JP2010172804A5 - - Google Patents

Download PDF

Info

Publication number
JP2010172804A5
JP2010172804A5 JP2009016750A JP2009016750A JP2010172804A5 JP 2010172804 A5 JP2010172804 A5 JP 2010172804A5 JP 2009016750 A JP2009016750 A JP 2009016750A JP 2009016750 A JP2009016750 A JP 2009016750A JP 2010172804 A5 JP2010172804 A5 JP 2010172804A5
Authority
JP
Japan
Prior art keywords
voc
moisture
water
temperature
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009016750A
Other languages
Japanese (ja)
Other versions
JP2010172804A (en
JP5298292B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009016750A priority Critical patent/JP5298292B2/en
Priority claimed from JP2009016750A external-priority patent/JP5298292B2/en
Publication of JP2010172804A publication Critical patent/JP2010172804A/en
Publication of JP2010172804A5 publication Critical patent/JP2010172804A5/ja
Application granted granted Critical
Publication of JP5298292B2 publication Critical patent/JP5298292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

かくして、本発明によれば、下記の1〜の発明を提供する:
1.少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水 分を含有する空気を相対的低温でVOC吸着塔に導入してVOC選択型吸着剤と接触させてVOCを吸着剤に吸着させて空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して脱着して、VOC処理ガスを減容濃縮し、減容濃縮したVOCガスを少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物及び水分を含有する窒素を加圧して水分吸着塔に導入して水分選択型吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて最寒冷温度になるように冷却器で冷却してVOCを液化回収し、流過する低VOC、低水分濃度の窒素を減圧して、他の水分吸着した水分選択型吸着剤吸着塔に導入して吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去し、流過した窒素を水分除去した後、VOC選択型吸着剤の高温再生に使用する温度スイング法VOC濃縮、低温液化VOC回収方法。
2.記1において、少なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに窒素を使用し、低温液化凝縮器でVOCを液化回収した後、流過した窒素を水分除去後、VOC選択型吸着剤の高温再生に使用する、温度スイング法VOC濃縮、低温液化VOC回収方法。
3.同じく上記1において、少なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに高温空気を使用し、低温液化凝縮器でVOCを液化回収した後、流過した不凝縮VOCおよび水分を含有する空気をVOC選択型吸着剤の低温吸着ゾーンに還流する、温度スイング法VOC濃縮、低温液化VOC回収方法。
.VOC選択型吸着剤が、シリカライト、USM、β、USY、MPSからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の温度スイング法VOC濃縮、低温液化VOC回収方法
.水分選択型吸着剤が、K−A、Na−A、Na−K−A及びCa−Aからなる群より 選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法
.水分選択型吸着剤が、表面が液相で有機ケイ素化合物の加水分解生成物によりシリカ コートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法
.水分選択型吸着剤が、表面が気相で有機ケイ素化合物の加水分解生成物によりシリカ コートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、上記1記載のVOC、水分含有空気からの水分除去後の低温液化VOC回収方法
.水分選択型吸着剤が、ハニカム形成された、上記1〜のいずれか一に記載の水分除去、冷熱の回収を行う、低温液化VOC回収方法。
Thus, according to the present invention, the following inventions 1 to 8 are provided:
1. In one of at least two towers, an air containing a volatile organic compound (hereinafter referred to as VOC) and water is introduced into the VOC adsorption tower at a relatively low temperature and brought into contact with the VOC selective adsorbent. VOC is adsorbed by an adsorbent, air is released to the outside of the system, and the adsorbed VOC is desorbed using nitrogen at a relatively high temperature to reduce and concentrate the VOC processing gas, and to reduce at least the reduced and concentrated VOC gas. in 1 column of the adsorption tower of the double column, a volatile organic compound Mono及 beauty a nitrogen containing water pressurized by introducing into water adsorption tower water selective adsorbent adsorbent moisture in contact with Adsorption and separation from VOC, followed by cooling with a cooler to reach the coldest temperature, liquefying and collecting VOC, reducing low VOC and low moisture concentration nitrogen flowing through, adsorbing other moisture It is introduced into a moisture-selective adsorbent adsorption tower and brought into contact with the adsorbent to remove moisture. The temperature used to regenerate the moisture adsorbent by desorbing from the adsorbent, switching the tower to remove the moisture before the moisture breaks through, removing the nitrogen that has passed through, and then regenerating the VOC selective adsorbent at a high temperature Swing method VOC concentration, low temperature liquefied VOC recovery method.
2. In the above SL 1, the VOC adsorption towers instead filled at least two tower of VOC selective adsorbent, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, the purge gas of the hot regeneration zone A temperature swing method VOC concentration and low temperature liquefied VOC recovery method, in which nitrogen is used to liquefy and recover VOC in a low temperature liquefaction condenser, and then the nitrogen that has passed is removed from the water, and then used for high temperature regeneration of the VOC selective adsorbent.
3. In the above SL 1 Similarly, the VOC adsorption towers instead filled at least two tower of VOC selective adsorbent, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, a purge gas of the hot regeneration zone Temperature swing method VOC concentration in which high-temperature air is used for liquefaction and VOC is liquefied and collected in a low-temperature liquefaction condenser, and then air containing non-condensed VOC and water that has passed through is returned to the low-temperature adsorption zone of the VOC selective adsorbent. Low temperature liquefied VOC recovery method.
4 . The VOC selective adsorbent is at least one selected from the group consisting of silicalite, USM, β, USY, MPS, VOC according to 1 above , temperature swing method VOC concentration after removing moisture from moisture-containing air, low temperature Liquefied VOC recovery method .
5 . Moisture selective adsorbent, K-A, is Na-A, one or more selected from the group consisting of Na-K-A and Ca-A, according to the above item 1, wherein VOC, after removal of water from moisture-laden air Low temperature liquefied VOC recovery method .
6 . One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA and Ca-A whose surfaces are in a liquid phase and silica-coated with a hydrolysis product of an organosilicon compound in it, the one wherein the VOC, low-temperature liquefied VOC recovery method after removal of water from the moisture-containing air.
7 . One or more kinds of moisture-selective adsorbents selected from the group consisting of KA, Na-A, Na-KA and Ca-A whose surfaces are in the gas phase and silica-coated with hydrolysis products of organosilicon compounds in it, the one wherein the VOC, low-temperature liquefied VOC recovery method after removal of water from the moisture-containing air.
8 . 8. A low-temperature liquefied VOC recovery method in which a moisture-selective adsorbent is formed in a honeycomb and performs water removal and cold recovery as described in any one of 1 to 7 above .

本方法においてはVOCと水分を含有する原料ガスを、室温近傍の相対的低温でVOC選択型吸着剤で吸着して、無害化した空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して、VOCを脱着して4〜12倍程度に減容濃縮するため、後段の低温液化VOC回収装置が小型でき、パージガスとして窒素を使用することから、高温再生時の回収VOCの劣化、VOC吸着剤の劣化を回避でき、またVOC回収時の引火、爆発等も回避できる。大気圧近傍の減容濃縮されたVOCの回収では、VOCを殆ど吸着しない水分吸着剤を充填された吸着塔で行われ、VOCを除去された窒素は前段のVOC吸着剤の再生に使用されるため、本方法においてはVOC含有窒素中のVOCを室温以下の低温で 液化、回収をすることが出来る。このため回収工程は窒素雰囲気で実施されるため安全であり、またVOCは劣化することなく回収され、VOC吸着剤も劣化されることがない。本方法を採用することにより、コンパクトで、窒素雰囲気で操作される安全な操作で、省エネルギーの、回収溶剤及び吸着剤の劣化のないVOCの回収装置を提供することが可能である。 In this method, a raw material gas containing VOC and moisture is adsorbed by a VOC selective adsorbent at a relatively low temperature near room temperature, detoxified air is released out of the system, and the adsorbed VOC is released at a relatively high temperature. Since VOC is desorbed using nitrogen and the volume is reduced to about 4 to 12 times, the downstream low-temperature liquefied VOC recovery device can be miniaturized , and nitrogen is used as the purge gas. Deterioration, VOC adsorbent deterioration, and ignition, explosion, etc. during VOC recovery can be avoided. Recovery of volume-reduced and concentrated VOC near atmospheric pressure is performed in an adsorption tower filled with a moisture adsorbent that hardly adsorbs VOC, and the nitrogen from which VOC has been removed is used to regenerate the VOC adsorbent in the previous stage. Therefore, in this method, VOC in the VOC-containing nitrogen can be liquefied and recovered at a low temperature below room temperature. Therefore, the recovery process is safe because it is performed in a nitrogen atmosphere, and VOC is recovered without deterioration, and the VOC adsorbent is not deteriorated. By adopting this method, it is possible to provide a VOC recovery apparatus that is compact, safe and operated in a nitrogen atmosphere, and that saves energy and does not deteriorate the recovered solvent and adsorbent.

[PSA−VOC低温液化回収]
第1ステップ(A塔−吸着工程、B塔−向流パージ工程)
図1に於いて、VOC、水分を含有する窒素を流路12、ブロワー13からバルブ14 aを通じて水分/VOC選択性の高い水分吸着剤16の充填された水分吸着塔15aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてVOCを含有する室温、超乾燥状態の窒素が塔後方から流過し、減圧弁17a、バルブ18aを通じて蓄熱材20の充填された蓄熱材充填塔19aに供給される。この時、塔19aは前回の再生工程で回収された冷熱により冷却されており、VOC含有、室温の乾燥窒素と接触して、蓄熱材20は昇温し、乾燥窒素は冷却される。流路22から流過した低温、VOC含有乾燥窒素はチラーユニット23で最寒冷に冷却されて、流路25からVOCが液化回収される。未回収VOCを含有する低温、超乾燥窒素は流路24から蓄熱材20の充填された蓄熱材充填塔19bに供給され蓄熱材20は冷却されて、乾燥窒素は昇温する。昇温した乾燥窒素はバルブ18b、減圧弁17bを通じて水分吸着剤16の充填された水分吸着塔15bに向流に供給される。ここで吸着塔15bは、バルブ21bを通じて真空ポンプ26で排気されるため、再生圧力約50〜80kPaの低圧で吸着された水分は脱着して再生される。ここで蓄熱材としては0.5〜10mmφの鉄、アルミニュウム等の金属球で構成される。流過した水分含有窒素はチラーユニット27で冷却されて流路28から水分が除去され、ヒータ29にパージガスとして還流する。
[PSA-VOC low temperature liquefaction recovery]
First step (A tower-adsorption process, B tower-countercurrent purge process)
In FIG. 1, the adsorption pressure of about 110 is applied to the moisture adsorption tower 15a filled with the moisture adsorbent 16 having a high moisture / VOC selectivity from the flow path 12 and the blower 13 through the valve 14a. When supplied at ˜150 kPA, only moisture is selectively adsorbed and room temperature and ultra-dry nitrogen containing VOC flows from the rear of the tower, and the heat storage material 20 is filled with the heat storage material 20 through the pressure reducing valve 17a and the valve 18a. It is supplied to the material packed tower 19a. At this time, the tower 19a is cooled by the cold heat collected in the previous regeneration step, and comes into contact with dry nitrogen at room temperature containing VOC, so that the heat storage material 20 is heated and the dry nitrogen is cooled. The low-temperature, VOC-containing dry nitrogen flowing from the flow path 22 is cooled to the coldest in the chiller unit 23, and the VOC is liquefied and recovered from the flow path 25. The low-temperature and ultra-dry nitrogen containing unrecovered VOC is supplied from the flow path 24 to the heat storage material packed tower 19b filled with the heat storage material 20, the heat storage material 20 is cooled, and the dry nitrogen is heated. The heated dry nitrogen is supplied countercurrently to the moisture adsorption tower 15b filled with the moisture adsorbent 16 through the valve 18b and the pressure reducing valve 17b. Here, since the adsorption tower 15b is exhausted by the vacuum pump 26 through the valve 21b, the moisture adsorbed at a low pressure of about 50 to 80 kPa is desorbed and regenerated. Here, the heat storage material is composed of metal balls such as iron or aluminum having a diameter of 0.5 to 10 mm. The water-containing nitrogen that has passed through is cooled by the chiller unit 27 to remove the water from the flow path 28 and return to the heater 29 as a purge gas.

[PSA−VOC低温液化回収]
引き続き、図1に於いて、アセトン、水分を含有する窒素を流路12、ブロワー13か らバルブ14aを通じて水分/アセトン選択性の高い水分吸着剤16の充填された水分吸 着塔15aに、吸着圧力約110〜150kPAで供給されると水分のみが選択的に吸着されてアセトンを含有する25℃、露点−68℃の超乾燥状態の窒素が塔後方から流過し、減圧弁17a、バルブ18aを通じて蓄熱材20の充填された蓄熱材充填塔19aに供給される。この時、塔19aは前回の再生工程で回収された冷熱により−55〜60℃に冷却されており、アセトン含有乾燥窒素と接触して、蓄熱材20は昇温し、乾燥窒素は−55℃に冷却される。流路22から流過した低温、アセトン含有乾燥窒素はチラーユニット23で−60℃に冷却されて、流路25からアセトンが液化回収される。アセトン濃度1,400ppmの未回収アセトンを含有する低温、超乾燥窒素は流路24から蓄熱材20の充填された蓄熱材充填塔19bに供給され蓄熱材20は冷却されて、乾燥窒素は20℃に昇温する。昇温した乾燥窒素はバルブ18b、減圧弁17bを通じて水分吸着剤16の充填された水分吸着塔15bに向流に供給される。ここで吸着塔15bは、バルブ21bを通じて真空ポンプ26で排気されるため、再生圧力約50〜80kPaの低圧で、吸着された水分は脱着して再生される。ここで蓄熱材としては0.5〜10mmφの鉄、アルミニュウム等の金属球で構成される。真空ポンプ26から流過した水分含有窒素はチラーユニット27で5℃に冷却されて、流路28から水分が液化除去されて、乾燥窒素は再生用パージガスとしてヒータ29に還流する。
[PSA-VOC low temperature liquefaction recovery]
Subsequently, in FIG. 1, acetone and nitrogen containing water are adsorbed from the flow path 12 and the blower 13 through the valve 14a to the water adsorption tower 15a filled with the moisture adsorbent 16 having high moisture / acetone selectivity. When supplied at a pressure of about 110 to 150 kPA, only moisture is selectively adsorbed, and acetone containing 25 ° C. and dew point −68 ° C. ultra-dry nitrogen flows from the rear of the column, and the pressure reducing valve 17a and valve 18a And supplied to the heat storage material filling tower 19a filled with the heat storage material 20. At this time, the column 19a is -55 by cold recovered in the last regeneration step - 60 ° C. and cooled to, in contact with the acetone containing dry nitrogen, the heat storage material 20 is heated, dry nitrogen is -55 Cool to ° C. The low-temperature, acetone-containing dry nitrogen flowing through the flow path 22 is cooled to −60 ° C. by the chiller unit 23, and acetone is liquefied and recovered from the flow path 25. Low-temperature, ultra-dry nitrogen containing unrecovered acetone with an acetone concentration of 1,400 ppm is supplied from the flow path 24 to the heat storage material packed tower 19b filled with the heat storage material 20, the heat storage material 20 is cooled, and the dry nitrogen is 20 ° C. The temperature rises to The heated dry nitrogen is supplied countercurrently to the moisture adsorption tower 15b filled with the moisture adsorbent 16 through the valve 18b and the pressure reducing valve 17b. Here, since the adsorption tower 15b is exhausted by the vacuum pump 26 through the valve 21b, the adsorbed moisture is desorbed and regenerated at a regeneration pressure of about 50 to 80 kPa. Here, the heat storage material is composed of metal balls such as iron or aluminum having a diameter of 0.5 to 10 mm. The water-containing nitrogen flowing from the vacuum pump 26 is cooled to 5 ° C. by the chiller unit 27, the water is liquefied and removed from the flow path 28, and the dry nitrogen returns to the heater 29 as a regeneration purge gas.

次に、最近普及しているハニカムロータを使用し、VOCを減容濃縮した後、PSA−VOCで液化回収する方法のフローシートを図2に示す。VOCとしてトルエン濃度5,000ppmを含有する空気150m3N/hを流路31からUSYハニカム34の充填したハニカムロータ33に供給して、吸着ゾーン33aにおいて出口トルエン濃度100ppmになるように除去し、流路32、ブロワー35から系外に放出される。吸着したトルエンは脱着ゾーン33bにおいて、脱着工程のパージガスとして温度120℃、流量20m3N/hの高温窒素を使用し、ヒータ29から供給して脱着し、ブロワー11、流路12からPSA−VOCに、流量20m3N/h、トルエン濃度30,000ppmで供給される。水分選択型吸着剤16としては最も性能の高いK−A(10nm)をハニカ ムとして使用した。PSA−VOC液化回収ユニットにおいて不凝結ガス濃度50ppmまで除去され、水分含有窒素はチラーユニット27で露点5℃まで冷却され、水分は流路28から系外に除去される。窒素をパージガスに使用することから回収トルエンおよびUSYの劣化は回避された。ハニカムロータでは流量の約5%がリークすることから、窒素を1m3N/h程度を補充した。 Next, FIG. 2 shows a flow sheet of a method of using a recently popular honeycomb rotor and reducing and concentrating the volume of VOC and then liquefying and recovering with PSA-VOC. 150 m 3 N / h of air containing a toluene concentration of 5,000 ppm as VOC is supplied from the flow path 31 to the honeycomb rotor 33 filled with the USY honeycomb 34 and removed so as to have an outlet toluene concentration of 100 ppm in the adsorption zone 33a. 32, discharged from the blower 35 to the outside of the system. In the desorption zone 33b, the adsorbed toluene is supplied from the heater 29 and desorbed using high-temperature nitrogen at a temperature of 120 ° C. and a flow rate of 20 m 3 N / h as a purge gas in the desorption process, and is discharged from the blower 11 and the flow path 12 to the PSA-VOC. It is supplied at a flow rate of 20 m3 N / h and a toluene concentration of 30,000 ppm. As the moisture selective adsorbent 16, KA (10 nm) having the highest performance was used as a honeycomb. In the PSA-VOC liquefaction recovery unit, the non-condensed gas concentration is removed to 50 ppm, the moisture-containing nitrogen is cooled to a dew point of 5 ° C. by the chiller unit 27, and the moisture is removed from the flow path 28 to the outside of the system. Degradation of recovered toluene and USY was avoided because nitrogen was used as the purge gas. Since about 5% of the flow rate leaked in the honeycomb rotor, nitrogen was supplemented at about 1 m3 N / h.

Claims (4)

少なくとも2塔式の吸着塔の1塔に於いて、揮発性有機化合物(以下VOC)及び水分 を含有する空気を相対的低温でVOC吸着塔に導入してVOC選択型吸着剤と接触させてVOCを吸着剤に吸着させて空気を系外に放出し、吸着したVOCを相対的高温で窒素を使用して脱着して、VOC処理ガスを減容濃縮し、減容濃縮したVOCガスを少なくとも2塔式の水分吸着塔の1塔に於いて、揮発性有機化合物及び水分を含有する窒素を加圧して水分選択型吸着剤と接触させて水分を吸着剤に吸着させてVOCと分離し、続いて最寒冷温度になるように冷却器で冷却してVOCを液化回収し、流過する低VOC、低水分濃度の窒素を減圧して、他の水分吸着した水分吸着塔に導入して水分選択型吸着剤と接触させて水分を吸着剤から脱着させて水分吸着剤を再生し、水分が破過する前に塔を切り替えて水分除去し、流過した窒素を水分除去後、VOC選択型吸着剤の高温再生に使用するに際し、VOC選択型吸着剤が、シリカライト、脱アルミニュームモルデナイト(以下USM)、ベータ(以下β)、脱アルミニュームY型ゼオライト(以下USY)、高SiO /Al 比メソポーラスシリカ(以下MPS)からなる群より選ばれる一種以上であり、水分選択型吸着剤が、K−A、Na−A、Na−K−A、Ca−A、或は表面が液相又は気相で有機ケイ素化合物の加水分解生成物によりシリカコートされたK−A、Na−A、Na−K−A及びCa−Aからなる群より選ばれる一種以上である、温度スイング法VOC濃縮、低温液化VOC回収方法。 In at least one of the two tower type adsorption towers, a volatile organic compound (hereinafter referred to as VOC) and water containing water are introduced into the VOC adsorption tower at a relatively low temperature and brought into contact with the VOC selective adsorbent. Is adsorbed by an adsorbent to release air out of the system, and the adsorbed VOC is desorbed using nitrogen at a relatively high temperature to reduce the volume of the VOC processing gas and reduce the volume of the reduced VOC gas to at least 2 in 1 tower water adsorption tower tower is contacted with a moisture-selective adsorbent moisture is adsorbed by the adsorbent was separated from the VOC of nitrogen containing volatile organic compounds Mono及 beauty water pressurized Subsequently, the VOC is liquefied and recovered by cooling with a cooler so as to reach the coldest temperature, and the low VOC and low moisture concentration nitrogen flowing through are reduced in pressure and introduced into another moisture adsorption tower that has adsorbed moisture. Moisture is desorbed from the adsorbent by contact with a moisture-selective adsorbent The water adsorbent is regenerated, the water is removed by switching the tower before the water breaks through, and the nitrogen that has passed is removed from the water and then used for the high temperature regeneration of the VOC selective adsorbent. From the group consisting of silicalite, dealuminated mordenite (hereafter USM), beta (hereafter β), dealuminated Y-type zeolite (hereafter USY), high SiO 2 / Al 2 O 3 ratio mesoporous silica (hereafter MPS). One or more selected, and the moisture-selective adsorbent is KA, Na-A, Na-KA, Ca-A, or a hydrolysis product of an organosilicon compound with a liquid phase or gas phase surface A temperature swing method VOC concentration, a low-temperature liquefied VOC recovery method, which is at least one selected from the group consisting of KA, Na-A, Na-KA and Ca-A coated with silica . なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに窒素を使用し、低温液化凝縮器でVOCを液化回収した後、流過した窒素を水分除去後、VOC選択型吸着剤の高温再生に使用する、請求項1記載の温度スイング法VOC濃縮、低温液化VOC回収方法。 The VOC adsorption towers instead filled with VOC selective adsorbent double column even without low, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, using nitrogen to purge the hot regeneration zone 2. The temperature swing method VOC concentration and low temperature liquefied VOC recovery according to claim 1 , wherein the VOC is liquefied and recovered by a low temperature liquefaction condenser, and then the nitrogen that has passed is removed from the water and used for high temperature regeneration of the VOC selective adsorbent. Method. なくとも2塔式のVOC選択型吸着剤を充填したVOC吸着塔の替わりに、低温吸着ゾーンと高温再生ゾーンを有するローター式のVOC吸着塔を使用し、高温再生ゾーンのパージガスに高温空気を使用し、低温液化凝縮器でVOCを液化回収した後、流過した不凝縮VOCおよび水分を含有する空気をVOC選択型吸着剤の低温吸着ゾーンに還流する、請求項1記載の温度スイング法VOC濃縮、低温液化VOC回収方法。 The VOC adsorption towers instead filled with VOC selective adsorbent double column even without low, using VOC adsorption tower of the rotor type having a low temperature adsorption zone and high temperature zone, the hot air in the purge gas of the hot regeneration zone 2. The temperature swing method VOC according to claim 1 , wherein the VOC is liquefied and collected by a low temperature liquefaction condenser, and then the air containing the non-condensed VOC and water that has passed through is returned to the low temperature adsorption zone of the VOC selective adsorbent. Concentration, low temperature liquefied VOC recovery method. VOC選択型吸着剤および水分選択型吸着剤が、ハニカム形成された請求項1〜3のいずれか一に記載の水分除去、冷熱の回収を行う、温度スイング法VOC濃縮、低温液化VOC回収方法。The temperature swing method VOC concentration and the low-temperature liquefied VOC collection method which perform the water | moisture-content removal and cold-heat collection | recovery as described in any one of Claims 1-3 in which the VOC selection type adsorbent and the water selection type adsorbent were formed in the honeycomb.
JP2009016750A 2009-01-28 2009-01-28 A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered. Active JP5298292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016750A JP5298292B2 (en) 2009-01-28 2009-01-28 A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016750A JP5298292B2 (en) 2009-01-28 2009-01-28 A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.

Publications (3)

Publication Number Publication Date
JP2010172804A JP2010172804A (en) 2010-08-12
JP2010172804A5 true JP2010172804A5 (en) 2012-03-15
JP5298292B2 JP5298292B2 (en) 2013-09-25

Family

ID=42704268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016750A Active JP5298292B2 (en) 2009-01-28 2009-01-28 A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.

Country Status (1)

Country Link
JP (1) JP5298292B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017930A (en) * 2011-07-08 2013-01-31 Kyuchaku Gijutsu Kogyo Kk Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent
JP5862278B2 (en) * 2011-12-22 2016-02-16 東洋紡株式会社 Organic solvent-containing gas treatment system
JP5482776B2 (en) * 2011-12-22 2014-05-07 東洋紡株式会社 Organic solvent-containing gas treatment system
JP6236898B2 (en) * 2013-06-12 2017-11-29 東洋紡株式会社 Organic solvent-containing gas treatment system
CN104853829B (en) * 2012-12-14 2016-10-26 东洋纺株式会社 Gas handling system containing organic solvent
JP2014232051A (en) * 2013-05-29 2014-12-11 株式会社Nttドコモ Apparatus and method for measuring skin gas
CN104606915B (en) * 2015-02-09 2016-02-03 南京工业大学 Efficient low-cost VOC (volatile organic compound) recovery system and method
CN106731445B (en) * 2017-01-26 2017-09-19 上海聚宸新能源科技有限公司 A kind of adsorption condensing formula device for recovering oil and gas and oil-gas recovery method for effectively preventing from adsorbing temperature rise
CN108043064B (en) * 2017-12-29 2023-10-24 上海蓝科石化环保科技股份有限公司 VOCs recovery process and system
JP6965169B2 (en) * 2018-01-18 2021-11-10 大陽日酸株式会社 Gas purification equipment and gas purification method
TWI762815B (en) * 2019-09-10 2022-05-01 詠銓潔能科技有限公司 Adsorbent, filter material set, and filter material box for adsorbing a volatile organic compounds gas with low boiling pointfilter material and method for manufacturing adsorbent
CN110681346A (en) * 2019-09-10 2020-01-14 咏铨洁能科技有限公司 Adsorbent with low boiling point VCOS, filter material set, filter material box and method for producing adsorbent
CN111036041B (en) * 2019-11-14 2021-01-01 常州大学 VOCs (volatile organic compounds) recovery system and method integrating absorption, desorption and recovery
CN112121589A (en) * 2020-08-27 2020-12-25 浙江海洋大学 VOC gas treatment method and VOC gas treatment device using same
WO2023234218A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal method
WO2023234217A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal device
KR102506669B1 (en) * 2022-08-26 2023-03-06 주식회사 용호기계기술 Plasma gas treatment device used in vapor recovery system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737408A1 (en) * 1987-11-01 1989-05-11 Schack & Co Rekuperator METHOD FOR RECOVERY OF THE DESORBATE RESULTING FROM THE DESORPTION OF LOADED SORPTION MATERIALS, AND DEVICE THEREFOR
JP3416333B2 (en) * 1995-05-10 2003-06-16 三菱重工業株式会社 Volatile organic matter recovery method
JP4703889B2 (en) * 2000-06-05 2011-06-15 富士フイルム株式会社 Method for circulating concentration treatment of dry type dehumidifier regeneration gas
JP5248767B2 (en) * 2005-07-13 2013-07-31 月島機械株式会社 Concentrator for volatile organic compounds
JP5470535B2 (en) * 2006-09-04 2014-04-16 吸着技術工業株式会社 Method for removing moisture from azeotrope-forming components using adsorbents
JP2008161743A (en) * 2006-12-27 2008-07-17 Kyuchaku Gijutsu Kogyo Kk Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent

Similar Documents

Publication Publication Date Title
JP2010172804A5 (en)
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
RU2408664C2 (en) Composite method for removing heavy hydrocarbons, amine purification and drying
US5415682A (en) Process for the removal of volatile organic compounds from a fluid stream
JP5689733B2 (en) Recovery of NF3 from adsorption operation
WO2019139712A1 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
JPH0459926B2 (en)
CA3057697A1 (en) Adsorptive gas separation process and system
JPH04171019A (en) Process for removing water content in mixed gas
JP4530944B2 (en) Recovery process for volatile organic compounds
JP4530945B2 (en) Recovery process for volatile organic compounds
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
JP2008161743A (en) Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent
US5512082A (en) Process for the removal of volatile organic compounds from a fluid stream
US5116510A (en) Separation of liquid mixtures by thermal swing adsorption
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JP2686327B2 (en) Pressure swing separation and recovery method for volatile organic compounds
US5503658A (en) Process for the removal of volatile organic compounds from a fluid stream
JP4719598B2 (en) Pretreatment method and apparatus in air liquefaction separation
JP6965127B2 (en) Nitrogen and oxygen production method
JP2013017930A (en) Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent
JP3363986B2 (en) Solvent recovery method
JPS621766B2 (en)
JPH09122432A (en) Gas separator using pressure swing adsorption process
JP2010104904A (en) Method of separating volatile and easy-to-be-adsorbed component and hard-to-be adsorbed component from solution containing volatile and easy-to-be-adsorbed component and hard-to-be adsorbed component by using adsorbent