JP5298292B2 - A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. - Google Patents
A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. Download PDFInfo
- Publication number
- JP5298292B2 JP5298292B2 JP2009016750A JP2009016750A JP5298292B2 JP 5298292 B2 JP5298292 B2 JP 5298292B2 JP 2009016750 A JP2009016750 A JP 2009016750A JP 2009016750 A JP2009016750 A JP 2009016750A JP 5298292 B2 JP5298292 B2 JP 5298292B2
- Authority
- JP
- Japan
- Prior art keywords
- voc
- moisture
- tower
- temperature
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Drying Of Gases (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
本発明は、吸着剤を利用した水分除去、冷熱の回収を行う、温度スイング法VOC濃縮、低温液化VOC回収方法である。 The present invention is a temperature swing method VOC concentration / low temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
VOCを含有する排ガス処理に於いて最も頻繁に採用されている方法は、排ガスに含まれるVOCを高シリカゼオライトを充填した吸着塔に供給してVOCを吸着除去し,VOCを吸着した高シリカゼオライト吸着塔に高温熱風を供給してVOCを高温脱着させ,減容濃縮して脱着したVOCを触媒燃焼で酸化分解するTSA−VOC+触媒燃焼である。 The most frequently used method for treating exhaust gas containing VOC is to supply VOC contained in the exhaust gas to an adsorption tower packed with high silica zeolite to adsorb and remove VOC, and to adsorb VOC. This is TSA-VOC + catalytic combustion in which high temperature hot air is supplied to the adsorption tower to desorb VOC at high temperature, and the VOC desorbed by volume reduction and concentration is oxidized and decomposed by catalytic combustion.
又今後普及が予想されるものとしては米国環境保護局(EPA)が提案している強誘電体(チタン酸バリウム等)の充填塔において強誘電体表面で延命放電を行い,ここにVOC含有ガスを供給することで酸化分解する充填塔プラズマ処理 (Packed Bed Plasma)がある。これらの方法はVOCの処理に対し一定の性能を示しているが,TSA−VOC+触媒燃焼では装置の複雑さと操作の煩雑さによるコスト低減の限界があり,充填塔プラズマ処理では対象VOC及びVOC除去率に限界があり今後のVOC排出規制に対応できない懸念がある。 Also expected to be widely used in the future is a life-extinguishing discharge on the surface of a ferroelectric (barium titanate, etc.) packed by the US Environmental Protection Agency (EPA), which contains VOC-containing gas. There is a packed tower plasma treatment that oxidizes and decomposes by supplying (Paked Bed Plasma). Although these methods show a certain level of performance for VOC processing, TSA-VOC + catalytic combustion has the limitations of cost reduction due to the complexity of the equipment and the complexity of operation. In packed tower plasma processing, the target VOC and VOC are removed. There is a concern that the rate will be limited and future VOC emission regulations will not be met.
VOC含有ガスにオゾンを加えてVOCの均一気相反応による酸化分解をすることも考えられるが,低濃度VOCに対するオゾン酸化反応が遅いこと,未反応オゾンの処理が煩雑なこと,酸化剤として使用するオゾンの製造コストが高価なことから実用化には至っていない。又オゾン酸化反応の反応効率の向上のためVOCを高シリカゼオライトに吸着して除去した後,VOCを吸着した高シリカゼオライトにオゾンを添加してゼオライト中で共吸着したVOCとオゾンの酸化反応の高効率化を計ることが提案されている。この方法においてオゾン反応の高効率化は実現するが,オゾンの製造コストが高価な点については依然未解決である。 It may be possible to add ozone to the VOC-containing gas and oxidatively decompose it by homogeneous gas phase reaction of VOC, but the ozone oxidation reaction to low concentration VOC is slow, the treatment of unreacted ozone is complicated, and it is used as an oxidant Since the production cost of ozone is high, it has not been put into practical use. In order to improve the reaction efficiency of the ozone oxidation reaction, VOC is adsorbed on high silica zeolite and removed, then ozone is added to the high silica zeolite adsorbed with VOC to co-adsorb the VOC and ozone in the zeolite. It has been proposed to improve efficiency. Although the efficiency of the ozone reaction can be improved by this method, the cost of manufacturing ozone is still unsolved.
上述した従来技術において、高効率且つVOCを劣化することなく回収する方法は実用化されていない。特に、冷熱の回収法としてVOC回収後の低温空気を蓄熱式熱交換器を使用し、水分吸着剤の使用法としてVOC回収、冷熱回収後の乾燥空気を使用する連続的な、冷熱回収、水分除去方法の使用は知られていない。 In the above-described prior art, a method for recovering the VOC without degrading it with high efficiency has not been put into practical use. In particular, using cold storage air heat storage heat exchanger as a cold recovery method, using a heat storage heat exchanger, using VOC recovery as a moisture adsorbent, using dry air after cold recovery, continuous cold recovery, moisture The use of removal methods is not known.
本発明者等は、少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水分を含有する空気を相対的低温でVOC選択型吸着剤吸着塔に導入して吸着剤と接触させてVOCを吸着剤に吸着させて空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して脱着して、VOC処理ガスを減容濃縮し、減容濃縮したVOCガスを、少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水分を含有する空気を加圧して水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて低温に冷却された蓄熱材充填塔に導入して蓄熱材と接触させて冷却し、最寒冷温度になるように冷却器で冷却してVOCを液化回収し、流過する低温、低VOC、低水分濃度の空気を減圧して、他の蓄熱材充填塔に導入し蓄熱材と接触させて冷熱を回収して昇温し、空気を減圧して他の水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去、冷熱の回収を行ない、流過した窒素から水分を除去した後、VOC選択型吸着剤の高温再生に使用することにより連続的に低温液化条件でのVOC回収方法の成立することを見いだした。 The present inventors introduced air containing volatile organic compounds (hereinafter referred to as VOC) and moisture into a VOC selective adsorbent adsorption tower at a relatively low temperature in at least one of the two tower type adsorption towers. The VOC is adsorbed by the adsorbent to release the air out of the system, the adsorbed VOC is desorbed using nitrogen at a relatively high temperature, the VOC treatment gas is reduced in volume, and the volume is reduced. Concentrated VOC gas is adsorbed by adsorbing air containing volatile organic compounds (hereinafter referred to as VOC) and moisture into a moisture-selective adsorbent adsorption tower in at least one of the two tower type adsorption towers. The water is adsorbed to the adsorbent and separated from the VOC, and then introduced into the heat storage material packed tower cooled to a low temperature, brought into contact with the heat storage material, cooled, and cooled to the coldest temperature. Liquefaction and recovery of VOC by cooling in a vessel, low temperature, low VOC flowing through Reduce the pressure of air with a low moisture concentration, introduce it into another heat storage material packed tower, bring it into contact with the heat storage material, recover the cold, raise the temperature, reduce the air, and introduce it into another moisture selective adsorbent adsorption tower The adsorbent to desorb moisture from the adsorbent, regenerate the moisture adsorbent, switch the tower before moisture breaks through, remove moisture, collect cold, and remove moisture from the flowing nitrogen. After the removal, it was found that the VOC recovery method under the low temperature liquefaction condition was established continuously by using it for the high temperature regeneration of the VOC selective adsorbent.
かくして、本発明によれば、下記の1〜8の発明を提供する:
1.少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水 分を含有する空気を相対的低温でVOC吸着塔に導入してVOC選択型吸着剤と接触させてVOCを吸着剤に吸着させて空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して脱着して、VOC処理ガスを減容濃縮し、減容濃縮したVOCガスを少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物及び水分を含有する窒素を加圧して水分吸着塔に導入して水分選択型吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて最寒冷温度になるように冷却器で冷却してVOCを液化回収し、流過する低VOC、低水分濃度の窒素を減圧して、他の水分吸着した水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去し、流過した窒素を水分除去した後、VOC選択型吸着剤の高温再生に使用する温度スイング法VOC濃縮、低温液化VOC回収方法。
2.上記1において、少なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに窒素を使用し、低温液化凝縮器でVOCを液化回収した後、流過した窒素を水分除去後、VOC選択型吸着剤の高温再生に使用する、温度スイング法VOC濃縮、低温液化VOC回収方法。
3.同じく上記1において、少なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに高温空気を使用し、低温液化凝縮器でVOCを液化回収した後、流過した不凝縮VOCおよび水分を含有する空気をVOC選択型吸着剤の低温吸着ゾーンに還流する、温度スイング法VOC濃縮、低温液化VOC回収方法。
4.VOC選択型吸着剤が、シリカライト、USM、β、USY、MPSからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の温度スイング法VOC濃縮、低温液化VOC回収方法。
5.水分選択型吸着剤が、K−A、Na−A、Na−K−A及びCa−Aからなる群より 選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。
6.水分選択型吸着剤が、表面が液相で有機ケイ素化合物の加水分解生成物によりシリカ コートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。
7.水分選択型吸着剤が、表面が気相で有機ケイ素化合物の加水分解生成物によりシリカ コートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。
8.水分選択型吸着剤が、ハニカム形成された、上記1〜7のいずれか一に記載の水分除去、冷熱の回収を行う、低温液化VOC回収方法。
Thus, according to the present invention, the following inventions 1 to 8 are provided:
1. In one of at least two towers, an air containing a volatile organic compound (hereinafter referred to as VOC) and water is introduced into the VOC adsorption tower at a relatively low temperature and brought into contact with the VOC selective adsorbent. VOC is adsorbed by an adsorbent, air is released to the outside of the system, and the adsorbed VOC is desorbed using nitrogen at a relatively high temperature to reduce and concentrate the VOC processing gas, and to reduce at least the reduced and concentrated VOC gas. in 1 column of the adsorption tower of the double column, a volatile organic compound Mono及 beauty a nitrogen containing water pressurized by introducing into water adsorption tower water selective adsorbent adsorbent moisture in contact with Adsorption and separation from VOC, followed by cooling with a cooler to reach the coldest temperature, liquefying and collecting VOC, reducing low VOC and low moisture concentration nitrogen flowing through, adsorbing other moisture It is introduced into a moisture-selective adsorbent adsorption tower and brought into contact with the adsorbent to remove moisture. The temperature used to regenerate the moisture adsorbent by desorbing from the adsorbent, switching the tower to remove the moisture before the moisture breaks through, removing the nitrogen that has passed through, and then regenerating the VOC selective adsorbent at a high temperature Swing method VOC concentration, low temperature liquefied VOC recovery method.
2. In the above SL 1, the VOC adsorption towers instead filled at least two tower of VOC selective adsorbent, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, the purge gas of the hot regeneration zone A temperature swing method VOC concentration and low temperature liquefied VOC recovery method, in which nitrogen is used to liquefy and recover VOC in a low temperature liquefaction condenser, and then the nitrogen that has passed is removed from the water, and then used for high temperature regeneration of the VOC selective adsorbent.
3. In the above SL 1 Similarly, the VOC adsorption towers instead filled at least two tower of VOC selective adsorbent, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, a purge gas of the hot regeneration zone Temperature swing method VOC concentration in which high-temperature air is used for liquefaction and VOC is liquefied and collected in a low-temperature liquefaction condenser, and then air containing non-condensed VOC and water that has passed through is returned to the low-temperature adsorption zone of the VOC selective adsorbent. Low temperature liquefied VOC recovery method.
4 . The VOC selective adsorbent is at least one selected from the group consisting of silicalite, USM, β, USY, MPS, VOC according to 1 above , temperature swing method VOC concentration after removing moisture from moisture-containing air, low temperature Liquefied VOC recovery method .
5 . Moisture selective adsorbent, K-A, is Na-A, one or more selected from the group consisting of Na-K-A and Ca-A, according to the above item 1, wherein VOC, after removal of water from moisture-laden air Low temperature liquefied VOC recovery method .
6 . One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA and Ca-A whose surfaces are in a liquid phase and silica-coated with a hydrolysis product of an organosilicon compound in it, the one wherein the VOC, low-temperature liquefied VOC recovery method after removal of water from the moisture-containing air.
7 . One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA and Ca-A whose surfaces are in the gas phase and silica-coated with hydrolysis products of organosilicon compounds in it, the one wherein the VOC, low-temperature liquefied VOC recovery method after removal of water from the moisture-containing air.
8 . 8. A low-temperature liquefied VOC recovery method in which a moisture-selective adsorbent is formed in a honeycomb and performs water removal and cold recovery as described in any one of 1 to 7 above .
本方法においてはVOCと水分を含有する原料ガスを、室温近傍の相対的低温でVOC選択型吸着剤で吸着して、無害化した空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して、VOCを脱着して4〜12倍程度に減容濃縮するため、後段の低温液化VOC回収装置が小型化でき、パージガスとして窒素を使用することから、高温再生時の回収VOCの劣化、VOC吸着剤の劣化を回避でき、またVOC回収時の引火、爆発等も回避できる。大気圧近傍の減容濃縮されたVOCの回収では、VOCを殆ど吸着しない水分吸着剤を充填された吸着塔で行われ、VOCを除去された窒素は前段のVOC吸着剤の再生に使用されるため、本方法においてはVOC含有窒素中のVOCを室温以下の低温で 液化、回収をすることが出来る。このため回収工程は窒素雰囲気で実施されるため安全であり、またVOCは劣化することなく回収され、VOC吸着剤も劣化されることがない。本方法を採用することにより、コンパクトで、窒素雰囲気で操作される安全な操作で、省エネルギーの、回収溶剤及び吸着剤の劣化のないVOCの回収装置を提供することが可能である。 In this method, a raw material gas containing VOC and moisture is adsorbed by a VOC selective adsorbent at a relatively low temperature near room temperature, detoxified air is released out of the system, and the adsorbed VOC is released at a relatively high temperature. Since VOC is desorbed using nitrogen and the volume is reduced to about 4 to 12 times, the downstream low-temperature liquefied VOC recovery device can be miniaturized , and nitrogen is used as the purge gas. Deterioration, VOC adsorbent deterioration, and ignition, explosion, etc. during VOC recovery can be avoided. Recovery of volume-reduced and concentrated VOC near atmospheric pressure is performed in an adsorption tower filled with a moisture adsorbent that hardly adsorbs VOC, and the nitrogen from which VOC has been removed is used to regenerate the VOC adsorbent in the previous stage. Therefore, in this method, VOC in the VOC-containing nitrogen can be liquefied and recovered at a low temperature below room temperature. Therefore, the recovery process is safe because it is performed in a nitrogen atmosphere, and VOC is recovered without deterioration, and the VOC adsorbent is not deteriorated. By adopting this method, it is possible to provide a VOC recovery apparatus that is compact, safe and operated in a nitrogen atmosphere, and that saves energy and does not deteriorate the recovered solvent and adsorbent.
本発明において用いるVOC選択型吸着剤は、シリカライト、USM、β、USY、MPSからなる群より選ばれる一種以上であり、また、本発明において用いる水分選択型吸着剤は、K−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である。ここでNa−K−Aは、Na−A型ゼオライトのNaの一部をKに交換して熱処理することにより窓径を縮小させたものであり、この調製法は非特許文献1に記載されている。
上記VOC選択型吸着剤は、VOC−水分2成分系において高いVOC/水分分離係数を有すると判断され、水分選択型吸着剤は、VOC−水分2成分系において高い水分/VOC分離係数を有すると判断される。
The VOC selective adsorbent used in the present invention is at least one selected from the group consisting of silicalite, USM, β, USY, MPS, and the moisture selective adsorbent used in the present invention is KA, Na. It is 1 or more types chosen from the group which consists of -A, Na-KA and Ca-A. Here, Na-K-A is obtained by reducing a window diameter by exchanging a part of Na of Na-A-type zeolite with K and performing a heat treatment. This preparation method is described in Non-Patent Document 1. ing.
The VOC selective adsorbent is judged to have a high VOC / moisture separation coefficient in the VOC-water binary system, and the moisture selective adsorbent has a high water / VOC separation coefficient in the VOC-water binary system. To be judged.
水分選択型吸着剤としては、表面が液相又は気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上であるのが好ましい。有機ケイ素化合物の加水分解生成物を気相又は液相で上記吸着剤結晶表面にシリカコートすることにより、水分選択性が強化される。 As the moisture selective adsorbent, from the group consisting of KA, Na-A, Na-KA and Ca-A whose surfaces are silica-coated with a hydrolysis product of an organosilicon compound in the liquid phase or gas phase. It is preferably one or more selected. Moisture selectivity is enhanced by silica-coating the surface of the adsorbent crystal in the gas phase or liquid phase with the hydrolysis product of the organosilicon compound.
本発明において用いる結晶表面にシリカコートを施した水分選択型吸着剤は、溶剤、例えばメチルアルコールにスラリー状にゼオライトパウダーを懸濁させ、これにテンプレート、例えばテトラエトキシオルソシリケート(TEOS)を結晶表面に必要な厚さに相当する量を加え、これにH2O/TEOS比5〜20程度で水分を加えると、シリカが析出する。 The moisture-selective adsorbent having a silica coat on the crystal surface used in the present invention is obtained by suspending zeolite powder in a slurry form in a solvent such as methyl alcohol, and a template such as tetraethoxyorthosilicate (TEOS) on the crystal surface. When an amount corresponding to the necessary thickness is added, and water is added thereto at a H 2 O / TEOS ratio of about 5 to 20, silica is precipitated.
コーティング終了後、シリカゾルを加えてゼオライト:シリカゾル:脱イオン水=5〜30:1〜10:100程度でスラリーを調製し、これをハニカム基材に浸積して担持させ、温度約90〜150℃で約0.5〜3時間表面水分を除去し、約30〜80℃/hで昇温して約250〜450℃、約0.5〜3時間保持してケイ酸の脱水を完了してゼオライト結晶表面のSi−O−Siのネットワークを完成し且つ、脱水による活性化が終了する。このコーティング条件で結晶表面に0.05〜0.1μmのシリカ薄膜が生成する。 After coating is completed, silica sol is added to prepare a slurry of zeolite: silica sol: deionized water = 5 to 30: 1 to 10: 100, and the slurry is immersed and supported on the honeycomb substrate, and the temperature is about 90 to 150. Remove the surface moisture at about 0.5-3 hours at ℃, heat up at about 30-80 ℃ / h and hold at about 250-450 ℃ for about 0.5-3 hours to complete dehydration of silicic acid Thus, the Si—O—Si network on the zeolite crystal surface is completed and the activation by dehydration is completed. Under this coating condition, a silica thin film of 0.05 to 0.1 μm is formed on the crystal surface.
又同じくTEOS(tetra−ethyl−ortho−silicate), TMOS(tetra−methyl−ortho−silicate)含有アンモニア蒸気をA型ゼオライトのパウダーに吸着させるとA型ゼオライト結晶の表面でTEOS,TMOSの加水分解によりにSi−O−Siのネットワークが構成されてシリカ薄膜が生成する。 Similarly, when ammonia vapor containing TEOS (tetra-ethyl-ortho-silicate) or TMOS (tetra-methyl-ortho-silicate) is adsorbed on the A-type zeolite powder, the surface of the A-type zeolite crystal is hydrolyzed by TEOS and TMOS. In addition, a Si-O-Si network is formed to produce a silica thin film.
シリカコートを施したK−A、Na−A、Na−K−A及びCa−Aゼオライトは、これらの内の二種以上を組み合わせて用いてもよい。 Silica-coated KA, Na-A, Na-KA, and Ca-A zeolite may be used in combination of two or more thereof.
本発明において用いる結晶表面にシリカコートを施した吸着剤は、ハニカム形成されたものを用いれば、吸着剤吸着塔を通過する際の圧損が小さくなることから望ましい。ハニカムの調製法としては、アルミノシリケートの基材に当該ゼオライトとシリカゾル等の無機バインダーの混合スラリーに浸積して、これを乾燥するとゼオライトが担持される。浸積と乾燥を数回繰り返すと所定の担持量に達する。(嵩密度0.3以上、ゼオライト担持量0.1g/ml以上)これを350℃以上、1時間焼成するとゼオライトの基材への固定と活性化が達成される。
他の方法としてはアルミノシリケートファイバー、当該ゼオライト、無機バインダー、セルロースでゼオライト含有ペーパを調製し(抄紙し)、この一部を段繰り機で波形に成型し、平板と波形板を交互に積層することでハニカムを成型する。これを350℃以上、1時間焼成するとゼオライトの基材への固定と活性化が達成される。
If the adsorbent having a silica coat on the crystal surface used in the present invention is a honeycomb-formed adsorbent, it is desirable because the pressure loss when passing through the adsorbent adsorption tower is reduced. As a method for preparing the honeycomb, the zeolite is supported by dipping in a mixed slurry of the zeolite and an inorganic binder such as silica sol on an aluminosilicate substrate and drying it. When the soaking and drying are repeated several times, a predetermined loading amount is reached. (Bulk density of 0.3 or more, zeolite loading of 0.1 g / ml or more) When this is calcined at 350 ° C. or more for 1 hour, fixation and activation of the zeolite to the base material are achieved.
Another method is to prepare a paper containing zeolite with aluminosilicate fiber, the zeolite, inorganic binder, and cellulose (making paper), forming a part of it into a corrugated shape using a corrugating machine, and laminating flat plates and corrugated plates alternately. Then, the honeycomb is formed. When this is calcined at 350 ° C. or higher for 1 hour, fixation and activation of the zeolite to the base material are achieved.
[VOC吸着塔]
第1ステップ(A塔−吸着工程、B塔−再生工程)
図1に於いて、VOC、水分を含有する空気を流路1、ブロワー2からバルブ3aを通じてVOC/水分選択性の高いVOC吸着剤5の充填されたVOC吸着塔4aに、吸着温度約5〜50℃で供給されるとVOCのみが選択的に吸着されてVOCを除去された空気が塔後方から流過し、バルブ6a、流路7を通じて系外に放出される。この時、VOC吸着塔4bは前回の吸着工程で吸着されたVOCを保有しており、これを液化回収工程から還流しヒータ29で昇温された窒素はVOC吸着剤5と接触して、減容濃縮して脱着される。流路12から流過した減容濃縮したVOC含有窒素は低温液化回収ユニットのブロワー13に供給される。
[VOC adsorption tower]
First step (A tower-adsorption process, B tower-regeneration process)
In FIG. 1, VOC and moisture containing air are passed from a flow path 1 and a blower 2 to a VOC adsorption tower 4a filled with a VOC / moisture selective VOC adsorbent 5 through a valve 3a. When supplied at 50 ° C., only the VOC is selectively adsorbed and the air from which the VOC has been removed flows from the rear of the tower and is discharged out of the system through the valve 6 a and the flow path 7. At this time, the VOC adsorption tower 4b holds the VOC that has been adsorbed in the previous adsorption process, and the nitrogen that has been refluxed from the liquefaction recovery process and heated by the heater 29 comes into contact with the VOC adsorbent 5 and decreases. It is concentrated and desorbed. The volume-reduced and concentrated VOC-containing nitrogen flowing from the flow path 12 is supplied to the blower 13 of the low-temperature liquefaction recovery unit.
第2ステップ(A塔−再生工程、B塔−吸着工程)
ここで第1ステップと同じ操作をA塔とB塔を変更して、第2ステップで実施する。
Second step (A tower-regeneration process, B tower-adsorption process)
Here, the same operation as the first step is performed in the second step by changing the A tower and the B tower.
[PSA−VOC低温液化回収]
第1ステップ(A塔−吸着工程、B塔−向流パージ工程)
図1に於いて、VOC、水分を含有する窒素を流路12、ブロワー13からバルブ14 aを通じて水分/VOC選択性の高い水分吸着剤16の充填された水分吸着塔15aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてVOCを含有する室温、超乾燥状態の窒素が塔後方から流過し、減圧弁17a、バルブ18aを通じて蓄熱材20の充填された蓄熱材充填塔19aに供給される。この時、塔19aは前回の再生工程で回収された冷熱により冷却されており、VOC含有、室温の乾燥窒素と接触して、蓄熱材20は昇温し、乾燥窒素は冷却される。流路22から流過した低温、VOC含有乾燥窒素はチラーユニット23で最寒冷に冷却されて、流路25からVOCが液化回収される。未回収VOCを含有する低温、超乾燥窒素は流路24から蓄熱材20の充填された蓄熱材充填塔19bに供給され蓄熱材20は冷却されて、乾燥窒素は昇温する。昇温した乾燥窒素はバルブ18b、減圧弁17bを通じて水分吸着剤16の充填された水分吸着塔15bに向流に供給される。ここで吸着塔15bは、バルブ21bを通じて真空ポンプ26で排気されるため、再生圧力約50〜80kPaの低圧で吸着された水分は脱着して再生される。ここで蓄熱材としては0.5〜10mmφの鉄、アルミニュウム等の金属球で構成される。流過した水分含有窒素はチラーユニット27で冷却されて流路28から水分が除去され、ヒータ29にパージガスとして還流する。
[PSA-VOC low temperature liquefaction recovery]
First step (A tower-adsorption process, B tower-countercurrent purge process)
In FIG. 1, the adsorption pressure of about 110 is applied to the moisture adsorption tower 15a filled with the moisture adsorbent 16 having a high moisture / VOC selectivity from the flow path 12 and the blower 13 through the valve 14a. When supplied at ˜150 kPA, only moisture is selectively adsorbed and room temperature and ultra-dry nitrogen containing VOC flows from the rear of the tower, and the heat storage material 20 is filled with the heat storage material 20 through the pressure reducing valve 17a and the valve 18a. It is supplied to the material packed tower 19a. At this time, the tower 19a is cooled by the cold heat collected in the previous regeneration step, and comes into contact with dry nitrogen at room temperature containing VOC, so that the heat storage material 20 is heated and the dry nitrogen is cooled. The low-temperature, VOC-containing dry nitrogen flowing from the flow path 22 is cooled to the coldest in the chiller unit 23, and the VOC is liquefied and recovered from the flow path 25. The low-temperature and ultra-dry nitrogen containing unrecovered VOC is supplied from the flow path 24 to the heat storage material packed tower 19b filled with the heat storage material 20, the heat storage material 20 is cooled, and the dry nitrogen is heated. The heated dry nitrogen is supplied countercurrently to the moisture adsorption tower 15b filled with the moisture adsorbent 16 through the valve 18b and the pressure reducing valve 17b. Here, since the adsorption tower 15b is exhausted by the vacuum pump 26 through the valve 21b, the moisture adsorbed at a low pressure of about 50 to 80 kPa is desorbed and regenerated. Here, the heat storage material is composed of metal balls such as iron or aluminum having a diameter of 0.5 to 10 mm. The water-containing nitrogen that has passed through is cooled by the chiller unit 27 to remove the water from the flow path 28 and return to the heater 29 as a purge gas.
第2ステップ(A塔−吸着工程、B塔−昇圧工程)
水分吸着塔15bの水分吸着剤16の再生が終了し、水分吸着塔15aの水分吸着帯が塔後方に達する直前に、バルブ14bを閉じると蓄熱材充填塔19b、水分吸着塔15bの塔内圧力は吸着圧力とほぼ等しい圧力に昇圧して第2ステップは終了する。
Second step (A tower-adsorption process, B tower-pressurization process)
When the regeneration of the moisture adsorbent 16 in the moisture adsorption tower 15b is completed and the valve 14b is closed immediately before the moisture adsorption zone of the moisture adsorption tower 15a reaches the rear of the tower, the pressure in the heat storage material packed tower 19b and the moisture adsorption tower 15b is increased. Is increased to a pressure substantially equal to the adsorption pressure, and the second step is completed.
ここで第1〜2ステップと同じ操作をA塔とB塔を変更して、第3〜4ステップで実施する。本装置による温度スイング法VOC濃縮、水分吸着除去、蓄熱式冷熱回収を行う、低温液化VOC回収方法のシーケンスを表1に示す。
[TSA−VOC減容濃縮工程]
図1に於いて、アセトン1,800ppm、水分2.5vol%を含有する空気150m3N/hを流路1、ブロワー2からバルブ3aを通じてアセトン/水分選択性の高いアセトン吸着剤5の充填されたアセトン吸着塔4aに、吸着温度約25℃で供給されるとアセトンのみが選択的に吸着されて、アセトン濃度180ppmの低アセトン濃度の空気が塔4a後方から流過し、バルブ6a、流路7を通じて系外に放出される。この時、アセトン吸着塔4bは前回の吸着工程で吸着されたアセトンを保有しており、これを液化回収工程から還流したヒータ29で昇温された窒素はアセトン吸着剤5と接触して、減容濃縮して脱着される。流路12から流過した、アセトン濃度13,500ppm、流量20m3N/hのパージガスが、低温液化回収ユニットのブロワー13に供給される。
[TSA-VOC volume reduction concentration process]
In FIG. 1, 150 m 3 N / h of air containing 1,800 ppm of acetone and 2.5 vol% of water is filled with acetone adsorbent 5 having high acetone / water selectivity through the flow path 1 and the blower 2 through the valve 3a. When acetone is supplied to the acetone adsorption tower 4a at an adsorption temperature of about 25 ° C., only acetone is selectively adsorbed, and air with an acetone concentration of 180 ppm and a low acetone concentration flows from the rear of the tower 4a. 7 is released out of the system. At this time, the acetone adsorption tower 4b holds the acetone adsorbed in the previous adsorption step, and the nitrogen heated by the heater 29 refluxed from the liquefaction recovery step comes into contact with the acetone adsorbent 5 and decreases. It is concentrated and desorbed. A purge gas having an acetone concentration of 13,500 ppm and a flow rate of 20 m 3 N / h flowing from the flow path 12 is supplied to the blower 13 of the low temperature liquefaction recovery unit.
[PSA−VOC低温液化回収]
引き続き、図1に於いて、アセトン、水分を含有する窒素を流路12、ブロワー13か らバルブ14aを通じて水分/アセトン選択性の高い水分吸着剤16の充填された水分吸 着塔15aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてアセトンを含有する25℃、露点−68℃の超乾燥状態の窒素が塔後方から流過し、減圧弁17a、バルブ18aを通じて蓄熱材20の充填された蓄熱材充填塔19aに供給される。この時、塔19aは前回の再生工程で回収された冷熱により−55〜−60℃に冷却されており、アセトン含有乾燥窒素と接触して、蓄熱材20は昇温し、乾燥窒素は−55℃に冷却される。流路22から流過した低温、アセトン含有乾燥窒素はチラーユニット23で−60℃に冷却されて、流路25からアセトンが液化回収される。アセトン濃度1,400ppmの未回収アセトンを含有する低温、超乾燥窒素は流路24から蓄熱材20の充填された蓄熱材充填塔19bに供給され蓄熱材20は冷却されて、乾燥窒素は20℃に昇温する。昇温した乾燥窒素はバルブ18b、減圧弁17bを通じて水分吸着剤16の充填された水分吸着塔15bに向流に供給される。ここで吸着塔15bは、バルブ21bを通じて真空ポンプ26で排気されるため、再生圧力約50〜80kPaの低圧で、吸着された水分は脱着して再生される。ここで蓄熱材としては0.5〜10mmφの鉄、アルミニュウム等の金属球で構成される。真空ポンプ26から流過した水分含有窒素はチラーユニット27で5℃に冷却されて、流路28から水分が液化除去されて、乾燥窒素は再生用パージガスとしてヒータ29に還流する。
[PSA-VOC low temperature liquefaction recovery]
Subsequently, in FIG. 1, acetone and nitrogen containing water are adsorbed from the flow path 12 and the blower 13 through the valve 14a to the water adsorption tower 15a filled with the moisture adsorbent 16 having high moisture / acetone selectivity. When supplied at a pressure of about 110 to 150 kPA, only moisture is selectively adsorbed, and acetone containing 25 ° C. and dew point −68 ° C. ultra-dry nitrogen flows from the rear of the column, and the pressure reducing valve 17a and valve 18a And supplied to the heat storage material filling tower 19a filled with the heat storage material 20. At this time, the column 19a is -55 by cold recovered in the last regeneration step - 60 ° C. and cooled to, in contact with the acetone containing dry nitrogen, the heat storage material 20 is heated, dry nitrogen is -55 Cool to ° C. The low-temperature, acetone-containing dry nitrogen flowing through the flow path 22 is cooled to −60 ° C. by the chiller unit 23, and acetone is liquefied and recovered from the flow path 25. Low-temperature, ultra-dry nitrogen containing unrecovered acetone with an acetone concentration of 1,400 ppm is supplied from the flow path 24 to the heat storage material packed tower 19b filled with the heat storage material 20, the heat storage material 20 is cooled, and the dry nitrogen is 20 ° C. The temperature rises to The heated dry nitrogen is supplied countercurrently to the moisture adsorption tower 15b filled with the moisture adsorbent 16 through the valve 18b and the pressure reducing valve 17b. Here, since the adsorption tower 15b is exhausted by the vacuum pump 26 through the valve 21b, the adsorbed moisture is desorbed and regenerated at a regeneration pressure of about 50 to 80 kPa. Here, the heat storage material is composed of metal balls such as iron or aluminum having a diameter of 0.5 to 10 mm. The water-containing nitrogen flowing from the vacuum pump 26 is cooled to 5 ° C. by the chiller unit 27, the water is liquefied and removed from the flow path 28, and the dry nitrogen returns to the heater 29 as a regeneration purge gas.
この工程が終了すると、第1〜2ステップと同じ操作をA塔とB塔を変更して、第3〜4ステップで実施する。 When this step is completed, the same operation as the first and second steps is performed in the third and fourth steps by changing the tower A and the tower B.
水分選択型吸着剤サンプル1−1〜1−12、比較例13、14及VOC選択型吸着剤サンプル2−1〜2−5による、a)水分選択型吸着剤としての各種ゼオライト系水分吸着剤の調製、b)同左性能評価および、c)VOC選択型吸着剤としての、各種ゼオライト系VOC吸着剤の性能評価を行った。
本発明の有効性を確認するため充填塔4a、4bのVOC選択型吸着剤ハニカム5として、シリカライト、USM、β、USY、MPSのハニカムを調製し、入口ガス量80m3N/h、入口ガス組成としてアセトン1,800ppm、水分2.5vol%、残ガス空気条件で、TSA−VOC減容濃縮ユニットとPSA−VOC低温液化回収ユニットから構成されるVOC回収装置の性能を評価した。
A) Various zeolite-based moisture adsorbents as moisture-selective adsorbents according to moisture-selective adsorbent samples 1-1 to 1-12, Comparative Examples 13 and 14, and VOC-selective adsorbent samples 2-1 to 2-5 B) Evaluation of performance on the left, and c) Performance evaluation of various zeolite-based VOC adsorbents as VOC selective adsorbents.
In order to confirm the effectiveness of the present invention, a honeycomb of silicalite, USM, β, USY, MPS was prepared as the VOC selective adsorbent honeycomb 5 of the packed towers 4a, 4b, the inlet gas amount was 80m3N / h, the inlet gas composition The performance of a VOC recovery apparatus composed of a TSA-VOC volume reduction concentration unit and a PSA-VOC low-temperature liquefaction recovery unit was evaluated under the following conditions: acetone 1,800 ppm, moisture 2.5 vol%, and residual gas air conditions.
ここで、充填塔15a、15bの水分選択型吸着剤ハニカム16として、K−A、Na−A、Na−K−A、K−A(10nm)、Na−A(10nm)、Na−K−A(10nm)、K−A(50nm)、Na−A(50nm)、Na−K−A(50nm)、K−A(100nm)、Na−A(100nm)、Na−K−A(100nm)の比較評価を行った。 Here, as the moisture selective adsorbent honeycomb 16 of the packed towers 15a and 15b, KA, Na-A, Na-KA, KA (10 nm), Na-A (10 nm), Na-K- A (10 nm), KA (50 nm), Na-A (50 nm), Na-KA (50 nm), KA (100 nm), Na-A (100 nm), Na-KA (100 nm) A comparative evaluation was conducted.
ここでK−A、Na−A、Na−K−Aの( )内はシリカコートの薄膜厚さである。ここでK−A、Na−A、Na−K−Aのシリカコートによるゼオライト結晶上の薄膜成長には、メチルアルコールにスラリー状にゼオライトパウダーを懸濁させ、これにテトラエトキシオルソシリケート(TEOS)を結晶表面に必要厚さに相当する量加え、これにH2O/TEOSモル比10程度で水分を加えると、シリカが析出する。(今回は1回のコーティングで10〜20nmのシリカが析出するように調整し、今回は3回で50nm、5回で100nmになるように調整した。) Here, the values in parentheses in KA, Na-A, and Na-KA are the thin film thickness of the silica coat. Here, for thin film growth on zeolite crystals by silica coating of KA, Na-A, and Na-KA, zeolite powder is suspended in a slurry in methyl alcohol, and tetraethoxy orthosilicate (TEOS) is suspended in this. Is added to the crystal surface in an amount corresponding to the required thickness, and when water is added thereto at a H 2 O / TEOS molar ratio of about 10, silica is precipitated. (This time, adjustment was made so that 10 to 20 nm of silica was deposited by one coating, and this time, adjustment was made to be 50 nm by 3 times and 100 nm by 5 times.)
コーティング終了後、ハニカム基材に浸積して嵩比重0.4程度に担持した後、110℃で1時間表面水分を除去した後に、50℃/hで昇温して350℃にし、350℃で1時間保持してケイ酸の脱水を完了してゼオライト結晶表面のSi−O−Siのネットワークを完成し且つ、脱水による活性化が終了する。 After coating is completed, it is immersed in a honeycomb substrate and supported at a bulk specific gravity of about 0.4. After removing surface moisture at 110 ° C. for 1 hour, the temperature is raised to 50 ° C./h to 350 ° C., and 350 ° C. For 1 hour to complete the dehydration of silicic acid to complete the Si—O—Si network on the zeolite crystal surface, and the activation by dehydration is completed.
水分選択型吸着剤SAMPLE#1−1〜1−12、比較例13、14及VOC選択型吸着剤SAMPLE#2−1〜2−5を使用したTSA−VOC減容濃縮ユニットとPSA−VOC低温液化回収ユニットから構成されるVOC回収装置の性能を表2に示す。(SAMPLE#14,15は比較参照品) TSA-VOC volume reduction concentration unit and PSA-VOC low temperature using moisture selective adsorbent SAMPLE # 1-1 to 1-12, Comparative Examples 13 and 14 and VOC selective adsorbent SAMPLE # 2-1 to 2-5 Table 2 shows the performance of the VOC recovery device composed of the liquefaction recovery unit. (SAMPLE # 14 and 15 are comparative reference products)
いずれもアセトン回収率90%以上、水分吸着塔出口露点−60℃を下回っており、本発明の有効性が示される。VOC選択型吸着剤としては、いずれの高SiO2/Al2O3比のゼオライトおよびメソポーラスシリカも高いアセトン吸着性能を示しており、特にシリカライト、β、USYが高いアセトン吸着性能を示した。また水分選択型吸着剤としては、K−A、Na−K−A、Na−A及びこれらのシリカコート品はアセトンに対し分子篩効果を示す高い水分吸着性能を示した。特にK−A(10nm)は高い水分除去性能を示した。これは比較的大きな水分吸着速度とアセトンに対する分子篩効果を有する程度の窓径(結晶のガスの通り道)であるためと思われる。 In any case, the acetone recovery rate is 90% or more, and the dew point at the outlet of the moisture adsorption tower is below −60 ° C., indicating the effectiveness of the present invention. As VOC selective adsorbents, any high SiO 2 / Al 2 O 3 ratio zeolite and mesoporous silica showed high acetone adsorption performance, and silicalite, β and USY showed particularly high acetone adsorption performance. As the moisture selective adsorbent, KA, Na-KA, Na-A, and these silica-coated products showed high moisture adsorption performance showing molecular sieve effect on acetone. In particular, KA (10 nm) showed high moisture removal performance. This seems to be because the window diameter (the crystal gas passage) has a relatively high moisture adsorption rate and a molecular sieving effect on acetone.
次に、TSA−VOC減容濃縮ユニットのアセトン選択型吸着剤として最も性能の高いシリカライト、PSA−VOC低温液化回収ユニットの水分吸着剤として最も性能の高いK−A(10nm)をハニカムとして使用した、アセトン回収の結果を表3に示す。 Next, silicalite with the highest performance as the acetone selective adsorbent of the TSA-VOC volume reduction and concentration unit, and KA (10 nm) with the highest performance as the moisture adsorbent of the PSA-VOC low temperature liquefaction recovery unit are used as the honeycomb. The results of acetone recovery are shown in Table 3.
同じく、物質収支を表4に示す。 Similarly, the material balance is shown in Table 4.
原料流量150m3N/h、アセトン1,800ppmにおいて出口アセトン濃度を180ppmに設定したので、アセトン回収率は90%となっている。吸着したアセトンは窒素20m3N/h、温度120℃で脱着したので脱着アセトンは7.5倍に濃縮されアセトン濃度は14,000ppmに達した。これを脱水後、−60℃で液化回収したため不凝結ガス濃度は1,200ppmとなり供給されたアセトンの90%が回収され、不凝結ガスは脱水後、パージ窒素として循環使用した。窒素の回収率は99%であり、パージガスに窒素を使用したことから、吸着剤表面でのアセトンの熱分解は抑制され、また吸着剤の劣化も同じく抑制された。 Since the outlet acetone concentration was set to 180 ppm at a raw material flow rate of 150 m 3 N / h and acetone of 1,800 ppm, the acetone recovery rate was 90%. The adsorbed acetone was desorbed at 20 m 3 N / h nitrogen and a temperature of 120 ° C., so the desorbed acetone was concentrated 7.5 times and the acetone concentration reached 14,000 ppm. After dehydration, this was liquefied and collected at -60 ° C., so that the non-condensable gas concentration was 1,200 ppm, and 90% of the supplied acetone was recovered. The non-coagulated gas was recycled and used as purge nitrogen after dehydration. Since the recovery rate of nitrogen was 99% and nitrogen was used as the purge gas, the thermal decomposition of acetone on the surface of the adsorbent was suppressed, and the deterioration of the adsorbent was also suppressed.
次に、TSA−VOC減容濃縮ユニットの酢酸エチル選択型吸着剤として最も性能の高いシリカライト、PSA−VOC低温液化回収ユニットの水分吸着剤として最も性能の高いK−A(10nm)をハニカムとして使用した、酢酸エチル回収の結果を表5に示す。 Next, silicalite, which has the highest performance as an ethyl acetate selective adsorbent in the TSA-VOC volume reduction concentration unit, and KA (10 nm), which has the highest performance as a moisture adsorbent in the PSA-VOC low-temperature liquefaction recovery unit, are used as a honeycomb. The results of ethyl acetate recovery used are shown in Table 5.
同じく、物質収支を表6に示す。
原料流量150m3N/h、酢酸エチル3,500ppmにおいて出口酢酸エチル濃度を200ppmに設定したので、酢酸エチル回収率は94%となっている。吸着した酢酸エチルは窒素20m3N/h、温度120℃で脱着したので脱着酢酸エチルは7.5倍に濃縮され酢酸エチル濃度は26,000ppmに達した。これを脱水後、−60℃で液化回収したため不凝結ガス濃度は1,200ppmとなり供給された酢酸エチルの95%が回収され、不凝結ガスは脱水後、パージ窒素として循環使用した。窒素の回収率は99%であり、パージガスに窒素を使用したことから、吸着剤表面での酢酸エチルの熱分解は抑制され、また吸着剤の劣化も同じく抑制された。 Since the outlet ethyl acetate concentration was set to 200 ppm at a raw material flow rate of 150 m 3 N / h and ethyl acetate of 3,500 ppm, the ethyl acetate recovery rate was 94%. The adsorbed ethyl acetate was desorbed at 20 m 3 N / h nitrogen and a temperature of 120 ° C., so the desorbed ethyl acetate was concentrated 7.5 times and the ethyl acetate concentration reached 26,000 ppm. After dehydration, this was liquefied and collected at -60 ° C., so the non-condensable gas concentration was 1,200 ppm, and 95% of the supplied ethyl acetate was recovered. The non-coagulated gas was recycled and used as purge nitrogen after dehydration. Since the recovery rate of nitrogen was 99% and nitrogen was used as the purge gas, the thermal decomposition of ethyl acetate on the surface of the adsorbent was suppressed, and the deterioration of the adsorbent was also suppressed.
次に、最近普及しているハニカムロータを使用し、VOCを減容濃縮した後、PSA−VOCで液化回収する方法のフローシートを図2に示す。VOCとしてトルエン濃度5,000ppmを含有する空気150m3N/hを流路31からUSYハニカム34の充填したハニカムロータ33に供給して、吸着ゾーン33aにおいて出口トルエン濃度100ppmになるように除去し、流路32、ブロワー35から系外に放出される。吸着したトルエンは脱着ゾーン33bにおいて、脱着工程のパージガスとして温度120℃、流量20m3N/hの高温窒素を使用し、ヒータ29から供給して脱着し、ブロワー11、流路12からPSA−VOCに、流量20m3N/h、トルエン濃度30,000ppmで供給される。水分選択型吸着剤16としては最も性能の高いK−A(10nm)をハニカ ムとして使用した。PSA−VOC液化回収ユニットにおいて不凝結ガス濃度50ppmまで除去され、水分含有窒素はチラーユニット27で露点5℃まで冷却され、水分は流路28から系外に除去される。窒素をパージガスに使用することから回収トルエンおよびUSYの劣化は回避された。ハニカムロータでは流量の約5%がリークすることから、窒素を1m3N/h程度を補充した。 Next, FIG. 2 shows a flow sheet of a method of using a recently popular honeycomb rotor and reducing and concentrating the volume of VOC and then liquefying and recovering with PSA-VOC. 150 m 3 N / h of air containing a toluene concentration of 5,000 ppm as VOC is supplied from the flow path 31 to the honeycomb rotor 33 filled with the USY honeycomb 34 and removed so as to have an outlet toluene concentration of 100 ppm in the adsorption zone 33a. 32, discharged from the blower 35 to the outside of the system. In the desorption zone 33b, the adsorbed toluene is supplied from the heater 29 and desorbed using high-temperature nitrogen at a temperature of 120 ° C. and a flow rate of 20 m 3 N / h as a purge gas in the desorption process, and is discharged from the blower 11 and the flow path 12 to the PSA-VOC. It is supplied at a flow rate of 20 m3 N / h and a toluene concentration of 30,000 ppm. As the moisture selective adsorbent 16, KA (10 nm) having the highest performance was used as a honeycomb. In the PSA-VOC liquefaction recovery unit, the non-condensed gas concentration is removed to 50 ppm, the moisture-containing nitrogen is cooled to a dew point of 5 ° C. by the chiller unit 27, and the moisture is removed from the flow path 28 to the outside of the system. Degradation of recovered toluene and USY was avoided because nitrogen was used as the purge gas. Since about 5% of the flow rate leaked in the honeycomb rotor, nitrogen was supplemented at about 1 m3 N / h.
同じく、最近普及しているハニカムロータの従来の使用法での、VOCを減容濃縮した後、PSA−VOCで液化回収する方法のフローシートを図3に示す。VOCとしてトルエン濃度500ppmを含有する空気150m3N/hを流路31からUSYハニカム34の充填したハニカムロータ33に供給して、吸着ゾーン33aにおいて出口トルエン濃度50ppmになるように除去し、流路32、ブロワー35から系外に放出される。吸着したトルエンは脱着ゾーン33bにおいて、脱着工程のパージガスとして温度120℃、流量20m3N/hの高温空気を使用し、ヒータ36から供給して脱着し、ブロワー11、流路12からPSA−VOCに、流量20m3N/h、トルエン濃度3,000ppmで供給される。水分選択型吸着剤16としては最も性能の高いK−A(10nm)をハニカムとして使用した。PSA−VOC液化回収ユニットにおいて不凝結ガス濃度50ppmまで除去され、流路37から流路31に還流され最大のトルエン回収率での回収が行われる。空気をパージガスに使用することから回収トルエンおよびUSYは、5%/年程度の劣化が進行するが、パージガスとして窒素を使用する必要がなく、またPSA−VOCから放出される不凝結ガスは脱湿することなく還流できるので装置構成は簡略化される。 Similarly, FIG. 3 shows a flow sheet of a method of liquefying and recovering with PSA-VOC after reducing and concentrating VOC in a conventional method of using a honeycomb rotor that has recently been spread. 150 m 3 N / h of air containing a toluene concentration of 500 ppm as VOC is supplied from the flow path 31 to the honeycomb rotor 33 filled with the USY honeycomb 34 and removed so as to have an outlet toluene concentration of 50 ppm in the adsorption zone 33a. 32, discharged from the blower 35 to the outside of the system. In the desorption zone 33b, the adsorbed toluene is desorbed by using a high temperature air at a temperature of 120 ° C. and a flow rate of 20 m 3 N / h as a purge gas in the desorption process, and is supplied from the heater 36 and desorbed from the blower 11 and the flow path 12. Are supplied at a flow rate of 20 m 3 N / h and a toluene concentration of 3,000 ppm. As the moisture selective adsorbent 16, KA (10 nm) having the highest performance was used as the honeycomb. In the PSA-VOC liquefaction recovery unit, the non-condensed gas concentration is removed to 50 ppm, and the gas is refluxed from the flow path 37 to the flow path 31 to be recovered at the maximum toluene recovery rate. Since recovered air and USY deteriorate by about 5% / year because air is used as the purge gas, it is not necessary to use nitrogen as the purge gas, and the non-condensed gas released from the PSA-VOC is dehumidified. Therefore, the apparatus configuration can be simplified.
VOCガスを含む各種排気ガスよりVOCを回収することができ、外部に排出しない。また、回収されたVOCは殆ど劣化しておらず、VOCを低コスト、高効率に回収し、完全再利用することができる。前処理系で4〜12倍の減容濃縮ができるので、安価でコンパクトなVOC回収ユニットが提供できる。 VOC can be recovered from various exhaust gases including VOC gas and is not discharged to the outside. Further, the recovered VOC is hardly deteriorated, and the VOC can be recovered with low cost and high efficiency and can be completely reused. Since the volume reduction concentration can be 4 to 12 times in the pretreatment system, an inexpensive and compact VOC recovery unit can be provided.
[TSA−VOC減容濃縮ユニット(2塔式)]
・ 7,12 流路
2,11 ブロワー
3a,3b.6a,6b,8a,8b,9a,9b 自動弁
4a、4b VOC吸着塔
5 VOC選択型吸着剤
18 減圧弁
[TSA−VOC減容濃縮ユニット(ハニカムロータ)]
31、32,37 流路
35 ブロワー
33 ハニカムロータ
33a 吸着ゾーン
33b 加熱再生ゾーン
36 ヒータ
[PSA−VOC液化回収ユニット]
12,22,24,28 流路
13 ブロワー
14a,14b.18a,18b,21a,21b 自動弁
15a、15b 水分吸着塔
16 水分選択型吸着剤
17a,17b 減圧弁
19a,19b 蓄熱材充填塔
20 蓄熱材
23,27 チラーユニット
26 真空ポンプ
[TSA-VOC volume reduction unit (2 tower type)]
-7,12 flow path 2,11 blower 3a, 3b. 6a, 6b, 8a, 8b, 9a, 9b Automatic valve 4a, 4b VOC adsorption tower 5 VOC selection type adsorbent 18 Pressure reducing valve [TSA-VOC volume reduction concentration unit (honeycomb rotor)]
31, 32, 37 Flow path 35 Blower 33 Honeycomb rotor 33a Adsorption zone 33b Heating regeneration zone
36 Heater [PSA-VOC liquefaction recovery unit]
12, 22, 24, 28 Flow path 13 Blower 14a, 14b. 18a, 18b, 21a, 21b Automatic valve 15a, 15b Moisture adsorption tower 16 Moisture selective adsorbent 17a, 17b Pressure reducing valve 19a, 19b Heat storage material filling tower 20 Heat storage material 23, 27 Chiller unit 26 Vacuum pump
Claims (5)
VOCを吸着したVOC吸着塔に昇温された窒素を塔後方より導入してVOCを脱着させてVOC処理ガスを減容濃縮し、
減容濃縮したVOCガスを少なくとも2塔式の水分選択型吸着剤を充填した水分吸着塔の1塔に塔前方より導入して水分選択型吸着剤と接触させて水分を吸着剤に吸着させてVOC含有窒素と分離し、
続いて水分吸着塔後方より出たVOC含有乾燥窒素を蓄熱材を充填した蓄熱材充填塔に塔前方より導入して再生工程で回収された冷熱により冷却されている蓄熱材を昇温させ、VOC含有乾燥窒素を冷却し、
塔後方より流過する低温、VOC含有乾燥窒素をチラーユニットで更に冷却してVOCを液化回収し、
流過する未回収VOCを含有する低温、超乾燥窒素を、他の蓄熱材充填塔に塔後方より導入して蓄熱材を冷却し、未回収VOCを含有する低温、超乾燥窒素を昇温させ、
続いて蓄熱材充填塔前方より流過する昇温された未回収VOCを含有する超乾燥窒素を他の水分を吸着した水分吸着塔に塔後方より導入して水分吸着剤から水分を脱着させて水分吸着剤を再生し、
水分吸着塔前方より流過した未回収VOCを含有し、水分を含有する窒素をチラーユニットで冷却して水分を凝縮させて水分を除き、
次いで未回収VOCを含有し、水分を除いた乾燥窒素をヒータで昇温して吸着の終了したVOC吸着塔に塔後方よりパージガスとして還流してVOC選択型吸着剤を高温再生し、
水分吸着塔を再生するに際し、水分吸着塔から水分が破過する前に塔を切り替えて水分除去し、
上記工程を繰り返す温度スイング法VOC濃縮、低温液化VOC回収方法であって、
VOC選択型吸着剤が、シリカライト、脱アルミニュームモルデナイト(以下USM)、ベータ(以下β)、脱アルミニュームY型ゼオライト(以下USY)、高SiO2/Al2O3比メソポーラスシリカ(以下MPS)からなる群より選ばれる一種以上であり、
水分選択型吸着剤が、K−A、Na−A、Na−K−A、Ca−A、或は表面が液相又は気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、温度スイング法VOC濃縮、低温液化VOC回収方法。 Volatile organic compounds (hereinafter referred to as VOC) and air containing moisture is introduced from the tower forward 1 tower VOC adsorption tower of at least a double column packed with VOC selective adsorbent in a relative low temperature VOC Contact with the selective adsorbent to adsorb VOC to the adsorbent and release air from the rear of the tower to the outside of the system,
The V OC process gas volume reduction concentrated desorbed VOC nitrogen that is heated to VOC adsorption tower adsorbs VOC introduced from the tower behind,
Volume reduction concentrated by the VOC gas is introduced from the tower forward 1 tower water adsorption tower filled with at least two tower water selective adsorbent is contacted with moisture-selective adsorbent is adsorbed by the adsorbent of moisture Separating from VOC- containing nitrogen ,
Subsequently, the VOC-containing dry nitrogen coming out from the rear of the moisture adsorption tower is introduced from the front of the tower into the heat storage material packed tower filled with the heat storage material, and the temperature of the heat storage material cooled by the cold energy recovered in the regeneration process is raised, and the VOC Contain dry nitrogen,
Cooling the low-temperature, VOC-containing dry nitrogen flowing from the rear of the tower with a chiller unit, liquefying and recovering VOC,
Low temperature and ultra dry nitrogen containing unrecovered VOC flowing through is introduced into the other heat storage material packed tower from the rear of the tower to cool the heat storage material, and the temperature of the low temperature and ultra dry nitrogen containing unrecovered VOC is raised. ,
Subsequently, ultra dry nitrogen containing unrecovered unrecovered VOC that has flowed from the front of the heat storage material packed tower is introduced into the moisture adsorption tower that has adsorbed other moisture from the rear of the tower to desorb moisture from the moisture adsorbent. Regenerate moisture adsorbent,
Contains unrecovered VOC that has flowed from the front of the moisture adsorption tower , cools the nitrogen containing moisture with a chiller unit to condense the moisture, and removes the moisture.
Then containing unrecovered VOC, a dry nitrogen to remove water by refluxing as a purge gas from the tower behind the VOC adsorption tower ended adsorption was heated by the heater to the high temperature of the VOC-selective adsorbent,
When regenerating the moisture adsorption tower, before the moisture breaks through the moisture adsorption tower, the tower is switched to remove the moisture,
A temperature swing method VOC concentration and low temperature liquefied VOC recovery method that repeats the above steps,
VOC selective adsorbents are silicalite, dealuminated mordenite (hereinafter USM), beta (hereafter β), dealuminated Y-type zeolite (hereafter USY), high SiO 2 / Al 2 O 3 ratio mesoporous silica (hereinafter MPS). ) Or more selected from the group consisting of
Moisture selective adsorbent is K-A, Na-A, Na-K-A, Ca-A, or K- having a surface coated with silica in the liquid phase or gas phase with a hydrolysis product of an organosilicon compound. A temperature swing method VOC concentration, a low-temperature liquefied VOC recovery method, which is at least one selected from the group consisting of A, Na-A, Na-KA and Ca-A.
該低温吸着ゾーンでは、ゾーン通過過程にあるローター部分に揮発性有機化合物(以下、VOCと言う)及び水分を含有する空気を相対的低温で供給してVOC選択型吸着剤と接触させてVOCガスを吸着剤に吸着させて空気を系外に放出し、In the low temperature adsorption zone, air containing a volatile organic compound (hereinafter referred to as VOC) and moisture is supplied to the rotor portion passing through the zone at a relatively low temperature, and is brought into contact with the VOC selective adsorbent to generate VOC gas. Is adsorbed by the adsorbent and air is released outside the system.
該高温再生ゾーンでは、空気をヒータで加熱して昇温させ、昇温された空気をゾーン通過過程にあるローター部分に供給して、ローター部分の該低温吸着ゾーンで吸着剤に吸着されたVOCガスを脱着させて吸着剤を高温再生してVOC含有空気をゾーンの外に流過し、In the high temperature regeneration zone, the air is heated by a heater to raise the temperature, and the heated air is supplied to the rotor part in the zone passing process, and the VOC adsorbed by the adsorbent in the low temperature adsorption zone of the rotor part Desorbing the gas to regenerate the adsorbent at a high temperature and allowing the VOC-containing air to flow out of the zone,
該高温再生ゾーンを流過した昇温されたVOC含有空気を少なくとも2塔式の水分選択型吸着剤を充填した水分吸着塔の1塔に塔前方より導入して水分選択型吸着剤と接触させて水分を吸着剤に吸着させてVOC含有空気と分離し、The heated VOC-containing air that has passed through the high temperature regeneration zone is introduced from the front of the tower into one of the moisture adsorption towers filled with at least two towers of moisture-selective adsorbent and brought into contact with the moisture-selective adsorbent. Water is adsorbed on the adsorbent and separated from the VOC-containing air,
続いて水分吸着塔後方より出た昇温されたVOC含有乾燥空気を蓄熱材を充填した蓄熱材充填塔に塔前方より導入して再生工程で回収された冷熱により冷却されている蓄熱材を昇温させ、昇温されたVOC含有乾燥空気を冷却し、Subsequently, the heated VOC-containing dry air that has come out from the rear of the moisture adsorption tower is introduced from the front of the tower into the heat storage material packed tower filled with the heat storage material, and the heat storage material cooled by the cold energy recovered in the regeneration process is increased. Cool the heated VOC-containing dry air,
水分吸着塔塔後方より流過する低温、VOC含有乾燥空気をチラーユニットで更に冷却してVOCを液化回収し、The VOC is liquefied and recovered by further cooling the low-temperature, VOC-containing dry air flowing from the back of the moisture adsorption tower with a chiller unit,
チラーユニットを流過する未回収VOCを含有する低温、超乾燥空気を、他の蓄熱材充填塔に塔後方より導入して蓄熱材を冷却し、未回収VOCを含有する低温、超乾燥空気を昇温させ、Low-temperature, ultra-dry air containing unrecovered VOC flowing through the chiller unit is introduced into the other heat storage material packed tower from the rear of the tower to cool the heat storage material, and low-temperature, ultra-dry air containing unrecovered VOC is supplied. Raise the temperature,
続いて蓄熱材充填塔前方より流過する昇温された未回収VOCを含有する超乾燥空気を水分を吸着した水分吸着塔に塔後方より導入して水分吸着剤から水分を脱着させて水分吸着剤を再生し、Subsequently, super dry air containing heated unrecovered VOC flowing from the front of the heat storage material packed tower is introduced from the rear of the tower into the moisture adsorption tower that has adsorbed moisture, and moisture is desorbed from the moisture adsorbent to absorb moisture. Regenerate the agent,
水分吸着塔前方より流過した未回収VOCを含有し、水分を含有する空気を該低温吸着ゾーン通過過程にあるローター部分にVOC及び水分を含有する空気に還流し、Contains unrecovered VOC that has flowed from the front of the moisture adsorption tower, and recirculates the moisture-containing air to the VOC and moisture-containing air in the rotor portion that is passing through the low-temperature adsorption zone;
水分吸着塔を再生するに際し、水分吸着塔から水分が破過する前に塔を切り替えて水分除去し、When regenerating the moisture adsorption tower, before the moisture breaks through the moisture adsorption tower, the tower is switched to remove the moisture,
上記工程を繰り返す温度スイング法VOC濃縮、低温液化VOC回収方法であって、A temperature swing method VOC concentration and low temperature liquefied VOC recovery method that repeats the above steps,
VOC選択型吸着剤が、シリカライト、脱アルミニュームモルデナイト(以下USM)、ベータ(以下β)、脱アルミニュームY型ゼオライト(以下USY)、高SiOVOC selective adsorbents are silicalite, dealuminated mordenite (hereinafter USM), beta (hereafter β), dealuminated Y-type zeolite (hereafter USY), high SiO 22 /Al/ Al 22 OO 33 比メソポーラスシリカ(以下MPS)からなる群より選ばれる一種以上であり、One or more selected from the group consisting of specific mesoporous silica (hereinafter MPS),
水分選択型吸着剤が、K−A、Na−A、Na−K−A、Ca−A、或は表面が液相又は気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、Moisture selective adsorbent is K-A, Na-A, Na-K-A, Ca-A, or K- having a surface coated with silica in the liquid phase or gas phase with a hydrolysis product of an organosilicon compound. One or more selected from the group consisting of A, Na-A, Na-KA and Ca-A,
温度スイング法VOC濃縮、低温液化VOC回収方法。Temperature swing method VOC concentration, low temperature liquefied VOC recovery method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016750A JP5298292B2 (en) | 2009-01-28 | 2009-01-28 | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016750A JP5298292B2 (en) | 2009-01-28 | 2009-01-28 | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010172804A JP2010172804A (en) | 2010-08-12 |
JP2010172804A5 JP2010172804A5 (en) | 2012-03-15 |
JP5298292B2 true JP5298292B2 (en) | 2013-09-25 |
Family
ID=42704268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009016750A Active JP5298292B2 (en) | 2009-01-28 | 2009-01-28 | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5298292B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110681346A (en) * | 2019-09-10 | 2020-01-14 | 咏铨洁能科技有限公司 | Adsorbent with low boiling point VCOS, filter material set, filter material box and method for producing adsorbent |
TWI762815B (en) * | 2019-09-10 | 2022-05-01 | 詠銓潔能科技有限公司 | Adsorbent, filter material set, and filter material box for adsorbing a volatile organic compounds gas with low boiling pointfilter material and method for manufacturing adsorbent |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013017930A (en) * | 2011-07-08 | 2013-01-31 | Kyuchaku Gijutsu Kogyo Kk | Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent |
JP5862278B2 (en) * | 2011-12-22 | 2016-02-16 | 東洋紡株式会社 | Organic solvent-containing gas treatment system |
JP5482776B2 (en) * | 2011-12-22 | 2014-05-07 | 東洋紡株式会社 | Organic solvent-containing gas treatment system |
KR102071097B1 (en) * | 2012-12-14 | 2020-01-29 | 도요보 가부시키가이샤 | Organic solvent-containing gas processing system |
JP6236898B2 (en) * | 2013-06-12 | 2017-11-29 | 東洋紡株式会社 | Organic solvent-containing gas treatment system |
JP2014232051A (en) * | 2013-05-29 | 2014-12-11 | 株式会社Nttドコモ | Apparatus and method for measuring skin gas |
CN104606915B (en) * | 2015-02-09 | 2016-02-03 | 南京工业大学 | Efficient low-cost VOC (volatile organic compound) recovery system and method |
CN106731445B (en) * | 2017-01-26 | 2017-09-19 | 上海聚宸新能源科技有限公司 | A kind of adsorption condensing formula device for recovering oil and gas and oil-gas recovery method for effectively preventing from adsorbing temperature rise |
CN108043064B (en) * | 2017-12-29 | 2023-10-24 | 上海蓝科石化环保科技股份有限公司 | VOCs recovery process and system |
JP6965169B2 (en) * | 2018-01-18 | 2021-11-10 | 大陽日酸株式会社 | Gas purification equipment and gas purification method |
CN111036041B (en) * | 2019-11-14 | 2021-01-01 | 常州大学 | VOCs (volatile organic compounds) recovery system and method integrating absorption, desorption and recovery |
CN112121589A (en) * | 2020-08-27 | 2020-12-25 | 浙江海洋大学 | VOC gas treatment method and VOC gas treatment device using same |
WO2023234217A1 (en) * | 2022-06-03 | 2023-12-07 | 株式会社村田製作所 | Voc removal device |
WO2023234218A1 (en) * | 2022-06-03 | 2023-12-07 | 株式会社村田製作所 | Voc removal method |
KR102506669B1 (en) * | 2022-08-26 | 2023-03-06 | 주식회사 용호기계기술 | Plasma gas treatment device used in vapor recovery system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3737408A1 (en) * | 1987-11-01 | 1989-05-11 | Schack & Co Rekuperator | METHOD FOR RECOVERY OF THE DESORBATE RESULTING FROM THE DESORPTION OF LOADED SORPTION MATERIALS, AND DEVICE THEREFOR |
JP3416333B2 (en) * | 1995-05-10 | 2003-06-16 | 三菱重工業株式会社 | Volatile organic matter recovery method |
JP4703889B2 (en) * | 2000-06-05 | 2011-06-15 | 富士フイルム株式会社 | Method for circulating concentration treatment of dry type dehumidifier regeneration gas |
JP5248767B2 (en) * | 2005-07-13 | 2013-07-31 | 月島機械株式会社 | Concentrator for volatile organic compounds |
JP5470535B2 (en) * | 2006-09-04 | 2014-04-16 | 吸着技術工業株式会社 | Method for removing moisture from azeotrope-forming components using adsorbents |
JP2008161743A (en) * | 2006-12-27 | 2008-07-17 | Kyuchaku Gijutsu Kogyo Kk | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent |
-
2009
- 2009-01-28 JP JP2009016750A patent/JP5298292B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110681346A (en) * | 2019-09-10 | 2020-01-14 | 咏铨洁能科技有限公司 | Adsorbent with low boiling point VCOS, filter material set, filter material box and method for producing adsorbent |
TWI762815B (en) * | 2019-09-10 | 2022-05-01 | 詠銓潔能科技有限公司 | Adsorbent, filter material set, and filter material box for adsorbing a volatile organic compounds gas with low boiling pointfilter material and method for manufacturing adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JP2010172804A (en) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298292B2 (en) | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. | |
JP2010172804A5 (en) | ||
JP5732451B2 (en) | Use of zeolitic microporous crystalline materials with RHO structure in natural gas processing | |
TW555587B (en) | Process for the decarbonation of gas flows using zeolite adsorbents | |
JP2003311148A (en) | Adsorbent, and method and apparatus for purifying gas | |
JP2010533063A5 (en) | ||
JP2003246606A (en) | Syngas purifying method | |
JP2008161743A (en) | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent | |
JPH11235513A (en) | Method of refinning air by allowing carbon dioxide and water impurity to be adsorbed on sintered alumina | |
JPH04171019A (en) | Process for removing water content in mixed gas | |
WO1990011117A1 (en) | Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration | |
JP3084248B2 (en) | Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas | |
JP2004202393A (en) | Carbon dioxide desorption method | |
JP2007160163A (en) | Method of separating volatile readily adsorbable component and hardly adsorbable component from solution containing volatile readily adsorbable component and hardly adsorbable component using adsorbent | |
JP6763979B2 (en) | Temperature swing adsorption process | |
JP2014014760A (en) | Method and apparatus for concentrating and recovering volatile organic compound | |
JP2004344703A (en) | Method and apparatus for treating carbon dioxide | |
JP2019512384A (en) | Temperature swing adsorption method | |
CN111093800B (en) | Temperature swing adsorption process | |
JP2004243279A (en) | Method and device for cleaning gas containing organic contaminant | |
JP3526892B2 (en) | Method for purifying formaldehyde-containing gas | |
JP6549969B2 (en) | Air purification apparatus and air purification method | |
JP2001137646A (en) | Device and method for adsorption treating waste gas | |
WO2000050154A1 (en) | Humidity swing adsorption process and apparatus | |
CN111093801B (en) | Temperature swing adsorption process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120127 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5298292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |