WO2000053718A1 - Gelförmiges reinigungsmittel für spültoiletten - Google Patents

Gelförmiges reinigungsmittel für spültoiletten Download PDF

Info

Publication number
WO2000053718A1
WO2000053718A1 PCT/EP2000/001813 EP0001813W WO0053718A1 WO 2000053718 A1 WO2000053718 A1 WO 2000053718A1 EP 0001813 W EP0001813 W EP 0001813W WO 0053718 A1 WO0053718 A1 WO 0053718A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
alcohol
acid
cleaning agent
shaped cleaning
Prior art date
Application number
PCT/EP2000/001813
Other languages
English (en)
French (fr)
Other versions
WO2000053718A8 (de
Inventor
Ditmar Kischkel
Jutta Stute
Thomas Krohnen
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Publication of WO2000053718A1 publication Critical patent/WO2000053718A1/de
Publication of WO2000053718A8 publication Critical patent/WO2000053718A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the present invention relates to gel-form detergents for flush toilets containing nonionic surfactants, preferably alkyl polyglycosides, alone or in a mixture with other surfactants, as well as polyacrylates with selected molecular weights as thickeners, a process for their preparation and the use of the selected polyacrylates as thickeners for the production of gel-form detergents for flush toilets with a pH value above 6.5.
  • EP-A 0 268 967 discloses toilet blocks which contain sodium lauryl sulfate and fatty acid monoethanolamide.
  • the toilet blocks described are usually manufactured by casting, pressing, extruding or granulating processes, which require a high level of technical complexity and often suffer undesirable perfume losses due to the temperature load (casting / extruding process).
  • Gel-shaped toilet cleaners with pseudoplastic properties are known from German published patent application DE-197 15 872 A, which considerably reduce the outlay for production and can be produced more cost-effectively due to simple technology.
  • the problem of the individual refill possibility can also be solved by such pseudoplastic active substance preparations.
  • These gel-type toilet cleaners contain polysaccharides, in particular xanthan gum, to adjust the pseudoplastic properties and, as surfactants, alkyl polyglycosides and, if appropriate, anionic and / or nonionic co-surfactants.
  • these gel-form cleaning agents have to be manufactured with special precautions during gel formation, so that on the one hand no bubbles form and on the other hand the other ingredients can be incorporated evenly distributed in the gel.
  • the gel-shaped toilet cleaners for flush toilets should have good initial foam behavior and show a clear appearance. Furthermore, the All kinds of perfume oils can be easily incorporated, especially in large quantities. Furthermore, it was desired that the thickeners themselves have a certain perfume oil carrying capacity. And finally, it was necessary to provide gel-form cleaning agents that have a long service life, that is, a high number of toilet flushes until the detergent has been completely rinsed in (number of rinses).
  • gel-form cleaning agents for flush toilets meet these requirements if, in addition to nonionic surfactants, they contain polyacrylates with selected molecular weights as thickeners.
  • the present invention relates to gel-form cleaning agents for flushing toilets containing thickeners and nonionic surfactants and optionally further ingredients, characterized in that they contain polyacrylates with average molecular weights in the range from 750,000 to 2,500,000 as thickeners, the agents having a pH have over 6.5.
  • the agents according to the invention necessarily contain nonionic surfactants as surfactants.
  • Nonionic surfactants in the context of the present invention can be alkoxylated alcohols, such as polyglycol ethers, fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, end-capped polyglycol ethers, mixed ethers, hydroxy mixed ethers, alkoxylated carboxylic acid esters, amine oxides and alkyl polyglycosides. Ethylene oxide-propylene oxide block polymers and fatty acid alkanolamides and fatty acid polyglycol ethers can also be used.
  • the agents according to the invention particularly preferably contain alkyl polyglycosides alone or as a mixture with other nonionic surfactants as nonionic surfactants.
  • Alkyl polyglycosides are known nonionic surfactants which follow the formula (I)
  • R represents an alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • G represents a sugar radical having 5 or 6 carbon atoms
  • p represents a number between 1 and 10. she can be obtained according to the relevant procedures in preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10. While p must always be an integer in a given compound and especially here can assume the values p - 1 to 6, the value p for a certain alkyl oligoglycoside is an analytically determined arithmetic parameter, which usually represents a fractional number. Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used.
  • alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capronic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above.
  • the agents according to the invention can contain fatty acid alkanolamides which preferably follow the formula (II)
  • R'CO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 2 is a hydroxyalkyl radical having 2 to 4 carbon atoms
  • R 3 is hydrogen or R 2 .
  • additives which are usually prepared by condensing fatty acids with alkanolamines.
  • Typical examples are condensation products of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroseline acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid and erucic acid or their technical mixtures Diethanolamine.
  • Fatty acid alkanolamides of the formula (II) are preferably used in which R'CO is an acyl radical having 12 to 18 carbon atoms, R 2 is a hydroxyethyl radical and R 3 is R 2 or hydrogen. It is particularly preferred to use C, 2 14- or C 12 / lg coconut fatty acid mono- or diethanolamide.
  • a further group of nonionic surfactants are alcohol ethoxylates, which are preferably in a mixture with the alkylpolyglycosides already described and follow the formula (III)
  • R 4 represents a linear or branched alkyl and / or alkenyl radical having 12 to 18 carbon atoms and z represents numbers from 1 to 50, preferably 5 to 30.
  • These substances are also well-known large-scale products, which are usually produced by base-catalyzed addition of ethylene oxide to primary alcohols.
  • the ethoxylates can have a conventional or narrow homolog distribution.
  • the alcohol ethoxylates can be adducts of 1 to 50 mol of ethylene oxide with fatty alcohols (“fatty alcohol ethoxylates”) or oxo alcohols (“oxo alcohol ethoxylates”).
  • Typical examples are the ethoxylates of capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, linoleyl alcohol, elaolyl alcohol, linoleol alcohol alcohol, petolselyl alcohol, Erucyl alcohol and brassidyl alcohol and their technical mixtures, which are obtained, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • Alkoxylated carboxylic acid esters of the formula (IV) may be present as a further group of suitable nonionic surfactants, preferably in a mixture with the alkyl polyglycosides already described,
  • R 5 CO represents an aliphatic acyl radical
  • AlkO represents CH 2 CH 2 O, CHCH 3 CH 2 O and / or CH 2 CHCH 3 O
  • n represents numbers from 1 to 20
  • R 6 represents an aliphatic alkyl radical
  • Alkoxylated carboxylic acid esters of the formula (IV) are known from the prior art.
  • such alkoxylated carboxylic acid esters are accessible by esterification of alkoxylated carboxylic acids with alcohols.
  • the compounds are preferably prepared by reacting carboxylic acid esters with alkylene oxides using catalysts, in particular using calcined hydrotalcite according to German Offenlegungsschrift DE-A-39 14 131, which provide compounds with a restricted homolog distribution.
  • Preferred according to the present invention are alkoxylated carboxylic acid esters of the general Formula (IV) in which R 5 CO for an aliphatic acyl radical having 6 to 22 carbon atoms, AlkO for a CH 2 CH 2 O, CHCH 3 CH 2 O and / or CH 2 -CHCH 3 O radical, n on average represents numbers from 3 to 20 and R 6 represents an aliphatic alkyl radical having 1 to 22 carbon atoms.
  • Preferred acyl radicals are derived from carboxylic acids having 6 to 22 carbon atoms of natural or synthetic origin, in particular from straight-chain saturated and / or unsaturated fatty acids, including technical mixtures thereof, as are obtainable by fat cleavage from animal and / or vegetable fats and oils, for example Coconut oil, palm kernel oil, palm oil, soybean oil, sunflower oil, rape oil, cottonseed oil, fish oil, beef tallow and lard.
  • carboxylic acids examples include caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and / or erucic acid ,
  • R 5 CO stands for a straight-chain, even-numbered acyl radical having 8 to 18 carbon atoms.
  • Preferred alkyl radicals R 6 are derived from primary, aliphatic monofunctional alcohols having 1 to 22 carbon atoms, which can be saturated and / or unsaturated.
  • suitable monoalcohols are methanol, ethanol, propanol, butanol, pentanol and the hydrogenation products of the above-mentioned carboxylic acids with 6 to 22 carbon atoms.
  • R 6 represents a methyl radical.
  • AlkO is preferably a CH 2 CH 2 O radical.
  • Alkoxylated carboxylic acid esters of the formula (IV) are particularly suitable, in which R 5 CO for a straight-chain, even-numbered acyl radical having 8 to 18 carbon atoms, AlkO for a CH 2 CH 2 O radical, n on average for numbers from 5 to 15 and R 6 represents a methyl radical.
  • R 5 CO for a straight-chain, even-numbered acyl radical having 8 to 18 carbon atoms
  • AlkO for a CH 2 CH 2 O radical
  • R 6 represents a methyl radical.
  • Examples of such compounds are methyl carboxylates alkoxylated with an average of 5, 7, 9 or 11 moles of ethylene oxide.
  • the agents according to the invention particularly preferably contain amine oxides as the nonionic surfactant, preferably in a mixture with the alkylpolygylcosides already described.
  • the production of alkylamine oxides is based on tertiary fatty amines, which are usually either one long and two short or two long and one short alkyl radical have, and oxidized them in the presence of hydrogen peroxide.
  • the alkylamine oxides which are suitable for the purposes of the invention follow the formula (V)
  • R 9 represents a linear or branched alkyl radical having 12 to 18 carbon atoms
  • R 7 and R 8 independently of one another represent R 9 or an optionally hydroxy-substituted alkyl radical having 1 to 4 carbon atoms.
  • Amine oxides of the formula (V) are preferably used in which R 9 and R 7 are C 12/14 and C 12/18 cocoalkyl radicals and R 8 is a methyl or a hydroxyethyl radical.
  • amine oxides of the formula (V) in which R 9 is a C un4 - or C ] 2/18 - cocoalkyl radical and R 7 and R 8 have the meaning of a methyl or hydroxyethyl radical.
  • amidoamine oxides are also suitable, which follow the general formula (VI)
  • R 12 CO represents an aliphatic acyl radical with 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • q represents numbers from 1 to 3 and R 10 , R 11 independently of one another represent R 9 or an optionally hydroxy-substituted alkyl radical with 1 to 4 Carbon atoms.
  • a typical example is dimethyl-N- (coconut amidopropyl) amine oxide.
  • the agents according to the invention can contain the nonionic surfactants, preferably the alkyl polyglycosides, alone or in a mixture with the amine oxides, as the sole surfactant.
  • the agents according to the invention additionally contain anionic, cationic and / or amphoteric or zwitterionic surfactants.
  • Suitable anionic surfactants are, for example, aliphatic sulfates such as fatty alcohol sulfates, fatty alcohol ether sulfates, fatty acid polyglycol ester sulfates, dialkyl ether sulfates, monoglyceride (ether) sulfates and aliphatic sulfonates such as alkane sulfonates, olefin sulfonates, ether sulfonates, n-alkyl ether sulfonates, ester sulfonates, and lingosulfin sulfonates, ester sulfonates.
  • Preferred anionic surfactants are fatty alcohol sulfates, fatty alcohol ether sulfates, sulfosuccinates and / or fatty acid polyglycol ester sulfates.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as the sulfation products of primary alcohols which follow the formula (VII)
  • R 13 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates that can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, arachselyl alcohol, elaidyl alcohol, elaidyl alcohol, Gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • ether sulfates are known anionic surfactants which are commercially available through SO 3 or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxo alcohol polyglycol ether and subsequent neutralization.
  • CSA chlorosulfonic acid
  • ether sulfates are suitable which follow the formula (VIII)
  • R 14 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • m represents numbers from 1 to 10
  • X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Typical examples are the sulfates of addition products with an average of 1 to 10 and in particular 2 to 5 moles of ethylene oxide with caprone alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostalkyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, selinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures in the form of their sodium and / or magnesium salts.
  • the ether sulfates can have both a conventional and a narrow homolog distribution. Or C 2 /] 8 - - particularly preferred to use ether sulfates based on adducts of on average 2 to 3 moles of ethylene oxide with technical C 12/14! Coconut fatty alcohol fractions in the form of their sodium and / or magnesium salts.
  • Sulfosuccinates which are also referred to as sulfosuccinic acid esters, are known anionic surfactants which can be obtained by the relevant methods of preparative organic chemistry. They follow formula (IX)
  • R 15 represents an alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • R 16 represents R 15 or X, u and v independently of one another for 0 or numbers from 1 to 10 and X for an alkali or alkaline earth metal, ammonium, alkylammonium, Alkanolammonium or Glucammonium stands.
  • maleic acid but preferably maleic anhydride, which in the first step is optionally treated with ethoxy primary alcohols are esterified. At this point, the mono / diester ratio can be adjusted by varying the amount of alcohol and the temperature.
  • bisulfite is added, which is usually carried out in the solvent methanol.
  • Typical examples are sulfosuccinic acid mono- and / or diesters in the form of their sodium salts which are derived from fatty alcohols having 8 to 18, preferably 8 to 10 or 12 to 14, carbon atoms; the fatty alcohols can be etherified with an average of 1 to 10 and preferably 1 to 5 moles of ethylene oxide and have both a conventional and preferably a narrowed homolog distribution.
  • Examples include di-n-octyl sulfosuccinate and monolauryl 3EO sulfosuccinate in the form of their sodium salts.
  • the agents according to the invention can contain quaternary ammonium compounds and esterquats, in particular quaternized fatty acid trialkanolamine ester salts, as cationic surfactants.
  • ester quats is generally understood to mean quaternized fatty acid triethanolamine ester salts. These are known substances that can be obtained using the relevant methods of preparative organic chemistry.
  • German patent DE 43 087 94 Cl also discloses a process for the preparation of solid ester quats, in which the quaternization of triethanolamine esters is carried out in the presence of suitable dispersants, preferably fatty alcohols.
  • the agents according to the invention contain amphoteric or zwitterionic surfactants.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, imidazolinium betaines and sulfobetaines.
  • Betaines are known surfactants which are predominantly produced by carboxyalkylation, preferably carboxymethylation, of aminic compounds.
  • the starting materials are preferably condensed with halocarboxylic acids or their salts, in particular with sodium chloroacetate, one mol of salt being formed per mole of betaine.
  • unsaturated carboxylic acids such as acrylic acid, is also possible.
  • betaines and "real" amphoteric surfactants, reference is made to the contribution by U.Ploog in Seifen- ⁇ le-Fette-Wwachs, 108, 373 (1982).
  • suitable betaines are the boxyalkylation products of secondary and in particular tertiary amines which follow the formula (X)
  • R 17 for alkyl and / or alkenyl radicals with 6 to 22 carbon atoms
  • R 18 for hydrogen or alkyl radicals with 1 to 4 carbon atoms
  • R 19 for alkyl radicals with 1 to 4 carbon atoms
  • t for numbers from 1 to 6
  • X ' for is an alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, decyldimethylamine, dodecyl cylmethylamin, dodecyldimethylamine, Dodecylethylmethylamin, C 12 /, 4 -Kokosalkyldime- methylamine, myristyldimethylamine, cetyldimethylamine, stearyldimethylamine, methylamine Stearylethyl-, oleyldimethylamine, C 16/18 tallow alkyl dimethyl amine as well as their technical mixtures.
  • carboxyalkylation products of amidoamines the so-called glycinates which follow the formula (XI)
  • R 0 CO represents an aliphatic acyl radical having 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • s represents numbers from 1 to 3
  • R 18 , R 19 , t and X ' have the meanings of the formula (X) given above to have.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostolic acid, gadoleic acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, gadol aric acid, , Behenic acid and erucic acid and their technical mixtures, with N, N-dimethyl
  • alkyl polyglycosides are contained as the nonionic surfactant alone or in a mixture with the amine oxides. If the alkyl polyglycosides are the sole nonionic surfactant, it is preferred in one embodiment to mix them with amphoteric or zwitterionic surfactants, in particular from the group of betaines and / or amidoamines. If the alkyl polyglycosides are the sole nonionic surfactant, it is preferred within the scope of a further embodiment of the present invention to mix them with anionic surfactants, in particular from the group of fatty alcohol sulfates, fatty alcohol ether sulfates and / or sulfosuccinates.
  • the agents according to the invention preferably contain surfactant mixtures
  • compositions according to the invention contain the surfactant mixtures described in amounts of 1 to 65, preferably 3 to 30,% by weight.
  • the gel-like compositions according to the invention additionally contain polyacrylates with average molecular weights of 750,000 to 2,500,000, preferably 1,000,000 to 1,500,000, as thickeners.
  • Preferred polyacrylates are homopolymers of acrylic acid, which can be either in acidic or neutralized form. Polyacrylates which have been polymerized in a mixture of ethyl acetate and cyclohexane are particularly preferred. If desired, the polyacrylates can be crosslinked, for example with the allyl ethers of pentaerythritol, sucrose or propylene glycol. If the polyacrylates are in their acid form, the acid number is preferably 700 to 750.
  • white powders which generally have an average particle size of 2 to 6 ⁇ .
  • the content of acrylic acid in the crosslinked products is preferably between 65 and 68%.
  • a particularly suitable representative of such polyacrylates is Carbopol 981 R from GFGoodrich, which has an average molecular weight of 1,250,000.
  • the polyacrylates are able to set an intrinsic viscosity in the gel-like composition according to the invention, which preferably also have a yield point, i.e. Without external forces (in the idle state), the agents are practically non-flowing and behave like a solid; when the agents are pressed (external forces), the agents become fluid and can be filled into the rinsing basket without problems.
  • the polyacrylates are preferably used in amounts of 0.1 to 10, preferably 1 to 5 and in particular 2 to 4% by weight, based on the agent.
  • the viscosity of the agents according to the invention is adjusted, which is preferably in the range from 5,000 to 100,000 mPas, measured with the Brookfield rotary viscometer, type RVT with the spindle 6 at 20 rpm and at 22 ° C.
  • viscosity behavior of the agents according to the invention is to be modified, conventional thickeners, for example urea, sodium chloride, sodium sulfate, magnesium sulfate, ammonium chloride and magnesium chloride, and the combination of these thickeners may be present in the agents according to the invention in addition to the cationic polymers.
  • conventional thickeners for example urea, sodium chloride, sodium sulfate, magnesium sulfate, ammonium chloride and magnesium chloride, and the combination of these thickeners may be present in the agents according to the invention in addition to the cationic polymers.
  • the gel-form cleaning agents according to the invention can contain builders, perfumes, solvents, perfume solubilizers, preservatives, dyes, pH regulators and germ-inhibiting agents.
  • the preferably water-soluble dyes are contained either for the coloring of the agent or for the coloring of the liquid surrounding the container.
  • the content of water-soluble dyes is preferably below 1% by weight and serves to improve the appearance of the product. If an additional color signal is required during the induction process, the content of water-soluble dyes can be up to 5% by weight.
  • the hygienic effect can be enhanced by adding germ-inhibiting agents.
  • Suitable germ inhibitors are in particular isothiazoline mixtures, sodium benzoate and / or salicylic acid.
  • the amount of these antimicrobial agents strongly depends on the effectiveness of the respective compound and can be up to 5% by weight.
  • the germ-inhibiting agents are preferably present in amounts of from 0.01% by weight to 3% by weight.
  • the agents according to the invention can contain, for example, alkanolamines, polyols such as ethylene glycol, propylene glycol, 1,2 glycerol and other mono- and polyhydric alcohols, and alkylbenzenesulfonates with 1 to 3 carbon atoms in the alkyl radical.
  • alkanolamines polyols such as ethylene glycol, propylene glycol, 1,2 glycerol and other mono- and polyhydric alcohols
  • alkylbenzenesulfonates with 1 to 3 carbon atoms in the alkyl radical.
  • the group of lower alcohols, particularly ethanol, is particularly preferred.
  • the content of the solvents depends on the type and amount of the constituents to be dissolved and is generally between 0 and 10, preferably between 0.01 and 7% by weight.
  • Perfume solubilizers which can be used in the agents according to the invention are polyol fatty acid esters, for example glycerol alkoxylated with 7 mol of ethylene oxide, which is esterified with coconut fatty acid (Cetiol HE R from Henkel KGaA) and / or hardened castor oil alkoxylated with 40 or 60 mol of ethylene oxide (Eumulgin HRE 40 or 60 R ; the Henkel KGaA) and / or 2-hydroxyfatty alcohol ethoxylates (Eumulgin L R ; the Henkel KGaA).
  • the amount of the perfume solubilizers in the agents according to the invention is generally between 0 and 10, preferably between 1 and 7,% by weight.
  • builders preferably water-soluble builders, since they generally have less tendency to form insoluble residues on hard surfaces.
  • Common builders which may be present in the context of the invention are the low molecular weight polycarboxylic acids and their salts, the homopolymeric and copolymeric polycarboxylic acids and their salts, the citric acid and their salts, the carbonates, phosphates and silicates.
  • Water-insoluble builders include the zeolites, which can also be used, as well as mixtures of the aforementioned builder substances. The group of citrates is particularly preferred.
  • the builders can be present in the compositions according to the invention in amounts of 0 to 5% by weight.
  • the optional perfumes are those that are common in the prior art.
  • the amount of the dosage depends on the desired fragrance intensity and is in the range from 0 to 15% by weight, preferably from 2 to 12, preferably from 3 -10 and in particular from 5 to 7% by weight.
  • conventional preservatives can also be present in the usual amounts of 0 to 1% by weight.
  • the agents according to the invention have a pH value above 6.5, preferably pH values from 6.5 to 14, particularly from 6.5 to 8 and in particular from 6.5 to 7.5.
  • the pH value can result from the selected composition of the agents alone or is achieved by the additional addition of pH regulators.
  • Suitable pH regulators are alkaline agents, with for example water-soluble amines such as triethanolamine or water-soluble hydroxides such as sodium hydroxide, which are preferably used as aqueous solutions.
  • the remaining 100% by weight of the gel detergent is water.
  • Another object of the present invention relates to the production of gel-form detergents for flush toilets according to claim 1, characterized in that a dispersion of polyacrylates with average molecular weights in the range of 750,000 to 2,500,000, nonionic surfactant and optionally other ingredients in water is produced and a pH is set above 6.5.
  • the pH is not adjusted to values above 6.5 until all the ingredients of the agents according to the invention have been distributed in water.
  • the pH regulators are added and the pH is set above 6.5, the desired high final viscosity of the agents according to the invention is achieved. After setting the final viscosity, it is then very difficult to evenly add further ingredients to the agents.
  • first the surfactants and further constituents and then the polyacrylates or only the polyacrylates and then further ingredients can be added to the water initially introduced and any solubilizers present.
  • the first variant is preferred, since after the polyacrylates have been added, the stirring speed should only be moderate to moderate.
  • compositions which are clear and have no appreciable bubbles and, moreover, contain all the ingredients of the composition in an optimally distributed manner. If bubbles are desired for the optics, these can of course be incorporated.
  • Another object of the present invention relates to the use of polyacrylates with average molecular weights of 750,000 to 2,500,000 as thickeners for the production of gel-form cleaning agents for flush toilets with a pH value above 6.5.
  • the gel-form cleaning agents are to be kept as toilet gels in containers provided for this purpose, for example on the inner edge of the toilet. It is therefore a stationary gel-form cleaning agent, especially for flush toilets.
  • the agents according to the invention are characterized by good initial foaming behavior, which can be further increased by adding amine oxides or amphoteric or zwitterionic surfactants or anionic surfactants.
  • the agents according to the invention are distinguished by an increased service life, ie an increase in the number of rinses is achieved.
  • a particular advantage also results from the fact that, in addition to their thickening action, the polyacrylates themselves have a certain perfume oil carrying capacity, as a result of which the amount of perfume to be incorporated can be increased.
  • a high amount of incorporated perfume is also desired because the agents should act as a fragrance dispenser in addition to the cleaning effect.
  • the calculated amount of water was initially charged and all constituents of the compositions were added in the amounts of surfactant, perfume and ethanol indicated in Table 1 and stirred in.
  • the amount of polyacrylate (Carbopol 981) shown in Table 1 was then added and stirred in under moderate conditions. After everything was well distributed, an aqueous sodium hydroxide solution was added until a pH of 6.5 to 7.5 was reached. Optically clear, gel-like products were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Gelförmige Reinigungsmittel für Spültoiletten enthaltend nichtionogene Tenside, insbesondere Alkylpolyglykoside, sowie Polyacrylate mit mittleren Molekulargewichten von 750.000 bis 2.500.000 als Verdicker, und hat einem pH-Wert über 6,5.

Description

"Gelförmiges Reinigungsmittel für Spültoiletten"
Die vorliegende Erfindung betrifft gelförmige Reinigungsmittel für Spültoiletten enthaltend nichtionogene Tenside, vorzugsweise Alkylpolyglykoside allein oder in Mischung mit weiteren Tensiden, sowie Polyacrylaten mit ausgewählten Molekulargewichten als Verdik- kungsmittel, ein Verfahren zu ihrer Herstellung sowie die Verwendung der ausgewählten Polyacrylate als Verdickungsmittel zur Herstellung von gelförmigen Reinigungsmitteln für Spültoiletten mit einem pH-Wert über 6,5.
Als Reinigungsmittel für Spültoiletten werden seit langem Toilettensteine in fester Anbie- tungsform eingesetzt, die mit Hilfe einer Vorrichtung entweder in den Spülkasten eingehängt oder unter dem Innenrand des WCs befestigt werden. Ihre Aufgabe besteht darin, die Toilette während des Spülvorgangs oberflächlich zu reinigen und insbesondere durch Freisetzung von Duftstoffen unangenehme Gerüche zu überdecken. Insbesondere aufgrund ihrer Aufgabe Duftstoffe freizusetzen, werden Reinigungsmittel für Spültoiletten in der Literatur auch allgemein als Duftspüler bezeichnet. Üblicherweise werden zu ihrer Herstellung Tenside, Buildersubstanzen, anorganische Salze und natürlich Duft- und Farbstoffe eingesetzt. Aus dem Stand der Technik sind eine Vielzahl derartiger Formulierungen bekannt. In der US 4,534,879 (Procter & Gamble) werden beispielsweise feste Reinigungsmittel beansprucht, die als Tensidkomponente Alkylsulfate mit 9 bis 15 Kohlenstoffatomen, Alkylbenzolsulfonate und anorganische Salze enthalten. Aus der EP-A 0 014 979 (Henkel) sind Toilettensteine bekannt, die Alkylbenzolsulfonate und Alkylsulfate sowie Fettalkohol- bzw. Alkylphenolethoxylate enthalten. Gegenstand der DE-C2 43 370 32 (Henkel) sind Toilettensteine mit einem Gehalt an Alkylsulfaten, Alkylethersulfaten und Alkylglukosiden. In der EP-A 0 268 967 (Henkel) werden Toilettensteine offenbart, die Natriumlaurylsulfat und Fettsäuremonoethanolamid enthalten. Die beschriebenen Toilettensteine werden in der Regel nach Gieß-, Preß-, Extrudier- oder Granulierverfahren gefertigt, die einen hohen technischen Aufwand erfordern und häufig durch die auftretende Temperaturbelastung (Gieß-/Εxtrudierverfahren) unerwüschte Parfümverluste erleiden.
Als nachteilig erweist es sich auch, daß die aus ökologischen Gründen verbreiteten Nach- fülleinheiten nur nach vollständigem Verbrauch des stückformigen Körpers eingesetzt werden können. Eine wünschenswerte, beliebige Nachfüllung z.B. zur stärkeren Wirkstofffreisetzung oder insbesondere der intensiveren Duftentfaltung ist nicht möglich.
Aus der deutschen Offenlegungsschrift DE- 197 15 872 A sind gelförmige Toilettenreiniger mit strukturviskosen Eigenschaften bekannt, die den Aufwand der Herstellung erheblich verringern und aufgrund einfacher Technik kostengünstiger zu produzieren sind. Auch das Problem der individuellen Nachfüllmöglichkeit kann durch derartige strukturviskose Wirkstoffzubereitungen gelöst werden. Diese gelförmigen Toilettenreiniger enthalten Polysac- charide, insbesondere Xanthan-Gum, zur Einstellung der strukturviskosen Eigenschaften, und als Tenside zwingend Alkylpolyglykoside sowie ggf. anionische und/oder nichtionische Co- Tenside. Diese gelförmigen Reinigungsmittel müssen jedoch unter Einhaltung besonderer Vorsichtsmaßnahmen bei der Gelbildung hergestellt werden, damit zum einen keine Blasen entstehen und zum anderen die weiteren Inhaltsstoffe in dem Gel gleichmäßig verteilt eingearbeitet werden können. Gemäß dieser deutschen Offenlegungsschrift sind übliche Verdicker wie die Polyacrylate Carbopol -ETD-2690, ETD-2691 und EZ 2R; alles Handelsprodukte der BFGoodrich; nicht in der Lage, stabile, gelförmige Reinigungsmittel mit hohen Tensid- und Parfümanteilen zu gewährleisten.
Aufgabe der vorliegenden Erfindung war es, gelförmige Toilettenreiniger zur Verfügung zu stellen, die zum einen die an sie gestellten Anforderungen hinsichtlich Viskositätsverhalten, Lagerbeständigkeit, gute Reinigungsleistung und ökologische Verträglichkeit erfüllen, sowie zum anderen technisch leicht herstellbar sind.
Zusätzlich sollten die gelförmigen Toilettenreiniger für Spültoiletten ein gutes Anfangsschaumverhalten aufweisen und ein klares Aussehen zeigen. Des weiteren sollten sich die unterschiedlichsten Parfümöle problemlos, insbesondere in hohen Mengen einarbeiten lassen. Weiterhin war gewünscht, daß die Verdickungsmittel selber ein gewisses Parfümöltra- gevermögen aufweisen. Und schließlich galt es, gelförmige Reinigungsmittel zur Verfügung zu stellen, die eine hohe Lebensdauer zeigen, d.h. eine hohe Zahl von Toilettenspülungen bis zur vollständigen Einspülung des Reinigungsmittels (Abspülzahl) ermöglichen.
Überraschenderweise wurde gefunden, daß gelförmige Reinigungsmittel für Spültoiletten diesen Anforderungen gerecht werden, wenn sie neben nichtionischen Tensiden Polyacrylate mit ausgewählten Molekulargewichten als Verdicker enthalten.
Ein Gegenstand der vorliegenden Erfindung sind demgemäß gelförmige Reinigungsmittel für Spültoiletten enthaltend Verdicker und nichtionische Tenside sowie ggf. weitere Inhaltsstoffe, dadurch gekennzeichnet, daß sie als Verdicker Polyacrylate mit mittleren Molekulargewichten im Bereich von 750.000 bis 2 .500.000 enthalten, wobei die Mittel einen pH- Wert über 6,5 aufweisen.
Als Tenside enthalten die erfindungsgemäßen Mittel zwingend nichtionische Tenside. Nichtionische Tenside im Rahmen der vorliegenden Erfindung können alkoxylierte Alkohole, wie Polyglycolether, Fettalkoholpolygycolether, Alkylphenolpolyglycolether, endruppenverschlossene Polyglycolether, Mischether, Hydroxymischether, alkoxylierte Carbonsäureester, Aminoxide und Alkylpolyglykoside sein. Ebenfalls verwendbar sind Ethylenoxid- Propylenoxid-Blockpolymere und Fettsäurealkanolamide und Fettsäurepoly- glycolether. Besonders bevorzugt sind in den erfindungsgemäßen Mitteln als nichtionische Tenside Alkylpolyglykoside alleine oder in Mischung mit weiteren nichtionischen Tensiden enthalten.
Alkylpolyglykoside stellen bekannte nichtionische Tenside dar, die der Formel (I) folgen,
RO-[G]p (I)
in der R für einen Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für eine Zahl zwischen 1 und 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p - 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest Rkann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Un- decylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-CI8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11- Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/!4-Kokosalkohol mit einem DP von 1 bis 3. Als weiteres nichtionisches Tensid, vorzugsweise in Mischung mit den beschriebenen Al- kylpolyglykosiden, können die erfindungsgemäßen Mittel Fettsäurealkanolamide enthalten, die vorzugsweise der Formel (II) folgen,
R3
R'CO-N-R2 (II)
in der R'CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für einen Hydroxyalkylrest mit 2 bis 4 Kohlenstoffatomen und R3 für Wasserstoff oder R2 steht. Auch hierbei handelt es sich um bekannte Zusatzstoffe, die gewöhnlich durch Kondensation von Fettsäuren mit Alkanolaminen hergestellt werden. Typische Beispiele sind Kondensationsprodukte von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petrose- linsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. deren technischen Mischungen mit Monoethanolamin und Diethanolamin. Vorzugsweise werden Fettsäurealkanolamide der Formel (II) eingesetzt, in der R'CO für einen Acylrest mit 12 bis 18 Kohlenstoffatomen, R2 für einen Hydroxyethylrest und R3 für R2 oder Wasserstoff steht. Besonders bevorzugt ist der Einsatz von C,2 I4- bzw. C12/lg-Kokosfettsäuremono- bzw. - diethanolamid.
Als weitere Gruppe nichtionischer Tenside kommen Alkoholethoxylate in Frage, die vorzugsweise in Mischung mit den schon beschriebenen Alkylpolyglykosiden vorliegen und der Formel (III) folgen,
R4O-(CH2CH2O)zH (III)
in der R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 12 bis 18 Kohlenstoffatomen und z für Zahlen von 1 bis 50, vorzugsweise 5 bis 30 steht. Auch diese Stoffe stellen bekannte großtechnische Produkte dar, die für gewöhnlich durch basenkatalysierte Anlagerung von Ethylenoxid an primäre Alkohole hergestellt werden. In Abhängigkeit der verwendeten Katalysatoren (z.B. Natriummethylat oder calciniertes Hydrotalcit) können die Ethoxylate eine konventionelle oder eingeengte Homologenverteilung aufweisen. Bei den Alkoholethoxylaten kann es sich um Addukte von 1 bis 50 Mol Ethylenoxid an Fettalkohole ("Fettalkoholethoxylate") oder Oxoalkohole ("Oxoalkoholethoxylate") handeln. Typische Beispiele sind die Ethoxylate von Capronalkohol, Caprylalkohol, 2- Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elai- dylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Addukte von 1 bis 50, vorzugsweise 5 bis 30 und insbesondere 10 bis 20 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Taigfettalkohol.
Als weitere Gruppe geeigneter nichtionischer Tenside, vorzugsweise in Mischung mit den schon beschriebenen Alkylpolyglykosiden, können alkoxylierte Carbonsäureester der Formel (IV) enthalten sein,
R5C(OAlk)nOR6 (IV)
II o
in der R5CO für einen aliphatischen Acylrest, AlkO für CH2CH2O, CHCH3CH2O und/oder CH2CHCH3O, n für Zahlen von 1 bis 20 und R6 für einen aliphatischen Alkylrest steht.
Alkoxylierte Carbonsäureester der Formel (IV) sind aus dem Stand der Technik bekannt. So sind beispielsweise derartige alkoxylierte Carbonsäureester durch Veresterung von al- koxylierten Carbonsäuren mit Alkoholen zugänglich. Bevorzugt im Sinne der vorliegenden Erfindung werden die Verbindungen jedoch durch Umsetzung von Carbonsäureestern mit Alkylenoxiden unter Verwendung von Katalysatoren hergestellt, insbesondere unter Verwendung von calciniertem Hydrotalcit gemäß der deutschen Offenlegungsschrift DE-A- 39 14 131, die Verbindungen mit einer eingeschränkten Homologenverteilung liefern. Bevorzugt gemäß der vorliegenden Erfindung werden alkoxylierte Carbonsäureester der allgemeinen Formel (IV), in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, AlkO für einen CH2CH2O-, CHCH3CH2O- und/oder CH2-CHCH3O-Rest, n durchschnittlich für Zahlen von 3 bis 20 und R6 für einen aliphatischen Alkylrest mit 1 bis 22 Kohlenstoffatomen steht.
Bevorzugte Acylreste leiten sich von Carbonsäuren mit 6 bis 22 Kohlenstoffatomen natürlicher oder synthetischer Herkunft ab, insbesondere von geradkettigen gesättigten und/oder ungesättigten Fettsäuren einschließlich technischer Gemische derselben, wie sie durch Fettspaltung aus tierischen und/oder pflanzlichen Fetten und Ölen zugänglich sind, zum Beispiel aus Kokosöl, Palmkernöl, Palmöl, Sojaöl, Sonnenblumenöl, Rüböl, Baumwollsaatöl, Fischöl, Rindertalg und Schweineschmalz. Beispiele für derartige Carbonsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und/oder Erucasäure. Insbesondere steht R5CO für einen geradkettigen, geradzahligen Acylrest mit 8 bis 18 Kohlenstoffatomen. Bevorzugte Alkylreste R6 leiten sich von primären, aliphatischen monofunktionellen Alkoholen mit 1 bis 22 Kohlenstoffatomen ab, die gesättigt und/oder ungesättigt sein können. Beispiele für geeignete Monoalkohole sind Methanol, Ethanol, Propanol, Butanol, Pentanol sowie die Hydrierungsprodukte der oben genannten Carbonsäuren mit 6 bis 22 Kohlenstoffatomen. Insbesondere steht R6 für einen Methylrest. Vorzugsweise steht AlkO für einen CH2CH2O-Rest. Insbesondere geeignet sind alkoxylierte Carbonsäureester der Formel (IV), in der R5CO für einen geradkettigen, geradzahligen Acylrest mit 8 bis 18 Kohlenstoffatomen, AlkO für einen CH2CH2O-Rest, n durchschnittlich für Zahlen von 5 bis 15 und R6 für einen Methylrest steht. Beispiele für derartige Verbindungen sind mit im Durchschnitt 5, 7, 9 oder 11 Mol Ethylenoxid alkoxylierte Carbonsäuremethylester.
Besonders bevorzugt enthalten die erfindungsgemäßen Mittel als nichtionisches Tensid Aminoxide, vorzugsweise in Mischung mit den schon beschriebenen Alkylpolygylkosiden. Zur Herstellung von Alkylaminoxiden geht man von tertiären Fettaminen aus, die üblicherweise entweder einen langen und zwei kurze oder zwei lange und einen kurzen Alkylrest aufweisen, und oxidiert sie in Gegenwart von Wasserstofφeroxid. Die im Sinne der Erfindung in Betracht kommenden Alkylaminoxide folgen der Formel (V),
R7
I
R'-N→O (V)
I
R8
in der R9 für einen linearen oder verzweigten Alkylrest mit 12 bis 18 Kohlenstoffatomen sowie R7 und R8 unabhängig voneinander für R9 oder einen gegebenenfalls hydroxysub- stituierten Alkylrest mit 1 bis 4 Kohlenstoffatomen stehen. Vorzugsweise werden Aminoxide der Formel (V) eingesetzt, in der R9 und R7 für C12/14- bzw. C12/18-Kokosalkylreste stehen und R8 einen Methyl- oder einen Hydroxyethylrest bedeutet. Ebenfalls bevorzugt sind Aminoxide der Formel (V), in denen R9 für einen Cun4- bzw. C]2/18- Kokosalkylrest steht und R7 und R8 die Bedeutung eines Methyl- oder Hydroxyethylrestes haben.
Innerhalb der Gruppe der Aminoxide kommen auch die sogenannten Amidoaminoxide in Betracht, die der allgemeinen Formel (VI) folgen,
R10
I
R12CO-NH-(CH2)q-N→O (VI)
R11
in der R12CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, q für Zahlen von 1 bis 3 steht und R10, R11 unabhängig voneinander für R9 oder einen gegebenenfalls hydroxysubstituierten Alkylrest mit 1 bis 4 Kohlenstoffatomen stehen. Ein typisches Beispiel ist Dimethyl-N-(kokosamidopropyl)aminoxid.
Die erfindungsgemäßen Mittel können die nichtionischen Tenside, vorzugsweise die Alkylpolyglykoside alleine oder in Mischung mit den Aminoxiden, als alleiniges Tensid enthalten. Es ist aber auch möglich, daß die erfmdungsgemäßen Mittel zusätzlich anionische, kationische und/oder amphotere bzw. zwitterionische Tenside enthalten.
Geeignete anionische Tenside sind beispielsweise aliphatische Sulfate wie Fettalkoholsulfate, Fettalkoholethersulfate, Fettsäurepolyglykolestersulfate, Dialkylethersulfate, Mono- glycerid(ether)sulfate und aliphatische Sulfonate wie Alkansulfonate, Olefinsulfonate, Ether- sulfonate, n-Alkylethersulfonate, Estersulfonate, Lingninsulfonate und Sulfosuccinate. Als anionische Tenside werden bevorzugt Fettalkoholsulfate, Fettalkoholethersulfate, Sulfosuccinate und/oder Fettsäurepolyglykolestersulfate.
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (VII) folgen,
R13O-SO3X (VII)
in der R13 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2- Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl- alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talgfettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze.
Alkylethersulfate ("Ethersulfate") stellen bekannte anionische Tenside dar, die großtechnisch durch SO3- oder Chlorsulfonsäure (CSA)-Sulfatierung von Fettalkohol- oder Oxo- alkoholpolyglycolethem und nachfolgende Neutralisation hergestellt werden. Im Sinne der Erfindung kommen Ethersulfate in Betracht, die der Formel (VIII) folgen,
R14O-(CH2CH2O)mSO3X (VIII)
in der R14 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, m für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele sind die Sulfate von Anlagerungsprodukten von durchschnittlich 1 bis 10 und insbesondere 2 bis 5 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petro- selinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen in Form ihrer Natrium- und/oder Magnesiumsalze. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aufweisen. Besonders bevorzugt ist der Einsatz von Ethersulfaten auf Basis von Addukten von durchschnittlich 2 bis 3 Mol Ethylenoxid an technische C12/14- bzw. C!2/]8- Kokosfettalkoholfraktionen in Form ihrer Natrium- und/oder Magnesiumsalze.
Sulfosuccinate, die auch als Sulfobernsteinsäureester bezeichnet werden, stellen bekannte anionische Tenside dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Sie folgen der Formel (IX),
SO3X
I
R15(OCH2CH2)uOOC-CH-CH2-COO(CH2CH2O)vR16 (IX)
in der R15 für einen Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, R16 für R15 oder X, u und v unabhängig voneinander für 0 oder Zahlen von 1 bis 10 und X für ein Alkalioder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Zu ihrer Herstellung geht man üblicherweise von Maleinsäure, vorzugsweise aber Maleinsäureanhydrid aus, die im ersten Schritt mit gegebenenfalls ethoxy- lierten primären Alkoholen verestert werden. An dieser Stelle kann durch Variation von Alkoholmenge und Temperatur das Mono-/Diester- Verhältnis eingestellt werden. Im zweiten Schritt erfolgt die Anlagerung von Bisulfit, die üblicherweise im Lösungsmittel Methanol durchgeführt wird. Neuere Übersichten zu Herstellung und Verwendung von Sulfosuccinaten sind beispielsweise von T. Schoenberg in Cosm.Toil. 104, 105 (1989), J. A. Milne in R.Soc.Chem. (Ind. Appl. Surf.II) 77, 77 (1990) sowie W. Hreczuch et al. in J.Am.Oil.Chem.Soc. 70, 707 (1993) erschienen. Typische Beispiele sind Sulfobern- steinsäuremono- und/oder -diester in Form ihrer Natriumsalze, die sich von Fettalkoholen mit 8 bis 18, vorzugsweise 8 bis 10 bzw. 12 bis 14 Kohlenstoffatomen ableiten; die Fettalkohole können dabei mit durchschnittlich 1 bis 10 und vorzugsweise 1 bis 5 Mol Ethylenoxid verethert sein und dabei sowohl eine konventionelle als auch vorzugsweise eine eingeengte Homologenverteilung aufweisen. Exemplarisch genannt seien Di-n-octylsulfosuccinat und Monolauryl-3EO-sulfosuccinat in Form ihrer Natriumsalze.
Als kationische Tenside können die erfindungsgemäßen Mittel quatäre Ammoniumverbindungen und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminester-Salze enthalten.
Unter der Bezeichnung "Esterquats" werden im allgemeinen quaternierte Fettsäuretrietha- nolaminestersalze verstanden. Es handelt sich dabei um bekannte Stoffe, die man nach den einschlägigen Methoden der präparativen organischen Chemie erhalten kann. In diesem Zusammenhang sei auf die internationale Patentanmeldung WO 91/01295 (Henkel) verwiesen, nach der man Triethanolamin in Gegenwart von unterphosphoriger Säure mit Fettsäuren partiell verestert, Luft durchleitet und anschließend mit Dimethylsulfat oder Ethylenoxid quaterniert. Aus der deutschen Patentschrift DE 43 087 94 Cl (Henkel) ist überdies ein Verfahren zur Herstellung fester Esterquats bekannt, bei dem man die Quaternierung von Triethanolaminestern in Gegenwart von geeigneten Dispergatoren, vorzugsweise Fettalkoholen, durchführt. Übersichten zu diesem Thema sind beispielsweise von R.Puchta et al. in Tens.Surf.Det., 30, 186 (1993), M.Brock in Tens.Surf.Det. 30, 394 (1993), R.Lagerman et al. in J.Am.Oil.Chem.Soc, 71, 97 (1994) sowie I.Shapiro in Cosm.Toil. 109, 77 (1994) erschienen. Einer weiteren Ausführungsform der vorliegenden Erfindung entsprechend enthalten die erfindungsgemäßen Mittel neben den nichtionischen Tensiden amphotere bzw. zwitterionische Tenside. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkyl- betaine, Alkylamidobetaine, Aminopropionate, Imidazoliniumbetaine und Sulfobetaine.
Betaine stellen bekannte Tenside dar, die überwiegend durch Carboxyalkylierung, vorzugsweise Carboxymethylierung von aminischen Verbindungen hergestellt werden. Vorzugsweise werden die Ausgangsstoffe mit Halogencarbonsäuren oder deren Salzen, insbesondere mit Natriumchloracetat kondensiert, wobei pro Mol Betain ein Mol Salz gebildet wird. Ferner ist auch die Anlagerung von ungesättigten Carbonsäuren, wie beispielsweise Acrylsäure möglich. Zur Nomenklatur und insbesondere zur Unterscheidung zwischen Betainen und "echten" Amphotensiden sei auf den Beitrag von U.Ploog in Seifen-Öle-Fette- Wachse, 108, 373 (1982) verwiesen. Beispiele für geeignete Betaine stellen die Car- boxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (X) folgen,
R18
I
R17-N-(CH2)tCOOX' (X)
R I ,9
in der R17 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R18 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R19 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, t für Zahlen von 1 bis 6 und X' für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, Decyldimethylamin, Dode- cylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/,4-Kokosalkyldime- thylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethyl- methylamin, Oleyldimethylamin, C16/18-Talgalkyldimethylamin sowie deren technische Gemische. Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die sogenannten Glycinate, die der Formel (XI) folgen,
R 8 I
R20CO-NH-(CH2)s-N-(CH2)tCOOX (XI)
I
R19
in der R 0CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, s für Zahlen von 1 bis 3 steht und R18, R19, t und X' die oben angegebenen Bedeutungen der Formel (X) haben. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäure, Caprylsäure, Ca- prinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostea- rinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, N,N-Dimethylaminopropylamin, N,N- Diethylaminoethylamin und N,N-Diethylaminopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/]8- Kokosfettsäure-N,N-dimethylaminopropylamid mit Natriumchloracetat.
In einer bevorzugten Ausfuhrungsform der Erfindung, sind als nichtionisches Tensid Alkylpolyglykoside alleine oder in Mischung mit den Aminoxiden enthalten. Sofern die Alkylpolyglykoside das alleinige nichtionische Tensid sind, ist es im Rahmen einer Ausführungsform bevorzugt, diese mit amphoteren bzw. zwitterionischen Tensiden, insbesondere aus der Gruppe der Betaine und/oder Amidoaminen zu mischen. Sofern die Alkylpolyglykoside das alleinige nichtionische Tensid sind, ist es im Rahmen einer weiteren Ausführungsform der vorliegenden Erfindung bevorzugt, diese mit anionischen Tensiden, insbesondere aus der Gruppe der Fettalkoholsulfate, Fettalkoholethersulfate und/oder Sulfosuccinate zu mischen.
Demgemäß enthalten die erfindungsgemäßen Mittel vorzugsweise Tensidgemische aus
(a) 25 bis 100, vorzugsweise 40 bis 100 Gew.-% Alkylpolyglykoside,
(b) 0 bis 75, vorzugsweise 25 bis 60 Gew.-% Aminoxide und
(c) O bis 75, vorzugsweise 25 bis 60 Gew. -% amphotere bzw. zwitterionische Tenside oder anionische Tenside mit der Maßgabe, daß sich die Mengen zu 100 Gew.-% - bezogen auf Tensidmischung - ergänzen.
Die erfindungsgemäßen Mittel enthalten die beschriebenen Tensidmischungen in Mengen von 1 bis 65, vorzugsweise von 3 bis 30 Gew.% .
Die erfindungsgemäßen gelförmigen Mittel enthalten außer den schon beschriebenen Tensiden zusätzlich Polyacrylate mit mittleren Molekulargewichten von 750.000 bis 2.500.000, vorzugsweise 1.000.000 bis 1. 500.000, als Verdicker. Als Polyacrylate sind Homopolymerisate von Acrylsäure bevorzugt, die entweder in saurer oder neutralisierter Form vorliegen können. Besonders bevorzugt werden Polyacrylate, die in einem Gemisch aus Ethylacetat und Cyclohexan polymerisiert worden sind. Falls gewünscht, können die Polyacrylate vernetzt werden, beispielsweise mit den Allylethern von Pentaerythrit, Sucrose oder Propylenglykol. Sofern die Polyacrylate in ihrer Säureform vorliegen, beträgt die Säurezahl vorzugsweise 700 bis 750. Es handelt sich dabei um weiße Pulver, die in der Regel eine Teilchengröße von durchschnittlich 2 bis 6 μ aufweisen. In den vernetzten Produkten liegt der Gehalt an Acrylsäure vorzugsweise zwischen 65 und 68 %. Ein besonders geeigneter Vertreter derartiger Polyacrylate ist Carbopol 981R der Firma GFGoodrich, welches ein mittleres Molekulargewicht von 1.250.000 aufweist.
Die Polyacrylate sind als Verdicker in der Lage, eine Strukturviskosität bei dem erfindungsgemäßen gelförmigen Mittel einzustellen, die vorzugsweise zudem eine Fließgrenze aufweisen, d.h. ohne äußere Kräfteeinwirkung (im Ruhezustand) sind die Mittel praktisch nicht fließend und verhalten sich wie ein Festkörper, beim Drücken der Mittel (äußere Kräfteeinwirkung) werden die Mittel fließfähig und können ohne Probleme in die Spülkörbchen eingefüllt werden.
Die Polyacrylate werden vorzugsweise in Mengen von 0,1 bis 10, bevorzugt von 1 bis 5 und insbesondere von 2 bis 4 Gew.% - bezogen auf Mittel - eingesetzt. Mit Hilfe der Verdicker wird die Viskosität der erfindungsgemäßen Mittel eingestellt, die vorzugsweise im Bereich von 5 000 bis 100 000 mPas, gemessen mit dem Brookfield Rotationsviskosimeter, Typ RVT mit der Spindel 6 bei 20 U/min und bei 22 °C, liegt. Falls die erfindungsgemäßen Mittel in ihrem Viskositätsverhalten weiter modifiziert werden sollen, können neben den kationischen Polymeren übliche Verdickungsmittel, beispielsweise Harnstoff, Natriumchlorid, Natriumsulfat, Magnesiumsulfat, Ammoniumchlorid und Magnesiumchlorid sowie die Kombination dieser Verdickungsmittel in den erfindungsgemäßen Mitteln enthalten sein.
Die erfindungsgemäßen gelförmigen Reinigungsmittel können außer den schon beschriebenen Tensiden und den Verdickern Builder, Parfüme, Lösungsmittel, Parfiimsolubilisatoren, Konservierungsmittel, Farbstoffe, pH-Regulantien sowie keimhemmende Mittel enthalten.
Die vorzugsweise wasserlöslichen Farbstoffe sind entweder für die Farbgebung des Mittels oder für die Farbgebung der den Behälter umspielenden Flüssigkeit enthalten. Bevorzugt liegt der Gehalt an wasserlöslichen Farbstoffen unter 1 Gew.-% und dient zur Verbesserung der Optik des Produktes. Wenn ein zusätzliches Farbsignal beim Einspül Vorgang gewünscht ist, kann der Gehalt an wasserlöslichen Farbstoffen bis 5 Gew.-% betragen.
Die hygienische Wirkung kann durch Zusatz keimhemmender Mittel verstärkt werden. Geeignete keimhemmende Mittel sind insbesondere Isothiazolingemische, Natriumbenzoat und/oder Salicylsäure. Die Menge dieser keimhemmenden Mittel hängt stark von der Wirksamkeit der jeweiligen Verbindung ab und kann bis zu 5 Gew.-% betragen. Vorzugsweise sind die keimhemmenden Mittel in Mengen von 0,01 Gew.-% bis 3 Gew.-% enthalten.
Als Lösungsmittel, insbesondere für Farbstoffe und Parfümöle, können in den erfindungsgemäßen Mitteln beispielsweise Alkanolamine, Polyole wie Ethylenglycol, Propylenglycol, 1,2 Glycerin und andere ein- und mehrwertige Alkohole, sowie Alkylbenzolsulfonate mit 1 bis 3 Kohlenstoffatomen im Alkylrest enthalten sein. Besonders bevorzugt ist dabei die Gruppe der niederen Alkohole, ganz besonders Ethanol. Der Gehalt der Lösungsmittel ist abhängig von der Art und Menge der zu lösenden Bestandteile und liegt in der Regel zwischen 0 und 10, vorzugsweise zwischen 0,01 und 7 Gew.%. Als Parfümsolubilisatoren können in den erfindungsgemäßen Mitteln Polyolfettsäureester, beispielsweise mit 7 Mol Ethylenoxid alkoxyliertes Glycerin, welches mit Kokosfettsäure verestert ist (Cetiol HER der Henkel KGaA) und/oder mit 40 oder 60 Mol Ethylenoxid alkoxyliertes gehärtetes Ricinusöl (Eumulgin HRE 40 bzw. 60R; der Henkel KGaA) und/oder 2-Hydroxyfettalkoholethoxylate (Eumulgin LR; der Henkel KGaA) enthalten sein. Die Menge der Parfümsolubilisatoren in den erfindungsgemäßen Mitteln liegt in der Regel zwischen 0 und 10, vorzugsweise zwischen 1 und 7 Gew.%.
Weitere fakultative Bestandteile der erfindungsgemäßen Mittel sind Builder, vorzugsweise wasserlösliche Builder, da sie auf harten Oberflächen in der Regel weniger dazu tendieren unlösliche Rückstände zu bilden. Übliche Builder, die im Rahmen der Erfindung zugegen sein können, sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Citronensäure und ihre Salze, die Carbonate, Phosphate und Silikate. Zu wasserunlöslichen Buildern zählen die Zeolithe, die ebenfalls verwendet werden können, ebenso wie Mischungen der vorgenannten Builder- substanzen. Besonders bevorzugt ist die Gruppe der Citrate. Die Builder können in Mengen von 0 bis 5 Gew.% in den erfindungsgemäßen Mitteln enthalten sein.
Bei den fakultativ enthaltenen Parfümen handelt es sich um die aus dem Stand der Technik gängigen. Die Menge der Dosierung ist abhängig von der gewünschten Duftintensität und liegt im Bereich von 0 bis 15 Gew.%, vorzugsweise von 2 bis 12, bevorzugt von 3 -10 und insbesondere von 5 bis 7 Gew.%.
Des weiteren können noch übliche Konservierungsmittel in den üblichen Mengen von 0 bis 1 Gew.% enthalten sein.
Die erfindungsgemäßen Mittel weisen zur Erreichung eines optimalen Verdickungsergeb- nisses einen pH- Wert über 6,5 auf, vorzugsweise pH- Werte von 6,5 bis 14, besonders von 6,5 bis 8 und insbesondere von 6,5 bis 7,5. Der pH- Wert kann sich durch die gewählte Zusammensetzung der Mittel alleine ergeben oder wird durch zusätzliche Zugabe von pH- Regulantien erreicht. Geeignete pH-Regulantien sind alkalisch reagierende Mittel, bei- spielsweise wasserlösliche Amine wie Triethanolamin oder wasserlösliche Hydroxide wie Natriumhydroxid, die vorzugsweise als wäßrige Lösungen eingesetzt werden.
Der zu 100 Gew.% fehlende Rest der gelförmigen Reinigungsmittel ist Wasser.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Herstellung von gelförmigen Reinigungsmitteln für Spültoiletten nach Anspruch 1, dadurch gekennzeichnet, daß eine Dispersion aus Polyacrylaten mit mittleren Molekulargewichten im Bereich von 750.000 bis 2.500.000, nichtionischem Tensid sowie ggf. weiteren Inhaltsstoffen in Wasser hergestellt und ein pH- Wert über 6,5 eingestellt wird.
Nach dem erfindungsgemäßen Verfahren ist es wesentlich, daß die pH- Wert-Einstellung auf Werte über 6,5 erst dann erfolgt, wenn alle Inhaltsstoffe der erfindungsgemäßen Mittel in Wasser verteilt vorliegen. Bei Zugabe der pH-Wert-Regulantien und damit bei pH- Werteinstellung über 6,5 wird die gewünschte hohe Endviskosität der erfindungsgemäßen Mittel erreicht. Nach der Einstellung der Endviskosität ist es dann sehr schwierig, weitere Inhaltsstoffe in die Mittel gleichmäßig einzubringen. Im Sinne des erfindungsgemäßen Verfahrens können sowohl zu vorgelegtem Wasser und ggf. vorhandenen Lösungsvermittlern erst die Tenside und weitere Bestandteile und dann die Polyacrylate oder erst die Polyacrylate und dann weitere Inhaltsstoffe zugegeben werden. Bevorzugt wird nach der ersten Variante gearbeitet, da nach Zugabe der Polyacrylate die Rührgeschwindigkeit nur noch mittel bis moderat sein sollte.
Nach dem erfindungsgemäßen Verfahren werden Mittel erhalten, die klar sind und keine nennenswerten Blasen aufweisen und zudem optimal verteilt alle Inhaltsstoffe der Mittel enthalten. Falls für die Optik Blasen gewünscht werden, können diese selbstverständlich eingearbeitet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von Polyacrylaten mit mittleren Molekulargewichten von 750.000 bis 2.500.000 als Verdicker zur Herstellung von gelförmigen Reinigungsmitteln für Spültoiletten mit einem pH- Wert über 6,5. Im Sinne der Erfindung sollen die gelförmigen Reinigungsmittel als Toilettengele in dafür vorgesehene Behälter beispielsweise am Innenrand des WCs aufbewahrt werden. Es handelt sich somit um stationär angebrachte gelförmige Reinigungsmittel, insbesondere für Spültoiletten. Die erfindungsgemäßen Mittel zeichnen sich durch ein gutes Anfangsschäumverhalten aus, das durch Zusatz von Aminoxiden oder amphoteren bzw. zwitterionischen Tensiden oder anionischen Tensiden noch zusätzlich zu steigern ist. Weiterhin zeichnen sich die erfindungsgemäßen Mittel durch eine erhöhte Lebensdauer aus, d.h. eine Erhöhung der Abspülzahl wird erreicht. Ein besonderer Vorteil ergibt sich auch dadurch, daß die Polyacrylate neben ihrer Verdickerwirkung selber ein gewisses Parfümöltragevermögen aufweisen, wodurch die Menge an einzuarbeitendem Parfüm gesteigert werden kann. Eine hohe Menge an eingearbeitetem Parfüm wird auch deshalb gewünscht, da die Mittel neben der Reinigungswirkung als Duftspender wirken sollen.
Beispiele
Allgemeine Herstellvorschrift:
Es wurde die berechnete Menge Wasser vorgelegt und alle Bestandteile der Mittel in den in Tabelle 1 angegebenen Mengen an Tensid, Parfüm, und Ethanol zugegeben und untergerührt. Anschließend wurde die in Tabelle 1 wiedergegebene Menge an Polyacrylat (Carbopol 981) zugegeben und unter moderaten Bedingungen untergerührt. Nachdem sich alles gut verteilt hatte, wurde eine wäßrige Natriumhydroxid-Lösung zugegeben, bis ein pH- Wert von 6,5 bis 7,5 erreicht war. Man erhielt optisch klare, gelförmige Produkte.
Figure imgf000021_0001
Legende
1 = Alkylpolyglucosid mit 8 und 10 C- Atomen im Alkylrest; DP= 1,6; Glucopon 220 R;
Henkel KGaA
2 = Alklypolyglucosid mit 12 und 14 C- Atomen (70:30) im Alkylrest; DP = 1,4; Glucopon
600 R; Henkel KGaA
3 = Dimethyl-N-Kokosalkylammoniumbetain
4 = Dimethyl-N-(Kokosamidopropyl)aminoxid
5 = Dimethyl-N(C12/14alkyl)aminoxid
6 = Natriumsalz eines C12/14 (C12: C14 ungefähr 70: 30)- Alkoholsulfats, ethoxyliert mit 2 Mol Ethylenoxid
7 = Di-Na-Salz eines Fettalkoholpolyglykolethersulfosuccinats (Texapon SB3R, Henkel
KGaA)
8 = Natriumsalz eines C12/14 (C12: C14 ungefähr 70 : 30)- Alkoholsulfats

Claims

P a t e n t a n s p r ü c h e
1. Gelförmige Reinigungsmittel für Spültoiletten enthaltend Verdicker und nichtionische Tenside sowie ggf. weitere Inhaltsstoffe, dadurch gekennzeichnet, daß als Verdicker Polyacrylate mit mittleren Molekulargewichten von 750.000 bis 2.500.000 enthalten sind und die Mittel einen pH- Wert über 6,5 aufweisen.
2. Gelförmige Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß als nichtionische Tenside Alkylpolyglykoside enthalten sind.
3. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als nichtionische Tenside Aminoxide enthalten sind.
4. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich amphotere bzw. zwitterionische Tenside enthalten sind, vorzugsweise Betaine und/oder Amidoamine.
5. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzlich anionische Tenside, vorzugsweise Fettalkoholsulfate, Fettalkoholethersulfate, Sulfosuccinate und/oder Fettsäurepolyglykolestersulfate enthalten sind.
6. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Tensidgemische enthalten sind aus
(a) 25 bis 100, vorzugsweise 40 bis 100 Gew.-% Alkylpolyglykoside,
(b) 0 bis 75, vorzugsweise 25 bis 60 Gew.-% Aminoxide und
(c) 0 bis 75, vorzugsweise 25 bis 60 Gew.-% amphotere bzw. zwitterionische Tenside oder anionische Tenside mit der Maßgabe, daß sich die Mengen zu 100 Gew.-% - bezogen auf Tensidmischung - ergänzen.
7. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Verdicker Polyacrylate mit mittleren Molekulargewichten von 1.000.000 bis 1.500.000 enthalten.
8. Gelförmiges Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Mittel eine Viskosität von 5 000 bis 100 000 mPas aufweisen.
9. Gelförmige Reinigungsmittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie einen pH-Wert im Bereich von 6,5 bis 8 aufweisen.
10. Verfahren zur Herstellung von gelförmigen Reinigungsmitteln für Spültoiletten nach Anspruch 1, dadurch gekennzeichnet, daß eine Dispersion aus Polyacrylaten mit mittleren Molekulargewichten im Bereich von 75.000 bis 2.500.000, nichtionischem Tensid sowie ggf. weiteren Inhaltsstoffen in Wasser hergestellt und ein pH- Wert über 6,5 eingestellt wird.
11. Verwendung von Polyacrylaten mit mittleren Molekulargewichten von 750.000 bis 2.500.000 als Verdicker zur Herstellung von gelförmigen Reinigungsmitteln für Spültoiletten mit einem pH- Wert über 6,5.
PCT/EP2000/001813 1999-03-11 2000-03-02 Gelförmiges reinigungsmittel für spültoiletten WO2000053718A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910788.2 1999-03-11
DE1999110788 DE19910788A1 (de) 1999-03-11 1999-03-11 Gelförmiges Reinigungsmittel für Spültoiletten

Publications (2)

Publication Number Publication Date
WO2000053718A1 true WO2000053718A1 (de) 2000-09-14
WO2000053718A8 WO2000053718A8 (de) 2001-04-05

Family

ID=7900557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/001813 WO2000053718A1 (de) 1999-03-11 2000-03-02 Gelförmiges reinigungsmittel für spültoiletten

Country Status (2)

Country Link
DE (1) DE19910788A1 (de)
WO (1) WO2000053718A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004591A1 (en) * 2000-07-12 2002-01-17 S.C. Johnson & Son, Inc. Lavatory freshening and/or cleaning system and method
US7048205B2 (en) 2000-07-12 2006-05-23 S.C. Johnson & Son, Inc. Lavatory freshening and/or cleaning system and method
US8143206B2 (en) 2008-02-21 2012-03-27 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US8143205B2 (en) 2008-02-21 2012-03-27 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US8307467B2 (en) 2007-08-23 2012-11-13 The Clorox Company Toilet device with indicator
US8980813B2 (en) 2008-02-21 2015-03-17 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion on a vertical hard surface and providing residual benefits
US9169456B2 (en) 2008-02-21 2015-10-27 S.C. Johnson & Son, Inc. Cleaning composition comprising an ethoxylated alcohol blend, having high self-adhesion and providing residual benefits
US9410111B2 (en) 2008-02-21 2016-08-09 S.C. Johnson & Son, Inc. Cleaning composition that provides residual benefits
US9481854B2 (en) 2008-02-21 2016-11-01 S. C. Johnson & Son, Inc. Cleaning composition that provides residual benefits

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562770B2 (en) * 2001-03-27 2003-05-13 Colgate-Palmolive Co. Fragrance-containing gel for delivering fragrance from structured liquid detergent compositions
US20070117736A1 (en) * 2005-11-22 2007-05-24 Figger David L Sprayable high viscosity thixotropic surface cleaners
US9376793B2 (en) 2012-11-09 2016-06-28 Reckitt Benckiser Llc Single use, foldable dispenser for an adhesive lavatory treatment composition
ITMI20131545A1 (it) 2013-09-19 2015-03-20 Bolton Manitoba S P A Composizione adesiva detergente e/o profumante e/o igienizzante

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323209A2 (de) * 1987-12-30 1989-07-05 Unilever Plc Reinigungsmittel
EP0373864A2 (de) * 1988-12-15 1990-06-20 The Procter & Gamble Company Stabile, verdickte wässrige Bleichmittelzusammensetzungen
WO1998040452A1 (en) * 1997-03-11 1998-09-17 Unilever Plc Hard-surface cleaning compositions
DE19715872A1 (de) * 1997-04-16 1998-10-22 Henkel Kgaa Gelförmiges Reinigungsmittel für Spültoiletten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323209A2 (de) * 1987-12-30 1989-07-05 Unilever Plc Reinigungsmittel
EP0373864A2 (de) * 1988-12-15 1990-06-20 The Procter & Gamble Company Stabile, verdickte wässrige Bleichmittelzusammensetzungen
WO1998040452A1 (en) * 1997-03-11 1998-09-17 Unilever Plc Hard-surface cleaning compositions
DE19715872A1 (de) * 1997-04-16 1998-10-22 Henkel Kgaa Gelförmiges Reinigungsmittel für Spültoiletten

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048205B2 (en) 2000-07-12 2006-05-23 S.C. Johnson & Son, Inc. Lavatory freshening and/or cleaning system and method
WO2002004591A1 (en) * 2000-07-12 2002-01-17 S.C. Johnson & Son, Inc. Lavatory freshening and/or cleaning system and method
US8307467B2 (en) 2007-08-23 2012-11-13 The Clorox Company Toilet device with indicator
US9296980B2 (en) 2008-02-21 2016-03-29 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US9410111B2 (en) 2008-02-21 2016-08-09 S.C. Johnson & Son, Inc. Cleaning composition that provides residual benefits
US8980813B2 (en) 2008-02-21 2015-03-17 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion on a vertical hard surface and providing residual benefits
US9169456B2 (en) 2008-02-21 2015-10-27 S.C. Johnson & Son, Inc. Cleaning composition comprising an ethoxylated alcohol blend, having high self-adhesion and providing residual benefits
US9175248B2 (en) 2008-02-21 2015-11-03 S.C. Johnson & Son, Inc. Non-ionic surfactant-based cleaning composition having high self-adhesion and providing residual benefits
US9181515B2 (en) 2008-02-21 2015-11-10 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US9243214B1 (en) 2008-02-21 2016-01-26 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US8143206B2 (en) 2008-02-21 2012-03-27 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US9399752B2 (en) 2008-02-21 2016-07-26 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US8143205B2 (en) 2008-02-21 2012-03-27 S.C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US9481854B2 (en) 2008-02-21 2016-11-01 S. C. Johnson & Son, Inc. Cleaning composition that provides residual benefits
US9771544B2 (en) 2008-02-21 2017-09-26 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits
US9982224B2 (en) 2008-02-21 2018-05-29 S. C. Johnson & Son, Inc. Cleaning composition having high self-adhesion and providing residual benefits comprising a cationic/nonionic surfactant system
US10266798B2 (en) 2008-02-21 2019-04-23 S. C. Johnson & Son, Inc. Cleaning composition that provides residual benefits
US10392583B2 (en) 2008-02-21 2019-08-27 S. C. Johnson & Son, Inc. Cleaning composition with a hydrophilic polymer having high self-adhesion and providing residual benefits
US10435656B2 (en) 2008-02-21 2019-10-08 S. C. Johnson & Son, Inc. Cleaning composition comprising a fatty alcohol mixture having high self-adhesion and providing residual benefits
US10597617B2 (en) 2008-02-21 2020-03-24 S. C. Johnson & Son, Inc. Cleaning composition that provides residual benefits

Also Published As

Publication number Publication date
DE19910788A1 (de) 2000-09-14
WO2000053718A8 (de) 2001-04-05

Similar Documents

Publication Publication Date Title
AT394572B (de) Stark schaeumendes, auf nichtionischen tensiden basierendes fluessiges feinreinigungsmittel und verfahren zu seiner herstellung
EP1126019A1 (de) Wässriges mehrphasiges Reinigungsmittel
WO1995004803A1 (de) Schwach schäumende wasch- oder reinigungsmittel
EP0870821A1 (de) Mittel für die Reinigung harter Oberflächen
WO2000029532A1 (de) Gelförmiges reinigungsmittel für spültoiletten
DE69319385T2 (de) Flüssiges Reinigungsmittel auf der Basis von starkschäumenden, nichtionischen, oberflächenaktiven Mitteln
WO2000065007A2 (de) Reinigungsmittel für harte oberflächen
EP1029911A1 (de) Gelförmiges Reinigungsmittel für Spültoiletten
WO2000053718A1 (de) Gelförmiges reinigungsmittel für spültoiletten
WO2001021752A1 (de) Wässriges mehrphasiges reinigungsmittel
DE19721708A1 (de) Verkapseltes Reinigungsmittel
EP1133547B1 (de) Verkapseltes reinigungsmittel
WO2000017295A1 (de) Verwendung von alkoxylierten carbonsäureestern zur viskositätserniedrigung von wässrigen tensidsystemen
WO2000002983A1 (de) Handgeschirrspülmittel
EP1137750A1 (de) Allzweckreiniger
DE19922824A1 (de) Saures wäßriges mehrphasiges Reinigungsmittel
WO2000039270A1 (de) Wässriges mehrphasiges reinigungsmittel
WO2000065010A1 (de) Reinigungsmittel für harte oberflächen
WO2002044314A1 (de) Mehrphasiges wasch- und reinigungsmittel mit bleiche
EP0763591B1 (de) Wässrige Handgeschirrspüllmittel
DE19916036A1 (de) Handwaschpasten
WO1999010458A1 (de) Wässrige mittel zur reinigung harter oberflächen
WO2000065012A1 (de) Reinigungsmittel für harte oberflächen
WO2000065013A1 (de) Reinigungsmittel fur harte oberflächen
WO1995024462A1 (de) Wässrige handgeschirrspülmittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page

Free format text: REVISED ABSTRACT RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

122 Ep: pct application non-entry in european phase