relates to an analog signal processing technology and a signal processing system for converting an analog data signal into a digital data signal. For example, the present invention relates to a technology effective for a hard disk drive that processes a signal read from a magnetic disk. In particular, the speed and power consumption of read channels that generate read and write signals are increased, and as shown in Fig. 11, the speed and size of electronic devices, including hard disk devices, are reduced. It relates to technologies that are effective for economic and economic development.
背景技術 Background art
近年の情報化社会の進展に対応して、 各種情報ゃデ一夕をディジ夕ル化し て記録するための記録装置には、 より一層の高速化と大容量化が求められて いる。 このような要求に応える記録装置の一つにハードディスク装置がある。 ハ一ドディスク装置は、 例えば図 1 2に示されているように、 磁気へッ ド H Dを駆動して 2値化されたディジ夕ルデ一夕を磁気記録ディスクに書き込 むためのパルス電流を生成するライ トアンプと磁気へッ ド H Dを介して読み 出したデータ信号を増幅するリードアンプを含むリード/ライ ト実行部 1 1、 該リード/ライ ト実行部 1 1により読み出されたデ一夕の照合等を行なう信 号処理部 1 2、 デ一夕を外部装置とのデ一夕授受に適した形式にフォーマツ ト変換する等の機能を有したフォーマツ ト制御部 1 3、 ディスク回転軸を駆 動するスピンドルモ一夕 S P Mや磁気へヅ ドを保持するアーム (ビックアツ プ) を移動させるボイスコイルモー夕 V C Mを制御してディスク回転数や へ、 J、 ドの位置を調整するサーボ制御部 1 4、 ホストコンピュ一夕 2 0等の外 部装置との接続やディスク装置全体の制御を行なうディスクコントロール部 1 5等から成る。 このうちディスクから読み出されたデータの照合等を行う信号処理部 1 2 は、 ディスクの読み出し/書き込み速度を左右するため特に高速信号処理が 要求されるので、 アンプやフィル夕、 アナログ/ディジタル変換器 (以下、 A/D変換器と記す) などからなるアナログ信号処理回路 (リードチャネル と呼ばれる) とディジタル信号処理回路とを最適に混載させた半導体集積回 路 (以下、 リードチャネル L S I と称する) で実現される。 In response to recent developments in the information society, recording devices for digitizing and recording various kinds of information are required to have higher speeds and larger capacities. A hard disk drive is one of the recording devices that meet such demands. The hard disk drive generates a pulse current to drive the magnetic head HD and write the binarized digital data to the magnetic recording disk as shown in Fig. 12, for example. Read / write execution unit 11 including a write amplifier to read and a read amplifier to amplify the data signal read via the magnetic head HD, and the data read by the read / write execution unit 11 A signal processing unit 12 that performs data collation, a format control unit 13 that has functions such as converting the data into a format suitable for data exchange with external devices, and a disk rotation axis. Driving spindle motor Voice coil motor that moves the arm (big-up) that holds the SPM and magnetic head Servo controller that controls the VCM and adjusts the disk rotation speed and the position of J and H 1 、 Host computer overnight 2 It comprises a disk control unit 15 for connecting to external devices such as 0 and controlling the entire disk device. Among them, the signal processing unit 12 that performs data collation of data read from the disk requires particularly high-speed signal processing because it affects the read / write speed of the disk, so amplifiers, filters, analog / digital conversion, etc. Integrated circuit (hereinafter referred to as read channel LSI) that optimally incorporates an analog signal processing circuit (referred to as a read channel) including a digital signal processor (hereinafter referred to as an A / D converter). Is realized.
図 1 3は、 リードチャネル L S Iに内蔵されている機能プロックのうち リード処理側の概略構成例を示す。  FIG. 13 shows a schematic configuration example on the read processing side of the function blocks built in the read channel LSI.
可変利得増幅回路 V G Aは読み出し信号の増幅回路で、 磁気へヅ ド等が持 つ非線形の電磁気特性で劣化減衰した読み出し信号の振幅を、 所定の振幅レ ベルに可変増幅する機能回路である。  The variable gain amplifying circuit V GA is a read signal amplifying circuit, and is a functional circuit that variably amplifies the amplitude of the read signal degraded and attenuated by nonlinear electromagnetic characteristics of a magnetic head or the like to a predetermined amplitude level.
フィル夕回路 F I Lは、 後段の A/ D変換器 A D Cにおける A/D変換動 作に伴って生じる折り返し雑音を前もって除去するとともに、 読み出し信号 から最大限の有効情報を引き出すために、 ディスクの内周部と外周部とで異 なるデータレートに応じてカッ トオフ周波数をこまめに、 具体的には概略 1 M H z程度の間隔で切り替えることが要求される。  The filter circuit FIL removes the aliasing noise caused by the A / D conversion operation in the subsequent A / D converter ADC in advance, and also extracts the maximum effective information from the read signal in order to extract the maximum useful information from the read signal. It is required to switch the cutoff frequency frequently, specifically at intervals of about 1 MHz, in accordance with the different data rates between the outer part and the outer part.
ディジ夕ル信号処理部 D S Pでは、 読み出した信号の振幅レベルゃデ一夕 速度等の検出を行ない、 書込みデータと読み出した信号との照合がとれるよ うに上記可変利得増幅回路 V G Aやフィル夕回路 F I Lへの制御情報、 A/ D変換器のサンプリングクロック等のタイミング情報を生成して、 同一半導 体集積回路内のタイミングコントロール回路部 T G C又は外部のマイコン等 のコントロール L S Iに供給し、 これらを介して例えば検出されたレベルが 所望の値になるように、 利得可変増幅回路 V G Aがフィ一ドバック制御され る ο  The digital signal processing unit DSP detects the amplitude level of the read signal, the data speed, etc., and performs the above-mentioned variable gain amplification circuit VGA and filter circuit FIL so that the write data can be compared with the read signal. , And the timing information such as the sampling clock of the A / D converter is generated and supplied to the timing control circuit TGC in the same semiconductor integrated circuit or a control LSI such as an external microcomputer, etc. For example, the feedback control of the variable gain amplifier VGA is performed so that the detected level becomes a desired value.
また、 A/D変換器 A D Cのサンプリングクロックの周波数や位相は、 上 記データレート検出信号に基づいて上記タイミングコントロール回路部 T G Cに設けたシンセサイザ又は位相口ヅク トループ (P L L : Phase Locked Loop) 回路を制御することによって調整される。 ところで、 上記した機能回路を含む従来のリードチャネル L S Iは、 各機 能回路が電圧入力 '電圧出力の回路構成で実現されている。 例えば、 A/D 変換回路について言えば、 第 1の文献; アイ 'エス 'エス ' シ一 · シ一 98、 ダイジェス ト ォブ テクニカル ベ一パ一、 セッション 9に発表された 3件、 エフ ' エー 9. 6〜9. 8、 1 9 98年 2月 ( ISSCC98, Digest of Technical Papers, February 1998, FA 9.6-9.8) に示されているように、 い ずれも入力アナログ信号は電圧である。 Further, the frequency and phase of the sampling clock of the A / D converter ADC are determined by a synthesizer or a phase locked loop (PLL) circuit provided in the timing control circuit TGC based on the data rate detection signal. It is adjusted by controlling. By the way, in a conventional read channel LSI including the above-described functional circuits, each functional circuit is realized by a circuit configuration of voltage input and voltage output. For example, regarding the A / D conversion circuit, the first document: I'S 'S' 98, Digest to Technical Vapor Paper, 3 papers published in Session 9, 3 A. As shown in 9.6 to 9.8, February 1998 (ISSCC98, Digest of Technical Papers, February 1998, FA 9.6-9.8), both input analog signals are voltages.
一方、 フィル夕回路に関しては、 高周波特性に優れ、 低電源電圧を用いて 低消費電力で実現できる非サンプリング (コンティニユアス ' タイム) 型電 流駆動フィル夕回路が近年多く用いられている。 しかし、 その多くは入力 - 電圧を電流に変換し、 その電流をキャパシ夕 Cに充放電させて電圧に変換す るいわゆる g m— C回路又は O T A ( Operational Transconductance On the other hand, non-sampling (continuous 'time') current-driven filter circuits, which have excellent high-frequency characteristics and can be realized with low power consumption using a low power supply voltage, have been widely used in recent years. However, many of them are so-called gm-C circuits or OTAs (Operational Transconductance) that convert input-voltage to current and charge / discharge the current to / from the capacity C to convert it to voltage.
Amplifier) 一 C回路で実現されている。 この例としては第 2の文献; アイ · ィー ·ィ— · ィ—、 ジャーナル ォブ ソリッ ドステートサ―キヅヅ、 32 卷 4号、 499ページから 5 12ページ、 1997年 4月 ( IEEE Journal of Solid-State Circuits, VOL. 32, NO. 4, April 1997, pp. 499-513) 等が ある。 Amplifier) It is realized by one C circuit. An example of this is the second of the literature; eye I over-I - - I -, journal O blanking Sori' Dosutetosa - Kidzudzu, 3 2 Certificates No. 4, 5 12 pages from 499 pages, April 1997 (IEEE Journal of Solid -State Circuits, VOL. 32, NO. 4, April 1997, pp. 499-513).
また、 電流駆動タイプのフィル夕回路の他の方式としては、 電流ミラ一回 路を 1次完全積分回路及び係数回路として用いたものが提案されており、 該 1次完全積分回路又は係数回路の入力信号及び出力信号は電流とされている。 しかし、 それらの基本回路を組み合わせて構成したリードチャネル L S I に必要な高次フィル夕、 具体的には 7次の口一パス · フィル夕等に対する入 力信号としては電圧信号が用いられており、 電圧/電流変換回路を上記フィ ル夕の前段に付加している。 この例としては、 第 3の文献; アイ · ィ一 ' ィ一 'ィ一、 ジャーナル ォブ ソリッ ドステートサーキッ ト、 33卷 3号、 427ページから 438ページ、 1 998年 3月 (IEEE Journal of Solid- State Circuits, VOL. 33, NO. 3, March 1998, pp. 427-438) 等がある。 さらに、 上記公知文献には記載されていないが、 フィル夕回路からの電流 出力信号を前述の電圧入力型の A/D変換回路に供給するには、 フィルタ回 路と A/D変換回路との間に電流/電圧変換回路が不可欠である。 As another method of the current drive type filter circuit, a circuit using a current mirror circuit as a primary complete integration circuit and a coefficient circuit has been proposed. The input signal and the output signal are current. However, a voltage signal is used as an input signal for the higher-order filter required for a read channel LSI configured by combining these basic circuits, specifically for the 7th-order single-pass filter. A voltage / current conversion circuit is added before the filter. An example of this is the third article; I-II-II-II, Journal of Solid State Circuits, Vol. 33, No. 3, pages 427 to 438, March 1998 (IEEE Journal of Solid-State Circuits, VOL. 33, NO. 3, March 1998, pp. 427-438). Furthermore, although not described in the above-mentioned known documents, the current from the filter circuit In order to supply the output signal to the above-mentioned voltage input type A / D converter, a current / voltage converter is indispensable between the filter circuit and the A / D converter.
しかしながら、 上記した従来のアナログ ' フロン ト 'ェンド部の構成には、 次のような問題がある。 すなわち、 各機能回路内部又は回路間に電圧 Z電流 変換又は電流/電圧変換回路を複数個設ける必要があり、 それによつて、 回 路規模並びに消費電力の増加を招く。 しかも、 さらに大きな問題となるのは、 電圧/電流変換に伴なつて信号振幅及び周波数帯域の劣化、 信号の位相ずれ が生じ、 今後さらに要求が高まるハードディスク ドライブ装置の高速化に対 応することが難しくなることである。  However, the above-described configuration of the conventional analog 'front' end section has the following problems. That is, it is necessary to provide a plurality of voltage-Z current conversion circuits or current / voltage conversion circuits inside each functional circuit or between the circuits, thereby increasing the circuit scale and power consumption. What is even more problematic is that the voltage / current conversion causes deterioration of signal amplitude and frequency band and signal phase shift, and it is necessary to respond to the demand for higher-speed hard disk drive devices, which will increase in the future. It is difficult.
さらに、 フィル夕回路に用いられる完全積分回路は、 電源電圧で制限され ない範囲においてその入出力電流利得が信号周波数に逆比例する特性を有す るため、 フィル夕回路の設計は比較的容易である。 しかし反面、 完全積分回 路は、 例えば直流電流の入力または意図しない入力オフセッ トの発生がある と、 利得が無限大になって出力信号が飽和するため、 単独ではフィル夕回路 として使用できず、 安定化のためには別に帰還回路が必要である。 したがつ て、 1次の完全電流積分回路はその内部に帰還パスを有するほか、 1次フィ ル夕回路としても別に帰還回路を有するため、 高次のフィル夕を実現するに はより多数のトランジスタと消費電力が必要となる。 本発明の目的は、 回路規模並びに消費電力の増加を招くことなく高速 ·髙 周波動作でアナログ信号処理が可能な電子装置を実現し、 例えば磁気ディス クのリード · ライ ト信号を処理する高速,低消費電力のリードチャネル L S Iを提供することにある。  Furthermore, the complete integration circuit used in the filter circuit has a characteristic that the input / output current gain is inversely proportional to the signal frequency in a range not limited by the power supply voltage, so that the design of the filter circuit is relatively easy. is there. On the other hand, however, the complete integration circuit cannot be used alone as a filter circuit because, for example, if a DC current is input or an unintended input offset occurs, the gain becomes infinite and the output signal is saturated. A separate feedback circuit is required for stabilization. Therefore, since the primary complete current integrator has a feedback path inside it and also has a separate feedback circuit as the primary filter, a larger number of filters are required to realize higher-order filters. It requires transistors and power consumption. An object of the present invention is to realize an electronic device capable of performing analog signal processing by high-speed and low-frequency operation without increasing a circuit scale and power consumption. For example, a high-speed and high-speed processing of a read / write signal of a magnetic disk is realized. An object of the present invention is to provide a low power consumption read channel LSI.
また、 本発明の他の目的は、 上記した高速動作のリードチャネル L S Iを 用いて、 巿場の高速化要求に応えることができるハードディスク ドライブ装 置、 ひいてはハードディスク装置の実現に寄与することにある。  Further, another object of the present invention is to contribute to the realization of a hard disk drive device that can respond to a demand for high-speed operation in a field by using the above-described high-speed read channel LSI, and furthermore, a hard disk device.
この発明の前記ならびにそのほかの目的と新規な特徴については、 本明細 書の記述および添付図面から明らかになるであろう。 発明の開示 The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本願において開示される発明のうち代表的なものの概要を簡単に説明すれ ば、 下記の通りである。  The following is a brief description of an outline of a typical invention disclosed in the present application.
即ち、 アナログデ一夕信号をディジ夕ルデータ信号に変換する信号処理シ ステムにおいて、 システムを構成するフィルタ回路として電流入力 ·電流出 力型の回路を、 また A/D変換器として電流入力型の回路を用いるとともに、 フィルタ回路の前段には受信したアナログ入力信号を電流に変換して出力す る電圧/電流変換回路 (もしくは電圧入力 ·電流出力型増幅回路) を設ける ようにした。 さらに、 上記フィル夕回路は、 不完全電流積分回路を用いて構 成するようにした。  That is, in a signal processing system that converts an analog data signal into a digital data signal, a current input / current output circuit is used as a filter circuit constituting the system, and a current input circuit is used as an A / D converter. And a voltage / current conversion circuit (or voltage input / current output type amplifier) that converts the received analog input signal into a current and outputs the current, in front of the filter circuit. Further, the filter circuit is configured using an incomplete current integration circuit.
上記した手段によれば、 電圧入力 ·電圧出力型のフィル夕回路および電圧 入力型の A/D変換器を用いたシステムに比べて高周波数特性が向上する。 また、 フィル夕回路の前段に電圧/電流変換回路を設けるとともに、 フィル 夕回路を電流出力型とし、 A/D変換器を電流入力型としているため、 フィ ル夕回路と A/D変換器との間に電圧/電流変換回路を設ける必要がなく、 システム全体を簡略化することができ、 消費電力を低減することができる。 しかも、 従来のように電流入力 ·電圧出力型のフィル夕回路を用いるシステ ムでは高次のフィル夕回路を構成する場合に 1次や 2次の低次のフィル夕を 組み合せて構成するが、 その場合各フィル夕間に電圧/電流変換回路が必要 になるのに対し、 本発明では電流入力 ·電流出力型のフィル夕回路を用いて いるため高次フィル夕回路を構成する場合に電圧/電流変換回路が不要とな り、 その分消費電力が少なくて済むようになる。  According to the above-described means, high frequency characteristics are improved as compared with a system using a voltage input / voltage output filter circuit and a voltage input A / D converter. In addition, a voltage / current converter is provided before the filter circuit, the filter circuit is a current output type, and the A / D converter is a current input type. There is no need to provide a voltage / current conversion circuit between them, which simplifies the entire system and reduces power consumption. Moreover, in a system using a current input / voltage output type filter circuit as in the past, when a higher-order filter circuit is configured, the primary and secondary low-order filter circuits are combined. In this case, a voltage / current conversion circuit is required between each filter, whereas in the present invention, a current input / current output type filter circuit is used. Since the current conversion circuit is not required, power consumption can be reduced accordingly.
また、 本発明をハードディスク ドライブ装置に適用する場合には、 図 1に 例示されるように、 リードアンプの出力信号すなわちリードチャネル L S I への入力信号が電圧信号であることを前提に、 リードチャネル L S Iのアナ ログ信号処理部の初段に設けられる可変利得増幅回路 V G Aに電圧/電流変 換手段を設け、 可変利得増幅回路 V G Aの出力電流信号の振幅を上記した外 部のマイクロコンビュ一夕等からレジスタ R E Gの設定値を書き換えること によつて制御できるようにし、 かつ可変利得増幅回路 V G Aの出力電流信号 を後段の電流入力 ·電流出力型フィルタ回路の入力端子に直接入力できるよ うにした。 When the present invention is applied to a hard disk drive, as shown in FIG. 1, it is assumed that the output signal of the read amplifier, that is, the input signal to the read channel LSI is a voltage signal. The voltage / current conversion means is provided in the variable gain amplifier VGA provided at the first stage of the analog signal processing unit, and the amplitude of the output current signal of the variable gain amplifier VGA is registered from the external microcomputer and the like described above. Rewriting REG settings And the output current signal of the variable gain amplifier circuit VGA can be directly input to the input terminal of the current input / current output filter circuit at the subsequent stage.
また、 高速 A/D変換回路の変換精度劣化を最小限に抑えるために必要と される トラック 'ホールド回路 (サンプル 'ホールド回路とも呼ばれる) を 電流信号トラック ·ホールド回路とし、 前段の電流入力 '電流出力型フィル 夕回路の出力電流信号を AZD変換回路に直接入力できるようにした。 これ らにより、 上記各機能回路からの出力信号の振幅や周波数帯域の劣化を最小 限に抑えることが可能である。  In addition, the track 'hold circuit (also called sample' hold circuit) required to minimize the conversion accuracy degradation of the high-speed A / D converter circuit is a current signal track-hold circuit, and the current input 'current Output type filter The output current signal of the circuit can be directly input to the AZD conversion circuit. As a result, it is possible to minimize the deterioration of the amplitude and frequency band of the output signal from each of the functional circuits.
また、 上記電流入力 ·電流出力型フィル夕回路を、 内部に帰還パスを有し ない 1次不完全積分回路を係数回路として用いて構成した。 不完全積分回路 は、 受動型素子である抵抗と容量からなる口一パスフィル夕と同様に、 直流 電流入力に対しては出力が一定値に収束するから単体でも安定な 1次フィル 夕を実現できる。 これにより、 高次のフィル夕を実現するのに、 従来のフィ ル夕回路のように積分回路内に帰還パスを有する 1次完全積分回路を用いる のに比較して、 大幅にトランジスタ数を減少させ、 かつ消費電力を低減する ことが可能である。  In addition, the current input / current output filter circuit is configured using a first-order imperfect integration circuit having no feedback path as a coefficient circuit. The imperfect integration circuit can realize a stable first-order filter by itself because the output converges to a constant value for DC current input, similar to a single-pass filter consisting of a resistor and a capacitor, which is a passive element. . As a result, the number of transistors is significantly reduced in order to achieve higher-order filtering compared to using a first-order complete integration circuit with a feedback path in the integration circuit as in a conventional filtering circuit. And power consumption can be reduced.
なお、 上記した手段の説明に含まれる可変利得回路、 電圧/電流変換回路、 電流積分回路、 フィル夕回路及び電流信号トラック ·ホールド回路の具体的 な構成例は、 後述の実施形態の説明の中において明かにされる。 図面の簡単な説明  Specific configuration examples of the variable gain circuit, the voltage / current conversion circuit, the current integration circuit, the filter circuit, and the current signal track / hold circuit included in the description of the above-described means will be described later in the description of the embodiments. Will be revealed in BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るハードディスク装置に用いられるリ一ドチャネル L S Iのプロヅク構成図、  FIG. 1 is a block diagram of a lead channel LSI used in a hard disk drive according to the present invention.
図 2は、 リードチャネル L S Iを構成する電圧/電流変換回路を示す回路 図、  FIG. 2 is a circuit diagram showing a voltage / current conversion circuit constituting the read channel LSI,
図 3は、 リードチャネル L S Iを構成する電圧/電流変換回路の実施例と バイァス電流回路を示す回路図、 図 4は、 リードチャネル L S Iを構成する電圧/電流変換回路の電流オフ セット補償回路を示す回路図 FIG. 3 is a circuit diagram showing an embodiment of a voltage / current conversion circuit constituting a read channel LSI and a bias current circuit, Figure 4 is a circuit diagram showing the current offset compensation circuit of the voltage / current conversion circuit that constitutes the read channel LSI.
図 5は、 図 3に示した電圧/電流変換回路のシミュレーション結果を示す 入力 ·電圧一ドレイン電流特性図、  Fig. 5 shows the input / voltage-drain current characteristic diagram showing the simulation results of the voltage / current conversion circuit shown in Fig. 3.
図 6は、 不完全電流積分回路を用いて構成される 2次フィル夕回路のブ ロック構成図、  Figure 6 is a block diagram of a secondary filter circuit using an incomplete current integration circuit.
図 7は、 不完全電流積分回路を用いて構成される 1次フィルタ回路のブ 口ック構成図、  Figure 7 shows a block diagram of a primary filter circuit using an incomplete current integration circuit.
図 8は、 不完全電流積分回路を用いて構成される等リップル 7次ローパス フィルタ回路のブロック構成図、  Figure 8 is a block diagram of an equiripple 7th-order low-pass filter circuit configured using an incomplete current integration circuit.
図 9は、 図 8に示されている 7次ローパスフィル夕回路の解析シミュレ一 シヨン結果を示す群遅延および電流利得の周波数特性図、  FIG. 9 is a frequency characteristic diagram of the group delay and current gain showing the analysis simulation result of the seventh-order low-pass filter circuit shown in FIG.
図 1 0は、 AZD変換器用電流トラック ·ホールド回路の回路図、 図 1 1は、 本発明に係る電子装置のブロック構成図、  FIG. 10 is a circuit diagram of a current track / hold circuit for an AZD converter. FIG. 11 is a block diagram of an electronic device according to the present invention.
図 1 2は、 本発明に係るハ一ドディスク ドライブ装置の構成例を示すブ ロック図、  FIG. 12 is a block diagram showing a configuration example of a hard disk drive device according to the present invention,
図 1 3は、 従来のハードディスク用リ一ドチャネルの機能を示すプロヅク 構成図、  FIG. 13 is a block diagram showing the function of a conventional read channel for a hard disk.
図 1 4は、 従来の電圧/電流変換回路の一例を示す回路図、  FIG. 14 is a circuit diagram showing an example of a conventional voltage / current conversion circuit,
図 1 5は、 従来の電圧/電流変換回路の他の例を示す回路図、  FIG. 15 is a circuit diagram showing another example of a conventional voltage / current conversion circuit.
図 1 6は、 本発明装置を構成する電流入力 ·電流出力型フィル夕に用いた 不完全積分回路の回路図、  FIG. 16 is a circuit diagram of an incomplete integration circuit used for a current input / current output type filter constituting the device of the present invention.
図 1 7は、 従来の完全電流積分回路の一例を示す回路図、  FIG. 17 is a circuit diagram showing an example of a conventional complete current integration circuit.
図 1 8は、 完全電流積分回路を用いて構成される従来の 2次フィル夕回路 のブロック構成図、  Fig. 18 is a block diagram of a conventional secondary filter circuit using a complete current integration circuit.
図 1 9は、 完全電流積分回路を用いて構成される従来の 1次フィル夕回路 のプロック構成図である。 発明を実施するため最良の形態 Fig. 19 is a block diagram of a conventional primary filter circuit using a complete current integration circuit. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明を適用して有効なハードディスク装置に用いられるリード チャネル L S I 10の構成の一例をプロック図で示したものである。  FIG. 1 is a block diagram showing an example of the configuration of a read channel LSI 10 used in a hard disk device effective according to the present invention.
VGAは磁気ディスクからの読み出し信号を増幅する可変利得増幅回路で、 磁気へッ ド等が持つ非線形の電磁気特性で劣化減衰した読み出し信号の振幅 を、 所定の振幅レベルに可変増幅する機能を有する。 F I Lは、 後段の A/ D変換器 AD Cにおける AZD変換動作に伴って生じる折り返し雑音を前 もって除去するとともに、 読み出し信号から最大限の有効情報を引き出すた めのフィル夕回路である。  VGA is a variable gain amplifying circuit that amplifies a read signal from a magnetic disk, and has a function of variably amplifying the amplitude of a read signal degraded and attenuated by nonlinear electromagnetic characteristics of a magnetic head or the like to a predetermined amplitude level. FIL is a filter circuit for removing in advance the aliasing noise caused by the AZD conversion operation in the subsequent A / D converter ADC, and for extracting the maximum useful information from the read signal.
DS Pは、 読出し信号レベルやデータレート等の検出を行ない、 書込み データと読み出した信号との照合がとれるように上記可変利得増幅回路 V G Aやフィル夕回路 F I Lへの制御情報、 A/D変換器 AD Cのサンプリング クロック等のタイミング情報を生成するディジ夕ル信号処理回路である。 また、 T G Cは上記ディジタル信号処理回路 D S Pからの制御情報に基づ いて上記可変利得増幅回路 VGAやフィル夕回路 F I L、 A/D変換器 AD Cに対する制御信号を形成し出力するタイミングコントロール回路部で、 そ の制御信号により例えば利得可変増幅回路 VGAは検出されたレベルが所望 の値になるようにフィードバック制御される。 一方、 フィル夕回路 F I Lは、 タイミングコントロール回路部 TGCからの制御信号によりディスクの内周 部と外周部とで異なるデ一夕レートに応じてカツ トオフ周波数が概略 1 MH z程度の間隔で切り替えられる。  The DSP detects the read signal level and data rate, etc., and controls the variable gain amplifier circuit VGA and filter circuit FIL control information and A / D converter so that the write data can be compared with the read signal. This is a digital signal processing circuit that generates timing information such as the sampling clock of ADC. TGC is a timing control circuit that forms and outputs control signals to the variable gain amplifier circuit VGA, filter circuit FIL, and A / D converter ADC based on control information from the digital signal processing circuit DSP. The variable gain amplifier circuit VGA is feedback-controlled by the control signal so that the detected level becomes a desired value. On the other hand, in the filter circuit FIL, the cut-off frequency is switched at intervals of approximately 1 MHz according to different data rates at the inner and outer peripheral portions of the disk by a control signal from the timing control circuit portion TGC. .
さらに、 A/D変換器 ADCは、 タイ ミングコントロール回路部 T G Cに よりサンプリングクロック 0sの夕イ ミングが調整されることによって読出 し信号波形のサンプリングポィントのずれが補正される。  Further, in the A / D converter ADC, the timing of the sampling clock 0 s is adjusted by the timing control circuit unit TGC to correct the deviation of the sampling point of the read signal waveform.
また、 この実施例では、 上記可変利得増幅回路 VGAに付随してレジス夕 REGが設けられており、 可変利得増幅回路 VGAは、 その出力電流信号の 振幅が、 外部のマイコン等からレジス夕 RE Gの設定値を書き換えることに よって制御されるように構成されている。 同様に、 上記フィル夕回路 F I L に対しても外部のマイコン等から設定値を書き換えることができるレジス夕 を設けて、 そのレジス夕の設定値によりフィル夕回路の力ッ トオフ周波数等 の周波数特性を変えることができるように構成してもよい。 In this embodiment, a resistor REG is provided in association with the variable gain amplifier circuit VGA. The variable gain amplifier circuit VGA adjusts the amplitude of the output current signal from an external microcomputer or the like. It is configured to be controlled by rewriting the set value of. Similarly, the above filter circuit FIL For this purpose, a register is provided that can rewrite the set value from an external microcomputer, etc., and the frequency characteristics such as the power-off frequency of the filter circuit can be changed by the set value of the register. You may.
特に制限されるものでないが、 上記可変利得増幅回路 V G Aとレジス夕 R E G、 フィル夕回路 F I L、 A/D変換器 A D C、 ディジタル信号処理部 D S Pおよびタイミングコントロール回路部 T G Cは、 単結晶シリコン基板の ような 1個の半導体チップ上において半導体集積回路として形成される。 ま た、 図示しないが、 上記リード系の回路の他、 磁気ヘッ ド H Dを駆動して ディスクに対する書込みを行なうライ トアンプに供給する書込み信号を形成 して出力するライ ト系の回路も同一の半導体チップ上に形成される。 図 1のシステムにおいては、 磁気記録されたディスクの情報は、 例えば磁 気抵抗素子を用いた磁気ヘッ ド (以下、 M Rヘッ ドと称する) H Dによって 電気信号に変換され、 リードアンプ 1 1によって増幅される。 このリードア ンプ 1 1の出力信号は一般に電圧信号である。  Although not particularly limited, the above-mentioned variable gain amplifier circuit VGA, resistor circuit REG, filter circuit FIL, A / D converter ADC, digital signal processing section DSP, and timing control circuit section TGC are similar to a single crystal silicon substrate. It is formed as a semiconductor integrated circuit on a single semiconductor chip. In addition, although not shown, the read-related circuit described above and the write-related circuit that forms and outputs a write signal to be supplied to a write amplifier that drives the magnetic head HD and writes data to a disk are the same semiconductor. Formed on a chip. In the system shown in Fig. 1, the magnetically recorded information on the disk is converted into an electric signal by a magnetic head (hereinafter referred to as MR head) HD using, for example, a magnetoresistive element, and amplified by a read amplifier 11 Is done. The output signal of the read amplifier 11 is generally a voltage signal.
この実施例のリードチャネル L S Iでは、 上記リードアンプ 1 1の出力信 号すなわちリードチャネル L S Iの入力信号が電圧信号であるのに対応して、 その信号が入力される可変利得増幅回路 V G Aとして、 例えば図 2〜図 4に 示すような電圧入力 ·電流出力型増幅回路を用い、 可変利得増幅回路 V G A の出力電流信号を後段のフィル夕回路 F I Lに直接入力できるように構成さ れている。 また、 フィル夕回路 F I Lとして図 6〜図 8に示すような電流入 力 ·電流出力型のフィル夕回路を用いている。  In the read channel LSI of this embodiment, the output signal of the read amplifier 11, that is, the input signal of the read channel LSI is a voltage signal, and the variable gain amplifier circuit VGA to which the signal is input corresponds to, for example, Using a voltage input / current output type amplifier circuit as shown in Fig. 2 to Fig. 4, the output current signal of the variable gain amplifier circuit VGA is configured to be directly input to the subsequent filter circuit FIL. A current input / current output type filter circuit as shown in Figs. 6 to 8 is used as the filter circuit FIL.
さらに、 A/D変換器 A D Cは、 高速動作時における回路の変換精度劣化 を最小限に抑えるために、 図 1 0に示すような電流信号トラック ·ホールド 回路を用い、 前段の電流入力 ·電流出力型のフィル夕回路 F I Lの出力電流 信号を A/D変換器 A D Cに直接入力できるように構成されている。  Furthermore, the A / D converter ADC uses a current signal track and hold circuit as shown in Figure 10 to minimize the deterioration of the conversion accuracy of the circuit during high-speed operation. It is configured so that the output current signal of the FIL filter circuit can be directly input to the A / D converter ADC.
以上のように電流入力 ·電流出力型の増幅回路とフィル夕回路を用いるこ とにより、 上記各機能回路からの出力信号の振幅や周波数帯域の劣化、 信号 の位相ずれを最小限に抑えることが可能となる。 As described above, by using the current input / current output type amplifier circuit and filter circuit, the amplitude of the output signal from each of the above functional circuits, deterioration of the frequency band, signal Can be minimized.
なお、 可変利得増幅回路 VGAとして図 2に示されているような電圧入 力 ·電流出力型増幅回路を用いる代わりに、 利得可変な電流増幅回路の前段 に電圧/電流変換回路を設けた構成とすることも可能である。 ところで、 電圧/電流変換回路としては、 以下のような従来技術が知られ ている。  In addition, instead of using a voltage input / current output type amplifier circuit as shown in Fig. 2 as a variable gain amplifier circuit VGA, a configuration in which a voltage / current conversion circuit is provided before the variable gain current amplifier circuit It is also possible. By the way, the following conventional techniques are known as voltage / current conversion circuits.
図 14は従来技術による電圧/電流変換回路の第 1の例である。 この回路 は、 正負対称の電圧入力信号 Vin+, Vin_に対して、 それそれドレイン端子 がカレントミラ一回路 CMに接続され互いにゲ一ト · ソース間のパイァス動 作点が異なり飽和領域動作する 2つの MOSトランジスタ M lと M3、 M 2 と M4のドレイン電流をそれそれ合成し、 正電圧入力信号 Vin+に対応して M 1, M 3に流れる電流から負電圧入力信号 ViiTに対応して M 4, M2に流れ る電流を差し引くように構成されている。 これによつて、 電圧入力信号 Vin+, ViiTに対する線形の電流出力信号 loutを得ることができる。 FIG. 14 shows a first example of a conventional voltage / current conversion circuit. In this circuit, the drain terminal is connected to the current mirror circuit CM for positive and negative symmetric voltage input signals Vin + and Vin_. It combines the drain currents of the two MOS transistors Ml and M3 and the drain currents of M2 and M4, and converts the current flowing through M1 and M3 corresponding to the positive voltage input signal Vin + to the negative voltage input signal ViiT It is configured to subtract the current flowing through M4 and M2. Thus, a linear current output signal lout with respect to the voltage input signals Vin + and ViiT can be obtained.
なお、 電流出力信号 loutの振幅は、 Ml, M 3のゲート間および M 2, M 4のゲート間のパイァス電位差 VBの値で制御される。 このような回路に関 しては、 第 4の文献- IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.26, NO.9, SEPTEMBER 1991, ppl293- 1301等に記載がある。  The amplitude of the current output signal lout is controlled by the value of the bias potential difference VB between the gates of Ml and M3 and between the gates of M2 and M4. Such a circuit is described in the fourth document-IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.26, NO.9, SEPTEMBER 1991, ppl293-1301, and the like.
また、 図 1 5は前記第 3の文献に記載された従来技術による電圧/電流変 換回路の第 2の例である。  FIG. 15 shows a second example of the voltage / current conversion circuit according to the prior art described in the third document.
この回路は、 正負対称の電圧入力信号 Vin+, ViiTに対して、 それそれ互 いにドレイン · ソース間のバイアス動作点が異なり トライオード領域 (非飽 和領域) で動作する 2つの MOSトランジスタ Mlと M2、 M3と M4のド レイン電流を合成し、 正入力 ·電圧信号 Vin+に対応して M 1, M4に流れる 電流から負入力 ·電圧信号 ViiTに対応して M2 , M 3に流れる電流を差し引 くことによって、 電圧入力信号に対する線形の電流出力信号 I outを得ること ができる。 なお、 出力電流の振幅は、 M 1〜M4のドレイン側に直列形態に 挿入された M O S トランジスタ M 5〜M 8のゲート端子に印加されているバ ィァス電圧 Vwpと V™の差電圧値で制御される。 This circuit has two MOS transistors Ml and M2 that operate in a triode region (non-saturation region) with different bias operation points between the drain and source for positive and negative symmetric voltage input signals Vin + and ViiT. The drain currents of M3 and M4 are combined, and the current flowing to M1 and M4 corresponding to the positive input voltage signal Vin + is subtracted from the negative input current flowing to M2 and M3 corresponding to the voltage signal ViiT. By subtracting, a linear current output signal I out with respect to the voltage input signal can be obtained. The output current amplitude is in series with the drain side of M1 to M4. It is controlled by the difference between the bias voltage Vwp and V ™ applied to the gate terminals of the inserted MOS transistors M5 to M8.
しかしながら、 上記従来の電圧/電流変換回路は、 いずれも線形出力電流 信号は正負対称の電圧入力信号に対する ドレイン電流の差分として得られる ものであり、 単相の電圧入力信号では十分な線形性が得られない。 電流の差 分を得るためには、 正負電流信号のいずれか一方を反転して加算する必要が ある。 例えば、 電流反転加算の最も簡易で実用的な回路はカレントミラ一回 路を用いる形式であるが、 信号の一方のみを反転することは、 交流信号、 特 に高周波領域の信号に対しては信号間の遅延差を生じ、 正負電流信号間の正 確な差分を得ることができない。 そこで、 図 1 4および図 1 5の回路では、 差動入力形式としているが、 それによつて回路の構成素子数が多くなる。  However, in each of the conventional voltage / current conversion circuits described above, the linear output current signal is obtained as the difference between the drain current and the positive / negative symmetric voltage input signal, and sufficient linearity is obtained with a single-phase voltage input signal. I can't. In order to obtain the current difference, it is necessary to invert one of the positive and negative current signals and add them. For example, the simplest and most practical circuit for current inversion and addition uses a current mirror circuit, but inverting only one of the signals is an AC signal, especially for signals in the high-frequency region. This causes a delay difference between the positive and negative current signals, making it impossible to obtain an accurate difference between the positive and negative current signals. Therefore, in the circuits of FIGS. 14 and 15, the differential input type is used, which increases the number of constituent elements of the circuit.
また、 高速 ·高周波回路を M O S トランジスタで実現する場合、 可能な限 り Pチャネルトランジスタより高速の Nチャネルトランジスタのみを用いて 構成するのが一般的であるが、 上記した従来回路では正負信号の差分をとる ための反転加算回路としてのカレントミラ一回路に Pチャネルトランジスタ を用いらざるを得ないため、 高周波領域での適用に制限がある。 つまり、 回 路の動作帯域が制限されてしまう。 図 2は上記した従来技術の問題点を解決するためになされた本発明に係る 電圧/電流変換回路の第 1の実施例である。 第 1の定電流源 (電流値 I B) と、 ゲートに固定電位 (V GC ) が印加された第 1の M O S トランジスタ M l と、 ゲートが上記 M O S トランジスタ M lのドレインに接続された第 2の M O S トランジスタ M 2が電源電位と接地電位間に直列形態に接続されている。 そ して、 上記第 1の定電流源およびトランジスタ M l , M 2と並列に、 第 2の 定電流源 (電流値 I B ) と、 ゲートに上記と同じ固定電位 (V GC) が印加さ れた第 3の M O S トランジスタ M 3と、 ゲートが上記 M O S トランジスタ!^ 2のゲ一トに接続された第 4の M O S トランジスタ M 4が電源電位と接地電 位間に直列形態に接続されてカスコード · ミラ一回路が構成されている。 このカスコード · ミラ一回路に対して、 上記 MO Sトランジスタ M2と並 列に接続されゲートに電圧入力信号 Vinが入力されるようにされた第 5の M O Sトランジスタ M5を設けることにより、 MOSトランジスタ M3のドレ インから入力信号 Vin に対応した電流信号 lout を得るように構成されてい る。 ここで、 ゲートにバイアス電圧 VGCが印加された MO Sトランジスタ M 1と M3は、 回路の周波数特性を伸ばす働きがある。 When a high-speed, high-frequency circuit is realized by MOS transistors, it is common to use only N-channel transistors that are faster than P-channel transistors as much as possible. Since a P-channel transistor has to be used in a current mirror circuit as an inverting and adding circuit to obtain the value, application in a high frequency region is limited. That is, the operating band of the circuit is limited. FIG. 2 shows a first embodiment of a voltage / current conversion circuit according to the present invention, which has been made to solve the above-mentioned problems of the prior art. A first constant current source (current value IB), a first MOS transistor Ml having a fixed potential (V GC) applied to its gate, and a second MOS transistor Ml having a gate connected to the drain of the MOS transistor Ml. The MOS transistor M2 is connected in series between the power supply potential and the ground potential. Then, in parallel with the first constant current source and the transistors Ml and M2, the same constant potential (VGC) as above is applied to the second constant current source (current value IB) and the gate. A third MOS transistor M3 and a fourth MOS transistor M4 having a gate connected to the gate of the MOS transistor! ^ 2 are connected in series between a power supply potential and a ground potential to form a cascode. A mirror circuit is configured. By providing a fifth MOS transistor M5 connected in parallel with the MOS transistor M2 and having a gate to which the voltage input signal Vin is input, the cascode mirror circuit is provided for the MOS transistor M3. The current signal lout corresponding to the input signal Vin is obtained from the drain. Here, the MOS transistors M1 and M3 with the bias voltage VGC applied to the gate have the function of extending the frequency characteristics of the circuit.
上記のカスコード · ミラ一回路は、 例えば図 16に示されているような電 流積分回路への応用例として、 前記第 3の公知文献において紹介されている。 すなわち、 図 1 6の積分回路では、 図 2の M OSトランジスタ M2に対応し たトランジスタ M2のゲートと接地電位間に容量 C1が接続され、 MOSトラ ンジス夕 M 1のドレインに入力された電流 I inが上記容量 C1によって積分さ れ、 MOSトランジスタ M3のドレインから電流出力 loutを得るようにして いる。  The above-mentioned cascode-mirror circuit is introduced in the third known document as an application example to a current integration circuit as shown in FIG. 16, for example. That is, in the integrating circuit of FIG. 16, the capacitor C1 is connected between the gate of the transistor M2 corresponding to the MOS transistor M2 of FIG. 2 and the ground potential, and the current I input to the drain of the MOS transistor M1 is in is integrated by the capacitor C1 to obtain a current output lout from the drain of the MOS transistor M3.
この従来の電流積分回路では、 入力電流 I inが MO Sトランジスタ M lの ドレイン側に入力されており、 この入力電流 I inの変化によって MO Sトラ ンジス夕 M 1のドレイン電位が例えば高い値に変動すると、 M 2のドレイン 電圧すなわち MO Sトランジスタ M 1のソース電位が低くなり、 このフィ一 ドパック作用により MO Sトランジスタ M 1のドレイン電位の変化を減少さ せるように動作することによって、 電流入力部のィンビ一ダンスを小さくで きる。 言い換えると、 MOSトランジスタ Mlと M 2からなる入力部のコン ダク夕ンスを大きくすることができ、 これによつて高周波特性が改善される。 ここで、 上記回路の積分容量 C1を除けば電流反転アンプとして使用できるこ とが分かる。  In this conventional current integration circuit, the input current Iin is input to the drain of the MOS transistor Ml, and the change in the input current Iin causes the drain potential of the MOS transistor M1 to rise to, for example, a high value. When the voltage fluctuates, the drain voltage of M2, that is, the source potential of the MOS transistor M1 decreases, and this feed-packing action operates to reduce the change in the drain potential of the MOS transistor M1. The club dance can be made smaller. In other words, the conductance of the input section composed of the MOS transistors Ml and M2 can be increased, thereby improving the high-frequency characteristics. Here, it can be seen that the circuit can be used as a current inverting amplifier except for the integration capacitance C1 of the above circuit.
図 2の実施例の電圧/電流変換回路は、 MOSトランジスタ Mlのソース 電位がドレイン電位よりも低インビ一ダンスで安定した値に維持される。 し かも、 前記公知例 (図 16) のような積分回路として使用する場合には、 M 0 Sトランジス夕 M 1のソース電位が低過ぎるため電流入力点としては使用 しにくいが、 その M 1のソース電位が低いという特徴が電圧/電流変換回路 には好適である。 In the voltage / current conversion circuit of the embodiment of FIG. 2, the source potential of the MOS transistor Ml is maintained at a stable value with a lower impedance than the drain potential. In addition, when used as an integrating circuit as in the known example (FIG. 16), the source potential of the MOS transistor M1 is too low to be used as a current input point. Voltage / current converter is characterized by low source potential Is preferred.
つまり、 図 2の実施例回路においては、 MO Sトランジスタ M 2と並列に 接続された MO Sトランジスタ M5のゲートに電圧入力信号 V inが入力され ており、 この M〇Sトランジスタ M5のゲート電圧信号 Vinは、 MOSトラ ンジス夕 M 5をリニア特性を示す非飽和領域 (トライオード領域) で動作さ せるのに必要十分な範囲で比較的高めの電圧であることを必要とするが、 ド レイン電位が低いほどゲート電圧信号を低くすることができる。 そのため、 本発明の目的を達成する上では最適である。 すなわち、 図 2の回路形式によ れば、 電圧 Z電流変換回路全体、 ひいてはこの電圧 電流変換回路を含んで 構成されるリードチャネル L S I全体の電源電圧を下げて消費電力を低減す ることができる。 ところで、 非飽和領域で動作する上記 MO Sトランジスタ M5のドレイン 電流 ID5とドレイン電圧 VD5、 ゲート電圧 Vinの関係は次式、  That is, in the embodiment circuit of FIG. 2, the voltage input signal Vin is input to the gate of the MOS transistor M5 connected in parallel with the MOS transistor M2, and the gate voltage signal of the M〇S transistor M5 is input. Vin requires a relatively high voltage in the range necessary and sufficient to operate the MOS transistor M5 in the unsaturated region (triode region) exhibiting linear characteristics. The lower the voltage, the lower the gate voltage signal can be. Therefore, it is optimal for achieving the object of the present invention. That is, according to the circuit form of FIG. 2, the power supply voltage of the entire voltage-Z current conversion circuit, and furthermore, the entire power supply voltage of the read channel LSI including the voltage-current conversion circuit can be reduced, thereby reducing power consumption. . By the way, the relationship between the drain current ID5, the drain voltage VD5, and the gate voltage Vin of the MOS transistor M5 operating in the unsaturated region is as follows:
-ID5 =K5{(Vin-Vth5 )VD5-VD52 /2} -ID5 = K5 {(Vin-Vth5 ) VD5-VD5 2/2}
= K5VD5Vin-K5VD5 (Vth5 + VD5/2 ) 一一 ( 1) で表わされる。 ここで、 Vth5 はトランジスタ M5のしきい値電圧、 K5はト ランジス夕 M5のトランスコンダクタンス定数である。 この定数 K5は、 M5 のチャネルコンダクタンス · フィッティングパラメ一夕を ? o、 ゲート幅を W、 ゲート長を Lで表わしたときに、 K5 = ?o · (W/L)で与えられる。  = K5VD5Vin-K5VD5 (Vth5 + VD5 / 2) It is expressed by eleven (1). Here, Vth5 is the threshold voltage of transistor M5, and K5 is the transconductance constant of transistor M5. This constant K5 is given by K5 =? O · (W / L), where? 5 is the channel conductance fitting parameter of M5, the gate width is W, and the gate length is L.
—方、 トランジスタ Μ 2のドレイン電流 ID2は  —The drain current ID2 of transistor Μ2 is
-ID2= IB-ID5 (2) である。 この電流 ID2は、 M2と M4が同一サイズで同一特性のトランジス 夕のとき、 ミラ一電流として M4にコピーされるから- ID2= ID4であり、 式 (2) より  -ID2 = IB-ID5 (2). Since this current ID2 is copied to M4 as a mirror current when M2 and M4 have the same size and have the same characteristics in the transistor area, -ID2 = ID4, and from equation (2)
-Iout= IB-ID4= ID5 (3) となることが分かる。 さらに、 Vin=VIB+vin (ただし VIB は直流パイァ ス電圧、 vinを交流信号成分) とすれば、 対応する電流信号 ID5は、 上記式 ( 1) より次式のように書き表せる。 -Iout = IB-ID4 = ID5 (3) Further, if Vin = VIB + vin (where VIB is a DC bias voltage and vin is an AC signal component), the corresponding current signal ID5 is given by the above equation. From (1), it can be expressed as the following equation.
ID5B+ iD5 = K5VD5(VIB-Vth5-VD5/2 ) + K5VD5vin 一一 (4) したがって、 M5のドレイン電圧 VD5が一定値ならば、 ドレイン電流 ID5 の交流信号成分 iD5 はゲート電圧 Vinの交流信号成分 vin に完全に比例す ることが分かる。 すなわち、  ID5B + iD5 = K5VD5 (VIB-Vth5-VD5 / 2) + K5VD5vin (4) Therefore, if the drain voltage VD5 of M5 is constant, the AC signal component iD5 of the drain current ID5 is the AC signal component vin of the gate voltage Vin. It can be seen that it is completely proportional to That is,
-iD5 =K5VD5vin (5) である。 また、 M 5のドレイン電圧 VD5は M 1のゲート電位 VGCを変化させ ることによって任意に変えることができるので、 図 2の電圧/電流変換回路 の利得はバイァス電圧 VGCによって所望の値に可変することが出来る。  -iD5 = K5VD5vin (5). Also, since the drain voltage VD5 of M5 can be arbitrarily changed by changing the gate potential VGC of M1, the gain of the voltage / current conversion circuit in Fig. 2 can be changed to a desired value by the bias voltage VGC. I can do it.
以上より、 図 2の電圧/電流変換回路は、 正負入力電流信号の差分をとる ことなく、 単相電圧入力信号でも十分な線形性の電流出力を得ることができ、 かつ高速 ·高周波動作が可能となる。  As described above, the voltage / current conversion circuit in Fig. 2 can obtain a sufficiently linear current output even with a single-phase voltage input signal without taking the difference between the positive and negative input current signals, and can operate at high speed and high frequency Becomes
すなわち、 カスコード · ミラ一回路を用いることにより、 上記第 1の MO That is, by using the cascode-mirror circuit, the first MO
Sトランジスタ M 1のソースを低インビ一ダンスに、 つまり、 電流の変化に 対して電位の変化を小さく抑えることができるので、 非飽和領域で動作する 第 5の MO Sトランジスタ M 5のゲート電圧信号を Vinを直接的かつ線形的 に電流信号 I outに変換できる。 The source of the S-transistor M1 has a low impedance, that is, a change in potential can be suppressed in response to a change in current, so that the gate voltage signal of the fifth MOS transistor M5 operating in the unsaturated region Can be directly and linearly converted to Vin.
また、 それによつて、 正負対称の電流信号を反転加算させるためのカレン トミラー回路等が不要となり、 かつ信号経路のトランジス夕は Nチャネル M 0 Sトランジスタだけで構成されるので、 高速 ·高周波領域への適用が容易 である。 さらにまた、 この実施例の電流/電圧変換回路は MO Sトランジス 夕のみで構成できるから、 安価な論理専用 LS Iプロセスで実現することが できる。  This eliminates the need for a current mirror circuit or the like for inverting and adding symmetric current signals, and since the signal path transistor is composed of only N-channel MOS transistors, it can be used in high-speed and high-frequency regions. Is easy to apply. Furthermore, since the current / voltage conversion circuit of this embodiment can be constituted only by the MOS transistor, it can be realized by an inexpensive logic-dedicated LSI process.
なお、 図 2には示されていないが、 バイアス電圧 VGCを変える手段は容易 に得ることができる。 例えば外部からの制御信号によってレジス夕の値を変 更し、 その値に対応した電圧を発生させるディジタル/アナログ変換回路を 用いて構成することができる。 あるいは、 複数の定電流源の電流 IBを、 選択 スィツチ等を介して所定の抵抗回路に供給して電圧を発生させて上記バイァ ス電圧 VGCとするとともに、 レジス夕の設定値に対応して上記電流 IBの値を 選択することで VGCを変えるように構成してもよい。 また、 電圧/電流変換 回路の利得制御は、 MO S トランジスタ M lのゲート電圧 VGC以外に、 パイ ァス電流 IB を変えることによつても実現できる。 図 3は、 図 2の基本構成回路を応用して正負対称の電圧/電流変換信号す なわち差動出力電流を得ることができる具体的な回路構成例を示したもので ある。 図 2の基本構成回路では、 前記式 (4) からも分かるように、 出力電 流 loutには直流成分 ID5Bが含まれており、 この直流成分は式 (4) および 式 (5) より次式、 Although not shown in FIG. 2, means for changing the bias voltage VGC can be easily obtained. For example, it can be configured by using a digital / analog conversion circuit that changes the value of the register by an external control signal and generates a voltage corresponding to the value. Alternatively, the current IB of a plurality of constant current sources is supplied to a predetermined resistance circuit via a selection switch or the like to generate a voltage, and The configuration may be such that the VGC is changed by selecting the value of the current IB in accordance with the set value of the resistor, in addition to the voltage VGC. The gain control of the voltage / current conversion circuit can be realized by changing the bias current IB in addition to the gate voltage VGC of the MOS transistor Ml. FIG. 3 shows a specific example of a circuit configuration capable of obtaining a positive / negative symmetrical voltage / current conversion signal, that is, a differential output current, by applying the basic configuration circuit of FIG. In the basic configuration circuit of FIG. 2, as can be seen from the above equation (4), the output current lout includes a DC component ID5B, and this DC component is obtained by the following equation from equations (4) and (5). ,
-ID5B=K5VD5(VIB — Vth5— VD5/2 ) ( 6) にて表わされることが分かる。 かかる直流成分は次段の回路 (図 1のシステ ムではフィルタ回路) に対して入力オフセッ トとなる。  -ID5B = K5VD5 (VIB-Vth5-VD5 / 2) (6) Such a DC component becomes an input offset for the next-stage circuit (the filter circuit in the system of FIG. 1).
そこで、 図 3の実施例では、 図 2における電圧/電流変換回路の定電流 IB を流す定電流用トランジスタ (MB 8〜MB 1 1, MB 1 4〜MB 1 7) の バイアス電圧を発生するバイアス回路部 2 1を工夫することにより、 出力電 流 loutの直流成分をなくすようにした。  Therefore, in the embodiment of FIG. 3, the bias for generating the bias voltage of the constant current transistors (MB8 to MB11, MB14 to MB17) for flowing the constant current IB of the voltage / current conversion circuit in FIG. By devising the circuit section 21, the DC component of the output current lout is eliminated.
すなわち、 図 3の実施例においては、 電源電圧端子間に直列形態に接続さ れた MO S トランジスタ MB 1 ~MB 3からなるプリパイァス段と、 同じく 電源電圧端子間に直列形態に接続された MO S トランジスタ MB 4〜MB 7 からなり前記 MB 1と MB 4とがカレントミラ一接続された主バイアス段と、 MB 4のドレイン電圧が反転入力端子に印加され MB 1 ドレイン電圧が非反 転入力端子に印加されて MB 5のゲート電圧を発生する差動アンプ AMP B とによって、 バイアス回路部 2 1が構成されている。 そして、 MB 1のドレ ィン端子と接地端子との間にバイアス定電流 IB2を流す定電流源を設けると ともに、 ゲー卜に VGCが印加された定電流用トランジスタ MB 2とゲートに VIB が印加された定電流用トランジスタ MB 3のカスコード構成により、 M B 3のドレイン電位が概ね入力トランジスタ M 5のドレイン電位と等しくな るようにして、 上記の式 ( 6 ) で表わされた直流成分を出力電流 +Iout 及び - loutから差し引いてキャンセルできるようにしている。 That is, in the embodiment of FIG. 3, a pre-piase stage composed of the MOS transistors MB 1 to MB 3 connected in series between the power supply voltage terminals, and a MOS transistor similarly connected in series between the power supply terminals. A main bias stage comprising transistors MB4 to MB7, wherein the MB1 and MB4 are connected to a current mirror, and a drain voltage of MB4 is applied to an inverting input terminal, and a drain voltage of MB1 is applied to a non-inverting input terminal. The bias circuit 21 is constituted by the differential amplifier AMP B which generates the gate voltage of the MB 5 when applied. A constant current source for supplying a bias constant current IB2 is provided between the drain terminal and the ground terminal of MB1, and a constant current transistor MB2 with VGC applied to the gate and VIB applied to the gate. Due to the cascode configuration of the constant current transistor MB3, the drain potential of the MB3 becomes substantially equal to the drain potential of the input transistor M5. Thus, the DC component represented by the above equation (6) is subtracted from the output currents + Iout and -lout so as to be cancelable.
なお、 上記差動アンプ AMPBと主バイアス段 (トランジスタ MB 4〜M B 7 ) は、 特に限定されるものではないが、 電源電圧 AVDDの変動や周囲 温度の変化及び入力電流信号に対して、 信号変換部 2 2, 2 3とオフセッ ト 調整部 24 , 2 5の定電流源 M8〜M 1 9の電流値を安定化させるためのも のである。 この実施例においては、 図 2の電圧/電流変換回路の定電流源を、 各々直列形態に接続された 2個の Pチャネル M〇 S トランジス夕により構成 して定電流特性を向上させている。  The differential amplifier AMPB and the main bias stage (transistors MB4 to MB7) are not particularly limited, but are not limited to variations in the power supply voltage AVDD, changes in the ambient temperature, and input current signals. It is used to stabilize the current values of the constant current sources M8 to M19 of the units 22 and 23 and the offset adjustment units 24 and 25. In this embodiment, the constant current source of the voltage / current conversion circuit shown in FIG. 2 is constituted by two P-channel MS transistors connected in series to improve the constant current characteristics.
信号変換部は、 正信号変換部 2 2と負信号変換部 2 3とからなり、 これら の信号変換部は、 それそれ前述した図 2の電圧/電流変換回路に対応した構 成を有する。 また、 オフセッ ト調整部 24, 2 5は、 後述する図 4の電流ォ フセッ ト補償回路と組み合わせて、 出力電流 loutの直流成分をさらに高精度 にキャンセルするためのものである。 このキャンセル動作については、 以下 に詳細に述べる。  The signal conversion unit includes a positive signal conversion unit 22 and a negative signal conversion unit 23. These signal conversion units each have a configuration corresponding to the above-described voltage / current conversion circuit in FIG. The offset adjusters 24 and 25 are used to cancel the DC component of the output current lout with higher accuracy in combination with a current offset compensating circuit shown in FIG. 4 described later. This cancellation operation will be described in detail below.
オフセッ ト調整部 24は電源電圧端子間に直列形態に接続された 4個の M O S トランジスタ MB 1 2 , MB 1 3 , M6 , M 7により構成され、 各々信 号変換部 2 2を構成する MO S トランジスタ MB 1 0, MB 1 1 , M3, M 4のゲート電圧と同一の電圧がゲ一トに印加されており、 これによつて M 6 のドレインからは正信号変換部 2 2の出力電流 +Ioutと同じ電流が出力され る。 また、 M 1 6のドレインからは負信号変換部の出力電流- loutと同じ電 流が出力される。 また、 オフセッ ト調整部 2 5は電源電圧端子間に直列形態 に接続された 4個の MO S トランジスタ MB 1 8 , MB 1 9 , M 1 6 , M l 7により構成され、 各々信号変換部 2 3を構成する M O S トランジスタ MB 1 6 , MB 1 7 , M 1 3 , M l 4のゲ一ト電圧と同一の電圧がゲ一卜に印加 されており、 これによつて M 1 6のドレインからは負信号変換部 2 3の出力 電流- loutと同じ電流が出力される。  The offset adjuster 24 is composed of four MOS transistors MB12, MB13, M6, and M7 connected in series between the power supply voltage terminals, and each of the MOS transistors constituting the signal converter 22. The same voltage as the gate voltage of the transistors MB 10, MB 11, M 3, and M 4 is applied to the gate, whereby the output current of the positive signal converter 22 from the drain of M 6 + Outputs the same current as Iout. Further, the same current as the output current -lout of the negative signal converter is output from the drain of M16. The offset adjustment unit 25 is composed of four MOS transistors MB 18, MB 19, M 16, and M 17 connected in series between the power supply voltage terminals. The same voltage as the gate voltage of the MOS transistors MB 16, MB 17, M 13, and M 14 constituting the MOS transistor 3 is applied to the gate. Outputs the same current as the output current-lout of the negative signal converter 23.
これらの出力はともに直流オフセヅ トのモニタ一電流 +Iofs, -Iofsとし て、 それそれ図 4の電流オフセッ ト補償回路に供給される。 上記各出力電流 + lout, -lout, +Iofs, -I ofsが出力される端子と接地端子との間には、 上 記電流オフセッ ト補償回路からのオフセッ ト調整信号 + V〇 F, 一 V0Fに よりゲートが制御される MO S トランジスタ M l 8〜M 2 1が接続されてい o 図 4の電流オフセッ ト補償回路は、 M0 S トランジスタ MC 1〜MC 7で 構成された第 1のカスコード · ミラ一回路 3 1 と、 MC 8〜MC 1 4で構成 された第 2のカスコード · ミラー回路 3 2と、 MO S トランジスタ MC 1 5 と定電流源 I Cで構成されたバイアス回路 3 3と、 MO S トランジスタ MC 1 6〜MC 2 0からなる差動アンプ 34とによって構成されている。 そして、 この差動アンプ 34は、 上記バイアス回路 3 3の MO S トランジスタ MC 1 5とカレントミラー接続されて定電流源 I Cに流れる電流と同一のパイァス 電流が流される MO S トランジスタ MC 1 6と、 ソース共通結合された MO S トランジスタ MC 1 7 , MC 1 8と、 カレントミラー結合された MO S ト ランジス夕 MC 1 9, MC 2 0とによって構成されている。 Both of these outputs are set to the monitor current of the DC offset, + Iofs, and -Iofs. Each is supplied to the current offset compensation circuit of FIG. The offset adjustment signal from the current offset compensation circuit + V〇F, one V0F is provided between the terminal from which each of the output currents + lout, -lout, + Iofs, and -Iofs is output and the ground terminal. O The MOS offset transistors Ml8 to M21 whose gates are controlled by the current o are connected.o The current offset compensation circuit shown in Fig. 4 is a first cascode mirror composed of M0S transistors MC1 to MC7. One circuit 31; a second cascode mirror circuit 32 composed of MCs 8 to 14; a bias circuit 33 composed of a MOS transistor MC 15 and a constant current source IC; And a differential amplifier 34 composed of transistors MC16 to MC20. The differential amplifier 34 is current-mirror-connected to the MOS transistor MC 15 of the bias circuit 33, and is supplied with the same bias current as the current flowing to the constant current source IC by the current mirror IC. It is composed of common source-coupled MOS transistors MC 17 and MC 18 and current mirror-coupled MOS transistors MC 19 and MC 20.
第 1のカスコード · ミラー回路 3 1において、 トランジスタ MC 3のドレ ィンと接地電位との間に接続された素子 MC 2 1は、 MO S トランジスタの ゲート容量を利用した容量素子で、 モニタ一電流 +Iofs または- Iofs に含 まれる交流信号成分を除去する素子として機能する。 また、 第 1及び第 2の カスコード · ミラ一回路 3 1 , 3 2は、 前述した図 1 6の電流積分回路とは 異なって、 MC 5及び MC 1 2のドレイン電圧 VC 5、 VC 1 2を、 それそ れ差動アンプ 34を構成する入力 M O S トランジスタ MC 1 7 , MC 1 8の ゲートに出力する。  In the first cascode-mirror circuit 31, the element MC 21 connected between the drain of the transistor MC 3 and the ground potential is a capacitance element using the gate capacitance of the MOS transistor, and is connected to the monitor current. Functions as an element that removes AC signal components included in + Iofs or -Iofs. Also, the first and second cascode mirror circuits 31 and 32 are different from the above-described current integration circuit of FIG. 16 in that the drain voltages VC 5 and VC 12 of MC 5 and MC 12 are different. The output is output to the gate of each of the input MOS transistors MC 17 and MC 18 constituting the differential amplifier 34.
図 3の回路において、 正負の出力電流 + lout及び- lout に直流オフセッ ト 電流が含まれていると、 オフセッ ト調整部 24, 2 5の出力 +Iofs 及び- I ofs は出力電流 +Iout及び- loutに含まれる直流オフセッ ト電流の値となる。 図 4の第 1のカスコード · ミラ一回路 3 1にはこのオフセヅ ト電流 + Iofs ま たは- Iofs が入力され、 一方、 第 2のカスコード ' ミラー回路 32には入力 が無い、 つまり入力電流が 0であるため、 差動アンプ 34の入力 MO Sトラ ンジス夕 MS 17と MS 18のゲート間に電位差が生じる。 In the circuit of FIG. 3, if the DC offset current is included in the positive and negative output currents + lout and -lout, the outputs + Iofs and -Iofs of the offset adjustment units 24 and 25 become the output currents + Iout and -Iouts. It is the value of the DC offset current included in lout. The first cascode mirror circuit 31 in FIG. 4 has the offset current + Iofs or less. Or −Iofs is input, while the second cascode mirror circuit 32 has no input, that is, the input current is 0, so the input MOS transistors of the differential amplifier 34 are connected to the MS 17 and MS 18. A potential difference occurs between the gates.
今仮に、 オフセッ ト電流 +Iofsが正の場合を考えると、 MC 5及び MC 1 2のドレイン電圧は VC 5<VC 12となり、 差動アンプ 34の出力である MC 19のドレイン電位 + V0Fは MC 20のドレイン電位より高い値とな る。 この出力電位 + V0Fは、 図 3の回路のオフセヅ ト調整用 M OSトラン ジス夕 M18と M20のゲートにフィ一ドバックされ、 各出力電流 + lout と + Iofs から出力電位 + VO Fの電位に応じた電流が引かれることによって差 動アンプ 34の入力電位が等しくなる、 つまり V C 5 = VC 12となるよう に動作する。 オフセッ ト電流 +Iofsが負の場合には、 上記とは逆にフィード パックにより各出力電流 + I out と + I of sに出力電位 + V 0 Fの電位に応じた 電流を流し込むことによって差動アンプ 34の入力電位が等しくなるように 動作する。 出力電流- lout及び- Iofsについても上記と同様である。  Now, assuming that the offset current + Iofs is positive, the drain voltage of MC5 and MC12 is VC5 <VC12, and the drain potential + V0F of MC19 which is the output of the differential amplifier 34 is MC5. It is higher than the drain potential of 20. This output potential + V0F is fed back to the gates of the MOS transistors M18 and M20 for offset adjustment in the circuit of FIG. 3, and is output from each output current + lout and + Iofs according to the potential of the output potential + VOF. The operation is performed so that the input potential of the differential amplifier 34 becomes equal, that is, VC 5 = VC 12 by drawing the current. When the offset current + Iofs is negative, the differential operation is performed by applying a current corresponding to the output potential + V0F to each output current + Iout and + Iofs by the feed pack, conversely to the above. It operates so that the input potential of the amplifier 34 becomes equal. The same applies to the output currents -lout and -Iofs.
図 5には、 図 3の電圧/電流変換回路のゲート電圧 VGCを変化させて利得 を変化させたときの入力電圧 Vinと出力電流 loutを確認したシミュレーショ ン結果が示されている。 図 5において、 実線 Aは利得が 72〃S (マイクロ ジ一メンス) のときの入出力特性、 破線 Bは利得が 59 Sのときの入出力 特性、 点線 Cは利得が 42 zSのときの入出力特性、 一点鎖線 Dは利得が 2 7. 5 のときの入出力特性、 二点鎖線 Eは利得が 7. 4 zSのときの入 出力特性である。 同図より、 実施例の電圧/電流変換回路は、 利得が 0〜4 5 S以上の範囲に亘つて良好な変換特性 (直線性) が得られることが分か る。  Fig. 5 shows the simulation results of confirming the input voltage Vin and the output current lout when changing the gain by changing the gate voltage VGC of the voltage / current conversion circuit in Fig. 3. In Fig. 5, the solid line A shows the input / output characteristics when the gain is 72 〃S (microdimens), the broken line B shows the input / output characteristics when the gain is 59 S, and the dotted line C shows the input / output characteristics when the gain is 42 zS. Output characteristics, dashed line D is the input / output characteristics when the gain is 27.5, and dashed line E is the input / output characteristics when the gain is 7.4 zS. From the figure, it can be seen that the voltage / current conversion circuit of the embodiment can obtain good conversion characteristics (linearity) over a gain range of 0 to 45 S or more.
なお、 電圧/電流変換回路の利得制御は、 ゲート電圧 VGC以外に、 バイァ ス電流 IB2 を変えることによつても実現できる。 つまり、 図 3の回路におい て、 信号変換部 22 , 23のバイアス電流 (図 2の定電流 IBに相当) は M0 Sトランジスタ MB 8, MB 10 , MB 14 , MB 16によって与えられる が、 これらのトランジス夕はパイァス回路部 2 1の MOSトランジスタ MB 1とカレントミラー接続されており、 この MB 1に流れる電流はこれと直列 に接続された MO S トランジスタ MB 2のドレイン電流と上記バイアス電流 IB2との和であるので、 MB 2のゲート電圧 VGCを変えなくてもパイァス電 流 IB2を変えることによって MB 1の電流すなわち信号変換部 2 2, 2 3の バイアス電流を変えることができる。 その結果、 電圧/電流変換回路の利得 を変えることができる。 次に、 図 1のリードチャネルを構成するフィル夕回路 F I Lについて説明 する。 Note that the gain control of the voltage / current conversion circuit can be realized by changing the bias current IB2 in addition to the gate voltage VGC. In other words, in the circuit of FIG. 3, the bias currents (corresponding to the constant current IB of FIG. 2) of the signal converters 22 and 23 are given by the M0S transistors MB8, MB10, MB14 and MB16. Transistor is a Piase circuit 21 MOS transistor MB The current flowing through MB1 is the sum of the drain current of the MOS transistor MB2 connected in series with this and the bias current IB2, so that the gate voltage VGC of MB2 is By changing the bias current IB2 without changing it, the current of MB1, that is, the bias current of the signal converters 22, 23 can be changed. As a result, the gain of the voltage / current conversion circuit can be changed. Next, the filter circuit FIL constituting the read channel of FIG. 1 will be described.
図 1 7は前記第 3の文献に紹介されている公知の完全電流積分回路を示す。 この完全電流積分回路は、 図 1 6の不完全電流積分回路を 2つ設け、 正負対 称の電流入力信号 +1 in, -I inを用いてそれそれの積分回路のキャパシ夕 CI で積分し、 各々その第 1のミラ一電流出力 +If, -Ifを反対側の入力ノード に互いにフィ一ドパックさせるように構成したものである。 これによつて、 各積分回路の第 2のミラー電流出力 +1 out, -loutは入力電流に対して完全 積分されたものとなる。  FIG. 17 shows a known complete current integration circuit introduced in the third document. This complete current integrator has two imperfect current integrators as shown in Fig. 16 and integrates them using the positive and negative symmetrical current input signals +1 in and -I in with the capacity CI of each integrator. The first mirror current outputs + If and -If are fed-packed to the opposite input nodes, respectively. As a result, the second mirror current outputs +1 out and -lout of each integration circuit are completely integrated with respect to the input current.
すなわち、 MO S トランジスタ M 1と M3と M5、 M2と M4と M 6のサ ィズをそれそれ等しくし、 かつトランジスタ M lと M3と M 5を介して供給 される各定電流バイアス値 IBを等しくすると、 上記 MO Sトランジスタ M2、 M4及び M 6のチャネルコンダクタンス gmは等しい値になる。 従って、 フィ一ドバック電流 I と出力電流 I outの入力電流 I inに対する電流利得は 等しくなり、 次式  That is, the sizes of the MOS transistors M1, M3, and M5, M2, M4, and M6 are made equal to each other, and the constant current bias values IB supplied through the transistors M1, M3, and M5 are made equal. When equal, the channel conductances gm of the MOS transistors M2, M4 and M6 are equal. Therefore, the current gains of the feedback current I and the output current Iout with respect to the input current Iin are equal, and
I out/ 丄 in = - g m/ s C =— / s ( 7 ) で表わされる。 ここで、 a = gm/Cは積分時定数であり、 sは で表わ される複素角周波数である。  I out / 丄 in =-g m / s C = — / s (7) Here, a = gm / C is the integration time constant, and s is the complex angular frequency represented by.
上記式 (7) では、 入出力利得が sに反比例、 すなわち信号周波数に反比 例しており、 これは図 1 7の回路が完全電流積分回路であることを表わして いる。 また、 一般に MO Sトランジスタのチャネルコンダクタンス gmはバ ィァス電流 I Bの値の平方根に比例することから、 バイァス電流 I Bを変化さ せて積分時定数ひを可変することでき、 カツ トオフ周波数が可変なフィル夕 回路が実現される。 In the above equation (7), the input / output gain is inversely proportional to s, that is, inversely proportional to the signal frequency, which indicates that the circuit in FIG. 17 is a complete current integration circuit. In general, the channel conductance gm of the MOS transistor is Since it is proportional to the square root of the value of the bias current IB, the integration time constant can be varied by changing the bias current IB, and a filter circuit with a variable cut-off frequency is realized.
ハードディスク ドライブ装置に必要とされるフィル夕回路は、 ディスクか ら読み出したデ一夕のレートに対応してカツ トオフ周波数を可変させる必要 があるが、 さらに重要な特性として、 デ一夕波形に含まれる各周波数成分に 対して位相遅れ、 すなわち群遅延特性がカツ トオフ周波数の 2倍近くの周波 数まで平坦であることが要求される。 そのような特性を実現するのに適した フィル夕回路として、 一般には、 等リップル (Equi - ripple) 特性の 5次以 上の伝達関数が用いられる。  The filter circuit required for hard disk drive devices needs to vary the cut-off frequency in accordance with the data read rate from the disk. It is required that the phase delay, that is, the group delay characteristic of each frequency component to be applied is flat to a frequency close to twice the cutoff frequency. As a filter circuit suitable for realizing such characteristics, generally, a transfer function of the fifth or higher order of the equi-ripple characteristic is used.
高次のフィル夕回路は、 2次フィル夕と 1次フィル夕を多段に接続して実 現できる。 図 1 8に、 図 1 7の完全電流積分回路を用いて高次の口一パス フィル夕を実現するために用いられる 2次フィル夕のプロヅク構成を示す。 ここで、 各係数を正の数値とすると伝達関数は次のように表わされる。  The high-order fill circuit can be realized by connecting the secondary fill and the primary fill in multiple stages. FIG. 18 shows a block configuration of a secondary filter used to realize a high-order mouth-to-pass filter using the complete current integration circuit of FIG. Here, if each coefficient is a positive value, the transfer function is expressed as follows.
Figure imgf000022_0001
同様に、 図 1 9に示す 1次フィル夕の伝達関数は次の通りとなる。
Figure imgf000022_0001
Similarly, the transfer function of the first-order filter shown in Fig. 19 is as follows.
H(s) = -Α α _ ( 9 ) H (s) = -Α α _ (9)
s + (Α α ) 図 1 8及び図 1 9 における各係数 Α, Βは、 前記不完全電流積分回路の中 の M O S トランジスタのサイズ比(すなわち電流ミラ一比)を適当に設定して やることにより所望の係数を実現できる。  s + (Αα) The coefficients Α and Β in FIGS. 18 and 19 are determined by appropriately setting the size ratio of the MOS transistors in the incomplete current integration circuit (that is, the current mirror ratio). Thus, a desired coefficient can be realized.
以上、 従来技術の完全積分回路を用いて高次のフィルタを構成する場合に ついて説明したが、 この従来技術には以下の問題がある。 すなわち、 積分回 路内にフィードパックのためのミラー電流出力段を必要とする。 また、 完全 積分回路は、 角周波数 sが 0のときすなわち直流入力に対して原理上無限大 の利得を有するため、 それ単体では用いることができない。 したがって、 図As described above, the case where a higher-order filter is configured using the complete integration circuit of the related art has been described. However, the related art has the following problems. That is, a mirror current output stage for the feed pack is required in the integration circuit. Also complete Since the integrator has an infinite gain in principle when the angular frequency s is 0, that is, for a DC input, it cannot be used alone. Therefore, the figure
1 9及び式 ( 9 ) が示すように、 1次フィル夕を実現するにも係数回路を設 けてフィ一ドパックループを構成する必要があり、 結果として回路規模及び 消費電流が増加するとともに、 回路規模の増加が動作周波数帯域の劣化を生 じさせる。 As shown in 19 and Eq. (9), it is necessary to construct a feed-pack loop by installing a coefficient circuit to realize the first-order filter. As a result, the circuit scale and current consumption increase. However, an increase in the circuit size causes deterioration of the operating frequency band.
一方、 図 1 6の積分回路は、 入出力電流利得が次式 ( 1 0 ) のように表わ され、 不完全電流積分回路であることが分かる。  On the other hand, the input / output current gain of the integration circuit shown in FIG. 16 is expressed by the following equation (10), indicating that it is an incomplete current integration circuit.
I out/ I in = - gm/ ( s C + gm)  I out / I in =-gm / (s C + gm)
= - / ( s + a) ( 1 0 ) かかる不完全電流積分回路は、 受動素子の抵抗一容量回路と同様に、 直流 電流入力に対しては有限の利得を有するため、 それ単体でもフィル夕として 用いることができる。 この不完全電流積分回路を用いた 2次のフィル夕及び 1次のフィル夕はそれそれ図 6、 図 7のようなブロック構成になり、 2次 フィル夕の伝達関数は次のように表わされる。  =-/ (s + a) (10) This imperfect current integration circuit has a finite gain with respect to DC current input, like a resistor-capacitance circuit of a passive element. Can be used as The second-order filter and the first-order filter using this imperfect current integration circuit have block configurations as shown in Figs. 6 and 7, respectively, and the transfer function of the second-order filter is expressed as follows: .
H ( C H (C
一一 (  Eleven (
s2 +(A, + 2)as + (Α' 一 Β, + 1)α 2 ただし、 ひ =gm/Cである。 s 2 + (A, + 2) as + (Α ′ Β, +1) α 2 where h = gm / C.
ここで A, = A— 2、  Where A, = A—2,
B ' = A-B- 1 ( 1 2 )  B '= A-B- 1 (1 2)
となる係数を用いれば、 式 ( 1 1 ) は前記の式 ( 8 ) と同じになり、 同じ特 性が実現できることが分かる。  If the coefficient is used, equation (11) becomes the same as equation (8), and it can be seen that the same characteristics can be realized.
また、 1次フィル夕は不完全積分回路単独で構成することができ、 係数回 路は必要ない。 帰還パスも不要である。 そして、 その伝達関数は式 ( 1 0 ) と同じく次の通りとなる。 H(s): ( 1 3 ) The first-order filter can be composed of an incomplete integrator alone, and no coefficient circuit is required. No return path is required. And its transfer function is as follows, as in equation (10). H (s): (1 3)
a 以上に説明したように、 従来は一般的に設計が難しいために用いられな かった不完全電流積分回路を用いると、 不完全電流積分回路単体で 1次フィ ル夕を実現でき、 かつ積分回路内に帰還パスが不要である。 また、 上記式 ( 1 2 ) から明らかなように、 不完全電流積分回路を用いた 2次フィル夕は、 その係数が前述の完全積分回路を用いた場合 (図 1 8, 図 1 9 ) の係数より も一般的に小さくできる。  a As explained above, using an incomplete current integration circuit that was not used in the past because it was generally difficult to design, a primary filter can be realized by the incomplete current integration circuit alone, and No feedback path is required in the circuit. Also, as is clear from the above equation (12), the second-order filter using the incomplete current integration circuit has a coefficient whose coefficient is the same as that of the complete integration circuit described above (Figs. 18 and 19). It can generally be smaller than the coefficient.
そこで、 本実施例のリードチャネル L S Iにおいては、 フィル夕回路 F I Lとして、 図 1 6に示されている不完全電流積分回路を用いることとした。 これによつて、 従来技術 (図 1 7 ) のように完全積分回路を用いてフィル夕 を構成するのに比較して大幅にトランジス夕数を減少させ、 かつ消費電力を 低減することができる。  Therefore, in the read channel LSI of the present embodiment, an incomplete current integration circuit shown in FIG. 16 is used as the filter circuit FIL. This makes it possible to greatly reduce the number of transistors and power consumption as compared with the case where a filter is formed using a complete integration circuit as in the conventional technique (FIG. 17).
なお、 図 1 6に示されている不完全電流積分回路は、 2つの定電流源 I Bの 電流値を、 制御装置により選択されるレジス夕に設定された情報に対応して 同時に可変することにより入力段の M O S トランジスタ M 2のチャネルコン ダク夕ンスを変えて出力電流 l outの力ッ トオフ周波数を制御するように構成 することも可能である。 図 8は上記した C M O S不完全電流積分回路を用いた 1次および 2次の フィル夕 (図 6、 図 7 ) を組み合せて設計した 7次等リップルローパスフィ ル夕のプロック構成を示すもので、 図 1に示されているリードチャネル L S Iのフィル夕回路 F I Lとして用いられる。  Note that the incomplete current integration circuit shown in FIG. 16 simultaneously varies the current values of the two constant current sources IB according to the information set in the register selected by the control device. It is also possible to configure so as to control the power cutoff frequency of the output current l out by changing the channel conductance of the MOS transistor M2 in the input stage. Figure 8 shows the block configuration of a 7th-order equiripple low-pass filter designed by combining the primary and secondary filters (Figures 6 and 7) using the above-mentioned CMOS imperfect current integration circuit. It is used as the fill circuit FIL of the read channel LSI shown in Fig. 1.
図 8において、 ブロック内に伝達関数が記載されているものは不完全電流 積分回路、 ブロック内に 「― 1」 が記載されているのは反転電流アンプであ る。 反転電流アンプは、 図 1 6に示されている回路と基本構成は類似であり、 ただ単に積分キャパシ夕 C Iを除くことで得られる。 なお、 図 8において、 各 不完全積分回路及び反転電流アンプの各出力端に付記した数値は、 ミラ一電 流利得を表わす。 In Fig. 8, the one with the transfer function described in the block is the incomplete current integration circuit, and the one with "-1" in the block is the inverted current amplifier. The inverting current amplifier is similar in basic configuration to the circuit shown in Figure 16 and is obtained by simply removing the integration capacity CI. Note that in FIG. The numerical value added to each output terminal of the incomplete integrator and the inverting current amplifier indicates the mirror current gain.
本実施例におけるローパスフィル夕全体のバイァス電流源の総数は、 各積 分回路及び反転電流アンプの入力部バイァスを単位パイァス電流値としたと きの 3 0 . 3 2倍であり、 最大カッ トオフ周波数を 1 2 7 M H zに設定した 時の単位バイアス電流値は 0 . 2 mAである。  In this embodiment, the total number of bias current sources in the entire low-pass filter is 30.32 times that when the input bias of each integration circuit and the inverting current amplifier is set to the unit bias current value. When the frequency is set to 127 MHz, the unit bias current value is 0.2 mA.
ところで、 リードチャネル L S Iには、 一般的に少なくない規模の高速 ディジタル信号処理部が一緒に内蔵されるから、 ディジ夕ル雑音の干渉を避 けるためにアナログ回路部は正負差動的かつ対称的に設けることが望ましい。 そこで、 本実施例のフィル夕回路 F I Lにおいても、 前段の電圧/電流変換 回路 V G Aからの正電流入力と負電流入力のそれそれに対応して図 1 6の不 完全積分回路を設けるのが良い。 この場合、 半導体プロセスの製造ばらつき と周囲温度変動等による影響を無視したときのフィル夕回路全体の最大消費 電流は、 正側と負側の両方を合わせて 1 2 . 1 m Aとなる。 これは図 1 7の 従来の完全積分回路を用いて別途設計したフィル夕回路の消費電流値の約 7 割以下の値である。  By the way, since a read channel LSI generally incorporates a high-speed digital signal processing section of not a few scales, the analog circuit section is positive-negative and symmetrical in order to avoid interference of digital noise. Is desirably provided. Therefore, in the filter circuit F IL of the present embodiment, it is preferable to provide the incomplete integration circuit shown in FIG. 16 corresponding to the positive current input and the negative current input from the voltage / current conversion circuit V GA in the preceding stage. In this case, the maximum current consumption of the entire filter circuit when the effects of semiconductor process variations and ambient temperature fluctuations are ignored is 12.1 mA for both the positive and negative sides. This is about 70% or less of the current consumption of the filter circuit designed separately using the conventional complete integration circuit in Fig. 17.
図 9は、 上記 7次等リ ヅプル口一パスフィル夕に関して計算機によるシ ミュレーシヨンの結果得られた群遅延 (位相) および電流利得の周波数特性 を示す。 図 9より、 群遅延リップルは、 カツ トオフ周波数 f c ( 1 2 7 M H z ) の 1 . 7倍以上の周波数まで 4 ± 0 . 1 n Sであり、 変動は 3 %以下に 抑えられている。 つまり、 信号をこのフィル夕に通してもカッ トオフ周波数 を超えても位相がほとんどずれることがないことが分かる。 その結果、 ハ一 ドディスク装置では、 このフィルタを通った信号の位相と後段の A/D変換 器 A D Cのサンプリングクロック 0 sとの位相のずれが少なくなつて、 読出 し信号波形の特徴点でタイミング良くサンプリングすることができる。 次に、 図 1のリードチャネルを構成する A/D変換回路について説明する。 図 1 0は本発明に係るリードチャネルを構成する 6ビッ トの A/D変換回路 用電流トラック ·ホールド回路 (サンプル ·ホールド回路) を示す。 Fig. 9 shows the frequency characteristics of the group delay (phase) and current gain obtained as a result of simulation by a computer for the above-mentioned 7th-order equal ripple port one-pass fill. According to FIG. 9, the group delay ripple is 4 ± 0.1 nS up to a frequency 1.7 times or more of the cut-off frequency fc (127 MHz), and the fluctuation is suppressed to 3% or less. In other words, it can be seen that the phase hardly shifts even if the signal passes through this filter or exceeds the cutoff frequency. As a result, in the hard disk drive, the phase difference between the phase of the signal passed through this filter and the sampling clock 0 s of the subsequent A / D converter ADC is reduced, and the characteristic point of the read signal waveform is reduced. Sampling can be performed with good timing. Next, the A / D conversion circuit constituting the read channel of FIG. 1 will be described. FIG. 10 shows a 6-bit A / D conversion circuit constituting a read channel according to the present invention. Shows current track / hold circuit (sample / hold circuit).
基準定電流源 IBと N— MOSトランジスタ Ml及び M 2 が電源電位 A V DDと接地電位 AGND間に直列に接続され、 上記 MO Sトランジス夕 M 1 のドレインが入力電流信号 I inの入力ノードとされている。 この MO Sトラ ンジス夕 M 1のドレイン電位変化は、 N— MO Sトランジスタ M 5およびそ のソースと接地電位との間に接続された定電流源 I sから成るソースフォロ ァを介して上記 MO Sトランジスタ M 2のゲート電極に伝達されるように構 成されている。  The reference constant current source IB and the N-MOS transistors Ml and M 2 are connected in series between the power supply potential AV DD and the ground potential AGND, and the drain of the MOS transistor M 1 serves as an input node of the input current signal I in. ing. The change in the drain potential of the MOS transistor M1 is performed via the source follower including the N-MOS transistor M5 and the constant current source Is connected between the source and the ground potential. It is configured to be transmitted to the gate electrode of the S transistor M2.
また、 上記基準定電流源 ΊΒと MO Sトランジスタ M 1, M2と同様に、 電 源電位 AVDDと接地電位 AGND間に直列に接続された定電流源 IRi (i=l 〜63)と N— MO Sトランジスタ M3 i, M4 iとからなる電流ミラ一回路が 設けられている。 上記 MO Sトランジスタ M 3 iのドレイン側からそれそれ 出力電流 Iciが取り出され、 図示しない後段の 63個の電流比較回路のそれ それに供給されるように構成されている。  Similarly to the reference constant current source 上 記 and the MOS transistors M1 and M2, the constant current sources IRi (i = l to 63) connected in series between the power supply potential AVDD and the ground potential AGND and the N-MO A current mirror circuit composed of S transistors M3 i and M4 i is provided. The output current Ici is taken out from the drain side of the MOS transistor M3i, and supplied to each of the 63 current comparison circuits (not shown) at the subsequent stage.
そして、 上記 MO Sトランジスタ M301〜M363のゲートには MO Sトラン ジス夕 M 1のゲート電圧と同一のパイァス電圧 VBが印加されているととも に、 MO Sトランジスタ M 2のゲート電位は、 N— MOSトランジスタ M6 と P— MOSトランジスタ M7とから成る CMO S伝送スィツチのオン期間 中に、 並列に設けられた 63個の N— MOS トランジス夕 M401〜M463の ゲート電極に伝達されるように構成されている。 従って、 上記 MOSトラン ジス夕 M 1と並列に設けられた M301〜M363、 及び M 2と M401〜M463のサ ィズをそれそれ等しくすれば、 M 2に流れる電流が M401〜M463にコビ一さ れる。  The same gate voltage of the MOS transistor M1 is applied to the gates of the MOS transistors M301 to M363, and the gate potential of the MOS transistor M2 is N− It is configured to be transmitted to the gate electrodes of 63 N-MOS transistors M401 to M463 provided in parallel during the ON period of the CMOS transmission switch composed of the MOS transistor M6 and the P-MOS transistor M7. I have. Therefore, if the sizes of M301 to M363 and M2 and M401 to M463 provided in parallel with the above MOS transistor M1 are made equal to each other, the current flowing in M2 will be less than that of M401 to M463. It is.
一方、 上記 CMO S伝送スィッチ M 6 , M7のオフ期間中は、 オフにされ た時点の電位が上記 MO Sトランジス夕 M401〜M463の各ゲートとソース電 極間及びゲートとドレイン電極間の寄生容量 (ゲート容量) Csに保持され、 M401〜M463にはその保持電位に応じたドレイン電流が流されるようになる。 また、 MOSトランジスタ M301~M363の各ドレインと電源電位との間に 接続された定電流源 IR1〜 IR63のそれそれの電流値は、 上記入力電流信号 I inの振幅に対する参照電流値に設定される。 例えば A/D変換回路の構成 を 6ビットとし- 18=80 /八, -Iin=+32 zA〜一 32〃 Aとすれば、 IR1〜 IR63は以下のように設定される。 On the other hand, during the off period of the CMOS transmission switches M 6 and M 7, the potential at the time of turning off the parasitic capacitance between each gate and the source electrode and between the gate and the drain electrode of each of the MOS transistors M 401 to M 463. (Gate capacitance) Cs is held, and a drain current according to the held potential flows through M401 to M463. In addition, between each drain of the MOS transistors M301 to M363 and the power supply potential. The respective current values of the connected constant current sources IR1 to IR63 are set to reference current values with respect to the amplitude of the input current signal Iin. For example, if the configuration of the A / D conversion circuit is 6 bits and −18 = 80/8, −Iin = + 32 zA to 1〃32 A, IR1 to IR63 are set as follows.
-IR1 = 8 0 - 3 1. 5 = 48. 5 ju A,  -IR1 = 8 0-3 1.5 = 48.5 ju A,
-IR2 = 80-30. 5 = 49. 5 μ,Α,  -IR2 = 80-30.5 = 49.5 μ, Α,
-IR32= 80 - 0. 5 = 7 9. 5 A、 -IR32 = 80-0.5 = 79.5 A,
-IR33= 80 + 0. 5 = 8 0. 5 A、  -IR33 = 80 + 0.5 = 8 0.5 A,
-IR62= 80 + 30. 5 = 1 10. 5 A、 -IR62 = 80 + 30.5 = 1 10.5 A,
-IR63= 80 + 31. 5 = 1 11. 5 A。  -IR63 = 80 + 31.5 = 1 11.5 A.
定電流源 IR1〜 IR63の電流値が上記のように設定された場合、 入力電流 信号 I inが + 32 /A〜一 32 Aに変化したときの各出力電流 I cl〜 I c63 は、 それそれ下記範囲の値に変化する。 ただし、 「 +」 は図 10には示され ていない後段の並列 63個の電流比較回路への各吐き出し電流、 「一」 は逆 に同電流比較回路からの吸い込み電流を表わす。  When the current values of the constant current sources IR1 to IR63 are set as described above, the output currents Icl to Ic63 when the input current signal Iin changes from + 32 / A to -32 A, It changes to the value in the following range. Here, “+” represents each of the source currents to the subsequent 63 parallel current comparison circuits not shown in FIG. 10, and “one” represents the sink current from the current comparison circuits.
-Icl =- 63. 〜十 0. 5 JLA  -Icl =-63. ~ 10 0.5 JLA
-I c2 =- 62. 5 /A〜十 1. 5 uA  -I c2 =-62.5 / A to 10 1.5 uA
-Ic32=— 32. 5 A〜十 31. 5 μ,Α -Ic32 = — 32.5 A to 101.5 μ, Α
-I c33=- 31. 5 /A〜十 32. 5 μ,Α  -I c33 =-31.5 / A ~ 10 32.5 μ, Α
I c62=- 1. 〜十 62. 5 /LC A - Ic63=— 0. 5 /A〜十 6 3. 5 ^ A I c62 =-1. to 102.5 / LC A -Ic63 = —0.5 / A to 10 63.5 ^ A
従って、 上記各電流 I c 1〜 I c63が後段の並列 6 3個の電流比較回路で参 照電流値 「0」 と比較されれば、 入力電流値 I inに対する変換結果のデイジ タル出力を得ることができる。  Therefore, if each of the currents Ic1 to Ic63 is compared with the reference current value “0” by the parallel 63 current comparison circuits at the subsequent stage, a digital output of the conversion result with respect to the input current value Iin is obtained. be able to.
また、 特に制限されるものではないが、 前段のフィル夕回路からの入力電 流が正負の差動入力電流である場合には、 図 1 0に示したトラック ·ホール ド回路を正入力電流 +1 inと負入力電流信号- I inのそれそれに対して設ける。 そして、 その場合、 正入力電流信号 +1 inに対する出力電流 Iclが供給される 第 1の電流比較回路には、 負入力電流信号- I inに対する出力電流 I c63が供 給されてその大小を比較するように構成される。 同様に、 第 2の電流比較回 路は正信号入力側の I c2と負信号入力側の I c62に相当した電流の大小を、 第 3 2の電流比較回路は正信号入力側の Ic32と負信号入力側の Ic33に相当し た電流の大小をそれそれ比較するように構成される。  Although not particularly limited, when the input current from the preceding filter circuit is a positive-negative differential input current, the track-hold circuit shown in FIG. Provided for each of 1 in and the negative input current signal -I in. In that case, the output current Icl for the positive input current signal +1 in is supplied. The first current comparison circuit is supplied with the output current Ic63 for the negative input current signal -Iin, and the magnitudes thereof are compared. It is configured to Similarly, the second current comparison circuit determines the magnitude of the current corresponding to Ic2 on the positive signal input side and Ic62 on the negative signal input side, and the third current comparison circuit determines the magnitude of the current corresponding to Ic32 on the positive signal input side. It is configured to compare the magnitude of the current corresponding to Ic33 on the signal input side.
なお、 上記の説明では、 入力電流信号 I inと参照電流 IR1〜 IR63との差 出力 Icl〜I c63が、 アナロググランド AGNDに対して正と負の側にそれ それ変化するように設定されていたが、 後段に設ける電流比較回路の構成に 応じて、 その構成に合わせるように上記各参照電流値を変更して、 出力信号 が常に正あるいは常に負となるように構成されてもよい。  In the above description, the difference outputs Icl to Ic63 between the input current signal Iin and the reference currents IR1 to IR63 are set so as to change to the positive and negative sides with respect to the analog ground AGND, respectively. However, according to the configuration of the current comparison circuit provided at the subsequent stage, the above reference current values may be changed so as to conform to the configuration, so that the output signal is always positive or always negative.
また、 上記電流比較回路の具体例としては、 例えば本発明の発明者らがァ ィ ·エス 'エス ' シ一 ' シ一 9 9、 ダイジェス ト ォブ テクニカル ぺ一 ノ 一、 セ ッショ ン 1 8、 ダブリ ュ . ェ一 1 8 . 5、 1 9 9 9年 2月 (ISSCC99, Digest of Technical Papers, February 1999, WA 18.5) で提案 した回路等、 公知の任意の電流比較回路を用いることができる。 以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、 本発明は上記実施例に限定されるものではなく、 その要旨を逸脱しない範囲 で種々変更可能であることはいうまでもない。  Further, as specific examples of the above current comparison circuit, for example, the inventors of the present invention have proposed the following: Any known current comparison circuit, such as the circuit proposed in ISSCC 99, Digest of Technical Papers, February 1999, WA 18.5, can be used. . Although the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it is needless to say that various modifications can be made without departing from the gist of the invention. Nor.
例えば、 上記説明では、 図 2〜図 4及び図 1 0では電流源を Pチャネル M O S トランジスタにより構成し、 カスコード ' ミラ一回路を Nチャネル M O S トランジスタで構成するとしたが、 目標仕様によっては M O S トランジス 夕の導電型を入れ替えても同様に実現できる。 また、 図 8のフィル夕の実施 例では、 2次フィル夕 3段の後に 1次フィル夕を接続したが、 各フィル夕は 任意の順番で配置することが可能である。 つまり、 2次フィル夕間あるいは 2次フィル夕の前に 1次フィル夕を配置しても良い。 For example, in the above description, in FIGS. 2 to 4 and FIG. Although the cascode's mirror circuit is composed of N-channel MOS transistors, it can be realized by switching the conductivity type of the MOS transistor depending on the target specification. Also, in the embodiment of the fill-in screen shown in Fig. 8, the primary fill-in connection is connected after the secondary fill-in step 3, but each fill-in screen can be arranged in any order. In other words, the first fill evening may be arranged before the second fill evening or before the second fill evening.
また、 上記実施例では、 本発明をハードディスク装置のリードチャネルに適 用した場合について説明したが、 そのような信号処理システムのみならず、 受信信号の振幅値が時間的に大きく変化する電圧信号であって、 その信号を 増幅、 フィル夕リング、 A/D変換およびディジタル信号処理する一連の機 能は、 ハードディスク ドライブ装置以外にも、 例えば情報を電圧信号として 信号伝送路を介して送受信する図 1 1に示されているような通信装置等の電 子装置においても必要とされるので、 本発明をそれらに適用しても、 同様な 効果を得ることができる。 なお、 図 1 1において、 1 0 0は電圧信号の送信 源、 2 0 0は電圧信号が伝送される信号伝送路、 V/ Iは電圧信号を増幅し て電流信号に変換する電圧/電流変換回路である。 産業上の利用可能性  Further, in the above embodiment, the case where the present invention is applied to the read channel of the hard disk device has been described. However, not only such a signal processing system but also a voltage signal in which the amplitude value of the received signal changes greatly with time. A series of functions for amplifying, filtering, A / D converting, and digital signal processing the signal are used in addition to the hard disk drive, for example, transmitting and receiving information as a voltage signal via a signal transmission path. The same effect can be obtained even if the present invention is applied to an electronic device such as a communication device as shown in FIG. In FIG. 11, 100 is a voltage signal transmission source, 200 is a signal transmission path through which the voltage signal is transmitted, and V / I is a voltage / current converter that amplifies the voltage signal and converts it to a current signal. Circuit. Industrial applicability
本発明は、 ハ一ドディスク装置のリ一ドチャネルのような信号処理システ ムのみならず、 受信シリアルデータを処理する通信系における信号処理シス テムなどに広く利用することができる。  INDUSTRIAL APPLICABILITY The present invention can be widely used not only in a signal processing system such as a read channel of a hard disk drive but also in a signal processing system in a communication system for processing received serial data.

Claims

請求の範囲 The scope of the claims
1 . 磁気ディスクに記録されたデータを読み出しへッ ドを介して読み出して その出力を電気信号に変換するリードアンプと、 該リードアンプの出力信号 を増幅する可変利得増幅回路と、 その出力信号に含まれる不要な周波数成分 を抑圧するフィル夕回路と、 そのフィル夕出力信号の振幅をそれに対応した ディジ夕ル信号に変換するアナログ/ディジ夕ル変換回路と、 そのディジ夕 ル信号を処理して読み出した信号の照合及びその照合に必要な信号処理を行 なうディジ夕ル信号処理回路とを含むハ一ドディスク ドライブ装置において、 上記リードアンプの出力は電圧信号であり、 上記可変利得増幅回路は上記 電圧信号をそれに比例した電流信号に変換する電圧/電流変換手段を備え、 上記フィル夕回路は電流信号を入力としかつ電流信号を出力するよう構成さ れ、 上記アナログ/ディジ夕ル変換回路はその入力部に上記フィル夕回路か らの電流をトラック · ホールドする手段を備えたことを特徴とするハード ディスク ドライブ装置。 1. A read amplifier that reads data recorded on a magnetic disk via a read head and converts the output to an electric signal, a variable gain amplifier circuit that amplifies an output signal of the read amplifier, A filter circuit for suppressing unnecessary frequency components included, an analog / digital converter circuit for converting the amplitude of the filter output signal into a corresponding digital signal, and processing the digital signal. A hard disk drive device including a readout signal collation and a digital signal processing circuit for performing signal processing necessary for the collation; an output of the read amplifier is a voltage signal; Has voltage / current conversion means for converting the voltage signal into a current signal proportional to the voltage signal. The filter circuit receives the current signal as an input and outputs the current signal. A hard disk drive device characterized in that the analog / digital conversion circuit is provided with means for tracking and holding the current from the filter circuit at its input.
2 . 上記フィル夕回路は等位相リップル特性を有するフィル夕であって、 か っ該フィル夕を構成する電流積分回路は直流信号入力に対して出力が一定値 に制限される不完全積分回路であることを特徴とする請求項 1記載のハ一ド ディスク ドライブ装置。 2. The filter circuit is a filter having equal-phase ripple characteristics, and the current integration circuit constituting the filter is an incomplete integration circuit whose output is limited to a constant value with respect to a DC signal input. 2. The hard disk drive device according to claim 1, wherein:
3 . 請求項 1または 2に記載のハードディスク ドライブ装置において、 上記 フィル夕回路の周波数特性が、 制御装置により選択されるレジス夕に設定さ れた情報に対応して可変されるように構成されていることを特徴とするハー ドディスクドライブ装置。 3. The hard disk drive device according to claim 1 or 2, wherein a frequency characteristic of the filter circuit is configured to be variable according to information set in a register selected by the control device. A hard disk drive device.
4 . 上記可変利得増幅回路に具備された電圧/電流変換手段は、 4. The voltage / current conversion means provided in the variable gain amplifier circuit,
第 1の定電流源と、 ゲ一トに固定電位が印加された第 1の絶縁ゲ一ト形電 界効果トランジスタと、 ゲ一卜が上記第 1の絶縁ゲート形電界効果トランジ ス夕のドレインに接続された第 2の絶縁ゲート形電界効果トランジスタとが、 電源電位と接地電位間に直列形態に接続され、 A first constant current source and a first insulated gate type power supply having a fixed potential applied to the gate. A field effect transistor and a second insulated gate field effect transistor having a gate connected to the drain of the first insulated gate field effect transistor are connected in series between a power supply potential and a ground potential. And
これと並列に、 第 2の定電流源と、 ゲートに上記と同じ固定電位が印加さ れた第 3の絶縁ゲート形電界効果トランジスタと、 ゲートが上記第 2の絶縁 ゲート形電界効果トランジス夕のゲートに接続された第 4の絶縁ゲート形電 界効果トランジスタが電源電位と接地電位間に直列形態に接続されてなる力 スコード · ミラ一回路を有し、  In parallel with this, a second constant current source, a third insulated gate field effect transistor having the same fixed potential applied to the gate as above, and a gate connected to the second insulated gate field effect transistor A fourth insulated gate field effect transistor connected to the gate, which is connected in series between the power supply potential and the ground potential;
このカスコ一ド · ミラー回路の上記第 2の絶縁ゲ一ト形電界効果トランジ ス夕と並列に第 5の絶縁ゲート形電界効果トランジスタを接続し、 該第 5の 絶縁ゲート形電界効果トランジス夕のゲ一トに印加される電圧信号を入力と し、 上記第 3の絶縁ゲート形電界効果トランジスタのドレインから入力信号 に対応した出力電流信号を得るよう構成され、 上記固定電位が、 制御装置に より選択されるレジス夕に設定された情報に対応して可変されることによつ て上記入力 ·電圧と出力電流の変換利得が可変される可変利得増幅回路 を用いたことを特徴とする請求項 1、 2または 3に記載のハ一ドディスク ド ライブ装置。  A fifth insulated gate field effect transistor is connected in parallel with the second insulated gate field effect transistor of the cascade mirror circuit, and the fifth insulated gate field effect transistor is connected to the fifth insulated gate field effect transistor. A voltage signal applied to the gate is input, and an output current signal corresponding to the input signal is obtained from the drain of the third insulated gate field effect transistor. A variable gain amplifier circuit, wherein the conversion gain of the input voltage and the output current is varied by being varied in accordance with information set in a selected register. The hard disk drive device according to 1, 2 or 3.
5 . 前記フィル夕回路は、 5. The filter circuit is
第 1の定電流源と、 ゲートに固定電位が印加された第 1の絶縁ゲ一ト形電 界効果トランジスタと、 ゲートが該第 1の絶縁ゲート形電界効果トランジス 夕のドレインに接続された第 2の絶縁ゲ一ト形電界効果トランジスタとが、 電源電位と接地電位間に直列形態に接続されて成る電流入力段と、  A first constant current source, a first insulated gate field effect transistor having a fixed potential applied to the gate, and a first insulated gate field effect transistor having a gate connected to a drain of the first insulated gate field effect transistor. A current input stage comprising two insulated gate field effect transistors connected in series between a power supply potential and a ground potential;
これと並列に、 第 2の定電流源と、 ゲートに上記と同じ固定電位が印加さ れた第 3の絶縁ゲート形電界効果トランジスタと、 ゲートが上記第 2の絶縁 ゲート形電界効果トランジスタのゲートに接続された第 4の絶縁ゲ一ト形電 界効果トランジスタが電源電位と接地電位間に直列形態に接続されて成る電 流出力段と、 上記第 2の絶縁ゲート形電界効果トランジスタのゲ一トと接地電位間に接 続された容量素子と、 In parallel with this, a second constant current source, a third insulated gate field effect transistor having the same fixed potential applied to the gate, and a gate of the second insulated gate field effect transistor A current output stage having a fourth insulated gate field effect transistor connected to the power supply potential and the ground potential connected in series with each other; A capacitive element connected between the gate of the second insulated gate field effect transistor and a ground potential;
を備え、 上記第 1の絶縁ゲ一ト形電界効果トランジスタのドレインに供給さ れる電流信号を入力信号とし、 上記第 3の絶縁ゲート形電界効果トランジス 夕のドレインから上記入力電流に対応した出力電流信号を得るよう構成され、 上記第 1及び第 2の定電流源の電流値が、 制御装置により選択されるレジス 夕に設定された情報に対応して同時に可変されることにより、 上記入力段の 第 2の絶縁ゲート形電界効果トランジスタのチャネルコンダクタンスが変更 されて出力電流の力ッ トオフ周波数が制御されるように構成された不完全積 分回路を有することを特徴とするハードディスクドライブ装置。 A current signal supplied to the drain of the first insulated gate field effect transistor as an input signal; and an output current corresponding to the input current from the drain of the third insulated gate field effect transistor. A current value of the first and second constant current sources is simultaneously varied in accordance with information set in a register selected by the control device. A hard disk drive device comprising an imperfect integration circuit configured to change a channel conductance of a second insulated gate field effect transistor to control a power cutoff frequency of an output current.
6 . 上記不完全積分回路は、 上記電流出力段と並列に該電流出力段と同一の 構成を有する第 2の電流出力段を備え、 上記電流入力段と上記第 1の電流出 力段と第 2の電流出力段の各定電流源の電流値が、 制御装置により選択され るレジス夕に設定された情報に対応して同時に可変されることにより、 上記 入力段の第 2の絶縁ゲート形電界効果トランジスタのチャネルコンダク夕ン スが変更されて第 1及び第 2の電流出力段の出力電流の力ッ トオフ周波数が 同時に制御されるように構成されてなることを特徴とする請求項 5に記載の ハードディスクドライブ装置。 6. The incomplete integration circuit includes a second current output stage having the same configuration as the current output stage in parallel with the current output stage, and the current input stage, the first current output stage, and the second current output stage. The current value of each constant current source of the current output stage 2 is simultaneously varied according to the information set in the register selected by the control device, so that the second insulated gate electric field of the input stage is The device according to claim 5, wherein the channel conductance of the effect transistor is changed so that the power cutoff frequency of the output current of the first and second current output stages is simultaneously controlled. Hard disk drive device.
7 . 請求項 2記載の等位相リップル特性を有するフィル夕回路は、 7. The filter circuit having equal phase ripple characteristics according to claim 2 is
請求項 5記載の第 1の不完全電流積分回路と、 反転電流アンプと、 請求項 6記載の第 2の不完全電流積分回路とから成る第 1、 第 2、 第 3の 2次フィ ル夕と請求項 5記載の第 1の不完全電流積分回路から成る 1次フィル夕が縦 続に接続されてなり、  A first, second, and third secondary filter comprising a first incomplete current integration circuit according to claim 5, an inversion current amplifier, and a second incomplete current integration circuit according to claim 6. And a primary filter comprising a first incomplete current integration circuit according to claim 5 is connected in cascade,
このうち第 1及び第 2の 2次フィル夕の第 2の不完全積分回路の第 1の出 力は、 それそれ後段の第 2及び第 3の 2次フィル夕の入力に接続され、 また 上記第 2の不完全積分回路の第 2の出力はそれそれ自フィル夕の第 1の不完 全積分回路の入力に接続され、 第 3の 2次フィル夕の第 2の不完全積分回路 の第 1の出力は、 後段の 1次フィル夕の入力に接続され、 また第 2の不完全 積分回路の第 2の出力と電流反転アンプの第 2の出力と共に該第 3の 2次 フィル夕の第 1の不完全積分回路の入力に接続され、 上記 1次フィル夕の出 力をフィル夕出力とする 7次フィル夕である Of these, the first output of the second incomplete integration circuit of the first and second secondary filters is connected to the input of the second and third secondary filters at the subsequent stages, and The second output of the second incomplete integrator is the first The first output of the second incomplete integrator of the third secondary filter is connected to the input of the total integrator, and the first output of the second incomplete integrator is connected to the input of the subsequent primary filter. The second output of the circuit and the second output of the current inverting amplifier are connected to the input of the first imperfect integration circuit of the third secondary filter, and the output of the primary filter is output to the filter output. It is the 7th Phil evening
ことを特徴とするハードディスクドライブ装置。 A hard disk drive device characterized by the above-mentioned.
8 . 前記アナログ/ディジ夕ル変換回路は、 8. The analog / digital conversion circuit
電源電位と接地電位間に直列に接続された第 1の定電流源と、 ゲートに固 定電位が供給された第 1の Nチャネル型絶縁ゲート形電界効果トランジス夕 と第 2の Nチャネル型絶縁ゲート形電界効果トランジスタと 、 ゲートが上記 第 1の Nチャネル型絶縁ゲート形電界効果トランジスタのドレインに、 かつ ソースが上記第 2の Nチャネル型絶縁ゲート形電界効果トランジス夕のゲ一 トにそれぞれ接続された第 3の Nチャネル型絶縁ゲ一ト形電界効果トランジ ス夕と、 該トランジスタのソースと接地電位間に接続された第 2の定電流源 とから成る電流入力部と、  A first constant current source connected in series between the power supply potential and the ground potential; a first N-channel insulation type having a fixed potential supplied to the gate; a gate field-effect transistor and a second N-channel insulation. The gate type field effect transistor and the gate are connected to the drain of the first N-channel insulated gate field effect transistor, and the source is connected to the gate of the second N-channel insulated gate field effect transistor. A current input section comprising a third N-channel insulated gate field effect transistor, and a second constant current source connected between the source of the transistor and a ground potential;
それそれ電源電位と接地電位間に直列に接続され、 参照電流を供給する定 電流源と、 ゲートに上記固定電位が供給された第 4の Nチャネル型絶縁ゲ一 ト形電界効果トランジスタと、 第 5の Nチャネル型絶縁ゲート形電界効果ト ランジス夕から成る複数個の電流出力部と、 上記電流入力部の上記第 2の N チャネル型絶縁ゲ一ト形電界効果トランジス夕のゲ一トと上記複数個の電流 出力部の各第 5の Nチャネル型絶縁ゲート形電界効果トランジスタのゲート が伝送スィツチを介して接続されてなり、  A constant current source connected in series between a power supply potential and a ground potential to supply a reference current, a fourth N-channel insulated gate field effect transistor having a gate supplied with the fixed potential, A plurality of current output sections each comprising an N-channel insulated gate field-effect transistor, and a gate of the second N-channel insulated gate field-effect transistor of the current input section. The gates of each of the fifth N-channel insulated gate field effect transistors of the plurality of current output units are connected via a transmission switch,
上記参照電流が入力電流の所望の変換精度に対応してそれそれ設定された 値とされ、 上記複数個の電流出力部から上記第 1の定電流源の値と入力信号 との加算値からそれそれの参照電流の値を減算した電流が出力されるように 構成されてなるトラック ·ホールド回路と、  The reference current is set to a value corresponding to the desired conversion accuracy of the input current, and the reference current is calculated from the sum of the value of the first constant current source and the input signal from the plurality of current output units. A track-and-hold circuit configured to output a current obtained by subtracting the value of the reference current,
上記トラック ·ホ一ルド回路の出力電流を入力とし電圧信号を出力する電 流比較回路と、 The output current of the above track-hold circuit is input and the voltage signal is output. A current comparison circuit;
を備えていることを特徴とする請求項 1に記載のハ一ドディスク ドライブ装 2. The hard disk drive device according to claim 1, further comprising:
9 . 電圧信号を受けて該電圧信号に比例した電流を出力する電圧/電流変換 回路と、 該電圧/電流変換回路からの出力電流信号に対してフィル夕処理を 行って電流信号を出力するフィル夕回路と、 該フィル夕回路からの電流信号 を受けて所定の信号処理を実行するディジ夕ル信号処理回路とを含む電子装 9. A voltage / current conversion circuit that receives a voltage signal and outputs a current proportional to the voltage signal, and a filter that performs a filtering process on an output current signal from the voltage / current conversion circuit and outputs a current signal And an electronic circuit including a digital signal processing circuit for receiving the current signal from the filter circuit and executing predetermined signal processing.
1 0 . 情報を電圧信号として出力する回路を含む請求項 9に記載の電子装置。 10. The electronic device according to claim 9, further comprising a circuit that outputs information as a voltage signal.
1 1 . 上記電圧信号を出力する回路は磁気ディスクから読み取られた情報を 出力するリードアンプを含み、 上記ディジタル信号処理回路は上記フィル夕 回路からの電流信号に従って動作するアナログ/ディジ夕ル変換回路を含む ことを特徴とする請求項 1 0に記載の電子装置。 1 1. The circuit for outputting the voltage signal includes a read amplifier for outputting information read from a magnetic disk, and the digital signal processing circuit includes an analog / digital conversion circuit that operates according to a current signal from the filter circuit. The electronic device according to claim 10, comprising:
PCT/JP1999/001141 1999-03-10 1999-03-10 Electronic device WO2000054259A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/001141 WO2000054259A1 (en) 1999-03-10 1999-03-10 Electronic device
JP2000604406A JP3687046B2 (en) 1999-03-10 1999-03-10 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001141 WO2000054259A1 (en) 1999-03-10 1999-03-10 Electronic device

Publications (1)

Publication Number Publication Date
WO2000054259A1 true WO2000054259A1 (en) 2000-09-14

Family

ID=14235137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001141 WO2000054259A1 (en) 1999-03-10 1999-03-10 Electronic device

Country Status (2)

Country Link
JP (1) JP3687046B2 (en)
WO (1) WO2000054259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019908A (en) * 2005-07-08 2007-01-25 Niigata Seimitsu Kk Filter circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335956A (en) * 1991-12-20 1993-12-17 Texas Instr Inc <Ti> Circuit and method for a/d conversion of current input
JPH07307001A (en) * 1994-05-12 1995-11-21 Hitachi Ltd Magnetic recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335956A (en) * 1991-12-20 1993-12-17 Texas Instr Inc <Ti> Circuit and method for a/d conversion of current input
JPH07307001A (en) * 1994-05-12 1995-11-21 Hitachi Ltd Magnetic recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019908A (en) * 2005-07-08 2007-01-25 Niigata Seimitsu Kk Filter circuit

Also Published As

Publication number Publication date
JP3687046B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP3318725B2 (en) Analog filter circuit
US6677822B2 (en) Transconductor and filter circuit using the same
US7271651B2 (en) High performance differential amplifiers with thick oxide devices for high impedance nodes
WO2011004512A1 (en) Filter circuit and optical disc device provided with same
US8711024B2 (en) Switched capacitor amplifier
JP2006314059A (en) Semiconductor device
US8400214B2 (en) Class AB output stage
JP2002190721A (en) Method and circuit for compensating influence of switch resistance with respect to setting time of high speed switched capacitor circuit
JPH10303664A (en) Variable gain amplifier
US5859564A (en) Differential amplifier circuit for use in a read channel for a magnetic recording system
JP2001292051A (en) Transconductor and filter circuit
JP2008147735A (en) Amplifier circuit, semiconductor device and control method
EP1435693B1 (en) Amplification circuit
US7358813B2 (en) Differential operational amplifier
CN210351102U (en) Microphone programmable gain amplifier integrated circuit
US8941438B2 (en) Bandwidth limiting for amplifiers
WO2000054259A1 (en) Electronic device
JP3442613B2 (en) Variable gain amplifier
JP4331550B2 (en) Phase compensation circuit
CN110601670A (en) Microphone programmable gain amplifier integrated circuit
US20230095506A1 (en) Amplifier circuit, differential amplifier circuit, reception circuit, and semiconductor integrated circuit
JP3724697B2 (en) Variable gain amplifier circuit
JP2001209901A (en) Magnetic disk memory device
JP4572481B2 (en) Transconductor circuit
JP2004180268A (en) Amplifier circuit and liquid crystal display device using this

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 604406

Kind code of ref document: A

Format of ref document f/p: F