WO2000043764A2 - Sensor zur analyse von gasen - Google Patents

Sensor zur analyse von gasen Download PDF

Info

Publication number
WO2000043764A2
WO2000043764A2 PCT/DE2000/000136 DE0000136W WO0043764A2 WO 2000043764 A2 WO2000043764 A2 WO 2000043764A2 DE 0000136 W DE0000136 W DE 0000136W WO 0043764 A2 WO0043764 A2 WO 0043764A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
insulation layer
sensor according
sensor
Prior art date
Application number
PCT/DE2000/000136
Other languages
English (en)
French (fr)
Other versions
WO2000043764A3 (de
Inventor
Rainer Strohmaier
Carsten Springhorn
Detlef Heimann
Thomas Wahl
Margret Schuele
Bernd Schumann
Bernhard Bloemer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP00907435A priority Critical patent/EP1068519A2/de
Priority to JP2000595135A priority patent/JP2002535648A/ja
Publication of WO2000043764A2 publication Critical patent/WO2000043764A2/de
Publication of WO2000043764A3 publication Critical patent/WO2000043764A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Definitions

  • the invention relates to a sensor for analyzing gases according to the preamble of the independent claim.
  • Such sensors are known, for example, from the unpublished application DE 198 37 515.8, in which electrically insulating layers are provided between the electrode leads and a solid electrolyte body and surround the electrode leads on all sides at least over a partial length.
  • a planar probe is also known from DE 38 11 713 C2, which is used to determine the lambda type of gas mixtures.
  • an electrically insulating intermediate layer is arranged on a solid electrolyte body with two electrode leads between the conductor tracks of the electrode leads.
  • the gas sensor according to the invention with the characterizing features of the main claim has the advantage over the prior art that the endurance and temperature change resistance of existing sensors, in particular when used in catalytic converters of motor vehicles, improved and an interruption of electrical contacts or the electrode leads is avoided. Improved adhesion between the substrate and the electrode leads running on the substrate is furthermore achieved, the electrode leads being separated from the substrate via an electrical insulation layer.
  • the electrode leads are separated from the substrate via an insulation layer, there are no potentials falsifying the measurement result between the substrate and the electrode leads, and it is ensured that the potential setting relevant for the measurement is only between the electrodes in the hot area of the gas - sensors done.
  • the hot area is understood by the person skilled in the art to mean the area of the gas sensor which is exposed to the measurement gas or in which the measurement signal is formed, while the cold area is to be understood as the area of the electrode leads which is exposed to significantly lower temperatures and for formation of the measurement signal essentially does not contribute.
  • the application of adhesive knobs very advantageously brings about a firm and intimate connection between the insulation layer and the electrode lead and thus between the substrate and the electrode lead due to an increase in the surface area and an additional mechanical clamping.
  • ZrC> 2 is used in particular for the substrate material, while Al2O3 is preferably used for the insulation layer.
  • the adhesive knobs are applied to the substrate and in particular are printed on and protrude into the insulation layers after the subsequent application.
  • the mechanical stresses between the insulation layer and the substrate which occur due to the different sinterability of the substrate and the insulation layer during the manufacturing process and during operation (in particular during temperature change processes) are very advantageously minimized if the applied studs are made of the same material as the substrate or the insulation layer.
  • one of the electrode leads, the MO x electrode lead is also separated from the substrate in the hot area of the sensor by means of an electrical insulation layer. This ensures even in the hot area that there is no that between the MO x electrode lead and the Pt reference electrode
  • Measurement result of the gas sensor sets disruptive potential or an undesirable chemical change in the substrate.
  • adhesive nubs are also advantageously applied in the hot area, therefore analogous to the electrode leads in the cold area, between the insulation layer and the substrate. Particularly advantageously, it is when surrounded in the hot area of the MO ⁇ -Elektrodenzutechnisch from the overlying MO ⁇ electrode and mounted below the insulation layer.
  • FIG. 1 shows a plan view of a sensor for analyzing gases
  • FIG. 2 shows a section through FIG. 1 along line II
  • FIG. 3 shows a section through FIG. 1 along line III.
  • FIG. 1 shows a top view of a gas sensor 5 with a hot area 40 and a cold area 30.
  • Two strip-shaped, electrically insulating insulation layers 15 made of Al 2 O 3 run in the cold area 30 on a substrate made of ZrC> 2 single, coherent insulation layer can be formed, on which an outer electrode lead 21 and a MO ⁇ electrode lead 17 runs.
  • MO x under a per se known composite oxide not precisely defined Stöchiome-, is thereby trie such as i 0, 95 NbO understood o ⁇ 5 2 + ⁇ .
  • the hot area 40 is initially covered by an MO ⁇ electrode 20.
  • FIG. 2 shows FIG. 1 in section along the line II in the cold region 30.
  • heaters 13 Inside the substrate 10 there are heaters 13 with a surrounding heater insulation 14, a reference air duct 11 and a Pt reference electrode 12. Between the electrode leads 17 and 21 and the substrate 10, the insulation layers 15 run continuously.
  • the connection between the insulation layers 15 and the substrate 10 takes place via adhesive knobs 22, which are made of the same material as the substrate and have been applied to the substrate 10, for example, by screen printing. They protrude into the insulation layers 15 and connect them intimately to the substrate 10.
  • FIG. 3 shows FIG. 1 in a section along the section line III in the hot area 40.
  • the Pt outer electrode 16 which is contacted via the outer electrode feed line 21, initially runs on the substrate 10.
  • a highly porous tunnel layer 23 is also attached to the outer electrode 21.
  • the tunnel layer 23 and the Pt outer electrode 16 are laterally and above surrounded by an electrolyte layer 19 made of dense or weakly porous ZrC> 2.
  • Electrode lead 17 extends - in addition to the Pt outer electrode 16 MO ⁇ is the continuous continued already in the cold area 30 upstream handene insulating film 15 here, on which the also discontinued.
  • the MO x electrode feed line 17 is also electrically continuously separated from the substrate 10 and the electrolyte layer 19 in the hot region 40.
  • Adhesive knobs 22, which are made of the same material as the substrate 10 and protrude into the insulation layer 15 for intimate connection, are likewise attached between the insulation layer 15 and the substrate 10. The adhesive knobs 22 were applied in a manner known per se by means of screen printing before the sintering and debinding of the various layers of the gas sensor 5.
  • the tunnel layer 23 is otherwise flat so that it is not at least partially covered in the direction of the cold side 30 of the gas sensor 5 by the MO x electrode 20 and the electrolyte layer 19, so that the gas to be analyzed is applied directly to the tunnel layer 23 the Pt outer electrode 16 can pass without first having to diffuse through the MOx electrode 20 and the dense or weakly porous electrolyte layer 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Es wird ein Sensor zur Bestimmung von Gaskomponenten und/oder Gaskonzentrationen in Gasgemischen vorgeschlagen, der sich insbesondere zur Analyse von HC, NOx und CO in Abgasen von Verbrennungsmotoren eignet, bei dem auf einem Substrat (10) in einem dem Gas ausgesetzten heißen Bereich (40) eine Außenelektrode (16) und eine MOx-Elektrode (20) und in einem kalten Bereich (30) eine Außenelektrodenzuleitung (21) und eine MOx-Elektrodenzuleitung (17) angeordnet sind. Dabei wird zumindest im kalten Bereich (30) mindestens eine der Elektrodenzuleitungen (17, 21) von dem Substrat (10) mittels mindestens einer elektrisch isolierenden Isolationsschicht (15) getrennt. Diese ist vorteilhaft zumindest bereichsweise mit dem Substrat (10) über Haftnoppen (22) verbunden.

Description

Sensor zu Analyse von Gasen
Stand der Technik
Die Erfindung betrifft einen Sensor zur Analyse von Gasen nach der Gattung des unabhängigen Anspruches.
Derartige Sensoren sind beispielsweise aus der unveröffentlichten Anmeldung DE 198 37 515.8 bekannt, in der zwischen den Elektrodenzuleitungen und einem Festelektrolytkörper elektrisch isolierende Schichten vorgesehen sind, die die Elektrodenzuleitungen zumindest über eine Teillänge allseitig umgeben. Aus der DE 38 11 713 C2 ist weiter eine planare Sonde bekannt, die zur Bestimmung des Lambda- ertes von Gas- gemischen dient. Bei dieser Sonde ist auf einem Festelektrolytkörper mit zwei Elektrodenzuleitungen zwischen den Leiterbahnen der Elektrodenzuleitungen jeweils eine elektrisch isolierende Zwischenschicht angeordnet.
Vorteile der Erfindung
Der erfindungsgemäße Gassensor mit den kennzeichnenden Merkmalen des Hauptanspruches hat gegenüber dem Stand der Technik den Vorteil, daß die Dauerlaufbeständigkeit und Tempera- turwechselbeständigkeit bestehender Sensoren, insbesondere beim Einsatz in Abgaskatalysatoren von Kraftfahrzeugen, verbessert und eine Unterbrechung elektrischer Kontaktierungen oder der Elektrodenzuleitungen vermieden wird. Es wird weiterhin eine verbesserte Haftung zwischen dem Substrat und den auf dem Substrat verlaufenden Elektrodenzuleitungen erzielt, wobei die Elektrodenzuleitungen über einer elektrischen Isolationsschicht von dem Substrat getrennt sind.
Dadurch, daß die Elektrodenzuleitungen über eine Isolations- schicht von dem Substrat getrennt sind, treten keine das Meßergebnis verfälschenden Potentiale zwischen dem Substrat und den Elektrodenzuleitungen auf und es wird sichergestellt, daß die für die Messung relevante Potentialeinstellung nur zwischen den Elektroden im heißen Bereich des Gas- sensors erfolgt.
Unter heißem Bereich wird vom Fachmann dabei der Bereich des Gasssensors verstanden, der dem Meßgas ausgesetzt ist bzw. in dem das Meßsignal gebildet wird, während unter kaltem Be- reich der Bereich der Elektrodenzuleitungen zu verstehen ist, der deutlich geringeren Temperaturen ausgesetzt ist und zur Bildung des Meßsignals im wesentlichen nicht beiträgt.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
So bewirkt das Aufbringen von Haftnoppen aufgrund einer Vergrößerung der Oberfläche und einer zusätzlichen mechanischen Verklammerung sehr vorteilhaft eine feste und innige Verbin- düng zwischen Isolationsschicht und Elektrodenzuleitung und damit zwischen Substrat und Elektrodenzuleitung. Für das Substratmaterial wird dabei insbesondere ZrC>2 verwendet, während für die Isolationsschicht vorzugsweise AI2O3 eingesetzt wird. Weiterhin ist es sehr vorteilhaft, wenn die Haftnoppen auf das Substrat aufgebracht und insbesondere aufgedruckt werden und nach dem nachfolgenden Aufbringen der Isolationsschich- ten in diese hineinragen.
Die aufgrund unterschiedlicher Sinterfähigkeit von Substrat und Isolationsschicht beim Herstellungsprozeß und beim Betrieb (insbesondere bei Temperaturwechselvorgängen) auftre- tenden mechanischen Spannungen zwischen Isolationsschicht und Substrat werden sehr vorteilhaft minimiert, wenn die aufgebrachten Haftnoppen aus dem gleichen Material bestehen wie das Substrat oder die Isolationsschicht .
Weiterhin ist es vorteilhaft, wenn eine der Elektrodenzuleitungen, die MOx-Elektrodenzuleitung, auch in dem heißen Bereich des Sensors mittels einer elektrischen Isolationsschicht von dem Substrat getrennt ist. Dadurch ist auch im heißen Bereich gewährleistet, daß sich zwischen der MOx- Elektrodenzuleitung und der Pt-Referenzelektrode kein das
Meßergebnis des Gassensors störendes Potential oder eine unerwünschte chemische Veränderung des Substrates einstellt.
Zur Verbesserung der Haftung dieser Isolationsschicht auf dem Substrat werden weiterhin vorteilhaft auch im heißen Bereich, daher analog den Elektrodenzuleitungen im kalten Bereich, zwischen der Isolationsschicht und dem Substrat Haftnoppen aufgebracht. Besonders vorteilhaft ist es dabei, wenn in dem heißen Bereich die MOχ-Elektrodenzuleitung von der darüber befindlichen MOχ-Elektrode und der darunter angebrachten Isolationsschicht umgeben ist.
Zeichnungen Ausführungsbeispiele der Erfindung werden anhand der Zeichnung und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Draufsicht auf einen Sensor zur Analyse von Gasen, Figur 2 einen Schnitt durch Figur 1 entlang der Linie II, Figur 3 einen Schnitt durch Figur 1 entlang der Linie III.
Ausführungsbeispiele
Die Figur 1 zeigt eine Draufsicht auf einen Gassensor 5 mit einem heißen Bereich 40 und einem kalten Bereich 30. Auf einem Substrat aus ZrC>2 verlaufen dabei in dem kalten Bereich 30 zwei streifenförmige, elektrisch isolierende Isolationsschichten 15 aus AI2O3, die auch in Form einer einzigen, zu- sammenhängenden Isolationsschicht ausgebildet sein können, auf denen eine Außenelektrodenzuleitung 21 und eine MOχ- Elektrodenzuleitung 17 verläuft. Unter MOx wird dabei ein an sich bekanntes Mischoxid nicht exakt definierter Stöchiome- trie wie beispielsweise i0,95Nbo,o5θ2+κ verstanden. Der heiße Bereich 40 ist zunächst von einer MOχ-Elektrode 20 bedeckt.
Figur 2 zeigt Figur 1 im Schnitt entlang der Linie II im kalten Bereich 30. Im Inneren des Substrates 10 befinden sich Heizer 13 mit einer umgebenden Heizerisolation 14, ein Referenzluftkanal 11 und eine Pt-Referenzelektrode 12. Zwischen den Elektrodenzuleitungen 17 und 21 und dem Substrat 10 verlaufen durchgehend die Isolationsschichten 15. Die Verbindung zwischen den Isolationsschichten 15 und dem Substrat 10 erfolgt über Haftnoppen 22, die aus dem gleichen Material wie das Substrat bestehen und beispielsweise im Siebdruckverfahren auf das Substrat 10 aufgebracht worden sind. Sie ragen in die Isolationsschichten 15 hinein und verbinden diese innig mit dem Substrat 10. Figur 3 zeigt Figur 1 im Schnitt entlang der Schnittlinie III im heißen Bereich 40. Hier verläuft auf dem Substrat 10 zunächst die Pt-Außenelektrode 16, die über die Außenelektrodenzuleitung 21 kontaktiert ist. Auf der Außenelektrode 21 ist weiter eine hochporöse Tunnelschicht 23 angebracht. Die Tunnelschicht 23 und die Pt-Außenelektrode 16 ist seitlich und oberhalb von einer Elektrolytschicht 19 aus dichtem oder schwach porösem ZrC>2 umgeben. Neben der Pt- Außenelektrode 16 wird die bereits im kalten Bereich 30 vor- handene Isolationsschicht 15 auch hier durchgehend weitergeführt, auf der die ebenfalls weitergeführte MOχ- Elektrodenzuleitung 17 verläuft. Dadurch ist auch im heißen Bereich 40 die MOx-Elektrodenzuleitung 17 elektrisch durchgehend von dem Substrat 10 und der Elektrolytschicht 19 ge- trennt. Zwischen der Isolationsschicht 15 und dem Substrat 10 sind ebenfalls Haftnoppen 22 angebracht, die aus dem gleichen Material wie das Substrat 10 bestehen und zur innigen Verbindung in die Isolationsschicht 15 hineinragen. Die Haftnoppen 22 wurden dabei in an sich bekannter Weise vor dem Sintern und Entbindern der verschiedenen Schichten des Gassensors 5 mittels Siebdruck aufgebracht.
Die Tunnelschicht 23 ist im übrigen flächig so ausgebildet, daß sie zumindest bereichsweise in Richtung der kalten Seite 30 des Gassensors 5 nicht von der MOx-Elektrode 20 und der Elektrolytschicht 19 bedeckt ist, so daß über die Tunnelschicht 23 das zu analysierende Gas direkt an die Pt- Außenelektrode 16 gelangen kann, ohne zuvor durch die MOx- Elektrode 20 und die dichte oder schwach poröse Elektrolyt- Schicht 19 diffundieren zu müssen.
Auf weitere, nicht den eigentlichen Gegenstand der Erfindung bildende Details des Aufbaus des Gassensors 5 und seiner Funktionsweise wird verzichtet, da sie dem Fachmann bekannt sind.

Claims

Patentansprüche
1. Sensor zur Bestimmung von Gaskomponenten und/oder Gaskonzentrationen von Gasgemischen, insbesondere von HC, NOx und CO in Abgasen von Verbrennungsmotoren, bei dem auf einem Substrat (10) in einem dem Gas ausgesetzten heißen Bereich (40) eine Außenelektrode (16) und eine MOχ-Elektrode (20) und in einem kalten Bereich (30) eine Außenelektrodenzuleitung (21) und eine MOx-Elektrodenzuleitung (17) angeordnet sind, dadurch gekennzeichnet, daß zumindest im kalten Bereich (30) mindestens eine der Elektrodenzuleitungen (17, 21) von dem Substrat (10) mittels mindestens einer elek- trisch isolierenden Isolationsschicht (15) getrennt ist.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Isolationsschicht (15) zumindest bereichsweise mit dem Substrat (10) über Haftnoppen (22) verbunden ist.
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die Haftnoppen (22) auf das Substrat (10) aufgebracht sind und in die Isolationsschicht (15) hineinragen.
4. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die Haftnoppen (22) aus dem gleichen Material bestehen wie das Substrat (10) .
5. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Außenelektrodenzuleitung (21) und die M0χ- Elektrodenzuleitung (17) von dem Substrat (10) mittels der elektrisch isolierenden Isolationsschicht (15) getrennt sind.
6. Sensor nach Anspruch 1 oder 5, dadurch gekennzeichnet, daß die MOx-Elektrodenzuleitung (17) auch in dem heißen Bereich (40) mittels der elektrisch isolierenden Isolations- Schicht (15) von dem Substrat (10) getrennt ist.
7. Sensor nach Anspruch 6, dadurch gekennzeichnet, daß in dem heißen Bereich (40) die MOx-Elektrodenzuleitung (17) von der MOx-Elektrode (20) und der Isolationsschicht (15) umgeben ist.
8. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Isolationsschicht (15) zumindest weitgehend aus AI2O3 besteht.
9. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat (10) zumindest weitgehend aus ZrC>2 besteht.
PCT/DE2000/000136 1999-01-20 2000-01-15 Sensor zur analyse von gasen WO2000043764A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00907435A EP1068519A2 (de) 1999-01-20 2000-01-15 Sensor zur analyse von gasen
JP2000595135A JP2002535648A (ja) 1999-01-20 2000-01-15 ガスを分析するためのセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999101956 DE19901956C2 (de) 1999-01-20 1999-01-20 Sensor zur Analyse von Gasen
DE19901956.8 1999-01-20

Publications (2)

Publication Number Publication Date
WO2000043764A2 true WO2000043764A2 (de) 2000-07-27
WO2000043764A3 WO2000043764A3 (de) 2000-11-16

Family

ID=7894733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000136 WO2000043764A2 (de) 1999-01-20 2000-01-15 Sensor zur analyse von gasen

Country Status (4)

Country Link
EP (1) EP1068519A2 (de)
JP (1) JP2002535648A (de)
DE (1) DE19901956C2 (de)
WO (1) WO2000043764A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722749B2 (en) 2005-09-01 2010-05-25 Delphi Technologies, Inc. Gas sensor and method for forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811713C2 (de) * 1988-04-08 1990-02-08 Robert Bosch Gmbh, 7000 Stuttgart, De
WO1997040370A1 (de) * 1996-04-20 1997-10-30 Robert Bosch Gmbh Elektrochemischer messfühler mit pulverdichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623212A1 (de) * 1996-06-11 1997-12-18 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
DE19837515B4 (de) * 1998-08-19 2008-04-17 Robert Bosch Gmbh Elektrochemischer Meßfühler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811713C2 (de) * 1988-04-08 1990-02-08 Robert Bosch Gmbh, 7000 Stuttgart, De
WO1997040370A1 (de) * 1996-04-20 1997-10-30 Robert Bosch Gmbh Elektrochemischer messfühler mit pulverdichtung

Also Published As

Publication number Publication date
DE19901956C2 (de) 2003-06-18
EP1068519A2 (de) 2001-01-17
WO2000043764A3 (de) 2000-11-16
JP2002535648A (ja) 2002-10-22
DE19901956A1 (de) 2000-08-10

Similar Documents

Publication Publication Date Title
DE2907032C2 (de) Polarographischer Sauerstoffmeßfühler für Gase, insbesondere für Abgase von Verbrennungsmotoren
DE3538458C2 (de)
EP1623217B1 (de) Sensor zur detektion von teilchen
DE2909452C2 (de) Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen
DE102006034365B4 (de) Gassensorelement und Gassensor
DE2937048C2 (de) Elektrochemischer Meßfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen von Brennkraftmaschinen
DE3902484C2 (de) Keramischer elektrischer Heizkörper und dessen Verwendung
DE2718907C2 (de) Meßfühler zur Bestimmung des Sauerstoffgehalts in Abgasen
EP0168589B1 (de) Sauerstoffmessfühler
DE3017947A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen und verfahren zum herstellen von sensorelementen fuer derartige messfuehler
DE3907312A1 (de) Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
DE102006035383A1 (de) Gasmessfühler und Herstellungsverfahren dafür
DE2746381A1 (de) Sauerstoff-sensor
WO2008113644A2 (de) Sensorelement zur bestimmung von partikeln in einem messgas
EP0133486A1 (de) Gasmessfühler
DE3024077A1 (de) Flacher duennfilm-sauerstoffmessfuehler
DE19703636A1 (de) Luft/Kraftstoff-Verhältnissensor
DE2942983C2 (de) Meßeinrichtung zum Erfassen der Zusammensetzung von Gasen
WO2001044797A1 (de) Elektrochemischer messfühler
DE3129107A1 (de) Messfuehler fuer die messung der zusammensetzung eines gases
DE10220783A1 (de) Meßfühler
DE3515035A1 (de) Gas-sensor
DE3035608A1 (de) Elektrochemischer messfuehler zur bestimmung des sauerstoffgehaltes in gasen
DE19901956C2 (de) Sensor zur Analyse von Gasen
DE4437507C1 (de) Sensorelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000907435

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09646660

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000907435

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000907435

Country of ref document: EP