JP2003311148A - Adsorbent, and method and apparatus for purifying gas - Google Patents

Adsorbent, and method and apparatus for purifying gas

Info

Publication number
JP2003311148A
JP2003311148A JP2002117726A JP2002117726A JP2003311148A JP 2003311148 A JP2003311148 A JP 2003311148A JP 2002117726 A JP2002117726 A JP 2002117726A JP 2002117726 A JP2002117726 A JP 2002117726A JP 2003311148 A JP2003311148 A JP 2003311148A
Authority
JP
Japan
Prior art keywords
nitrogen
gas
adsorbent
adsorption
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002117726A
Other languages
Japanese (ja)
Other versions
JP3693626B2 (en
Inventor
Kazuhiko Fujie
和彦 藤江
Masahito Kawai
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2002117726A priority Critical patent/JP3693626B2/en
Publication of JP2003311148A publication Critical patent/JP2003311148A/en
Application granted granted Critical
Publication of JP3693626B2 publication Critical patent/JP3693626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which can obtain an ultrapure gas by selectively adsorbing and removing minute impurities, such as carbon monoxide, nitrogen, dinitrogen monoxide, nitrogen monoxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen, and oxygen, contained in various gasses to the ppm level or below, and a method and an apparatus for purifying gas using the adsorbent. <P>SOLUTION: A gas to be purified which contains at least one gas among carbon monoxide, nitrogen, dinitrogen monoxide, nitrogen monoxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen, and oxygen, as the trace impurities is brought into contact with the adsorbent made of copper ion-exchanged ZSM-5 zeolite to remove the minute impurities to 1 ppm or less, thereby the purity of the gas to be purified is increased to 99.9999 vol.% or higher. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸着剤並びにガス
精製方法及び装置に関し、詳しくは、精製対象ガスであ
る高純度ガス中に含まれる一酸化炭素、窒素、一酸化二
窒素、一酸化窒素、二酸化窒素、アンモニア、三フッ化
窒素、二酸化炭素、メタン、水素、酸素等の微量不純物
を選択的吸着剤により吸着除去して超高純度のガスを得
るための吸着剤並びにガス精製方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent and a gas purification method and apparatus, and more specifically, carbon monoxide, nitrogen, dinitrogen monoxide, and nitric oxide contained in a high-purity gas which is a gas to be purified. And gas purification method and device for obtaining ultra-high purity gas by adsorbing and removing trace impurities such as nitrogen, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen with a selective adsorbent Regarding

【0002】[0002]

【従来の技術】ヘリウム、アルゴン、クリプトン、キセ
ノンあるいは窒素等の不活性ガス、その他各種のガス
が、エレクトロニクス産業において広く使用されてい
る。このようなエレクトロニクス分野で使用される不活
性ガス等は、半導体の製造プロセス自体で使用するもの
と、あらゆる工程でパージあるいは希釈用のガスとして
使用する一般用途のものとがあり、それぞれで必要とさ
れる純度のレベルは大きく異なるが、少なくとも99.
999%以上は必要とされる。
2. Description of the Related Art Inert gases such as helium, argon, krypton, xenon and nitrogen, and various other gases are widely used in the electronics industry. Such inert gases used in the electronics field include those used in the semiconductor manufacturing process itself and those for general use used as a gas for purging or diluting in every step. The levels of purity achieved vary widely, but at least 99.
More than 999% is required.

【0003】特に、半導体製造プロセスで使用されるガ
スは、純度に対する要求が厳しく、各不純物量ともpp
bレベルであることが要求されている。半導体製造プロ
セスで使用されるガス中の不純物として除去すべきとさ
れるガスは、酸素、二酸化炭素、水、一酸化炭素、水素
あるいは炭化水素類等である。また、希ガス類にあって
は、先に挙げた不純物に加えて窒素も除去対象となる。
Particularly, the gas used in the semiconductor manufacturing process has a strict requirement for purity, and the amount of each impurity is pp.
It is required to be at the b level. The gas to be removed as an impurity in the gas used in the semiconductor manufacturing process is oxygen, carbon dioxide, water, carbon monoxide, hydrogen or hydrocarbons. Further, in the case of rare gases, in addition to the above-mentioned impurities, nitrogen is also a removal target.

【0004】一方、ガス吸着分離の分野において、Ca
−A型、Na−X、Ca−X型等のゼオライトは、一般
に窒素及び一酸化炭素を比較的よく吸着することが知ら
れており、実用に供されている。しかし、これらのゼオ
ライトの吸着等温線は、低圧領域においては略直線であ
り、極めて低い濃度の窒素や一酸化炭素に対する吸着量
が小さいため、ppmレベルでの精製に供することは事
実上不可能だった。
On the other hand, in the field of gas adsorption separation, Ca
Zeolites such as -A type, Na-X, and Ca-X type are generally known to adsorb nitrogen and carbon monoxide relatively well, and have been put to practical use. However, the adsorption isotherms of these zeolites are almost linear in the low pressure region, and the adsorption amount for extremely low concentrations of nitrogen and carbon monoxide is small, so it is virtually impossible to purify them at the ppm level. It was

【0005】また、特開昭60−156548号公報に
は、シリカ対アルミナ比が19以下で、かつ、銅イオン
を含むZSM−5型ゼオライトを使用し、比較的高い濃
度の一酸化炭素を含むガスから一酸化炭素を回収する方
法が開示されている。この方法は、比較的高濃度に一酸
化炭素を含むガスから一酸化炭素を分離回収する際に、
一酸化炭素のみに選択性を示し、かつ、吸着容量の大き
い吸着剤に関するものであって、捕捉方法に関する詳し
い説明が無く、基本的に、ガス中に微量不純物として存
在する一酸化炭素を除去する可能性を示唆するものでは
ない。
Further, in JP-A-60-156548, ZSM-5 type zeolite having a silica to alumina ratio of 19 or less and containing copper ions is used, and a relatively high concentration of carbon monoxide is contained. A method of recovering carbon monoxide from a gas is disclosed. This method, when separating and recovering carbon monoxide from a gas containing carbon monoxide in a relatively high concentration,
The present invention relates to an adsorbent which has a high adsorption capacity and shows selectivity only to carbon monoxide, and there is no detailed explanation about a trapping method, and basically carbon monoxide existing as a trace impurity in gas is removed. It does not suggest a possibility.

【0006】さらに、特開昭61−18431号公報に
は、シリカ対アルミナ比が10以下のY型、A型又はX
型ゼオライトに1価の銅又は銀あるいはその両方を担持
させた吸着剤により、窒素と比較的高濃度の一酸化炭素
とを含む混合ガスから一酸化炭素を吸着分離する技術が
開示されている。前記公報記載の実施例に示された原料
ガス中の一酸化炭素は、比較的高い濃度範囲であって、
ppmレベルでの除去については触れられていないし、
ZSM−5を基本吸着剤とすることについては何の示唆
もない。
Further, Japanese Patent Laid-Open No. 61-18431 discloses a Y-type, A-type or X-type having a silica to alumina ratio of 10 or less.
A technique for adsorbing and separating carbon monoxide from a mixed gas containing nitrogen and a relatively high concentration of carbon monoxide by an adsorbent in which monovalent copper and / or silver is supported on type zeolite is disclosed. Carbon monoxide in the source gas shown in the examples described in the above publication has a relatively high concentration range,
No mention of removal at the ppm level,
There is no suggestion of using ZSM-5 as the basic adsorbent.

【0007】また、特開平3−65242号公報には、
銅−ゼオライト触媒の製法として、シリカ対アルミナ比
が5〜1000のゼオライトに銅をイオン交換により担
持させて乾燥した後、該ゼオライトを容積比で0.05
〜0.5%の水素を添加した不活性ガス気流中で熱処理
することが開示されている。ここで使用するゼオライト
は、ZSM−5ゼオライトが最も好ましいとされている
が、浄化結果として示されているものは、モデルガス中
の一酸化炭素濃度が0.11容積%に対して浄化率は5
0〜75%であって、ppmレベルの精製ではなく、し
かも、窒素等の除去には触れていない。
Further, in Japanese Patent Laid-Open No. 3-65242,
As a method for producing a copper-zeolite catalyst, a zeolite having a silica-to-alumina ratio of 5 to 1000 is loaded with copper by ion exchange and dried, and then the zeolite is mixed in a volume ratio of 0.05.
It is disclosed that the heat treatment is carried out in a stream of an inert gas containing 0.5% to 0.5% hydrogen. It is said that ZSM-5 zeolite is most preferable as the zeolite used here, but the one shown as the purification result shows that the purification rate is not higher than the carbon monoxide concentration in the model gas of 0.11% by volume. 5
It is 0 to 75%, which is not the purification at the ppm level, and the removal of nitrogen and the like is not mentioned.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の吸
着技術では、ガス中に微量に含まれる一酸化炭素、窒
素、一酸化二窒素、一酸化窒素、二酸化窒素、アンモニ
ア、三フッ化窒素、二酸化炭素、メタン、水素、酸素等
の不純物を同時に除去することが困難であり、特に、不
純物の除去のレベルをppmレベルの極微量とすること
ができないという問題があった.そこで本発明は、各種
ガス中に含まれる一酸化炭素、窒素、一酸化二窒素、一
酸化窒素、二酸化窒素、アンモニア、三フッ化窒素、二
酸化炭素、メタン、水素、酸素等の微量不純物を選択的
にppmレベル以下まで吸着除去して超高純度のガスを
得ることができる吸着剤を提供するとともに、この吸着
剤を使用したガス精製方法及び装置を提供することを目
的としている。
As described above, in the conventional adsorption technique, carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, which are contained in the gas in a trace amount, are used. However, it is difficult to remove impurities such as carbon dioxide, carbon dioxide, methane, hydrogen, and oxygen at the same time, and in particular, there is a problem that the level of removing impurities cannot be set to an extremely small amount of ppm level. Therefore, the present invention selects trace impurities such as carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen contained in various gases. The object of the present invention is to provide an adsorbent that can be adsorbed and removed to a ppm level or less to obtain an ultrahigh-purity gas, and a gas purification method and apparatus using this adsorbent.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の吸着剤は、一酸化炭素、窒素、一酸化二窒
素、一酸化窒素、二酸化窒素、アンモニア、三フッ化窒
素、二酸化炭素、メタン、水素及び酸素の少なくとも1
種を微量不純物として含む精製対象ガスから該微量不純
物を吸着除去するための吸着剤であって、銅イオン交換
したZSM−5型ゼオライトからなることを特徴として
いる。
In order to achieve the above object, the adsorbent of the present invention comprises carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide. , At least one of methane, hydrogen and oxygen
It is an adsorbent for adsorbing and removing the trace impurities from the gas to be purified containing the species as trace impurities, and is characterized by being made of copper ion-exchanged ZSM-5 type zeolite.

【0010】まず、本発明の微量不純物除去対象となる
ガス(精製対象ガス)は、例えば、前述のようなエレク
トロニクス分野で使用される不活性ガスをはじめとする
各種のガスであって、代表的なものとして、各種の希ガ
ス、水素、酸素、二酸化炭素、炭化水素、水素の一部又
は全部をハロゲン置換した炭化水素、六フッ化硫黄等を
挙げることができる。また、本発明では、精製後のこれ
らガスの純度を99.9999容量%以上、すなわち、
精製後に不純物として含まれる成分の合計を1ppm以
下にすることを目標としている。
First, the gas (purification target gas) to be used for removing trace impurities according to the present invention is, for example, various gases including the inert gas used in the electronics field as described above, and is a typical gas. Examples thereof include various rare gases, hydrogen, oxygen, carbon dioxide, hydrocarbons, hydrocarbons obtained by substituting a part or all of hydrogen with halogen, sulfur hexafluoride and the like. In the present invention, the purity of these gases after purification is 99.9999% by volume or more, that is,
The goal is to reduce the total amount of components contained as impurities after purification to 1 ppm or less.

【0011】前記吸着剤は、ZSM−5型ゼオライト
(以下、ZSM−5と記載するときがある)のナトリウ
ムイオン等を銅イオン交換したゼオライトである。な
お、以下の説明において、この銅イオン交換したゼオラ
イトを、「Cu−ZSM−5」と記載することがある。
銅イオン交換する前の原料となるZSM−5型ゼオライ
トは、市販の材料を使用することができるが、シリカ対
アルミナ比が5〜50であることが望ましい。ZSM−
5におけるシリカ対アルミナ比が50を超えると銅イオ
ン交換量が少なくなり、微量不純物の吸着量が減少して
しまう。また、シリカ対アルミナ比が5未満のZSM−
5は、入手困難である。
The adsorbent is a zeolite in which sodium ions of ZSM-5 type zeolite (hereinafter sometimes referred to as ZSM-5) are exchanged with copper ions. In the following description, the copper ion-exchanged zeolite may be referred to as "Cu-ZSM-5".
As the ZSM-5 type zeolite which is a raw material before copper ion exchange, a commercially available material can be used, but a silica to alumina ratio is preferably 5 to 50. ZSM-
If the silica-to-alumina ratio in No. 5 exceeds 50, the amount of copper ion exchange is reduced, and the amount of trace impurities adsorbed is reduced. ZSM- with a silica to alumina ratio of less than 5
No. 5 is difficult to obtain.

【0012】Cu−ZSM−5における銅イオン交換率
は、それぞれのゼオライトのイオン交換可能な量の少な
くとも40%以上であるあることが好ましい。これは、
イオン交換された銅イオンが窒素及び一酸化炭素の特異
的吸着の要因となるからであり、銅イオン交換率が少な
すぎると特異的吸着性能が発現しなくなってしまう。
The copper ion exchange rate in Cu-ZSM-5 is preferably at least 40% or more of the ion exchangeable amount of each zeolite. this is,
This is because the ion-exchanged copper ions cause specific adsorption of nitrogen and carbon monoxide, and if the copper ion exchange rate is too small, specific adsorption performance will not be exhibited.

【0013】ZSM−5中に含まれるナトリウムを銅に
イオン交換する方法は、特に限定されるものではなく、
従来から行われている周知の方法を採用することができ
る。例えば、銅の可溶性塩(硝酸塩、酢酸塩、シュウ酸
塩、塩酸塩等)の水溶液にZSM−5を浸漬することに
よってナトリウムを銅にイオン交換することができる。
この場合、銅塩の濃度、浸漬時間、浸漬温度、浸漬回数
等を選択することによって銅イオン交換量を所望の量に
調節することができる。
The method of ion-exchanging sodium contained in ZSM-5 to copper is not particularly limited,
A well-known method that has been conventionally performed can be adopted. For example, sodium can be ion-exchanged for copper by immersing ZSM-5 in an aqueous solution of a soluble salt of copper (nitrate, acetate, oxalate, hydrochloride, etc.).
In this case, the copper ion exchange amount can be adjusted to a desired amount by selecting the concentration of the copper salt, the immersion time, the immersion temperature, the number of times of immersion, and the like.

【0014】イオン交換した後は、水を用いて洗浄し、
乾燥後に適当な温度で焼成することによって使用可能な
状態となる。このときの乾燥温度は100℃程度が適当
であり、焼成温度は、窒素ガス雰囲気下で350℃以
上、特に、500〜800℃が適当である。この吸着剤
の特異的吸着性能は、1価の銅イオンの存在によって発
現すると考えられるので、500℃未満の焼成温度では
2価から1価への変化が不十分で、十分な吸着性能を発
現させることが困難であり、逆に800℃以上の温度で
は、ゼオライトの構造自体が破壊される可能性がある。
After the ion exchange, wash with water,
After being dried, the product is ready for use by firing at an appropriate temperature. At this time, a suitable drying temperature is about 100 ° C., and a suitable baking temperature is 350 ° C. or higher, especially 500 to 800 ° C. in a nitrogen gas atmosphere. Since the specific adsorption performance of this adsorbent is considered to be exhibited by the presence of monovalent copper ions, the change from divalent to monovalent is insufficient at a calcination temperature of less than 500 ° C, and sufficient adsorption performance is exhibited. On the contrary, at a temperature of 800 ° C. or higher, the structure of zeolite itself may be destroyed.

【0015】銅イオン交換したゼオライト中に含まれる
銅イオンの量は、任意の方法で測定できるが、例えば、
ICP発光分析法(誘導電荷発光分析法)により測定す
ることができる。なお、本発明におけるイオン交換率
は、1個の銅イオンが2個のナトリウムイオンと交換す
るという仮定から求めている。すなわち、イオン交換時
点では、銅イオンは2価として存在すると仮定してい
る。実際には、1価の銅イオンも存在するため、計算値
として100%以上の交換率が得られることがあり、全
ての銅イオンが1価として存在する場合が上限であり、
そのときの計算上のイオン交換率は200%となる。
The amount of copper ions contained in the copper ion-exchanged zeolite can be measured by any method.
It can be measured by an ICP emission analysis method (induced charge emission analysis method). The ion exchange rate in the present invention is calculated from the assumption that one copper ion is exchanged with two sodium ions. That is, it is assumed that copper ions are present as divalent at the time of ion exchange. In reality, since monovalent copper ions are also present, an exchange rate of 100% or more may be obtained as a calculated value, and the upper limit is the case where all copper ions are present as monovalent,
The calculated ion exchange rate at that time is 200%.

【0016】このようなCu−ZSM−5を微量不純物
の吸着剤として使用することにより、例えば、希ガス、
酸素、水素、二酸化炭素、炭化水素、六フッ化硫黄とい
ったガス中に微量に存在する不純物、例えば、一酸化炭
素、窒素、一酸化二窒素、一酸化窒素、二酸化窒素、ア
ンモニア、三フッ化窒素、二酸化炭素、メタン、水素、
酸素を効率よく吸着除去して前記ガスを精製することが
でき、精製後のガス中に含まれる不純物量を1ppm以
下、すなわち、純度を99.9999容量%以上にする
ことができる。
By using such Cu-ZSM-5 as an adsorbent for trace impurities, for example, rare gas,
Impurities present in trace amounts in gases such as oxygen, hydrogen, carbon dioxide, hydrocarbons, sulfur hexafluoride, such as carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride , Carbon dioxide, methane, hydrogen,
The gas can be purified by efficiently adsorbing and removing oxygen, and the amount of impurities contained in the purified gas can be 1 ppm or less, that is, the purity can be 99.9999% by volume or more.

【0017】ガスの精製処理は、前記吸着剤を充填した
吸着筒に精製対象ガスを流通させて該ガスと吸着剤とを
接触させればよい。両者を接触させるときの温度は、常
温、例えば10〜40℃の範囲でよく、特に冷却したり
する必要はほとんどない。また、前記微量不純物を吸着
した吸着剤は、適当な温度に加熱することにより、微量
不純物を脱着させて吸着剤を再生することができる。し
たがって、相対的に低い温度で行う微量不純物の吸着工
程と、相対的に高い温度で行う脱着工程(再生工程)と
を交互に繰り返すことにより、吸着剤を繰り返して使用
することができる。
The gas refining treatment may be carried out by passing the gas to be purified through an adsorption column filled with the adsorbent to bring the gas into contact with the adsorbent. The temperature at which they are brought into contact with each other may be room temperature, for example, in the range of 10 to 40 ° C., and it is almost unnecessary to cool them. Further, the adsorbent having adsorbed the trace impurities can be desorbed to regenerate the adsorbent by heating to a suitable temperature. Therefore, the adsorbent can be repeatedly used by alternately repeating the step of adsorbing a trace amount of impurities performed at a relatively low temperature and the desorption step (regeneration step) performed at a relatively high temperature.

【0018】さらに、図1の概略系統図に示すように、
前記吸着剤(Cu−ZSM−5)を充填した吸着筒10
a,10bを複数基設置するとともに、精製対象ガス用
配管11,12と吸着剤再生ガス用配管13,14とを
それぞれ接続し、これらの配管にそれぞれ設けた遮断弁
を所定の順序で開閉し、精製対象となるガスを相対的に
低い温度に保たれた吸着筒に導入する吸着工程と、再生
ガス加熱器15で加熱した再生ガスを吸着筒に流通させ
ながら相対的に高い温度で行う脱着工程とを複数の吸着
筒a,10bで交互に繰り返すことにより、精製対象ガ
ス中の微量不純物を連続的に吸着除去することができ
る。
Further, as shown in the schematic system diagram of FIG.
Adsorption cylinder 10 filled with the adsorbent (Cu-ZSM-5)
A plurality of a and 10b are installed, the purification target gas pipes 11 and 12 are connected to the adsorbent regeneration gas pipes 13 and 14, respectively, and the shutoff valves provided in these pipes are opened and closed in a predetermined order. An adsorption step of introducing a gas to be purified into an adsorption column kept at a relatively low temperature, and a desorption performed at a relatively high temperature while circulating the regeneration gas heated by the regeneration gas heater 15 through the adsorption column. By alternately repeating the step and the steps for the plurality of adsorption cylinders a and 10b, it is possible to continuously adsorb and remove the trace impurities in the gas to be purified.

【0019】[0019]

【実施例】実施例1 シリカ対アルミナ比(Si/Al比)が11.9のナト
リウム型ZSM−5ゼオライト(Na−ZSM−5)
を、0.01モル濃度の酢酸銅溶液中に浸漬して90℃
で1時間のイオン交換を行った。異なったイオン交換レ
ベルのサンプルを得るため、この操作を数回繰り返すこ
とにより、イオン交換率が0%,36%,83%,12
1%,147%の5種類を調製した。ZSM−5にイオ
ン交換された銅の量は、ICP発光分析により測定し
た。
Example 1 Sodium-type ZSM-5 zeolite having a silica-to-alumina ratio (Si / Al ratio) of 11.9 (Na-ZSM-5)
Is immersed in a 0.01 molar copper acetate solution at 90 ° C.
Ion exchange was performed for 1 hour. By repeating this operation several times to obtain samples with different ion exchange levels, the ion exchange rates are 0%, 36%, 83%, 12
Five kinds of 1% and 147% were prepared. The amount of copper ion-exchanged with ZSM-5 was measured by ICP emission spectrometry.

【0020】吸着剤の評価として、定容法により吸着等
温線の測定を行った。測定条件は、使用吸着剤量約0.
5g、吸着温度25℃とし、吸着測定前に吸着剤の前処
理として600℃での真空加熱処理を行った。表1に、
Cu−ZSM−5の銅イオン交換率と、吸着温度25
℃、平衡圧力10Paにおける一酸化炭素及び窒素の平
衡吸着量との関係を示す。
As an evaluation of the adsorbent, the adsorption isotherm was measured by the constant volume method. The measurement condition is that the amount of adsorbent used is about 0.
The adsorption temperature was 5 g, the adsorption temperature was 25 ° C., and the vacuum heat treatment at 600 ° C. was performed as a pretreatment of the adsorbent before the adsorption measurement. In Table 1,
Cu-ZSM-5 copper ion exchange rate and adsorption temperature 25
The relationship between the equilibrium adsorption amount of carbon monoxide and nitrogen at an equilibrium pressure of 10 ° C. is shown.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 シリカ対アルミナ比の異なる4種類のZSM−5ゼオラ
イトに、実施例1と同じ銅イオン交換操作を施し、銅イ
オン交換率が概ね120%のCu−ZSM−5を得た。
吸着剤の評価として、実施例1と同様の方法で一酸化炭
素及び窒素の吸着量をそれぞれ測定した。表2に、Cu
−ZSM−5のシリカ対アルミナ比と、吸着温度25
℃、平衡圧力10Paにおける一酸化炭素及び窒素の平
衡吸着量との関係を示す。
Example 2 Four kinds of ZSM-5 zeolite having different silica to alumina ratios were subjected to the same copper ion exchange operation as in Example 1 to obtain Cu-ZSM-5 having a copper ion exchange rate of approximately 120%. .
As the evaluation of the adsorbent, the adsorption amounts of carbon monoxide and nitrogen were measured in the same manner as in Example 1. In Table 2, Cu
-ZSM-5 silica to alumina ratio and adsorption temperature 25
The relationship between the equilibrium adsorption amount of carbon monoxide and nitrogen at an equilibrium pressure of 10 ° C. is shown.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例3 吸着剤としてCuイオン交換率120%、シリカ対アル
ミナ比19.5のCu−ZSM−5を選択し、真空下で
の焼成温度が窒素吸着に与える影響を調べた。吸着剤の
評価は、実施例1と同様の方法で窒素の吸着量を測定し
た。表3にCu−ZSM−5の初期焼成温度と、吸着温
度25℃、平衡圧力10Paにおける窒素平衡吸着量と
の関係を示す。
Example 3 As an adsorbent, Cu-ZSM-5 having a Cu ion exchange rate of 120% and a silica-to-alumina ratio of 19.5 was selected, and the effect of the firing temperature under vacuum on nitrogen adsorption was investigated. In the evaluation of the adsorbent, the amount of adsorbed nitrogen was measured by the same method as in Example 1. Table 3 shows the relationship between the initial firing temperature of Cu-ZSM-5 and the nitrogen equilibrium adsorption amount at an adsorption temperature of 25 ° C and an equilibrium pressure of 10 Pa.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例4 本発明による吸着剤と、従来の吸着剤(比較例)とにお
ける一酸化炭素及び窒素の吸着量を比較した。本発明の
吸着剤には、シリカ対アルミナ比が19.5で、銅イオ
ン交換率が120%のCu−ZSM−5を選び、比較例
としては、一酸化炭素及び窒素の吸着量が多いとされる
Ca−X型を選定した。各吸着剤の評価は、実施例1と
同様の方法で一酸化炭素及び窒素の吸着量をそれぞれ測
定した。吸着測定前の吸着剤の前処理として、Cu−Z
SM−5は700℃で真空加熱処理を、Ca−Xは、剤
の安定上の理由から350℃で真空加熱処理をそれぞれ
行った。図2にCu−ZSM−5及びCa−Xへの一酸
化炭素と窒素との吸着等温線を示すとともに、表4に各
剤の吸着温度25℃、平衡圧力10Paにおける一酸化
炭素及び窒素の平衡吸着量の関係を示す。
Example 4 The adsorption amounts of carbon monoxide and nitrogen of the adsorbent according to the present invention and the conventional adsorbent (comparative example) were compared. For the adsorbent of the present invention, Cu-ZSM-5 having a silica-to-alumina ratio of 19.5 and a copper ion exchange rate of 120% was selected. As a comparative example, it was found that the adsorption amount of carbon monoxide and nitrogen was large. The Ca-X type to be used was selected. The evaluation of each adsorbent was performed by measuring the adsorbed amounts of carbon monoxide and nitrogen in the same manner as in Example 1. As a pretreatment of the adsorbent before the adsorption measurement, Cu-Z
SM-5 was vacuum-heated at 700 ° C., and Ca-X was vacuum-heated at 350 ° C. for reasons of stability of the agent. FIG. 2 shows adsorption isotherms of carbon monoxide and nitrogen on Cu-ZSM-5 and Ca-X, and Table 4 shows the equilibrium of carbon monoxide and nitrogen at the adsorption temperature of each agent of 25 ° C. and equilibrium pressure of 10 Pa. The relationship of the adsorption amount is shown.

【0027】[0027]

【表4】 [Table 4]

【0028】実施例5 吸着剤としてシリカ対アルミナ比19.5、Cuイオン
交換率120%のCu−ZSM−5を選択し、実施例1
と同様の方法で一酸化炭素、窒素、一酸化二窒素、二酸
化炭素、メタン、水素、酸素、クリプトン、CF及び
アルゴンの吸着等温線の測定を行った。吸着測定前に吸
着剤の前処理として700℃で真空加熱処理を行った。
図3及び図4に、Cu−ZSM−5への各ガスの吸着等
温線を示すとともに、表5に吸着温度25℃、平衡圧力
10Paにおける各ガス種の平衡吸着量の関係を示す。
Example 5 As an adsorbent, Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120% was selected.
The adsorption isotherms of carbon monoxide, nitrogen, dinitrogen monoxide, carbon dioxide, methane, hydrogen, oxygen, krypton, CF 4 and argon were measured in the same manner as in. Before adsorption measurement, vacuum heat treatment was performed at 700 ° C. as a pretreatment of the adsorbent.
3 and 4 show the adsorption isotherms of each gas on Cu-ZSM-5, and Table 5 shows the relationship between the equilibrium adsorption amount of each gas species at the adsorption temperature of 25 ° C. and the equilibrium pressure of 10 Pa.

【0029】[0029]

【表5】 [Table 5]

【0030】図3及び図4から明らかなように、Cu−
ZSM−5で吸着除去しようとする一酸化炭素、窒素、
一酸化二窒素及び酸素は、化学吸着的なラングミュア等
温線を示している。一方、高純度に精製しようとするア
ルゴン、クリプトン等の希ガス類やCFは、物理吸着
を示す典型的なヘンリー型吸着等温線を示しており、こ
れらのガスは、吸着剤表面とは特異的相互作用を持たな
いことがわかる。これらのことから、Cu−ZSM−5
に対して物理吸着性を有するガス中に存在する化学吸着
性を有するガスを容易に除去できることがわかる。
As is clear from FIGS. 3 and 4, Cu-
Carbon monoxide, nitrogen, which is to be adsorbed and removed by ZSM-5,
Nitrous oxide and oxygen show chemisorption Langmuir isotherms. On the other hand, rare gases such as argon and krypton, which are to be purified to high purity, and CF 4 show typical Henry-type adsorption isotherms showing physical adsorption, and these gases have a specific mutual interaction with the adsorbent surface. It turns out that it has no effect. From these, Cu-ZSM-5
On the other hand, it can be seen that the gas having the chemical adsorption property existing in the gas having the physical adsorption property can be easily removed.

【0031】さらに、吸着等温線の状態から、各ガスの
Cu−ZSM−5への吸着力の強さ、即ち除去されやす
さは、一酸化炭素>酸素>>一酸化二窒素、窒素>二酸
化炭素、メタン、水素>>クリプトン、CF、アルゴ
ンと推測され、同じ性質を示す二酸化炭素、炭化水素
(メタン)、水素は、Cu−ZSM−5を吸着剤として
用いることにより、これらのガス中から一酸化炭素、窒
素、一酸化二窒素及び酸素を除去することが可能であ
り、逆に希ガス中からCu−ZSM−5を用いてこれら
のガスを吸着除去することも可能であることがわかる。
Further, from the state of the adsorption isotherm, the strength of the adsorption force of each gas to Cu-ZSM-5, that is, the ease of removal, is as follows: carbon monoxide> oxygen >> dinitrogen monoxide, nitrogen> dioxide. carbon, methane, hydrogen >> krypton, CF 4, is presumed to argon, carbon dioxide exhibiting the same properties, hydrocarbon (methane), hydrogen, by using the Cu-ZSM-5 as the adsorbent, in these gases It is possible to remove carbon monoxide, nitrogen, nitrous oxide and oxygen from the above, and conversely it is also possible to remove these gases by adsorbing these gases from a rare gas using Cu-ZSM-5. Recognize.

【0032】実施例6 100gの剤を焼成するため、直径40mm、高さ50
0mmのステンレス容器中にCu−ZSM−5を投入
し、焼成雰囲気(窒素又は空気)による吸着剤の初期活
性化方法を検討した。本発明による吸着剤として、シリ
カ対アルミナ比19.5、Cuイオン交換率120%の
Cu−ZSM−5を選び、800℃で加熱処理を行っ
た。吸着剤の焼成後に、実施例1と同様の方法で窒素の
吸着量を測定した。表6にCu−ZSM−5の焼成雰囲
気と平衡圧力10Paにおける窒素吸着量との関係を示
す。
Example 6 To burn 100 g of the agent, a diameter of 40 mm and a height of 50
Cu-ZSM-5 was put into a 0 mm stainless steel container, and a method of initial activation of the adsorbent by a firing atmosphere (nitrogen or air) was examined. As the adsorbent according to the present invention, Cu-ZSM-5 having a silica-to-alumina ratio of 19.5 and a Cu ion exchange rate of 120% was selected and heat-treated at 800 ° C. After burning the adsorbent, the adsorption amount of nitrogen was measured by the same method as in Example 1. Table 6 shows the relationship between the firing atmosphere of Cu-ZSM-5 and the nitrogen adsorption amount at the equilibrium pressure of 10 Pa.

【0033】[0033]

【表6】 [Table 6]

【0034】実施例7 アルゴン中に微量窒素を含んだガスを使用してCu−Z
SM−5の破過実験を行った。吸着筒には、内径20m
m、長さ500mmのカラムを使用し、シリカ対アルミ
ナ比19.5、Cuイオン交換率120%のCu−ZS
M−5を69.0g充填した。測定ガスとして、アルゴ
ン中に窒素512ppmを含むガスを使用し、これを2
5℃、0.19MPa、3.0L/minで吸着筒に流
し、吸着筒出口における窒素の濃度変化を測定した。窒
素濃度の測定は放電発光分光法で行い、破過時間は、出
口濃度が入口濃度に対して5%に到達した時点とした。
図5に経過時間と吸着筒出口窒素濃度との関係を示す。
Example 7 Cu-Z using a gas containing a trace amount of nitrogen in argon
An SM-5 breakthrough experiment was performed. The suction cylinder has an inner diameter of 20 m.
m-length 500 mm column, silica-alumina ratio 19.5, Cu ion exchange rate 120% Cu-ZS
69.0 g of M-5 was charged. As the measurement gas, a gas containing 512 ppm of nitrogen in argon was used.
The mixture was flown through an adsorption column at 5 ° C., 0.19 MPa and 3.0 L / min, and the nitrogen concentration change at the adsorption column outlet was measured. The nitrogen concentration was measured by discharge emission spectroscopy, and the breakthrough time was the time when the outlet concentration reached 5% of the inlet concentration.
FIG. 5 shows the relationship between the elapsed time and the nitrogen concentration at the outlet of the adsorption column.

【0035】実施例8 実施例7で破過した剤を、吸着筒外部から350℃で加
熱再生し、その後、実施例7と同じ条件で破過実験を2
回繰り返した。実験の結果、350℃で再生した吸着剤
の窒素破過時間は、再生1回目が88分、再生2回目が
90分であり、実施例7の結果と略同じ時間となった。
Example 8 The agent broke through in Example 7 was regenerated by heating from outside the adsorption column at 350 ° C., and then a breach test was conducted under the same conditions as in Example 7.
Repeated times. As a result of the experiment, the nitrogen breakthrough time of the adsorbent regenerated at 350 ° C. was 88 minutes for the first regeneration and 90 minutes for the second regeneration, which was almost the same time as the result of Example 7.

【0036】実施例9 実験温度を40℃とした以外は実施例7と同じ条件で破
過実験を行った。実験の結果、窒素の破過時間は82分
であり、この剤の破過時間が実験温度には大きく影響さ
れないことがわかった。
Example 9 A breakthrough experiment was conducted under the same conditions as in Example 7, except that the experiment temperature was 40 ° C. As a result of the experiment, the breakthrough time of nitrogen was 82 minutes, and it was found that the breakthrough time of this agent was not significantly affected by the experimental temperature.

【0037】実施例10 測定ガス中の窒素濃度を99ppm、流速を0.51L
/minとし、その他は実施例7と同じ条件で破過実験
を行った。実験の結果、窒素の破過時間は35.8時間
となった。
Example 10 Nitrogen concentration in measurement gas was 99 ppm and flow rate was 0.51 L
/ Min, and the other conditions were the same as in Example 7, and the breakthrough experiment was performed. As a result of the experiment, the breakthrough time of nitrogen was 35.8 hours.

【0038】実施例11 クリプトン中に微量窒素を含んだガスを使用してCu−
ZSM−5の破過実験を行った。吸着筒には、内径20
mm、長さ500mmのカラムを使用し、シリカ対アル
ミナ比19.5、Cuイオン交換率120%のCu−Z
SM−5を87.4g充填した。 測定ガスとして、ク
リプトン中に窒素約79.8ppmを含むガスを使用
し、これを25℃、0.35MPa、1.1L/min
で吸着筒に流し、吸着筒出口における窒素の濃度変化を
測定した。窒素濃度の測定は放電発光分光法で行い、破
過時間は、出口濃度が入口濃度に対して2.5%に到達
した時点とした。実験の結果、窒素の破過時間は35.
1時間となった。
Example 11 Cu-using a gas containing a trace amount of nitrogen in krypton
A breakthrough experiment of ZSM-5 was performed. The suction cylinder has an inner diameter of 20
mm, length 500 mm column, silica-to-alumina ratio 19.5, Cu ion exchange rate 120% Cu-Z
87.4 g of SM-5 was charged. As the measurement gas, a gas containing about 79.8 ppm of nitrogen in krypton was used, and this was used at 25 ° C., 0.35 MPa, 1.1 L / min.
Then, it was flown into the adsorption column and the change in nitrogen concentration at the adsorption column outlet was measured. The nitrogen concentration was measured by discharge emission spectroscopy, and the breakthrough time was the time when the outlet concentration reached 2.5% of the inlet concentration. As a result of the experiment, the breakthrough time of nitrogen was 35.
It's been an hour.

【0039】実施例12 アルゴン中に微量窒素を含んだガスを使用してCu−Z
SM−5の破過実験を行った。吸着筒には、内径20m
m、長さ500mmのカラムを使用し、シリカ対アルミ
ナ比19.5、Cuイオン交換率120%のCu−ZS
M−5を87.4g充填した。測定ガスとして、アルゴ
ン中に窒素512ppmを含むガスを使用し、これを2
5℃、0.15MPa、0.76L/minで吸着筒に
流し、吸着筒出口における窒素の濃度変化を測定した。
窒素濃度の測定はガスクロマトグラフ−質量分析計(G
C−MS)で行い、破過時間は、出口濃度が1ppmを
超えた時点とした。実験の結果、窒素の破過時間は7.
9時間となった。また、7.8時間経過時の出口窒素濃
度は、検出限界の5ppb以下であり、長時間極めて低
い濃度まで窒素を吸着除去していることがわかった。
Example 12 Cu-Z using a gas containing a trace amount of nitrogen in argon
An SM-5 breakthrough experiment was performed. The suction cylinder has an inner diameter of 20 m.
m-length 500 mm column, silica-alumina ratio 19.5, Cu ion exchange rate 120% Cu-ZS
87.4 g of M-5 was charged. As the measurement gas, a gas containing 512 ppm of nitrogen in argon was used.
It was made to flow through an adsorption column at 5 ° C, 0.15 MPa and 0.76 L / min, and the change in nitrogen concentration at the adsorption column outlet was measured.
The nitrogen concentration is measured by a gas chromatograph-mass spectrometer (G
C-MS), and the breakthrough time was the time when the outlet concentration exceeded 1 ppm. As a result of the experiment, the breakthrough time of nitrogen was 7.
It's been 9 hours. Further, the outlet nitrogen concentration after 7.8 hours had passed was the detection limit of 5 ppb or less, and it was found that nitrogen was adsorbed and removed to a very low concentration for a long time.

【0040】実施例13 クリプトン中に微量の窒素及び酸素を含んだガスを使用
してCu−ZSM−5の破過実験を行った。吸着筒に
は、内径20mm、長さ500mmのカラムを使用し、
シリカ対アルミナ比19.5、Cuイオン交換率120
%のCu−ZSM−5を87.4g充填した。測定ガス
として、クリプトン中に窒素1442ppm及び酸素1
1ppmを含むガスを使用し、これを25℃、0.15
MPa、0.35L/minで吸着筒に流し、吸着筒出
口における窒素の濃度変化を測定した。窒素濃度の測定
はガスクロマトグラフ−質量分析計(GC−MS)で行
い、破過時間は、窒素の出口濃度が1ppmを超えた時
点とした。
Example 13 A breakthrough experiment of Cu-ZSM-5 was carried out using a gas containing trace amounts of nitrogen and oxygen in krypton. A column with an inner diameter of 20 mm and a length of 500 mm is used as the adsorption column.
Silica to alumina ratio 19.5, Cu ion exchange rate 120
% Cu-ZSM-5 was loaded at 87.4 g. As measurement gas, 1442 ppm nitrogen and 1 oxygen in krypton
A gas containing 1 ppm was used, which was stored at 25 ° C. and 0.15
It was made to flow through the adsorption column at MPa and 0.35 L / min, and the change in nitrogen concentration at the adsorption column outlet was measured. The nitrogen concentration was measured with a gas chromatograph-mass spectrometer (GC-MS), and the breakthrough time was the time when the nitrogen outlet concentration exceeded 1 ppm.

【0041】実験の結果、窒素の破過時間は6.2時間
となった。また、6.0時間経過時の吸着筒出口におけ
る窒素及び酸素の濃度は、ともに検出限界の5ppb以
下であり、極めて低い濃度まで不純物ガスを除去してい
ることがわかった。また、2種類の不純物ガスが混在し
ていても、その両方を選択的に吸着除去できることがわ
かった。
As a result of the experiment, the breakthrough time of nitrogen was 6.2 hours. Further, the concentrations of nitrogen and oxygen at the outlet of the adsorption column after the lapse of 6.0 hours were both below the detection limit of 5 ppb, and it was found that the impurity gas was removed to an extremely low concentration. It was also found that even if two kinds of impurity gases are mixed, both of them can be selectively adsorbed and removed.

【0042】実施例14 実施例13で破過した剤を、吸着筒外部から350℃で
加熱再生した後、実施例13と同じ条件で破過実験を再
度行った。実験の結果、350℃で再生した後の吸着剤
の窒素破過時間は、6.2時間であり、実施例13の結
果と同じとなった。
Example 14 The agent which was breached in Example 13 was heated and regenerated from the outside of the adsorption column at 350 ° C., and then the breach test was conducted again under the same conditions as in Example 13. As a result of the experiment, the nitrogen breakthrough time of the adsorbent after being regenerated at 350 ° C. was 6.2 hours, which was the same as the result of Example 13.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
ガス中の微量不純物成分を選択的に吸着除去することが
できるので、不純物として除去されるべき微量の不純物
成分、例えば一酸化炭素、窒素、一酸化二窒素、酸素等
の単成分又はこれらの複数成分を同時に吸着除去するこ
とができ、これらの不純物成分を含む高純度のガス、例
えば、ヘリウム、ネオン、アルゴン、クリプトン、キセ
ノン等の希ガスをはじめとして、酸素、水素、二酸化炭
素、炭化水素ガス、炭化水素ガスの一部又は全部をハロ
ゲンで置換したガス、六フッ化硫黄等を極めて高い純度
で得ることができる。
As described above, according to the present invention,
Since trace impurities in gas can be selectively adsorbed and removed, trace impurities to be removed as impurities, for example, carbon monoxide, nitrogen, dinitrogen monoxide, oxygen, etc. It is possible to adsorb and remove the components at the same time, and a high-purity gas containing these impurity components, for example, rare gases such as helium, neon, argon, krypton, and xenon, as well as oxygen, hydrogen, carbon dioxide, and hydrocarbon gases It is possible to obtain a gas in which a part or all of the hydrocarbon gas is replaced with halogen, sulfur hexafluoride, or the like with an extremely high purity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のガス精製装置の一例を示す概略系統
図である。
FIG. 1 is a schematic system diagram showing an example of a gas purification apparatus of the present invention.

【図2】 実施例4での実験結果を示すCu−ZSM−
5及びCa−Xへの一酸化炭素と窒素との吸着等温線図
である。
FIG. 2 shows Cu—ZSM— showing the experimental results in Example 4.
5 is an adsorption isotherm diagram of carbon monoxide and nitrogen on Ca. 5 and Ca-X. FIG.

【図3】 実施例5での実験結果を示すCu−ZSM−
5への各ガスの吸着等温線図である。
FIG. 3 shows Cu—ZSM— showing the experimental results in Example 5.
5 is an adsorption isotherm diagram of each gas on FIG.

【図4】 実施例5での実験結果を示すCu−ZSM−
5への各ガスの吸着等温線図である。
FIG. 4 shows Cu-ZSM- showing experimental results in Example 5.
5 is an adsorption isotherm diagram of each gas on FIG.

【図5】 実施例7での実験結果を示す経過時間と吸着
筒出口窒素濃度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an elapsed time showing an experimental result in Example 7 and an adsorption cylinder outlet nitrogen concentration.

【符号の説明】 10a,10b…吸着筒、11,12…精製対象ガス用
配管、13,14…吸着剤再生ガス用配管、15…再生
ガス加熱器
[Explanation of reference numerals] 10a, 10b ... Adsorption cylinders, 11, 12 ... Pipes for purification target gas, 13, 14 ... Pipings for adsorbent regeneration gas, 15 ... Regeneration gas heater

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年10月15日(2002.10.
15)
[Submission date] October 15, 2002 (2002.10.
15)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【発明が解決しようとする課題】このように、従来の吸
着技術では、ガス中に微量に含まれる一酸化炭素、窒
素、一酸化二窒素、一酸化窒素、二酸化窒素、アンモニ
ア、三フッ化窒素、二酸化炭素、メタン、水素、酸素等
の不純物を同時に除去することが困難であり、特に、不
純物の除去のレベルをppmレベルの極微量とすること
ができないという問題があった。そこで本発明は、各種
ガス中に含まれる一酸化炭素、窒素、一酸化二窒素、一
酸化窒素、二酸化窒素、アンモニア、三フッ化窒素、二
酸化炭素、メタン、水素、酸素等の微量不純物を選択的
にppmレベル以下まで吸着除去して超高純度のガスを
得ることができる吸着剤を提供するとともに、この吸着
剤を使用したガス精製方法及び装置を提供することを目
的としている。
As described above, in the conventional adsorption technique, carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, which are contained in the gas in a trace amount, are used. However, it is difficult to remove impurities such as carbon dioxide, methane, hydrogen, and oxygen at the same time, and in particular, there is a problem in that the level of removing impurities cannot be set to an extremely small amount of ppm level . Therefore, the present invention selects trace impurities such as carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen contained in various gases. The object of the present invention is to provide an adsorbent that can be adsorbed and removed to a ppm level or less to obtain an ultrahigh-purity gas, and a gas purification method and apparatus using this adsorbent.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】Cu−ZSM−5における銅イオン交換率
は、それぞれのゼオライトのイオン交換可能な量の少な
くとも40%以上であるあることが好ましい。これは、
イオン交換された銅イオンが窒素及び一酸化炭素の特
異的吸着の要因となるからであり、銅イオン交換率が少
なすぎると特異的吸着性能が発現しなくなってしまう。
The copper ion exchange rate in Cu-ZSM-5 is preferably at least 40% or more of the ion exchangeable amount of each zeolite. this is,
This is because the ion-exchanged copper ions cause specific adsorption of nitrogen, carbon monoxide, etc. If the copper ion exchange rate is too low, specific adsorption performance will not be exhibited.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】さらに、図1の概略系統図に示すように、
前記吸着剤(Cu−ZSM−5)を充填した吸着筒10
a,10bを複数基設置するとともに、精製対象ガス用
配管11,12と吸着剤再生ガス用配管13,14とを
それぞれ接続し、これらの配管にそれぞれ設けた遮断弁
を所定の順序で開閉し、精製対象となるガスを相対的に
低い温度に保たれた吸着筒に導入する吸着工程と、再生
ガス加熱器15で加熱した再生ガスを吸着筒に流通させ
ながら相対的に高い温度で行う脱着工程とを複数の吸着
10a,10bで交互に繰り返すことにより、精製対
象ガス中の微量不純物を連続的に吸着除去することがで
きる。
Further, as shown in the schematic system diagram of FIG.
Adsorption cylinder 10 filled with the adsorbent (Cu-ZSM-5)
A plurality of a and 10b are installed, the purification target gas pipes 11 and 12 are connected to the adsorbent regeneration gas pipes 13 and 14, respectively, and the shutoff valves provided in these pipes are opened and closed in a predetermined order. An adsorption step of introducing a gas to be purified into an adsorption column kept at a relatively low temperature, and a desorption performed at a relatively high temperature while circulating the regeneration gas heated by the regeneration gas heater 15 through the adsorption column. step and a plurality of adsorption cylinder 10 a, by repeating alternately 10b, and trace impurities refined gas can be continuously adsorbed and removed.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】図3及び図4から明らかなように、Cu−
ZSM−5で吸着除去しようとする一酸化炭素、窒素、
一酸化二窒素及び酸素は、化学吸着的なラングミュア
吸着等温線を示している。一方、高純度に精製しようと
するアルゴン、クリプトン等の希ガス類やCF4は、物
理吸着を示す典型的なヘンリー型吸着等温線を示してお
り、これらのガスは、吸着剤表面とは特異的相互作用を
持たないことがわかる。これらのことから、Cu−ZS
M−5に対して物理吸着性を有するガス中に存在する化
学吸着性を有するガスを容易に除去できることがわか
る。
As is clear from FIGS. 3 and 4, Cu-
Carbon monoxide, nitrogen, which is to be adsorbed and removed by ZSM-5,
Nitrous oxide and oxygen are chemisorbed Langmuir type
The adsorption isotherm is shown. On the other hand, rare gases such as argon and krypton, which are to be purified to high purity, and CF4 show typical Henry-type adsorption isotherms showing physical adsorption, and these gases have a specific interaction with the adsorbent surface. It turns out that you don't have. From these things, Cu-ZS
It can be seen that the gas having the chemical adsorptivity present in the gas having the physical adsorptivity for M-5 can be easily removed.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】さらに、吸着等温線から、各ガスのCu−
ZSM−5への吸着力の強さ、即ち除去されやすさは、
一酸化炭素>酸素>>一酸化二窒素、窒素>二酸化炭
素、メタン、水素>>クリプトン、CF4、アルゴンと
推測され、同じ性質を示す二酸化炭素、炭化水素(メタ
ン)、水素は、Cu−ZSM−5を吸着剤として用いる
ことにより、これらのガス中から一酸化炭素、窒素、一
酸化二窒素及び酸素を除去することが可能であり、逆に
希ガス中からCu−ZSM−5を用いてこれらのガスを
吸着除去することも可能であることがわかる。
Furthermore, the adsorption isotherm or et of each gas Cu-
The strength of adsorption to ZSM-5, that is, the ease of removal is
It is presumed that carbon monoxide>oxygen> nitrous oxide, nitrogen> carbon dioxide, methane, hydrogen >> krypton, CF4, argon, and carbon dioxide, hydrocarbon (methane), and hydrogen showing the same properties are Cu-ZSM. By using -5 as an adsorbent, it is possible to remove carbon monoxide, nitrogen, nitrous oxide and oxygen from these gases, and conversely, using Cu-ZSM-5 from a rare gas. It is understood that these gases can be adsorbed and removed.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】実施例7破過したCu−ZSM−5の再生後の吸着能力を確認す
るための実験を行った。まず、 アルゴン中に微量窒素を
含んだガスを使用してCu−ZSM−5を一旦破過させ
た。すなわち、吸着筒として、内径20mm、長さ50
0mmのカラムを使用し、シリカ対アルミナ比19.
5、Cuイオン交換率120%のCu−ZSM−5を6
9.0g充填した。測定ガスとして、アルゴン中に窒素
512ppmを含むガスを使用し、これを25℃、0.
19MPa、3.0L/minで吸着筒に流し、吸着筒
出口における窒素の濃度変化を測定した。窒素濃度の測
定は放電発光分光法で行い、破過時間は、出口濃度が入
口濃度に対して5%に到達した時点とした。このときの
経過時間と吸着筒出口窒素濃度との関係を図5に示す。
Example 7 Confirmation of adsorption capacity after regeneration of breakthrough Cu-ZSM-5.
Experiments were carried out. First, once to breakthrough the Cu-ZSM-5 using a gas containing trace amounts of nitrogen in argon
It was That is, the suction cylinder has an inner diameter of 20 mm and a length of 50.
Using a 0 mm column, silica to alumina ratio of 19.
5, Cu-ZSM-5 having a Cu ion exchange rate of 120% is 6
Charged 9.0 g. As a measurement gas, a gas containing 512 ppm of nitrogen in argon was used, and this was measured at 25 ° C.
It was passed through an adsorption column at 19 MPa and 3.0 L / min, and the change in nitrogen concentration at the adsorption column outlet was measured. The nitrogen concentration was measured by discharge emission spectroscopy, and the breakthrough time was the time when the outlet concentration reached 5% of the inlet concentration. At this time
FIG. 5 shows the relationship between the elapsed time and the nitrogen concentration at the adsorption cylinder outlet .

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】次に、上記操作で破過した剤を用いて再生
実験を2度行った。すなわち、破過した剤を吸着筒外部
から350℃で加熱再生し、その後、上記操作の場合と
同じ条件で破過実験を2回繰り返した。実験の結果、3
50℃で再生した吸着剤の窒素破過時間は、再生1回目
が88分、再生2回目が90分であり、上記操作での結
果と略同じ時間となった。
Next, regeneration is carried out using the agent that has been broken through in the above operation.
The experiment was performed twice. That is, the breakthrough agent was heated and regenerated from outside the adsorption column at 350 ° C., and then the breakthrough experiment was repeated twice under the same conditions as in the above operation . Results of the experiment, 3
The nitrogen breakthrough time of the adsorbent regenerated at 50 ° C. was 88 minutes for the first regeneration and 90 minutes for the second regeneration, which was almost the same as the result of the above operation .

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】実施例 実験温度を40℃とした以外は実施例7と同じ条件で破
過実験を行った。実験の結果、窒素の破過時間は82分
であり、この剤の破過時間が実験温度には大きく影響さ
れないことがわかった。
Example8 Breakage was performed under the same conditions as in Example 7 except that the experimental temperature was 40 ° C.
Over-experiment was conducted. As a result of the experiment, the breakthrough time of nitrogen is 82 minutes.
The breakthrough time of this agent has a great influence on the experimental temperature.
I realized that

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】実施例 測定ガス中の窒素濃度を99ppm、流速を0.51L
/minとし、その他は実施例7と同じ条件で破過実験
を行った。実験の結果、窒素の破過時間は35.8時間
となった。
Example9 Nitrogen concentration in measurement gas is 99ppm, flow rate is 0.51L
/ Min, and the others under the same conditions as in Example 7
I went. As a result of the experiment, the breakthrough time of nitrogen is 35.8 hours.
Became.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】実施例10 クリプトン中に微量窒素を含んだガスを使用してCu−
ZSM−5の破過実験を行った。吸着筒には、内径20
mm、長さ500mmのカラムを使用し、シリカ対アル
ミナ比19.5、Cuイオン交換率120%のCu−Z
SM−5を87.4g充填した。 測定ガスとして、ク
リプトン中に窒素約79.8ppmを含むガスを使用
し、これを25℃、0.35MPa、1.1L/min
で吸着筒に流し、吸着筒出口における窒素の濃度変化を
測定した。窒素濃度の測定は放電発光分光法で行い、破
過時間は、出口濃度が入口濃度に対して2.5%に到達
した時点とした。実験の結果、窒素の破過時間は35.
1時間となった。
Example10 Cu-using a gas containing a small amount of nitrogen in krypton
A breakthrough experiment of ZSM-5 was performed. The suction cylinder has an inner diameter of 20
mm column, 500 mm long column
Cu-Z with a mina ratio of 19.5 and a Cu ion exchange rate of 120%
87.4 g of SM-5 was charged. As measurement gas,
Uses gas containing about 79.8 ppm nitrogen in Lipton
At 25 ° C, 0.35 MPa, 1.1 L / min
Flow through the adsorption column with
It was measured. Nitrogen concentration was measured by discharge emission spectroscopy and
Outlet concentration reaches 2.5% of inlet concentration over time
It was time to do. As a result of the experiment, the breakthrough time of nitrogen was 35.
It's been an hour.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】実施例11 アルゴン中に微量窒素を含んだガスを使用してCu−Z
SM−5の破過実験を行った。吸着筒には、内径20m
m、長さ500mmのカラムを使用し、シリカ対アルミ
ナ比19.5、Cuイオン交換率120%のCu−ZS
M−5を87.4g充填した。測定ガスとして、アルゴ
ン中に窒素512ppmを含むガスを使用し、これを2
5℃、0.15MPa、0.76L/minで吸着筒に
流し、吸着筒出口における窒素の濃度変化を測定した。
窒素濃度の測定はガスクロマトグラフ−質量分析計(G
C−MS)で行い、破過時間は、出口濃度が1ppmを
超えた時点とした。実験の結果、窒素の破過時間は7.
9時間となった。また、7.8時間経過時の出口窒素濃
度は、検出限界の5ppb以下であり、長時間極めて低
い濃度まで窒素を吸着除去していることがわかった。
Example11 Cu-Z using a gas containing a trace amount of nitrogen in argon
An SM-5 breakthrough experiment was performed. The suction cylinder has an inner diameter of 20 m.
m, length 500 mm column, silica to aluminum
Cu-ZS with a ratio of 19.5 and a Cu ion exchange rate of 120%
87.4 g of M-5 was charged. Argo as measurement gas
Use a gas containing 512 ppm of nitrogen in the
5 ° C, 0.15MPa, 0.76L / min for adsorption cylinder
Then, the concentration of nitrogen at the outlet of the adsorption column was measured.
The nitrogen concentration is measured by a gas chromatograph-mass spectrometer (G
C-MS) and the breakthrough time is 1 ppm at the outlet concentration.
The time was exceeded. As a result of the experiment, the breakthrough time of nitrogen was 7.
It's been 9 hours. Also, the outlet nitrogen concentration after 7.8 hours has elapsed
The detection limit is 5 ppb or less, which is extremely low for a long time.
It was found that nitrogen was absorbed and removed up to a certain concentration.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Correction target item name] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】実施例12 破過したCu−ZSM−5の再生後の吸着能力を確認す
るための実験を、 クリプトン中に微量の窒素及び酸素を
含んだガスを使用して行った。すなわち、クリプトン中
に微量の窒素及び酸素を含んだガスを使用してCu−Z
SM−5を一旦過させた。吸着筒として、内径20m
m、長さ500mmのカラムを使用し、シリカ対アルミ
ナ比19.5、Cuイオン交換率120%のCu−ZS
M−5を87.4g充填した。測定ガスとして、クリプ
トン中に窒素1442ppm及び酸素11ppmを含む
ガスを使用し、これを25℃、0.15MPa、0.3
5L/minで吸着筒に流し、吸着筒出口における窒素
の濃度変化を測定した。窒素濃度の測定はガスクロマト
グラフ−質量分析計(GC−MS)で行い、破過時間
は、窒素の出口濃度が1ppmを超えた時点とした。
Example 12 Confirmation of adsorption capacity after regeneration of breakthrough Cu-ZSM-5.
Experiments were carried out using gases containing trace amounts of nitrogen and oxygen in krypton . Ie in krypton
Cu-Z using a gas containing trace amounts of nitrogen and oxygen
The SM-5 was once broken umbrella. 20m inside diameter as suction cylinder
m-length 500 mm column, silica-alumina ratio 19.5, Cu ion exchange rate 120% Cu-ZS
87.4 g of M-5 was charged. As a measurement gas, a gas containing 1442 ppm of nitrogen and 11 ppm of oxygen in krypton was used, and this was used at 25 ° C., 0.15 MPa, 0.3
It was made to flow into the adsorption cylinder at 5 L / min, and the nitrogen concentration change at the adsorption cylinder outlet was measured. The nitrogen concentration was measured with a gas chromatograph-mass spectrometer (GC-MS), and the breakthrough time was the time when the nitrogen outlet concentration exceeded 1 ppm.

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0041[Correction target item name] 0041

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0041】この操作の結果、窒素の破過時間は6.2
時間となった。また、6.0時間経過時の吸着筒出口に
おける窒素及び酸素の濃度は、ともに検出限界の5pp
b以下であり、極めて低い濃度まで不純物ガスを除去し
ていることがわかった。また、2種類の不純物ガスが混
在していても、その両方を選択的に吸着除去できること
がわかった。
As a result of this operation , the breakthrough time of nitrogen is 6.2.
It's time. Further, the concentrations of nitrogen and oxygen at the adsorption cylinder outlet after the lapse of 6.0 hours are both 5 pp which is the detection limit.
It was found to be b or less, and it was found that the impurity gas was removed to an extremely low concentration. It was also found that even if two kinds of impurity gases are mixed, both of them can be selectively adsorbed and removed.

【手続補正15】[Procedure Amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0042】次に、上記操作により破過した剤を用いて
再生破過実験を1度行った。すなわち、破過した剤を、
吸着筒外部から350℃で加熱再生した後、上記操作の
場合と同じ条件で破過実験を行った。実験の結果、35
0℃で再生した後の吸着剤の窒素破過時間は、6.2時
間であり、上述の操作結果と同じとなった。
Next, using the agent which has been broken through by the above operation,
A regeneration breakthrough experiment was performed once. In other words ,
After heating and regenerating at 350 ° C from the outside of the adsorption column,
The breakthrough experiment was Tsu line under the same conditions as in the case. The result of the experiment, 35
The nitrogen breakthrough time of the adsorbent after regeneration at 0 ° C. was 6.2 hours, which was the same as the above operation result.

【手続補正16】[Procedure Amendment 16]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D012 BA02 CA20 CB16 CD01 CG01 4G066 AA61B AA62B BA50 CA27 CA28 CA29 CA32 CA35 CA37 CA38 CA51 DA05 FA22 FA34 FA37 GA06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D012 BA02 CA20 CB16 CD01 CG01                 4G066 AA61B AA62B BA50 CA27                       CA28 CA29 CA32 CA35 CA37                       CA38 CA51 DA05 FA22 FA34                       FA37 GA06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素、窒素、一酸化二窒素、一酸
化窒素、二酸化窒素、アンモニア、三フッ化窒素、二酸
化炭素、メタン、水素及び酸素の少なくとも1種を微量
不純物として含む精製対象ガス中の前記微量不純物を吸
着除去するための吸着剤であって、銅イオン交換したZ
SM−5型ゼオライトからなることを特徴とする吸着
剤。
1. A purification target gas containing at least one of carbon monoxide, nitrogen, nitrous oxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen as a trace impurity. Is an adsorbent for adsorbing and removing the trace amount of impurities in the copper ion-exchanged Z
An adsorbent characterized by comprising SM-5 type zeolite.
【請求項2】 前記ZSM−5型ゼオライトのシリカ対
アルミナ比が5〜50であることを特徴とする請求項1
記載の吸着剤。
2. The silica-to-alumina ratio of the ZSM-5 type zeolite is 5 to 50.
Adsorbent as described.
【請求項3】 前記ZSM−5型ゼオライトにおける銅
イオン交換可能量が40%以上であることを特徴とする
請求項1記載の吸着剤。
3. The adsorbent according to claim 1, wherein the amount of copper ion exchangeable in the ZSM-5 type zeolite is 40% or more.
【請求項4】 前記銅イオン交換したZSM−5型ゼオ
ライトの焼成温度が350℃以上であることを特徴とす
る請求項1記載の吸着剤。
4. The adsorbent according to claim 1, wherein the calcining temperature of the copper ion-exchanged ZSM-5 type zeolite is 350 ° C. or higher.
【請求項5】 前記精製対象ガスは、希ガス、酸素、水
素、二酸化炭素、炭化水素及び六フッ化硫黄の少なくと
もいずれか1種を主成分とするガスであることを特徴と
する請求項1記載の吸着剤。
5. The purification target gas is a gas containing at least one of rare gas, oxygen, hydrogen, carbon dioxide, hydrocarbon and sulfur hexafluoride as a main component. Adsorbent as described.
【請求項6】 一酸化炭素、窒素、一酸化二窒素、一酸
化窒素、二酸化窒素、アンモニア、三フッ化窒素、二酸
化炭素、メタン、水素及び酸素の少なくとも1種を微量
不純物として含む精製対象ガスを、銅イオン交換したZ
SM−5型ゼオライトからなる吸着剤に接触させて前記
微量不純物を前記精製対象ガス中から除去することを特
徴とするガス精製方法。
6. A purification target gas containing as trace impurities at least one of carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen. Is copper ion exchanged Z
A gas purification method, which comprises contacting an adsorbent made of SM-5 zeolite to remove the trace impurities from the gas to be purified.
【請求項7】 前記精製対象ガスと前記吸着剤との接触
を常温で行うことを特徴とする請求項6記載のガス精製
方法。
7. The gas purification method according to claim 6, wherein the gas to be purified and the adsorbent are contacted at room temperature.
【請求項8】 一酸化炭素、窒素、一酸化二窒素、一酸
化窒素、二酸化窒素、アンモニア、三フッ化窒素、二酸
化炭素、メタン、水素及び酸素の少なくとも1種を微量
不純物として含む精製対象ガスから該微量不純物を吸着
除去するためのガス精製装置であって、前記微量不純物
を吸着除去する吸着剤として銅イオン交換したZSM−
5型ゼオライトを充填した吸着筒を複数基設置するとと
もに、相対的に低い温度で行う吸着工程と、相対的に高
い温度で行う脱着工程とを前記複数の吸着筒で交互に繰
り返すことにより、前記精製対象ガス中の微量不純物を
連続的に吸着除去するように構成したことを特徴とする
ガス精製装置。
8. A purification target gas containing at least one of carbon monoxide, nitrogen, dinitrogen monoxide, nitric oxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen and oxygen as a trace impurity. A gas purifying apparatus for adsorbing and removing the trace impurities from ZSM-, which is copper ion-exchanged as an adsorbent for adsorbing and removing the trace impurities.
By installing a plurality of adsorption cylinders filled with type 5 zeolite and repeating alternately an adsorption step performed at a relatively low temperature and a desorption step performed at a relatively high temperature with the plurality of adsorption tubes, A gas refining apparatus which is configured to continuously adsorb and remove trace impurities in a gas to be refined.
JP2002117726A 2002-04-19 2002-04-19 Adsorbent Expired - Lifetime JP3693626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117726A JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117726A JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004246133A Division JP2005021891A (en) 2004-08-26 2004-08-26 Method and apparatus for gas refining

Publications (2)

Publication Number Publication Date
JP2003311148A true JP2003311148A (en) 2003-11-05
JP3693626B2 JP3693626B2 (en) 2005-09-07

Family

ID=29534836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117726A Expired - Lifetime JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Country Status (1)

Country Link
JP (1) JP3693626B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678343B1 (en) * 2000-02-14 2004-01-13 The United States Of America As Represented By The Secretary Of The Army Neutron spectrometer with titanium proton absorber
JP2006043604A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Gas adsorption material and heat-insulation body
WO2006118154A1 (en) 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. Adsorbent
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
KR100788301B1 (en) 2004-12-23 2007-12-27 주식회사 효성 Process for refining nitrogen trifluoride gas using zeolite 3A
JP2008023493A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Adsorbent material
JP2008064135A (en) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd Heat-insulating body
JP2008093632A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Adsorption material
WO2008108354A1 (en) * 2007-03-05 2008-09-12 Taiyo Nippon Sanso Corporation Absorbent for carbon monooxide, gas purification method, and gas purification apparatus
JP2008218359A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Gas discharge display panel
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
JP2009062295A (en) * 2007-09-05 2009-03-26 Air Water Inc Method for purifying perfluorocarbon gas and apparatus therefor
JP2009062294A (en) * 2007-09-05 2009-03-26 Air Water Inc Method for purifying perfluoro compound gas and apparatus therefor
JP2009090207A (en) * 2007-10-09 2009-04-30 Panasonic Corp Adsorbent material
JP2009093913A (en) * 2007-10-09 2009-04-30 Panasonic Corp Display device
JP2009165998A (en) * 2008-01-18 2009-07-30 Takasago Thermal Eng Co Ltd Filter material for cleaning high pressure gas of low dew point, and filter
JP2010051915A (en) * 2008-08-29 2010-03-11 Panasonic Corp Gas adsorbing material and device for adsorbing gas
JP2011224552A (en) * 2010-03-29 2011-11-10 Hokkaido Univ Treatment method and treatment apparatus for nitrous oxide containing-gas
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
JP2012222673A (en) * 2011-04-12 2012-11-12 Panasonic Corp Acoustic speaker apparatus
KR101203490B1 (en) 2011-11-29 2012-11-21 홍인화학 주식회사 A production method and production system for high purity hydrogen chloride
US8940084B2 (en) 2011-02-14 2015-01-27 Panasonic Corporation Gas adsorbing device and vacuum insulation panel provided with same
KR20160057342A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
WO2020172090A1 (en) * 2019-02-22 2020-08-27 Uop Llc Process for removing oxygen from a hydrogen stream
CN113811386A (en) * 2019-05-09 2021-12-17 日新电机株式会社 Adsorbent for insulating gas, gas-insulated electric power equipment, and method for producing adsorbent for insulating gas
WO2023123596A1 (en) * 2021-12-30 2023-07-06 大连科利德光电子材料有限公司 Oxygen adsorbent, preparation method and method for reducing oxygen content in nitrous oxide raw material gas
GB2617441A (en) * 2022-02-08 2023-10-11 Johnson Matthey Plc Exhaust gas treatment system for an ammonia-containing exhaust gas
CN117446804A (en) * 2023-12-26 2024-01-26 大连华邦化学有限公司 Carbon dioxide purification method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678343B1 (en) * 2000-02-14 2004-01-13 The United States Of America As Represented By The Secretary Of The Army Neutron spectrometer with titanium proton absorber
JP2006043604A (en) * 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd Gas adsorption material and heat-insulation body
KR100788301B1 (en) 2004-12-23 2007-12-27 주식회사 효성 Process for refining nitrogen trifluoride gas using zeolite 3A
WO2006118154A1 (en) 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. Adsorbent
JP2006305437A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Adsorbent material
US8158547B2 (en) 2005-04-27 2012-04-17 Panasonic Corporation Absorbent
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
CN101257960B (en) * 2005-09-09 2011-07-27 大阳日酸株式会社 Molded Cu-ZSM-5 zeolite adsorbent, method of activating the same, temperature swing type adsorption apparatus, and method of purifying gas
US7824474B2 (en) 2005-09-09 2010-11-02 Taiyo Nippon Sanso Corporation Molded Cu-ZSM5 zeolite adsorbent, method of activating the same, temperature swing adsorption apparatus, and method of purifying gas
KR100981149B1 (en) * 2005-09-09 2010-09-10 타이요 닛폰 산소 가부시키가이샤 MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
JP2008023493A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Adsorbent material
JP2008064135A (en) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd Heat-insulating body
JP2008093632A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Adsorption material
WO2008108354A1 (en) * 2007-03-05 2008-09-12 Taiyo Nippon Sanso Corporation Absorbent for carbon monooxide, gas purification method, and gas purification apparatus
JP2008218359A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Gas discharge display panel
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
JP2009062294A (en) * 2007-09-05 2009-03-26 Air Water Inc Method for purifying perfluoro compound gas and apparatus therefor
JP2009062295A (en) * 2007-09-05 2009-03-26 Air Water Inc Method for purifying perfluorocarbon gas and apparatus therefor
JP2009090207A (en) * 2007-10-09 2009-04-30 Panasonic Corp Adsorbent material
JP2009093913A (en) * 2007-10-09 2009-04-30 Panasonic Corp Display device
JP2009165998A (en) * 2008-01-18 2009-07-30 Takasago Thermal Eng Co Ltd Filter material for cleaning high pressure gas of low dew point, and filter
JP2010051915A (en) * 2008-08-29 2010-03-11 Panasonic Corp Gas adsorbing material and device for adsorbing gas
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
US8591634B2 (en) 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
JP2011224552A (en) * 2010-03-29 2011-11-10 Hokkaido Univ Treatment method and treatment apparatus for nitrous oxide containing-gas
US8940084B2 (en) 2011-02-14 2015-01-27 Panasonic Corporation Gas adsorbing device and vacuum insulation panel provided with same
JP2012222673A (en) * 2011-04-12 2012-11-12 Panasonic Corp Acoustic speaker apparatus
KR101203490B1 (en) 2011-11-29 2012-11-21 홍인화학 주식회사 A production method and production system for high purity hydrogen chloride
KR20160057342A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
KR102478450B1 (en) * 2014-11-13 2022-12-19 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same
WO2020172090A1 (en) * 2019-02-22 2020-08-27 Uop Llc Process for removing oxygen from a hydrogen stream
CN113811386A (en) * 2019-05-09 2021-12-17 日新电机株式会社 Adsorbent for insulating gas, gas-insulated electric power equipment, and method for producing adsorbent for insulating gas
WO2023123596A1 (en) * 2021-12-30 2023-07-06 大连科利德光电子材料有限公司 Oxygen adsorbent, preparation method and method for reducing oxygen content in nitrous oxide raw material gas
GB2617441A (en) * 2022-02-08 2023-10-11 Johnson Matthey Plc Exhaust gas treatment system for an ammonia-containing exhaust gas
CN117446804A (en) * 2023-12-26 2024-01-26 大连华邦化学有限公司 Carbon dioxide purification method
CN117446804B (en) * 2023-12-26 2024-03-22 大连华邦化学有限公司 Carbon dioxide purification method

Also Published As

Publication number Publication date
JP3693626B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3693626B2 (en) Adsorbent
KR100300918B1 (en) Gas Purification Method and Apparatus
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
JP2003246606A (en) Syngas purifying method
JP2010533063A5 (en)
JPH11226335A (en) Method for refining inert fluid by adsorption on lsx zeolite
KR102199235B1 (en) Adsorption process for xenon recovery
JPH11235513A (en) Method of refinning air by allowing carbon dioxide and water impurity to be adsorbed on sintered alumina
JPH11290635A (en) Removal of carbon dioxide from gas flow
WO2007029807A1 (en) MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
TWI282748B (en) Gas purification method and apparatus thereof
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP2005021891A (en) Method and apparatus for gas refining
JPH10137530A (en) Removal of o2/co from inert gas by adsorption to porous metal oxide
JP4174298B2 (en) Gas purification method and apparatus
JP7431168B2 (en) Methods for decarboxylation of gas streams
JP2008136935A (en) Selective treatment method of trifluoromethane, treatment unit and sample treatment system using it
JP5684898B2 (en) Gas purification method
EP4227263A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP4256216B2 (en) Gas processing apparatus and gas processing method
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPH04363109A (en) Method for concentrating gaseous chlorine
JPH0781916A (en) Silane treated activated carbon
JPH07330316A (en) Purification of nitrogen trifluoride gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Ref document number: 3693626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term