"Mehrphasiges Reinigungsmittel mit Naphthalinsulfonsäure-Formaldehyd-Kondensat"
Die Erfindung betrifft mehrphasige flüssige Reinigungsmittel mit Naphthalinsulfonsäure- Formaldehyd-Kondensat, die sich durch Schütteln temporär emulgieren lassen, und zur Reinigung harter Oberflächen, insbesondere Glas, einsetzbar sind, sowie ein Verfahren zur Reinigung harter Oberflächen.
Bei den heute üblichen Reinigungsmitteln für harte Oberflächen handelt es sich in der Regel um wäßrige Zubereitungen in Form einer stabilen Lösung oder Dispersion, die als wesentliche Wirkstoffe oberflächenaktive Substanzen, organische Lösungsmittel sowie gegebenenfalls Komplexbildner für die Härtebestandteile des Wassers, Abrasivstoffe und reinigend wirkende Alkalien enthalten. Reinigungsmittel, die vor allem für die Reinigung von Glas- und Keramikoberflächen bestimmt sind, werden häufig als Lösungen der Wirkstoffe in einem Gemisch aus Wasser und mit Wasser mischbaren organischen Lösungsmitteln, in erster Linie niedere Alkohole und Glykolether, formuliert. Beispiele derartiger Mittel finden sich in der deutschen Offenlegungsschrift22 20 540, den US-Patentschriften 3 839 234 und 3 882 038 sowie in den europäischen Patentanmeldungen 344 847 und 393 772.
Bei der Anwendung der Reinigungsmittel stellt sich neben der Forderung nach hoher Reinigungsleistung auch die Forderung nach möglichst einfacher und bequemer Anwendung der Mittel. Meist wird erwartet, daß die Mittel bereits bei einmaligem Auftrag ohne weitere Maßnahmen die gewünschte Wirkung liefern. Hier stellt sich vor allem bei An- wendung auf glatten Oberflächen, insbesondere solchen, die wie Glas oder Keramik spiegelnd reflektieren können, Schwierigkeiten dadurch ein, daß Mittel, die gut reinigen, meist nicht streifenfrei auftrocknen, während solche Mittel, die im wesentlichen ohne sichtbare Rückstände auftrocknen, nur eine begrenzte Reinigungswirkung aufweisen.
Um bei annehmbaren Rückstandsverhalten eine hinreichende Reinigungswirkung, insbesondere gegenüber fettigen Anschmutzungen zu erreichen, ist es notwendig, den Reinigungsmitteln neben organischen Lösungsmitteln auch größere Mengen an mehr oder weniger flüchtigen Alkalien zuzusetzen. Hier haben insbesondere Ammoniak und Alka- nolamine Anwendung gefunden. Höhere Konzentrationen an Ammoniak bzw. Amin bewirken allerdings neben einer merklichen Geruchsbelästung eine entsprechende Erhöhung des pH-Wertes in der Reinigungsmittellösung mit der Folge, daß empfindlichere Oberflächen, wie beispielsweise Lackflächen, von diesen Reinigungsmitteln deutlich angegriffen werden.
Bei glatten Oberflächen, insbesondere solchen, die wie Glas oder Keramik spiegelnd reflektieren können, treten darüber hinaus zwei spezieile Probleme auf, die in der Regel nicht unmittelbar nach dem Reinigungsvorgang zu Tage treten, sondern meist erst zu einem späteren Zeitpunkt. Es ist dies zum einen das wohlbekannte, aber störende Phänomen der Kondensation von Wasser auf die vorgenannten Oberflächen, beispielsweise im Badezimmer während und nach dem Duschen oder Baden, das im folgenden alsße- schlageffekt bezeichnet wird. Zum anderen ist es das ebenso bekannte wie unerfreuliche - wenn auch langfristig unvermeidbare - Ereignis, daß nach dem Reinigen einer der Witterung ausgesetzten reflektierenden Oberfläche wie Fensterglas ein Regenschauer mit den im Anschluß zurückbleibenden Regenflecken das Reinigungsergebnis zunichte macht, was nachfolgend als Regeneffekt bezeichnet wird.
Es bestand daher nach wie vor Bedarf an Reinigungsmitteln, die bei hoher Reinigungsleistung die genannten Nachteile nicht aufweisen.
Die deutsche Offenlegungsschrift 39 10 170 beschreibt als Mundwasser dienende Zusammensetzungen zur Bakteriendesorption von festen Oberflächen und lebenden Ge- weben, die in Form einer 2-Phasen-Zubereitung vorliegen und beim Schütteln eine temporäre ÖI-in-Wasser-Emulsion von begrenzter Lebensdauer bilden, wobei die wäßrige Phase etwa 50 bis 97 Gew.-% und die mit Wasser nicht mischbare Ölphase etwa 3 bis 50 Gew.-% umfaßt. Erfindungswesentlich ist ein Gehalt von etwa 0,003 bis 2 Gew.-% eines amphiphilen kationischen Mittels, beispielsweise eines kationischen Tensids, in einer Menge, die die Bildung der ÖI-in-Wasser-Emulsion ermöglicht, wobei diese Emulsion etwa 10 Sekunden bis 30 Minuten nach ihrer Bildung zusammenbricht und sich auf-
trennt. Anionische Tenside beeinträchtigen die antibakterielle Wirkung. Andere Tenside sind nicht erwähnt.
Die europäische Patentanmeldung 0 195 336 beschreibt in zwei Ausführungsformen (1) und (2) durch Schütteln emulgierbare Pflegemittel für empfindliche Oberflächen, insbesondere (1) Kunststoffoberflächen oder (2) Compact-Disc-Platten, die neben einer wäßrigen Phase noch eine organische Phase enthalten, die aus dem Chlorfluorkohlenstoff (CFK) 1 ,1 ,2-Trichlor-1 ,2,2-trifluorethan besteht. Weiter sind die Mittel frei von Wachs und enthalten in der wäßrigen Phase (1) mindestens ein Tensid sowie ein wasserlösliches flüssiges Silikonöl bzw. (2) das Triethanolamin-Salz eines C10-12-Alkylschwefelsäurehalb- esters. Über die Stabilität der durch Schütteln generierbaren Emulsion wird keine Aussage gemacht. Zur Gewährleistung der E ulgierbarkeit liegt der Tensidgehalt üblicherweise bei 1 bis 10 Gew.-%, insbesondere 2 bis 8 Gew.-%, bei Bedarf jedoch auch über 10 Gew.-%, wobei Aniontenside, insbesondere solche mit einer Sulfat- oder Sulfonat- gruppe, bevorzugt sind. Aufgrund ihrer umweltschädlichen Eigenschaften, insbesondere im Zusammenhang mit dem Ozon-Loch, sollte jedoch der Einsatz von CFK reduziert oder besser noch vermieden werden.
Aus den deutschen Offenlegungsschriften 195 01 184, '187 und '188 (Henkel KGaA) sind Haarbehandlungsmittel in Form eines 2-Phasen-Systems bekannt, die eine Ölphase und eine Wasserphase aufweisen, wobei die Ölphase bevorzugt auf Silikonöl basiert, und durch mechanische Einwirkung kurzzeitig mischbar sind.
Aus der WO 96/04358 A1 (Procter & Gamble) sind Reinigungsmittel bekannt, die Glas reinigen können, ohne in einem störenden Ausmaß Flecken und/oder Filme zu hinterlassen, und eine wirksame Menge eines Substantiven Polymers mit hydrophilen Gruppen enthalten, das das Glas mit einer lang anhaltenden höheren Hydrophilie versieht, so daß wenigstens bei den nächsten drei erneuten Benetzungen, beispielsweise durch Regen, das Wasser flächig abläuft und nach dem Trocknen weniger Flecken zurückbleiben. Substantive Polymere sind insbesondere Polycarboxylate wie Poly(vinylpyrrolidon-co- acrylsäure), aber auch Poly(styrolsulfonat), kationische Zucker- und Stärkederivate sowie aus Ethylenoxid und Propylenoxid aufgebaute Blockcopolymere, wobei gerade letztere Polyether weniger Substantivität besitzen.
Aufgabe der vorliegenden Erfindung war es also, leistungsstarke, lagerstabile und leicht handhabbare Mittel für die Reinigung harter Oberflächen bereitzustellen, die getrennte
Phasen zeigen, sich zur Anwendung emulgieren lassen, während der Anwendung homogen bleiben und anschließend erneut getrennte Phasen ausbilden sowie nach der Applikation auf die harte Oberfläche dem Regen- bzw. Beschlageffekt entgegenwirken, d.h. einen Antiregeneffekt bzw. Antibeschlageffekt bewirken.
Gegenstand der Erfindung ist in einer ersten Ausführungsform ein flüssiges mehrphasiges Reinigungsmittel mit wenigstens zwei kontinuierlichen Phasen, das mindestens eine wäßrige Phase I sowie eine mit dieser wäßrigen Phase nicht mischbare, nicht wäßrige flüssige Phase II aufweist und sich durch Schütteln temporär in eine Emulsion überführen läßt, und das mindestens einen Naphthalinsulfonsäure-Formaldehyd-Kondensat enthält.
Nicht mischbare, nicht wäßrige Phase bedeutet im Rahmen der vorliegenden Erfindung nicht auf Wasser als Lösungsmittel basierende Phase, wobei in der nicht wäßrigen Phase II geringe Mengen, bezogen auf Phase II, an Wasser von bis zu 10 Gew.-%, üblicherweise nicht mehr als 5 Gew.-%, durchaus gelöst enthalten sein können.
Im einfachsten Fall besteht ein erfindungsgemäßes Mittel aus einer kontinuierliche wäß- rigen Phase, die aus der gesamten Phase I besteht, und einer kontinuierlichen nicht wäßrigen flüssigen Phase, die aus der gesamten Phase II besteht. Eine oder mehrere kontinuierliche Phasen eines erfindungsgemäßen Mittels können jedoch auch Teile einer anderen Phase in emulgierter Form enthalten, so daß in einem solchen Mittel beispielsweise Phase I zu einem Teil als kontinuierliche Phase I vorliegt, die die kontinuierliche wäßrige Phase des Mittels darstellt, und zu einem anderen Teil als diskontinuierliche Phase I in der kontinuierlichen nicht wäßrigen Phase II emulgiert ist. Für Phase II und weitere kontinuierliche Phasen gilt analoges.
Gegenstand der Erfindung ist in einer zweiten Ausführungsform die Verwendung von mindestens einem Naphthalinsulfonsäure-Formaldehyd-Kondensat in einem Reini- gungsmittel für harte Oberflächen zur Verringerung des Regeneffekts und/oder des Beschlageffekts.
Gegenstand der Erfindung in einer dritten Ausführungsform ist ein Verfahren zur Verringerung des Regeneffekts und/oder des Beschlageffekts auf einer mit einem flüssigen Reinigungsmittel behandelten harten Oberfläche, wobei die Ober läche mit einem minde- stens ein Naphthalinsulfonsäure-Formaldehyd-Kondensat enthaltenden flüssigen Reinigungsmittel in konzentrierter oder verdünnter Form behandelt wird.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Reinigung harter Oberflächen, insbesondere Glas, bei dem ein erfindungsgemäßes Reinigungsmittel durch Schütteln temporär in eine Emulsion überführt, in Mengen von 1 ,5 bis 10 g pro m2 auf die zu reinigende Fläche, vorzugsweise durch Besprühen, aufgetragen und diese Fläche im An- schluß daran gegebenenfalls durch Wischen mit einem saugfähigen weichen Gegenstand gereinigt wird.
Ein besonderer Vorteil der vorliegenden Erfindung besteht darin, daß durch die erfindungsgemäßen Naphthalinsulfonsäure-Formaldehyd-Kondensate gleichzeitig ein Antiregen- und ein Antibeschlageffekt bewirkt wird.
Weiterhin zeichnen sich die erfindungsgemäßen Mittel neben ihrer hohen Reinigungsleistung durch eine insgesamt hohe Lagerstabilität aus. So sind die einzelnen Phasen im Mittel über lange Zeit stabil, ohne daß sich beispielsweise Ablagerungen bildeten, und die Überführung in eine temporäre Emulsion bleibt auch nach häufigem Schütteln reversibel. Zudem läßt die physikalische Form der erfindungsgemäßen Mittel das Problem der Stabilisierung eines als Emulsion formulierten Mittels per se außen vor. Die Trennung von Inhaltsstoffen in separate Phasen kann zusätzlich die chemische Stabilität des Mittels fördern. Weiter weisen die erfindungsgemäßen Mittel ein ausgezeichnetes Rückstandsverhalten auf. Schmierige Rückstände werden weitgehend vermieden, so daß der Glanz der Ober lächen erhalten bleibt, ohne daß ein Nachspülen notwendig wäre.
Der Gehalt an mindestens einem Naphthalinsulfonsäure-Formaldehyd-Kondensat in dem erfindungsgemäßen Mittel beträgt üblicherweise 0,001 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, insbesondere 0,05 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-% und äußerst bevorzugt 0,15 bis 0,5 Gew.-%.
Naphthalinsulfonsäure-Formaldehyd-Kondensate sind Polykondensationsprodukte von Naphthalinsulfonsäure und Formaldehyd, die nach den bekannten Methoden der alkalischen oder sauren Kondensation herstellbar sind.
Im Rahmen der vorliegenden Erfindung schließt der Begriff Naphthalinsulfonsäure- Formaldehyd-Kondensat die Naphthalinsuifonaf-Formaldehyd-Kondensate, d.h. die Salze der Naphthalinsulfonsäure-Formaldehyd-Kondensate, mit ein. Geeignete Salze sind beispielsweise die Alkalimetall- und Erdalkalimetallsalze, bevorzugt die Natrium-, Kalium-
, Magnesium- und Calciumsalze, sowie die Ammoniumsalze der Naphthalinsulfonsäure- Formaldehyd-Kondensate oder deren Mischungen, insbesondere die Natriumsalze.
Erfindungsgemäß geeignete sind sowohl hochmolekulare bis niedermolekulare Naphtha- linsulfonsäure-Formaldehyd-Kondensate, wobei die Niederkondensate etwas bevorzugt sind.
Erfindungsgemäß geeignete Naphthalinsulfonsäure-Formaldehyd-Kondensate sind beispielsweise unter dem Handelsnamen Lomar® von der Fa. Henkel Corp., z.B. die niedermolekularen Natriumsalze Lomar® LS, Lomar® PW, Lomar® PWFA 40 und Lomar® PL 4, die hochmolekularen Natriumsalze Lomar® D und Lomar® D SOL, das Kaliumsalz Lomar® HP sowie das Ammoniumsalz Lomar® PWA, sowie unter dem Handelsnamen TamoP von der Fa. BASF AG, z.B. die Niederkondensate TamoP NN 2901 , TamoP NN 7718, TamoP NN 8906, TamoP NN 9104, TamoP NN 9401 (sämtlich Natriumsalze) und TamoP NNA 4109 (Ammoniumsalz) mit einer Molmasse im Bereich von etwa 6.500 g/mol, die Mittelkondensate TamoP NMC 4001 und TamoP NN 9401 (beides Calciumsalze) mit einer Molmasse im Bereich von etwa 20.000 g/mol sowie die Hochkondensate TamoP NH 3091, TamoP NH 7519, TamoP NH 9103 (sämtlich Natriumsalze) und TamoP NHC 3001 (Calciumsalz) mit einer Molmasse im Bereich von etwa 35.000 g/mol, erhältlich.
In einer besonderen Ausführungsform der Erfindung ist das Mittel im wesentlichen CFK- frei, d.h. basiert die nicht wäßrige flüssige Phase II nicht auf CFK. Hierbei enthalten die erfindungsgemäßen Mittel aufgrund der negativen Umwelteinflüsse dieser Verbindungen vorzugsweise überhaupt keine CFK, wobei geringe Mengen, bezogen auf das gesamte Mittel, von bis zu etwa 5 Gew.-% noch tolerierbar sind.
In einer bevorzugten Ausführungsform der Erfindung sind die kontinuierlichen Phasen I und II durch eine scharfe Grenzfläche gegeneinander abgegrenzt.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthalten eine oder beide der kontinuierlichen Phasen I und II Teile, vorzugsweise 0,1 bis 35 Vol.-%, insbesondere 0,2 bis 20 Vol.-%, bezogen auf das Volumen der jeweiligen kontinuierlichen Phase, der jeweils anderen Phase als Dispergens. Dabei ist dann die kontinuierliche Phase I bzw. II um den Volumenteil verringert, der als Dispergens in der jeweils anderen Phase verteilt ist. Besonders bevorzugt sind hierbei Mittel, in denen Phase I in Mengen von 0,1 bis
35 Vol.-%, bevorzugt 0,2 bis 20 Vol.-%, bezogen auf das Volumen der Phase II, in Phase II emulgiert ist.
In einer weiterhin bevorzugten Ausführungsform der Erfindung liegt neben den kontinuierlichen Phasen I und II ein Teil der beiden Phasen als Emulsion einer der beiden Phasen in der anderen Phase vor, wobei diese Emulsion durch zwei scharfe Grenzflächen, eine obere und eine untere, gegenüber den nicht an der Emulsion beteiligten Teilen der Phasen I und II abgegrenzt ist.
Die erfindungsgemäßen Mittel enthalten vorzugsweise 5 bis 95 Vol.-% Phase I sowie 95 bis 5 Vol.-% Phase II.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthält das Mittel 35 bis 95 Vol.-% Phase I sowie 5 bis 65 Vol.-% Phase II, insbesondere 55 bis 95 Vol.-% Phase I sowie 5 bis 45 Vol.-% Phase II, äußerst bevorzugt 70 bis 95 Vol.-% Phase I sowie 5 bis 30 Vol.-% Phase II. Weiterhin stellt die kontinuierliche Phase I vorzugsweise die untere Phase und die kontinuierliche Phase II die obere Phase dar.
In einer ebenfalls bevorzugten Ausführungsform basiert die nicht wassermischbare Phase II auf aliphatischen Benzin-Kohlenwasserstoffen und/oder Terpen- Kohlenwasserstoffen. Die Benzin-Kohlenwasserstoffe weisen vorzugsweise einen Siedepunktbereich von 130 bis 260 °C, insbesondere von 140 bis 240 °C, besonders bevorzugt von 150 bis 220 °C, auf, wie etwa die C9-13-lsoparaffine mit einemSiedepunktbereich von 184 bis 217 °C, erhältlich beispielsweise als ShellsoP 7 von der Fa. Deutsche Shell Chemie AG (Eschborn). Geeignete Terpen-Kohlenwasserstoffe sind beispielsweise Citrusöle wie das aus den Schalen von Orangen gewonnene Orangenöl, die darin enthaltenen Orangenterpene, insbesondere Limonen, oder Pine Oil, das aus Wurzeln und Stubben extrahierte Kiefernöl. Phase II kann auch ausschließlich aus aliphatischen Benzin-Kohlenwasserstoffen und/oder Terpen-Kohlenwasserstoffen bestehen. Hierbei enthält Phase II Benzin-Kohlenwasserstoffe vorzugsweise in Mengen von mindestens 60 Gew.-%, besonders bevorzugt 90 bis 99,99 Gew.-%, insbesondere 95 bis 99,9 Gew.-%, äußerst bevorzugt 97 bis 99 Gew.-%.
Als oberflächenaktive Substanzen eignen sich für die erfindungsgemäßen Mittel Tenside, insbesondere aus den Klassen der anionischen und nichtionischen Tenside. Vorzugsweise enthalten die Mittel anionische und nichtionische Tenside, wobei die anionischen
Tenside insbesondere in Phase I enthalten sind. Die Menge an anionischem Tensid liegt, bezogen auf die Phase I, üblicherweise nicht über 10 Gew.-%, vorzugsweise zwischen 0,01 und 5 Gew.-%, insbesondere zwischen 0,01 und 0,5 Gew.-%, besonders bevorzugt zwischen 0,1 und 0,3 Gew.-%. Sofern die Mittel nichtionische Tenside enthalten, liegt deren Konzentration vorzugsweise in Phase I, bezogen auf Phase I, üblicherweise nicht über 3 Gew.-%, vorzugsweise zwischen 0,001 und 0,3 Gew.-% sowie insbesondere zwischen 0,001 und 0,1 Gew.-%, und in Phase II, bezogen auf Phase II, üblicherweise nicht über 5 Gew.-%, vorzugsweise zwischen 0,001 und 0,5 Gew.-% sowie insbesondere zwischen 0,001 und 0,2 Gew.-%, besonders bevorzugt zwischen 0,005 und 0,1 Gew.-%, äußerst bevorzugt zwischen 0,01 und 0,05 Gew.-%.
Als anionische Tenside eignen sich vorzugsweise C8-C18-Alkylbenzolsulfonate, insbesondere mit etwa 12 C-Atomen im Alkylteil, C8-C20-Alkansulfonate, C8-C18-Mo- noalkylsulfate, C8-C18-Alkylpolyglykolethersulfate mit 2 bis 6 Ethylenoxideinheiten (EO) im Etherteil sowie Sulfobernsteinsäureester mit 8 bis 18 C-Atomen in den Alkoholresten.
Die anionischen Tenside werden vorzugsweise als Natriumsalze eingesetzt, können aber auch als andere Alkali- oder Erdalkalimetallsalze, beispielsweise Magnesiumsalze, sowie in Form von Ammonium- oder Aminsalzen enthalten sein.
Beispiele derartiger Tenside sind Natriumkokosalkylsulfat, Natrium-sec.-Alkansulfonat mit ca. 15 C-Atomen sowie Natriumdioctylsulfosuccinat. Als besonders geeignet haben sich Fettalkylsulfate mit 12 bis 14 C-Atomen wie auch Natriumlaurylethersulfat mit 2 EO erwiesen.
Als nichtionische Tenside sind vor allem C8-C18-Alkoholpolyglykolether, d.h. ethoxylierte Alkohole mit 8 bis 18 C-Atomen im Alkylteil und 2 bis 15 Ethylenoxideinheiten (EO), C8-C18-Carbonsäurepolyglykolester mit 2 bis 15 EO, ethoxylierte Fettsäureamide mit 12 bis 18 C-Atomen im Fettsäureteil und 2 bis 8 EO, langkettige Aminoxide mit 14 bis 20 C- Atomen und langkettige Alkylpolyglycoside mit 8 bis 14 C-Atomen im Alkylteil und 1 bis 3 Glycosideinheiten zu erwähnen. Beispiele derartiger Tenside sind Oleyl-Cetyl-Alkohol mit 5 EO, Nonylphenol mit 10 EO, Laurinsäurediethanolamid, Kokosalkyldimethylaminoxid und Kokosalkylpolyglucosid mit im Mittel 1 ,4 Glucoseeinheiten.
Bevorzugt werden als nichtionische Tenside in der wäßrigen Phase neben den Additionsprodukten aus Ethylenoxid und Fettalkoholen mit insbesondere 4 bis 8 Ethylenoxi-
deinheiten die Alkylpolyglycoside, und von diesen wiederum die Vertreter mit 8 bis 10 C- Atomen im Alkylteil und bis zu 2 Glucoseeinheiten. In der nichtwäßrigen Phase II werden als nichtionische Tenside Fettalkoholpolyglykolether mit insbesondere 2 bis 8 EO, beispielsweise Oleyl-Cetyl-Alkohol+5-EO-ether, und/oder Fettsäurepolyglykolester (FSE) mit insbesondere 2 bis 10 EO, beispielsweise Talgfettsäure+6-EO-ester, besonders bevorzugt. Weiter ist bei den Niotensiden, insbesondere den Alkoholpolyglykolethern und Carbonsäurepolyglykolestern, für Phase II der Ethoxylierungsgrad auf die C-Kettenlänge in der Art abgestimmt, daß kürzere C-Ketten mit niedrigeren Ethoxylierungsgraden bzw. längere C-Ketten mit höheren Ethoxylierungsgraden kombiniert werden.
Besonders bevorzugt sind Mittel, welche anionisches und nichtionisches Tensid enthalten. Dabei sind insbesondere Kombinationen aus Aniontensid in Phase I und nichtionischem Tensid in Phase II vorteilhaft, beispielsweise Kombinationen von Fettalkylsulfaten und/ oder Fettalkoholpolyglykolethersulfaten in Phase I mit Fettalkoholpolyglykolethern und/oder FSE in Phase II.
Weiterhin können die erfindungsgemäßen Reinigungsmittel wasserlösliche organische Lösungsmittel in Form niederer Alkohole und/oder Etheralkohole, vorzugsweise aber Gemische aus Alkoholen und Etheralkoholen enthalten. Die Menge an organischem Lösungsmittel beträgt vorzugsweise 0,1 bis 15 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf die wäßrige Phase I.
Als Alkohole werden insbesondere Ethanol, Isopropanol und n-Propanol eingesetzt. Als Etheralkohole kommen hinreichend wasserlösliche Verbindungen mit bis zu 10 C-Atomen im Molekül in Betracht. Beispiele derartiger Etheralkohole sind Ethylenglykol- monobutylether, Propylenglykolmonobutylether, Diethylenglykolmonobutylether, Propy- lenglykolmonotertiärbutylether und Propylenglykolmonoethylether, von denen wiederum Ethylenglykolmonobutylether und Propylenglykolmonobutylether bevorzugt werden. Werden Alkohol und Etheralkohoi nebeneinander eingesetzt, so liegt das Gewichtsverhältnis beider vorzugsweise zwischen 1 : 2 und 4 : 1. Besonders wird im Rahmen der Erfindung Ethanol bevorzugt.
Die Mittel sind durch vorzugsweise bis zu dreimaliges, insbesondere bis zu zweimaliges, besonders bevorzugt einmaliges, Schütteln in die erfindungsgemäß temporäre Emulsion überführbar, wobei die durch Schütteln generierte temporäre Emulsion über einen zur
bequemen Anwendung des Mittels ausreichenden Zeitraum von etwa 0,5 bis 10 min, bevorzugt 1 bis 5 min, insbesondere 1 ,5 bis 4 min, beständig ist, d.h. einerseits nicht unmittelbar nach dem Ende des Schütteins wieder zusammenbricht und andererseits nicht längerfristig bestehen bleibt. Hierbei ist unter beständig zu verstehen, daß nach der jeweiligen Zeit noch mindestens 90 Vol.-% des Mittels als die durch Schütteln generierte temporäre Emulsion vorliegen. Neben der Auswahl und Dosierung der Basis- und Wirkkomponenten besteht ein Regulativ zur Einstellung letzterer Eigenschaften der erfin- dungsgemäßen Mittel in der Steuerung der Viskosität der einzelnen Phasen.
Die wäßrige Phase I weist vorzugsweise eine Viskosität nach Brookfield (Modell DV-II+, Spindel 31 , Drehfrequenz 20 min"1, 20 °C) von 0,1 bis 200 mPa-s, insbesondere 0,5 bis 100 mPa s, äußerst bevorzugt 1 bis 60 mPa s, auf. Zu diesem Zweck kann das Mittel bzw. die enthaltenen Phasen Viskositätsregulatoren enthalten. Die Menge an Viskositätsregulator in Phase I, bezogen auf Phase I, beträgt üblicherweise bis zu 0,5 Gew.-%, vorzugsweise 0,001 bis 0,3 Gew.-%, insbesondere 0,01 bis 0,2 Gew.-%, äußerst bevorzugt 0,05 bis 0,15 Gew.-%. Geeignete Viskositätsregulatoren sind unter anderem synthetische Polymere wie die Homo- und/oder Copolymere der Acrylsäure bzw. ihrer Derivate, beispielsweise die unter dem Handelsnamen CarbopoP erhältlichen Produkte der Firma Goodrich, insbesondere das vernetzte Acrylsäurecopolymer CarbopoP ETD 2623. In der internationalen Anmeldung WO 97/38076 ist eine Reihe weiterer von der Acrylsäure ab- geleiteter Polymere aufgeführt, die ebenfalls geeignete Viskositätsregulatoren darstellen.
Weiterhin können die erfindungsgemäßen Mittel in Phase I flüchtiges Alkali enthalten. Als solches werden Ammoniak und/oder Alkanolamine, die bis zu 9 C-Atome im Molekül enthalten können, verwendet. Als Alkanolamine werden die Ethanolamine bevorzugt und von diesen wiederum das Monoethanolamin. Der Gehalt an Ammoniak und/oder Alka- nolamin beträgt, bezogen auf Phase I, vorzugsweise 0,01 bis 3 Gew.-%, insbesondere 0,02 bis 1 Gew.-%, besonders bevorzugt 0,05 bis 0,5 Gew.-%.
Neben dem flüchtigen Alkali können die erfindungsgemäßen Mittel in Phase I zusätzlich Carbonsäure enthalten, wobei das Äquivalentverhältnis von Amin und/oder Ammoniak zu Carbonsäure vorzugsweise zwischen 1 : 0,9 und 1 : 0,1 liegt. Geeignet sindCarbonsäu- ren mit bis zu 6 C-Atomen, wobei es sich um Mono-, Di- oder Polycarbonsäuren handeln kann. Je nach Äquivalentgewicht von Amin und Carbonsäure liegt der Gehalt an Carbonsäure, bezogen auf Phase I, vorzugweise zwischen 0,01 und 2,7 Gew.-%, insbeson-
dere zwischen 0,01 und 0,9 Gew.-%. Beispiele geeigneter Carbonsäuren sind Essigsäure, Glykolsäure, Milchsäure, Zitronensäure, Bernsteinsäure und Adipinsäure, von denen vorzugsweise Essigsäure, Zitronensäure und Milchsäure verwendet werden. Besonders bevorzugt wird Essigsäure eingesetzt.
In einer besonderen Ausführungsform des erfindungsgemäßen Mittels, der erfindungsgemäßen Verwendung und der erfindungsgemäßen Verfahren wird mindestens ein Naphthalinsulfonsäure-Formaldehyd-Kondensat zusammen mit mindestens einem weiteren Additiv eingesetzt, das ebenfalls eine Verringerung des Regen- und/oder Beschlageffekts bewirkt. Hierbei kann es sich um ein oder mehrere wasserlösliche Additive handeln und/oder um eine oder mehrere Additive, die in einem erfindungsgemäßen Mittel im wesentlichen in der nicht wäßrigen Phase II gelöst sind.
Weitere Additive im Sinne dieser besonderen Ausführungsform, die in einem erfindungsgemäßen Mittel im wesentlichen in der wäßrigen Phase I gelöst sind, sind insbesondere (i) die Substantiven Polymere mit hydrophilen Gruppen der WO 96/04358 A1 (Procter & Gamble), insbesondere Polycarboxylate wie Poly(vinylpyrrolidon-co-acrylsäure), aber auch Poly(styrolsulfonat), kationische Zucker- und Stärkederivate sowie aus Ethylenoxid und Propylenoxid aufgebaute Blockcopolymere, mit einer durchschnittlichen Molmasse von 10.000 bis 3.000.000 g/mol, vorzugsweise 20.000 bis 2.500.000 g/mol, insbesondere 300.000 bis 2.000.000 g/mol, äußerst bevorzugt 400.000 bis 1.500.000 g/mol, (ii) die Aminoxidpolymere, insbesondere Poly(4-vinylpyridin-N-oxide), der WO 97/33963 A1 (Procter & Gamble) mit einer durchschnittlichen Molmasse von 2.000 bis 100.000 g/mol, vorzugsweise 5.000 bis 20.000 g/mol, insbesondere 8.000 bis 12.000 g/mol, (iii) end- gruppenverschlossene polyalkoxylierte Alkohole der Formel
R1Ö[CH2CH(CH)3O]p[CH2CH(R2)O]qR3, in der R1 einen linearen, aliphatischen Kohlenwasserstoffrest mit 1 bis etwa 22 Kohlenstoffatomen oder ein Gemisch verschiedener solcher Reste, R2 ein Wasserstoffatom oder einen niederen Alkylrest mit 1 bis 6 Kohlenstoffatomen, R3 einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen, ggf. arylsubstitutierten, acyclischen oder cyclischen, Kohlenwasserstoff rest mit 1 bis etwa 78 Kohlenstoffatomen und optional ein oder mehreren Hydroxygruppen und/oder Ethergruppen -O- oder ein Gemisch verschiedener solcher Reste, p eine Zahl von 0 bis etwa 15 und q eine Zahl von 0 bis etwa 50 repräsentiert und die Summe von p und q mindestens 1 ist, insbesondere epoxyverschlossene polyalkoxylierte Alkohole vorgenannter Formel, in der R1 einen linearen, aliphatischen Kohlenwasserstoffrest mit etwa
4 bis etwa 18, vorzugsweise etwa 4 bis etwa 12, Kohlenstoffatomen, insbesondere einen Butyl-, Hexyl-, Octyl- oder Decylrest bzw. deren Mischungen, oder ein Gemisch verschiedener solcher Reste, R2 ein Wasserstoffatom oder einen niederen Alkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise ein Wasserstoffatom, R3 eine Gruppe [CH2CH(R4)O]rH, in der R4 für einen linearen, aliphatischen Kohlenwasserstoffrest mit etwa 2 bis etwa 26, vorzugsweise etwa 4 bis etwa 18, insbesondere etwa 6 bis etwa 14, Kohlenstoffatomen oder ein Gemisch verschiedener solcher Reste und r für eine Zahl von 1 bis etwa 3, vorzugsweise 1 bis etwa 2, insbesondere 1 , steht, p eine Zahl von 1 bis etwa 5, vorzugsweise 1 bis etwa 2, insbesondere 1 , und q eine Zahl von 1 bis etwa 30, vorzugsweise etwa 4 bis etwa 26, insbesondere etwa 10 bis etwa 24, repräsentiert, beispielsweise mit R1 = C8/10-Alkylrest, R2 = H, R3 = [CH2CH(R4)O]rH mit R4 = C8-Alkylrest und r = 1 , u = 1 und v = 22, (iv) Ligninsulfonate, beispielsweise die Alkalimetall- und Er- dalkalimetalligninsulfonate sowie die Ammoniumligninsulfonate oder deren Mischungen, vorzugsweise Natrium-, Magnesium-, Calcium- oder Ammoniumligninsulfonate sowie deren Mischungen, insbesondere die Natriumligninsulfonate, und/oder Ligninsulfonsäure, die ggf. in situ mit einer entrsprechenden Base neutralisiert wird (geeignete Ligninsulfonate sind beispielsweise unter dem Handelsnamen Zewa® von der Fa. Ligninchemie, z.B. die Natriumligninsulfonate Zewa® EF, Zewa® S, Zewa® S 2, Zewa® SL und Zewa® SL 2 sowie das Ammoniumligninsulfonat Zewa® DIS TR, unter dem Handelsnamen Totanin® von der Fa. Nike Baeck Industries GmbH, z.B. das Ammoniumligninsulfonat Totanin® AM 5025-T2 und das Calciumligninsulfonat Totanin® CA 2032, sowie unter den Handelsnamen Borresperse® (etwa 25 % der Moleküle haben eine Molmasse über 20.000 g/mol), BorrewelP, BorreboncP, Ultrazine®, Ufoxane® (Ultrazine®, Ufoxane®: etwa 40 % der Moleküle haben eine Molmasse über 20.000 g/mol), Marasperse®, MaracelP und Maratan® von der Fa. LignoTech USA, Inc. der Borregaard Gruppe, z.B. die Calci- umligninsulfonate Borresperse® CA, Borrebond® und Ultrazine® CA, die Natriumligninsulfonate Borresperse® NA, Borresperse® 3A, Ultrazine® NA, Ultrazine® N AS, Ufoxane® 2, Ufoxane® 3A und Ufoxane® RG, das Ammoniumligninsulfonat Borresperse® NH sowie die Chrom-, Ferrochrom- und Eisenligninsulfonate Borresperse® C, FC und FE, erhältlich), (v) hochmolekulare bis niedermolekulare, bevorzugt niedermolekulare, Naphthalinsulfonsäure-Formaldehyd-Kondensate bzw. deren Salze, beispielsweise die Alkalimetall- und Erdalkalimetallsalze, bevorzugt die Natrium-, Kalium-, Magnesium- und Calciumsalze, sowie die Ammoniumsalze oder deren Mischungen, insbesondere die Natriumsalze (geeignete Naphthalinsulfonsäure-Formaldehyd-Kondensate sind beispiels-
weise unter dem Handelsnamen Lomar® von der Fa. Henkel Corp., z.B. die niedermolekularen Natriumsalze Lomar® LS, Lomar® PW, Lomar® PWFA 40 und Lomar® PL 4, die hochmolekularen Natriumsalze Lomar® D und Lomar® D SOL, das Kaliumsalz Lomar® HP sowie das Ammoniumsalz Lomar® PWA, sowie unter dem Handelsnamen TamoP von der Fa. BASF AG, z.B. die Niederkondensate TamoP NN 2901, TamoP NN 7718, TamoP NN 8906, TamoP NN 9104, TamoP NN 9401 (sämtlich Natriumsalze) und TamoP NNA 4109 (Ammoniumsalz) mit einer Molmasse im Bereich von etwa 6.500 g/mol, die Mittelkondensate TamoP NMC 4001 und TamoP NN 9401 (beides Cal- ciumsalze) mit einer Moimasse im Bereich von etwa 20.000 g/mol sowie die Hochkondensate TamoP NH 3091, TamoP NH 7519, TamoP NH 9103 (sämtlich Natriumsalze) und TamoP NHC 3001 (Calciumsalz) mit einer Molmasse im Bereich von etwa 35.000 g/mol, erhältlich), (vi) Gummi arabicum, (vii) Polyvinylpyrrolidone und (viii) Polye- thylenglykole, wobei die Polywachse, feste Polyethylenglykole mit einer Molmasse von ca. 500 bis über 10.000 g/mol, z.B. 4.000 g/mol, und wachsartiger Konsistenz, gegenüber den flüssigen Polyethylenglykolen mit einer Molmasse von beispielsweise 200 g/mol bevorzugt sind.
Weitere Additive im Sinne dieser besonderen Ausführungsform, die in einem erfindungs- gemäßen Mittel im wesentlichen in der nicht wäßrigen Phase II gelöst sind, sind insbesondere alkoxylierte Dihydroxyaromaten der Formel A,
in der X eine Einfachbindung, eine C^-Alkylengruppe, eine Carbonylgruppe oder eine Gruppe C-R
1, wobei R
1 für ein Wasserstoffatom oder eine C^-Alkylgruppe steht, Y eine Einfachbindung, eine Ci-s-Alkylengruppe, eine Carbonylgruppe, eine Gruppe C-R
2, wobei R
2 für ein Wasserstoffatom oder eine C^-Alkylgruppe steht, oder zwei Wasserstof- fatome, wobei die Gruppe "-Y-" dann "-H H-" entspricht, R ein Wasserstoffatom, eine C^-Alkylgruppe oder deren Mischungen, m eine Zahl von 0 bis etwa 20 und n eine Zahl von 0 bis etwa 20 repräsentiert und die Summe m + n > 0 ist. Hierbei orientiert sich die Menge eines jeden alkoxylierten Dihydroxyaromaten an dessen Löslichkeit in der nicht wäßrigen Phase II, wobei vorzugsweise nicht mehr alkoxylierter Dihydroxyaromat einge- setzt wird, als in der nicht wäßrigen Basis der Phase II homogen löslich ist. Besonders bevorzugte alkoxylierte Dihydroxyaromaten haben eine hohe Löslichkeit in aliphatischen
Benzin-Kohlenwasserstoffen, die, wie weiter unten beschrieben wird, eine bevorzugte
Basis der nicht wäßrigen Phase II darstellen. Geeignete aromatische Grundkörper der alkoxylierten
Dihydroxyaromaten, d.h. Formel A ohne die Gruppen H[OCH(R)CH2]mO- und -O[CH2CH(R)]nH, sind beispielsweise Biphenyl, Diphenylmethan, 1 ,1-Diphenylethan, 1 ,2-Diphenylethan, 1 ,2-Diphenylpropan, 1 ,3-Diphenylpropan, 2,2-Diphenylpropan, 1 ,2- Diphenylbutan, 1 ,4-Diphenylbutan, 2,2-Diphenylbutan, 1 ,5-Diphenylpentan, 3,3- Diphenylpentan, Fluoren, Fluorenon, Anthracen und Anthrachinon. Bekannte Dihydroxyaromaten, deren Alkoxylate erfindungsgemäße Verbindungen der Formel A dar- stellen, sind beispielsweise das o,o'-Biphenol sowie die Bisphenole Bisphenol A (2,2-Bis- (4-hydroxyphenyl)-propan), Bisphenol B (2,2-Bis-(4-hydroxyphenyl)-butan) und Bisphenol F (2,2'-Methylendiphenol). Die Alkoxylierung der Dihydroxyaromaten zu den erfindungsgemäßen alkoxylierten Dihydroxyaromaten der Formel A ist nach bekannten Al- koxylierungsmethoden möglich und erfolgt üblicherweise basisch oder sauer katalysiert bei erhöhten Temperaturen und unter erhöhtem Druck, wobei je nach den gewählten Bedingungen eine normale oder eine eingeengte Homologenverteilung erhalten wird. Die Summe m + n stellt den mittleren Gesamtalkoxylierungsgrad der erfindungsgemäßen alkoxylierten Dihydroxyaromaten der Formel A dar und nimmt Werte im Bereich der reellen Zahlen von oberhalb 0 bis etwa 40 an, wobei m und n auf molekularer Ebene für entsprechende ganze Zahlen von 0 bis etwa 20 gemäß der jeweiligen Homologenverteilung stehen. Die entsprechenden mittleren Alkoxylierungsgrade m und n sind dabei in der Regel gleich, während m und n auf molekularer Ebene ebenso gleich wie verschieden sein können. So entspricht beispielsweise ein mittlerer Gesamtalkoxylierungsgrad von 13 mittleren Alkoxylierungsgraden m und n von jeweils 6,5, wobei in einem bedeu- tenden Teil der Moleküle m = n = 6, m = n = 7 oder m = 6 und n = 7 sein können. Der mittlere Gesamtalkoxylierungsgrad beträgt vorzugsweise 0,1 bis 30, insbesondere 0,5 bis 25, besonders bevorzugt 1 bis 20 und äußerst bevorzugt 1 ,5 bis 15. Erfindungsgemäß sind die ethoxylierten und/oder propoxylierten Dihydroxyaromaten der Formel A (R = H und/oder CH3) bevorzugt. Hierbei kann es sich um Mischalkoxylate mit Ethylenoxy- (EO) und Propylenoxyeinheiten (PO), vorzugsweise um reine Ethoxylate oder insbesondere um reine Propoxylate handeln. Einsetzbar sind aber ebenso solche Dihydroxyaromaten der Formel A, in der R einen Ethyl-, Propyl-, Isopropyl-, Butyl-, sekButyl-, fertButyl-, Pentyl- und/oder Hexylrest darstellt. Bevorzugte alkoxylierte Dihydroxyaromaten der Formel A haben als Gruppe "-Y-" zwei Wasserstoffatome "-H H-" und tragen die al-
koxylierten Hydroxygruppen insbesondere in 4- und 4'-Position (bezüglich X) gemäß Formel B,
H[OCH(R)CH 2 ] O X" O/ °!CH2CH(R)0]nH (B) wobei -X- vorzugsweise eine C^-Alkylengruppe -C(R3)(R4)-, in der R3 und R4 H, CH3, CH2CH3 oder CH2CH2CH3, insbesondere eine 2,2-Propylen- oder 2,2-Butylengruppe, repräsentiert. Besonders bevorzugt sind Alkoxylierungsprodukte des Bisphenol A, das auch unter dem Namen Dian bekannt ist, der Formel C,
wobei vorzugsweise R ein Wasserstoffatom und/oder eine Methylgruppe sowie m und n jeweils eine Zahl von 1 bis 15, insbesondere 1 bis 10 repräsentiert, beispielsweise R = H und m + n = 2, 4, 6,5 oder 8,5 oder R = CH
3 und m + n = 2, 4 oder 13, wobei besonders bevorzugt R = CH
3 und m + n = 13 ist. Alkoxylierte Bisphenole A der Formel C werden beispielsweise unter dem Handelsnamen DianoP von der Fa. Akzo Nobel vertrieben, z.B. DianoP 22, DianoP 220, DianoP 22 D, DianoP 240 1, DianoP 264, DianoP 285, DianoP 33, DianoP 320, DianoP 340 und DianoP 33. und DianoP 3130.
In einer bevorzugten Variante dieser besonderen Ausführungsform werden mindestens ein Naphthalinsulfonsäure-Formaldehyd-Kondensat zusammen mit mindestens einem alkoxylierten Dihydroxyaromaten der Formel A eingesetzt. In einer ebenfalls bevorzugten Variante dieser besonderen Ausführungsform werden mindestens ein Naphthalinsulfon- säure-Formaldehyd-Kondensat zusammen mit mindestens einem der vorgenannten wasserlöslichen Additive (i) bis (vii) eingesetzt. In noch einer bevorzugten Variante dieser besonderen Ausführungsform werden mindestens ein Naphthaiinsulfonsäure- Formaldehyd-Kondensat zusammen mit mindestens einem alkoxylierten Dihydroxyaromaten der Formel A und mindestens einem der vorgenannten wasserlöslichen Additive (i) bis (vii) eingesetzt.
Der Gehalt an mindestens einem dieser weiteren Additive in einem erfindungsgemäßen Mittel beträgt 0,001 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, insbesondere 0,05 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-% und äußerst bevorzugt 0,15 bis 0,5 Gew.-%.
Neben den genannten Komponenten können die erfindungsgemäßen Mittel weitere Hilfsund Zusatzstoffe enthalten, wie sie in derartigen Mitteln üblich sind. Dazu zählen insbesondere Farbstoffe, Parfümöle, pH-Regulatoren (z.B. Citronensäure, Alkanolamine oder NaOH), Konservierungsmittel, Komplexbildner für Erdalkaliionen, Enzyme, Bleichsyste- me und Antistatikstoffe. Die Menge an derartigen Zusätzen liegt üblicherweise nicht über 2 Gew.-% im Reinigungsmittel. Die Untergrenze des Einsatzes hängt von der Art des Zusatzstoffes ab und kann beispielsweise bei Farbstoffen bis zu 0,001 Gew.-% und darunter betragen. Vorzugsweise liegt die Menge an Hilfsstoffen zwischen 0,01 und 1 Gew.- %.
Der pH-Wert der wäßrigen Phase I kann dabei über einen weiten Bereich variiert werden, bevorzugt ist jedoch ein Bereich von 2,5 bis 12, vorzugsweise 5 bis 10,5, insbesondere 7 bis 10.
In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mittel
70 bis 95 Vol.-% wäßriger Phase I, enthaltend 0,01 bis 10 Gew.-% anionisches Tensid,
0 bis 3 Gew.-% nichtionisches Tensid,
0,1 bis 1 ,5 Gew.-% mindestens eines Naphthalinsulfonsäure-Formaldehyd-
Kondensats,
0 bis 1 ,5 Gew.-% weiteres wasserlösliches Additiv (i) bis (vii) zur Verringerung des Regen- und/oder Beschlageffekts,
0 bis 10 Gew.-% wasserlösliches organisches Lösungsmittel,
0 bis 0,5 Gew.-% Viskositätsregulator,
0 bis 3 Gew.-% flüchtiges Alkali,
0 bis 0,2 Gew.-% Parfüm und ad 100 Gew.-% Wasser, und
5 bis 30 Vol.-% nichtwäßriger Phase II, enthaltend
0 bis 100 Gew.-% aliphatische Benzin-Kohlenwasserstoffe,
0 bis 100 Gew.-% Terpen-Kohlenwasserstoffe,
0 bis 5 Gew.-% mindestens eines alkoxylierten Dihydroxyaromaten der Formel A,
0 bis 5 Gew.-% nichtionisches Tensid und 0 bis 1 Gew.-% Parfüm,
wobei die Angaben in Gew.-% auf die jeweilige Phase bezogen sind, die Summe der Benzin- und Terpen-Kohlenwasserstoffe Phase II ad 100 Gew.-% komplettiert und die Phasen zusätzlich geringe Mengen an Farbstoff enthalten können.
Das erfindungsgemäße Mittel ist sprühbar und kann daher in einem Sprühspender ein- gesetzt werden.
Ein weiterer Gegenstand der Erfindung ist demgemäß ein Erzeugnis, enthaltend ein erfindungsgemäßes Mittel und einen Sprühspender.
Bevorzugt ist der Sprühspender ein manuell aktivierter Sprühspender, insbesondere ausgewählt aus der Gruppe, umfassend Aerosolsprühspender, selbst Druck aufbauende Sprühspender, Pumpsprühspender und Triggersprühspender, insbesondere Pumpsprühspender und Triggersprühspender mit einem Behälter aus transparentem Polye- thylen oder Polyethylenterephthalat. Sprühspender werden ausführlicher in der WO 96/04940 (Procter & Gamble) und den darin zu Sprühspendern zitierten US- Patenten, auf die in dieser Hinsicht sämtlich Bezug genommen und deren Inhalt hiermit in diese Anmeldung aufgenommen wird, beschrieben.
Die Anwendung der erfindungsgemäßen Mittel geschieht in der Weise, daß man das durch Schütteln temporär in eine Emulsion überführte Mittel in Mengen von beispielsweise etwa 1 ,5 bis 10 g pro m2, vorzugsweise 3 bis 7 g pro m2, auf die zu reinigende Fläche aufträgt und unmittelbar im Anschluß daran diese Flächen mit einem saugfähigen wei- chen Gegenstand wischt und sie dadurch reinigt. Der Auftrag der Mittel geschieht vorzugsweise mit Hilfe geeigneter Sprühgeräte, insbesondere eines Sprühspenders bzw. eines erfindungsgemäßen Erzeugnisses, um eine möglichst gleichmäßige Verteilung zu erreichen. Zum Wischen eignen sich in erster Linie Schwämme oder Tücher, die bei Behandlung größerer Flächen von Zeit zu Zeit mit Wasser ausgespült werden können.
Die erfindungsgemäßen Mittel werden durch getrenntes Aufmischen der einzelnen Phasen unmittelbar aus ihren jeweiligen Rohstoffen, anschließendes Zusammenführen und Durchmischen der Phasen und abschließendes Stehen des Mittels zur Auftrennung der temporären Emulsion hergestellt. Sie lassen sich ebenfalls durch Auf mischen unmittelbar aus ihren Rohstoffen, anschließendes Durchmischen und abschließendes Stehen des Mittels zur Auftrennung der temporären Emulsion herstellen. Insofern eine Komponente in einer anderen als der Phase, der die jeweilige Komponente zugeschrieben bzw. mit
der sie in das Mittel eingebracht wurde, nicht völlig unlöslich ist, kann auch diese andere Phase im Rahmen der Einstellung von Löslichkeitsgleichgewichten durch Diffusion entsprechende Anteile der betreffenden Komponente enthalten.
B e i s p i e l e
Die erfindungsgemäßen Mittel E1 bis E3 und das Vergleichsmittel V1 wurden durch einfaches Zusammenrühren der Komponenten gemäß Tabelle 1 hergestellt. E1 bis E3 enthielten erfindungsgemäß das Naphthalinsulfonsäure-Formaldehyd-Kondensat Lomar® LS in unterschiedlichen Mengen, während V1 kein Additiv aufwies. Als aliphatischer Benzin- Kohlenwasserstoff dienten C9-13-lsoparaffine. Sämtliche Mittel hatten einen pH-Wert von 10 und enthielten unten eine klare und transparente wäßrige Phase I und oben eine cremig weißliche nicht wäßrige Phase II in einem Volumenverhältnis Phase I zu Phase II von 80 zu 20 und durch eine scharfe Grenzfläche getrennt. Die wäßrige Phase I war durch das Polymer leicht angedickt, so daß die durch Schütteln generierten temporären Emulsionen über einen zur bequemen Anwendung des Mittels ausreichenden Zeitraum von jeweils etwa 3 min beständig blieben und anschließend erneute Phasentrennung erfolgte.
Tabelle 1
Zusammensetzung [Gew.-%] E1 E2 E3 V1
Naphthalinsuifonsäure-Formaldehyd- 0,1 0,2 0,4 -
Kondensat
Natrium-C12_14-Fettalkylsulfat 0,25 0,25 0,25 0,25
Ethanol 5 5 5 5 vernetztes Acrylsäurecopolymer 0,02 0,02 0,02 0,02 aliphatischer Benzin-Kohlenwasserstoff 15 15 15 15 wäßrige Ammoniaklösung, 25 Gew.-%ig 0,2 0,2 0,2 0,2
Wasser ad 100 ad 100 ac. 100 ad 100
Prüfung von Antibeschlag- und Antiregeneffekt
Zunächst wurden auf einem Spiegel der Größe 30 cm x 60 cm je 2 ml des jeweiligen Mittels mit einem gefalteten Vlies der Gesamtgröße 20 cm x 20 cm (Chicopee, Du- ralace 60) verteilt und praxisgerecht auspoliert. Nach 30 min erfolgte jeweils eine zweite identische Behandlung. Weitere 30 min später wurden jeweils der Anitbeschlag- und Antiregeneffekt wie folgt geprüft.
Antibeschlageffekt. Der behandelte Spiegel wurde für 5 sec über eine Schale (28 cm x 50 cm x 4 cm) mit 1 ,5 I kochendem Wasser gehalten und unmittelbar danach bewertet, ob und ggf. wie stark der Spiegel beschlagen war.
Antiregeneffekt. Mittels einer Pumpsprühflasche wurden innerhalb von etwa 4 sec ca. 10 g Testregen, hergestellt aus Leitungswasser und 8 g/l wfk- Teppichpigmentschmutz (55 Gew.-% Kaolin, 43 Gew.-% Quarz, 1 ,5 Gew.-% Flammruß 101 , 0,5 Gew.-% Eisenoxid schwarz; wfk-Coάe wfk-09 \N) der wf/c-Testgewebe GmbH (http://www.wfk.de), gleichmäßig auf die vorbehandelte Spiegelfläche aufgesprüht. Bewertet wurde unmittelbar im Anschluß daran Benetzung sowie Tropfenbildung und nach dem Trocknen Schmutzverteilung sowie Fleckenbildung.
Tabelle 2
Effekt Note Beurteilung Zusammensetzung
Antibeschlageffekt E1 3 geringe Wirkung E2 2 guter Schutz vor Beschlagen E3 2 guter Schutz vor Beschlagen V1 3 geringe Wirkung
Antiregeneffekt Gesamteindruck der nassen Scheibe E1 2,5 gute Benetzung, wenige Tropfen E2 1 ,7 sehr gute Benetzung, fast keine Tropfen E3 1 ,7 sehr gute Benetzung, fast keine Tropfen V1 4,0 gute Benetzung, reißt schnell auf
Antiregeneffekt Gesamteindruck der trockenen Scheibe E1 3,0 etwas bessere Schmutzverteilung als V1 E2 2,2 Schmutz gleichmäßig verteilt, kaum Flecken E3 2,0 Schmutz gleichmäßig verteilt, keine Flecken V1 4,0 teilweise Flecken und "Ablaufspuren",
Schmutz nur im oberen Teil gleichmäßig
Die Bewertung erfolgte jeweils visuell durch ein Panel von fünf Personen, indem jede Person jeweils den vier Mitteln die Position 1 bis 4 in der Reihenfolge abnehmenden Effektes zuordnete. Der jeweilige Mittelwert ist zusammen mit einer Beurteilung in Tabelle 2 als Note angegeben. Je geringer die Note ist, desto besser war der jeweilige Effekt.
Die Mittel E1 bis E3 zeigen im Gegensatz zu V1 erfindungsgemäß sowohl einen Antiregeneffekt als auch einen Antibeschlageffekt.