JP4719598B2 - Pretreatment method and apparatus in air liquefaction separation - Google Patents

Pretreatment method and apparatus in air liquefaction separation Download PDF

Info

Publication number
JP4719598B2
JP4719598B2 JP2006075998A JP2006075998A JP4719598B2 JP 4719598 B2 JP4719598 B2 JP 4719598B2 JP 2006075998 A JP2006075998 A JP 2006075998A JP 2006075998 A JP2006075998 A JP 2006075998A JP 4719598 B2 JP4719598 B2 JP 4719598B2
Authority
JP
Japan
Prior art keywords
adsorber
air
dinitrogen monoxide
raw material
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006075998A
Other languages
Japanese (ja)
Other versions
JP2007245111A (en
Inventor
高司 辰巳
俊幸 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006075998A priority Critical patent/JP4719598B2/en
Publication of JP2007245111A publication Critical patent/JP2007245111A/en
Application granted granted Critical
Publication of JP4719598B2 publication Critical patent/JP4719598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、空気液化分離における前処理方法及び装置に関し、詳しくは、空気液化分離装置の深冷分離部に導入する原料空気中に含まれる水分、二酸化炭素、一酸化二窒素等の不純物を吸着除去する空気液化分離における前処理方法及び装置に関する。   The present invention relates to a pretreatment method and apparatus in air liquefaction separation, and more specifically, adsorbs impurities such as moisture, carbon dioxide, and dinitrogen monoxide contained in raw air introduced into a cryogenic separation part of the air liquefaction separation apparatus. The present invention relates to a pretreatment method and apparatus in air liquefaction separation to be removed.

原料空気を液化して酸素、窒素、アルゴン等の製品ガスを製造する空気液化分離装置では、深冷分離部での低温下で固化する水分や二酸化炭素等の不純物を前処理であらかじめ除去するため、前記不純物成分を吸着する吸着剤を充填した吸着器を使用して前記不純物を原料空気中から吸着分離している。   In an air liquefaction separation device that produces product gases such as oxygen, nitrogen, and argon by liquefying raw material air, impurities such as moisture and carbon dioxide that solidify at a low temperature in the cryogenic separation section are removed in advance by pretreatment. The impurities are adsorbed and separated from the raw air using an adsorber filled with an adsorbent that adsorbs the impurity components.

原料空気中の不純物の中で一酸化二窒素(NO)は、大気中に約0.3ppm存在しており、その濃度は上昇傾向にある。この一酸化二窒素は、二酸化炭素を吸着するゼオライトに吸着するが、一酸化二窒素が吸着しているゼオライトに原料空気中の二酸化炭素が接触すると、二酸化炭素が吸着して一酸化二窒素を原料空気中に放出する置換現象が発生するため、従来の一般的な吸着器で一酸化二窒素を十分に除去することは困難であった。 Among impurities in the raw material air, dinitrogen monoxide (N 2 O) is present in the atmosphere at about 0.3 ppm, and its concentration tends to increase. This dinitrogen monoxide is adsorbed on the zeolite that adsorbs carbon dioxide, but when carbon dioxide in the raw material air comes into contact with the zeolite on which dinitrogen monoxide is adsorbed, the carbon dioxide is adsorbed and dinitrogen monoxide is absorbed. Since a substitution phenomenon released into the raw material air occurs, it has been difficult to sufficiently remove dinitrogen monoxide with a conventional general adsorber.

このため、原料空気中の水分及び二酸化炭素を完全に除去してから一酸化二窒素を吸着除去することで、二酸化炭素による置換を防止したり、二酸化炭素よりも一酸化二窒素を選択的に吸着除去する吸着剤を使用したり、一酸化二窒素の吸着量が多い吸着剤を使用したり、数種類の吸着剤を物理的に混合した複合吸着剤を使用したりするなど、一酸化二窒素の吸着除去に関して様々な提案がなされている(例えば、特許文献1〜9参照。)。
特許第3308248号公報 特開2001−129342号公報 特開2002−126436号公報 特開2003−275532号公報 特開2004−975号公報 特開2004−148315号公報 特開2000−140550号公報 特許第2967871号公報 特開2002−143628号公報
For this reason, by removing moisture and carbon dioxide in the raw air completely and then removing nitrous oxide by adsorption, it is possible to prevent substitution by carbon dioxide or to selectively use nitrous oxide over carbon dioxide. Dinitrogen monoxide, such as using an adsorbent to remove by adsorption, using an adsorbent with a large amount of adsorbed dinitrogen monoxide, or using a composite adsorbent that is a physical mixture of several adsorbents Various proposals have been made regarding the removal of adsorbed water (for example, see Patent Documents 1 to 9).
Japanese Patent No. 3308248 JP 2001-129342 A JP 2002-126436 A JP 2003-275532 A JP 2004-975 A JP 2004-148315 A JP 2000-140550 A Japanese Patent No. 2967871 JP 2002-143628 A

しかしながら、一般的な吸着剤で一酸化二窒素を除去するためには、原料空気中の二酸化炭素を略完全に除去した状態で一酸化二窒素を吸着除去する必要がある。この場合には、既設の吸着器の二酸化炭素吸着剤の下流に一酸化二窒素除去用の吸着剤を増し充填することが最も簡便であるが、吸着器の塔径は、一般に、水分や二酸化炭素の除去を主目的として設定されるため、一酸化二窒素を吸着除去するための最適設計が困難であるだけでなく、塔径の大きな吸着器に一酸化二窒素除去用の吸着剤を充填するために大量の一酸化二窒素除去用の吸着剤を必要とし、吸着器が大型になるという問題がある。   However, in order to remove dinitrogen monoxide with a general adsorbent, it is necessary to adsorb and remove dinitrogen monoxide in a state where carbon dioxide in the raw material air is almost completely removed. In this case, it is most convenient to increase and fill the adsorbent for removing nitrous oxide downstream of the carbon dioxide adsorbent of the existing adsorber. Since the main purpose is to remove carbon, not only is it difficult to optimize the design to adsorb and remove dinitrogen monoxide, but adsorbers for removing dinitrogen monoxide are packed into adsorbers with a large column diameter. Therefore, a large amount of adsorbent for removing dinitrogen monoxide is required, and the adsorber becomes large.

また、二酸化炭素よりも一酸化二窒素を選択的に吸着除去する特殊な吸着剤を採用すると、この吸着剤の製造メーカーが限られ、価格が高いなどの懸念があり、吸着剤の安定供給の点からも不安が残る。   In addition, if a special adsorbent that selectively adsorbs and removes nitrous oxide over carbon dioxide is used, the manufacturer of this adsorbent is limited, and there is a concern that the price is high. Anxiety remains from the point.

さらに、数種類の吸着剤を物理的に混合した複合吸着剤を用いると、長時間の使用によって各吸着剤の比重差で各吸着剤が分離して適切な混合状態を維持できなくなるため、定期的に再混合するなどの対応が必要であった。加えて、既設の前処理装置で新たに一酸化二窒素の除去も行うときには、吸着器自体の改造が必要となり、大掛かりな作業となってコスト面でも大きな問題となる。   Furthermore, if a composite adsorbent that is physically mixed with several types of adsorbents is used, the adsorbents are separated due to the difference in specific gravity of the adsorbents over a long period of time, making it impossible to maintain an appropriate mixed state. It was necessary to take measures such as remixing. In addition, when the nitrous oxide is newly removed with the existing pretreatment apparatus, it is necessary to modify the adsorber itself, which is a large-scale operation and a great problem in terms of cost.

そこで本発明は、簡単な構成で一酸化二窒素を確実に吸着除去することができ、既設の前処理装置にも容易に適用が可能な空気液化分離における前処理方法及び装置を提供することを目的としている。   Therefore, the present invention provides a pretreatment method and apparatus in air liquefaction separation that can reliably adsorb and remove dinitrogen monoxide with a simple configuration and can be easily applied to an existing pretreatment apparatus. It is aimed.

上記目的を達成するため、本発明の空気液化分離における前処理方法は、空気液化分離における原料空気の前処理方法において、前記原料空気中の水分、二酸化炭素を吸着除去するとともに一酸化二窒素を一時的に吸着する第1吸着器と、該第1吸着器の下流側に、前記第1吸着器で一時的に吸着された後脱着した前記一酸化二窒素を吸着除去するための第2吸着器を設け、前記第1吸着器の吸着工程中に、前記第2吸着器の再生工程と吸着工程とを行うことを特徴としている。さらに、前記第1吸着器から導出した原料空気を冷却してから前記第2吸着器に導入することを特徴としている。 In order to achieve the above object, the pretreatment method in the air liquefaction separation of the present invention is a pretreatment method of raw material air in the air liquefaction separation, in which moisture and carbon dioxide in the raw material air are adsorbed and removed and dinitrogen monoxide is removed. a first adsorber which temporarily adsorbs, the downstream of the first adsorber, the second adsorption for adsorbing and removing the dinitrogen monoxide desorbed after being temporarily adsorbed by the first adsorber And a regeneration step and an adsorption step of the second adsorber are performed during the adsorption step of the first adsorber. Furthermore, the raw material air led out from the first adsorber is cooled and then introduced into the second adsorber.

また、本発明の空気液化分離における前処理装置は、空気液化分離における原料空気の前処理装置において、吸着工程と再生工程とを交互に行う複数の第1吸着器と、該第1吸着器の下流側に設けられた一つの第2吸着器とを備え、前記複数の第1吸着器には、前記原料空気中の水分、二酸化炭素を吸着除去するとともに一酸化二窒素を一時的に吸着する吸着剤を充填し、前記第2吸着器には、前記第1吸着器で一時的に吸着された後脱着した前記一酸化二窒素を吸着除去する吸着剤を充填したことを特徴とし、さらに、前記第1吸着器から導出した原料空気を冷却してから前記第2吸着器に導入するための冷却器を設けたことを特徴としている。 The pretreatment apparatus for air liquefaction separation according to the present invention includes a plurality of first adsorbers for alternately performing an adsorption step and a regeneration step in the raw air pretreatment apparatus for air liquefaction separation, and the first adsorber One second adsorber provided on the downstream side, and the plurality of first adsorbers adsorb and remove moisture and carbon dioxide in the raw material air and temporarily adsorb dinitrogen monoxide. It is filled with an adsorbent, and the second adsorber is filled with an adsorbent that adsorbs and removes the dinitrogen monoxide adsorbed and removed after being temporarily adsorbed by the first adsorber. A cooler is provided for cooling the raw material air led out from the first adsorber and then introducing it into the second adsorber.

本発明によれば、水分や二酸化炭素を除去する第1吸着器で一時的に一酸化二窒素を吸着するので、第1吸着器の下流側に設けた一酸化二窒素を吸着除去するための第2吸着器では、間欠的に原料空気を精製すればよくなる。このため、第2吸着器を1つ設けるだけで、原料空気の連続精製が可能となる。また、一酸化二窒素のみを吸着除去する第2吸着器を設けるので、一酸化二窒素を最適な条件で確実に吸着除去することができる。   According to the present invention, dinitrogen monoxide is temporarily adsorbed by the first adsorber that removes moisture and carbon dioxide, so that the dinitrogen monoxide provided on the downstream side of the first adsorber is adsorbed and removed. In the second adsorber, the raw material air may be purified intermittently. For this reason, it is possible to continuously purify the raw air only by providing one second adsorber. In addition, since the second adsorber for adsorbing and removing only dinitrogen monoxide is provided, dinitrogen monoxide can be reliably adsorbed and removed under optimum conditions.

さらに、一酸化二窒素除去用の吸着剤量を原料空気中の一酸化二窒素量に応じて設定できるので、必要最小限の吸着剤量でよく、吸着器及び吸着剤に要するコストの削減も図れる。また、小型の吸着器を一つだけ設置すればよいため、既設の前処理装置にも簡単に増設することが可能である。さらに、原料空気を冷却してから一酸化二窒素を除去することにより、一酸化二窒素の除去効率を大幅に向上させることができる。   Furthermore, the amount of adsorbent for removing nitrous oxide can be set according to the amount of dinitrogen monoxide in the raw air, so the minimum amount of adsorbent is sufficient and the cost required for the adsorber and adsorbent can be reduced. I can plan. Further, since only one small adsorber needs to be installed, it can be easily added to an existing pretreatment device. Furthermore, the removal efficiency of dinitrogen monoxide can be significantly improved by removing dinitrogen monoxide after cooling the raw material air.

図1は本発明の空気液化分離装置の前処理方法を実施する前処理装置の一形態例を示す系統図、図2は各吸着器の運転状態を示す図である。   FIG. 1 is a system diagram showing an example of a pretreatment apparatus for carrying out a pretreatment method for an air liquefaction separation apparatus according to the present invention, and FIG. 2 is a diagram showing an operating state of each adsorber.

この前処理装置は、一対の第1吸着器11A,11Bと、その下流側に設けられた一つの第2吸着器12とを備えるもので、第1吸着器11A,11Bには、主として原料空気中の水分を吸着除去するための吸着剤、例えば活性アルミナ13aと、主として原料空気中の二酸化炭素を吸着除去するための吸着剤、例えばゼオライト13bとが二層に設けられている。また、第2吸着器12には、原料空気中の一酸化二窒素を吸着除去することが可能な一酸化二窒素用吸着剤13cが充填されている。   This pretreatment apparatus includes a pair of first adsorbers 11A and 11B and one second adsorber 12 provided on the downstream side thereof. The first adsorbers 11A and 11B mainly include raw material air. An adsorbent, for example, activated alumina 13a for adsorbing and removing moisture therein, and an adsorbent, for example, zeolite 13b, mainly for adsorbing and removing carbon dioxide in the raw material air are provided in two layers. The second adsorber 12 is filled with a dinitrogen monoxide adsorbent 13c capable of adsorbing and removing dinitrogen monoxide in the raw material air.

第1吸着器11A,11Bは、各吸着器がそれぞれ所定時間の吸着工程と再生工程とを交互に繰り返し、一方の第1吸着器が吸着工程を行っているときに他方の第1吸着器が再生工程を行うことにより、連続的に原料空気の精製処理を行う。また、第2吸着器12は、吸着工程と再生工程とを交互に繰り返して行うにあたり、前記第1吸着器のいずれか一方が吸着工程を開始したときに再生工程を開始し、該第1吸着器の吸着工程時間内に再生工程から吸着工程に切り替わり、該第1吸着器の吸着工程の終了と共に第2吸着器12も吸着工程を終了するように設定されている。したがって、第2吸着器12では、原料空気中の一酸化二窒素を吸着除去する吸着工程を間欠的に行うことになる。   In the first adsorbers 11A and 11B, each adsorber alternately repeats an adsorption process and a regeneration process for a predetermined time, and when one of the first adsorbers is performing the adsorption process, the other first adsorber By performing the regeneration process, the raw material air is continuously purified. In addition, the second adsorber 12 starts the regeneration process when any one of the first adsorbers starts the adsorption process when alternately performing the adsorption process and the regeneration process. The regeneration process is switched to the adsorption process within the adsorption process time of the apparatus, and the second adsorber 12 is set to complete the adsorption process at the end of the adsorption process of the first adsorber. Therefore, in the second adsorber 12, an adsorption process for adsorbing and removing dinitrogen monoxide in the raw material air is intermittently performed.

第1吸着器には、水分除去用と二酸化炭素除去用の吸着剤が充填されている。二酸化炭素除去用の吸着剤として用いられるX型ゼオライトは、前述のように、一酸化二窒素も吸着するが二酸化炭素によって置換脱着する。このような二酸化炭素吸着剤の性質により、第1吸着器における吸着工程の前半では、第1吸着器から導出した原料空気中の一酸化二窒素濃度は、深冷分離部で問題にならない程度に低い。しかし、第1吸着器における吸着工程の後半では、導出した原料空気中に大気中よりも高濃度の一酸化二窒素が含まれる。これは、第1吸着器内で一酸化二窒素が濃縮されたと考えられる。本発明は、この現象を利用したもので、複数の第1吸着器11A,11Bの下流に1つの第2吸着器12を設けることで、効率的に一酸化二窒素を除去することが可能となる。   The first adsorber is filled with an adsorbent for removing water and removing carbon dioxide. As described above, X-type zeolite used as an adsorbent for removing carbon dioxide also adsorbs dinitrogen monoxide, but is substituted and desorbed by carbon dioxide. Due to the nature of the carbon dioxide adsorbent, in the first half of the adsorption process in the first adsorber, the concentration of nitrous oxide in the raw air derived from the first adsorber is such that it does not cause a problem in the cryogenic separation unit. Low. However, in the latter half of the adsorption process in the first adsorber, the derived raw material air contains a higher concentration of dinitrogen monoxide than in the atmosphere. This is considered that the dinitrogen monoxide was concentrated in the first adsorber. The present invention utilizes this phenomenon, and it is possible to efficiently remove dinitrogen monoxide by providing one second adsorber 12 downstream of the plurality of first adsorbers 11A and 11B. Become.

この前処理装置は、図2に示すように各吸着器を運転することにより、深冷分離部に供給する原料空気中の不純物を連続的に吸着除去する。まず、一方の第1吸着器11Aが吸着工程、他方の第1吸着器11Bが再生工程をそれぞれ行っているとき、第2吸着器12は、再生工程と吸着工程とを行う。   This pretreatment apparatus continuously adsorbs and removes impurities in the raw material air supplied to the cryogenic separation section by operating each adsorber as shown in FIG. First, when one first adsorber 11A is performing an adsorption process and the other first adsorber 11B is performing a regeneration process, the second adsorber 12 performs a regeneration process and an adsorption process.

原料空気圧縮機21で所定圧力に圧縮された原料空気は、アフタークーラー22で圧縮熱が除去され、ドレン分離器23で凝縮水が除去された後、入口弁24aを通って第1吸着器11Aに導入される。なお、必要に応じてアフタークーラー22の下流に冷凍機25を設けて原料空気を冷却することもできる。   The raw material air compressed to a predetermined pressure by the raw material air compressor 21 is freed of compression heat by the aftercooler 22 and condensed water is removed by the drain separator 23, and then passes through the inlet valve 24a to the first adsorber 11A. To be introduced. If necessary, a refrigerator 25 can be provided downstream of the aftercooler 22 to cool the raw material air.

第1吸着器11Aに導入された原料空気中の不純物である水分は活性アルミナ13aに吸着除去され、二酸化炭素及び一酸化二窒素がゼオライト13bに吸着除去される。一酸化二窒素は、吸着工程開始によりゼオライト13bに吸着するが、一酸化二窒素を吸着したゼオライト13bに二酸化炭素が接触すると、二酸化炭素と一酸化二窒素との置換現象によって一酸化二窒素がゼオライト13bから脱着して二酸化炭素が吸着する状態となり、一酸化二窒素は順次のゼオライト13bに対する吸着と脱着とを繰り返し、次第に下流側に位置するゼオライト13bに濃縮された状態となる。   Moisture, which is an impurity in the raw air introduced into the first adsorber 11A, is adsorbed and removed by the activated alumina 13a, and carbon dioxide and dinitrogen monoxide are adsorbed and removed by the zeolite 13b. Dinitrogen monoxide is adsorbed on the zeolite 13b at the start of the adsorption process, but when carbon dioxide comes into contact with the zeolite 13b that adsorbs dinitrogen monoxide, the substitution phenomenon of carbon dioxide and dinitrogen monoxide causes the dinitrogen monoxide to be absorbed. The carbon dioxide is adsorbed by desorption from the zeolite 13b, and the dinitrogen monoxide repeats sequential adsorption and desorption on the zeolite 13b, and gradually becomes concentrated in the zeolite 13b located on the downstream side.

活性アルミナ13a及びゼオライト13bで不純物が吸着除去された原料空気は、第1吸着器11Aから出口弁26aを通って導出され、冷却器27で吸着熱が除去された後、第1供給弁28を通って図示しない深冷分離部に供給される。また、冷却器27の下流側には一酸化二窒素の濃度を測定する測定器29が設けられており、吸着工程中の第1吸着器から導出された原料空気中の一酸化二窒素が連続的に測定されている。   The raw material air from which impurities are removed by adsorption with the activated alumina 13a and the zeolite 13b is led out from the first adsorber 11A through the outlet valve 26a, and after the heat of adsorption is removed by the cooler 27, the first supply valve 28 is passed through. It is supplied to a cryogenic separation unit (not shown). Further, a measuring device 29 for measuring the concentration of dinitrogen monoxide is provided on the downstream side of the cooler 27, and the dinitrogen monoxide in the raw material air derived from the first adsorber in the adsorption process is continuous. Has been measured.

一方、再生工程を行っている他方の第1吸着器11Bには、第1加熱器30で所定温度に加熱された再生ガスが再生入口弁31bを通って出口側から導入されており、ゼオライト13b及び活性アルミナ13aを高温の再生ガスで加熱することにより、前回の吸着工程でこれらの吸着剤に吸着した二酸化炭素や水分を脱着させるとともに、再生ガスに同伴させて第1吸着器11Bの入口側から再生出口弁32bを通して排出している。   On the other hand, in the other first adsorber 11B performing the regeneration process, the regeneration gas heated to a predetermined temperature by the first heater 30 is introduced from the outlet side through the regeneration inlet valve 31b, and the zeolite 13b. In addition, by heating the activated alumina 13a with a high-temperature regeneration gas, carbon dioxide and moisture adsorbed on these adsorbents in the previous adsorption step are desorbed, and accompanied by the regeneration gas, on the inlet side of the first adsorber 11B. Is discharged through the regeneration outlet valve 32b.

第1吸着器11Aの吸着工程、第1吸着器11Bの再生工程の前半では、第2吸着器12が再生工程を行っており、第2加熱器33で所定温度に加熱された再生ガスが、第2吸着器再生入口弁34を通って第2吸着器12の出口側から導入され、第2吸着器12内の一酸化二窒素用吸着剤13cを加熱することにより、前回の吸着工程で吸着剤13cに吸着した一酸化二窒素を脱着させ、再生ガスに同伴させて入口側から第2吸着器再生出口弁35を通して排出している。   In the first half of the adsorption process of the first adsorber 11A and the regeneration process of the first adsorber 11B, the second adsorber 12 performs the regeneration process, and the regeneration gas heated to a predetermined temperature by the second heater 33 is It is introduced from the outlet side of the second adsorber 12 through the second adsorber regeneration inlet valve 34, and adsorbs in the previous adsorption step by heating the nitrous oxide adsorbent 13 c in the second adsorber 12. The dinitrogen monoxide adsorbed on the agent 13c is desorbed, is accompanied by the regeneration gas, and is discharged from the inlet side through the second adsorber regeneration outlet valve 35.

通常、各吸着器の再生工程では、減圧段階、加熱再生パージ段階、冷却段階、充圧段階の各段階が所定時間行われる。なお、上述の運転状態において、図1に示されている各弁は、上記説明中に記載されたものが開となっており、その他の弁は閉じた状態となっている。   Usually, in the regeneration process of each adsorber, the decompression stage, the heating regeneration purge stage, the cooling stage, and the charging stage are performed for a predetermined time. In the above-described operation state, each valve shown in FIG. 1 is opened in the above description, and the other valves are closed.

第1吸着器11Aの吸着工程を所定時間行った後、あるいは、前記測定器29で一酸化二窒素が検出されたとき、第2吸着器12が再生工程から吸着工程に切り換えられる。この第2吸着器12の吸着工程では、第1供給弁28、第2吸着器再生入口弁34及び第2吸着器再生出口弁35が閉状態になり、第2吸着器入口弁36及び第2吸着器出口弁37が開状態となる。これにより、吸着工程を行っている第1吸着器11Aから導出された原料空気の流れが、冷却器27の下流で第2吸着器12を通過する経路に切り換えられる。   After the adsorption process of the first adsorber 11A is performed for a predetermined time or when dinitrogen monoxide is detected by the measuring device 29, the second adsorber 12 is switched from the regeneration process to the adsorption process. In the adsorption process of the second adsorber 12, the first supply valve 28, the second adsorber regeneration inlet valve 34, and the second adsorber regeneration outlet valve 35 are closed, and the second adsorber inlet valve 36 and the second adsorber regeneration valve 35 are closed. The adsorber outlet valve 37 is opened. Thereby, the flow of the raw material air derived from the first adsorber 11 </ b> A performing the adsorption process is switched to a path passing through the second adsorber 12 downstream of the cooler 27.

したがって、第1吸着器11Aから導出された原料空気は、第2吸着器入口弁36を通って第2吸着器12に導入され、第2吸着器出口弁37を通って深冷分離部に供給される。このとき、第1吸着器11Aのゼオライト13bに一旦吸着し、二酸化炭素に置換されて脱着した一酸化二窒素は、原料空気に同伴されて第1吸着器11Aから第2吸着器12に導入され、第2吸着器12内の充填剤13cに吸着されて原料空気中から除去される。   Accordingly, the raw air derived from the first adsorber 11A is introduced into the second adsorber 12 through the second adsorber inlet valve 36, and supplied to the cryogenic separation section through the second adsorber outlet valve 37. Is done. At this time, dinitrogen monoxide once adsorbed on the zeolite 13b of the first adsorber 11A, substituted with carbon dioxide and desorbed is introduced from the first adsorber 11A to the second adsorber 12 along with the raw material air. Then, it is adsorbed by the filler 13c in the second adsorber 12 and removed from the raw material air.

第1吸着器11Aは、ゼオライト13bが破過して二酸化炭素が第1吸着器11Aから流出する前に吸着工程から再生工程に切り換えられ、同時に、他方の第1吸着器11Bが再生工程から吸着工程に切り換えられ、第2吸着器12は吸着工程から再生工程に切り換えられる。すなわち、第一吸着器11A、第二吸着器12の減圧段階の後、入口弁24a、出口弁26a、再生入口弁31b、再生出口弁32b、第2吸着器入口弁36及び第2吸着器出口弁37が閉じ、入口弁24b、出口弁26b、再生入口弁31a、再生出口弁32a、第2吸着器再生入口弁34及び第2吸着器再生出口弁35が開くとともに、第1加熱器30及び第2加熱器33が作動する。   The first adsorber 11A is switched from the adsorption process to the regeneration process before the zeolite 13b breaks through and the carbon dioxide flows out of the first adsorber 11A. At the same time, the other first adsorber 11B is adsorbed from the regeneration process. The second adsorber 12 is switched from the adsorption process to the regeneration process. That is, after the depressurization stage of the first adsorber 11A and the second adsorber 12, the inlet valve 24a, the outlet valve 26a, the regeneration inlet valve 31b, the regeneration outlet valve 32b, the second adsorber inlet valve 36, and the second adsorber outlet. The valve 37 is closed, the inlet valve 24b, the outlet valve 26b, the regeneration inlet valve 31a, the regeneration outlet valve 32a, the second adsorber regeneration inlet valve 34 and the second adsorber regeneration outlet valve 35 are opened, and the first heater 30 and The second heater 33 is activated.

第1吸着器11Bの吸着工程の前半において、圧縮された原料空気は、第1吸着器11Bを通って充填層13a,13bで水分、二酸化炭素、一酸化二窒素等の不純物が吸着除去され、そのまま深冷分離部に供給され、第1吸着器11A及び第2吸着器12では再生工程が行われる。第1吸着器11Bの吸着工程の後半では、第2吸着器12が吸着工程に切り換わり、第1吸着器11Bから導出した原料空気は、第2吸着器12を通過して一酸化二窒素を吸着除去して深冷分離部に供給される。   In the first half of the adsorption process of the first adsorber 11B, the compressed raw material air passes through the first adsorber 11B and adsorbs and removes impurities such as moisture, carbon dioxide, and dinitrogen monoxide in the packed beds 13a and 13b. It is supplied to the cryogenic separator as it is, and the regeneration process is performed in the first adsorber 11A and the second adsorber 12. In the second half of the adsorption process of the first adsorber 11B, the second adsorber 12 is switched to the adsorption process, and the raw material air derived from the first adsorber 11B passes through the second adsorber 12 and dinitrogen monoxide. It is removed by adsorption and supplied to the cryogenic separation unit.

以下、図2に示すように各吸着器の運転状態を切り換えることにより、原料空気中の水分、二酸化炭素、一酸化二窒素等の不純物を、各吸着剤に吸着させて除去することができる。そして、一酸化二窒素は、二酸化炭素による置換で吸着工程後半の第1吸着器11A,11Bから流出するものを第2吸着器12で吸着除去すればよいから、第2吸着器12で使用する吸着剤の量を原料空気中に含まれる一酸化二窒素の濃度に応じて設定することができ、第2吸着器12の径は一酸化二窒素の吸着に適した条件に合わせて形成できる。   Hereinafter, by switching the operation state of each adsorber as shown in FIG. 2, impurities such as moisture, carbon dioxide, and dinitrogen monoxide in the raw material air can be adsorbed and removed by each adsorbent. Then, dinitrogen monoxide is used in the second adsorber 12 because the second adsorber 12 may be used to adsorb and remove what flows out from the first adsorbers 11A and 11B in the second half of the adsorption process by substitution with carbon dioxide. The amount of the adsorbent can be set according to the concentration of dinitrogen monoxide contained in the raw air, and the diameter of the second adsorber 12 can be formed in accordance with conditions suitable for adsorption of dinitrogen monoxide.

また、第2吸着器12は、第1吸着器の吸着工程後半でのみ吸着工程を行えばよいから、第1吸着器の吸着工程前半で第2吸着器12の再生工程を行うことが可能であり、一つの第2吸着器12のみを設置すればよい。さらに、二酸化炭素を吸着するゼオライトに積層させた状態で吸着器内に充填する場合に比べて、第2吸着器12の一酸化二窒素用吸着剤の充填量を少なくすることができる。したがって、小型の吸着器を一つ追加するだけで、原料空気中の一酸化二窒素を効率よく除去することが可能となる。   Further, since the second adsorber 12 only needs to perform the adsorption process in the second half of the adsorption process of the first adsorber, the regeneration process of the second adsorber 12 can be performed in the first half of the adsorption process of the first adsorber. Yes, only one second adsorber 12 needs to be installed. Furthermore, the amount of the adsorbent for dinitrogen monoxide charged in the second adsorber 12 can be reduced as compared with the case where the adsorber is filled with the carbon dioxide adsorbed zeolite. Therefore, it is possible to efficiently remove dinitrogen monoxide in the raw material air only by adding one small adsorber.

第2吸着器12に使用する一酸化二窒素吸着用の吸着剤は、第1吸着器で原料空気中の水分や二酸化炭素が十分に除去されているため、一酸化二窒素が吸着した後の二酸化炭素による置換を考慮する必要がなく、原料空気中の一酸化二窒素を吸着して除去できるものならば任意に選択することができる。したがって、高価で特殊な吸着剤を使用する場合に比べて吸着剤コストを大幅に削減できる。   Since the adsorbent for adsorbing nitrous oxide used in the second adsorber 12 has sufficiently removed moisture and carbon dioxide in the raw material air in the first adsorber, the adsorbent after nitrous oxide is adsorbed There is no need to consider substitution with carbon dioxide, and any one can be selected as long as it can adsorb and remove dinitrogen monoxide in the raw material air. Therefore, the adsorbent cost can be greatly reduced as compared with the case where an expensive and special adsorbent is used.

実施例1
図1における本発明のプロセスにおいて、原料空気中の水分、二酸化炭素及び一酸化二窒素を除去した例を以下に示す。
Example 1
In the process of the present invention in FIG. 1, an example in which moisture, carbon dioxide, and dinitrogen monoxide in the raw air are removed is shown below.

一酸化二窒素を約0.3ppm含む原料空気(流量3850Nm/h)を、原料空気圧縮機21で約0.6MPaまで昇圧し、アフタークーラー22と冷凍機25とで約15℃に冷却した後、ドレン分離器23でドレンを除去し、吸着工程を行っている第1吸着器(11A又は11B)に導入した。第1吸着器の下部には活性アルミナ13a、その上部にはNa−X型ゼオライト13bを、それぞれ充填した。第1吸着器に導入された原料空気は、水分、二酸化炭素が除去され、第2吸着器12に導入される。本実施例では、冷却器27による冷却を行わずに第2吸着器へ導入した。第2吸着器には、一酸化二窒素の吸着剤としてMg−X型ゼオライト13cを0.3m充填した。 The feed air containing about 0.3 ppm of dinitrogen monoxide (flow rate 3850 Nm 3 / h) was pressurized to about 0.6 MPa by the feed air compressor 21 and cooled to about 15 ° C. by the aftercooler 22 and the refrigerator 25. Thereafter, the drain was removed by the drain separator 23 and introduced into the first adsorber (11A or 11B) performing the adsorption process. The lower part of the first adsorber was filled with activated alumina 13a, and the upper part thereof was filled with Na-X zeolite 13b. Moisture and carbon dioxide are removed from the raw air introduced into the first adsorber and introduced into the second adsorber 12. In this example, the cooling device 27 introduced the second adsorber without cooling. The second adsorber was filled with 0.3 m 3 of Mg-X zeolite 13c as a dinitrogen monoxide adsorbent.

測定器29で測定した第1吸着器出口における原料空気中の一酸化二窒素の濃度変化を図3の三角印で示す。この条件では、第1吸着器での吸着工程開始から約60分後に、一酸化二窒素が破過した。   A change in the concentration of dinitrogen monoxide in the raw material air at the outlet of the first adsorber measured by the measuring device 29 is indicated by a triangular mark in FIG. Under these conditions, dinitrogen monoxide broke through about 60 minutes after the start of the adsorption process in the first adsorber.

第1吸着器の吸着工程及び再生工程は240分間ずつで1サイクルを480分間とした。第2吸着器の吸着工程は、第1吸着器の吸着工程開始60分経過後から開始し、180分間行った。第2吸着器の再生工程(減圧、加熱、冷却、充圧)時間は60分間とし、第2吸着器の1サイクルは240分間とした。   The adsorption process and the regeneration process of the first adsorber were 240 minutes each, and one cycle was 480 minutes. The adsorption process of the second adsorber was started after 60 minutes from the start of the adsorption process of the first adsorber, and was performed for 180 minutes. The regeneration process (decompression, heating, cooling, charging) time of the second adsorber was 60 minutes, and one cycle of the second adsorber was 240 minutes.

最終的に原料空気に含まれる一酸化二窒素の全量を除去することができた。   Finally, the entire amount of dinitrogen monoxide contained in the raw air could be removed.

比較例1
比較のために、従来法による一酸化二窒素の除去例を示す。図4に示す装置において、一酸化二窒素を約0.3ppm含む原料空気(流量3850Nm/h)を、原料空気圧縮機21で約0.6MPaまで昇圧し、アフタークーラー22と冷凍機25とで約15℃に冷却した後、ドレン分離器23でドレンを除去し、吸着工程を行っている吸着器(111A又は111B)に導入する。各吸着器には、下部から活性アルミナ13a、Na−X型ゼオライト13bを前記実施例1の第1吸着器と同量充填し、更にMg−X型ゼオライト13cを積層充填した。
Comparative Example 1
For comparison, an example of removal of dinitrogen monoxide by a conventional method is shown. In the apparatus shown in FIG. 4, the raw air containing about 0.3 ppm of dinitrogen monoxide (flow rate 3850 Nm 3 / h) is boosted to about 0.6 MPa by the raw air compressor 21, and the aftercooler 22, the refrigerator 25, After cooling to about 15 ° C., the drain is removed by the drain separator 23 and introduced into the adsorber (111A or 111B) performing the adsorption process. Each adsorber was filled with activated alumina 13a and Na-X zeolite 13b in the same amount as in the first adsorber of Example 1 from the bottom, and further laminated with Mg-X zeolite 13c.

実施例1の第1吸着器と同様に、吸着器の吸着工程及び再生工程は240分間ずつで1サイクルを480分間とした。原料空気に含まれる一酸化二窒素の全量を吸着除去するためには、Mg−X型ゼオライト13cが各吸着器に0.3mずつ、計0.6m必要であった。比較例1では第2吸着器は用いていないが、各吸着器にMg−X型ゼオライト13cを充填しているため、各吸着器は、実施例1の第1吸着器と比較して、高さが約26%大きくなり、一酸化二窒素用の吸着剤は2倍必要となった。 Similar to the first adsorber of Example 1, the adsorption process and the regeneration process of the adsorber were performed for 240 minutes, and one cycle was 480 minutes. In order to adsorb and remove the entire amount of dinitrogen monoxide contained in the raw air, 0.3 m 3 of Mg-X zeolite 13c was required for each adsorber, for a total of 0.6 m 3 . In Comparative Example 1, the second adsorber is not used, but each adsorber is filled with Mg-X zeolite 13c, so that each adsorber is higher than the first adsorber of Example 1. About 26% larger, and twice as much adsorbent for nitrous oxide was required.

実施例2
図1に示した装置を用い、一酸化二窒素を約0.3ppm含む原料空気(流量3850Nm/h)を、原料空気圧縮機21で約0.6MPaまで昇圧し、アフタークーラー22で約40℃まで冷却した後、冷凍機25を用いないでドレンを除去し、吸着工程を行っている第1吸着器(11A又は11B)に導入した。第1吸着器の下部には活性アルミナ13aを、その上部にはNa−X型ゼオライト13bを、それぞれ充填した。
Example 2
Using the apparatus shown in FIG. 1, the raw material air (flow rate 3850 Nm 3 / h) containing about 0.3 ppm of dinitrogen monoxide is pressurized to about 0.6 MPa by the raw material air compressor 21, and about 40 by the after cooler 22. After cooling to ° C., the drain was removed without using the refrigerator 25 and introduced into the first adsorber (11A or 11B) performing the adsorption process. The lower part of the first adsorber was filled with activated alumina 13a, and the upper part thereof was filled with Na-X zeolite 13b.

第1吸着器に導入された原料空気は、水分、二酸化炭素が除去され、冷却器27で冷却後、第2吸着器12に導入した。第2吸着器には、一酸化二窒素の吸着剤としてMg−X型ゼオライト13cを0.3m充填した。 Moisture and carbon dioxide were removed from the raw air introduced into the first adsorber, cooled by the cooler 27, and then introduced into the second adsorber 12. The second adsorber was filled with 0.3 m 3 of Mg-X zeolite 13c as a dinitrogen monoxide adsorbent.

測定器29で測定した第1吸着器出口における原料空気中の一酸化二窒素の濃度変化を図3に丸印で示す。この条件では、第1吸着器での吸着工程開始から約30分後に一酸化二窒素が破過した。   The change in the concentration of dinitrogen monoxide in the raw material air at the outlet of the first adsorber measured by the measuring device 29 is indicated by a circle in FIG. Under these conditions, dinitrogen monoxide broke through about 30 minutes after the start of the adsorption process in the first adsorber.

第1吸着器の1サイクルを240分間とした。第2吸着器の吸着工程は、第1吸着器の吸着工程開始60分経過後から開始し、60分間行った。第2吸着器の再生工程(減圧、過熱、冷却、充圧)時間は60分間とし、第2吸着器の1サイクルは120分間とした。最終的に原料空気に含まれる一酸化二窒素の約80%を除去することができた。   One cycle of the first adsorber was 240 minutes. The adsorption process of the second adsorber was started 60 minutes after the start of the adsorption process of the first adsorber, and was performed for 60 minutes. The second adsorber regeneration process (depressurization, overheating, cooling, charging) time was 60 minutes, and one cycle of the second adsorber was 120 minutes. Finally, about 80% of the dinitrogen monoxide contained in the raw air could be removed.

比較例2
図4に示す装置において、一酸化二窒素を約0.3ppm含む原料空気(流量3850Nm/h)を、原料空気圧縮機21で約0.6MPaまで昇圧し、アフタークーラー22で約40℃に冷却した後、ドレン分離器23でドレンを除去し、吸着工程を行っている吸着器(111A又は111B)に導入する。各吸着器には、下部から活性アルミナ13a、Na−X型ゼオライト13bを実施例2の第1吸着器と同量充填し、更にMg−X型ゼオライト13cを積層充填した。
Comparative Example 2
In the apparatus shown in FIG. 4, the feed air containing about 0.3 ppm of dinitrogen monoxide (flow rate 3850 Nm 3 / h) is pressurized to about 0.6 MPa by the feed air compressor 21, and is heated to about 40 ° C. by the aftercooler 22. After cooling, the drain is removed by the drain separator 23 and introduced into the adsorber (111A or 111B) performing the adsorption process. Each adsorber was filled with activated alumina 13a and Na-X zeolite 13b in the same amount as in the first adsorber of Example 2 from the bottom, and further laminated with Mg-X zeolite 13c.

実施例2の第1吸着器と同様に、吸着器の1サイクルを240分間とした。原料空気に含まれる一酸化二窒素を80%除去するためには、Mg−X型ゼオライト13cが各吸着器に0.55mずつ、計1.10m必要であった。各吸着器は、実施例2の第1吸着器と比較して、高さが約30%高くなり、一酸化二窒素用の吸着剤は3.7倍必要となった。 As with the first adsorber of Example 2, one cycle of the adsorber was 240 minutes. In order to remove 80% of dinitrogen monoxide contained in the raw air, 0.55 m 3 of Mg-X zeolite 13c was required for each adsorber, for a total of 1.10 m 3 . Each adsorber was approximately 30% higher in height than the first adsorber of Example 2, and the adsorbent for dinitrogen monoxide was required 3.7 times.

実施例2では、一酸化窒素吸着器を一つとしたことに加えて、一酸化二窒素の吸着条件を改善することにより、一酸化二窒素吸着剤の量を減少させている。つまり、比較例2では、吸着器(111A、111B)で水分、二酸化炭素が吸着除去された空気の温度は、吸着熱により数10℃上昇する。このため、この温度条件で一酸化二窒素を吸着除去しなければならない。それに対し、本発明によれば、第1吸着器の下流に設置した冷却器27によって一酸化二窒素の吸着温度を大幅に下げることができるので、第2吸着器での吸着条件が改善され、必要な一酸化二窒素吸着剤量を減らすことができる。   In Example 2, the amount of the nitrous oxide adsorbent is reduced by improving the adsorption conditions of nitrous oxide in addition to using a single nitric oxide adsorber. That is, in Comparative Example 2, the temperature of the air from which moisture and carbon dioxide have been adsorbed and removed by the adsorbers (111A, 111B) increases by several tens of degrees Celsius due to the heat of adsorption. For this reason, dinitrogen monoxide must be removed by adsorption under this temperature condition. On the other hand, according to the present invention, since the adsorption temperature of dinitrogen monoxide can be greatly lowered by the cooler 27 installed downstream of the first adsorber, the adsorption conditions in the second adsorber are improved, The amount of nitrous oxide adsorbent required can be reduced.

本発明の空気液化分離における前処理方法を実施する前処理装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of the pretreatment apparatus which implements the pretreatment method in the air liquefaction separation of this invention. 各吸着器の運転状態を示す図である。It is a figure which shows the driving | running state of each adsorption device. 実施例1及び実施例2における第1吸着器出口の一酸化二窒素の濃度変化を示す図である。It is a figure which shows the density | concentration change of the dinitrogen monoxide exit of the 1st adsorption device in Example 1 and Example 2. FIG. 比較例1,2で使用した前処理装置を示す系統図である。It is a systematic diagram which shows the pretreatment apparatus used in Comparative Examples 1 and 2.

符号の説明Explanation of symbols

11A,11B…第1吸着器、12…第2吸着器、13a…活性アルミナ、13b…ゼオライト、13c…一酸化二窒素用吸着剤、21…原料空気圧縮機、22…アフタークーラー、23…ドレン分離器、24a,24b…入口弁、25…冷凍機、26a,26b…出口弁、27…冷却器、28…第1供給弁、29…測定器、30…第1加熱器、31a,31b…再生入口弁、32a,32b…再生出口弁、33…第2加熱器、34…第2吸着器再生入口弁、35…第2吸着器再生出口弁、36…第2吸着器入口弁、37…第2吸着器出口弁   11A, 11B ... first adsorber, 12 ... second adsorber, 13a ... activated alumina, 13b ... zeolite, 13c ... adsorbent for dinitrogen monoxide, 21 ... feed air compressor, 22 ... after cooler, 23 ... drain Separator, 24a, 24b ... inlet valve, 25 ... refrigerator, 26a, 26b ... outlet valve, 27 ... cooler, 28 ... first supply valve, 29 ... measuring instrument, 30 ... first heater, 31a, 31b ... Regeneration inlet valve, 32a, 32b ... regeneration outlet valve, 33 ... second heater, 34 ... second adsorber regeneration inlet valve, 35 ... second adsorber regeneration outlet valve, 36 ... second adsorber inlet valve, 37 ... Second adsorber outlet valve

Claims (4)

空気液化分離における原料空気の前処理方法において、前記原料空気中の水分、二酸化炭素を吸着除去するとともに一酸化二窒素を一時的に吸着する第1吸着器と、該第1吸着器の下流側に、前記第1吸着器で一時的に吸着された後脱着した前記一酸化二窒素を吸着除去するための第2吸着器を設け、前記第1吸着器の吸着工程中に、前記第2吸着器の再生工程と吸着工程とを行うことを特徴とする空気液化分離における前処理方法。 In the pretreatment method for feed air in cryogenic air separation, water of said feed air, a first adsorber which temporarily adsorbs nitrogen monoxide with adsorbing and removing carbon dioxide, downstream of the first adsorber A second adsorber for adsorbing and removing the dinitrogen monoxide that has been temporarily adsorbed by the first adsorber and then desorbed , and during the adsorption process of the first adsorber, A pretreatment method in air liquefaction separation, comprising performing an adsorber regeneration step and an adsorption step. 前記第1吸着器から導出した原料空気を冷却してから前記第2吸着器に導入することを特徴とする請求項1記載の空気液化分離における前処理方法。   The pretreatment method in air liquefaction separation according to claim 1, wherein the raw material air led out from the first adsorber is cooled and then introduced into the second adsorber. 空気液化分離における原料空気の前処理装置において、吸着工程と再生工程とを交互に行う複数の第1吸着器と、該第1吸着器の下流側に設けられた一つの第2吸着器とを備え、前記複数の第1吸着器には、前記原料空気中の水分、二酸化炭素を吸着除去するとともに一酸化二窒素を一時的に吸着する吸着剤を充填し、前記第2吸着器には、前記第1吸着器で一時的に吸着された後脱着した前記一酸化二窒素を吸着除去する吸着剤を充填したことを特徴とする空気液化分離における前処理装置。 In the raw material air pretreatment apparatus in the air liquefaction separation, a plurality of first adsorbers for alternately performing an adsorption step and a regeneration step, and one second adsorber provided on the downstream side of the first adsorber The plurality of first adsorbers are filled with an adsorbent that adsorbs and removes moisture and carbon dioxide in the raw material air and temporarily adsorbs dinitrogen monoxide , and the second adsorber includes: A pretreatment apparatus in air liquefaction separation, which is filled with an adsorbent for adsorbing and removing the dinitrogen monoxide adsorbed and removed after being temporarily adsorbed by the first adsorber . 前記第1吸着器から導出した原料空気を冷却してから前記第2吸着器に導入するための冷却器を設けたことを特徴とする請求項3記載の空気液化分離における前処理装置。   The pretreatment apparatus for air liquefaction separation according to claim 3, further comprising a cooler for cooling the raw material air led out from the first adsorber and then introducing the air into the second adsorber.
JP2006075998A 2006-03-20 2006-03-20 Pretreatment method and apparatus in air liquefaction separation Active JP4719598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075998A JP4719598B2 (en) 2006-03-20 2006-03-20 Pretreatment method and apparatus in air liquefaction separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075998A JP4719598B2 (en) 2006-03-20 2006-03-20 Pretreatment method and apparatus in air liquefaction separation

Publications (2)

Publication Number Publication Date
JP2007245111A JP2007245111A (en) 2007-09-27
JP4719598B2 true JP4719598B2 (en) 2011-07-06

Family

ID=38589958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075998A Active JP4719598B2 (en) 2006-03-20 2006-03-20 Pretreatment method and apparatus in air liquefaction separation

Country Status (1)

Country Link
JP (1) JP4719598B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067052A (en) 2012-01-23 2014-09-24 吉坤日矿日石能源株式会社 Fuel supply system, fuel cell system, and method for running each
JP6549969B2 (en) * 2015-10-27 2019-07-24 大陽日酸株式会社 Air purification apparatus and air purification method
WO2024024572A1 (en) * 2022-07-26 2024-02-01 国立研究開発法人物質・材料研究機構 Co2 separation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279740A (en) * 1999-03-31 2000-10-10 Taiyo Nps Kk Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JP2001162126A (en) * 1999-10-25 2001-06-19 L'air Liquide Process and device for purifying gas
JP2003275532A (en) * 2002-03-01 2003-09-30 Air Products & Chemicals Inc Method and apparatus for removing nitrous oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279740A (en) * 1999-03-31 2000-10-10 Taiyo Nps Kk Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JP2001162126A (en) * 1999-10-25 2001-06-19 L'air Liquide Process and device for purifying gas
JP2003275532A (en) * 2002-03-01 2003-09-30 Air Products & Chemicals Inc Method and apparatus for removing nitrous oxide

Also Published As

Publication number Publication date
JP2007245111A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
AU659370B1 (en) Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
US8690990B2 (en) Method of purifying air
JP2014514136A (en) Pressure-temperature swing adsorption method
KR20070028264A (en) Process for gas purification
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
JP2004209480A (en) Method and apparatus for psa using mixture of adsorbent
US11650010B2 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
WO2009126607A2 (en) Carbon dioxide recovery
KR970000367B1 (en) Production of nitrogen
US20120024157A1 (en) Method to clean impurities from bio-gas using adsorption
JP2007203270A (en) Method and apparatus for producing compressed air
JP2015037789A (en) Recovery of nf3 from adsorption operation
CN116600878A (en) Purification of landfill biogas by combined membrane and cryogenic distillation, plant for producing gaseous methane by purifying biogas from landfill
BR112019003474B1 (en) ADSORPTION PROCESS FOR XENON RECOVERY
JP2005254235A (en) Thermal swing adsorption process
TW201730102A (en) Method for argon production via cold pressure swing adsorption
JP5896467B2 (en) Argon gas purification method and purification apparatus
KR102315166B1 (en) Control of Swing Adsorption Process Cycle Time by Monitoring Ambient CO2
US20150360165A1 (en) Separation of biologically generated gas streams
JP4719598B2 (en) Pretreatment method and apparatus in air liquefaction separation
JP2004148315A (en) Process and device for removing nitrous oxide from feed gas stream
KR20010067037A (en) Process and apparatus for the purification of air
US9676629B2 (en) Helium enhanced heat transfer in adsorptive liquid or gas phase argon purification processes
WO2007069605A1 (en) Method and apparatus for purification of the air to be used as raw material in cryogenic air separation
WO2007038661A1 (en) A method of removing nitrous oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Ref document number: 4719598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250