WO2000025900A1 - Method and device for recovering hydrocarbon vapor - Google Patents

Method and device for recovering hydrocarbon vapor Download PDF

Info

Publication number
WO2000025900A1
WO2000025900A1 PCT/JP1999/005899 JP9905899W WO0025900A1 WO 2000025900 A1 WO2000025900 A1 WO 2000025900A1 JP 9905899 W JP9905899 W JP 9905899W WO 0025900 A1 WO0025900 A1 WO 0025900A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon vapor
gas
hydrocarbon
adsorption
vapor
Prior art date
Application number
PCT/JP1999/005899
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Eto
Shigemi Okanishi
Original Assignee
Idemitsu Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co., Ltd. filed Critical Idemitsu Engineering Co., Ltd.
Priority to JP2000579332A priority Critical patent/JP3711327B6/en
Priority to KR1020017005281A priority patent/KR20010085967A/en
Publication of WO2000025900A1 publication Critical patent/WO2000025900A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds

Definitions

  • the present invention recovers hydrocarbon vapor contained in air and other gases discharged from the storage facility when liquid hydrocarbons such as gasoline are charged into storage facilities such as storage tanks and expansion due to temperature. And a device for performing the method.
  • the following invention has been proposed (JP-A-10-156127).
  • the exhaust gas containing high-concentration benzene is brought into contact with pre-cooled heavy oil or benzene to partially remove the benzene vapor, and then the benzene vapor is removed in the adsorption tower filled with the adsorbent. Adsorption is removed.
  • the pressure is reduced by a vacuum pump or the like while the adsorption tower is heated by a heating coil or the like through which steam flows inside.
  • the separated benzene is returned to the above-mentioned recovery tower, where it is condensed and recovered.
  • the benzene vapor is partially recovered and then adsorbed in the adsorption tower, so that benzene can be removed to near the limit and post-treatment of the separated benzene is easy.
  • the adsorption tower is heated by a heating coil or the like through which steam flows, but this indirect heating method is inefficient.
  • the adsorbent such as silica gel has low thermal conductivity and the granular materials are in point contact with each other, the heat transfer in the adsorbent packed bed is very slow.
  • adsorption PTSA: Pressure & Temporature Swing Adsorption
  • the switching of adsorption and separation is performed in a matter of minutes, but in this time, the temperature rises substantially only to the surface of the heating coil and to a distance of several cm. I can't warm. Therefore, it is necessary to increase the number of heating coils, which requires extra space in the adsorption tower and uneven temperature in the adsorbent layer. The loss of steam for heating was increasing.
  • An object of the present invention is to provide a hydrocarbon vapor recovery method and apparatus capable of efficiently recovering a hydrocarbon vapor from a gas containing a hydrocarbon vapor.
  • a first step of cooling and condensing a gas containing hydrocarbon vapor by a cooling means, and removing a part of the hydrocarbon vapor, and a heating means A second step of heating and raising the temperature of the gas from which a part of the hydrocarbon vapor has been removed, and supplying the heated gas to an adsorption unit filled with an adsorbent; And a third step of adsorbing and removing the one.
  • the temperature of the gas after the treatment in the first step exceeds the freezing point of the contained components and is set to a low temperature near the freezing point of the parentheses.
  • the freezing point of benzene is 5.5 ° C, so it is preferably 6 to 20 ° C, more preferably 6 to 10 ° C. .
  • a first step for example, high-boiling impurities such as toluene, xylene, trimethylbenzene, coumarone, and indene contained in crude gas oil mainly composed of benzene generated by carbonization of coal, especially sublimation Naphthalene, which is a solid, is effectively removed by lowering the vapor pressure by cooling and dissolving in benzene.
  • the temperature of the gas after heating in the second step is preferably 5 to 30 ° C. higher than the temperature after the treatment in the first step. More preferably, the temperature is higher by 10 to 20 ° C.
  • Such a temperature is set because the hydrocarbon vapor has reached the saturated state at the temperature at the time of cooling in the treatment of the first step. If the pressure drops further, condensation or solid precipitation occurs immediately. This phenomenon will cause clogging of pipes, malfunction of switching valves, and increase in pressure loss of adsorption towers.o
  • the temperature of the gas after the first step can be raised, and the degree of saturation of the hydrocarbon vapor can be reduced to prevent condensation in pipes and the like. it can. Further, the temperature of the subsequent adsorption device can be raised to facilitate separation and regeneration after adsorption. Furthermore, the reduction in the concentration of hydrocarbon vapor reduces the load of the next third step, and makes it possible to reduce the size of the adsorption tower and vacuum pump.
  • the temperature of the adsorbent in the adsorption tower rises due to adsorption of hydrocarbon vapor, and falls due to separation.
  • the temperature fluctuation is several ° C. Therefore, immediately after the operation of separating the hydrocarbon vapor from the adsorbent is completed, the gas containing the saturated concentration of the hydrocarbon vapor is discharged immediately after the operation of separating the hydrocarbon vapor from the adsorbent without performing the heating and temperature increasing operation according to the second step. If introduced, it may condense at the inlet of the adsorption tower or solid deposition may occur.
  • silica gel Ordinary adsorbents such as silica gel, alumina gel, and activated carbon can be used. From the viewpoint of safety, use of silica gel, zeolite, or alumina gel is preferred.
  • it is silica gel treated with a high-temperature calcining or hydrophobizing agent or high silica zeolite having a silica / alumina ratio of 80 or more. If the adsorbent adsorbs water in the gas, it is necessary to separate water from the recovered oil, so it is difficult to adsorb water, but a hydrophobic adsorbent that adsorbs hydrocarbons is preferred. It is.
  • the adsorption means is, for example, an adsorption tower.
  • the adsorbent adsorbs and removes the hydrocarbon vapor, and discharges a clean gas.
  • the adsorbent that has adsorbed the hydrocarbons in the third step is regenerated by separating the hydrocarbons by reducing the pressure.
  • the degree of vacuum at the time of separation is preferably 60 Torr or less in absolute pressure. More preferably, the absolute pressure is 25 Torr or less. The lower the absolute pressure, the easier it is for hydrocarbon vapors to separate. If the separation of hydrocarbons is not sufficient, the adsorbent will be less likely to adsorb the hydrocarbon vapor in the next adsorption operation, and the efficiency of removing the hydrocarbon vapor will decrease.
  • the hydrocarbon vapor separated from the adsorbent has a very high concentration and can be easily condensed by cooling and recovered as a liquid.
  • a cooling method a general heat exchanger (tube type, plate type, etc.) can be used.
  • the low-concentration hydrocarbon vapor that could not be condensed can be processed without being discharged out of the apparatus by mixing it with the raw material gas at the entrance of the apparatus.
  • it can be recovered by contacting it with cooled light oil, kerosene, gasoline, recovered oil, etc. to cool and condense it, or dissolving it in these.
  • the low-concentration hydrocarbon vapor that has not been condensed or dissolved may be mixed with the raw material gas at the entrance of the apparatus in the same manner as described above.
  • the separated hydrocarbon vapor may be mixed with a gas containing the hydrocarbon vapor in the first step, and may be cooled and condensed to be recovered.
  • the gas from which the hydrocarbon vapor is to be recovered may be ordinary air, or may be similar to nitrogen or other inert gas, etc., and may be a facility for the production or storage of liquefied hydrocarbons, which are sources of hydrocarbon vapor. It can be applied to various gases and the like discharged from such as appropriate.
  • the condensed liquid hydrocarbon is used, and the cooled liquid hydrocarbon is brought into contact with a gas containing a hydrocarbon vapor to form a hydrocarbon base in the gas. It is desirable to cool and condense the par.
  • the temperature-raised gas from the second step is supplied to the adsorption means to adsorb the hydrocarbon vapor to the adsorbent, and then the pressure in the adsorption means is reduced. Then, it is desirable that a clean gas (normal air or an appropriate gas) be caused to flow back into the adsorption means, and that the hydrocarbons be separated from the adsorbent in this state.
  • a clean gas normal air or an appropriate gas
  • the flow rate of the clean gas which is preferably 1/5 to 1/50, more preferably 1/10 to 50 times the flow rate of the process gas introduced into the adsorption tower during adsorption. 1/20.
  • a plurality of adsorption means are provided, and it is desirable that these adsorption means are alternately switched to an adsorption treatment and a separation treatment to perform a continuous treatment.
  • the switching of the adsorption means is preferably performed within one hour, more preferably within ten minutes. In order to reduce the temperature change of the adsorbent layer by reducing the change in the amount of adsorption of hydrocarbons, short-time switching is preferable.
  • the heat of adsorption is an exotherm, while increasing the temperature makes adsorption more difficult (separation becomes more likely), and conversely, lowering the temperature causes adsorption. Easier (separation is less likely). Therefore, when the hydrocarbon vapor is adsorbed, the temperature of the adsorbent rises, and it becomes difficult to adsorb the hydrocarbon vapor further. Conversely, in the separation operation, when the hydrocarbon vapor separates, the temperature decreases, and further separation of the hydrocarbon vapor becomes difficult. That is, if the adsorption / separation operation is performed, a phenomenon occurs in which the effect of the operation is negated.
  • the hydrocarbon separated from the adsorbent is mixed with the gas containing the hydrocarbon vapor in the first step, and then cooled and condensed to recover.
  • the apparatus for recovering a hydrocarbon vapor comprises: a cooling unit for cooling and condensing a gas containing the hydrocarbon vapor to remove a part of the hydrocarbon vapor; Heating means for heating and raising the temperature of the gas from which a part of the hydrocarbon vapor has been removed; and adsorbing means filled with an adsorbent for adsorbing and removing the hydrocarbon vapor in the heated gas. It is characterized by having.
  • the cooling means is appropriately selected from the following two in accordance with the concentration of the hydrocarbon vapor and the allowable pressure loss.
  • a combination of a normal heat exchanger (tube type, plate type, etc.) and a gas-liquid separator is suitable. If the allowable pressure loss is low, a recovery tower with a built-in heat exchanger or a recovery tower with an external heat exchanger is suitable.
  • This recovery tower has a gas-liquid contact part at the top and a liquid reservoir at the bottom. The lower part is pumped out and introduced into the upper part for circulation.
  • the gas-liquid contact portion is filled with a filler such as a Raschig ring, so that gas-liquid contact can be performed efficiently.
  • the liquid level in the liquid reservoir is controlled by the balance between the pumping amount and the circulation amount.
  • an ordinary heat exchanger such as a tube type or a plate type can be used.
  • a common chiller unit is provided as a supply source of the cooling heat medium supplied to the cooling unit and a supply source of the heating heat medium supplied to the heating unit. .
  • a common chill unit If a common chill unit is used, a single cooling medium and a heating medium can be supplied by one unit, which is economical and advantageous in space.
  • a refrigerator may be used as the cooling unit and the heating unit.
  • a plurality of the adsorbing units are provided so as to alternately switch the adsorption process and the separation process to perform the continuous process.
  • one adsorption tower as the adsorption means may be a single tower, but it is preferable to provide a plurality of adsorption towers and perform the adsorption treatment continuously while switching the adsorption / separation operation.
  • FIG. 1 is a schematic diagram of a hydrocarbon vapor recovery device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of a hydrocarbon vapor recovery device according to a second embodiment of the present invention.
  • FIG. 3 is a schematic view of a hydrocarbon vapor recovery device according to a comparative example.
  • FIG. 4 is a schematic view showing a main part of a hydrocarbon vapor recovery apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic view showing a main part of a hydrocarbon vapor recovery device according to another embodiment of the present invention.
  • FIG. 6 is a schematic view showing a main part of a hydrocarbon vapor recovery device according to another embodiment of the present invention.
  • the hydrocarbon vapor recovery device of the present embodiment includes a first heat exchanger 11 connected to an introduction line 10 for a gas (here, air) containing hydrocarbon vapor, and a gas supply to the heat exchanger 11.
  • a gas-liquid separator 13 connected via a line 10A
  • a second heat exchanger connected to the gas-liquid separator 13 via a gas supply line 12, and a second heat exchanger 14 Gas supply line with two downstream branches
  • the first and second adsorption towers 15 and 16 connected via the inlet 12A and the gas supply line 33A branched from the vicinity of the adsorption towers 15 and 16 of the gas supply line 12A are connected.
  • the vacuum pump 20 is provided.
  • the first heat exchanger (tube type or plate type) 11 is provided with a refrigerator 17.
  • the gas-liquid separator 13 is provided with a liquid reservoir 19 at a lower portion thereof.
  • a wire mesh type demister (not shown) is installed at the gas outlet of the gas-liquid separator 13.
  • the second heat exchanger (tube type or plate type) 14 is provided with a heater 21.
  • the heating medium of this heat exchanger is hot water.
  • Each of the first and second adsorption towers 15 and 16 has an adsorption layer 22 filled with an adsorbent therein.
  • Each gas supply line 12 from the second heat exchanger 14 to the first and second adsorption towers 15 and 16 is provided with first and second valves 23 and 24.
  • Third and fourth valves 25 and 26 are provided on a gas supply line 33A branched from the gas supply line 12A.
  • the first and second adsorption towers 15 and 16 are each connected at their top to a clean gas discharge line 31, and each line 31 is provided with fifth and sixth valves 27 and 28. I have.
  • a clean gas flows back to the adsorption towers 15 and 16 through a line 31 between the fifth and sixth valves 27 and 28 and the tops of the adsorption towers 15 and 16.
  • a supply line 32 for supplying clean air to be supplied is connected, and each line is provided with seventh and eighth valves 29 and 30.
  • a return line 33 for returning the separated hydrocarbon vapor is provided between the vacuum pump 20 and the introduction line 10 in front of the first heat exchanger 11. The procedure for recovering hydrocarbon vapor using this recovery device is as follows.
  • air containing hydrocarbon vapor is passed through the first heat exchanger 11 from the introduction line 10, where the air is cooled to condense the hydrocarbon vapor,
  • the cooled and condensed hydrocarbons and air are supplied to a gas-liquid separator 13 for gas-liquid separation. Part of the condensed hydrocarbon vapor is collected in the liquid reservoir 19 and collected.
  • the air containing the remaining hydrocarbon vapor is supplied to the second heat exchanger 14 from the outlet.
  • warm water is used as a heat medium, and the air from which a part of the hydrocarbon vapor has been removed is heated to raise the temperature.
  • the heated air is supplied to the first or second adsorption tower 15 or 16, where the hydrocarbon vapor is adsorbed and removed by an adsorbent.
  • first and second adsorption towers 15 and 16 switch the valves 23, 24, 27 and 28 alternately to the adsorption treatment and the separation treatment to continuously process the hydrocarbon vapor.
  • the pressure inside the adsorption towers 15 and 16 is reduced by the vacuum pump 20, and the clean air is flowed back into the adsorption towers 15 and 16 from the clean air supply line 32 to adsorb hydrocarbons in this state. Separate from agent.
  • the hydrocarbon vapor recovery device of the present embodiment includes a recovery tower 36 connected to an introduction line 10 for a gas (here, air) containing hydrocarbon vapor, and a liquid between a lower part and an upper part of the recovery tower 36.
  • a first heat exchanger 11 provided via a hydrocarbon circulation line 39 of the first type, a second heat exchanger 14 connected to the recovery tower 36 via a gas supply line 12, and First and second adsorption towers 15 and 16 connected to the second heat exchanger 14 via a gas supply line 12A whose downstream side is branched into two, and adsorption towers 15 and 16 of these gas supply lines 12A.
  • It is provided with a vacuum pump 20 connected via a gas supply line 33A branched from a portion near 16.
  • the recovery tower 36 is provided with a gas-liquid contact part 37 at the upper part and a liquid reservoir part 38 at the lower part.
  • the gas-liquid contact part 37 is filled with a filler such as a Raschig ring.
  • a wire mesh type demister (not shown) is installed at the gas outlet of the recovery tower 36.
  • One of the liquid hydrocarbon circulation lines 39 is connected to the liquid reservoir 38 side of the recovery tower 36, and the other is inserted above the gas-liquid contact part 37 in the recovery tower 36, and is connected to the end.
  • a liquid hydrocarbon sprayer 41 is provided.
  • a circulation pump 42 is provided between the liquid reservoir 38 of the circulation line 39 and the first heat exchanger 11.
  • Other components of the apparatus for example, the first heat exchanger 11, the second heat exchanger 14, the first and second adsorption towers 15, 16 and the vacuum pump 20, etc. This is the same as the embodiment.
  • the procedure for recovering hydrocarbon vapor using this recovery device is as follows.
  • air containing hydrocarbon vapor is supplied from the introduction line 10 to the recovery tower 36, where the air is cooled to form hydrocarbon vapor.
  • the liquid is condensed and the generated liquid is stored in the liquid reservoir 38.
  • the air is cooled and condensed, the liquid hydrocarbons in the liquid storage section 38 are partially circulated through the circulation line 39 and are cooled in the first heat exchanger 11, and then are collected in the recovery tower 36.
  • the liquid hydrocarbon and the air are brought into contact with each other at a gas-liquid contact section 37 to perform the supply.
  • first heat exchanger 11 is provided with the refrigerator 17 and the second heat exchanger 14 is provided with the heater 21.
  • first heat exchanger 1 A common chiller unit may be provided as a supply source of the cooling heat medium supplied to 1 and a supply source of the heating heat medium supplied to the second heat exchanger 14.
  • the recovery tower 36 may be configured as follows. As shown in FIG. 4, the recovery tower 36 is provided with a gas-liquid disperser 37A such as a chimney tray perforated tray between the gas-liquid contact part 37 and the introduction part of the circulation line 39. A demister 37B is installed above the 39 introduction part. The liquid reservoir 38 is connected to an extraction line 42A extending from the side of the recovery tower 36 to the circulation pump 42, the suction end of which is directed downward, and is arranged radially around it. A vortex breaker 42B made of multiple plates is also installed.
  • a gas-liquid disperser 37A such as a chimney tray perforated tray between the gas-liquid contact part 37 and the introduction part of the circulation line 39.
  • a demister 37B is installed above the 39 introduction part.
  • the liquid reservoir 38 is connected to an extraction line 42A extending from the side of the recovery tower 36 to the circulation pump 42, the suction end of which is directed downward, and is arranged radially around it.
  • the gas-liquid disperser 37A By installing the gas-liquid disperser 37A, further contact between the liquid-phase component returned from the circulation line 39 and the gas-phase component rising through the gas-liquid contact part 37 is achieved. Recovery of liquid phase components can be promoted.
  • the installation of the demist 37B makes it possible to remove mist-like liquid phase components from the gas taken out to the gas supply line 12 at the top of the tower. Further, by installing the vortex breaker 42B, the liquid accumulated in the liquid reservoir 38 from the extraction line 42A is sucked. The occurrence of swirls and gas entrainment on exit is avoided.
  • a structure used in the existing brand technology may be appropriately adopted.
  • a substantially U-shaped recovery tower 36A may be employed.
  • an introduction line 10 is connected to one of the tops (left side in the figure) of a substantially U-shaped recovery tower 36A, and a circulation line 39 is connected slightly below the top.
  • a gas-liquid disperser 37A is installed slightly below the connection part of the circulation line 39, and a gas-liquid contact part 37 is installed below it.
  • the gas supply line 12 is connected to one of the tower tops (right side in the figure), and a demister 37B is installed below it.
  • Such a substantially U-shaped recovery tower 36A also separates the hydrocarbon vapor contained in the gas from the introduction line 10 and the circulation line 39, and supplies the separated gas to the gas supply line. It can be taken out from the line 12 and stored in the liquid reservoir 38.
  • each of the embodiments described above treats a hydrocarbon-containing gas from a single inlet line 10, it may treat hydrocarbon-containing gas from multiple gas sources. In such a case, it is desirable to supplement the structure to avoid mixed contamination (contamination) due to backflow between the gas sources.
  • two introduction lines 10L and 10H are connected to the recovery tower 36A.
  • the introduction line 10L is connected to the top of the tower in the same way as the introduction line 10 in Fig. 5.
  • the introduction line 10H is connected between the gas-liquid contact part 37 of the recovery tower 36A and the gas-liquid disperser 37A.
  • the gas source supplied to the introduction line 10H has a higher concentration or purity of the stored liquid than the gas source supplied to the introduction line 10L.
  • the introduction line 10L is connected to the exhaust port of the crude benzene ink, and the guide line 10H is connected to the exhaust port of the pure benzene ink.
  • the introduction line 10H is simply connected to the recovery tower 36A, the low-purity benzene component from the introduction line 10L is introduced into the recovery tower 36A. Ingredients flow back into the pure benzene tank through the introduction line 10H, which can cause a decrease in benzene purity in the tank.
  • a seal pot 10P is installed in the introduction part of the introduction line 10H, and the content liquid (here pure benzene) of the gas source connected via the introduction line 10H is stored in this. Then, the end of the introduction line 10H is immersed in the liquid phase in the seal pot 10P.
  • the plurality of gas sources are not limited to the same type, but may be different types such as gasoline and benzene as long as the collection targets overlap.
  • specific experimental examples performed based on each of the above-described embodiments will be described.
  • the flow rate of air containing high-concentration hydrocarbon vapor to be treated (hereinafter referred to as “source gas”) was 10 m3, and the concentration of hydrocarbon vapor was 20 vol%.
  • the components of the hydrocarbon vapor in this air were as shown in Table 1 below. (table 1 ) First, the raw material gas and the separation gas from the outlet of the vacuum pump 20 are combined, cooled in the first tube-type heat exchanger 11 and partially condensed, and then condensed into the vertical gas-liquid separator 13. And separated into gaseous and liquid phases.
  • the temperature of the gas after being cooled in the first heat exchanger 11 was 10 ° C.
  • the amount of the collected liquid hydrocarbon was 3.9 kg / hr.
  • the gas discharged from the gas-liquid separator 13 was introduced into a second tubular heat exchanger 14, where the temperature was increased.
  • the temperature of the gas after heating in this heat exchanger 14 was 30 ° C.
  • the heated gas was supplied to one of the two adsorption towers 15 where the hydrocarbon vapor was adsorbed and removed by an adsorbent.
  • the adsorbent used was a silica gel [Sili Gel CARiACT Q-3 (trade name) manufactured by Fuji Silicia Chemical Co., Ltd.] that had been subjected to hydrophobic treatment by baking at 500 ° C for 4 hours.
  • the two adsorption towers 15, 16 switched the inlet and outlet valves 23, 24, 27, 28 every 5 minutes to alternately perform adsorption and separation.
  • the concentration of hydrocarbon vapor in the gas of the adsorption tower 15, 16 exit c also was 30ppm, the components of the hydrocarbon base one par are as shown in Table 2 below.
  • the separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas in the introduction line 10 and collected by cooling and condensing in the first heat exchanger 11.
  • the temperature of the adsorbent during adsorption / separation was measured with a thermocouple inserted into the adsorption towers 15 and 16, and the maximum was 35 ° C during adsorption and minimum 25 ° C during separation.
  • the air containing high-concentration hydrocarbon vapor to be treated is the same as in Experimental Example 1.
  • the raw material gas and the separation gas from the outlet of the vacuum pump 20 were combined and introduced into the vertical recovery tower 36.
  • the liquid in the liquid reservoir 19 of the recovery tower 36 is withdrawn by the pump 42, cooled in the first tubular heat exchanger 11, and then introduced into the upper part of the recovery tower 36, where it is brought into contact with the raw material gas and The hydrocarbon vapor inside was condensed.
  • the temperature of the gas after cooling in the heat exchanger 11 was 10 ° C.
  • the gas phase and the liquid phase after the gas-liquid contact were separated, and the gas phase was withdrawn from the upper part of the recovery tower 36, and the liquid phase was recovered in the lower liquid storage part 38.
  • the amount of liquid hydrocarbon collected was 3.9 kg / hr.
  • the gas discharged from the recovery tower 36 is introduced into the second plate-type heat exchanger 14. Then, the temperature was increased by heating. The temperature of the gas after heating in the heat exchanger 14 was 25 ° C.
  • the heated gas was supplied to one of the two adsorption towers 15, where the hydrocarbon vapor was adsorbed and removed by an adsorbent.
  • the adsorbent used was silica gel [Silica gel CARiACT (3-6 (trade name), manufactured by Fuji Silysia Chemical Ltd.)], which was subjected to a hydrophobizing treatment by baking at 500 ° C for 4 hours.
  • inlet and outlet valves 23, 24, 27, and 28 were switched every 5 minutes to alternately perform adsorption and separation.
  • the concentration of the hydrocarbon vapor in the gas at the outlets of the adsorption towers 15 and 16 was 30 ppm ( The components of the hydrocarbon vapor were as shown in Table 3 below.
  • the separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas on the introduction line 10 and was cooled and condensed in the recovery tower 36 and recovered.
  • the temperature of the adsorbent during adsorption / separation was measured with a thermocouple inserted into the adsorption towers 15 and 16, and was found to be a maximum of 30 ° C during adsorption and a minimum of 20 ° C during separation.
  • the apparatus according to the present comparative example has a configuration in which the second heat exchanger 14 is removed from the apparatus according to the second embodiment, and the adsorption towers 15 and 16 have heating coils 45 through which steam flows.
  • Machine 46 is provided.
  • the air containing high-concentration hydrocarbon vapor to be treated is the same as in Example 1.
  • the raw material gas and the separation gas from the outlet of the vacuum pump 20 were combined and introduced into the vertical recovery tower 36.
  • the liquid in the liquid storage section 38 of the recovery tower 36 is withdrawn by the pump 42, cooled in the first tube-shaped heat exchanger 11, introduced into the upper part of the recovery tower 36, and brought into contact with the raw material gas.
  • the hydrocarbon vapor inside was condensed.
  • the temperature of the gas after cooling in the heat exchanger 11 was 10 ° C.
  • the gas phase and the liquid phase after the gas-liquid contact were separated, and the gas phase was withdrawn from the upper part of the recovery tower 36, and the liquid phase was recovered in the lower liquid storage part 38.
  • the amount of liquid hydrocarbon collected was 3.9 kg / hr.
  • the gas discharged from the recovery tower 36 was directly supplied to one of the two adsorption towers 15, where the hydrocarbon vapor was adsorbed and removed by the adsorbent.
  • the adsorbent used was silica gel [silica gel CA RiACT Q-6 (trade name) manufactured by Fuji Silica Chemical Co., Ltd.], which was subjected to hydrophobizing treatment by baking at 500 ° C for 4 hours.
  • adsorption and separation were alternately performed by switching the inlet and outlet valves 23, 24, 27 and 28 every 5 minutes.
  • the concentration of hydrocarbon vapor in the gas from the adsorption towers 15 and 16 was 100 to 200111, and a tendency to increase gradually was observed.
  • the components of the hydrocarbon vapor for the first week were as shown in Table 4 below. (Table 4)
  • the operation of separating hydrocarbons from the adsorbent in the adsorption towers 15 and 16 was performed by reducing the pressure in the adsorption towers 15 and 16 with the vacuum pump 20. The separation pressure at this time is 20 Torr in absolute pressure. This separation was performed while backflowing clean air from the outlets of the adsorption towers 15 and 16 at a flow rate of 0.5 m3 / hr.
  • the separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas at the entrance of the apparatus, and was cooled and condensed in the recovery tower 36 and recovered.
  • thermocouple When the temperature of the adsorbent during adsorption and separation was measured with a thermocouple, the maximum was 15 ° C during adsorption, the minimum at 10 ° C during separation, and the maximum at 40 ° C, and rose in the adsorption towers 15 and 16. There were many times.
  • the pressure loss of the adsorption towers 15 and 16 tended to increase gradually at 20 to 30 mmH20.
  • It can be used to prevent diffusion and recovery and reuse of hydrocarbon vapor discharged from storage tanks, etc. in storage facilities for liquid hydrocarbons such as gasoline or processing facilities for refining.

Abstract

A method of recovering hydrocarbon vapor comprising a first step of cooling a gas containing hydrocarbon vapor by a first heat exchanger (11) to condense the same and removing part of the hydrocarbon vapor, a second step of heating the gas, which has part of its hydrocarbon vapor removed therefrom, by a second heat exchanger (14) to raise its temperature, and a third step of feeding the temperature-raised gas to adsorption towers (15, 16) filled with an adsorbent, where the hydrocarbon vapor is adsorbed for removal. Separation of the hydrocarbon from the adsorbent is effected by reducing the pressures in the adsorption towers (15, 16) while producing a counterflow of clean gas in the adsorption towers (15, 16).

Description

明 細 書 炭化水素ベーパーの回収方法及び装置 技術分野  Description Method and apparatus for recovering hydrocarbon vapor
本発明は、 ガソリン等の液状炭化水素を貯蔵夕ンク等の貯蔵設備に充 填する際や、 気温による膨張によって、 その貯蔵設備から排出される空 気その他のガスに含まれる炭化水素ベーパーを回収する方法及びその装 置に関する。 背景技術  The present invention recovers hydrocarbon vapor contained in air and other gases discharged from the storage facility when liquid hydrocarbons such as gasoline are charged into storage facilities such as storage tanks and expansion due to temperature. And a device for performing the method. Background art
ガソリン、 灯油、 軽油等の液状炭化水素をパージ、 ローリ、 貯蔵タン クに充填する際、 それらの容器内の気相と液相との置換により、 或 は 容器内にあった空気等のガスが気温の変化に応じて膨張することにより、 その容器から炭化水素のベーパー (液状炭化水素の一部成分が揮発して 生成される蒸気) を含んだガスが排出される。 このような排気中の炭化 水素べ一パーの濃度は、 夏期には 30%にも達する。  When filling liquid hydrocarbons such as gasoline, kerosene, and gas oil into purge, lorry, and storage tanks, the gas and air in the containers are replaced by gas and liquid phases in those containers. By expanding in response to changes in air temperature, gas containing hydrocarbon vapor (steam generated by volatilization of some components of liquid hydrocarbons) is discharged from the container. The concentration of hydrocarbon vapors in such exhaust reaches as much as 30% in summer.
最近、 この炭化水素べ一パーの排出について、 規制が設けられるよう になってきている。 例えば、 都道府県の公害防止条例等による規制では、 濃度 5〜8%、 除去率 80〜90 %となっている。 そして、 有害汚染大気物質 については更に厳しい規制が設けられている。 従来、 貯蔵夕ンクからの排出ガス中の炭化水素ベーパーの回収方法と して、 次のようなものが提案されている。  Recently, regulations have been set for the emission of hydrocarbons. For example, prefectural regulations under the Pollution Control Ordinance, etc., set the concentration at 5-8% and the removal rate at 80-90%. Furthermore, stricter regulations are set for toxic pollutants. Conventionally, the following methods have been proposed for recovering hydrocarbon vapor in exhaust gas from storage tanks.
①活性炭を充填した除去装置を使用して炭化水素ベーパーを吸着した 後、 加熱スチームによ り吸着後の炭化水素を分離する方法、 ②シリカゲ ルゃゼォライ トを充填した除去装置を使用して炭化水素べ一パーを吸着 した後、 減圧によ り吸着後の炭化水素を分離する方法、 ③膜分離方法、 である。 (1) After adsorbing hydrocarbon vapor using a removal device filled with activated carbon, separate the adsorbed hydrocarbon using heated steam. (2) Silica gel After adsorbing the hydrocarbon vapor using a removal device filled with Ruzelite, the hydrocarbon is separated by adsorption under reduced pressure, and (3) the membrane separation method.
一方、 上記従来の炭化水素ベーパーの回収方法の回収効率を改善する ため、 次のような発明が提案されている (特開平 10-156127号公報)。 この発明では、 回収塔において、 高濃度ベンゼンを含む排出ガスをプ レクールした重油或いはベンゼンと接触させてベンゼンべ一パ一を一部 除去した後、 吸着剤が充填された吸着塔においてベンゼンベーパーを吸 着除去している。 吸着剤からベンゼンを分離する際には、 吸着塔を、 内 部にスチームが流れる加熱コイル等で加熱しながら、 真空ポンプ等で減 圧して行う。 分離したベンゼンは、 上記回収塔に戻されて、 凝縮回収さ れる。  On the other hand, in order to improve the recovery efficiency of the above-mentioned conventional method for recovering hydrocarbon vapor, the following invention has been proposed (JP-A-10-156127). In the present invention, in the recovery tower, the exhaust gas containing high-concentration benzene is brought into contact with pre-cooled heavy oil or benzene to partially remove the benzene vapor, and then the benzene vapor is removed in the adsorption tower filled with the adsorbent. Adsorption is removed. When separating benzene from the adsorbent, the pressure is reduced by a vacuum pump or the like while the adsorption tower is heated by a heating coil or the like through which steam flows inside. The separated benzene is returned to the above-mentioned recovery tower, where it is condensed and recovered.
この発明によれば、 ベンゼンベーパ一を一部回収した後、 吸着塔で吸 着するので、 極限近く までベンゼンを除去でき、 分離したベンゼンの後 処理も容易である。  According to the present invention, the benzene vapor is partially recovered and then adsorbed in the adsorption tower, so that benzene can be removed to near the limit and post-treatment of the separated benzene is easy.
しかし、 吸着剤からベンゼンを分離する際に、 吸着塔を、 スチームが 流れる加熱コイル等で加熱しているが、 この間接加熱方式は、 効率が悪 い。 しかも、 シリカゲル等の吸着剤は熱伝導度が低い上に、 粒状体同士 の接触が点接触となっているため、 吸着剤充填層の伝熱が非常に遅くな また、 通常の圧力 · 温度スィング吸着 ( P T S A : Pressure & Tempe rature Swing Adsorpti on) では、 吸着 '分離の切替えは、 数分程度で行 われるが、 この程度の時間では実質的に加熱コイルの表面付近、 数 cmの 距離までしか昇温できない。 従って、 加熱コイルを多くする必要があり、 吸着塔のスペースが余分に必要になったり、 吸着剤層に温度むらができ て、 加熱用スチームのロスが多くなつていた。 However, when separating benzene from the adsorbent, the adsorption tower is heated by a heating coil or the like through which steam flows, but this indirect heating method is inefficient. In addition, since the adsorbent such as silica gel has low thermal conductivity and the granular materials are in point contact with each other, the heat transfer in the adsorbent packed bed is very slow. In adsorption (PTSA: Pressure & Temporature Swing Adsorption), the switching of adsorption and separation is performed in a matter of minutes, but in this time, the temperature rises substantially only to the surface of the heating coil and to a distance of several cm. I can't warm. Therefore, it is necessary to increase the number of heating coils, which requires extra space in the adsorption tower and uneven temperature in the adsorbent layer. The loss of steam for heating was increasing.
発明の開示 Disclosure of the invention
本発明は、 炭化水素ベーパーを含有するガスから効率的に炭化水素べ 一パーを回収できる炭化水素ベーパーの回収方法及びその装置を提供す ることを目的とする。  An object of the present invention is to provide a hydrocarbon vapor recovery method and apparatus capable of efficiently recovering a hydrocarbon vapor from a gas containing a hydrocarbon vapor.
本発明の炭化水素ベーパーの回収方法は、 冷却手段により、 炭化水素 ベ一パーを含有するガスを冷却して凝縮させ、 前記炭化水素ベーパーの 一部を除去する第 1の工程と、 加熱手段により、 前記炭化水素ベーパー の一部が除去されたガスを加熱して昇温させる第 2の工程と、 前記昇温 したガスを吸着剤が充填された吸着手段に供給し、 ここで前記炭化水素 ベーパ一を吸着除去する第 3の工程とを有することを特徴とする。 In the method for recovering hydrocarbon vapor of the present invention, a first step of cooling and condensing a gas containing hydrocarbon vapor by a cooling means, and removing a part of the hydrocarbon vapor, and a heating means A second step of heating and raising the temperature of the gas from which a part of the hydrocarbon vapor has been removed, and supplying the heated gas to an adsorption unit filled with an adsorbent; And a third step of adsorbing and removing the one.
第 1の工程で処理した後のガスの温度は、 含有成分の凝固点を超え、 かっこの凝固点近くの低い温度にする。 The temperature of the gas after the treatment in the first step exceeds the freezing point of the contained components and is set to a low temperature near the freezing point of the parentheses.
この温度は、 低い温度にするほど、 凝縮量が増加して、 ガス中の炭化 水素べ一パーの濃度が減少するため、 後段の負荷が小さ くなつて、 吸着 手段である吸着塔を小さ くできるからである。 例えば、 ベンゼンが炭化 水素べ一パーの主成分となっている場合、 ベンゼンの凝固点が 5. 5°Cであ るため、 6〜20°Cが好ましく、 より好ましくは 6〜10°Cである。  The lower the temperature, the higher the amount of condensation and the lower the concentration of hydrocarbon vapor in the gas, so that the load on the subsequent stage is reduced and the size of the adsorption tower as the adsorption means is reduced. Because you can. For example, when benzene is the main component of hydrocarbon vapor, the freezing point of benzene is 5.5 ° C, so it is preferably 6 to 20 ° C, more preferably 6 to 10 ° C. .
このような第 1の工程により、 例えば石炭の乾留によって発生したベ ンゼンを主成分とする粗軽油等に含まれる トルエン、 キシレン、 ト リメ チルベンゼン、 クマロン、 イ ンデン、 等の高沸点不純物、 特に昇華性固 体であるナフタレンが冷却による蒸気圧低下とベンゼンへの溶解によつ て効果的に除去される。 第 2の工程で加熱した後のガスの温度は、 先の第 1の工程で処理後の 温度より 5〜30°C高い温度とすることが好ましい。 より好ましくは、 10〜 20°C高い温度である。 Due to such a first step, for example, high-boiling impurities such as toluene, xylene, trimethylbenzene, coumarone, and indene contained in crude gas oil mainly composed of benzene generated by carbonization of coal, especially sublimation Naphthalene, which is a solid, is effectively removed by lowering the vapor pressure by cooling and dissolving in benzene. The temperature of the gas after heating in the second step is preferably 5 to 30 ° C. higher than the temperature after the treatment in the first step. More preferably, the temperature is higher by 10 to 20 ° C.
このような温度とするのは、 第 1の工程の処理で炭化水素ベーパーは、 冷却時の温度での飽和状態に達しているため、 配管途中や吸着塔におい て、 また冬期における放熱等によって温度が更に下がった場合、 直ちに 凝縮或いは固体析出が起きるからである。 この現象は、 配管の閉塞、 切 替えバルブの作動不良や吸着塔の圧力損失の上昇を引き起こすことにな る o  Such a temperature is set because the hydrocarbon vapor has reached the saturated state at the temperature at the time of cooling in the treatment of the first step. If the pressure drops further, condensation or solid precipitation occurs immediately. This phenomenon will cause clogging of pipes, malfunction of switching valves, and increase in pressure loss of adsorption towers.o
これに対し、 第 2の工程により、 第 1の工程後のガスを昇温すること ができ、 炭化水素べ一パーの飽和度を下げて配管等での凝縮を起こ りに く くすることができる。 また、 後段の吸着装置の温度を上げて吸着後の 分離再生を容易にすることができる。 更に、 炭化水素べ一パーの濃度が 下がることにより、 次の第 3の工程の負荷が下がり、 吸着塔や真空ボン プの小型化が可能になる。  On the other hand, in the second step, the temperature of the gas after the first step can be raised, and the degree of saturation of the hydrocarbon vapor can be reduced to prevent condensation in pipes and the like. it can. Further, the temperature of the subsequent adsorption device can be raised to facilitate separation and regeneration after adsorption. Furthermore, the reduction in the concentration of hydrocarbon vapor reduces the load of the next third step, and makes it possible to reduce the size of the adsorption tower and vacuum pump.
一方、 次の第 3の工程における吸着塔内の吸着剤は、 炭化水素ベーパ 一の吸着により温度が上昇し、分離により温度が下降する。吸着量が数% の場合、 温度の振れは数 °Cである。 従って、 第 2の工程に係る加熱昇温 操作を行わないで、 吸着剤からの炭化水素ベーパーの分離操作終了直後、 吸着剤の温度が下がったところに、 飽和濃度の炭化水素ベーパーを含む ガスを導入すると、 吸着塔の入り口で凝縮したり、 固体析出が起きる可 能性がある。 逆に、 導入するガスの温度が高すぎると、 吸着容量が減少 するので吸着効率が低下する。 第 3の工程の吸着手段に充填される吸着剤としては、 シリカゲル、 ゼ ォライ ト、 アルミナゲル、 活性炭、 等の一般の吸着剤を使用できる。 安 全性という観点からは、 シリカゲル、 ゼォライ ト、 アルミナゲルの使用 が好ましい。 On the other hand, in the next third step, the temperature of the adsorbent in the adsorption tower rises due to adsorption of hydrocarbon vapor, and falls due to separation. When the adsorption amount is several%, the temperature fluctuation is several ° C. Therefore, immediately after the operation of separating the hydrocarbon vapor from the adsorbent is completed, the gas containing the saturated concentration of the hydrocarbon vapor is discharged immediately after the operation of separating the hydrocarbon vapor from the adsorbent without performing the heating and temperature increasing operation according to the second step. If introduced, it may condense at the inlet of the adsorption tower or solid deposition may occur. Conversely, if the temperature of the gas to be introduced is too high, the adsorption capacity decreases, and the adsorption efficiency decreases. As the adsorbent to be filled in the adsorption means of the third step, silica gel, Ordinary adsorbents such as silica gel, alumina gel, and activated carbon can be used. From the viewpoint of safety, use of silica gel, zeolite, or alumina gel is preferred.
より好ましくは、 高温焼成又は疎水化処理剤で処理されたシリカゲル、 或いはシリカ/アルミナ比が 80以上のハイシリカゼォライ トである。 吸 着剤がガス中の水分を吸着してしまう と、 回収油からの水の分離作業が 必要となるため、 水分は吸着しにくいが、 炭化水素は吸着するという疎 水性の吸着剤が好ましいからである。  More preferably, it is silica gel treated with a high-temperature calcining or hydrophobizing agent or high silica zeolite having a silica / alumina ratio of 80 or more. If the adsorbent adsorbs water in the gas, it is necessary to separate water from the recovered oil, so it is difficult to adsorb water, but a hydrophobic adsorbent that adsorbs hydrocarbons is preferred. It is.
前記吸着手段とは、 例えば吸着塔である。  The adsorption means is, for example, an adsorption tower.
このような第 3の工程において、 吸着剤により、 炭化水素ベーパーが 吸着除去され、 清浄なガスが排出される。 なお、 第 3の工程において炭化水素類を吸着した吸着剤は、 減圧する ことにより炭化水素類が分離されて再生される。 分離時の真空度として は、 絶対圧で 60Torr以下が好ましい。 より好ましくは、 絶対圧で 25Torr 以下である。 絶対圧は、 低いほど、 炭化水素べ一パーが分離しやすくな る。 吸着剤は、 炭化水素類の分離が不充分だと、 次回の吸着操作におい て、 炭化水素ベーパーが吸着しにく くなり、 炭化水素ベーパーの除去効 率が低下する。 一方、 吸着剤から分離された炭化水素ベーパーは非常に高濃度になつ ており、 冷却によって容易に凝縮し液体として回収できる。 冷却方法と しては、 一般的な熱交換器 (チューブ式、 プレート式、 等) を使用でき る。 また、 凝縮しきれなかった低濃度炭化水素べ一パーは、 装置入り口 の原料ガスに混合することにより、 装置外に排出することなく処理でき る。 炭化水素ベーパーの他の回収方法としては、 冷却した軽油、 灯油、 ガ ソリ ン、 回収油等と接触させて冷却凝縮させ、 或いはこれらに溶解させ て回収することもできる。 また、 凝縮又は溶解しきれなかった低濃度炭 化水素べ一パーは、 前記と同様に装置入り口の原料ガスに混合してもよ い。 In such a third step, the adsorbent adsorbs and removes the hydrocarbon vapor, and discharges a clean gas. The adsorbent that has adsorbed the hydrocarbons in the third step is regenerated by separating the hydrocarbons by reducing the pressure. The degree of vacuum at the time of separation is preferably 60 Torr or less in absolute pressure. More preferably, the absolute pressure is 25 Torr or less. The lower the absolute pressure, the easier it is for hydrocarbon vapors to separate. If the separation of hydrocarbons is not sufficient, the adsorbent will be less likely to adsorb the hydrocarbon vapor in the next adsorption operation, and the efficiency of removing the hydrocarbon vapor will decrease. On the other hand, the hydrocarbon vapor separated from the adsorbent has a very high concentration and can be easily condensed by cooling and recovered as a liquid. As a cooling method, a general heat exchanger (tube type, plate type, etc.) can be used. In addition, the low-concentration hydrocarbon vapor that could not be condensed can be processed without being discharged out of the apparatus by mixing it with the raw material gas at the entrance of the apparatus. As another method of recovering hydrocarbon vapor, it can be recovered by contacting it with cooled light oil, kerosene, gasoline, recovered oil, etc. to cool and condense it, or dissolving it in these. The low-concentration hydrocarbon vapor that has not been condensed or dissolved may be mixed with the raw material gas at the entrance of the apparatus in the same manner as described above.
更に、 分離した炭化水素ベーパーを第 1の工程の炭化水素ベーパ一を 含有するガスと混合し、 冷却凝縮させて回収するようにしてもよい。 なお、 炭化水素ベーパーを回収する対象であるガスとしては、 通常の 空気の他、 窒素その他の不活性ガス等に類するものでもよく、 炭化水素 ベーパーの発生源となる液化炭化水素の製造あるいは貯蔵設備等から排 出される各種ガス等に適宜適用できる。 本発明の回収方法において、 第 1の工程で、 前記凝縮した液状の炭化 水素を使用し、 冷却したこの液状の炭化水素を炭化水素ベーパーを含有 するガスと接触させてガス中の炭化水素べ一パーを冷却凝縮させること が望ましい。  Further, the separated hydrocarbon vapor may be mixed with a gas containing the hydrocarbon vapor in the first step, and may be cooled and condensed to be recovered. The gas from which the hydrocarbon vapor is to be recovered may be ordinary air, or may be similar to nitrogen or other inert gas, etc., and may be a facility for the production or storage of liquefied hydrocarbons, which are sources of hydrocarbon vapor. It can be applied to various gases and the like discharged from such as appropriate. In the recovery method of the present invention, in the first step, the condensed liquid hydrocarbon is used, and the cooled liquid hydrocarbon is brought into contact with a gas containing a hydrocarbon vapor to form a hydrocarbon base in the gas. It is desirable to cool and condense the par.
このようにすれば、 前記凝縮した液状の炭化水素を使用するため、 効 率的な回収が可能になる。 本発明の回収方法において、 第 2の工程で、 前記炭化水素ベーパーの 一部が除去されたガスを加熱する熱媒体として温水を使用することが望 ましい。  In this case, since the condensed liquid hydrocarbon is used, efficient recovery can be achieved. In the recovery method of the present invention, it is preferable to use hot water as a heat medium for heating the gas from which a part of the hydrocarbon vapor has been removed in the second step.
すなわち、 熱媒体としてスチームを使用すると、 プロセスガスとの温 度差が大きいため、 プロセスガス流量が変化した場合、 加熱不良や異常 昇温を引き起こす可能性があって、 不適である。 一方、 熱媒体として温 水を使用した場合には、 このような問題はない。 なお、 熱交換器を介し て、 スチームで水を加熱した温水を使用することには問題はない。 In other words, if steam is used as a heat medium, the temperature difference from the process gas is large, so if the flow rate of the process gas changes, heating failure or abnormal temperature rise may occur, which is not suitable. On the other hand, when hot water is used as the heating medium, there is no such problem. In addition, through the heat exchanger There is no problem in using hot water heated with steam.
本発明の回収方法において、 第 3の工程で、 第 2の工程からの昇温さ れたガスを吸着手段に供給して炭化水素ベーパーを吸着剤に吸着させた 後、 前記吸着手段内を減圧してこの吸着手段内に清浄なガス (通常の空 気あるいは適宜なガス) を逆流させ、 この状態で炭化水素を吸着剤から 分離させることが望ましい。 In the recovery method of the present invention, in the third step, the temperature-raised gas from the second step is supplied to the adsorption means to adsorb the hydrocarbon vapor to the adsorbent, and then the pressure in the adsorption means is reduced. Then, it is desirable that a clean gas (normal air or an appropriate gas) be caused to flow back into the adsorption means, and that the hydrocarbons be separated from the adsorbent in this state.
このようにすれば、 炭化水素類を吸着剤から分離させる際、 吸着塔の 出口側から内部に清浄なガスを逆流させることにより、 炭化水素ベーパ —の分圧が下がるため、 炭化水素類を吸着剤から分離しやすくなる。  In this way, when separating hydrocarbons from the adsorbent, the partial pressure of the hydrocarbon vapor is reduced by flowing back the clean gas from the outlet side of the adsorption tower to the inside, so that the hydrocarbons are adsorbed. It is easy to separate from the agent.
この際、 清浄なガスの流量を増やせば増やすほど炭化水素類の分離が 起こ りやすくなるわけであるが、 単純に増やすと、 分離ガス中の炭化水 素べ—パーの濃度が減少して後工程における冷却凝縮による回収が困難 になる。 従って、 清浄なガスの流量には最適値が存在し、 吸着時の吸着 塔に導入されるプロセスガスの流量に対してその 1/5〜1/50が好ましく、 より好ましくは、 1 /10〜1/20である。  At this time, as the flow rate of the clean gas is increased, the separation of hydrocarbons is more likely to occur. However, if the flow rate is simply increased, the concentration of hydrocarbon vapor in the separated gas decreases and the Recovery by cooling and condensation in the process becomes difficult. Therefore, there is an optimum value for the flow rate of the clean gas, which is preferably 1/5 to 1/50, more preferably 1/10 to 50 times the flow rate of the process gas introduced into the adsorption tower during adsorption. 1/20.
本発明の回収方法において、 複数の吸着手段が設けられ、 これらの吸 着手段を吸着処理と分離処理に交互に切替えて連続処理することが望ま しレ、。 In the recovery method of the present invention, a plurality of adsorption means are provided, and it is desirable that these adsorption means are alternately switched to an adsorption treatment and a separation treatment to perform a continuous treatment.
前記吸着手段の切替えは、 1時間以内が好ましく、 より好ましくは 10 分以内である。 炭化水素類の吸着量の変化を小さ くすることにより吸着 剤層の温度変化を小さ くするには、 短時間の切替えが好ましいことにな る。  The switching of the adsorption means is preferably performed within one hour, more preferably within ten minutes. In order to reduce the temperature change of the adsorbent layer by reducing the change in the amount of adsorption of hydrocarbons, short-time switching is preferable.
一般に、 吸着熱は発熱であり、 一方温度が上がると吸着が起こ りにく くなり (分離は起こ りやすくなり)、 逆に温度が下がると吸着が起こ りや すくなる (分離は起こ りにく くなる)。 従って、 炭化水素べ一パーを吸着 すると、 吸着剤の温度が上昇して、 それ以上の炭化水素ベーパーの吸着 は困難になる。 逆に、 分離操作においても炭化水素ベーパーが分離する と温度が下がり、 それ以上の炭化水素ベーパーの分離は困難になる。 即 ち、 吸着 · 分離操作を行う と、 その操作の効果を打ち消す方向の現象が 発生する。 そこで、 このような影響を少なくするには、 吸着処理と分離 処理との切替え時間を早くすることが有効になる。 本発明の回収方法において、 吸着剤から分離した炭化水素を第 1のェ 程の炭化水素ベーパーを含有するガスと混合し、 冷却凝縮させて回収す ることが望ましい。 In general, the heat of adsorption is an exotherm, while increasing the temperature makes adsorption more difficult (separation becomes more likely), and conversely, lowering the temperature causes adsorption. Easier (separation is less likely). Therefore, when the hydrocarbon vapor is adsorbed, the temperature of the adsorbent rises, and it becomes difficult to adsorb the hydrocarbon vapor further. Conversely, in the separation operation, when the hydrocarbon vapor separates, the temperature decreases, and further separation of the hydrocarbon vapor becomes difficult. That is, if the adsorption / separation operation is performed, a phenomenon occurs in which the effect of the operation is negated. Therefore, in order to reduce such an effect, it is effective to shorten the switching time between the adsorption process and the separation process. In the recovery method of the present invention, it is preferable that the hydrocarbon separated from the adsorbent is mixed with the gas containing the hydrocarbon vapor in the first step, and then cooled and condensed to recover.
分離した炭化水素類は、 非常に高濃度で、 凝縮しやすいため、 これを 第 1の工程のガスに混合して処理することにより、 簡単に凝縮して容易 に回収されることになる。 この方法は、 冷却凝縮 · 回収装置が 1つで済 むため、 経済的にも好ましい。 本発明の炭化水素べ一パーの回収装置は、 炭化水素べ一パーを含有す るガスを冷却して凝縮させ、 前記炭化水素べ一パーの一部を除去するた めの冷却手段と、 前記炭化水素ベーパーの一部が除去されたガスを加熱 して昇温させるための加熱手段と、 前記昇温されたガス中の炭化水素べ 一パーを吸着除去する吸着剤が充填された吸着手段とを有することを特 徴とする。  Since the separated hydrocarbons have a very high concentration and are easily condensed, they can be easily condensed and easily recovered by mixing them with the gas in the first step and treating them. This method is economically preferable since only one cooling condensing / recovering device is required. The apparatus for recovering a hydrocarbon vapor according to the present invention comprises: a cooling unit for cooling and condensing a gas containing the hydrocarbon vapor to remove a part of the hydrocarbon vapor; Heating means for heating and raising the temperature of the gas from which a part of the hydrocarbon vapor has been removed; and adsorbing means filled with an adsorbent for adsorbing and removing the hydrocarbon vapor in the heated gas. It is characterized by having.
前記冷却手段としては、 炭化水素ベーパーの濃度や許容される圧力損 失に応じて、 次の二つから適宜選択される。  The cooling means is appropriately selected from the following two in accordance with the concentration of the hydrocarbon vapor and the allowable pressure loss.
許容圧力損失が高い場合、 通常の熱交換器 (チューブ式、 プレート式、 等) と気液分離器を組み合わせたものが適する。 許容圧力損失が低い場合、 熱交換器の内蔵された回収塔、 或いは熱交 換器を外付けとした回収塔が適する。 If the allowable pressure loss is high, a combination of a normal heat exchanger (tube type, plate type, etc.) and a gas-liquid separator is suitable. If the allowable pressure loss is low, a recovery tower with a built-in heat exchanger or a recovery tower with an external heat exchanger is suitable.
この回収塔は、 上部に気液接触部、 下部に液溜め部が設けられたもの であり、 下部の液をポンプで抜き出し、 これを上部に導入して循環させ る。  This recovery tower has a gas-liquid contact part at the top and a liquid reservoir at the bottom. The lower part is pumped out and introduced into the upper part for circulation.
気液接触部は、 ラシヒリング等の充填物が充填されたものであり、 気 液の接触を効率的に行うことができる。  The gas-liquid contact portion is filled with a filler such as a Raschig ring, so that gas-liquid contact can be performed efficiently.
液溜め部の液レベルは、 ポンプによる抜き出し量と循環量のバランス によって制御される。  The liquid level in the liquid reservoir is controlled by the balance between the pumping amount and the circulation amount.
回収塔の気体の出口部分には、 デミスターを設置して飛沫同伴を防ぐ のが好ましい。  It is preferable to install a demister at the gas outlet of the recovery tower to prevent entrainment.
前記加熱手段としては、 チューブ式、 プレート式等の通常の熱交換器 を使用することができる。 本発明の回収装置において、 前記冷却手段に供給する冷却用熱媒体の 供給源及び前記加熱手段に供給する加熱用熱媒体の供給源として、 共通 のチラ一ュニッ トが設けられていることが望ましい。  As the heating means, an ordinary heat exchanger such as a tube type or a plate type can be used. In the recovery device of the present invention, it is preferable that a common chiller unit is provided as a supply source of the cooling heat medium supplied to the cooling unit and a supply source of the heating heat medium supplied to the heating unit. .
共通のチラ一ュニッ トを使用すれば、 1台で冷却用熱媒体と加熱用熱 媒体をそれぞれ供給できるので経済的であり、 スペース的にも有利であ る。  If a common chill unit is used, a single cooling medium and a heating medium can be supplied by one unit, which is economical and advantageous in space.
なお、 前記冷却手段及び加熱手段としては、 その他、 冷凍機ゃヒ一夕 を使用してもよい。 本発明の回収装置において、 前記吸着手段は、 吸着処理と分離処理を 交互に切替えて連続処理するために複数個設けられていることが望まし い。 吸着手段である例えば吸着塔は、 1塔でもよいが、 複数の吸着塔を設 け、 吸着 · 分離操作を切替えながら連続的に吸着処理を行うのが好まし い。 図面の簡単な説明 In addition, as the cooling unit and the heating unit, a refrigerator may be used. In the recovery apparatus of the present invention, it is preferable that a plurality of the adsorbing units are provided so as to alternately switch the adsorption process and the separation process to perform the continuous process. For example, one adsorption tower as the adsorption means may be a single tower, but it is preferable to provide a plurality of adsorption towers and perform the adsorption treatment continuously while switching the adsorption / separation operation. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1実施形態に係る炭化水素ベーパーの回収装置の概 略図である。  FIG. 1 is a schematic diagram of a hydrocarbon vapor recovery device according to a first embodiment of the present invention.
図 2は本発明の第 2実施形態に係る炭化水素ベーパーの回収装置の概 略図である。  FIG. 2 is a schematic view of a hydrocarbon vapor recovery device according to a second embodiment of the present invention.
図 3は比較例に係る炭化水素ベーパーの回収装置の概略図である。 図 4は本発明の他の実施形態に係る炭化水素ベーパーの回収装置の要 部を示す概略図である。  FIG. 3 is a schematic view of a hydrocarbon vapor recovery device according to a comparative example. FIG. 4 is a schematic view showing a main part of a hydrocarbon vapor recovery apparatus according to another embodiment of the present invention.
図 5は本発明の他の実施形態に係る炭化水素ベーパーの回収装置の要 部を示す概略図である。  FIG. 5 is a schematic view showing a main part of a hydrocarbon vapor recovery device according to another embodiment of the present invention.
図 6は本発明の他の実施形態に係る炭化水素ベーパーの回収装置の要 部を示す概略図である。 発明を実施するための最良の形態  FIG. 6 is a schematic view showing a main part of a hydrocarbon vapor recovery device according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
〔第 1実施形態〕  (First Embodiment)
図 1 を参照して本発明の第 1実施形態に係る炭化水素べ一パーの回収 方法及びその装置を説明する。  With reference to FIG. 1, a method and an apparatus for recovering a hydrocarbon vapor according to a first embodiment of the present invention will be described.
本実施形態の炭化水素ベーパーの回収装置は、 炭化水素ベーパーを含 むガス (ここでは空気) の導入ライ ン 10に接続された第 1の熱交換器 11 と、この熱交換器 11にガス供給ライ ン 10Aを介して接続された気液分離器 13と、 この気液分離器 13にガス供給ライ ン 12を介して接続された第 2の 熱交換器 と、 この第 2の熱交換器 14に下流側が 2分岐したガス供給ラ イン 12A を介して接続された第 1及び第 2の吸着塔 15, 16と、 これらのガ ス供給ライン 12Aの吸着塔 15,16近傍部分から分岐したガス供給ライ ン 33 Aを介して接続された真空ポンプ 20を備えて構成されている。 The hydrocarbon vapor recovery device of the present embodiment includes a first heat exchanger 11 connected to an introduction line 10 for a gas (here, air) containing hydrocarbon vapor, and a gas supply to the heat exchanger 11. A gas-liquid separator 13 connected via a line 10A, a second heat exchanger connected to the gas-liquid separator 13 via a gas supply line 12, and a second heat exchanger 14 Gas supply line with two downstream branches The first and second adsorption towers 15 and 16 connected via the inlet 12A and the gas supply line 33A branched from the vicinity of the adsorption towers 15 and 16 of the gas supply line 12A are connected. The vacuum pump 20 is provided.
前記第 1の熱交換器 (チューブ式又はプレート式) 1 1には、 冷凍機 17 が付設されている。  The first heat exchanger (tube type or plate type) 11 is provided with a refrigerator 17.
前記気液分離器 13は、 その下部に液溜め部 19が設けられている。 気液 分離器 13の気体の出口部分には、 ワイヤーメ ッシュタイプのデミスター (図示せず) が設置されている。  The gas-liquid separator 13 is provided with a liquid reservoir 19 at a lower portion thereof. At the gas outlet of the gas-liquid separator 13, a wire mesh type demister (not shown) is installed.
前記第 2の熱交換器 (チューブ式又はプレート式) 14には、 加熱機 21 が付設されている。 この熱交換器 の加熱媒体は、 温水である。  The second heat exchanger (tube type or plate type) 14 is provided with a heater 21. The heating medium of this heat exchanger is hot water.
前記第 1及び第 2の吸着塔 15, 16は、 その内部に吸着剤が充填された吸 着層 22を有している。  Each of the first and second adsorption towers 15 and 16 has an adsorption layer 22 filled with an adsorbent therein.
前記第 2の熱交換器 14から第 1及び第 2の吸着塔 15 , 16への各ガス供 給ライン 12には、 第 1 と第 2のバルブ 23, 24が設けられている。  Each gas supply line 12 from the second heat exchanger 14 to the first and second adsorption towers 15 and 16 is provided with first and second valves 23 and 24.
前記ガス供給ライン 12Aから分岐したガス供給ライン 33Aには、 第 3 と 第 4のバルブ 25 , 26が設けられている。  Third and fourth valves 25 and 26 are provided on a gas supply line 33A branched from the gas supply line 12A.
前記第 1及び第 2の吸着塔 15,16は、 その塔頂部にそれそれ清浄ガスの 排出ライン 31が接続され、 各ライン 31には第 5 と第 6のバルブ 27, 28が設 けられている。  The first and second adsorption towers 15 and 16 are each connected at their top to a clean gas discharge line 31, and each line 31 is provided with fifth and sixth valves 27 and 28. I have.
また、 第 5 と第 6のバルブ 27 , 28と、 吸着塔 15, 16の塔頂部との間のラ イン 31には、 清浄なガス (ここでは清浄空気) を各吸着塔 15 , 16に逆流さ せる清浄空気の供給ライ ン 32が接続され、 各ライ ンには第 7 と第 8のバ ルブ 29 , 30が設けられている。  A clean gas (here, clean air) flows back to the adsorption towers 15 and 16 through a line 31 between the fifth and sixth valves 27 and 28 and the tops of the adsorption towers 15 and 16. A supply line 32 for supplying clean air to be supplied is connected, and each line is provided with seventh and eighth valves 29 and 30.
前記真空ポンプ 20と、 前記第 1の熱交換器 1 1前の導入ライ ン 10との間 には、 分離した炭化水素ベーパを戻す戻しライン 33が設けられている。 この回収装置を使用して炭化水素ベーパーを回収する手順は次のよう なものである。 A return line 33 for returning the separated hydrocarbon vapor is provided between the vacuum pump 20 and the introduction line 10 in front of the first heat exchanger 11. The procedure for recovering hydrocarbon vapor using this recovery device is as follows.
先ず、 第 1の工程として、 炭化水素べ一パーを含む空気を導入ライ ン 1 0から第 1の熱交換器 1 1を通し、 ここでこの空気を冷却して炭化水素ベー パーを凝縮させ、 この冷却凝縮した炭化水素と空気を気液分離器 13に供 給して気液分離する。 凝縮した一部の炭化水素ベーパーは、 液溜め部 19 に溜められて回収される。 一方、 残りの炭化水素ベーパーを含む空気は、 出口から第 2の熱交換器 14に供給される。  First, as a first step, air containing hydrocarbon vapor is passed through the first heat exchanger 11 from the introduction line 10, where the air is cooled to condense the hydrocarbon vapor, The cooled and condensed hydrocarbons and air are supplied to a gas-liquid separator 13 for gas-liquid separation. Part of the condensed hydrocarbon vapor is collected in the liquid reservoir 19 and collected. On the other hand, the air containing the remaining hydrocarbon vapor is supplied to the second heat exchanger 14 from the outlet.
次に、 第 2の工程として、 第 2の熱交換器 14において、 熱媒体として 温水を使用し、 炭化水素べ一パーの一部が除去された空気を加熱して昇 温させる。  Next, as a second step, in the second heat exchanger 14, warm water is used as a heat medium, and the air from which a part of the hydrocarbon vapor has been removed is heated to raise the temperature.
次に、 第 3の工程として、 前記昇温した空気を第 1又は第 2の吸着塔 1 5, 16に供給し、 ここで吸着剤により前記炭化水素ベーパーを吸着除去す o  Next, as a third step, the heated air is supplied to the first or second adsorption tower 15 or 16, where the hydrocarbon vapor is adsorbed and removed by an adsorbent.
これらの第 1 と第 2の吸着塔 15 , 16は、 バルブ 23,24,27,28を切り替え て吸着処理と分離処理に交互に切替え、 炭化水素ベーパーを連続的に処 理する。  These first and second adsorption towers 15 and 16 switch the valves 23, 24, 27 and 28 alternately to the adsorption treatment and the separation treatment to continuously process the hydrocarbon vapor.
分離処理の際には、 真空ポンプ 20により吸着塔 15 , 16内を減圧してこの 吸着塔 15, 16内に清浄空気の供給ライ ン 32より清浄空気を逆流させ、 この 状態で炭化水素を吸着剤から分離させる。  During the separation process, the pressure inside the adsorption towers 15 and 16 is reduced by the vacuum pump 20, and the clean air is flowed back into the adsorption towers 15 and 16 from the clean air supply line 32 to adsorb hydrocarbons in this state. Separate from agent.
分離した炭化水素は、 熱交換器 1 1の入口側に戻され、 炭化水素べ一パ —を含有する空気と混合され、 前述した第 1の工程以降を繰り返すこと で冷却凝縮させて回収される。 〔第 2実施形態〕  The separated hydrocarbons are returned to the inlet side of the heat exchanger 11, mixed with air containing hydrocarbon vapor, and collected by cooling and condensing by repeating the above-mentioned first and subsequent steps. . (Second embodiment)
図 2 を参照して本発明の第 2実施形態に係る炭化水素ベーパーの回収 方法及びその装置を説明する。 Referring to FIG. 2, recovery of hydrocarbon vapor according to the second embodiment of the present invention The method and the apparatus will be described.
本実施形態の炭化水素ベーパーの回収装置は、 炭化水素ベーパーを含 むガス (ここでは空気) の導入ライ ン 10に接続された回収塔 36と、 この 回収塔 36の下部と上部の間に液状の炭化水素の循環ライ ン 39を介して設 けられた第 1の熱交換器 1 1と、 この回収塔 36にガス供給ライ ン 12を介し て接続された第 2の熱交換器 14と、 この第 2の熱交換器 14に下流側が 2 分岐したガス供給ライ ン 12A を介して接続された第 1及び第 2の吸着塔 1 5 , 16と、 これらのガス供給ライン 12Aの吸着塔 15 , 16近傍部分から分岐し たガス供給ライ ン 33A を介して接続された真空ポンプ 20を備えて構成さ れている。  The hydrocarbon vapor recovery device of the present embodiment includes a recovery tower 36 connected to an introduction line 10 for a gas (here, air) containing hydrocarbon vapor, and a liquid between a lower part and an upper part of the recovery tower 36. A first heat exchanger 11 provided via a hydrocarbon circulation line 39 of the first type, a second heat exchanger 14 connected to the recovery tower 36 via a gas supply line 12, and First and second adsorption towers 15 and 16 connected to the second heat exchanger 14 via a gas supply line 12A whose downstream side is branched into two, and adsorption towers 15 and 16 of these gas supply lines 12A. It is provided with a vacuum pump 20 connected via a gas supply line 33A branched from a portion near 16.
前記回収塔 36は、 上部に気液接触部 37、 下部に液溜め部 38が設けられ ている。 気液接触部 37は、 ラシヒ リング等の充填物が充填されたもので ある。 回収塔 36の気体の出口部分には、 ワイヤーメ ッシュタイプのデミ スター (図示せず) が設置されている。  The recovery tower 36 is provided with a gas-liquid contact part 37 at the upper part and a liquid reservoir part 38 at the lower part. The gas-liquid contact part 37 is filled with a filler such as a Raschig ring. At the gas outlet of the recovery tower 36, a wire mesh type demister (not shown) is installed.
前記液状炭化水素の循環ライ ン 39は、 その一方が回収塔 36の液溜め部 3 8側に接続され、 その他方が回収塔 36内の気液接触部 37の上方に挿入され、 端部に液状炭化水素の散布器 41を備えている。 この循環ライン 39の液溜 め部 38と第 1の熱交換器 11との間には、 循環ポンプ 42が設けられている。 この装置におけるその他の構成部分、 例えば第 1の熱交換器 1 1、 第 2 の熱交換器 14、 第 1及び第 2の吸着塔 15 , 16、 真空ポンプ 20、 等について は、 前述した第 1実施形態と同じである。 この回収装置を使用して炭化水素ベーパーを回収する手順は次のよう なものである。  One of the liquid hydrocarbon circulation lines 39 is connected to the liquid reservoir 38 side of the recovery tower 36, and the other is inserted above the gas-liquid contact part 37 in the recovery tower 36, and is connected to the end. A liquid hydrocarbon sprayer 41 is provided. A circulation pump 42 is provided between the liquid reservoir 38 of the circulation line 39 and the first heat exchanger 11. Other components of the apparatus, for example, the first heat exchanger 11, the second heat exchanger 14, the first and second adsorption towers 15, 16 and the vacuum pump 20, etc. This is the same as the embodiment. The procedure for recovering hydrocarbon vapor using this recovery device is as follows.
先ず、 第 1の工程として、 炭化水素べ一パーを含む空気を導入ライ ン 1 0から回収塔 36に供給し、 ここでこの空気を冷却して炭化水素ベーパーを 凝縮させ、 生成した液を液溜め部 38に溜める。 前記空気を冷却凝縮させ る際、 液溜め部 38の液状炭化水素を循環ラィ ン 39を介して一部循環させ、 これを第 1の熱交換器 1 1で冷却した後、 回収塔 36内に供給し、 気液接触 部 37でこの液状炭化水素と前記空気とを接触させて行う。 First, as a first step, air containing hydrocarbon vapor is supplied from the introduction line 10 to the recovery tower 36, where the air is cooled to form hydrocarbon vapor. The liquid is condensed and the generated liquid is stored in the liquid reservoir 38. When the air is cooled and condensed, the liquid hydrocarbons in the liquid storage section 38 are partially circulated through the circulation line 39 and are cooled in the first heat exchanger 11, and then are collected in the recovery tower 36. The liquid hydrocarbon and the air are brought into contact with each other at a gas-liquid contact section 37 to perform the supply.
この後の第 2の工程及び第 3の工程は、 前述した第 1実施形態と同様 である。 なお、 上記第 1 と第 2実施形態では、 第 1の熱交換器 1 1に冷凍機 17、 第 2の熱交換器 14に加熱機 21が付設されていたが、 第 1の熱交換器 1 1に 供給する冷却用熱媒体の供給源及び第 2の熱交換器 14に供給する加熱用 熱媒体の供給源として、 共通のチラ一ユニッ トを設けておいてもよい。  Subsequent second and third steps are the same as in the first embodiment described above. In the first and second embodiments, the first heat exchanger 11 is provided with the refrigerator 17 and the second heat exchanger 14 is provided with the heater 21. However, the first heat exchanger 1 A common chiller unit may be provided as a supply source of the cooling heat medium supplied to 1 and a supply source of the heating heat medium supplied to the second heat exchanger 14.
また、 回収塔 36は次のように構成してもよい。 図 4に示すように、 回収塔 36には、 気液接触部 37と循環ライン 39の導 入部との間にチムニートレィゃパーフォレイテツ ド ト レィ等の気液分散 器 37Aが設置され、 循環ライ ン 39の導入部より上の部分にはデミスタ 37B が設置されている。 また、 液溜め部 38には、 回収塔 36の側面から循環ポ ンプ 42に至る取出しライン 42Aが接続され、その吸込み端部は下に向けら れているとともに、 その周囲には放射状に配置された複数の板材からな るボルテックスブレーカ 42Bが装着されている。  Further, the recovery tower 36 may be configured as follows. As shown in FIG. 4, the recovery tower 36 is provided with a gas-liquid disperser 37A such as a chimney tray perforated tray between the gas-liquid contact part 37 and the introduction part of the circulation line 39. A demister 37B is installed above the 39 introduction part. The liquid reservoir 38 is connected to an extraction line 42A extending from the side of the recovery tower 36 to the circulation pump 42, the suction end of which is directed downward, and is arranged radially around it. A vortex breaker 42B made of multiple plates is also installed.
気液分散器 37Aが設置されることで、循環ライ ン 39から戻された液相成 分と気液接触部 37を通過して上昇してく る気相成分との更なる接触が図 られ、 液相成分の回収が促進できる。 また、 デミス夕 37Bが設置されるこ とで、 塔頂のガス供給ライ ン 12へ取り出されるガスからミス ト状の液相 成分を取り除く ことができる。 更に、 ボルテックスブレーカ 42Bが設置さ れることにより、取出しライン 42Aから液溜め部 38に溜まつた液分が吸い 出される際の渦巻きおよびガス巻き込みの発生が回避される。 By installing the gas-liquid disperser 37A, further contact between the liquid-phase component returned from the circulation line 39 and the gas-phase component rising through the gas-liquid contact part 37 is achieved. Recovery of liquid phase components can be promoted. In addition, the installation of the demist 37B makes it possible to remove mist-like liquid phase components from the gas taken out to the gas supply line 12 at the top of the tower. Further, by installing the vortex breaker 42B, the liquid accumulated in the liquid reservoir 38 from the extraction line 42A is sucked. The occurrence of swirls and gas entrainment on exit is avoided.
これらの気液分散器 37A、 デミス夕 37B、 ボルテックスブレーカ 42Bの具 体的構造としては、 既存のブラン ト技術で利用される構造を適宜採用す ればよい。 図 5に示すように、 略 U字型の回収塔 36Aを採用してもよい。 図におい て、 略 U字型の回収塔 36A の一方の塔頂 (図中左側) には導入ライ ン 10 が接続され、 その塔頂よりやや下に循環ライ ン 39が接続されている。 循 環ライン 39の接続部分よりやや下には気液分散器 37Aが設置され、その下 方に気液接触部 37が設置されている。 一方の塔頂 (図中右側) にはガス 供給ラィン 12が接続され、その下方にはデミスタ 37Bが設置されている。 回収塔 36Aの下部は広くなっているが前述した図 4の構造と同様である。 このような略 U字型の回収塔 36Aによっても、導入ライン 10および循環 ライ ン 39からのガスに含まれる炭化水素べ一パーを分離し、 炭化水素べ 一パーが分離されたガスをガス供給ライン 12から取出すとともに、 液溜 め部 38に溜めることができる。 前述の各実施形態は、 単一の導入ライン 10からの炭化水素ベーパー含 有ガスを処理するものであつたが、 複数のガス源からの炭化水素ベーパ —含有ガスを処理するものとしてもよい。 このような場合には、 各ガス 源の間で逆流等による混合汚染 (コン夕 ミネ一シヨン) を回避する構造 を補うことが望ましい。  As a specific structure of the gas-liquid disperser 37A, the demising device 37B, and the vortex breaker 42B, a structure used in the existing brand technology may be appropriately adopted. As shown in FIG. 5, a substantially U-shaped recovery tower 36A may be employed. In the figure, an introduction line 10 is connected to one of the tops (left side in the figure) of a substantially U-shaped recovery tower 36A, and a circulation line 39 is connected slightly below the top. A gas-liquid disperser 37A is installed slightly below the connection part of the circulation line 39, and a gas-liquid contact part 37 is installed below it. The gas supply line 12 is connected to one of the tower tops (right side in the figure), and a demister 37B is installed below it. Although the lower part of the recovery tower 36A is wider, it has the same structure as that of Fig. 4 described above. Such a substantially U-shaped recovery tower 36A also separates the hydrocarbon vapor contained in the gas from the introduction line 10 and the circulation line 39, and supplies the separated gas to the gas supply line. It can be taken out from the line 12 and stored in the liquid reservoir 38. Although each of the embodiments described above treats a hydrocarbon-containing gas from a single inlet line 10, it may treat hydrocarbon-containing gas from multiple gas sources. In such a case, it is desirable to supplement the structure to avoid mixed contamination (contamination) due to backflow between the gas sources.
図 6において、 回収塔 36A には 2系統の導入ライン 10L,10H が接続され ている。導入ライ ン 10Lは図 5の導入ライ ン 10と同様に塔頂に接続されて いる。 導入ライン 10Hは回収塔 36Aの気液接触部 37と気液分散器 37A との 間に接続されている。 ここで、 導入ライ ン 10Hに供給されるガス源は導入ライ ン 10Lに供給さ れるガス源よりも貯留する液体の濃度あるいは純度が高いものである。 例えば、 導入ライ ン 10Lは粗ベンゼン夕ンクの排気口に接続され、 導人ラ ィン 10Hは純ベンゼン夕ンクの排気口に接続されている。 In Fig. 6, two introduction lines 10L and 10H are connected to the recovery tower 36A. The introduction line 10L is connected to the top of the tower in the same way as the introduction line 10 in Fig. 5. The introduction line 10H is connected between the gas-liquid contact part 37 of the recovery tower 36A and the gas-liquid disperser 37A. Here, the gas source supplied to the introduction line 10H has a higher concentration or purity of the stored liquid than the gas source supplied to the introduction line 10L. For example, the introduction line 10L is connected to the exhaust port of the crude benzene ink, and the guide line 10H is connected to the exhaust port of the pure benzene ink.
このような場合、 導入ライン 10Hが単純に回収塔 36Aに接続されている とすると、 回収塔 36A内には導入ライン 10Lからの低純度のベンゼン成分 が導入されているから、この低純度のベンゼン成分が導入ライン 10Hを通 して純ベンゼンタンクに逆流し、 同タンク内のベンゼン純度を低下させ る原因となりうる。  In such a case, if the introduction line 10H is simply connected to the recovery tower 36A, the low-purity benzene component from the introduction line 10L is introduced into the recovery tower 36A. Ingredients flow back into the pure benzene tank through the introduction line 10H, which can cause a decrease in benzene purity in the tank.
そこで、 導入ライ ン 10Hの導入部分にはシールポッ ト 10Pを設置し、 こ の中に導入ライン 10Hを介して接続されるガス源の内容液(ここでは純べ ンゼン) を貯留しておく。 そして、 導入ライ ン 10Hの端部をシールポッ ト 10P内の液相に浸漬しておく。  Therefore, a seal pot 10P is installed in the introduction part of the introduction line 10H, and the content liquid (here pure benzene) of the gas source connected via the introduction line 10H is stored in this. Then, the end of the introduction line 10H is immersed in the liquid phase in the seal pot 10P.
これにより、 導入ライン 10Hからの逆流を防止することができる。 なお、 複数のガス源としては同質のものに限らず、 回収対象が重複し ていればガソリンとベンゼン等の異種のものであってもよい。 以下、 前述した各実施形態に基づいて行われた具体的な実験例につい て説明する。  This can prevent backflow from the introduction line 10H. The plurality of gas sources are not limited to the same type, but may be different types such as gasoline and benzene as long as the collection targets overlap. Hereinafter, specific experimental examples performed based on each of the above-described embodiments will be described.
〔実験例 1〕  (Experimental example 1)
上記第 1実施形態において、 方法及び装置における具体例を下記の通 り とした。  In the first embodiment, specific examples of the method and the apparatus are as follows.
処理すべき高濃度炭化水素ベーパーを含有する空気 (以下、 原料ガス と呼ぶ) の流量は、 10m3であり、 炭化水素べ一パーの濃度は 20vo l %であ つた。 この空気中の炭化水素べ一パーの成分は、 下記の表 1の通りであ つた。 (表 1 )
Figure imgf000019_0001
先ず、 原料ガスと、 真空ポンプ 20の出口からの分離ガスとを合流させ、 チューブ式の第 1の熱交換器 1 1で冷却させて一部を凝縮させ、 竪型の気 液分離器 13に導入し、 気相と液相に分離した。
The flow rate of air containing high-concentration hydrocarbon vapor to be treated (hereinafter referred to as “source gas”) was 10 m3, and the concentration of hydrocarbon vapor was 20 vol%. The components of the hydrocarbon vapor in this air were as shown in Table 1 below. (table 1 )
Figure imgf000019_0001
First, the raw material gas and the separation gas from the outlet of the vacuum pump 20 are combined, cooled in the first tube-type heat exchanger 11 and partially condensed, and then condensed into the vertical gas-liquid separator 13. And separated into gaseous and liquid phases.
第 1の熱交換器 1 1で冷却させた後のガスの温度は、 10°Cであった。 ま た、 回収した液状の炭化水素量は、 3 . 9kg/hrであった。  The temperature of the gas after being cooled in the first heat exchanger 11 was 10 ° C. The amount of the collected liquid hydrocarbon was 3.9 kg / hr.
次に、 気液分離器 13から出たガスをチューブ式の第 2の熱交換器 14に 導入してここで加熱昇温した。 この熱交換器 14で加熱後のガスの温度は、 30°Cであった。  Next, the gas discharged from the gas-liquid separator 13 was introduced into a second tubular heat exchanger 14, where the temperature was increased. The temperature of the gas after heating in this heat exchanger 14 was 30 ° C.
続いて、 昇温したガスを 2塔のうちの一方の吸着塔 15に供給し、 ここ で炭化水素べ一パーを吸着剤により吸着除去した。 .使用した吸着剤は、 シリ力ゲル [富士シリシァ化学 (株) 製のシリ力ゲル CARiACT Q-3 (商品 名)] を 500°C、 4時間の焼成によって疎水化処理したものである。 2塔の 吸着塔 15, 16は、 入り口と出口のバルブ 23,24,27,28を 5分毎に切り替えて 吸着と分離を交互に行った。  Subsequently, the heated gas was supplied to one of the two adsorption towers 15 where the hydrocarbon vapor was adsorbed and removed by an adsorbent. The adsorbent used was a silica gel [Sili Gel CARiACT Q-3 (trade name) manufactured by Fuji Silicia Chemical Co., Ltd.] that had been subjected to hydrophobic treatment by baking at 500 ° C for 4 hours. The two adsorption towers 15, 16 switched the inlet and outlet valves 23, 24, 27, 28 every 5 minutes to alternately perform adsorption and separation.
吸着塔 15 , 16出口のガス中の炭化水素ベーパーの濃度は 30ppmであった c また、 炭化水素べ一パーの成分は、 下記の表 2の通りであった。 The concentration of hydrocarbon vapor in the gas of the adsorption tower 15, 16 exit c also was 30ppm, the components of the hydrocarbon base one par are as shown in Table 2 below.
(表 2 )
Figure imgf000019_0002
吸着塔 15 , 16の吸着剤からの炭化水素の分離操作は、 吸着塔 15, 16内を 真空ポンプ 20で減圧にすることにより行った。 この時の分離圧は、 絶対 圧で 25Torrである。 この分離は、 清浄空気の供給ライ ン 32を通して吸着 塔 15, 16の出口から内部に清浄空気を lm3/hr の流量で逆流させながら行 つ 7こ o
(Table 2)
Figure imgf000019_0002
The operation of separating hydrocarbons from the adsorbent in the adsorption towers 15 and 16 is performed by This was performed by reducing the pressure with a vacuum pump 20. The separation pressure at this time is 25 Torr in absolute pressure. This separation is carried out by flowing back clean air at a flow rate of lm3 / hr from the outlets of the adsorption towers 15, 16 through the clean air supply line 32.
真空ポンプ 20の出口からの分離ガスは、 導入ライ ン 10の原料ガスに合 流させて、 第 1の熱交換器 1 1で冷却凝縮して回収した。  The separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas in the introduction line 10 and collected by cooling and condensing in the first heat exchanger 11.
吸着 ·分離時の吸着剤の温度を吸着塔 15 , 16に挿入した熱電対で測定し たところ、 吸着時で最高 35°C、 分離時で最低 25°Cであった。  The temperature of the adsorbent during adsorption / separation was measured with a thermocouple inserted into the adsorption towers 15 and 16, and the maximum was 35 ° C during adsorption and minimum 25 ° C during separation.
運転中、 吸着塔 15,16の圧力損失は、 20mmH20でほぼ一定であり、 運転 終了後、 吸着塔 15 , 16と配管の開放点検を行ったが、 炭化水素べ一パーの 凝縮等の異常は見られなかった。  During the operation, the pressure loss of the adsorption towers 15 and 16 was almost constant at 20 mmH20.After the operation was completed, the pipes of the adsorption towers 15 and 16 were inspected for opening, but abnormalities such as condensation of hydrocarbon vapor were observed. I couldn't see it.
〔実験例 2〕 (Experimental example 2)
上記第 2実施形態において、 方法及び装置における具体例を下記の通 り とした。  In the second embodiment, specific examples of the method and the apparatus are as follows.
処理すべき高濃度炭化水素ベーパ一を含有する空気は、 実験例 1 と同 じものである。  The air containing high-concentration hydrocarbon vapor to be treated is the same as in Experimental Example 1.
先ず、 原料ガスと、 真空ポンプ 20の出口からの分離ガスとを合流させ、 竪型の回収塔 36に導入した。 この回収塔 36の液溜め部 19の液をポンプ 42 で抜き出し、 チューブ型の第 1の熱交換器 1 1で冷却した後、 回収塔 36の 上部に導入し、 原料ガスと接触させて原料ガス中の炭化水素ベーパーを 凝縮させた。 熱交換器 1 1で冷却させた後のガスの温度は、 10°Cであった。  First, the raw material gas and the separation gas from the outlet of the vacuum pump 20 were combined and introduced into the vertical recovery tower 36. The liquid in the liquid reservoir 19 of the recovery tower 36 is withdrawn by the pump 42, cooled in the first tubular heat exchanger 11, and then introduced into the upper part of the recovery tower 36, where it is brought into contact with the raw material gas and The hydrocarbon vapor inside was condensed. The temperature of the gas after cooling in the heat exchanger 11 was 10 ° C.
ここで気液接触後の気相と液相を分離し、 気相は回収塔 36の上部から 抜き出し、 液相は下部の液溜め部 38に回収した。 回収した液状の炭化水 素量は、 3 . 9kg/hrであった。  Here, the gas phase and the liquid phase after the gas-liquid contact were separated, and the gas phase was withdrawn from the upper part of the recovery tower 36, and the liquid phase was recovered in the lower liquid storage part 38. The amount of liquid hydrocarbon collected was 3.9 kg / hr.
次に、 回収塔 36から出たガスをプレート式の第 2の熱交換器 14に導入 してここで加熱昇温した。この熱交換器 14で加熱後のガスの温度は、 25°C であった。 Next, the gas discharged from the recovery tower 36 is introduced into the second plate-type heat exchanger 14. Then, the temperature was increased by heating. The temperature of the gas after heating in the heat exchanger 14 was 25 ° C.
次に、 昇温したガスを 2塔のうちの一方の吸着塔 15に供給し、 ここで 炭化水素ベーパーを吸着剤によ り吸着除去した。 使用した吸着剤は、 シ リカゲル [富士シリシァ化学(株)製のシリカゲル CARiACT (3-6 (商品名)] を 500°C、 4時間の焼成によって疎水化処理したものである。 2塔の吸着 塔 15, 16は、 入り口と出口のバルブ 23 , 24 , 27, 28を 5分毎に切り替えて吸着 と分離を交互に行った。  Next, the heated gas was supplied to one of the two adsorption towers 15, where the hydrocarbon vapor was adsorbed and removed by an adsorbent. The adsorbent used was silica gel [Silica gel CARiACT (3-6 (trade name), manufactured by Fuji Silysia Chemical Ltd.)], which was subjected to a hydrophobizing treatment by baking at 500 ° C for 4 hours. In towers 15 and 16, inlet and outlet valves 23, 24, 27, and 28 were switched every 5 minutes to alternately perform adsorption and separation.
吸着塔 15, 16出口のガス中の炭化水素べ一パーの濃度は 30ppmであった ( また、 炭化水素ベーパーの成分は、 下記の表 3の通りであった。 The concentration of the hydrocarbon vapor in the gas at the outlets of the adsorption towers 15 and 16 was 30 ppm ( The components of the hydrocarbon vapor were as shown in Table 3 below.
(表 3 )
Figure imgf000021_0001
吸着塔 15, 16の吸着剤からの炭化水素の分離操作は、 吸着塔 15, 16内を 真空ポンプ 20で減圧にすることにより行った。 この時の分離圧は、 絶対 圧で 20Torrである。 この分離は、 清浄空気の供給ライン 32を通して吸着 塔 15 , 16の出口から内部に清浄空気を 0. 5m3/hr の流量で逆流させながら 了つ 7こ。
(Table 3)
Figure imgf000021_0001
The operation of separating hydrocarbons from the adsorbent in the adsorption towers 15 and 16 was performed by reducing the pressure in the adsorption towers 15 and 16 with the vacuum pump 20. The separation pressure at this time is 20 Torr in absolute pressure. This separation is performed while the clean air flows back through the clean air supply line 32 from the outlets of the adsorption towers 15 and 16 at a flow rate of 0.5 m3 / hr.
真空ポンプ 20の出口からの分離ガスは、 導入ライ ン 10の原料ガスに合 流させ、 回収塔 36で冷却凝縮して回収した。  The separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas on the introduction line 10 and was cooled and condensed in the recovery tower 36 and recovered.
吸着 ·分離時の吸着剤の温度を吸着塔 15 , 16に挿入した熱電対で測定し たところ、 吸着時で最高 30°C、 分離時で最低 20°Cであった。  The temperature of the adsorbent during adsorption / separation was measured with a thermocouple inserted into the adsorption towers 15 and 16, and was found to be a maximum of 30 ° C during adsorption and a minimum of 20 ° C during separation.
運転中、 吸着塔 15 , 16の圧力損失は、 20mmH20でほぼ一定であり、 運転 終了後、 吸着塔 15 , 16と配管の開放点検を行ったが、 炭化水素べ一パーの 凝縮等の異常は見られなかった。 〔比較例 1〕 During the operation, the pressure loss of the adsorption towers 15 and 16 was almost constant at 20 mmH20.After the operation was completed, the pipes of the adsorption towers 15 and 16 were inspected for opening, but abnormalities such as condensation of hydrocarbon vapor were observed. I couldn't see it. (Comparative Example 1)
図 3に示すように、 本比較例に係る装置は、 第 2実施形態に係る装置 から第 2の熱交換器 14が除かれ、 吸着塔 15,16に、 スチームが流れる加熱 コイル 45を有する加熱機 46が設けられたものである。  As shown in FIG. 3, the apparatus according to the present comparative example has a configuration in which the second heat exchanger 14 is removed from the apparatus according to the second embodiment, and the adsorption towers 15 and 16 have heating coils 45 through which steam flows. Machine 46 is provided.
処理すべき高濃度炭化水素ベーパーを含有する空気は、 実験例 1 と同 じものである。  The air containing high-concentration hydrocarbon vapor to be treated is the same as in Example 1.
先ず、 原料ガスと、 真空ポンプ 20の出口からの分離ガスとを合流させ、 竪型の回収塔 36に導入した。 この回収塔 36の液溜め部 38の液をポンプ 42 で抜き出し、 チューブ型の第 1の熱交換器 1 1で冷却した後、 回収塔 36の 上部に導入し、 原料ガスと接触させて原料ガス中の炭化水素ベーパーを 凝縮させた。 熱交換器 1 1で冷却させた後のガスの温度は、 10°Cであった。  First, the raw material gas and the separation gas from the outlet of the vacuum pump 20 were combined and introduced into the vertical recovery tower 36. The liquid in the liquid storage section 38 of the recovery tower 36 is withdrawn by the pump 42, cooled in the first tube-shaped heat exchanger 11, introduced into the upper part of the recovery tower 36, and brought into contact with the raw material gas. The hydrocarbon vapor inside was condensed. The temperature of the gas after cooling in the heat exchanger 11 was 10 ° C.
ここで気液接触後の気相と液相を分離し、 気相は回収塔 36の上部から 抜き出し、 液相は下部の液溜め部 38に回収した。 回収した液状の炭化水 素量は、 3. 9kg/hrであった。  Here, the gas phase and the liquid phase after the gas-liquid contact were separated, and the gas phase was withdrawn from the upper part of the recovery tower 36, and the liquid phase was recovered in the lower liquid storage part 38. The amount of liquid hydrocarbon collected was 3.9 kg / hr.
次に、 回収塔 36から出たガスを、 そのまま 2塔のうちの一方の吸着塔 1 5に供給し、 ここで炭化水素ベーパーを吸着剤により吸着除去した。 使用 した吸着剤は、 シリカゲル [富士シリシァ化学 (株) 製のシリカゲル CA RiACT Q-6 (商品名)] を 500°C、 4時間の焼成によって疎水化処理したも のである。 2塔の吸着塔15 , 16は、 入りロと出ロのバルブ23,24,27 , 28を5 分毎に切り替えて吸着と分離を交互に行った。  Next, the gas discharged from the recovery tower 36 was directly supplied to one of the two adsorption towers 15, where the hydrocarbon vapor was adsorbed and removed by the adsorbent. The adsorbent used was silica gel [silica gel CA RiACT Q-6 (trade name) manufactured by Fuji Silica Chemical Co., Ltd.], which was subjected to hydrophobizing treatment by baking at 500 ° C for 4 hours. In the two adsorption towers 15 and 16, adsorption and separation were alternately performed by switching the inlet and outlet valves 23, 24, 27 and 28 every 5 minutes.
吸着塔15 , 16出ロのガス中の炭化水素べーパーの濃度は100〜200 111で あり、 徐々に増加する傾向が見られた。 また、 1週間目の炭化水素べ一 パーの成分は、 下記の表 4の通りであった。 (表 4 )
Figure imgf000023_0001
吸着塔 15, 16の吸着剤からの炭化水素の分離操作は、 吸着塔 15 , 16内を 真空ポンプ 20で減圧にすることにより行った。 この時の分離圧は、 絶対 圧で 20Torrである。 この分離は、 吸着塔 15,16の出口から清浄空気を 0. 5 m3/hrの流量で逆流させながら行った。
The concentration of hydrocarbon vapor in the gas from the adsorption towers 15 and 16 was 100 to 200111, and a tendency to increase gradually was observed. The components of the hydrocarbon vapor for the first week were as shown in Table 4 below. (Table 4)
Figure imgf000023_0001
The operation of separating hydrocarbons from the adsorbent in the adsorption towers 15 and 16 was performed by reducing the pressure in the adsorption towers 15 and 16 with the vacuum pump 20. The separation pressure at this time is 20 Torr in absolute pressure. This separation was performed while backflowing clean air from the outlets of the adsorption towers 15 and 16 at a flow rate of 0.5 m3 / hr.
真空ポンプ 20の出口からの分離ガスは、 装置入り口の原料ガスに合流 させて、 回収塔 36で冷却凝縮して回収した。  The separation gas from the outlet of the vacuum pump 20 was combined with the raw material gas at the entrance of the apparatus, and was cooled and condensed in the recovery tower 36 and recovered.
吸着 · 分離時の吸着剤の温度を熱電対で測定したところ、 吸着時で最 高 15°C、 分離時で最低 10°C、 最高 40°Cであり、 吸着塔 15 , 16内でのばらつ きも多かった。  When the temperature of the adsorbent during adsorption and separation was measured with a thermocouple, the maximum was 15 ° C during adsorption, the minimum at 10 ° C during separation, and the maximum at 40 ° C, and rose in the adsorption towers 15 and 16. There were many times.
1週間の運転中、 吸着塔 15 , 16の圧力損失は、 20〜30mmH20で徐々に増 加する傾向が見られた。  During one week of operation, the pressure loss of the adsorption towers 15 and 16 tended to increase gradually at 20 to 30 mmH20.
運転終了後、 吸着塔 15 , 16と配管の開放点検を行ったが、 吸着塔 15,16 の下部と配管途中のバルブ付近に炭化水素ベーパーの凝縮が見られた。 産業上の利用可能性  After the operation was completed, an open inspection of the adsorption towers 15 and 16 and the piping was carried out. Condensation of hydrocarbon vapor was observed in the lower part of the adsorption towers 15 and 16 and near the valve in the middle of the pipes. Industrial applicability
ガソリン等の液状炭化水素の貯蔵設備あるいは精製等の処理設備にお いて、 貯蔵タンク等から排出される炭化水素ベーパーの拡散防止および 回収再利用に利用することができる。  It can be used to prevent diffusion and recovery and reuse of hydrocarbon vapor discharged from storage tanks, etc. in storage facilities for liquid hydrocarbons such as gasoline or processing facilities for refining.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷却手段により、 炭化水素ベーパーを含有するガスを冷却して凝 縮させ、 前記炭化水素ベーパーの一部を除去する第 1の工程と、 加熱手段により、 前記炭化水素ベーパーの一部が除去されたガスを加 熱して昇温させる第 2の工程と、 1. A first step of cooling and condensing a gas containing hydrocarbon vapor by a cooling means to remove a part of the hydrocarbon vapor, and removing a part of the hydrocarbon vapor by a heating means A second step of heating the heated gas to raise the temperature,
前記昇温したガスを吸着剤が充填された吸着手段に供給し、 ここで前 記炭化水素ベーパーを吸着除去する第 3の工程と  Supplying the heated gas to an adsorption means filled with an adsorbent, wherein a third step of adsorbing and removing the hydrocarbon vapor is performed;
を有することを特徴とする炭化水素べ一パーの回収方法。  A method for recovering hydrocarbon vapor.
2 . 請求項 1に記載の炭化水素ベーパーの回収方法において、 第 1の工程で、 前記凝縮した液状の炭化水素を使用し、 冷却したこの 液状の炭化水素を炭化水素ベーパーを含有するガスと接触させてガス中 の炭化水素ベーパーを冷却凝縮させることを特徴とする炭化水素ベーパ 一の回収方法。 2. The method for recovering hydrocarbon vapor according to claim 1, wherein in the first step, the condensed liquid hydrocarbon is used, and the cooled liquid hydrocarbon is contacted with a gas containing hydrocarbon vapor. A method for recovering hydrocarbon vapor by cooling and condensing hydrocarbon vapor in the gas.
3 . 請求項 1に記載の炭化水素ベーパーの回収方法において、 第 2の工程で、 前記炭化水素ベーパーの一部が除去されたガスを加熱 する熱媒体として温水を使用することを特徴とする炭化水素ベーパーの 回収方法。 3. The method for recovering hydrocarbon vapor according to claim 1, wherein in the second step, hot water is used as a heat medium for heating the gas from which a part of the hydrocarbon vapor has been removed. How to recover hydrogen vapor.
4 . 請求項 1に記載の炭化水素ベーパーの回収方法において、  4. In the method for recovering hydrocarbon vapor according to claim 1,
第 3の工程で、 第 2の工程からの昇温されたガスを吸着手段に供給し て炭化水素ベーパーを吸着剤に吸着させた後、 前記吸着手段内を減圧し てこの吸着手段内に清浄なガスを逆流させ、 この状態で炭化水素を吸着 剤から分離させることを特徴とする炭化水素ベーパーの回収方法。  In the third step, the heated gas from the second step is supplied to the adsorbing means to adsorb the hydrocarbon vapor onto the adsorbent, and then the pressure in the adsorbing means is reduced to clean the inside of the adsorbing means. A method for recovering hydrocarbon vapor, characterized in that a natural gas is caused to flow backward and hydrocarbons are separated from the adsorbent in this state.
5 . 請求項 4に記載の炭化水素ベーパーの回収方法において、  5. The method for recovering hydrocarbon vapor according to claim 4,
第 3の工程で、 複数の吸着手段を用い、 これらの吸着手段を吸着処理 と分離処理に交互に切替えて連続処理することを特徴とする炭化水素べ —パーの回収方法。 In a third step, a plurality of adsorbing means are used, and the adsorbing means is alternately switched to an adsorbing treatment and a separating treatment to carry out a continuous treatment. —How to collect pars.
6 . 請求項 4に記載の炭化水素ベーパーの回収方法において、 第 3の工程の吸着剤から分離した炭化水素を第 1の工程の炭化水素べ —パーを含有するガスと混合し、 冷却凝縮させて回収することを特徴と する炭化水素ベーパーの回収方法。  6. The method for recovering hydrocarbon vapor according to claim 4, wherein the hydrocarbon separated from the adsorbent in the third step is mixed with a gas containing a hydrocarbon vapor in the first step, and cooled and condensed. A method for recovering hydrocarbon vapor, characterized in that it is recovered by recovery.
7 . 炭化水素ベーパーを含有するガスを冷却して凝縮させ、 前記炭化 水素べ一パーの一部を除去するための冷却手段と、  7. Cooling means for cooling and condensing a gas containing hydrocarbon vapor, and removing a part of the hydrocarbon vapor.
前記炭化水素べ一パーの一部が除去されたガスを加熱して昇温させる ための加熱手段と、  Heating means for heating and raising the temperature of the gas from which a part of the hydrocarbon vapor has been removed;
前記昇温されたガス中の炭化水素ベーパーを吸着除去する吸着剤が充 填された吸着手段と  Adsorbing means filled with an adsorbent for adsorbing and removing hydrocarbon vapor in the heated gas;
を有することを特徴とする炭化水素ベーパーの回収装置。  An apparatus for recovering hydrocarbon vapor, comprising:
8 . 請求項 7に記載の炭化水素ベーパーの回収装置において、  8. The hydrocarbon vapor recovery device according to claim 7,
前記冷却手段に供給する冷却用熱媒体の供給源及び前記加熱手段に供 給する加熱用熱媒体の供給源として、 共通のチラ一ュニッ トが設けられ ていることを特徴とする炭化水素ベーパーの回収装置。  A common chiller unit is provided as a supply source of a cooling heat medium to be supplied to the cooling means and a supply source of a heating heat medium to be supplied to the heating means. Collection device.
9 . 請求項 7に記載の炭化水素ベーパーの回収装置において、  9. The hydrocarbon vapor recovery device according to claim 7,
前記吸着手段は、 吸着処理と分離処理を交互に切替えて連続処理する ために複数個設けられていることを特徴とする炭化水素べ一パーの回収 装置。  A hydrocarbon vapor collecting apparatus, wherein a plurality of the adsorbing means are provided for performing a continuous treatment by alternately switching an adsorption treatment and a separation treatment.
PCT/JP1999/005899 1998-10-29 1999-10-26 Method and device for recovering hydrocarbon vapor WO2000025900A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000579332A JP3711327B6 (en) 1998-10-29 1999-10-26 Method and apparatus for recovering hydrocarbon vapor
KR1020017005281A KR20010085967A (en) 1998-10-29 1999-10-26 Method and device for recovering hydrocarbon vapor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/308585 1998-10-29
JP30858598 1998-10-29

Publications (1)

Publication Number Publication Date
WO2000025900A1 true WO2000025900A1 (en) 2000-05-11

Family

ID=17982813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005899 WO2000025900A1 (en) 1998-10-29 1999-10-26 Method and device for recovering hydrocarbon vapor

Country Status (3)

Country Link
KR (1) KR20010085967A (en)
TW (1) TW565468B (en)
WO (1) WO2000025900A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047823A (en) * 2001-08-03 2003-02-18 Teijin Ltd Method for removing solvent from solvent-containing gas
US6834686B2 (en) 2002-09-09 2004-12-28 Delaware Capital Formation, Inc. Tank pressure management system
JP2008093571A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Device for treating and recovering gaseous hydrocarbon and its method
JP2009240948A (en) * 2008-03-31 2009-10-22 Morikawa Co Ltd Method of recovering solvent and apparatus of recovering solvent
JP2010069435A (en) * 2008-09-19 2010-04-02 Taikisha Ltd Solvent recovering facility
JP2011036861A (en) * 2004-12-22 2011-02-24 Mitsubishi Electric Corp Treatment/recovery apparatus and method for gaseous hydrocarbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772848B2 (en) * 2008-10-20 2011-09-14 株式会社タツノ・メカトロニクス Vapor collection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341347U (en) * 1976-09-16 1978-04-10
JPS5341345U (en) * 1976-09-16 1978-04-10
JPH10156127A (en) * 1996-11-29 1998-06-16 I H I Plantec:Kk Benzene vapor recovery device
JPH1171584A (en) * 1997-06-17 1999-03-16 Syst Enji Service Kk Recovery of hydrocarbon in liquid state from waste gas containing gaseous hydrocarbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341347U (en) * 1976-09-16 1978-04-10
JPS5341345U (en) * 1976-09-16 1978-04-10
JPH10156127A (en) * 1996-11-29 1998-06-16 I H I Plantec:Kk Benzene vapor recovery device
JPH1171584A (en) * 1997-06-17 1999-03-16 Syst Enji Service Kk Recovery of hydrocarbon in liquid state from waste gas containing gaseous hydrocarbon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047823A (en) * 2001-08-03 2003-02-18 Teijin Ltd Method for removing solvent from solvent-containing gas
US6834686B2 (en) 2002-09-09 2004-12-28 Delaware Capital Formation, Inc. Tank pressure management system
JP2011036861A (en) * 2004-12-22 2011-02-24 Mitsubishi Electric Corp Treatment/recovery apparatus and method for gaseous hydrocarbon
JP2011072996A (en) * 2004-12-22 2011-04-14 Mitsubishi Electric Corp Apparatus and method for treatment/recovery of gaseous hydrocarbon
JP2011078973A (en) * 2004-12-22 2011-04-21 Mitsubishi Electric Corp Apparatus and method for processing and recovering gaseous hydrocarbon
JP2008093571A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Device for treating and recovering gaseous hydrocarbon and its method
JP4671940B2 (en) * 2006-10-12 2011-04-20 三菱電機株式会社 Gaseous hydrocarbon treatment and recovery apparatus and method
JP2009240948A (en) * 2008-03-31 2009-10-22 Morikawa Co Ltd Method of recovering solvent and apparatus of recovering solvent
JP2010069435A (en) * 2008-09-19 2010-04-02 Taikisha Ltd Solvent recovering facility

Also Published As

Publication number Publication date
TW565468B (en) 2003-12-11
KR20010085967A (en) 2001-09-07
JP3711327B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
RU2634711C2 (en) Method to remove heavy hydrocarbons
RU2525126C1 (en) Method of natural gas cleaning and recovery of one or more adsorbers
EP1811011A1 (en) Methane recovery from a landfill gas
JP2011021017A (en) Method for removal of solvent contained in acetylene and apparatus for carrying out the method
RU2597081C2 (en) Method for complex extraction of valuable admixtures from natural helium-containing hydrocarbon gas with high nitrogen content
CN106902617A (en) A kind of high concentration VOC air purifying recovering apparatus and method
RU2381822C1 (en) Hydrocarbon gas treatment plant
JP2011152526A (en) Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower
CN102119050B (en) The purification of air-flow
JP5766089B2 (en) Carbon dioxide recovery and purification method and system
RU2536511C2 (en) Process and plant for water removal from natural gas or industrial gases by physical solvents
JP6905534B2 (en) Hydrogen or helium purification method, and hydrogen or helium purification equipment
TWI554497B (en) Purifying method and purifying system for propane
KR100397077B1 (en) Cryogenic adsorption process for producing ultra-high purity nitrogen
WO2000025900A1 (en) Method and device for recovering hydrocarbon vapor
JP2009066530A (en) Voc recovery apparatus
KR100923357B1 (en) A Process and Apparatus for Purifying Hydrogen Bromide
TW201400415A (en) Ammonia purification system
JP6979023B2 (en) Hydrogen or helium purification method, and hydrogen or helium purification equipment
JP4382826B2 (en) On-site gas delivery method and apparatus therefor
JP2012081411A (en) Solvent dehydrator
JP3711327B6 (en) Method and apparatus for recovering hydrocarbon vapor
RU2565320C1 (en) Preparation plant of hydrocarbon gas for low-temperature processing
RU2569351C2 (en) Unit for liquid mercaptans adsorptive dehydration
JP2012081412A (en) Solvent dehydrator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID IN JP KR RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 579332

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017005281

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017005281

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020017005281

Country of ref document: KR