JP2008161743A - Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent - Google Patents
Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent Download PDFInfo
- Publication number
- JP2008161743A JP2008161743A JP2006351231A JP2006351231A JP2008161743A JP 2008161743 A JP2008161743 A JP 2008161743A JP 2006351231 A JP2006351231 A JP 2006351231A JP 2006351231 A JP2006351231 A JP 2006351231A JP 2008161743 A JP2008161743 A JP 2008161743A
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- voc
- adsorbent
- tower
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Drying Of Gases (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
本発明は、吸着剤を利用した水分除去、冷熱の回収を行う、低温液化VOC回収方法に関する。 The present invention relates to a low-temperature liquefied VOC recovery method for removing moisture using an adsorbent and recovering cold heat.
VOCを含有する排ガス処理に於いて最も頻繁に採用されている方法は、排ガスに含まれるVOCを高シリカゼオライトを充填した吸着塔に供給してVOCを吸着除去し,VOCを吸着した高シリカゼオライト吸着塔に高温熱風を供給してVOCを高温脱着させ,減容濃縮して脱着したVOCを触媒燃焼で酸化分解するTSA−VOC+触媒燃焼である。 The most frequently used method for treating exhaust gas containing VOC is to supply VOC contained in the exhaust gas to an adsorption tower packed with high silica zeolite to adsorb and remove VOC, and to adsorb VOC. This is TSA-VOC + catalytic combustion in which high temperature hot air is supplied to the adsorption tower to desorb VOC at high temperature, and the desorbed VOC is oxidized and decomposed by catalytic combustion.
又今後普及が予想されるものとしては米国環境保護局(EPA)が提案している強誘電体(チタン酸バリウム等)の充填塔において強誘電体表面で延命放電を行い,ここにVOC含有ガスを供給することで酸化分解する充填塔プラズマ処理 (Packed Bed Plasma)がある。これらの方法はVOCの処理に対し一定の性能を示しているが,TSA−VOC+触媒燃焼では装置の複雑さと操作の煩雑さによるコスト低減の限界があり,充填塔プラズマ処理では対象VOC及びVOC除去率に限界があり今後のVOC排出規制に対応できない懸念がある。 Also expected to be widely used in the future is a life-extinguishing discharge on the surface of a ferroelectric (barium titanate, etc.) packed by the US Environmental Protection Agency (EPA), which contains VOC-containing gas. There is a packed tower plasma treatment that oxidizes and decomposes by supplying (Paked Bed Plasma). Although these methods show a certain level of performance for VOC processing, TSA-VOC + catalytic combustion has the limitations of cost reduction due to the complexity of the equipment and the complexity of operation. In packed tower plasma processing, the target VOC and VOC are removed. There is a concern that the rate will be limited and future VOC emission regulations will not be met.
VOC含有ガスにオゾンを加えてVOCの均一気相反応による酸化分解をすることも考えられるが,低濃度VOCに対するオゾン酸化反応が遅いこと,未反応オゾンの処理が煩雑なこと,酸化剤として使用するオゾンの製造コストが高価なことから実用化には至っていない。又オゾン酸化反応の反応効率の向上のためVOCを高シリカゼオライトに吸着して除去した後,VOCを吸着した高シリカゼオライトにオゾンを添加してゼオライト中で共吸着したVOCとオゾンの酸化反応の高効率化を計ることが提案されている。この方法においてオゾン反応の高効率化は実現するが,オゾンの製造コストが高価な点については依然未解決である。 It may be possible to add ozone to the VOC-containing gas and oxidatively decompose it by homogeneous gas phase reaction of VOC, but the ozone oxidation reaction to low concentration VOC is slow, the treatment of unreacted ozone is complicated, and it is used as an oxidant Since the production cost of ozone is high, it has not been put into practical use. In order to improve the reaction efficiency of the ozone oxidation reaction, VOC is adsorbed on high silica zeolite and removed, then ozone is added to the high silica zeolite adsorbed with VOC and the co-adsorption of VOC and ozone in the zeolite is performed. It has been proposed to improve efficiency. Although the efficiency of the ozone reaction can be improved by this method, the cost of manufacturing ozone is still unsolved.
上述した従来技術において、高効率且つVOCを劣化することなく回収する方法は実用化されていない。特に、冷熱の回収法としてVOC回収後の低温空気を蓄熱式熱交換器を使用し、水分吸着剤の使用法としてVOC回収、冷熱回収後の乾燥空気を使用する連続的な、冷熱回収、水分除去方法の使用は知られていない。 In the prior art described above, a method for recovering the VOC without degrading it with high efficiency has not been put into practical use. In particular, using cold storage air as a method for recovering cold energy, using a heat storage heat exchanger, using VOC recovery as a method for using the moisture adsorbent, continuous cold energy recovery using dry air after recovering cold energy, moisture The use of removal methods is not known.
本発明者等は、少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水分を含有する空気を加圧して水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて低温に冷却された蓄熱材充填塔に導入して蓄熱材と接触させて冷却し、最寒冷温度になるように冷却器で冷却してVOCを液化回収し、流過する低温、低VOC、低水分濃度の空気を減圧して、他の蓄熱材充填塔に導入し蓄熱材と接触させて冷熱を回収して昇温し、空気を減圧して他の水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去、冷熱の回収を行うことにより連続的に低温液化条件でのVOC回収方法の成立することを見いだした。 The present inventors pressurize air containing a volatile organic compound (hereinafter referred to as VOC) and moisture and introduce it into a moisture-selective adsorbent adsorption tower in one of at least two tower-type adsorption towers. The water is adsorbed to the adsorbent and separated from the VOC, and then introduced into the heat storage material packed tower cooled to a low temperature, brought into contact with the heat storage material, cooled, and cooled to the coldest temperature. The VOC is liquefied and recovered by cooling in a vessel, and the low-temperature, low-VOC, and low moisture concentration air flowing through is reduced in pressure, introduced into another heat storage material packed tower and brought into contact with the heat storage material to recover the cold heat and rise. Warm, depressurize the air, introduce it into another moisture-selective adsorbent adsorption tower, bring it into contact with the adsorbent, desorb the moisture from the adsorbent, regenerate the moisture adsorbent, and before the moisture breaks through the tower VOC recovery under low-temperature liquefaction conditions by switching water and removing water and collecting cold heat Was found that the establishment of the law.
かくして、本発明によれば、下記の1〜6の発明を提供する:
1.少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水分を含有する空気を加圧して水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて低温に冷却された蓄熱材充填塔に導入して蓄熱材と接触させて冷却し、最寒冷温度になるように冷却器で冷却してVOCを液化回収して、流過する低温、低VOC、低水分濃度の空気を他の蓄熱材充填塔に導入して蓄熱材と接触させて冷熱を回収して昇温し、空気を減圧して他の水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去、冷熱の回収を行う、低温液化VOC回収方法。 (請求項1、2)
2.水分選択型吸着剤が、K−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である請求項1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。(請求項2)
3.水分選択型吸着剤が、表面が液相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である請求項1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。
(請求項3)
4.水分選択型吸着剤が、表面が気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である請求項1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法。
(請求項4)
5.水分選択型吸着剤が、ハニカム形成された請求項1〜5のいずれか一に記載の水分除去、冷熱の回収を行う、低温液化VOC回収方法。
(請求項5)
6.吸着工程に於ける塔内圧力Pa(kPa)と再生工程に於ける塔内圧力Pd(kPa)として圧力比Pa/Pdを1.1以上とする水分除去、冷熱の回収を行う、低温液化VOC回収方法。
(請求項6)
Thus, according to the present invention, the following
1. In at least one of the two-column type adsorption towers, air containing volatile organic compounds (hereinafter VOC) and moisture is pressurized and introduced into the moisture-selective adsorbent adsorption tower to be brought into contact with the adsorbent and moisture. Is adsorbed by the adsorbent and separated from the VOC, then introduced into the heat storage material packed tower cooled to a low temperature, brought into contact with the heat storage material, cooled, and cooled by a cooler to reach the coldest temperature and VOC. Liquefying and recovering, introducing low temperature, low VOC, low moisture concentration air flowing into another heat storage material packed tower and bringing it into contact with the heat storage material, recovering the cold heat, raising the temperature, depressurizing the air It is introduced into another moisture-selective adsorbent adsorption tower and brought into contact with the adsorbent to desorb the moisture from the adsorbent to regenerate the moisture adsorbent, and before the moisture breaks through, the tower is switched to remove moisture and cool A low-temperature liquefied VOC recovery method for performing recovery. (
2. The VOC according to
3. One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA, and Ca-A whose surfaces are in a liquid phase and silica-coated with a hydrolysis product of an organosilicon compound The VOC according to
(Claim 3)
4). One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA, and Ca-A whose surfaces are in the gas phase and silica-coated with hydrolysis products of organosilicon compounds The VOC according to
(Claim 4)
5. A low-temperature liquefied VOC recovery method for performing water removal and cold recovery according to any one of
(Claim 5)
6). Low-temperature liquefied VOC that removes water and recovers cold heat with pressure ratio Pa / Pd of 1.1 or more as tower pressure Pa (kPa) in the adsorption process and tower pressure Pd (kPa) in the regeneration process Collection method.
(Claim 6)
本方法においてはVOCと水分との分離が大気圧近傍のVOCを殆ど吸着しない水分吸着剤を充填された吸着塔で行われるため、容易に超乾燥状態のVOC含有乾燥空気を調製することが可能であり、これに続く蓄熱材を充填した充填塔で冷却し、不足寒冷分を冷凍機で補充することにより、VOC含有空気中のVOCを室温以下の低温で高度に濃縮することなく液化、回収をすることが出来る。このため回収工程は爆発限界以下で実施されるため安全であり、またVOCは劣化することなく回収される。またVOC回収後の低温、超乾燥状態の空気は蓄熱材を充填した充填塔で寒冷が回収され、更に水分吸着塔の水分除去再生に使われることからVOC回収のエネルギーを大幅に低減することできる。本方法を採用することにより、爆発限界以下の安全な操作で、省エネルギーの、回収溶剤及び吸着剤の劣化のないVOCの回収装置を提供することが可能である。
In this method, since the separation of VOC and moisture is performed in an adsorption tower filled with a moisture adsorbent that hardly adsorbs VOC near atmospheric pressure, it is possible to easily prepare ultra-dry VOC-containing dry air. Then, it is cooled in a packed tower filled with a heat storage material, and supplemented with a freezer with insufficient refrigeration, so that the VOC in the VOC-containing air is liquefied and recovered without being highly concentrated at a low temperature below room temperature. You can Therefore, the recovery process is safe because it is performed below the explosion limit, and VOC is recovered without deterioration. In addition, low-temperature and ultra-dry air after VOC recovery is recovered in the packed tower filled with the heat storage material, and is further used for moisture removal regeneration of the moisture adsorption tower, so that the energy of VOC recovery can be greatly reduced. . By adopting this method, it is possible to provide an energy-saving VOC recovery device that does not deteriorate the recovered solvent and adsorbent by safe operation below the explosion limit.
本発明において用いる水分選択型吸着剤は、K−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である。ここでNa−K−Aは、Na−A型ゼオライトのNaの一部をKに交換して熱処理することにより窓径を縮小させたものであり、この調製法はOxygen Selectivity on Partially K Exchanged Na−A Type Zeolite at Low Temperature, IZUMI J, SUZUKI M, ADSORPTION,VOL.7 PAGE.27−39,(2001), に記載されている。
上記吸着剤は、VOC−水分2成分系において高い水分/VOC分離係数を有すると判断される。
The moisture selective adsorbent used in the present invention is at least one selected from the group consisting of KA, Na-A, Na-KA, and Ca-A. Here, Na-K-A is obtained by reducing a window diameter by exchanging a part of Na of Na-A-type zeolite with K and performing heat treatment, and this preparation method is Oxygen Selectivity on Partially K Exchanged Na. -A Type Zeolite at Low Temperature, IZUMI J, SUZUKI M, ADSORPTION, VOL. 7 PAGE. 27-39, (2001).
The adsorbent is judged to have a high moisture / VOC separation factor in the VOC-water binary system.
表面が液相又は気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上であるのが好ましい。有機ケイ素化合物の加水分解生成物を気相又は液相で上記吸着剤結晶表面にシリカコートすることにより、水分選択性が強化される。 The surface is at least one selected from the group consisting of KA, Na-A, Na-KA, and Ca-A that is silica-coated with a hydrolysis product of an organosilicon compound in a liquid phase or a gas phase. preferable. Moisture selectivity is enhanced by silica-coating the surface of the adsorbent crystal in the gas phase or liquid phase with the hydrolysis product of the organosilicon compound.
本発明において用いる結晶表面にシリカコートを施した吸着剤は、溶剤、例えばメチルアルコールにスラリー状にゼオライトパウダーを懸濁させ、これにテンプレート、例えばテトラエトキシオルソシリケート(TEOS)を結晶表面に必要厚さに相当する量加え、これにH2O/TEOS比5〜20程度で水分を加えると、シリカが析出する。 In the adsorbent having a silica coat on the crystal surface used in the present invention, a zeolite powder is suspended in a slurry in a solvent such as methyl alcohol, and a template such as tetraethoxyorthosilicate (TEOS) is added to the crystal surface at the required thickness. When an amount corresponding to the above is added and moisture is added to this at an H 2 O / TEOS ratio of about 5 to 20, silica is precipitated.
コーティング終了後、シリカゾルを加えてゼオライト:シリカゾル:脱イオン水=5〜30:1〜10:100程度でスラリーを調製し、これをハニカム基材に浸積して担持させ、温度約90〜150℃で約0.5〜3時間表面水分を除去し、約30〜80℃/hで昇温して約250〜450℃、約0.5〜3時間保持してケイ酸の脱水を完了してゼオライト結晶表面のSi−O−Siのネットワークを完成し且つ、脱水による活性化が終了する。このコーテイング条件で結晶表面に0.05〜0.1μmのシリカ薄膜が生成する。 After coating is completed, silica sol is added to prepare a slurry of zeolite: silica sol: deionized water = 5 to 30: 1 to 10: 100, and the slurry is immersed and supported on the honeycomb substrate, and the temperature is about 90 to 150. The surface water was removed at about 0.5 to 3 hours at a temperature of about 30 to 80 ° C./h and the temperature was maintained at about 250 to 450 ° C. for about 0.5 to 3 hours to complete the dehydration of silicic acid. Thus, the Si—O—Si network on the zeolite crystal surface is completed and the activation by dehydration is completed. Under this coating condition, a silica thin film of 0.05 to 0.1 μm is formed on the crystal surface.
又同じくTEOS(tetra−ethyl−ortho−silicate), TMOS(tetra−methyl−ortho−silicate)含有アンモニア蒸気をA型ゼオライトのパウダーに吸着させるとA型ゼオライト結晶の表面でTEOS,TMOSの加水分解によりにSi−O−Siのネットワークが構成されてシリカ薄膜が生成する。 Similarly, when ammonia vapor containing TEOS (tetra-ethyl-ortho-silicate) or TMOS (tetra-methyl-ortho-silicate) is adsorbed on the A-type zeolite powder, the surface of the A-type zeolite crystal is hydrolyzed by TEOS and TMOS. In addition, a Si-O-Si network is formed to produce a silica thin film.
シリカコートを施したK−A、Na−A、Na−K−A及びCa−Aゼオライトは、これらの内の二種以上を組み合わせて用いてもよい。 Silica-coated KA, Na-A, Na-KA, and Ca-A zeolite may be used in combination of two or more thereof.
本発明において用いる結晶表面にシリカコートを施した吸着剤は、ハニカム形成されたものを用いれば、吸着剤吸着塔を通過する際の圧損が小さくなることから望ましい。ハニカムの調製法としては、アルミノシリケートの基材に当該ゼオライトとシリカゾル等の無機バインダーの混合スラリーに浸積して、これを乾燥するとゼオライトが担持される。浸積と乾燥を数回繰り返すと所定の担持量に達する。(嵩密度0.3以上、ゼオライト担持量0.1g/ml以上)これを350℃以上、1時間焼成するとゼオライトの基材への固定と活性化が達成される。
他の方法としてはアルミノシリケートファイバー、当該ゼオライト、無機バインダー、セルロースでゼオライト含有ペーパを調製し(抄紙し)、この一部を段繰り機で波形に成型し、平板と波形板を交互に積層することでハニカムを成型する。これを350℃以上、1時間焼成するとゼオライトの基材への固定と活性化が達成される。
If the adsorbent having a silica coat on the crystal surface used in the present invention is a honeycomb-formed adsorbent, it is desirable because the pressure loss when passing through the adsorbent adsorption tower is reduced. As a method for preparing the honeycomb, the zeolite is supported by dipping in a mixed slurry of the zeolite and an inorganic binder such as silica sol on an aluminosilicate substrate and drying it. When the soaking and drying are repeated several times, a predetermined loading amount is reached. (Bulk density of 0.3 or more, zeolite loading of 0.1 g / ml or more) When this is calcined at 350 ° C. or more for 1 hour, fixation and activation of the zeolite to the base material are achieved.
Another method is to prepare a paper containing zeolite with aluminosilicate fiber, the zeolite, inorganic binder, and cellulose (making paper), forming a part of it into a corrugated shape using a corrugating machine, and laminating flat plates and corrugated plates alternately. Then, the honeycomb is formed. When this is calcined at 350 ° C. or higher for 1 hour, fixation and activation of the zeolite to the base material are achieved.
第1ステップ(A塔−吸着工程、B塔−向流パージ工程)
第1図に於いて、VOC、水分を含有する空気を流路1、ブロワー2からバルブ3aを通じて水分/VOC選択性の高い水分吸着剤5の充填された水分吸着塔4aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてVOCを含有する室温、超乾燥状態の空気が塔後方から流過し、減圧弁6a、バルブ7aを通じて蓄熱材9の充填された蓄熱材充填塔8aに供給される。この時、塔8aは前回の再生工程で回収された冷熱により冷却されており、VOC含有、室温の乾燥空気と接触して、蓄熱材9は昇温し、乾燥空気は冷却される。流路10から流過した低温、VOC含有乾燥空気はチラーユニット11で最寒冷に冷却されて、流路12からVOCが液化回収される。未回収VOCを含有する低温、超乾燥空気は流路13から蓄熱材9の充填された蓄熱材充填塔8bに供給され蓄熱材9は冷却されて、乾燥空気は昇温する。昇温した乾燥空気はバルブ7b、減圧弁6bを通じて水分吸着剤5の充填された水分吸着塔4bに向流に供給される。ここで吸着塔4bは、バルブ9bを通じて真空ポンプ14で排気されるため、再生圧力約50〜80kPaの低圧で吸着された水分は脱着して再生される。ここで蓄熱材としては0.5〜10KMFの哲、アルミニュウム塔の金属吸
First step (A tower-adsorption process, B tower-countercurrent purge process)
In FIG. 1, an air containing VOC and water is supplied from a
第2ステップ(A塔−吸着工程、B塔−昇圧工程)
水分吸着塔4bの水分吸着剤5の再生が終了し、水分吸着塔4aの水分吸着帯が塔後方に達する直前に、バルブ9bを閉じると蓄熱材充填塔8b、水分吸着塔4bの塔内圧力は吸着圧力とほぼ等しい圧力に昇圧して第2ステップは終了する。
Second step (A tower-adsorption process, B tower-pressurization process)
When regeneration of the
ここで第1〜2ステップと同じ操作をA塔とB塔を変更して、第3〜4ステップで実施する。本装置による水分吸着除去、蓄熱式冷熱回収を行う、低温液化VOC回収方法のシーケンスを第1表に示す。 Here, the same operation as the first and second steps is performed in the third to fourth steps by changing the A tower and the B tower. Table 1 shows the sequence of the low-temperature liquefied VOC recovery method for performing moisture adsorption removal and regenerative cold recovery by this apparatus.
第1ステップ(A塔−吸着工程、B塔−向流パージ工程)
第1図に於いて、トルエン5,000ppm、水分2.5vol%を含有する空気を流路1、ブロワー2からバルブ3aを通じて水分/トルエン選択性の高い水分吸着剤5の充填された水分吸着塔4aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてトルエンを含有する室温(25℃)、超乾燥状態(水分濃度10ppm以下、D.P.−60℃以下)の空気が塔後方から流過し、減圧弁6a、バルブ7aをを通じて蓄熱材9の充填された蓄熱材充填塔8aに供給される。水分吸着剤は候補吸着剤粉末を担持したハニカム(嵩密度0.4g/cm3,プレート間ピッチ2mm、プレート厚0.2mm)である。この時、塔8aは前回の再生工程で回収された冷熱により−50℃に冷却されており、トルエン5,000ppm含有、25℃の乾燥空気と接触して、蓄熱材9は20℃に昇温し、乾燥空気は−50℃に冷却される。流路10から流過した−50℃、トルエン5,000ppm含有乾燥空気はチラーユニットで最寒冷の−65℃に冷却されて、流路12から回収率90%程度で液化回収される。未回収VOC500ppmを含有する温度−65℃、水分濃度10ppm以下(D.P.−60℃以下)の超乾燥空気は流路13から蓄熱材9の充填された蓄熱材充填塔8bに供給され蓄熱材9は−50℃に冷却されて、乾燥空気は20℃に昇温する。昇温した乾燥空気はバルブ7b、減圧弁6bを通じて水分吸着剤5の充填された水分吸着塔4bに向流に供給される。ここで吸着塔4bは、バルブ9bを通じて真空ポンプ14で排気されるため、再生圧力約50〜80kPaの低圧で吸着された水分は脱着して再生される。
減圧条件下、乾燥空気を向流に流すことで吸着剤を再生する操作を向流パージと呼ぶ。吸着圧力をPa(kPa)、再生圧力をPd(kPa)として向流パージ率Kは、
K = Pa/Pd
で定義される。本実験結果によるとKは少なくとも1.1以上でないと出口水分濃度を10ppm以下に保つことは難しい。
First step (A tower-adsorption process, B tower-countercurrent purge process)
In FIG. 1, a moisture adsorption tower filled with
The operation of regenerating the adsorbent by flowing dry air in countercurrent under reduced pressure is called countercurrent purge. The countercurrent purge rate K is defined as Pa (kPa) for the adsorption pressure and Pd (kPa) for the regeneration pressure.
K = Pa / Pd
Defined by According to the results of this experiment, it is difficult to keep the outlet moisture concentration at 10 ppm or less unless K is at least 1.1 or more.
第2ステップ(A塔−吸着工程、B塔−昇圧工程)
水分吸着塔4bの水分吸着剤5の再生が終了し、水分吸着塔4aの水分吸着帯が塔後方に達する直前に、バルブ9bを閉じると蓄熱材充填塔8b、水分吸着塔4bの塔内圧力は吸着圧力とほぼ等しい110〜150kPaに昇圧して第2ステップは終了する。
Second step (A tower-adsorption process, B tower-pressurization process)
When regeneration of the
ここで第1〜2ステップと同じ操作をA塔とB塔を変更して、第3〜4ステップで実施する。 Here, the same operation as the first and second steps is performed in the third to fourth steps by changing the A tower and the B tower.
実施例1〜13及び比較例14及び15:水分選択型吸着剤として各種ゼオライト系水分吸着剤の調製例及び性能評価
本発明の有効性を確認するため充填塔4aの水分選択型吸着剤ハニカム5として、K−A、Na−A、Na−K−A、K−A(10nm)、Na−A(10nm)、Na−K−A(10nm)、K−A(50nm)、Na−A(50nm)、Na−K−A(50nm)、K−A(100nm)、Na−A(100nm)、Na−K−A(100nm)の比較評価を行った。
Examples 1 to 13 and Comparative Examples 14 and 15: Preparation Examples and Performance Evaluation of Various Zeolite Type Water Adsorbents as Water Selective Adsorbents In order to confirm the effectiveness of the present invention, the water
ここでK−A、Na−A、Na−K−Aの( )内はシリカコートの薄膜厚さである。ここでK−A、Na−A、Na−K−Aのシリカコートによるゼオライト結晶上の薄膜成長には、メチルアルコールにスラリー状にゼオライトパウダーを懸濁させ、これにテトラエトキシオルソシリケート(TEOS)を結晶表面に必要厚さに相当する量加え、これにH2O/TEOSモル比10程度で水分を加えると、シリカが析出する。(今回は1回のコーティングで10〜20nmのシリカが析出するように調整し、今回は3回で50nm、5回で100nmになるように調整した。) Here, the values in parentheses in KA, Na-A, and Na-KA are the thin film thickness of the silica coat. Here, for thin film growth on zeolite crystals by silica coating of KA, Na-A, and Na-KA, zeolite powder is suspended in a slurry in methyl alcohol, and tetraethoxy orthosilicate (TEOS) is suspended in this. Is added to the crystal surface in an amount corresponding to the required thickness, and when water is added thereto at a H 2 O / TEOS molar ratio of about 10, silica is precipitated. (This time, adjustment was made so that 10 to 20 nm of silica was deposited by one coating, and this time, adjustment was made to be 50 nm by 3 times and 100 nm by 5 times.)
コーテイング終了後、ハニカム基材に浸積して嵩比重0.4程度に担持した後、110℃で1時間表面水分を除去した後に、50℃/hで昇温して350℃にし、350℃で1時間保持してケイ酸の脱水を完了してゼオライト結晶表面のSi−O−Siのネットワークを完成し且つ、脱水による活性化が終了する。 After finishing the coating, it is immersed in the honeycomb substrate and supported at a bulk specific gravity of about 0.4, and after removing surface moisture at 110 ° C. for 1 hour, the temperature is raised to 50 ° C./h to 350 ° C. For 1 hour to complete the dehydration of silicic acid to complete the Si—O—Si network on the zeolite crystal surface, and the activation by dehydration is completed.
実施例1〜13結果を第2表に示す。(SAMPLE#14,15は比較参照試験結果。)
The results of Examples 1 to 13 are shown in Table 2. (SAMPLE # 14 and 15 are comparative reference test results.)
いずれもトルエン回収率90%以上、水分吸着塔出口露点−60℃を下回っており、本発明の有効性が示される。特にK−A、Na−K−A、Na−A及びこれらのシリカコート品はトルエンに対し分子篩効果を示す高い水分吸着性能を示した。特にK−A(10nm)は高い水分除去性能と高いトルエン回収率を示した。これは比較的大きな水分吸着速度とトルエンに対する分子篩効果を有する程度の窓径(結晶のガスの通り道)であるためと思われる。 In both cases, the toluene recovery rate is 90% or more, and the dew point at the outlet of the moisture adsorption tower is below −60 ° C., indicating the effectiveness of the present invention. In particular, KA, Na-KA, Na-A, and these silica-coated products showed high moisture adsorption performance showing a molecular sieving effect on toluene. In particular, KA (10 nm) showed high moisture removal performance and high toluene recovery. This is presumably because the window diameter (the crystal gas passage) has a relatively high moisture adsorption rate and molecular sieve effect on toluene.
実施例14
次に、吸着剤として最も性能の高いK−A(10nm)をハニカムとして、サイクルタイム5分における入口流量とトルエン回収率、出口水分濃度の関係を調べた。結果を第3表に示す。
Example 14
Next, KA (10 nm) having the highest performance as an adsorbent was used as a honeycomb, and the relationship between the inlet flow rate, the toluene recovery rate, and the outlet moisture concentration at a cycle time of 5 minutes was examined. The results are shown in Table 3.
原料流量の増大に伴いトルエン回収率は増大して99.5%に増加するが、水分吸着塔出口の水分濃度も増大する。しかし、7,500m3N/hにおいても水分濃度は8ppm程度にとどまっており高い性能を維持している。又流量を4,000m3N/h程度に減少するとトルエン回収率は97%に低下するが、水分濃度は2ppmまで低減できる。 As the raw material flow rate increases, the toluene recovery rate increases to 99.5%, but the moisture concentration at the outlet of the moisture adsorption tower also increases. However, even at 7,500 m 3 N / h, the water concentration is only about 8 ppm, and high performance is maintained. When the flow rate is reduced to about 4,000 m 3 N / h, the toluene recovery rate is reduced to 97%, but the water concentration can be reduced to 2 ppm.
実施例15
次に吸着剤として最も性能の高いK−A(10nm)をハニカムとして、サイクルタイムとトルエン回収率、水分吸着塔出口水分濃度の関係を調べた。結果を第4表に示す
Example 15
Next, KA (10 nm) having the highest performance as an adsorbent was used as a honeycomb, and the relationship between the cycle time, toluene recovery rate, and moisture adsorption tower outlet moisture concentration was examined. The results are shown in Table 4.
サイクルタイムの短縮に伴いトルエン回収率は上昇し、水分吸着塔出口の水分濃度は低下する。サイクルタイム5分ではトルエン回収率99.6%、出口水分濃度6ppm程度を維持している。また、サイクルタイムを1分程度に減少するとトルエン回収率99.8%、出口水分濃度2ppm程度に性能が向上する。従ってサイクルタイムの短縮で吸着剤の使用量を削減できることが判る。 As the cycle time is shortened, the toluene recovery rate increases and the moisture concentration at the outlet of the moisture adsorption tower decreases. At a cycle time of 5 minutes, a toluene recovery rate of 99.6% and an outlet moisture concentration of about 6 ppm are maintained. Further, when the cycle time is reduced to about 1 minute, the performance is improved to a toluene recovery rate of 99.8% and an outlet moisture concentration of about 2 ppm. Therefore, it can be seen that the amount of adsorbent used can be reduced by shortening the cycle time.
実施例16
次に、吸着剤として最も性能の高いK−A(10nm)をハニカムとして、吸着圧力とトルエン回収率、水分吸着塔出口水分濃度の関係を調べた。結果を第5表に示す。
Example 16
Next, KA (10 nm) having the highest performance as an adsorbent was used as a honeycomb, and the relationship between the adsorption pressure, the toluene recovery rate, and the moisture concentration at the moisture adsorption tower outlet was examined. The results are shown in Table 5.
吸着圧力の増大に伴いトルエン回収率は上昇し、水分吸着塔出口の水分濃度は低下する。吸着圧力120kPaではトルエン回収率は99.6%に上昇し、水分吸着塔出口の水分濃度は3ppmに低下する。 As the adsorption pressure increases, the toluene recovery rate increases and the moisture concentration at the moisture adsorption tower outlet decreases. At an adsorption pressure of 120 kPa, the toluene recovery rate increases to 99.6%, and the water concentration at the outlet of the water adsorption tower decreases to 3 ppm.
実施例16
次に、吸着剤として最も性能の高いK−A(10nm)をハニカムとして、再生圧力とトルエン回収率、水分吸着塔出口水分濃度の関係を調べた。結果を第6表に示す。
Example 16
Next, KA (10 nm) having the highest performance as an adsorbent was used as a honeycomb, and the relationship between the regeneration pressure, the toluene recovery rate, and the moisture concentration at the outlet of the moisture adsorption tower was examined. The results are shown in Table 6.
再生圧力の低下に伴いトルエン回収率は上昇し、水分吸着塔出口の水分濃度は低下する。再生圧力80kPaではトルエン回収率は99.6%に上昇し、水分吸着塔出口の水分濃度は6ppmに低下する。 As the regeneration pressure decreases, the toluene recovery rate increases and the moisture concentration at the outlet of the moisture adsorption tower decreases. At a regeneration pressure of 80 kPa, the toluene recovery rate increases to 99.6%, and the water concentration at the outlet of the water adsorption tower decreases to 6 ppm.
実施例16
次に、吸着剤として最も性能の高いK−A(10nm)をハニカムとして、凝縮温度とトルエン回収率、水分吸着塔出口水分濃度の関係を調べた。結果を第7表に示す。
Example 16
Next, KA (10 nm) having the highest performance as an adsorbent was used as a honeycomb, and the relationship between the condensation temperature, the toluene recovery rate, and the moisture concentration at the outlet of the moisture adsorption tower was examined. The results are shown in Table 7.
凝縮温度の低下に伴いトルエン回収率は上昇し、凝縮温度−60℃で99.6%に達する。 As the condensation temperature decreases, the toluene recovery rate increases and reaches 99.6% at a condensation temperature of -60 ° C.
実施例18
入口ガス流量5,000m3N/h、ガス組成としてメチルエチルケトン5,000ppm、水分2.5vol%、バランスガス空気、サイクルタイム5分、吸着圧力120kPa、再生圧力80kPa、凝縮温度−65℃でメチルエチルケトンの回収を行いメチルエチルケトン回収率98%、水分濃度5ppmの回収性能を確認した。
Example 18
Inlet gas flow rate is 5,000 m 3 N / h, gas composition is methyl ethyl ketone 5,000 ppm, moisture 2.5 vol%, balance gas air,
実施例19
入口ガス流量5,000m3N/h、ガス組成としてイソプロピルアルコール25vol%、水分2.5vol%、バランスガス窒素、サイクルタイム5分、吸着圧力120kPa、再生圧力80kPa、凝縮温度−65℃でイソプロピルアルコールの回収を行いイソプロピルアルコール回収率98%、水分濃度5ppmの回収性能を確認した。なお回収イソプロピルアルコール中の水分濃度は0.01w%以下に低下しており無水アルコールの製造可能なことが示された。
Example 19
Inlet gas flow rate 5,000 m 3 N / h, gas composition as isopropyl alcohol 25 vol%, moisture 2.5 vol%, balance gas nitrogen,
実施例20
入口ガス流量5,000m3N/h、ガス組成としてトルエン5000ppm、水分2.5vol%、バランスガス空気、サイクルタイム5分、吸着圧力120kPa、再生圧力80kPa、凝縮温度−65℃でのトルエン回収において、蓄熱式熱交換器に替えて、チラーユニットの入口出口間にプレートフィン式熱交換機を設けて、吸着工程出口ガスと再生工程入口ガス間の熱交換を行い、蓄熱式熱交換器と同様な性能を確認した。(トルエン回収率99.6%、水分濃度6ppm)
Example 20
In toluene recovery at an inlet gas flow rate of 5,000 m 3 N / h, gas composition of toluene 5000 ppm, moisture 2.5 vol%, balance gas air,
VOCガスを含む各種排気ガスよりVOCを回収することができ、外部に排出しない。また、回収されたVOCは殆ど劣化しておらず、VOCを低コスト、高効率に回収し、完全再利用することができる。 VOC can be recovered from various exhaust gases including VOC gas and is not discharged to the outside. Further, the recovered VOC is hardly deteriorated, and the VOC can be recovered with low cost and high efficiency and can be completely reused.
10,12,13 流路
2 ブロワー
3a,3b.7a,7b,9a,9b 自動弁
4a、4b 水分吸着塔
5 水分選択型吸着剤
6a,6b 減圧弁
8a,8b 蓄熱材充填塔
9 蓄熱材
11 チラーユニット
14 真空ポンプ
10, 12, 13 Channel 2
Claims (7)
In Claim 1, it introduce | transduces into a water | moisture-content type | mold adsorbent adsorption tower, makes it contact with an adsorbent, makes water adsorb | suck to an adsorbent, isolate | separates from VOC, and introduce | transduces into the heat storage material packed tower cooled to low temperature subsequently. Cooling by contacting with heat storage material, cooling with a cooler to reach the coldest temperature, liquefying and recovering VOC, and flowing low temperature, low VOC, low moisture concentration air to other heat storage material packed tower Introduce it into contact with the heat storage material, recover the cold heat, raise the temperature, reduce the air, introduce it into another moisture selective adsorbent adsorption tower and contact with the adsorbent to desorb the moisture from the adsorbent A low-temperature liquefied VOC recovery method in which the moisture adsorbent is regenerated and the tower is switched before moisture breaks through to remove moisture and recover cold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351231A JP2008161743A (en) | 2006-12-27 | 2006-12-27 | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351231A JP2008161743A (en) | 2006-12-27 | 2006-12-27 | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008161743A true JP2008161743A (en) | 2008-07-17 |
Family
ID=39691925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006351231A Pending JP2008161743A (en) | 2006-12-27 | 2006-12-27 | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008161743A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172804A (en) * | 2009-01-28 | 2010-08-12 | Kyuchaku Gijutsu Kogyo Kk | Moisture removal using absorbent, voc concentration by temperature swinging method of performing recovery of cold, and voc recovering method by low-temperature liquefaction |
JP2013017930A (en) * | 2011-07-08 | 2013-01-31 | Kyuchaku Gijutsu Kogyo Kk | Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent |
JP2013244421A (en) * | 2012-05-23 | 2013-12-09 | Toyo Ink Sc Holdings Co Ltd | Organic solvent regenerating method |
JP2017018917A (en) * | 2015-07-14 | 2017-01-26 | 吸着技術工業株式会社 | Method and device for performing adsorption separation of ch4 from biogas |
CN108043064A (en) * | 2017-12-29 | 2018-05-18 | 上海蓝科石化环保科技股份有限公司 | A kind of VOCs recovery process and system |
JP6349478B1 (en) * | 2018-03-23 | 2018-06-27 | 日本エア・リキード株式会社 | Removal system and removal method for removing moisture from moisture-containing organic solvent |
CN116351199A (en) * | 2023-06-01 | 2023-06-30 | 中国华能集团清洁能源技术研究院有限公司 | Adsorption module with cold energy recovery function and low-temperature adsorption system |
-
2006
- 2006-12-27 JP JP2006351231A patent/JP2008161743A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010172804A (en) * | 2009-01-28 | 2010-08-12 | Kyuchaku Gijutsu Kogyo Kk | Moisture removal using absorbent, voc concentration by temperature swinging method of performing recovery of cold, and voc recovering method by low-temperature liquefaction |
JP2013017930A (en) * | 2011-07-08 | 2013-01-31 | Kyuchaku Gijutsu Kogyo Kk | Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent |
JP2013244421A (en) * | 2012-05-23 | 2013-12-09 | Toyo Ink Sc Holdings Co Ltd | Organic solvent regenerating method |
JP2017018917A (en) * | 2015-07-14 | 2017-01-26 | 吸着技術工業株式会社 | Method and device for performing adsorption separation of ch4 from biogas |
CN108043064A (en) * | 2017-12-29 | 2018-05-18 | 上海蓝科石化环保科技股份有限公司 | A kind of VOCs recovery process and system |
CN108043064B (en) * | 2017-12-29 | 2023-10-24 | 上海蓝科石化环保科技股份有限公司 | VOCs recovery process and system |
JP6349478B1 (en) * | 2018-03-23 | 2018-06-27 | 日本エア・リキード株式会社 | Removal system and removal method for removing moisture from moisture-containing organic solvent |
JP2019166477A (en) * | 2018-03-23 | 2019-10-03 | 日本エア・リキード株式会社 | Removal system and removal method for removing moisture from moisture-containing organic solvent |
CN116351199A (en) * | 2023-06-01 | 2023-06-30 | 中国华能集团清洁能源技术研究院有限公司 | Adsorption module with cold energy recovery function and low-temperature adsorption system |
CN116351199B (en) * | 2023-06-01 | 2023-08-29 | 中国华能集团清洁能源技术研究院有限公司 | Adsorption module with cold energy recovery function and low-temperature adsorption system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298292B2 (en) | A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. | |
JP5732451B2 (en) | Use of zeolitic microporous crystalline materials with RHO structure in natural gas processing | |
TW555587B (en) | Process for the decarbonation of gas flows using zeolite adsorbents | |
JP2008161743A (en) | Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent | |
JP2010172804A5 (en) | ||
US20070028772A1 (en) | Method and system for purifying a gas | |
JPH10263392A (en) | Adsorption of carbon dioxide and water and adsorbent | |
JP2014237132A (en) | Zeolite adsorbent, method of obtaining the same and use of the same in removing carbonate from gas flow | |
JP2001046826A (en) | Method for separating gas component from gaseous mixture | |
JP2010533063A5 (en) | ||
US5183484A (en) | Process for removal of water in raw material mixed gas | |
JPH11235513A (en) | Method of refinning air by allowing carbon dioxide and water impurity to be adsorbed on sintered alumina | |
JPH11316082A (en) | Method and device for producing clean and dry air | |
WO1990011117A1 (en) | Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration | |
JP2000317246A (en) | Method and device for recovering ammonia | |
CN116059784A (en) | Method and system for capturing carbon dioxide in flue gas by pressure swing adsorption | |
JP6763979B2 (en) | Temperature swing adsorption process | |
CN108745295B (en) | Siloxane adsorption material and application thereof | |
JP2001137646A (en) | Device and method for adsorption treating waste gas | |
JP2004243279A (en) | Method and device for cleaning gas containing organic contaminant | |
JPH03135410A (en) | Pressure swing method for separating and recovering volatile organic matter | |
JP2013017930A (en) | Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent | |
JP6965127B2 (en) | Nitrogen and oxygen production method | |
JP2011092871A (en) | Organic solvent recovery system | |
JPS621766B2 (en) |