JP2011152526A - Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower - Google Patents

Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower Download PDF

Info

Publication number
JP2011152526A
JP2011152526A JP2010016558A JP2010016558A JP2011152526A JP 2011152526 A JP2011152526 A JP 2011152526A JP 2010016558 A JP2010016558 A JP 2010016558A JP 2010016558 A JP2010016558 A JP 2010016558A JP 2011152526 A JP2011152526 A JP 2011152526A
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorbent
heat
heat transfer
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010016558A
Other languages
Japanese (ja)
Inventor
Hidekazu Komatsu
秀和 小松
Takashi Suzuki
崇 鈴木
Takashi Soga
孝 曽我
Masayuki Daino
正之 大能
Akira Aida
亮 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOGA KK
Gunma Prefecture
Original Assignee
SOGA KK
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOGA KK, Gunma Prefecture filed Critical SOGA KK
Priority to JP2010016558A priority Critical patent/JP2011152526A/en
Publication of JP2011152526A publication Critical patent/JP2011152526A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the structure of an adsorption tower efficiently heating or cooling an adsorbent packed in the adsorption tower in an exhaust gas treatment apparatus by an adsorption method. <P>SOLUTION: Heat is exchanged between the heating medium and adsorbent by feeding the heating medium into heat transfer tubes by arranging the heat transfer tubes with an outer diameter of 15-35 mm in the adsorption tower packed with the adsorbent, or feeding the heating medium to the outside of the heat transfer tubes in the adsorption tower after packing the adsorbent in the heat transfer tubes with the outer diameter of 15-35 mm, arranged in the adsorption tower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱媒体送給用の流路を備えた吸着塔と該吸着塔を利用した排ガス浄化方法及び熱交換方法に関する。 The present invention relates to an adsorption tower having a flow path for feeding a heat medium, an exhaust gas purification method and a heat exchange method using the adsorption tower.

吸着法を利用した排ガス処理装置では特許文献1に示すように、吸着剤が充填された吸着塔に排ガスを通気することで、排ガスに含まれる有機化合物蒸気など除去対象成分が吸着除去される。吸着剤への吸着量は温度に依存し、温度が低いほど吸着量が多いことから、できるだけ低温域での吸着操作が望ましい。しかし、吸着に伴い発生する吸着熱によって吸着剤の温度が上昇する傾向があることから、比較的高温域での吸着操作を強いられていた。このため所望する処理性能を達成するためには吸着塔内の吸着剤の充填高さを増加させる必要があるなど、不経済な面があった。一方、吸着剤の再生には吸着剤を加熱する方法があるが、従来の吸着塔では吸着剤への伝熱に十分な配慮がなされていないことから加熱に長時間を要するなど効率的な運転が難しい傾向があった。 In the exhaust gas treatment apparatus using the adsorption method, as shown in Patent Document 1, exhaust gas is ventilated through an adsorption tower filled with an adsorbent, whereby components to be removed such as organic compound vapor contained in the exhaust gas are adsorbed and removed. The amount of adsorption on the adsorbent depends on the temperature, and the lower the temperature, the larger the amount of adsorption. However, since the temperature of the adsorbent tends to increase due to the heat of adsorption generated by the adsorption, the adsorption operation in a relatively high temperature range has been forced. For this reason, in order to achieve the desired processing performance, it is necessary to increase the packing height of the adsorbent in the adsorption tower, which is uneconomical. On the other hand, there is a method of heating the adsorbent for regeneration of the adsorbent, but since the conventional adsorption tower does not give sufficient consideration to heat transfer to the adsorbent, it requires efficient operation such as heating for a long time. Tended to be difficult.

特開2002−200410JP 2002-200410

本発明は上記課題に鑑みて、吸着塔に充填された吸着剤を効率的に加熱または冷却することができる吸着塔の構成に関する。 In view of the above problems, the present invention relates to a configuration of an adsorption tower that can efficiently heat or cool an adsorbent packed in the adsorption tower.

発明者らは、吸着塔内に充填された吸着剤を効率的に加熱または冷却することができる手法に関して鋭意検討したところ、吸着塔内に加熱または冷却用の熱媒体を送給する流路を配することで、吸着剤を効率的に加熱または冷却することができる吸着塔の構成を考案し、本発明を完成するに至った。 The inventors have intensively studied on a method capable of efficiently heating or cooling the adsorbent packed in the adsorption tower. As a result, a flow path for supplying a heat medium for heating or cooling into the adsorption tower is provided. By arranging it, the constitution of an adsorption tower capable of efficiently heating or cooling the adsorbent was devised, and the present invention was completed.

すなわち本発明の技術解決手段は、(1):吸着塔内に配置した外径15mm以上35mm以下の伝熱管内に平均粒子径0.08mm以上5mm以下の吸着剤を充填し、吸着塔内であって伝熱管の外側に送給する熱媒体と該吸着剤との間で熱交換を行わせることを特徴とする熱交換器型吸着塔であり、(2):平均粒子径0.08mm以上5mm以下の吸着剤が充填された吸着塔内に外径15mm以上35mm以下の伝熱管を配置し、該伝熱管内に送給する熱媒体と該吸着剤との間で熱交換を行わせることを特徴とする熱交換器型吸着塔であり、(3):(1)又は(2)記載の熱交換器型吸着塔を用い、温度が−30℃以上30℃未満に制御された熱媒体を送給した吸着塔に排ガスを、ガス流速を吸着剤の平均粒子径で除した値が30毎秒以上4000毎秒以下となるガス流速で通気することで排ガスに含まれる有機化合物蒸気を吸着除去することを特徴とする排ガスの処理方法であり、(4):(1)又は(2)記載の熱交換器型吸着塔を用い、温度が50℃以上300℃未満に制御された熱媒体を送給した吸着塔に空気、窒素、酸素、アルゴンから選ばれる1種以上のガスを通気することで吸着剤に吸着した物質を脱着させることを特徴とする吸着剤の再生処理方法である。 That is, the technical solution means of the present invention is as follows: (1) An adsorbent having an average particle diameter of 0.08 mm or more and 5 mm or less is packed in a heat transfer tube having an outer diameter of 15 mm or more and 35 mm or less arranged in the adsorption tower. A heat exchanger type adsorption tower characterized in that heat exchange is performed between the adsorbent and the heat medium fed to the outside of the heat transfer tube, (2): average particle diameter of 0.08 mm or more A heat transfer tube having an outer diameter of 15 mm or more and 35 mm or less is arranged in an adsorption tower filled with an adsorbent of 5 mm or less, and heat exchange is performed between the heat medium fed into the heat transfer tube and the adsorbent. (3): Heat medium whose temperature is controlled to -30 ° C. or higher and lower than 30 ° C. using the heat exchanger type adsorption tower according to (3): (1) or (2) The value obtained by dividing the exhaust gas into the adsorption tower fed with the gas flow rate by the average particle diameter of the adsorbent is 30 per second. An exhaust gas treatment method characterized by adsorbing and removing organic compound vapor contained in the exhaust gas by aeration at a gas flow rate of 4000 per second or less, and the heat described in (4): (1) or (2) Adsorption is performed by ventilating one or more kinds of gases selected from air, nitrogen, oxygen, and argon through an adsorption tower using an exchanger-type adsorption tower and feeding a heat medium whose temperature is controlled to 50 ° C. or higher and lower than 300 ° C. An adsorbent regeneration method characterized in that a substance adsorbed on the adsorbent is desorbed.

本発明により、吸着法を利用した排ガス処理装置において、吸着剤の温度を吸着及び脱着が効果的に行われる温度に短時間で至らしめることができる。また、吸着剤充填部の温度分布が均一になることからヒートスポットが発生しにくく、処理対象成分のうち間隙を通過し吸着にあずからない成分の量が減少することから破過時間延長にも効果的である。 According to the present invention, in the exhaust gas treatment apparatus using the adsorption method, the temperature of the adsorbent can be brought to a temperature at which adsorption and desorption are effectively performed in a short time. In addition, since the temperature distribution in the adsorbent filling part is uniform, heat spots are unlikely to occur, and the amount of components that pass through the gap and do not participate in adsorption decreases among the components to be processed, thus extending the breakthrough time. It is effective.

以下に、本発明の詳細を実施例により示すが、本発明の技術内容を具体的に説明するためのものであり、本発明の範囲を限定するものではない。 Hereinafter, the details of the present invention will be described by way of examples. However, they are intended to specifically describe the technical contents of the present invention and do not limit the scope of the present invention.

(本発明における第1の形態の熱交換器型吸着塔と排ガス処理方法)
図1に本発明における第1の形態の熱交換器型吸着塔と、該吸着塔を用いた排ガス処理方法を示す。吸着塔1内に配された外径15mm以上35mm以下の伝熱管3内には吸着剤2が充填されている。伝熱を促進するため、伝熱管3にフィンなどを取り付けることができる。熱媒体貯留槽4は加熱または冷却手段5を備えており、熱媒体貯留槽4に貯留された熱媒体は所望する温度に制御される。該熱媒体は熱媒体循環ポンプ6によって吸着塔1へ送給され、吸着剤2との間で熱交換が行われることで、吸着剤2は一定の温度範囲内に制御される。有機化合物蒸気を含む排ガスの処理は、前述のように温度制御された熱媒体が送給された吸着塔内に有機化合物蒸気を含む排ガスをガス導入路11から導入し、排ガス中の有機化合物蒸気を吸着剤2によって吸着除去することによって行われる。このとき発生する吸着熱は熱媒体との間の熱交換によって除去されるので、吸着性能が低下せず、効果的に排ガス処理を行うことができる。吸着剤2が吸着破過に達したときは、吸着剤2の再生処理を行う。吸着剤2の再生処理は、前述のように温度制御された熱媒体を吸着塔1に送給し、空気、窒素、酸素、アルゴンから選ばれる1種以上のガスをパージガスとしてガス導入路11から吸着塔1に導入して有機化合物蒸気を脱着することで行われる。パージガスは空気又は窒素が好ましく、空気がより好ましい。このとき得られる高濃度の有機化合物蒸気を含有するガス(脱着ガス)はガス排出口12を通じて系外に排出される。このとき該脱着ガスを凝縮器などに通気することで有機化合物蒸気を凝縮回収することができる。
(The heat exchanger type adsorption tower and exhaust gas treatment method of the first embodiment in the present invention)
FIG. 1 shows a heat exchanger type adsorption tower according to the first embodiment of the present invention and an exhaust gas treatment method using the adsorption tower. An adsorbent 2 is filled in a heat transfer tube 3 having an outer diameter of 15 mm or more and 35 mm or less arranged in the adsorption tower 1. In order to promote heat transfer, fins or the like can be attached to the heat transfer tube 3. The heat medium storage tank 4 includes heating or cooling means 5, and the heat medium stored in the heat medium storage tank 4 is controlled to a desired temperature. The heat medium is fed to the adsorption tower 1 by the heat medium circulation pump 6 and heat exchange is performed with the adsorbent 2, whereby the adsorbent 2 is controlled within a certain temperature range. The treatment of the exhaust gas containing the organic compound vapor is performed by introducing the exhaust gas containing the organic compound vapor from the gas introduction path 11 into the adsorption tower to which the temperature-controlled heat medium is supplied as described above, and the organic compound vapor in the exhaust gas. Is adsorbed and removed by the adsorbent 2. Since the heat of adsorption generated at this time is removed by heat exchange with the heat medium, the adsorption performance is not lowered and the exhaust gas treatment can be performed effectively. When the adsorbent 2 reaches adsorption breakthrough, the adsorbent 2 is regenerated. In the regeneration process of the adsorbent 2, the heat medium whose temperature is controlled as described above is supplied to the adsorption tower 1, and one or more gases selected from air, nitrogen, oxygen, and argon are used as a purge gas from the gas introduction path 11. It is carried out by introducing it into the adsorption tower 1 and desorbing the organic compound vapor. The purge gas is preferably air or nitrogen, more preferably air. The gas (desorption gas) containing the high-concentration organic compound vapor obtained at this time is discharged out of the system through the gas discharge port 12. At this time, the organic compound vapor can be condensed and recovered by passing the desorption gas through a condenser or the like.

(本発明における第2の形態の熱交換器型吸着塔と排ガス処理方法)
図2に本発明による第2の形態の熱交換器型吸着塔と、該吸着塔を用いた排ガス処理方法を示す。吸着塔1内には吸着剤2が充填され、吸着剤2と効率的に接触するように外径15mm以上35mm以下の伝熱管3が配置されている。伝熱を促進するため、伝熱管3にフィンなどを取り付けることができる。熱媒体貯留槽4には加熱または冷却手段5が配されており、熱媒体貯留槽4に貯留された熱媒体は所望する温度に制御される。該熱媒体は熱媒体循環ポンプ6によって吸着塔1へ送給され、吸着剤2との間で熱交換が行われることで、吸着剤2は一定の温度範囲内に制御される。排ガスの処理は前項と同様の方法で行われる。
(The heat exchanger type adsorption tower and exhaust gas treatment method of the second embodiment of the present invention)
FIG. 2 shows a heat exchanger type adsorption tower according to the second embodiment of the present invention and an exhaust gas treatment method using the adsorption tower. The adsorption tower 1 is filled with an adsorbent 2, and a heat transfer tube 3 having an outer diameter of 15 mm or more and 35 mm or less is disposed so as to contact the adsorbent 2 efficiently. In order to promote heat transfer, fins or the like can be attached to the heat transfer tube 3. The heat medium storage tank 4 is provided with heating or cooling means 5, and the heat medium stored in the heat medium storage tank 4 is controlled to a desired temperature. The heat medium is fed to the adsorption tower 1 by the heat medium circulation pump 6 and heat exchange is performed with the adsorbent 2, whereby the adsorbent 2 is controlled within a certain temperature range. The treatment of exhaust gas is performed in the same manner as in the previous section.

(吸着剤の種類)
吸着塔1に充填する吸着剤には、シリカゲル、活性炭、下水汚泥などバイオマス由来の炭化物、アルミナ、ゼオライトなどを利用できるが、必ずしもこれら吸着剤に限定されない。またこれら吸着剤を任意の割合で混合又は積層して利用することができる。吸着剤の平均粒子径は0.08mm以上5mm以下が好ましく、0.10mm以上3.5mm以下がより好ましい。この範囲未満では処理量を増加させたときの圧力損失が増大する傾向がある。
(Adsorbent type)
As the adsorbent packed in the adsorption tower 1, biomass-derived carbides such as silica gel, activated carbon and sewage sludge, alumina, zeolite, and the like can be used, but are not necessarily limited to these adsorbents. Further, these adsorbents can be used by mixing or laminating them at an arbitrary ratio. The average particle diameter of the adsorbent is preferably 0.08 mm to 5 mm, and more preferably 0.10 mm to 3.5 mm. If it is less than this range, the pressure loss tends to increase when the throughput is increased.

(伝熱管)
吸着塔1内に配置する伝熱管3は単管式でも複数並列に用いる多管式でもよく、また接触面積及び接触効率向上のため、コイルなどの形状に加工して用いることができる。伝熱管の外径は15mm以上35mm以下が好ましく、20mm以上32mm以下がより好ましい。この範囲未満では所望する処理量または伝熱量を実現するための伝熱管長さ及び本数が増加し、吸着塔への接合加工などに要する工数が増すことから製作コストが上昇する傾向がある。また、この範囲以上では伝熱面積が減少して熱交換効率が低下する傾向が見られる。また、伝熱管3には伝熱を促進するためにフィンなどを取り付けることができる。
(Heat transfer tube)
The heat transfer tubes 3 arranged in the adsorption tower 1 may be a single tube type or a multi-tube type used in parallel, and may be processed into a shape such as a coil to improve the contact area and contact efficiency. The outer diameter of the heat transfer tube is preferably 15 mm or more and 35 mm or less, and more preferably 20 mm or more and 32 mm or less. If it is less than this range, the length and number of heat transfer tubes for realizing the desired throughput or heat transfer amount will increase, and the man-hours required for joining to the adsorption tower and the like will tend to increase the production cost. Above this range, the heat transfer area tends to decrease and the heat exchange efficiency tends to decrease. In addition, fins or the like can be attached to the heat transfer tube 3 in order to promote heat transfer.

(熱媒体の種類)
熱媒体には、ジメチルシリコンオイル、メチルフェニルシリコンオイルなどのシリコンオイル類、エチレングリコール、プロピレングリコールなどの多価アルコール類、水などを使用することができる。これら熱媒体を熱媒体貯留槽4に貯留し、熱媒体循環ポンプ6を用いることで吸着塔1に送液することができる。
(Heat medium type)
As the heat medium, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, polyhydric alcohols such as ethylene glycol and propylene glycol, water, and the like can be used. These heat media can be stored in the heat medium storage tank 4 and sent to the adsorption tower 1 by using the heat medium circulation pump 6.

(熱媒体の貯留と循環)
熱媒体は、加熱または冷却手段5を備えた熱媒体貯留槽4に貯留し、熱媒体循環ポンプ6によって吸着塔1に送液される。さらに、図3のように異なる温度に保持された熱媒体をそれぞれ別の熱媒体貯留槽に分けて貯留し、所望する熱媒体貯留槽内の熱媒体が送液されるように流路切り換え弁7を操作することで、異なる温度の熱媒体を吸着塔に供給することもできる。
(Storage and circulation of heat medium)
The heat medium is stored in a heat medium storage tank 4 provided with heating or cooling means 5 and is sent to the adsorption tower 1 by a heat medium circulation pump 6. Further, the heat transfer medium maintained at different temperatures as shown in FIG. 3 is stored separately in different heat medium storage tanks, and the flow path switching valve is supplied so that the desired heat medium in the heat medium storage tank is fed. By operating 7, it is also possible to supply heat media having different temperatures to the adsorption tower.

(加熱または冷却手段)
熱媒体は、電熱ヒーター、ヒートポンプ、液体燃料バーナー、ガス燃料バーナーなどの加熱手段またはヒートポンプ、クーリングタワーなどの冷却手段を用いて所望する温度に制御し、吸着塔内に送給される。なお、加熱手段を用いる代わりに熱媒体として工場などから排出される温廃水を直接吸着塔内に送給しても良い。
(Heating or cooling means)
The heat medium is controlled to a desired temperature using heating means such as an electric heater, heat pump, liquid fuel burner, and gas fuel burner or cooling means such as a heat pump and a cooling tower, and is fed into the adsorption tower. In addition, you may send the warm waste water discharged | emitted from a factory etc. as a heat medium directly in an adsorption tower instead of using a heating means.

(排ガス処理における熱媒体の温度)
吸着剤への吸着量は温度に依存し、吸着剤の温度が低いほど吸着量が多いことから、排ガス処理時には吸着剤を冷却することで排ガス処理能力を向上させることができる。吸着剤を冷却するために吸着塔に送給する熱媒体の温度は、−30℃以上30℃未満が好ましく、−5℃以上15℃未満がより好ましい。この温度範囲以上では吸着性能を十分発揮することが難しい傾向がある。またこの温度範囲未満では熱媒体の冷却に要する電力や動力が増加する傾向があり、ランニングコストの観点から好ましくない傾向がみられる。
(Temperature of heat medium in exhaust gas treatment)
The amount of adsorption to the adsorbent depends on the temperature, and the lower the temperature of the adsorbent, the larger the amount of adsorption. Therefore, the exhaust gas treatment capacity can be improved by cooling the adsorbent during the exhaust gas treatment. The temperature of the heat medium fed to the adsorption tower for cooling the adsorbent is preferably −30 ° C. or higher and lower than 30 ° C., more preferably −5 ° C. or higher and lower than 15 ° C. Above this temperature range, it tends to be difficult to exhibit sufficient adsorption performance. If the temperature is lower than this temperature range, the electric power and power required for cooling the heat medium tend to increase, which is undesirable from the viewpoint of running cost.

(吸着剤の再生処理における熱媒体の温度)
排ガス処理において、吸着破過に達したときには吸着剤の再生処理を行う。再生処理は吸着塔内に配された熱媒体送給流路に加熱媒体を送給し、吸着剤との間で熱交換することによって吸着剤を加熱することにより行われる。加熱媒体の温度は、50℃以上300℃未満が好ましく、80℃以上200℃未満がより好ましい。この温度範囲以上では加熱に要する電力や燃料が増加する傾向があることから、ランニングコストの観点から好ましくない傾向が見られる。またこの温度範囲未満では効率的に有機化合物蒸気を脱着することが難しくなる傾向がある。
(The temperature of the heat medium in the regeneration process of the adsorbent)
In the exhaust gas treatment, when the adsorption breakthrough is reached, the adsorbent is regenerated. The regeneration process is performed by heating the adsorbent by supplying a heating medium to a heat medium supply passage disposed in the adsorption tower and exchanging heat with the adsorbent. The temperature of the heating medium is preferably 50 ° C. or higher and lower than 300 ° C., more preferably 80 ° C. or higher and lower than 200 ° C. Above this temperature range, there is a tendency for the electric power and fuel required for heating to increase, so an undesirable tendency is seen from the viewpoint of running cost. If the temperature is lower than this temperature range, it tends to be difficult to efficiently desorb the organic compound vapor.

(排ガスに含まれる有機化合物蒸気の種類)
本発明による排ガス処理方法によって吸着除去可能な有機化合物蒸気の種類としては、テトラクロロエチレン、トリクロロエチレン、ジクロロメタン、ブロモプロパンなどハロゲン化炭化水素類、ペンタン、ヘキサン、デカン、シクロヘキサンなど脂肪族炭化水素類、ベンゼン、トルエン、キシレンなど芳香族炭化水素類、メタノール、エタノール、プロピルアルコールなどアルコール類、アセトン、メチルエチルケトンなどケトン類、酢酸エチル、酢酸ブチルなどエステル類、ジメチルエーテル、プロピレングリコールモノメチルエーテルなどエーテル類などが挙げられる。さらに、これらのうち複数成分を含有する排ガスも好ましく処理できる。
(Types of organic compound vapor contained in exhaust gas)
The types of organic compound vapors that can be adsorbed and removed by the exhaust gas treatment method according to the present invention include halogenated hydrocarbons such as tetrachloroethylene, trichloroethylene, dichloromethane, and bromopropane, aliphatic hydrocarbons such as pentane, hexane, decane, and cyclohexane, benzene, Aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol and propyl alcohol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, and ethers such as dimethyl ether and propylene glycol monomethyl ether. Further, exhaust gas containing a plurality of components can be preferably treated.

(排ガス処理におけるガス流速)
排ガス処理においては、ミリメートル毎秒換算したガス流速をミリメートル換算した吸着剤平均粒子径で除した値で表されるガス流速ファクタが30毎秒以上4000毎秒以下、好ましくは50毎秒以上2000毎秒以下になるような流速にすることで好ましく処理できる。この範囲未満では吸着層における圧力損失は小さい反面、単位時間あたりの処理量が少なく不経済であり、この範囲以上では吸着層における圧力損失が増大することから高価なブロアが必要になるなど不経済になる傾向がある。
(Gas flow rate in exhaust gas treatment)
In the exhaust gas treatment, the gas flow rate factor represented by the value obtained by dividing the gas flow rate in millimeters per second by the average particle diameter in terms of millimeters is 30 to 4,000 per second, preferably 50 to 2,000 per second. It can process preferably by setting it as a sufficient flow rate. Below this range, the pressure loss in the adsorption layer is small, but the amount of treatment per unit time is small and uneconomical. Above this range, the pressure loss in the adsorption layer increases, so an expensive blower is required, etc. Tend to be.

(吸着剤の再生処理におけるパージガスの流速及び吸着塔内圧力について)
吸着剤の再生処理におけるパージガスの導入は、ブロワなどにより導入する方法のほか、真空ポンプなどを用いて吸着塔内を吸引しながらゲージ圧−0.1MPa以上−0.05MPa未満の真空状態で導入する方法も好ましく用いることができる。パージガス導入時のガス流速ファクタは1.5毎秒以上1000毎秒以下、より好ましくは2.5毎秒以上500毎秒以下において処理できる。この範囲未満では吸着剤の再生処理に長い時間を要する傾向が見られ、またこの範囲以上では脱着ガスを凝縮器に通気したときの有機化合物蒸気の凝縮回収率が低下するなど不経済になる傾向がある。
(Purge gas flow rate and adsorption tower pressure in adsorbent regeneration process)
In addition to the method of introducing a purge gas in the regeneration process of the adsorbent, it is introduced in a vacuum state of a gauge pressure of −0.1 MPa or more and less than −0.05 MPa while sucking the inside of the adsorption tower using a vacuum pump or the like. This method can also be preferably used. The gas flow rate factor at the time of introduction of the purge gas can be processed at 1.5 to 1000 per second, more preferably 2.5 to 500 per second. Below this range, the adsorbent regeneration process tends to take a long time. Above this range, the organic compound vapor condensation recovery rate when the desorption gas is passed through the condenser tends to be uneconomical. There is.

本発明における第1の形態の熱交換器型吸着塔の概略構成と排ガス処理方法を示す図The figure which shows schematic structure and waste gas treatment method of the heat exchanger type adsorption tower of the 1st form in this invention 本発明における第2の形態の熱交換器型吸着塔の概略構成と排ガス処理方法を示す図The figure which shows schematic structure and waste gas treatment method of the heat exchanger type adsorption tower of the 2nd form in this invention 異なる温度の熱媒体を切り換えて熱交換器型吸着塔に送給する方法の概略構成を示す図The figure which shows schematic structure of the method of switching the heat medium of a different temperature and sending it to a heat exchanger type adsorption tower

(実験例1)
長さ1000mmで外径150mmの吸着塔内に長さ1000mmで外径23mmの伝熱管を14本並列に配置した熱交換器型吸着塔において、該伝熱管内に平均粒子径2.8mmのシリカゲル(富士シリシア製キャリアクトQ−6)を6L(3.6kg)充填した。なお、吸着操作に先立ち、冷熱媒体貯留槽に20℃に温度制御されたシリコンオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製YF33−100)を30L貯留し、吸着塔内であって伝熱管の外側に該シリコンオイルを流量3L/minで流通させた。別途試作した模擬排ガス発生装置を用い、濃度5,300ppmのトルエン/空気バランスガスを調製し、該模擬排ガスを50L/minで吸着塔へ連続通気したところ、150分間模擬排ガスに含まれるトルエンを吸着除去することができた。この時に吸着したトルエンの総量を計算すると148gであった。なお、このときのガス流速は190mm毎秒であったことから、ガス流速を吸着剤の平均粒子径で除した値で表されるガス流速ファクタは68毎秒であった。その後吸着剤の再生処理を行った。再生処理に先立ち、加熱媒体貯留槽には温度120℃に制御されたシリコンオイル30Lを貯留し、該シリコンオイルを流量3L/minで熱媒体流路に流通した。なお、流通開始後4分間は流路切り換え弁を操作して、吸着塔内に残っていた20℃のシリコンオイルを冷熱媒体貯留槽に戻した。120℃のシリコンオイルを流通開始して40分後には吸着剤充填層の温度は116℃に達した。その後吸着剤の再生処理を、空気を7L/minで吸着塔に50分間連続通気し、吸着剤に吸着したトルエンを脱着させることで行った。脱着した高濃度トルエンベーパーを連続的に凝縮器に通気したところ、合計130gのトルエンを凝縮回収した。なお、パージガスのガス流速は27mm毎秒であったことから、ガス流速ファクタを算出すると9.6毎秒であった。
(Experimental example 1)
In a heat exchanger type adsorption tower in which 14 heat transfer tubes having a length of 1000 mm and an outer diameter of 23 mm are arranged in parallel in an adsorption tower having a length of 1000 mm and an outer diameter of 150 mm, silica gel having an average particle diameter of 2.8 mm is disposed in the heat transfer tube. 6 L (3.6 kg) of (Carriert Q-6 manufactured by Fuji Silysia) was filled. Prior to the adsorption operation, 30 L of silicon oil (YF33-100 manufactured by Momentive Performance Materials Japan) temperature-controlled at 20 ° C. was stored in the cold medium storage tank, inside the adsorption tower and outside the heat transfer tube The silicon oil was circulated at a flow rate of 3 L / min. Using a separately produced simulated exhaust gas generator, a toluene / air balance gas with a concentration of 5,300 ppm was prepared, and when the simulated exhaust gas was continuously ventilated to the adsorption tower at 50 L / min, the toluene contained in the simulated exhaust gas was adsorbed for 150 minutes. Could be removed. The total amount of toluene adsorbed at this time was 148 g. Since the gas flow rate at this time was 190 mm per second, the gas flow rate factor represented by the value obtained by dividing the gas flow rate by the average particle diameter of the adsorbent was 68 per second. Thereafter, the adsorbent was regenerated. Prior to the regeneration treatment, 30 L of silicon oil controlled to a temperature of 120 ° C. was stored in the heating medium storage tank, and the silicon oil was circulated through the heat medium flow path at a flow rate of 3 L / min. In addition, the flow path switching valve was operated for 4 minutes after the start of circulation, and the 20 ° C. silicon oil remaining in the adsorption tower was returned to the cold medium storage tank. The temperature of the adsorbent packed bed reached 116 ° C. 40 minutes after the start of distribution of 120 ° C. silicone oil. Thereafter, regeneration of the adsorbent was performed by continuously ventilating air through the adsorption tower at 7 L / min for 50 minutes to desorb toluene adsorbed on the adsorbent. When the desorbed high-concentration toluene vapor was continuously passed through the condenser, a total of 130 g of toluene was condensed and recovered. In addition, since the gas flow rate of the purge gas was 27 mm per second, the gas flow rate factor was calculated to be 9.6 per second.

(実験例2)
長さ600mmで内径150mmの吸着塔内に、外径23mmの伝熱管をコイル状に加工(ループ径120mm、ループ数15)して配置した熱交換器型吸着塔において、該吸着塔内であって伝熱管の外側に平均粒子径2.8mmのシリカゲル(富士シリシア製キャリアクトQ−6)を3.6kg充填した。なお、吸着操作に先立ち、冷熱媒体貯留槽に20℃に温度制御されたシリコンオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製YF33−100)を30L貯留し、伝熱管内に該シリコンオイルを流量3L/minで流通させた。また模擬排ガス発生装置を用い、濃度5,300ppmのトルエン/空気バランスガスを調製し、該模擬排ガスを300L/minで吸着塔へ連続的に通気したところ、22分後に吸着破過した。この間に吸着したトルエンの総量を計算すると131gであった。なお、このときのガス流速は283mm毎秒であったことから、ガス流速ファクタを算出すると101毎秒であった。その後吸着剤の再生処理を行った。再生処理に先立ち、加熱媒体貯留槽には温度120℃に制御されたシリコンオイル30Lを用意し、該シリコンオイルを流量3L/minで熱媒体流路に流通した。シリコンオイルを流通開始して40分後には吸着剤充填層の温度は116℃に達した。その後吸着剤の再生処理を、パージガスとして空気を12L/minで吸着塔に40分間連続通気し、吸着剤に吸着したトルエンを脱着させることで行った。脱着した高濃度トルエンベーパーを連続的に凝縮器に通気したところ、合計101gのトルエンを凝縮回収した。なお、パージガスのガス流速は11mm毎秒であったことから、ガス流速ファクタを算出すると3.9毎秒であった。
(Experimental example 2)
A heat exchanger type adsorption tower in which a heat transfer tube having an outer diameter of 23 mm is processed into a coil shape (loop diameter 120 mm, number of loops 15) in an adsorption tower having a length of 600 mm and an inner diameter of 150 mm. The outside of the heat transfer tube was filled with 3.6 kg of silica gel having an average particle diameter of 2.8 mm (Carriert Q-6 manufactured by Fuji Silysia). Prior to the adsorption operation, 30 L of silicon oil (YF33-100 manufactured by Momentive Performance Materials Japan) temperature-controlled at 20 ° C. was stored in the cold medium storage tank, and the silicon oil was flowed in the heat transfer tube at a flow rate of 3 L. / Min. Further, using a simulated exhaust gas generator, a toluene / air balance gas having a concentration of 5,300 ppm was prepared, and when the simulated exhaust gas was continuously vented to the adsorption tower at 300 L / min, adsorption breakthrough occurred after 22 minutes. The total amount of toluene adsorbed during this period was calculated to be 131 g. Since the gas flow rate at this time was 283 mm per second, the gas flow rate factor was calculated to be 101 per second. Thereafter, the adsorbent was regenerated. Prior to the regeneration process, 30 L of silicon oil controlled to a temperature of 120 ° C. was prepared in the heating medium storage tank, and the silicon oil was circulated through the heat medium flow path at a flow rate of 3 L / min. The temperature of the adsorbent packed bed reached 116 ° C. 40 minutes after the start of distribution of the silicone oil. Thereafter, regeneration of the adsorbent was carried out by continuously venting air as a purge gas at 12 L / min through the adsorption tower for 40 minutes to desorb toluene adsorbed on the adsorbent. When the desorbed high-concentration toluene vapor was continuously passed through the condenser, a total of 101 g of toluene was condensed and recovered. Since the gas flow rate of the purge gas was 11 mm per second, the gas flow rate factor was calculated to be 3.9 per second.

(実験例3)
実験例1で用いた熱交換器型吸着塔において、伝熱管内に平均粒子径2.8mmのシリカゲル(富士シリシア製キャリアクトQ−6)を6L(3.6kg)充填した。なお、吸着操作に先立ち、冷熱媒体貯留槽に20℃に温度制御されたシリコンオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製YF33−100)を30L貯留し、吸着塔内であって伝熱管の外側には該シリコンオイルを流量3L/minで流通させた。模擬排ガス発生装置を用い、濃度5,300ppmのトルエン/空気バランスガスを調製し、該模擬排ガスを50L/minで吸着塔へ連続通気したところ、150分間模擬排ガスに含まれるトルエンを吸着除去することができた。この時に吸着したトルエンの総量を計算すると148gであった。なお、このときのガス流速は190mm毎秒であったことから、ガス流速を吸着剤の平均粒子径で除した値で表されるガス流速ファクタは68毎秒であった。その後吸着剤の再生処理を行った。再生処理に先立ち、加熱媒体貯留槽には温度120℃に制御されたシリコンオイル30Lを用意し、該シリコンオイルを流量3L/minで熱媒体流路に流通した。なお、流通開始後4分間は流路切り換え弁を操作して、吸着塔内に残っていた20℃のシリコンオイルを冷熱媒体貯留槽に戻した。シリコンオイルを流通開始して40分後には吸着剤充填層の温度は116℃に達した。その後吸着剤の再生処理を、真空ポンプで吸着塔内を吸引しながら、吸着塔内ゲージ圧−0.09MPaにおいてパージガスとして空気を7L/minで35分間連続通気し、吸着剤に吸着したトルエンを脱着させることで行った。脱着した高濃度トルエンベーパーを連続的に凝縮器に通気したところ、合計135gのトルエンを凝縮回収した。なお、パージガスのガス流速は27mm毎秒であったことから、ガス流速ファクタを算出すると9.6毎秒であった。
(Experimental example 3)
In the heat exchanger type adsorption tower used in Experimental Example 1, 6 L (3.6 kg) of silica gel having a mean particle size of 2.8 mm (Carriert Q-6 manufactured by Fuji Silysia) was packed in the heat transfer tube. Prior to the adsorption operation, 30 L of silicon oil (YF33-100 manufactured by Momentive Performance Materials Japan) temperature-controlled at 20 ° C. was stored in the cold medium storage tank, inside the adsorption tower and outside the heat transfer tube The silicon oil was circulated at a flow rate of 3 L / min. Using a simulated exhaust gas generator, a toluene / air balance gas having a concentration of 5,300 ppm is prepared, and when the simulated exhaust gas is continuously vented to the adsorption tower at 50 L / min, the toluene contained in the simulated exhaust gas is adsorbed and removed for 150 minutes. I was able to. The total amount of toluene adsorbed at this time was 148 g. Since the gas flow rate at this time was 190 mm per second, the gas flow rate factor represented by the value obtained by dividing the gas flow rate by the average particle diameter of the adsorbent was 68 per second. Thereafter, the adsorbent was regenerated. Prior to the regeneration process, 30 L of silicon oil controlled to a temperature of 120 ° C. was prepared in the heating medium storage tank, and the silicon oil was circulated through the heat medium flow path at a flow rate of 3 L / min. In addition, the flow path switching valve was operated for 4 minutes after the start of circulation, and the 20 ° C. silicon oil remaining in the adsorption tower was returned to the cold medium storage tank. The temperature of the adsorbent packed bed reached 116 ° C. 40 minutes after the start of distribution of the silicone oil. Thereafter, regeneration of the adsorbent was performed by continuously ventilating air as a purge gas at 7 L / min for 35 minutes while sucking the inside of the adsorption tower with a vacuum pump at a pressure of 0.09 MPa in the adsorption tower to remove the toluene adsorbed on the adsorbent. It was done by desorption. When the desorbed high-concentration toluene vapor was continuously passed through the condenser, a total of 135 g of toluene was condensed and recovered. In addition, since the gas flow rate of the purge gas was 27 mm per second, the gas flow rate factor was calculated to be 9.6 per second.

(比較例1)
実験例1で用いた熱交換器型吸着塔において、伝熱管内に平均粒子径2.8mmのシリカゲル(富士シリシア製キャリアクトQ−6)を3.6kg充填した。なお、吸着操作に先立ち、模擬排ガス発生装置を用い、濃度5,300ppmのトルエン/空気バランスガスを調製し、吸着塔内であって伝熱管の外側にはシリコンオイルを循環せず、空気で満たした。該模擬排ガスを50L/minで吸着塔へ連続通気したところ、115分後に吸着破過した。すなわち破過時間は、実験例1における値(=150分)の77%に短縮した。この間に吸着したトルエンの総量を計算すると113gであった。なお、吸着剤充填層の温度は吸着開始直後では26℃であったが、吸着開始後40分後には最大となる38℃まで上昇した。本比較例1は、低温に維持した熱媒体を送給して吸着剤を冷却しないと吸着剤充填層の温度が上昇して破過時間が短縮する傾向があることを示す例である。
(Comparative Example 1)
In the heat exchanger type adsorption tower used in Experimental Example 1, 3.6 kg of silica gel having an average particle diameter of 2.8 mm (Fuji Silysia Carriert Q-6) was packed in the heat transfer tube. Prior to the adsorption operation, a toluene / air balance gas having a concentration of 5,300 ppm was prepared using a simulated exhaust gas generator, and filled with air without circulating silicon oil inside the adsorption tower and outside the heat transfer tube. It was. When the simulated exhaust gas was continuously ventilated to the adsorption tower at 50 L / min, adsorption breakthrough occurred after 115 minutes. That is, the breakthrough time was reduced to 77% of the value (= 150 minutes) in Experimental Example 1. The total amount of toluene adsorbed during this period was 113 g. The temperature of the adsorbent packed bed was 26 ° C. immediately after the start of adsorption, but increased to 38 ° C., which was the maximum 40 minutes after the start of adsorption. This comparative example 1 is an example showing that unless the adsorbent is cooled by supplying a heat medium maintained at a low temperature, the temperature of the adsorbent packed bed tends to increase and the breakthrough time tends to be shortened.

(比較例2)
本発明による熱交換機型吸着塔を用いた実験例1と既存の加熱手段を用いた場合の加熱時間を比較するため、比較例1の実験終了後、速やかに吸着塔内に充填されたシリカゲルを別途用意した長さ600mmで外径150mmの吸着塔内に充填した。吸着塔の外側には最大発熱量1.2kW(100V印加時)の電熱ヒーターが上下2段に巻かれており、それぞれ90Vの電圧を印加して吸着塔及び吸着剤の加熱を行った。このとき吸着剤充填層の温度が実験例1と同じ116℃に達するのに80分を要した。これは実験例1における加熱時間(=40分)の2倍もの長時間であった。その後、吸着剤充填層の温度を116℃に保ったまま吸着剤の再生処理を、空気を7L/minで吸着塔に50分間連続通気し、吸着剤に吸着したトルエンを脱着させることで行った。脱着した高濃度トルエンベーパーを凝縮器に通気したところ、96gのトルエンを凝縮回収することができた。本比較例2は、熱交換機型吸着塔を用いずに電熱ヒーターを使った場合、吸着剤の加熱に長時間を要す傾向があることを示す例である。
(Comparative Example 2)
In order to compare the heating time between the experimental example 1 using the heat exchanger type adsorption tower according to the present invention and the existing heating means, the silica gel filled in the adsorption tower was immediately replaced after the experiment of the comparative example 1 was completed. A separately prepared adsorption tower having a length of 600 mm and an outer diameter of 150 mm was packed. Outside the adsorption tower, electric heaters with a maximum heating value of 1.2 kW (when 100 V is applied) are wound in two upper and lower stages, and a voltage of 90 V is applied to heat the adsorption tower and the adsorbent. At this time, it took 80 minutes for the temperature of the adsorbent packed bed to reach the same 116 ° C. as in Experimental Example 1. This was twice as long as the heating time (= 40 minutes) in Experimental Example 1. After that, the adsorbent regeneration process was performed while maintaining the temperature of the adsorbent packed bed at 116 ° C. by continuously ventilating air through the adsorption tower at 7 L / min for 50 minutes to desorb the toluene adsorbed on the adsorbent. . When the desorbed high-concentration toluene vapor was passed through the condenser, 96 g of toluene could be condensed and recovered. This comparative example 2 is an example which shows that when an electric heater is used without using a heat exchanger type adsorption tower, it takes a long time to heat the adsorbent.

工業洗浄業、ドライクリーニング業、塗装業、印刷業など有機溶剤を用いる工場から排出される有機化合物蒸気を吸着法によって除去する排ガス処理装置において、吸着に効果的な低温域での吸着操作を行うことができ、また短時間で吸着剤の再生処理つまり脱着を完了することができる。 In an exhaust gas treatment system that removes organic compound vapors emitted from factories that use organic solvents such as industrial cleaning, dry cleaning, painting, and printing by the adsorption method, an adsorption operation is performed in a low temperature range that is effective for adsorption. In addition, the adsorbent regeneration process, that is, desorption can be completed in a short time.

1 吸着塔
2 吸着剤
3 伝熱管
4 熱媒体貯留槽
5 加熱または冷却手段
6 熱媒体循環ポンプ
7 流路切り替え弁
11 ガス導入路
12 ガス排出口
DESCRIPTION OF SYMBOLS 1 Adsorption tower 2 Adsorbent 3 Heat exchanger tube 4 Heat medium storage tank 5 Heating or cooling means 6 Heat medium circulation pump 7 Flow path switching valve 11 Gas introduction path 12 Gas outlet

Claims (4)

吸着塔内に配置した外径15mm以上35mm以下の伝熱管内に平均粒子径0.08mm以上5mm以下の吸着剤を充填し、吸着塔内であって伝熱管の外側に送給する熱媒体と該吸着剤との間で熱交換を行わせることを特徴とする熱交換器型吸着塔 A heat transfer pipe having an average particle diameter of 0.08 mm or more and 5 mm or less filled in a heat transfer tube having an outer diameter of 15 mm or more and 35 mm or less arranged in the adsorption tower, and being fed to the outside of the heat transfer pipe in the adsorption tower; A heat exchanger type adsorption tower characterized by causing heat exchange with the adsorbent 平均粒子径0.08mm以上5mm以下の吸着剤が充填された吸着塔内に外径15mm以上35mm以下の伝熱管を配置し、該伝熱管内に送給する熱媒体と該吸着剤との間で熱交換を行わせることを特徴とする熱交換器型吸着塔 A heat transfer tube having an outer diameter of 15 mm or more and 35 mm or less is arranged in an adsorption tower filled with an adsorbent having an average particle size of 0.08 mm or more and 5 mm or less, and between the adsorbent and the heat medium fed into the heat transfer tube Heat exchanger type adsorption tower 請求項1又は2記載の熱交換器型吸着塔を用い、温度が−30℃以上30℃未満に制御された熱媒体を送給した吸着塔に排ガスを、ガス流速を吸着剤の平均粒子径で除した値が30毎秒以上4000毎秒以下となるガス流速で通気することで排ガスに含まれる有機化合物蒸気を吸着除去することを特徴とする排ガスの処理方法 Using the heat exchanger type adsorption tower according to claim 1 or 2, exhaust gas is sent to an adsorption tower fed with a heat medium whose temperature is controlled to be -30 ° C or higher and lower than 30 ° C, and the gas flow rate is changed to the average particle diameter of the adsorbent. An exhaust gas treatment method comprising adsorbing and removing organic compound vapor contained in the exhaust gas by aeration at a gas flow rate such that the value divided by 30 is not less than 30 per second and not more than 4000 per second 請求項1又は2記載の熱交換器型吸着塔を用い、温度が50℃以上300℃未満に制御された熱媒体を送給した吸着塔に空気、窒素、酸素、アルゴンから選ばれる1種以上のガスを通気することで吸着剤に吸着した物質を脱着させることを特徴とする吸着剤の再生処理方法
One or more types selected from air, nitrogen, oxygen, and argon are used in the adsorption tower that uses the heat exchanger type adsorption tower according to claim 1 or 2 and feeds a heat medium whose temperature is controlled to be 50 ° C or higher and lower than 300 ° C. Of adsorbent by desorbing a substance adsorbed on the adsorbent by ventilating the gas
JP2010016558A 2010-01-28 2010-01-28 Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower Pending JP2011152526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016558A JP2011152526A (en) 2010-01-28 2010-01-28 Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016558A JP2011152526A (en) 2010-01-28 2010-01-28 Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower

Publications (1)

Publication Number Publication Date
JP2011152526A true JP2011152526A (en) 2011-08-11

Family

ID=44538866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016558A Pending JP2011152526A (en) 2010-01-28 2010-01-28 Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower

Country Status (1)

Country Link
JP (1) JP2011152526A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103463832A (en) * 2013-10-09 2013-12-25 吉首大学 Tail gas refrigeration recycling processing device
KR101621310B1 (en) 2014-06-18 2016-05-16 고등기술연구원 연구조합 Adsorption and desorption apparatus using activated carbon fiber and method thereof
KR101637901B1 (en) * 2015-01-29 2016-07-11 한국산업기술시험원 Activated carbon absorbing apparatus
CN106839796A (en) * 2016-07-11 2017-06-13 湖南屎壳郎环境科技有限公司 A kind of foul smell heat exchange condensing system and method
CN108067083A (en) * 2018-01-24 2018-05-25 德阳天赐塑胶有限责任公司 A kind of coating complex machine device for recycling exhaust gas
KR20190057538A (en) * 2017-11-20 2019-05-29 한국에너지기술연구원 Concentric Tube Annulus Type Adsorption and Desorption Apparatus for Adsorbent
JP2019098220A (en) * 2017-11-29 2019-06-24 日本精工株式会社 Device for collecting and discharging carbon dioxide
KR102107135B1 (en) 2019-12-06 2020-05-06 주식회사 한울엔지니어링 Integrated PSA System with Water Gas Shift Process and Process
JP2020089833A (en) * 2018-12-05 2020-06-11 栗田工業株式会社 Gas adsorption apparatus and gas adsorption method
KR102184349B1 (en) 2020-06-25 2020-11-30 주식회사 한울엔지니어링 Separating and Recovering Process and Apparatus of Hydrogen and Carbon dioxide from Byproduct Gas
CN113244738A (en) * 2021-05-08 2021-08-13 洛阳中硅高科技有限公司 Adsorption device
CN114082272A (en) * 2022-01-21 2022-02-25 山东神驰石化有限公司 Propylene recovery device for tail gas at top of deethanizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285322A (en) * 1993-04-02 1994-10-11 Kohei Urano Method and device for recovering volatile organic material
JPH0768127A (en) * 1993-06-15 1995-03-14 Toho Kako Kensetsu Kk Hot-air desorption type solvent recovering device
JP2000317246A (en) * 1999-03-10 2000-11-21 Japan Pionics Co Ltd Method and device for recovering ammonia
JP2005144407A (en) * 2003-11-19 2005-06-09 Shoji Mishima Absorption and desorption tank structure, and method for absorption and desorption
JP2005230618A (en) * 2004-02-17 2005-09-02 Nishimatsu Constr Co Ltd Removal method for nitrogen oxide and removal device for nitrogen oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285322A (en) * 1993-04-02 1994-10-11 Kohei Urano Method and device for recovering volatile organic material
JPH0768127A (en) * 1993-06-15 1995-03-14 Toho Kako Kensetsu Kk Hot-air desorption type solvent recovering device
JP2000317246A (en) * 1999-03-10 2000-11-21 Japan Pionics Co Ltd Method and device for recovering ammonia
JP2005144407A (en) * 2003-11-19 2005-06-09 Shoji Mishima Absorption and desorption tank structure, and method for absorption and desorption
JP2005230618A (en) * 2004-02-17 2005-09-02 Nishimatsu Constr Co Ltd Removal method for nitrogen oxide and removal device for nitrogen oxide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103463832A (en) * 2013-10-09 2013-12-25 吉首大学 Tail gas refrigeration recycling processing device
KR101621310B1 (en) 2014-06-18 2016-05-16 고등기술연구원 연구조합 Adsorption and desorption apparatus using activated carbon fiber and method thereof
KR101637901B1 (en) * 2015-01-29 2016-07-11 한국산업기술시험원 Activated carbon absorbing apparatus
CN106839796A (en) * 2016-07-11 2017-06-13 湖南屎壳郎环境科技有限公司 A kind of foul smell heat exchange condensing system and method
KR20190057538A (en) * 2017-11-20 2019-05-29 한국에너지기술연구원 Concentric Tube Annulus Type Adsorption and Desorption Apparatus for Adsorbent
KR102009335B1 (en) * 2017-11-20 2019-08-12 한국에너지기술연구원 Concentric Tube Annulus Type Adsorption and Desorption Apparatus for Adsorbent
JP7043806B2 (en) 2017-11-29 2022-03-30 日本精工株式会社 Carbon dioxide recovery / release device
JP2019098220A (en) * 2017-11-29 2019-06-24 日本精工株式会社 Device for collecting and discharging carbon dioxide
CN108067083A (en) * 2018-01-24 2018-05-25 德阳天赐塑胶有限责任公司 A kind of coating complex machine device for recycling exhaust gas
CN108067083B (en) * 2018-01-24 2023-08-11 德阳天赐塑胶有限责任公司 Coating compounding machine waste gas recycle device
JP2020089833A (en) * 2018-12-05 2020-06-11 栗田工業株式会社 Gas adsorption apparatus and gas adsorption method
JP7243161B2 (en) 2018-12-05 2023-03-22 栗田工業株式会社 Gas adsorption device and gas adsorption method
KR102107135B1 (en) 2019-12-06 2020-05-06 주식회사 한울엔지니어링 Integrated PSA System with Water Gas Shift Process and Process
US11465094B2 (en) 2019-12-06 2022-10-11 Hanwoul Engineering Inc. PSA separation-purification system and process integrated with water gas shift reaction process
KR102184349B1 (en) 2020-06-25 2020-11-30 주식회사 한울엔지니어링 Separating and Recovering Process and Apparatus of Hydrogen and Carbon dioxide from Byproduct Gas
CN113244738A (en) * 2021-05-08 2021-08-13 洛阳中硅高科技有限公司 Adsorption device
CN113244738B (en) * 2021-05-08 2024-03-19 洛阳中硅高科技有限公司 Adsorption device
CN114082272A (en) * 2022-01-21 2022-02-25 山东神驰石化有限公司 Propylene recovery device for tail gas at top of deethanizer
CN114082272B (en) * 2022-01-21 2022-06-10 山东神驰石化有限公司 Propylene recovery device for tail gas at top of deethanizer

Similar Documents

Publication Publication Date Title
JP2011152526A (en) Adsorption tower equipped with flow passage for heating medium feeding and use of the adsorption tower
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
JP5820254B2 (en) Carbon dioxide separator
JP5892904B2 (en) Ozone supply system and wastewater treatment system
JP2013059760A (en) Adsorption unit, adsorption device, and method for regenerating thereof
JP7006886B2 (en) Hydrogen production equipment and hydrogen production method
CA2602032A1 (en) The system of treating odor and hazardous gas with rotary regenerative heat exchanger and its apparatus
JP2009179842A (en) Hydrogen generation system
JP5846546B2 (en) Apparatus and method for treating exhaust gas containing volatile organic compound
JP6393965B2 (en) Wastewater treatment system
CN109548400A (en) System is removed using the VOCS of gas distribution plate
US7294173B2 (en) Method and system for desorption and recovery of desorbed compounds
JP6311342B2 (en) Wastewater treatment system
JP3994157B2 (en) Method and apparatus for purifying gases containing organic contaminants
JP2005118661A (en) Method for removing siloxane
JP6332586B2 (en) Water treatment device and water treatment system
CN105854510B (en) A kind of VOCs processing equipment and method
RU2363523C2 (en) Sorbing system including heat conducting element
WO2000025900A1 (en) Method and device for recovering hydrocarbon vapor
CN110508095B (en) Volatile organic compound adsorption and desorption treatment and resource recovery device
JP3988762B2 (en) Organic substance-containing gas treatment equipment and treatment method
WO2008023659A1 (en) Apparatus for treating organic-containing gas and method of treating the same
JP6740818B2 (en) Organic solvent recovery system
CN113209773A (en) VOCs adsorption and desorption equipment and method
JP6765921B2 (en) Water treatment equipment, water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028