WO2000052972A1 - Generateur de rayons x, installation de radiographie et systeme d'inspection aux rayons x - Google Patents

Generateur de rayons x, installation de radiographie et systeme d'inspection aux rayons x Download PDF

Info

Publication number
WO2000052972A1
WO2000052972A1 PCT/JP2000/001238 JP0001238W WO0052972A1 WO 2000052972 A1 WO2000052972 A1 WO 2000052972A1 JP 0001238 W JP0001238 W JP 0001238W WO 0052972 A1 WO0052972 A1 WO 0052972A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
ray
voltage
grid
generated
Prior art date
Application number
PCT/JP2000/001238
Other languages
English (en)
French (fr)
Inventor
Masayuki Hirano
Hiroki Kawakami
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP00906637A priority Critical patent/EP1158842B1/en
Priority to DE60015301T priority patent/DE60015301T2/de
Priority to AU28259/00A priority patent/AU2825900A/en
Publication of WO2000052972A1 publication Critical patent/WO2000052972A1/ja
Priority to US09/943,085 priority patent/US6816573B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/60Circuit arrangements for obtaining a series of X-ray photographs or for X-ray cinematography
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/62Circuit arrangements for obtaining X-ray photography at predetermined instants in the movement of an object, e.g. X-ray stroboscopy

Definitions

  • the present invention provides an X-ray generator that generates X-rays by colliding electrons emitted from a force source with an anode target, and an X-ray generated by the X-ray generator as an object to be inspected.
  • the present invention relates to an X-ray imaging apparatus that captures an X-ray fluoroscopic image formed by irradiating the object, and an X-ray inspection system that performs an X-ray inspection on an object to be inspected being conveyed in a predetermined direction.
  • the present invention has been made in view of the above points, and a first object is to provide an X-ray generator capable of generating pulsed X-rays from an X-ray tube.
  • the second purpose is to obtain an X-ray fluoroscopic image formed by irradiating the object to be inspected with stable pulsed X-rays generated from an X-ray tube. It is to provide an imaging device.
  • the third purpose is to irradiate the object to be inspected conveyed in a predetermined direction with stable pulse-like X-rays generated from an X-ray tube, and to irradiate the stable pulse-like X-rays.
  • An X-ray inspection system capable of accurately acquiring an X-ray fluoroscopic image of an object to be inspected formed by irradiation.
  • the X-ray generator uses an anode and a gate to obtain electrons emitted from a force sword through a grid electrode in a housing sealed in a vacuum.
  • An X-ray tube that generates X-rays by colliding with a grid, a grid voltage control means that controls a grid voltage applied to a grid electrode, and an ON state from an OFF state.
  • a pulse generating means for generating a pulse maintained for a predetermined time, wherein the grid voltage control means receives the pulse generated by the pulse generating means, and is released from the power source when the pulse is in an off state.
  • a cut-off voltage is applied to the grid electrode so that the electrons do not reach the anode evening gate, and the pulse is generated by the pulse generating means.
  • the amount of electrons emitted from the soil collides with the anode evening one Getting preparative is present as a feature of applying a Guritsu de operating voltage adjusted to a predetermined value with respect Guritsu cathode electrode.
  • the grid voltage control means controls the cutoff voltage so that the electrons emitted from the force source do not reach the anode target when the pulse is in the off state.
  • the grid operating voltage is adjusted so that when the pulse is in the ON state, the grid operation voltage is adjusted so that the amount of electrons emitted from the force source and colliding with the anode target becomes a predetermined value.
  • the X-ray tube can generate pulse-like X-rays having a pulse width corresponding to a period during which the grid operation voltage is applied to the grid electrode.
  • the grid voltage control means has a cathode current detection means for detecting a power source current, and receives a pulse generated by the pulse generation means to turn on the pulse. In the state, the grid operating voltage adjusted so that the cathode current detected by the force source current detecting means becomes a predetermined value may be applied to the grid electrode.
  • the cathode current is detected by the cathode current detection means, and the grid voltage control means applies the grid operating voltage adjusted so that the cathode current becomes a predetermined value to the grid electrode.
  • a means for detecting the anode target current as a means for detecting the amount of electrons emitted from the force sword and colliding with the anode target.
  • the anode target has a high voltage. Is applied, and it is difficult to detect the anode target current. Therefore, the amount of electrons emitted from the force source and colliding with the anode target can be easily detected by the force source current detecting means, and the grid operating voltage can be easily adjusted by the grid voltage control means. Becomes possible.
  • the power sword current detection means is connected to the power sword, has a power sword current detection resistor for detecting the power sword current
  • the grid voltage control means includes: A negative voltage generating section for generating a predetermined negative voltage; a pulse inverter for receiving a pulse generated by the pulse generating means and generating an inverted pulse in which the on-state and the off-state of the pulse are inverted; A first switch for outputting a predetermined negative voltage generated by a negative voltage generating section when an inversion pulse generated by a generator is input and the inversion pulse is in an on state, and a reference positive voltage.
  • Switch To the input terminal a voltage generated at the resistor for detecting the force source current is input to one input terminal, and a predetermined negative output from the first switch is applied to the other input terminal.
  • An operational amplifier to which a voltage and a reference positive voltage output from the second switch are input; a grid voltage control circuit that receives an output from the operational amplifier and controls a grid voltage applied to a grid electrode; May be provided.
  • Grid voltage control means for controlling grid and lid voltage applied to the grid electrode to generate stable pulsed X-rays is realized with a simple and low-cost circuit configuration It becomes possible.
  • an X-ray imaging apparatus is formed by irradiating an X-ray generated by the X-ray generator according to claim 1 onto an inspection object.
  • Imaging means for capturing an X-ray fluoroscopic image to be received wherein the imaging means receives a pulse generated by the pulse generating means and captures an X-ray fluoroscopic image when the pulse is on. It is characterized by.
  • the imaging means receives the pulse generated by the pulse generation means, and captures an X-ray fluoroscopic image when the pulse is in the ON state. This makes it possible for the imaging means to accurately acquire an X-ray fluoroscopic image formed by irradiating a stable pulsed X-ray generated from the X-ray tube to the inspection object.
  • an X-ray inspection system includes an X-ray generator according to claim 1 and an X-ray generated by the X-ray generator.
  • An X-ray imaging apparatus having an imaging unit that captures an X-ray fluoroscopic image formed by irradiating an object, and an inspection target detection that detects that the inspection object reaches an imaging range of the X-ray imaging apparatus Means for outputting a trigger signal based on the detection of the object to be inspected by the object to be inspected detecting means.
  • a pulse is output when a signal is output, and the imaging unit receives the pulse output by the pulse generation unit, and captures an X-ray fluoroscopic image when the pulse is on. .
  • the inspection object detection means detects that the inspection object reaches the imaging range of the X-ray imaging apparatus, and based on the detection, the trigger signal generation means triggers One signal is generated, and the pulse generating means generates a pulse.
  • the pulse generation means receives a pulse generated by the pulse generation means and takes an X-ray fluoroscopic image when the pulse is in the ON state. Therefore, the object to be inspected conveyed in a predetermined direction is irradiated with stable pulsed X-rays generated from the X-ray tube, and is formed by irradiation of the stable pulsed X-rays. It is possible to obtain an X-ray fluoroscopic image of the inspected object accurately.
  • an X-ray generator includes a power source, an anode electrode, and a grid electrode disposed between the cathode and the anode electrode. And a grid voltage control means for controlling a grid voltage applied to the grid electrode so as to generate pulsed X-rays having a predetermined pulse width from the X-ray tube.
  • the grid voltage control means controls a grid voltage applied to the grid electrode so as to generate a pulsed X-ray having a predetermined pulse width from the X-ray tube. This makes it possible to generate pulsed X-rays having a predetermined pulse width from the X-ray tube.
  • FIG. 1 is a perspective view showing an X-ray inspection system.
  • FIG. 2 is a cross-sectional view showing a main part of an X-ray tube included in the X-ray inspection system.
  • Fig. 3 is a block diagram showing the configuration of the X-ray inspection system.
  • FIG. 4A is a graph showing the change over time of the output signal of the photoelectric switch.
  • FIG. 4B is a graph showing the change over time of the trigger signal output from the trigger signal generator.
  • FIG. 4C is a graph showing the change over time of the output pulse from the pulse generator.
  • FIG. 4D is a graph showing the change over time of the pulse input to the second switch.
  • FIG. 4E is a graph showing the change over time of the pulse input to the first switch.
  • FIG. 4F is a graph showing the temporal change of the evening gate voltage.
  • FIG. 4G is a graph showing the change over time of the cathode voltage.
  • Figure 4H is a graph showing the change over time of the voltage from the first grid electrode power supply
  • Figure 4I is a graph showing the change over time of the voltage applied to the first grid electrode ( Figure 4 )
  • J is a graph showing the change over time in the output of X-rays.
  • FIG. 1 is a perspective view showing an X-ray inspection system according to the present embodiment.
  • the belt conveyor 4 is moving in the direction indicated by the arrow in the figure.
  • the inspection object 5 is placed on the belt conveyor 4 and is conveyed by the movement of the belt conveyor 4 in the direction indicated by the arrow in the figure.
  • the X-ray source 1 is arranged above the belt conveyor 4, radiates and outputs X-rays from the X-ray tube 11 toward a certain angle range, and exists in a certain range of the inspection object 5 on the belt conveyor 4. Irradiate X-rays at the target.
  • the X-ray image intensifier 2 faces the X-ray source 1 across the belt conveyor 4 and is located at a position where the X-rays output from the X-ray source 1 (X-ray tube 1 1) ′ can reach. Then, an X-ray fluoroscopic image of the inspection object 5 is taken in accordance with the input gate signal.
  • the photoelectric switch 3 is provided as an object detecting means.
  • the photoelectric switch 3 has a light emitting element 3a and a light receiving element 3b with the belt conveyor 4 interposed therebetween.
  • the object to be inspected is located at the position where the photoelectric switch 3 of the belt conveyor 4 is provided. Using the fact that the light from the photon 3a is blocked when the object 5 approaches, the passage of the object 5 to be inspected is detected.
  • the output signal from the photoelectric switch 3 (the light receiving element 3b) is turned on. Also, when the inspection object 5 reaches the position where the photoelectric switch 3 is provided, the light from the light emitting element 3a is blocked, so that the output signal from the photoelectric switch 3 (the light receiving element 3b) is turned off. Becomes
  • the X-ray source 1 has an X-ray tube 11 shown in FIG.
  • FIG. 2 is a cross-sectional view showing a main part of an X-ray tube included in the X-ray inspection system according to the present embodiment.
  • the X-ray tube 11 is a micro-focus X-ray tube, which generates electrons 80 and generates an X-ray 81 by receiving an electron gun 12 that emits electrons 80 and electrons 80 from the electron gun 12.
  • an X-ray generation unit 13 to be used.
  • Each of the electron gun section 12 and the X-ray generation section 13 is constituted by a cylindrical container 21, 31 serving as a housing for accommodating each component. These containers 21 and 31 are made of a conductor and are connected to be orthogonal to each other.
  • the inside of the container 21 and the inside of the container 31 are separated by a focusing electrode 25 formed at the boundary between the containers 21 and 31 and pass through an opening 25a formed in the focusing electrode 25.
  • An anode target 32 is disposed in the container 21 in the electron gun 50 in the container 31, respectively. Further, the containers 21 and 31 are sealed and the inside thereof is evacuated.
  • the electron gun 50 placed in the container 21 is roughly composed of a heat source 76 and a cathode as a thermoelectron source that generates and emits electrons 80 when heated by the heater 6. And the first and second grid electrodes 71 and 72 for accelerating and focusing the electrons 80 emitted from the force source 73, the second grid electrode 72 and the focusing electrode 25 A spacer 18 interposed between the first and second grid electrodes 72 and the focusing electrode 25 to set a predetermined distance between the second grid electrode 72 and the focusing electrode 25; 72, heaters 76, force pins 73, a plurality of pins 15 for supplying a predetermined voltage from outside the container, and these pins 15 are fixed through and function as the lid of the container Stem 14 and Is provided.
  • the above-mentioned stem 14, heater 76, force sword 73, first and second grid electrodes 71, 72, and spacer 18 are arranged in this order toward the electrode 25.
  • the components are arranged so that their respective axes coincide with each other, and are located coaxially with the axis of the opening 25 a of the focusing electrode 25 and the axis of the cylindrical container 21.
  • the first and second grid electrodes 71 and 72 are disposed between the force source 73 and the anode target 32.
  • the force sword 73 is provided at the tip of a cylindrical body 74 made of an insulating material. Inside the cylindrical body 74, the heat source 76 for heating the force sword 73 is provided. Is provided.
  • the first grid electrode 71 is arranged on the focusing electrode 25 side from the force grid 73, and the second grid electrode 72 is arranged on the focusing electrode 25 side from the first grid electrode 71. Is done.
  • the second grid electrode 72 is supported on the focusing electrode 25 side of the first grid electrode 71 via a plurality of ceramic rods (insulators) 19, and the force source 73 and the heat sink
  • a cylindrical body 74 having 76 is supported on the opposite side of the first grid electrode 71 from the focusing electrode 25 side via an insulator 75.
  • the first and second grid electrodes 7 1 and 7 2 each have a disk shape, and have openings 7 la through which electrons 80 from the cathode 73 pass at positions facing the respective cathodes 73. , 7 2a.
  • the second grid electrode 72 is an electrode that pulls the electrons 80 from the force source 73 to the evening get 32 side in the container 31.
  • the first grid electrode 71 is an electrode that pushes electrons 80 pulled to the target 32 side by the second grid electrode 72 back to the force source 73 side, and the first grid electrode ⁇ 1 By adjusting the voltage supplied to the target, the number of electrons 80 toward the target 32 is increased or decreased.
  • the apertures 71a, 72a of the first and second grid electrodes 71, 72 form a microelectron lens group that focuses the electrons 80 from the force source 73 on the target 32. It has been.
  • a spacer 18 is interposed between the second grid electrode 72 and the grid electrode 25.
  • This spacer 18 contains electrons 80 from the force sword 73 toward the target 32.
  • it When it is made cylindrical so that it can pass, it has a predetermined length in the axial direction, one end 18 is fixed to the end surface of the second grid electrode 72, and the other end 18c is focused. It is in contact with electrode 25. Since the spacer 18 having the predetermined length is interposed between the second grid electrode 72 and the focusing electrode 25, the distance between the second grid electrode 72 and the focusing electrode 25 is reduced. It is set at a predetermined interval.
  • the predetermined interval is an interval between the second grid electrode 72 and the focusing electrode 25 necessary to obtain a desired focal diameter.
  • the spacer 18 is made of, for example, a conductor such as stainless steel.
  • the second grid electrode 72 for fixing the spacer 18 is made of, for example, Mo (molybdenum) having good heat resistance. .
  • Mo mobdenum
  • the second grid electrode 72 is formed by resistance welding using a plurality of Ni (nickel) ribbons 17.
  • the gate electrode 72 and the spacer 18 are connected.
  • the connection by the Ni ribbon 17 is made between the end face of the second grid electrode 72 and the inner peripheral face of one end 18 b of the spacer 18.
  • the spacer 18 is provided on its peripheral wall with a target 3 defined by the spacer 18 and the second grid electrode 72 for fixing the spacer 18.
  • a plurality of gas vent holes 18a are provided for communicating the space on the second side with the space on the force side 73.
  • the above-described first grid electrode 71 has a plurality of pins 15 implanted on the side opposite to the evening target 32 side. These pins 15 are fixed to the stem substrate 14a through a disk-shaped stem substrate 14a made of, for example, an insulator such as ceramics. That is, the first grid electrode 71 supporting the spacer 18, the second grid electrode 72, the cylindrical body 74, and the like is supported on the stem substrate 14 a via a plurality of pins 15. Have been. A plurality of other pins, not shown, are also fixed through the stem substrate 14a. A lead wire 72 f of the second grid electrode 72 and a lead wire not shown of the cathode 73 and the heater 76 are connected to each of the plurality of other pins. I have.
  • An annular stem ring 14b is joined to the outer periphery of the stem substrate 14a.
  • the sub gun 50 is configured as described above.
  • the stem ring 14 b of the electron gun 50 is fixed to an opening 22 formed at an end of the container 21 by, for example, brazing (brazing).
  • brazing brazing
  • the target 32 is provided in the container 31 communicating with the container 21 through the opening 25a of the focusing electrode 25.
  • the target 32 receives the electrons 80 from the electron gun 50 and generates X-rays 81.
  • the target 32 forms a metal rod, and the electrons 80 enter the axial direction. It is arranged in a direction that intersects the direction in which it comes.
  • the tip surface 32 a of the evening gate 32 is a surface that receives the electrons 80 from the electron gun 50, is arranged at a position ahead of the entrance of the electrons 80, and is incident.
  • the electron 80 and the emitted X-ray 81 are inclined so that they are orthogonal to each other.
  • the container 31 is provided with an X-ray emission window 33.
  • the X-ray emission window 33 is a window for emitting the X-rays 81 emitted from the target 32 to the outside of the container 31.
  • a Be material which is an X-ray transmission material is used. And the like.
  • the X-ray emission window 33 is disposed in front of the tip of the target 32, and is formed so that its center is located on the extension of the central axis of the target 32.
  • FIG. 3 is a block diagram showing a configuration of the X-ray inspection system according to the present embodiment.
  • the X-ray inspection system includes a target power supply unit 101 in addition to the X-ray tube 11 (X-ray source 1), X-ray image intensifier 2, and photoelectric switch 3 (light receiving element 3b) described above.
  • An image processing unit 160 and a CRT 170 In FIG. 3, the X-ray tube 11 is simplified and the second grid electrode 72 and the heater 76 are omitted.
  • the evening get power supply section 101 supplies a predetermined positive high voltage (evening Get voltage).
  • the power source power supply 102 applies a predetermined voltage (power source voltage) to the power source 73.
  • the pulse generator 103 generates a pulse that keeps the ON state for a predetermined time based on the signal output from the light receiving element 3b.
  • the grid voltage controller 110 controls the voltage applied to the first grid electrode 71.
  • the gate signal generating section 150 generates a gate signal based on the pulse output from the pulse generating section 103, and supplies the gate signal to the X-ray imaging enhancer 2.
  • the image processing unit 160 receives an X-ray fluoroscopic image of the inspection object 5 captured by the X-ray image intensifier 2 and performs image processing (such as image enlargement) on the X-ray fluoroscopic image. .
  • the CRT 170 receives the image data from the image processing unit 160 and displays the X-ray fluoroscopic image processed by the image processing unit 160.
  • An anode voltage setting signal is input to the evening power supply unit 101 from a control unit (not shown).
  • the target power supply 101 generates a predetermined high voltage (target voltage) according to the anode voltage setting signal.
  • a target voltage reference signal indicating the target voltage detected by the evening target voltage detection unit is input to the power source power supply unit 102 from an evening get voltage detection unit (not shown).
  • the cathode power supply section 102 generates a predetermined voltage (cathode voltage) according to the evening gate voltage reference signal.
  • the pulse generator 103 receives a trigger signal generator 104 to which the signal output from the light receiving element 3b is input, and a trigger signal output from the trigger signal generator 104. And a pulse generator 105.
  • the trigger signal generator 104 generates and outputs one trigger signal having a predetermined pulse width when the signal output from the light receiving element 3b changes from the on state to the off state.
  • the pulse generator 105 generates and outputs a pulse that keeps the ON state for a predetermined time when a trigger signal is input.
  • the pulse generator 103 also includes a time setting device 106 for variably setting the above-described predetermined time during which the ON state of the pulse output from the pulse generator 105 is maintained.
  • the grid pressure control unit 110 is provided between the power supply unit 102 and the force source 73.
  • the grid voltage control unit 110 receives pulses from the cathode current detection resistor 111 as the force source current detection means, the negative voltage generation unit 112, and the pulse generator 105.
  • Pulse inverter 1 13 to be input, first switch 1 14 to which inverted pulse is input from pulse inverter 1 13 and second switch 1 16 to which pulse is input from pulse generator 105 ,
  • the force sword current detection resistor 1 1 1 detects the force sword current.
  • Negative voltage generator 1 12 generates a predetermined negative voltage.
  • the pulse inverter 113 generates an inverted pulse in which the ON state and the OFF state of the input pulse are inverted. 1st switch
  • Numeral 114 outputs a predetermined negative voltage generated by the negative voltage generator 112 when the inverted pulse from the pulse inverter 113 is on.
  • the reference voltage generator 1 15 generates a reference positive voltage.
  • the second switch 116 outputs the reference positive voltage generated by the reference voltage generator 115 when the pulse from the pulse generator 105 is on.
  • the operational amplifier 117 has an input terminal (+) and an input terminal (-). The input terminal (+) is connected to the voltage generated in the force source current detecting resistor 111.
  • the predetermined negative voltage output from the first switch 114 or the reference positive voltage output from the second switch 116 is input to the input terminal (1).
  • the grid voltage control circuit 118 receives an output from the operational amplifier 117 and controls the voltage applied to the first grid electrode 71.
  • the reference voltage generation section 115 receives a tube (cathode) current reference signal output from a control unit (not shown) or the like, and converts the tube (force source) current reference signal into a predetermined digital signal.
  • the output signal from the photocoupler 120 to which the output signal is input from the A / D converter 1/19 and the A / D converter 1/19, and the output signal from the photo And a D / A converter 121 for conversion.
  • the output signal finally output from the D / A converter 121 is described above. It is equivalent to a signal that indicates the overpressure of the standard.
  • a voltage divider 122 is provided between the negative voltage generator 112 and the first switch 114, and a predetermined negative pressure applied from the negative voltage generator 112 is provided. After being divided by the voltage divider 122, it is given to the first switch 114.
  • the voltage from the first grid electrode power supply unit 123 that generates a voltage to be applied to the first grid electrode 71 is supplied to the grid voltage control circuit 118.
  • the grid voltage control circuit 118 controls the voltage supplied from the first grid electrode power supply section 123 in accordance with the output from the operational amplifier 117, and supplies the voltage to the first grid electrode 71.
  • a cut-off voltage is applied so that electrons emitted from the cathode 73 do not reach the gate 32 at night, or electrons emitted from the force source 73 are set at the gate 32 at night. Apply the grid operating voltage so as to collide.
  • the first grid electrode power supply 123 has a target voltage detected by the evening target voltage detector, which is not shown. Is input.
  • the first grid electrode power supply section 123 generates a predetermined voltage (grid voltage) according to the target voltage reference signal.
  • a clamp circuit 124 that connects the front stage position of the input terminal (1) of the operational amplifier 117 and the rear stage position of the operational amplifier 117 is provided.
  • the operational amplifier 117 maintains a stable state when there is no input (OFF state).
  • a clamp circuit 124 By inserting a clamp circuit 124 at this position, a pulse is generated from the pulse generator 105 and the reference voltage from the reference voltage generator 115 is applied to the input terminal (1) of the operational amplifier 117.
  • the operational amplifier 1 17 can output a current pulse with a faster rise time.
  • the target voltage A predetermined high voltage (+ HV) is supplied from the evening power supply 101.
  • a predetermined voltage (V 1) is applied to the cathode 73 from the power source power supply unit 102 as a power source voltage.
  • a predetermined voltage (V 2 VV 1) is supplied from the first grid electrode power supply section 123 to the grid voltage control circuit 118. I have.
  • An object 5 to be inspected is placed on the belt conveyor 4, is conveyed in the direction of the arrow in FIG. 1, and the object 5 is inspected by the imaging range of the X-ray image intensifier 2 (X-ray source (X-ray irradiation range from 1), the inspection object 5 passes through a straight line connecting the light emitting element 3a and the light receiving element 3b of the photoelectric switch 3, and the light emitting element The light emitted from 3 a is blocked by the inspection object 5.
  • the output signal from the light receiving element 3b is turned off as shown in FIG. 4A.
  • the inspection object 5 When the inspection object 5 is not within the imaging range of the X-ray image intensifier 2 (the irradiation range of the X-ray from the X-ray source 1), the light emitted from the light emitting element 3a is 4A, the output signal from the light receiving element 3b is turned on as shown in FIG. 4A.
  • the output signal from the light receiving element 3b is input to the trigger signal generator 104, and the trigger signal generator 104 changes the output signal from the light receiving element 3b from the on state to the off state. (Fall of output signal) is detected.
  • the trigger one signal generator 104 outputs a trigger signal in synchronization with the detected change from the ON state to the OFF state (falling of the output signal), as shown in Fig. 4B.
  • the trigger signal output from the trigger signal generator 104 is input to the pulse generator 105.
  • the pulse generator 105 detects the input of one trigger signal, especially the rising edge of the trigger signal, and as shown in Fig. 4C, the on-state maintenance time is set by the time setting device 106. A pulse that has a predetermined time (pulse width) corresponding to the time is output.
  • the pulse output from the pulse generator 105 is applied to the pulse inverter 113 and the second switch.
  • Switch 1 16, gate signal input to generator 150 and image processor 160.
  • the pulse inverter 113 outputs an inverted pulse obtained by inverting the ON state and the OFF state of the input pulse to the first switch 114 as shown in FIG. 4E.
  • the first switch 114 outputs a predetermined negative voltage (divided voltage) from the negative voltage generator 112 supplied through the voltage divider 122 when the inversion pulse is in an on state, and an operational amplifier. Acts as given for the negative input terminal of 1 17.
  • the first switch 114 applies a predetermined negative voltage (divided voltage) from the negative voltage generator 112 to the negative input terminal of the operational amplifier 117. It works not to give.
  • a pulse from the pulse generator 105 is input to the second switch 116.
  • the second switch 1 16 supplies the reference positive voltage supplied from the reference voltage generator 115 to the input terminal (1) of the operational amplifier 117 when the input pulse is in the off state. It works as if it did't.
  • the second switch 1 16 supplies the reference positive voltage supplied from the reference voltage generator 1 15 to the input terminal (1) of the operational amplifier 1 17. It works to give. Therefore, when the pulse output from the pulse generator 105 is in the OFF state, the negative voltage generator applied via the voltage divider 122 to the input terminal (1) of the operational amplifier 117 is used.
  • a predetermined negative voltage (divided voltage) from 112 is applied and the pulse output from the noise generator 105 is in the ON state, the input terminal (- ), The reference positive voltage given from the reference voltage generator 1 15 is applied.
  • the input terminal (+) of the operational amplifier 117 receives the voltage generated in the power source current detection resistor 111.
  • the operational amplifier 1 17 outputs a signal based on the input to the input terminal (1) so that the input to the input terminal (+) and the input to the input terminal (-) have the same potential. It is configured as follows.
  • the pulse output from the pulse generator 105 is in the OFF state, and the negative voltage generator 1 1 2 supplied to the input terminal (-) of the operational amplifier 1 17 through the voltage divider 1 2 2
  • Predetermined negative voltage from (partial voltage) Is given by the operational amplifier 117, the voltage generated in the power source current detecting resistor 111 is equal to the predetermined negative voltage (divided voltage) from the negative voltage generator 112. Is output.
  • the output from the operational amplifier 117 is sent to the grid voltage control circuit 118, and a predetermined voltage (V 2) is controlled from the first grid electrode power supply unit 123, and the first grid electrode is controlled.
  • a cut-off voltage (negative) is applied to the pole 71 to prevent the electrons emitted from the force source 73 from reaching the target 32.
  • the electrons emitted from the force source 73 do not reach the target 32, and no X-ray is generated from the X-ray tube 11 as shown in FIG. 4J. Since the electrons emitted from the force sword 73 do not reach the target 32, no force sword (tube) current is generated, and the voltage generated in the force sword current detecting resistor 111 becomes zero.
  • the voltage sent to the input terminal (+) of the operational amplifier 1 17 is zero, and the input terminal (1) of the operational amplifier 1 17 is connected to the predetermined negative voltage ( The divided voltage is continuously applied, and the stable cut-off voltage (negative) is supplied to the first grid electrode 71 from the grid voltage control circuit 118 by the output of the operational amplifier 117. Given.
  • the pulse output from the pulse generator 105 is in the ON state, and the reference positive voltage supplied from the reference voltage generator 115 is applied to the input terminal (1) of the operational amplifier 117. Is applied, a signal is output from the operational amplifier 117 so that the voltage generated in the power source current detection resistor 111 becomes the same potential as the reference positive voltage.
  • the output from the operational amplifier 1 17 is sent to the grid voltage control circuit 1 18, and a predetermined voltage (V 2) is controlled from the 1 st grid electrode power supply 1 2 3 As shown in FIG. 41, a positive grid operating voltage is applied to the pole 71 so that electrons emitted from the force source 73 collide with the target 32. As a result, the element released from the force sword 73 collides with the target 32, and a pulse is generated.
  • the pulse output from the pulse generator 105 is also input to the gate signal generator 150 and the image processor 160 as described above.
  • the gate signal generator 150 outputs a gate signal in synchronization with the input pulse.
  • the X-ray image intensifier 2 is an X-ray fluoroscope formed by irradiating the inspection object 5 with X-rays from the X-ray source 1 (X-ray tube 11) according to the input gate signal. Capture an image.
  • the image processing unit 160 stores the data of the X-ray fluoroscopic image of the inspection object 5 captured by the X-ray image intensifier 2 in a frame memory (not shown) in synchronization with the input pulse. Store.
  • the image processing section 160 performs a predetermined image processing (image enlargement, etc.) on the image of the X-ray fluoroscopic image of the inspection object 5 stored in the frame memory, and after the image processing.
  • the image data of the X-ray fluoroscopic image of the object 5 to be inspected is output to the CRT 170.
  • the image of the X-ray fluoroscopic image of the inspection object 5 after the image processing is displayed on the CRT 170.
  • the X-ray fluoroscopic image stored in the frame memory is obtained at the timing when the gate signal is generated (when the pulse is output from the pulse generator 105). This can be regarded as a still image of the inspection object 5.
  • the voltage applied to the first grid electrode 71 by the grid voltage control unit 110 is such that the object 5 to be inspected has an X-ray image intensity.
  • the imaging range of Fire 2 is not within the imaging range (X-ray irradiation range from X-ray source 1) (when the pulse output from pulse generator 105 is in the OFF state), negative voltage generator 1 1 2 It is controlled based on a predetermined negative voltage (divided voltage) from.
  • the inspection object 5 is within the imaging range of the X-ray image intensifier 2 (the irradiation range of the X-ray from the X-ray source 1) (the pulse output from the pulse generator 105 is turned on). Is controlled based on the reference positive voltage from the reference voltage generator 1 15. As a result, both the cutoff voltage and the grid operating voltage are applied in a stable state.
  • the first switch 114 and the second switch 116 are turned on. Operates quickly and applies a predetermined negative voltage (division) from the negative voltage generator 112 or a positive reference from the reference voltage generator 115 to the input terminal (-) of the operational amplifier 117.
  • a predetermined negative voltage division
  • the voltage applied from the grid voltage control circuit 118 to the first grid electrode 71 changes from the cutoff voltage to the grid operating voltage (rising in FIG. 4I), or From the operating voltage to the cut-off voltage (falling edge in Figure 4I).
  • a resistor for detecting a force sword current 11 1 is provided to detect the force sword current.
  • _ Of the particles emitted from the gate 73 and colliding with the target 32 can easily be detected, and the first grid by the grid control unit 110 (grid voltage control circuit 118) can be detected. Control of the voltage applied to the gate electrode 71 can also be easily performed.
  • the configuration of the grid voltage control unit 110 that controls the voltage applied to the first grid electrode 71 in order to generate stable pulsed X-rays has a simple and low-cost circuit configuration. It also has the effect that can be realized with.
  • the X-ray image intensifier 2 outputs a gate signal based on the gate signal output from the gate signal generation unit 150 in response to the pulse generated by the pulse generator 105. Is performed (when the pulse is turned on), an X-ray fluoroscopic image formed by irradiating the inspection object 5 with X-rays from the X-ray source 1 (X-ray tube 11) is formed. An image will be taken. Therefore, the X-ray image intensifier 2 t X-rays formed by irradiating the object 5 with stable pulsed X-rays generated from the X-ray source 1 (X-ray tube 11) A fluoroscopic image can be obtained accurately.
  • the inspection object 5 is the imaging range of the X-ray image intensifier 2.
  • X-ray irradiation range from X-ray source 1 is detected by photoelectric switch 3, and based on the detection, trigger signal generator 104 generates one trigger signal, and pulse generator 105 will generate a pulse. Thereby, when the pulse is in the ON state, stable pulse-like X-rays are generated from the X-ray tube 11 as described above. Further, the X-ray image intensifier 2 outputs a gate signal based on the gate signal output from the gate signal generator 150 in response to the pulse generated by the pulse generator 105. At this time (when the pulse generated by the pulse generator 105 is turned on), X-rays are irradiated from the X-ray source 1 (X-ray tube 11) to the inspection object 5.
  • An X-ray fluoroscopic image formed by is obtained. Therefore, the object 5 to be inspected placed and transported on the belt conveyor 4 is irradiated with stable pulsed X-rays generated from the X-ray tube 11, and this An X-ray fluoroscopic image of the apricot object to be formed formed by the irradiation of the specified pulsed X-rays can be properly acquired by the X-ray image intensifier 2.
  • the variable tube (force sword) current reference In response to the signal, the reference positive voltage output from the reference voltage generator 1 15 changes, thereby changing the reference value in the operational amplifier 1 17 and the grid voltage control.
  • the voltage of the grid operating voltage applied from the circuit 1 18 to the first grid electrode 71 changes, and the amount of electrons colliding with the target 32 emitted from the cathode 73 changes. Therefore, it is possible to change the X-ray dose generated in the X-ray tube 11. Of course, even in this case, it is possible to generate stable X-rays on the pulse.
  • the X-ray generator, X-ray imaging apparatus, and X-ray inspection system of the present invention are capable of transmitting a product or the like stored in a packaging container without destroying the packaging container or the like. Can be used for destructive inspection equipment.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Description

明糸田書
X線発生装置、 X線撮像装置及び X線検査システム
技術分野
本発明は、 力ソードから放出された電子を陽極夕ーゲッ 卜に衝突させることに よって X線を発生させる X線発生装置と、 この X線発生装置により発生された X 線を被検査対象物に対して照射することにより形成される X線透視像を撮像する X線撮像装置と、 所定の方向に搬送されている被検査対象物を X線検査する X線 検査システムとに関するものである。
背景技術
従来、 力ソ一ドから放出された電子を陽極ターゲッ トに衝突させることによつ て X線を発生させる X線管を有する X線発生装置として、 米国特許 5 , 0 7 7 , 7 7 1のものが知られている。 この文献に記載された X線発生装置では、 グリツ ド電極に印加するグリッ ド電圧の制御方法として P WM方式が用いられており、 制御パルスのパルス幅を変えて実効グリッ ド電圧を制御している。
発明の開示
一般的な検査装置としては、 光源をフラッシュ (パルス) 点灯させて、 被検査 対象物の画像 (静止画像) を撮像する手法が多く用いられており、 X線検査にお いても上述したような手法の応用が望まれているが、 X線管から発生する X線を パルス化させる X線発生装置の実現例はほとんどない。 X線管では、 各電極に印 加される電圧が僅かに変化しても、 X線管にて発生される X線出力が大きく変化 する。 このため、 安定したパルス状の X線を発生させることが難しく、 安定した パルス状の X線を発生させる技術が十分に確立されていない。
本発明は上述の点に鑑みてなされたもので、 第 1の目的は、 X線管からパルス 状の X線を発生させることが可能な X線発生装置を提供することにある。
第 2の目的は、 X線管から発生された安定したパルス状の X線を被検査対象物 に照射することにより形成される X線透視像を的確に獲得することが可能な X線 撮像装置を提供することにある。
第 3の目的は、 所定の方向に搬送されている被検査対象物に対して、 X線管か ら発生された安定したパルス状の X線を照射し、 この安定したパルス状の X線の 照射により形成される被検査対象物の X線透視像を的確に獲得することが可能な X線検査システムを提供することにある。
上述した第 1の目的を達成するため、 本発明の X線発生装置は、 真空に封止さ れた筐体内で、 力ソードから放出された電子を、 グリッ ド電極を介して陽極夕一 ゲッ 卜に衝突させることによって X線を発生させる X線管と、 グリツ ド電極に印 加されるグリッ ド電圧を制御するグリッ ド電圧制御手段と、 オフ状態からオン状 態とされて、 オン状態が所定時間維持されるパルスを発生させるパルス発生手段 と、 を備え、 グリッド電圧制御手段は、 パルス発生手段にて発生されたパルスを 受けて、 パルスがオフ状態にある時に、 力ソードから放出された電子が陽極夕一 ゲッ 卜に到達しないように、 カツ トオフ電圧をグリッ ド電極に対して印加し、 ノ ルス発生手段にて発生されたパルスを受けて、 パルスがオン状態にある時に、 力 ソ ドから放出されて陽極夕一ゲッ トに衝突する電子の量が所定値となるように 調整されたグリツ ド動作電圧をグリツ ド電極に対して印加することを特徴として いる。
パルス発生手段にて発生されたパルスを受けてグリッ ド電圧制御手段は、 パル スがオフ状態にある時に、 力ソードから放出された電子が陽極ターゲッ 卜に到達 しないように、 カットオフ電圧をグリッ ド電極に対して印加し、 パルスがオン状 態にある時に、 力ソードから放出されて陽極夕ーゲッ トに衝突する電子の量が所 定値となるように調整されたグリツ ド動作電圧をグリツ ド電極に対して印加する。 これにより、 X線管からは、 グリッ ド動作電圧をグリッ ド電極に対して印加して いる期間に対応した、 パルス幅を有するパルス状の X線を発生させることが可能 となる。 また、 グリッ ド電極に印加されるグリッ ド動作電圧は、 力ソードから放 出されて陽極夕一ゲッ 卜に衝突する電子の量が所定値となるように調整されるた め、 X線管から発生されるパルス状の X線を安定化させることが可能となる。 また、 本発明の X線発生装置においては、 グリッ ド電圧制御手段は、 力ソード 電流を検出するカソード電流検出手段を有し、 パルス発生手段にて発生されたパ ルスを受けて、 パルスがオン状態にある時に、 力ソード電流検出手段にて検出さ れたカソ一ド電流が所定値となるように調整されたグリッ ド動作電圧をグリッ ド 電極に対して印加することを特徴としてもよい。
カソ一ド電流検出手段によりカソ一ド電流を検出し、グリッ ド電圧制御手段は、 このカソード電流が所定値となるように調整されたグリッ ド動作電圧をグリッ ド 電極に対して印加することになる。 例えば、 力ソードから放出されて陽極夕一ゲ ットに衝突する電子の量を検出する手段として、 陽極ターゲット電流を検出する 手段を設けることも考えられるが、 通常、 陽極ターゲッ トには高電圧が印加され ており、 陽極ターゲッ ト電流を検出することが難しい。 従って、 力ソード電流検 出手段により容易に力ソードから放出されて陽極ターゲッ トに衝突する電子の量 を検出することができ、 グリッ ド電圧制御手段によるグリッ ド動作電圧の調整も 容易に行うことが可能となる。
また、 本発明の X線発生装置においては、 力ソード電流検出手段は、 力ソード に接続され、 力ソード電流を検出するための力ソード電流検出用抵抗器を有し、 グリッド電圧制御手段は、 所定の負電圧を発生させる負電圧発生部と、 パルス発 生手段にて発生されたパルスが入力され、 パルスのオン状態及びオフ状態を反転 させた反転パルスを発生させるパルス反転器と、 パルス反転器にて発生された反 転パルスが入力され、 反転パルスがオン状態にあるときに、 負電圧発生部にて発 生された所定の負電圧を出力する第 1スィツチと、 基準の正電圧を発生させる基 準電圧発生部と、 パルス発生手段にて発生されたパルスが入力され、 パルスがォ ン状態にあるときに、 基準電圧発生部にて発生された基準の正電圧を出力する第 2スィッチと、 一方の入力端子に対して、 力ソード電流検出用抵抗器に生じる電 圧が入力され、 他方の入力端子に対して、 第 1スィッチから出力された所定の負 電圧及び第 2スィツチから出力された基準の正電圧が入力される演算増幅器と、 演算増幅器からの出力を受けてグリッ ド電極に印加されるグリッ ド電圧を制御す るグリッ ド電圧制御回路と、 を有することを特徴としてもよい。
安定したパルス状の X線を発生させるためにグリッ ド電極に印加されるグリ、リ ド電圧を制御するためのグリッ ド電圧制御手段の構成が、 簡易且つ低コス卜な回 路構成にて実現可能となる。
上述した第 2の目的を達成するため、 本発明の X線撮像装置は、 請求の範囲第 1項に記載の X線発生装置により発生された X線を被検査対象物に照射すること により形成される X線透視像を撮像する撮像手段を備え、 撮像手段は、 パルス発 生手段にて発生されたパルスを受けて、 パルスがオン状態にあるときに、 X線透 視像を撮像することを特徴としている。
撮像手段は、 パルス発生手段にて発生されたパルスを受けて、 パルスがオン状 態にあるときに、 X線透視像を撮像することになる。 これにより、 撮像手段が、 X線管から発生された安定したパルス状の X線を被検査対象物に照射することに より形成される X線透視像を的確に獲得することが可能となる。
上述した第 3の目的を達成するため、 本発明の X線検査システムは、 請求の範 囲第 1項に記載の X線発生装置と、 X線発生装置により発生された X線を被検査 対象物に照射することにより形成される X線透視像を撮像する撮像手段を有する X線撮像装置と、 被検査対象物が X線撮像装置における撮像範囲に到達すること を検知する被検査対象物検知手段と、 を備え、 パルス発生手段は、 被検査対象物 検知手段による被検査対象物の検知に基づいてトリガ一信号を出力する トリガ一 信号出力手段を有し、 トリガ一信号出力手段から トリガ一信号が出力されたとき にパルスを出力し、撮像手段は、パルス発生手段にて出力されたパルスを受けて、 パルスがオン状態にあるときに、 X線透視像を撮像することを特徴としている。 被検査対象物が X線撮像装置における撮像範囲に到達することを被検査対象物 検知手段により検知され、 その検知に基づいて、 トリガ一信号発生手段がトリガ 一信号を発生させ、パルス発生手段がパルスを発生することになる。これにより、 パルスがオン状態にあるときに、 X線管から安定したパルス状の X線が発生され る。 また、 撮像手段では、 パルス発生手段にて発生されたパルスを受けて、 ノ ル スがオン状態にあるときに、 X線透視像が撮像される。 従って、 所定の方向に搬 送されている被検査対象物に対して、 X線管から発生された安定したパルス状の X線を照射し、 この安定したパルス状の X線の照射により形成される被検査対象 物の X線透視像を的確に獲得することが可能となる。
上述した第 1の目的を達成するため、 本発明の X線発生装置は、 力ソードと、 陽極夕ーゲッ トと、 カソードと陽極夕一ゲットとの間に配設されるグリッ ド電極 とを有した X線管と、 X線管から所定のパルス幅を有するパルス状の X線を発生 させるように、 グリツド電極に印加されるグリツ ド電圧を制御するグリツ ド電圧 制御手段と、 を備えることを特徴としている。
グリツ ド電圧制御手段は、 線管から所定のパルス幅を有するパルス状の X線を 発生させるようにグリッ ド電極に印加されるグリッ ド電圧を制御する。 これによ り、 X線管から所定のパルス幅を有するパルス状の X線を発生させることが可能 となる。
図面の簡単な説明
図 1は X線検査システムを示す斜視図である。
図 2は X線検査システムに含まれる X線管の要部を示す断面図である。
図 3は X線検査システムの構成を示すプロック図である。
図 4 Aは光電スィツチの出力信号の経時的変化を示すグラフである。
図 4 Bはトリガ一信号発生器から出力されるトリガ一信号の経時的変化を示す グラフである。
図 4 Cはパルス発生器からの出力パルスの経時的変化を示すグラフである。 図 4 Dは第 2スィッチに入力されるパルスの経時的変化を示すグラフである。 図 4 Eは第 1スィツチに入力されるパルスの経時的変化を示すグラフである。 図 4 Fは夕一ゲ'ソ 卜電圧の絰時的変化を示すグラフである。
図 4 Gはカソード電圧の経時的変化を示すグラフである。
図 4 Hは第 1グリッ ド電極電源部からの電圧の経時的変化を示すグラフである, 図 4 Iは第 1グリッ ド電極に印加される電圧の経時的変化を示すグラフである ( 図 4 Jは X線の出力の経時的変化を示すグラフである。
発明を実施するための最良の形態
本発明の実施形態に係る X線検査システムについて、図面を参照して説明する。 なお、 本発明の実施形態に係る X線発生装置及び X線撮像装置は、 本実施形態に 係る X線検査システムに含まれる。
まず、 本実施形態に係る X線検査システムにおける X線源 1、 撮像手段として の X線イメージインテンシファイア 2、 及び、 光電スィッチ 3の配置について説 明する。 図 1は、 本実施形態に係る X線検査システムを示す斜視図である。
ベルトコンベア 4は、 図中の矢印により示される方向に移動している。 被検査 対象物 5は、ベルトコンベア 4の上に置かれて、ベルトコンベア 4の移動により、 図中の矢印により示される方向に搬送されている。 X線源 1は、 ベルトコンベア 4の上方に配置され、 X線管 1 1から一定角度範囲に向けて X線を発散出力し、 ベルトコンベア 4上の被検査対象物 5のうち一定範囲に存在するものに向けて X 線を照射する。 X線イメージインテンシファイア 2は、 ベルトコンベア 4を挟ん で X線源 1と対向して、 その X線源 1 ( X線管 1 1 ) 'から出力された X線が到達 し得る位置に配置され、 入力されるゲート信号に従って、 被検査対象物 5の X線 透視像を撮像する。
ベルトコンベア 4の側方には、 被検査対象物 5が X線イメージインテンシファ ィァ 2における撮像範囲 (X線源 1からの X線の照射範囲) に到達することを検 知する被検査対象物検知手段としての光電スィツチ 3が設けられている。 光電ス イッチ 3は、 ベルトコンベア 4を挟んで、 発光素子 3 aと受光素子 3 bとを有し ている。 ベルトコンベア 4の光電スィツチ 3が設けられている位置に被検査対象 物 5が差し掛かると ¾光尜子 3 aからの光が遮られることを利用して、 被検査対 象物 5の通過を検出している。 被検査対象物 5がな L、状態では発光素子 3 aから の光が遮られることがないため、 光電スィッチ 3 (受光素子 3 b ) からの出力信 号はオン状態となる。 また、 光電スィッチ 3が設けられている位置に被検査対象 物 5が差し掛かると発光素子 3 aからの光が遮られるため、 光電スィッチ 3 (受 光素子 3 b ) からの出力信号はオフ状態となる。
X線源 1は、 図 2に示される X線管 1 1を有している。 図 2は、 本実施形態に 係る X線検査システムに含まれる X線管の要部を示す断面図である。 X線管 1 1 は、 マイクロフォーカス X線管であり、 電子 8 0を発生 '放出する電子銃部 1 2 と、 この電子銃部 1 2からの電子 8 0を受けて X線 8 1を発生させる X線発生部 1 3と、 を備えている。 これらの電子銃部 1 2及び X線発生部 1 3は、 各構成部 品を収容する筐体としての筒状の容器 2 1, 3 1より各々の外郭が構成される。 これらの容器 2 1 , 3 1は導電体より成り、 互いに直交するように連結されてい る。 容器 2 1内と容器 3 1内とは、 容器 2 1 , 3 1の境界部に形成された集束電 極 2 5により仕切られると共に、 この集束電極 2 5に形成された開口 2 5 aを通 して連通され、 容器 2 1内には電子銃 5 0力 容器 3 1内には陽極ターゲッ ト 3 2が、 各々配置されている。 また、 容器 2 1 , 3 1は密封されて、 その内部は真 空状態にされている。
容器 2 1内に配置された電子銃 5 0は概略、 発熱源としてのヒ一夕 7 6と、 こ のヒータ Ί 6により加熱されて電子 8 0を発生 ·放出する熱電子源としてのカソ —ド 7 3と、 この力ソード 7 3から放出された電子 8 0を加速 '集束させる第 1、 第 2グリッ ド電極 7 1 , 7 2と、 この第 2グリヅ ド電極 7 2と集束電極 2 5との 間に介在して当該第 2グリッ ド電極 7 2と集束電極 2 5との間隔を所定の間隔に 設定するスぺ一サ 1 8と、 上記第 1、 第 2グリッ ド電極 7 1 , 7 2、 ヒータ 7 6、 力ソード 7 3に所定の電圧を容器外部より供給するための複数のピン 1 5と、 こ れらのピン 1 5が貫通固定されると共に容器の蓋部として機能するステム 1 4と、 を備える。
上記ステ厶 1 4、 ヒー夕 7 6、 力ソード 7 3、 第 1、 第 2グリッ ド電極 7 1 , 7 2及びスぺ一サ 1 8は、 柒朿電極 2 5側に向かってこの順に並設され、 これら 構成部品の各軸心が一致すると共に集束電極 2 5の開口 2 5 aの軸心、 筒状を成 す容器 2 1の軸心と同軸に位置するように配置されている。 第 1、 第 2グリッ ド 電極 7 1 , 7 2は、 力ソード 7 3と陽極夕ーゲッ ト 3 2との間に配設されること になる。 さらに詳細に説明すれば、 上記力ソード 7 3は、 絶縁体より成る筒体 7 4の先端に設けられ、 この筒体 7 4内に、 当該力ソード 7 3を加熱する上記ヒー 夕 7 6が設けられている。 上記第 1グリッ ド電極 7 1は、 力ソード 7 3より集束 電極 2 5側に配置され、 この第 1グリッ ド電極 7 1より集束電極 2 5側に、 上記 第 2グリッ ド電極 7 2が配置される。 この第 2グリヅ ド電極 7 2は、 第 1グリッ ド電極 7 1の集束電極 2 5側に、 複数のセラミック棒 (絶縁体) 1 9を介して支 持され、 上記力ソード 7 3及びヒー夕 7 6を有する筒体 7 4は、 第 1グリッ ド電 極 7 1の集束電極 2 5側とは反対側に、 絶縁体 7 5を介して支持されている。 第 1、 第 2グリッド電極 7 1 , 7 2は、 各々円板状を成すと共に、 各々の上記 カソ一ド 7 3に対向する位置に、 カソード 7 3からの電子 8 0が通過する開口 7 l a , 7 2 aを備える。 第 2グリヅ ド電極 7 2は、 力ソード 7 3からの電子 8 0 を容器 3 1内の夕一ゲッ ト 3 2側に引っ張る電極である。 また、 第 1グリッド電 極 7 1は、 第 2グリッ ド電極 7 2によりターゲッ ト 3 2側に引っ張られる電子 8 0を力ソード 7 3側に押し戻す電極であり、 この第 1グリッ ド電極 Ί 1に供給す る電圧を調整することで、 ターゲッ ト 3 2側に向かう電子 8 0が増減される。 ま た、 第 1、 第 2グリッ ド電極 7 1 , 7 2の開口 7 1 a, 7 2 aにより、 力ソード 7 3からの電子 8 0をターゲッ ト 3 2に集束させる微小電子レンズ群が構成され ている。
第 2グリッ ド電極 7 2と柒朿電極 2 5との間には、 スぺーサ 1 8が介在してい る。 このスぺーサ 1 8は、 力ソード 7 3からターゲッ ト 3 2に向かう電子 8 0が 通過可能に筒状にされると に軸線方向に所定長を有し、 一方側の端部 1 8 が 第 2グリツ ド電極 7 2の端面に固定され、 他方側の端部 1 8 cが集束電極 2 5に 当接される。 この所定長を有するスぺーサ 1 8が第 2グリッ ド電極 7 2と集束電 極 2 5との間に介在することで、 当該第 2グリッ ド電極 7 2と集束電極 2 5との 間隔が所定の間隔に設定されている。 ここで言う所定の間隔とは、 所望の焦点径 を得るのに必要な第 2グリッ ド電極 7 2と集束電極 2 5との間隔である。 このス ぺ一サ 1 8は、 例えばステンレス等の導電体より成り、 このスぺ一サ 1 8を固定 する上記第 2グリッ ド電極 7 2は、 例えば耐熱性の良い M o (モリブデン) より 成る。 このように、 本実施形態では、 通常の溶接をし難い M oを第 2グリッド電 極 7 2として用いているため、 N i (ニッケル) リボン 1 7を複数個用いて抵抗 溶接により第 2グリッ ド電極 7 2とスぺ一サ 1 8とが連結されている。 この N i リボン 1 7による連結は、 第 2グリッ ド電極 7 2の端面とスぺーサ 1 8の一方側 の端部 1 8 b内周面との間でなされている。 また、 スぺ一サ 1 8は、 その周壁に、 当該スぺ一サ 1 8及びこのスぺーサ 1 8を固定する第 2グリッ ド電極 7 2を境界 部として画成される夕ーゲッ ト 3 2側の空間部と力ソード 7 3側の空間部とを連 通するガス抜き用の穴 1 8 aを、 複数個備えている。
上述した第 1グリッ ド電極 7 1は、 その夕ーゲッ ト 3 2側とは反対側に植設さ れた複数のピン 1 5を有している。 これらのピン 1 5は、 例えばセラミックス等 の絶縁体より成る円板状のステム基板 1 4 aを貫通して当該ステム基板 1 4 aに 固定されている。 すなわち、 上記スぺ一サ 1 8、 第 2グリッ ド電極 7 2、 筒体 7 4等を支持する第 1グリヅ ド電極 7 1は、 複数のピン 1 5を介してステム基板 1 4 aに支持されている。 このステム基板 1 4 aには、 図示を省略した複数の他の ピンも貫通固定されている。 この複数の他のピンの各々に対しては、 上記第 2グ リヅド電極 7 2のリード線 7 2 f、 上記カソード 7 3及びヒー夕 7 6の図示を省 略したリード線が各々接続されている。 また、 このステム基板 1 4 aの外周には、 円環状のステムリング 1 4 bが接合されている。 以上のように 子銃 5 0は構成される。 この電子銃 5 0のステムリング 1 4 b は、 容器 2 1の端部に形成された [ 口部 2 2に、 例えばロウ付け (躐付け) 等に より固着されている。 このステムリング 1 4 bが容器 2 1の開口部 2 2に固着さ れることで、 当該開口部 2 2がステム基板 1 4 a及びステムリング 1 4 bより構 成されるステム 1 4により蓋されて容器 2 1, 3 1は密封されている。
この集束電極 2 5の開口 2 5 aを介して容器 2 1内に連通する容器 3 1内には、 図 2に示すように、 上記ターゲッ ト 3 2が設置されている。 このターゲッ ト 3 2 は、 電子銃 5 0からの電子 8 0を受けて X線 8 1を発生させるものであり、 金属 製の棒状体を成し、 その軸方向を電子 8 0が進入してくる方向に対して交差する 向きに配置されている。 この夕一ゲヅ ト 3 2の先端面 3 2 aは、 電子銃 5 0から の電子 8 0を受ける面であり、 その電子 8 0が進入してくる前方の位置に配置さ れ、入射される電子 8 0と出射される X線 8 1が直交するように傾斜面にされる。 容器 3 1には、 X線出射窓 3 3が設けられている。 この X線出射窓 3 3は、 夕一 ゲッ ト 3 2から発せられた X線 8 1を容器 3 1の外部へ出射させるための窓であ り、 例えば、 X線透過材である B e材から成る板体等により構成される。 この X 線出射窓 3 3は、 ターゲッ 卜 3 2の先端の前方に配置され、 その中心が夕ーゲッ ト 3 2の中心軸の延長上に位置するように形成されている。
図 3は、 本実施形態に係る X線検査システムの構成を示すブロック図である。 この X線検査システムは、 既述した X線管 1 1 ( X線源 1 )、 X線イメージイン テンシファイア 2及び光電スィッチ 3 (受光素子 3 b ) の他に、 ターゲッ ト電源 部 1 0 1と、 力ソード電源部 1 0 2と、 パルス発生手段としてのパルス発生部 1 0 3と、 グリッ ド電圧制御手段としてのグリッ ド電圧制御部 1 1 0と、 ゲート信 号発生部 1 5 ◦と、 画像処理部 1 6 0と、 C R T 1 7 0と、 を備えている。 尚、 図 3においては、 X線管 1 1は、 第 2グリッ ド電極 7 2及びヒータ 7 6等を省略 し、 簡略化して図示している。
夕一ゲッ ト電源部 1 0 1は、 夕ーゲッ 卜 3 2に対して所定の正の高電圧 (夕一 ゲッ ト電圧) を印加する。 力ソード電源部 1 0 2は、 力ソード 7 3に対して所定 の電圧 (力ソード電圧) を印加する。 パルス発生部 1 0 3は、 受光素子 3 bから の出力された信号に基づいて、 オン状態が所定時間維持されるパルスを発生させ る。 グリッ ド電圧制御部 1 1 0は、 第 1グリッ ド電極 7 1に印加される電圧を制 御する。 ゲート信号発生部 1 5 0は、 パルス発生部 1 0 3から出力されたパルス に基づいてゲ一ト信号を発生し、 そのゲ一卜信号を X線ィメージィンテンシファ ィァ 2に与える。 画像処理部 1 6 0は、 X線イメージィンテンシファイア 2によ り撮像された被検査対象物 5の X線透視像が送られ、 その X線透視像を画像処理 (画像拡大等) する。 C R T 1 7 0は、 画像処理部 1 6 0からの画像デ一夕が送 られ、 画像処理部 1 6 0にて画像処理された X線透視像を表示する。
夕ーゲッ ト電源部 1 0 1には図示しない制御ュニッ 卜からアノード電圧設定信 号が入力される。 ターゲッ 卜電源部 1 0 1は、 このアノード電圧設定信号に応じ た所定の高電圧 (ターゲッ ト電圧) を発生させる。 力ソード電源部 1 0 2には、 図示しない夕一ゲット電圧検出部から、 夕一ゲッ ト電圧検出部にて検出された夕 —ゲット電圧を示すターゲッ ト電圧リファレンス信号が入力される。 カソ一ド電 源部 1 0 2は、 この夕一ゲッ 卜電圧リファレンス信号に応じた所定の電圧 (カソ ード電圧) を発生させる。
パルス発生部 1 0 3は、 受光素子 3 bからの出力された信号が入力されるトリ ガ一信号発生器 1 0 4と、 トリガ一信号発生器 1 0 4から出力されたトリガー信 号が入力されパルス発生器 1 0 5と、 を備えている。 トリガー信号発生器 1 0 4 は、 受光素子 3 bからの出力された信号がオン状態からオフ状態に変化したとき に、 所定のパルス幅を有する トリガ一信号を発生させ、 出力する。 パルス発生器 1 0 5は、 トリガ一信号が入力されたときに、 オン状態が所定時間維持されるパ ルスを発生し、 出力する。 更に、 パルス発生部 1 0 3は、 パルス発生器 1 0 5に て出力されるパルスのオン状態が維持される上述の所定時間を可変設定するため の時間設定器 1 0 6も備えている。 グリツ ド ¾圧制御部 1 1 0は、 カリード電源部 1 0 2と力ソード 7 3との間に 設けられる。 グリッ ド電圧制御部 1 1 0は、 力ソード電流検出手段としてのカソ ―ド電流検出用抵抗器 1 1 1と、 負電圧発生部 1 1 2と、 パルス発生器 1 0 5か らパルスが入力されるパルス反転器 1 1 3と、 パルス反転器 1 1 3から反転パル スが入力される第 1スィッチ 1 1 4と、 パルス発生器 1 0 5からパルスが入力さ れる第 2スィツチ 1 1 6と、 演算増幅器 1 1 7と、 グリッ ド電圧制御回路 1 1 8 と、 を備えている。
力ソード電流検出用抵抗器 1 1 1は、 力ソード電流を検出する。 負電圧発生部 1 1 2は、 所定の負電圧を発生させる。 パルス反転器 1 1 3は、 入力されたパル スのオン状態とオフ状態とを反転させた反転パルスを発生させる。 第 1スィッチ
1 1 4は、 パルス反転器 1 1 3からの反転パルスがオン状態にあるときに、 負電 圧発生部 1 1 2にて発生された所定の負電圧を出力する。 基準電圧発生部 1 1 5 は、 基準の正電圧を発生させる。 第 2スィッチ 1 1 6は、 パルス発生器 1 0 5か らのパルスがオン状態にあるときに、 基準電圧発生部 1 1 5にて発生された基準 の正電圧を出力する。 演算増幅器 1 1 7は、 入力端子 (+ ) と入力端子 (―) と を有しており、 入力端子 (+ ) に対しては、 力ソ一ド電流検出用抵抗器 1 1 1に 生じる電圧が入力され、 入力端子 (一) に対しては、 第 1スィッチ 1 1 4から出 力された所定の負電圧あるいは第 2スィツチ 1 1 6から出力された基準の正電圧 が入力される。 グリツ ド電圧制御回路 1 1 8は、 演算増幅器 1 1 7からの出力を 受けて第 1グリッ ド電極 7 1に印加される電圧を制御する。
基準電圧発生部 1 1 5は、 図示しない制御ュニッ ト等から出力された管 (カソ —ド) 電流リファレンス信号が入力されこの管 (力ソード) 電流リファレンス信 号を所定のデジタル信号に変換する A/Dコンパ一夕 1 1 9、 A/Dコンパ一夕 1 1 9から出力信号が入力されるフォトカブラ 1 2 0と、 フォ ト力ブラ 1 2 0か らの出力信号が所定のアナログ信号に変換する D /Aコンバータ 1 2 1とを有し ており、 この D /Aコンパ一夕 1 2 1から最終的に出力される出力信号が上述し た基準の』 Ε¾圧を示す信 に相当する。 また、 負電圧発生部 1 1 2と第 1スイツ チ 1 1 4との問には分圧器 1 2 2が設けられており、 負電圧発生部 1 1 2から与 えられる所定の負¾圧は、 分圧器 1 2 2にて分圧された後に、 第.1スィッチ 1 1 4に与えられる。
グリッ ド電圧制御回路 1 1 8には、 第 1グリッ ド電極 7 1に対して印加する電 圧を発生させる第 1グリツ ド電極電源部 1 2 3からの電圧が与えられている。 グ リッ ド電圧制御回路 1 1 8は、 この第 1グリッ ド電極電源部 1 2 3から与えられ る電圧を演算増幅器 1 1 7からの出力に応じて制御し、 第 1グリツ ド電極 7 1に 対して、 カソード 7 3から放出された電子が夕一ゲッ ト 3 2に到達しないように カッ トオフ電圧を印加し、 あるいは、 力ソード 7 3から放出された電子が夕一ゲ ッ ト 3 2に衝突するようにグリッ ド動作電圧を印加する。
第 1グリッ ド電極電源部 1 2 3には、 カソ一ド電源部 1 0 2と同様に、 図示し ない夕一ゲッ ト電圧検出部から夕ーゲッ ト電圧検出部にて検出されたターゲッ ト 電圧を示す夕ーゲット電圧リファレンス信号が入力される。 第 1グリッ ド電極電 源部 1 2 3は、 このターゲッ ト電圧リファレンス信号に応じた所定の電圧 (グリ ッ ド電圧) を発生させる。
本実施形態においては、 演算増幅器 1 1 7の入力端子 (一) の前段位置と、 演 算増幅器 1 1 7の後段位置とを接続するクランプ回路 1 2 4が設けられており、 トリガ一信号が無入力 (オフ状態) の際に演算増幅器 1 1 7の安定状態を維持し ている。 この位置にクランプ回路 1 2 4を挿入することにより、 パルス発生器 1 0 5からパルスが発生し、 演算増幅器 1 1 7の入力端子 (一) に基準電圧発生部 1 1 5からの基準の電圧が与えられた時に、 演算増幅器 1 1 7からは立ち上がり のより早い電流パルスを出力することが可能となる。
次に、 本実施形態に係る X線検査システムの動作について、 図 4 Α〜図 4 Jを 用いて説明する。
ターゲッ ト 3 2に対しては、 図 4 Fに示されるように、 夕一ゲッ 卜電圧として 夕ーゲッ ト電源部 1 0 1から所定の高電圧 ( + H V ) が与えられている。 カソ一 ド 7 3に対しては、 図 4 Gに示されるように、 力ソード電圧として力ソード電源 部 1 0 2から所定の電圧 (V 1 ) が与えられている。 また、 グリッ ド電圧制御回 路 1 1 8に対しては、 図 4 Hに示されるように、 第 1グリッ ド電極電源部 1 2 3 から所定の電圧 (V 2く V 1 ) が与えられている。
ベルトコンベア 4上に被検査対象物 5が載置され、 図 1中の矢印方向に搬送さ れてきて、 被検査対象物 5が X線イメージィンテンシファイア 2における撮像範 囲 (X線源 1からの X線の照射範囲) に入った際には、 被検査対象物 5が光電ス ィツチ 3の発光素子 3 aと受光素子 3 bとを結ぶ直線を通過することになり、 発 光素子 3 aから出射された光が被検査対象物 5により遮られる。 発光素子 3 aか ら出射された光が被検査対象物 5により遮られると、 受光素子 3 bからの出力信 号は、 図 4 Aに示されるように、 オフ状態となる。 被検査対象物 5が X線ィメ一 ジインテンシファイア 2における撮像範囲 (X線源 1からの X線の照射範囲) に 無いときには、 発光素子 3 aから出射された光が被検査対象物 5により遮られな いので、 受光素子 3 bからの出力信号は、 図 4 Aに示されるように、 オン状態と なる。
この受光素子 3 bからの出力信号はトリガー信号発生器 1 0 4に入力され、 ト リガ一信号発生器 1 0 4は、 受光素子 3 bからの出力信号のオン状態からオフ状 態への変化(出力信号の立ち下がり) を検知する。 トリガ一信号発生器 1 0 4は、 検知したオン状態からオフ状態への変化 (出力信号の立ち下がり) に同期して、 図 4 Bに示されるように、 トリガー信号を出力する。 トリガー信号発生器 1 0 4 から出力されたトリガ一信号はパルス発生器 1 0 5に入力される。 パルス発生器 1 0 5は、 トリガ一信号の入力、 特にトリガー信号の立ち上がりを検知して、 図 4 Cに示されるように、 オン状態の維持時間が時間設定器 1 0 6にて設定された 時間に対応した所定時間 (パルス幅ひ) となるパルスを出力する。
パルス発生器 1 0 5から出力されたパルスは、 パルス反転器 1 1 3、 第 2スィ ツチ 1 1 6、 ゲ一卜信号 ½生部 1 5 0及び画像処理部 1 6 0に入力される。 パル ス反転器 1 1 3は、 図 4 Eに示されるように、 入力されたパルスのオン状態とォ フ状態とを反転させた反転パルスを第 1スィッチ 1 1 4に出力する。 第 1スイツ チ 1 1 4は、 反転パルスがオン状態にあるときに、 分圧器 1 2 2を介して与えら れる負電圧発生部 1 1 2からの所定の負電圧 (分圧) を演算増幅器 1 1 7の負の 入力端子に対して与えるように作動する。 また、 第 1スィッチ 1 1 4は、 反転パ ルスがオフ状態にあるときには、 負電圧発生部 1 1 2からの所定の負電圧(分圧) を演算増幅器 1 1 7の負の入力端子に対して与えないように作動する。
第 2スィッチ 1 1 6には、 図 4 Dに示されるように、 パルス発生器 1 0 5から のパルスが入力される。 第 2スイッチ 1 1 6は、 入力されたパルスがオフ状態に あるときに、 基準電圧発生部 1 1 5から与えられる基準の正電圧を演算増幅器 1 1 7の入力端子 (一) に対して与えないように作動する。 また、 第 2スイッチ 1 1 6は、 入力されたパルスがオン状態にあるときに、 基準電圧発生部 1 1 5から 与えられる基準の正電圧を演算増幅器 1 1 7の入力端子 (一) に対して与えるよ うに作動する。 従って、 パルス発生器 1 0 5から出力されたパルスがオフ状態に あるときは、 演算増幅器 1 1 7の入力端子 (一) に対して、 分圧器 1 2 2を介し て与えられる負電圧発生部 1 1 2からの所定の負電圧 (分圧) が与えられ、 ノ ル ス発生器 1 0 5から出力されたパルスがオン状態にあるときは、 同じく演算増幅 器 1 1 7の入力端子 (―) に対して、 基準電圧発生部 1 1 5から与えられる基準 の正電圧が与えられる。
演算増幅器 1 1 7の入力端子 (+ ) には、 力ソード電流検出用抵抗器 1 1 1に 生じる電圧が与えられている。 演算増幅器 1 1 7は、 入力端子 (一) への入力を 基準にして、 入力端子 (+ ) への入力と入力端子 (―) への入力とが同電位とな るように信号を出力するように構成されている。 パルス発生器 1 0 5から出力さ れたパルスがオフ状態にあり、 演算増幅器 1 1 7の入力端子 (―) に対して、 分 圧器 1 2 2を介して与えられる負電圧発生部 1 1 2からの所定の負電圧 (分圧) が与えられるときには、 演算増幅器 1 1 7からは、 力ソード電流検出用抵抗器 1 1 1に生じる電圧がこの負電圧発生部 1 1 2からの所定の負電圧 (分圧) と同電 位となるように信号が出力される。
演算増幅器 1 1 7からの出力はグリッ ド電圧制御回路 1 1 8に送られ、 第 1グ リヅ ド電極電源部 1 2 3から所定の電圧 ( V 2 ) が制御されて、 第 1グリッ ド電 極 7 1に対して、 図 4 1に示されるように、 力ソード 7 3から放出された電子が ターゲッ ト 3 2に到達させないためのカッ トオフ電圧 (負) が与えられる。 これ により、 力ソード 7 3から放出された電子がターゲッ ト 3 2に到達せず、 図 4 J に示されるように、 X線管 1 1から X線が発生されることはない。 力ソード 7 3 から放出された電子がターゲッ ト 3 2に到達しないため、 力ソード (管) 電流は 発生せず、 力ソード電流検出用抵抗器 1 1 1に生じる電圧はゼロとなる。 演算増 幅器 1 1 7の入力端子 (+ ) に送られる電圧はゼロとなり、 また、 演算増幅器 1 1 7の入力端子 (一) には負電圧発生部 1 1 2からの所定の負電圧 (分圧) が継 続して与えられるので、 演算増幅器 1 1 7の出力により、 グリッ ド電圧制御回路 1 1 8からは、 安定したカッ トオフ電圧 (負) が第 1グリッ ド電極 7 1に対して 与えられる。
次に、 パルス発生器 1 0 5から出力されたパルスがオン状態にあり、 演算増幅 器 1 1 7の入力端子 (一) に対して、 基準電圧発生部 1 1 5から与えられる基準 の正電圧が与えられるときには、 演算増幅器 1 1 7からは、 力ソード電流検出用 抵抗器 1 1 1に生じる電圧がこの基準の正電圧と同電位となるように信号が出力 される。
演算増幅器 1 1 7からの出力はグリッ ド電圧制御回路 1 1 8に送られ、 第 1グ リッ ド電極電源部 1 2 3から所定の電圧 (V 2 ) が制御されて、 第 1グリッ ド電 極 7 1に対して、 図 4 1に示されるように、 力ソード 7 3から放出された電子が ターゲッ ト 3 2に衝突させるためのグリッ ド動作電圧 (正) が与えられる。 これ により、 力ソード 7 3から放出された' 子がターゲッ ト 3 2に衝突し、 パルス発 生器 1 0 5にて発生されたパルスのオン状態が維持されている時問 (パルス幅 ) と同等のパルス幅を有するパルス状の X線が、 図 4 Jに示されるように、 X 線管 1 1から発生されることになり、 被検査対象物 5に対してこのパルス状の X 線が照射されることになる。 このときに、 力ソード 7 3から放出された電子が夕 一ゲッ ト 3 2に衝突するため、 力ソード (管) 電流が発生し、 力ソード電流検出 用抵抗器 1 1 1には電圧降下により所定電圧が生じる。 この所定電圧が演算増幅 器 1 1 7の入力端子 (+ ) に送られ、 演算増幅器 1 1 7の入力端子 (一) には基 準電圧発生部 1 1 5からの基準の正電圧が継続して与えられるので、 演算増幅器 1 1 7からグリッ ド電圧制御回路 1 1 8に対して、 演算増幅器 1 1 7の入力端子 ( + )に送られる所定電圧が基準の正電圧と同電位となるように出力がなされる、 いわゆる第 1グリッド電極 7 1に印加されるグリツ ド動作電圧のフィードバック 制御が行われるため、 グリッ ド電圧制御回路 1 1 8からは、 安定したグリッ ド動 作電圧が第 1グリッド電極 7 1に与えられる。
パルス発生器 1 0 5から出力されたパルスは、 上述したように、 ゲート信号発 生部 1 5 0及び画像処理部 1 6 0にも入力される。 ゲート信号発生部 1 5 0は、 入力されたパルスに同期してゲート信号を出力する。 X線イメージィンテンシフ アイァ 2は、 入力されたゲート信号により、 X線源 1 ( X線管 1 1 ) から被検査 対象物 5に対して X線を照射することにより形成される X線透視像を撮像する。 画像処理部 1 6 0は、 入力されたパルスに同期して、 X線イメージインテンシフ アイァ 2にて撮像された被検査対象物 5の X線透視像のデータをフレームメモリ (図示せず) に格納する。 その後、 画像処理部 1 6 0は、 フレームメモリに格納 された被検査対象物 5の X線透視像のデ一夕に対して、 所定の画像処理 (画像拡 大等) を施し、 画像処理後の被検査対象物 5の X線透視像の画像データを C R T 1 7 0に出力する。 画像処理後の被検査対象物 5の X線透視像の画像が C R T 1 7 0に表示される。 フレームメモリに格納された X線透視像は、 ゲート信号が発 生した (パルス発生器 1 0 5からパルスが出力された) タイミングにおける、 被 検査対象物 5の静止像とみなし得るものである。
上述した本実施形態の X線検査システムによれば、 まず、 グリッ ド電圧制御部 1 1 0により第 1グリッ ド電極 7 1に印加される電圧は、 被検査対象物 5が X線 イメージインテンシファイア 2における撮像範囲 ( X線源 1からの X線の照射範 囲) に無いとき (パルス発生器 1 0 5から出力されるパルスがオフ状態のとき) には、 負電圧発生部 1 1 2からの所定の負電圧 (分圧) を基準に制御される。 ま た、 被検査対象物 5が X線イメージインテンシファイア 2における撮像範囲 (X 線源 1からの X線の照射範囲) にあるとき (パルス発生器 1 0 5から出力される パルスがオン状態のとき) には、 基準電圧発生部 1 1 5からの基準の正電圧を基 準に制御される。 これらにより、 カッ トオフ電圧及びグリッ ド動作電圧の両者と も安定した状態で印加されることになる。
更に、 パルス発生器 1 0 5からのパルスの変化 (オン状態からオフ状態、 ある いは、 オフ状態からオン状態) に対応して、 第 1スィッチ 1 1 4及び第 2スイツ チ 1 1 6が速やかに作動し、 演算増幅器 1 1 7の入力端子 (―) に対して、 負電 圧発生部 1 1 2からの所定の負電圧 (分圧) あるいは基準電圧発生部 1 1 5から の基準の正電圧の一方が選択的に速やかに与えられることになる。 このため、 グ リッ ド電圧制御回路 1 1 8から第 1グリッ ド電極 7 1に対して印加される電圧力 カッ トオフ電圧からグリッ ド動作電圧に (図 4 Iにおける立ち上がり)、 あるい は、 グリッ ド動作電圧からカッ トオフ電圧に (図 4 Iにおける立ち下がり)、 速 やかに変化する。
以上のことから、 パルス発生器 1 ◦ 5にて発生されたパルスのオン状態の継続 時間 (パルス幅ひ) に対応した、 パルス状の X線を安定化させた状態で X線管 1 1から発生させることができる。
また、 カソ一ド 7 3から放出されて夕ーゲッ ト 3 2に衝突する電子の量を検出 する手段として、 力ソード電流検出用抵抗器 1 1 1を設け、 力ソード電流を検出 しているので、 ターゲッ ト電流を検出する手段を設けるもの等に比して、 カツ一 ド 7 3から放出されてターゲッ 卜 3 2に衝突する ¾子の _ を容易に検出すること ができ、 グリッ ド ΐίϊ压制御部 1 1 0 (グリツ ド電圧制御回路 1 1 8 ) による第 1 グリヅ ド電極 7 1に対して印加される電圧の制御も容易に行うことができる。 更に、 安定したパルス状の X線を発生させるために第 1グリッ ド電極 7 1に印 加される電圧を制御するグリッ ド電圧制御部 1 1 0の構成が、 簡易且つ低コス ト な回路構成にて実現可能となる効果も有している。
また、 X線イメージインテンシファイア 2は、 パルス発生器 1 0 5にて発生さ れたパルスを受けてゲ一ト信号発生部 1 5 0から出力されたゲート信号に基づい て、 ゲート信号が出力されたとき (パルスがオン状態とされたとき) に、 X線源 1 ( X線管 1 1 ) から被検査対象物 5に対して X線を照射することにより形成さ れる X線透視像を撮像することになる。 従って、 X線イメージインテンシフアイ ァ 2 t X線源 1 ( X線管 1 1 ) から発生された安定したパルス状の X線を被検 査対象物 5に照射することにより形成される X線透視像を的確に獲得することが できる。
また、 被検査対象物 5が X線イメージインテンシファイア 2における撮像範囲
( X線源 1からの X線の照射範囲) に到達することを光電スィツチ 3により検知 され、 その検知に基づいて、 トリガー信号発生器 1 0 4がトリガ一信号を発生さ せ、 パルス発生器 1 0 5がパルスを発生することになる。 これにより、 パルスが オン状態にあるときには、 上述したように X線管 1 1から安定したパルス状の X 線が発生される。 また、 X線イメージインテンシファイア 2は、 パルス発生器 1 0 5にて発生されたパルスを受けてゲート信号発生部 1 5 0から出力されたゲー ト信号に基づいて、 ゲート信号が出力されたとき (パルス発生器 1 0 5にて発生 されたパルスがオン状態とされたとき) に、 X線源 1 ( X線管 1 1 ) から被検査 対象物 5に対して X線を照射することにより形成される X線透視像を撮像するこ とになる。 従って、 ベルトコンベア 4に載置され搬送されている被検査対象物 5 に対して、 X線管 1 1から発生された安定したパルス状の X線を照射し、 この安 定したパルス状の X線の照射により形成される被検杏対象物の X線透視像を X線 イメージインテンシファイア 2により的維に獲得することができる。
なお、 基準 ½( ^^邰 1 1 5に入力される管 (力ソード) 電流リファレンス信 号を可変設定可能となるように構成された場合には、 可変とされた管(力ソード) 電流リファレンス信号に対応して、 基準電圧発生部 1 1 5から出力される基準の 正電圧が変化することになる。 これにより、 演算増幅器 1 1 7における基準値が 変化することになり、 グリッ ド電圧制御回路 1 1 8から第 1グリッ ド電極 7 1に 対して印加されるグリッ ド動作電圧の電圧値が変化し、 カソード 7 3から放出さ れたターゲッ ト 3 2に衝突する電子の量が変化するため、 X線管 1 1にて発生す る X線量を変化させることができる。 もちろんこの場合においても、 安定したパ ルス上の X線を発生させることができる。
産業上の利用可能性
本発明の X線発生装置、 X線撮像装置及び X線検査システムは、 包装容器内に 収納されている商品等を、 その包装容器等を破壊することなく透過してみること ができる X線非破壊検査装置に利用できる。

Claims

言青求の範囲
1 . ¾空に封止された筐体内で、 力ソードから放出された電子を、 グリツ ド電極を介して陽極夕ーゲッ トに衝突させることによって X線を発生させる X線 管と、
前記グリッ ド電極に印加されるグリッ ド電圧を制御するグリッ ド電圧制御手段 と、
オフ状態からオン状態とされて、 前記オン状態が所定時間維持されるパルスを 発生させるパルス発生手段と、 を備え、
前記グリツ ド電圧制御手段は、 前記パルス発生手段にて発生された前記パルス を受けて、 前記パルスが前記オフ状態にある時に、 前記力ソードから放出された 前記電子が前記陽極ターゲッ 卜に到達しないように、 カツ トオフ電圧を前記グリ ッ ド電極に対して印加し、 前記パルス発生手段にて発生された前記パルスを受け て、 前記パルスが前記オン状態にある時に、 前記力ソードから放出されて陽極夕 —ゲットに衝突する前記電子の量が所定値となるように調整されたグリッ ド動作 電圧を前記グリツ ド電極に対して印加することを特徴とする X線発生装置。
2 . 前記グリッ ド電圧制御手段は、 力ソード電流を検出する力ソード電流 検出手段を有し、 前記パルス発生手段にて発生された前記パルスを受けて、 前記 パルスが前記オン状態にある時に、 前記カソード電流検出手段にて検出された力 ソード電流が所定値となるように調整されたグリッ ド動作電圧を前記グリッド電 極に対して印加することを特徴とする請求の範囲第 1項に記載の X線発生装置。
3 . 前記力ソード電流検出手段は、 力ソードに接続され、 力ソード電流を 検出するためのカソード電流検出用抵抗器を有し、
前記グリッ ド電圧制御手段は、
所定の負電圧を発生させる負電圧発生部と、
前記パルス発生手段にて発生された前記パルスが入力され、 前記パルスのオン 状態及びォフ状態を反転させた反転パルスを発生させるパルス反転器と、 前記パルス反転器にて ¾生された前記反転パルスが入力され、 前記反転パルス がオン状態にあるときに、 前記負電圧究生部にて 生された前記所定の負電圧を 出力する第 1スィツチと、
基準の正電圧を発生させる基準電圧発生部と、
前記パルス発生手段にて発生された前記パルスが入力され、 前記パルスがオン 状態にあるときに、 前記基準電圧発生部にて発生された前記基準の正電圧を出力 する第 2スィツチと、
一方の入力端子に対して、 前記カソード電流検出用抵抗器に生じる電圧が入力 され、 他方の入力端子に対して、 前記第 1スィッチから出力された前記所定の負 電圧及び前記第 2スィツチから出力された前記基準の正電圧が入力される演算増 幅器と、
演算増幅器からの出力を受けてグリッ ド電極に印加されるグリッ ド電圧を制御 するグリツ ド電圧制御回路と、 を有することを特徴とする請求の範囲第 2項に記 載の X線発生装置。
4 . 請求の範囲第 1項に記載の X線発生装置により発生された X線を被検 査対象物に照射することにより形成される X線透視像を撮像する撮像手段を備え、 前記撮像手段は、 前記パルス発生手段にて発生された前記パルスを受けて、 前 記パルスがオン状態にあるときに、 前記 X線透視像を撮像することを特徴とする X線撮像装置。
5 . 請求の範囲第 1項に記載の X線発生装置と、 前記 X線発生装置により 発生された X線を被検査対象物に照射することにより形成される X線透視像を撮 像する撮像手段を有する X線撮像装置と、 前記被検査対象物が前記 X線撮像装置 における撮像範囲に到達することを検知する被検査対象物検知手段と、 を備え、 前記パルス発生手段は、 前記被検査対象物検知手段による前記被検査対象物の 検知に基づいて卜リガ一信号を出力する 卜リガ一信号出力手段を有し、 前記トリ ガー信号出力手段から 卜リガ一信号が出力されたときに前記パルスを出力し、 前記撮像平段は、 前記パルス発生手段にて出力された前記パルスを受けて、 前 記パルスがオン状態にあるときに、 前記 X線透視像を撮像することを特徴とする X線検査システム。
6 . カゾードと、 陽極ターゲッ トと、 前記力ソードと前記陽極ターゲッ ト との間に配設されるグリッ ド電極とを有した X線管と、
前記 X線管から所定のパルス幅を有するパルス状の X線を発生させるように、 前記グリッ ド電極に印加されるグリッ ド電圧を制御するグリッ ド電圧制御手段と、 を備えることを特徴とする X線発生装置。
PCT/JP2000/001238 1999-03-02 2000-03-02 Generateur de rayons x, installation de radiographie et systeme d'inspection aux rayons x WO2000052972A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00906637A EP1158842B1 (en) 1999-03-02 2000-03-02 X-ray generator, x-ray imaging apparatus and x-ray inspection system
DE60015301T DE60015301T2 (de) 1999-03-02 2000-03-02 Röntgengenerator,röntgenbildaufnahmegerät und röntgeninspektionssystem
AU28259/00A AU2825900A (en) 1999-03-02 2000-03-02 X-ray generator, x-ray imaging apparatus and x-ray inspection system
US09/943,085 US6816573B2 (en) 1999-03-02 2001-08-31 X-ray generating apparatus, X-ray imaging apparatus, and X-ray inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05426799A JP4026976B2 (ja) 1999-03-02 1999-03-02 X線発生装置、x線撮像装置及びx線検査システム
JP11/54267 1999-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/943,085 Continuation-In-Part US6816573B2 (en) 1999-03-02 2001-08-31 X-ray generating apparatus, X-ray imaging apparatus, and X-ray inspection system

Publications (1)

Publication Number Publication Date
WO2000052972A1 true WO2000052972A1 (fr) 2000-09-08

Family

ID=12965810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001238 WO2000052972A1 (fr) 1999-03-02 2000-03-02 Generateur de rayons x, installation de radiographie et systeme d'inspection aux rayons x

Country Status (8)

Country Link
US (1) US6816573B2 (ja)
EP (1) EP1158842B1 (ja)
JP (1) JP4026976B2 (ja)
KR (1) KR100731455B1 (ja)
CN (1) CN1278591C (ja)
AU (1) AU2825900A (ja)
DE (1) DE60015301T2 (ja)
WO (1) WO2000052972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280389A1 (de) * 2001-07-28 2003-01-29 Philips Corporate Intellectual Property GmbH Röntgensystem zur Erzeugung von Röntgenaufnahmen

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889871B2 (ja) * 2001-03-29 2012-03-07 浜松ホトニクス株式会社 X線発生装置
US6944268B2 (en) * 2001-08-29 2005-09-13 Kabushiki Kaisha Toshiba X-ray generator
US20030220997A1 (en) * 2002-04-25 2003-11-27 August Technology Corp. Switched fabric based inspection system
DE20218138U1 (de) 2002-11-21 2004-04-08 Heuft Systemtechnik Gmbh Röntgenanlage zur Erzeugung von kurzen Röntgenstrahlenimpulsen und mit einer solchen Röntgenanlage arbeitende Inspektionsvorrichtung
JP2006529052A (ja) * 2003-05-16 2006-12-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線画像を曝射するための方法及び装置
DE102004012704B4 (de) * 2004-03-16 2008-01-03 Katz, Elisabeth Vorrichtung zur online-Analyse und Verwendung einer solchen Vorrichtung
US7440547B2 (en) * 2005-04-15 2008-10-21 Kabushiki Kaisha Toshiba CT scanner
US7317783B2 (en) * 2006-04-21 2008-01-08 Pavel Dolgonos Reduced X-Ray exposure using power modulation
JP4963622B2 (ja) * 2007-04-03 2012-06-27 浜松ホトニクス株式会社 X線管
US7737424B2 (en) * 2007-06-01 2010-06-15 Moxtek, Inc. X-ray window with grid structure
US7529345B2 (en) * 2007-07-18 2009-05-05 Moxtek, Inc. Cathode header optic for x-ray tube
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
WO2009085351A2 (en) 2007-09-28 2009-07-09 Brigham Young University X-ray window with carbon nanotube frame
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
WO2009045915A2 (en) 2007-09-28 2009-04-09 Brigham Young University Carbon nanotube assembly
CN102119000B (zh) * 2008-08-08 2013-08-07 皇家飞利浦电子股份有限公司 电压调制的x射线管
CN101754560B (zh) * 2008-12-12 2012-05-23 东软飞利浦医疗设备系统有限责任公司 栅格调制装置
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US8027433B2 (en) * 2009-07-29 2011-09-27 General Electric Company Method of fast current modulation in an X-ray tube and apparatus for implementing same
CN102640252A (zh) 2009-11-02 2012-08-15 Xr科学有限责任公司 快速切换双能x射线源
JP5021716B2 (ja) * 2009-12-02 2012-09-12 マイクロXジャパン株式会社 X線発生装置及び携帯型非破壊検査装置
US8401151B2 (en) * 2009-12-16 2013-03-19 General Electric Company X-ray tube for microsecond X-ray intensity switching
US7983394B2 (en) 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US9271689B2 (en) * 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US8396185B2 (en) 2010-05-12 2013-03-12 General Electric Company Method of fast current modulation in an X-ray tube and apparatus for implementing same
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US8780358B2 (en) * 2011-06-07 2014-07-15 Sick, Inc. Inspection apparatus, system, and method
JP5787626B2 (ja) * 2011-06-07 2015-09-30 キヤノン株式会社 X線管
KR101818681B1 (ko) * 2011-07-25 2018-01-16 한국전자통신연구원 게터 내장형 전계방출 엑스선관 장치
US8837678B2 (en) * 2011-08-12 2014-09-16 Creative Electron, Inc. Long-lasting pulseable compact X-ray tube with optically illuminated photocathode
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
CN102543635A (zh) * 2012-01-18 2012-07-04 苏州生物医学工程技术研究所 基于场发射阴极的多焦点固定阳极x射线管
CN103249237A (zh) * 2012-02-10 2013-08-14 南京普爱射线影像设备有限公司 用于脉冲透视栅控冷阴极x射线球管的电源装置
CN103260327B (zh) * 2012-02-15 2015-05-20 南京普爱射线影像设备有限公司 用于栅控冷阴极x射线球管的管电流稳流装置
JP2013239317A (ja) * 2012-05-15 2013-11-28 Canon Inc 放射線発生ターゲット、放射線発生装置および放射線撮影システム
US9224572B2 (en) 2012-12-18 2015-12-29 General Electric Company X-ray tube with adjustable electron beam
US9484179B2 (en) 2012-12-18 2016-11-01 General Electric Company X-ray tube with adjustable intensity profile
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
CN103906333B (zh) * 2012-12-28 2016-08-03 台达电子工业股份有限公司 X光管电源装置、具有该装置的电源系统及其操作方法
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9241393B2 (en) 2013-03-14 2016-01-19 Analogic Corporation Dynamic control of radiation emission
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
CN103901059B (zh) * 2014-03-24 2016-04-20 佛山市南海区宏乾电子有限公司 X光电子器件检测系统
KR101648063B1 (ko) * 2015-03-31 2016-08-12 주식회사 쎄크 X선 발생장치 및 그 제어방법
CN106093082A (zh) * 2016-06-15 2016-11-09 国网福建省电力有限公司 基于脉冲源射线照相的干式变压器绕组甄别装置及方法
DE102016222365B3 (de) * 2016-11-15 2018-04-05 Siemens Healthcare Gmbh Verfahren, Computerprogrammprodukt, computerlesbares Medium und Vorrichtung zur Erzeugung von Röntgenpulsen bei einer Röntgenbildgebung
CN107295736B (zh) * 2017-06-26 2019-02-19 南京普爱医疗设备股份有限公司 一种用于x光机的自动脉冲调整高压电路
GB2565138A (en) * 2017-08-04 2019-02-06 Adaptix Ltd X-ray generator
CN112999619A (zh) * 2018-08-15 2021-06-22 东莞市凯勒帝数控科技有限公司 一种排球充气检测发射机构
KR102194700B1 (ko) * 2019-03-19 2020-12-23 김상수 엑스레이 제어 장치
DE102020210118B4 (de) 2020-08-11 2022-03-24 Siemens Healthcare Gmbh Steuern einer Röntgenröhre

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433899A (en) * 1987-07-29 1989-02-03 Hitachi Medical Corp Stereo x-ray device
JPH05188018A (ja) * 1992-01-12 1993-07-27 Horiba Ltd 蛍光x線分析装置
JPH08178872A (ja) * 1994-12-27 1996-07-12 Sutabitsuku:Kk X線非破壊検査装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2347973C2 (de) * 1973-01-26 1983-11-24 Borden Inc., Columbus, Ohio Vorrichtung zum Untersuchen von Gegenständen wie gefüllte Behälter auf Fremdkörper
US4734924A (en) * 1985-10-15 1988-03-29 Kabushiki Kaisha Toshiba X-ray generator using tetrode tubes as switching elements
EP0236573A3 (en) * 1986-01-03 1988-08-10 General Electric Company Weld-resistant x-ray tube
JPH0665188B2 (ja) * 1986-07-30 1994-08-22 株式会社日立メデイコ X線装置の高電圧制御用真空管のフイラメント加熱回路
JPH0750594B2 (ja) * 1989-02-20 1995-05-31 浜松ホトニクス株式会社 X線発生管用ターゲットおよびx線発生管
US5077771A (en) * 1989-03-01 1991-12-31 Kevex X-Ray Inc. Hand held high power pulsed precision x-ray source
FR2718599B1 (fr) * 1994-04-06 1996-07-05 Ge Medical Syst Sa Dispositif de commande de grille d'un tube à rayons X.
JP3712474B2 (ja) * 1996-09-26 2005-11-02 株式会社東芝 パルスx線装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433899A (en) * 1987-07-29 1989-02-03 Hitachi Medical Corp Stereo x-ray device
JPH05188018A (ja) * 1992-01-12 1993-07-27 Horiba Ltd 蛍光x線分析装置
JPH08178872A (ja) * 1994-12-27 1996-07-12 Sutabitsuku:Kk X線非破壊検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1158842A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280389A1 (de) * 2001-07-28 2003-01-29 Philips Corporate Intellectual Property GmbH Röntgensystem zur Erzeugung von Röntgenaufnahmen
US6570958B2 (en) 2001-07-28 2003-05-27 Koninklijke Philips Electronics N.V. X-ray system for forming X-ray images

Also Published As

Publication number Publication date
EP1158842B1 (en) 2004-10-27
EP1158842A1 (en) 2001-11-28
EP1158842A4 (en) 2003-01-15
JP4026976B2 (ja) 2007-12-26
US6816573B2 (en) 2004-11-09
CN1350769A (zh) 2002-05-22
US20020034279A1 (en) 2002-03-21
DE60015301D1 (de) 2004-12-02
CN1278591C (zh) 2006-10-04
DE60015301T2 (de) 2006-03-09
AU2825900A (en) 2000-09-21
JP2000252095A (ja) 2000-09-14
KR20010103033A (ko) 2001-11-17
KR100731455B1 (ko) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2000052972A1 (fr) Generateur de rayons x, installation de radiographie et systeme d'inspection aux rayons x
JP4878311B2 (ja) マルチx線発生装置
US6385294B2 (en) X-ray tube
US5617464A (en) Cathode system for an x-ray tube
US8358741B2 (en) Device and method to control an electron beam for the generation of x-ray radiation, in an x-ray tube
JP2007265981A5 (ja)
WO2000003412A1 (fr) Tube a rayons x
GB2237716A (en) Sensing radiation. e.g. x-rays
US20190178821A1 (en) X-Ray Tomography Inspection Systems and Methods
JP2011129518A (ja) マイクロ秒x線強度切換えのためのx線管
CN105575747A (zh) X射线发生管、x射线发生装置和放射线照相系统
JP2012079695A (ja) 電子ビーム・システムを動作させる方法及びシステム
JP2004071563A (ja) X線管のための電子源及びケーブル
WO1999040605A1 (fr) Tube a rayons x
ATE257276T1 (de) Röntgenröhre mit variabler abbildungs-fleckgrösse
WO2019222874A1 (en) An apparatus for imaging the prostate
US20030021380A1 (en) X-ray system for forming X-ray images
US20030210764A1 (en) Pulsed power application for x-ray tube
JP4216394B2 (ja) X線管装置
JP5312555B2 (ja) マルチx線発生装置
US20230300964A1 (en) Cnt x-ray tube control system with dummy load
JP6580231B2 (ja) X線発生管、x線発生装置及びx線撮影システム
JP2005321282A (ja) X線検査装置
KR20240053227A (ko) 엑스선 소스의 구동장치 및 이를 이용한 엑스선 발생장치
JP6168770B2 (ja) 放射線発生ユニット及び放射線撮影システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805552.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000906637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017011103

Country of ref document: KR

Ref document number: 09943085

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017011103

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000906637

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000906637

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017011103

Country of ref document: KR