WO2000023539A1 - Element optique a cristal liquide et procede de preparation associe - Google Patents

Element optique a cristal liquide et procede de preparation associe Download PDF

Info

Publication number
WO2000023539A1
WO2000023539A1 PCT/JP1999/005765 JP9905765W WO0023539A1 WO 2000023539 A1 WO2000023539 A1 WO 2000023539A1 JP 9905765 W JP9905765 W JP 9905765W WO 0023539 A1 WO0023539 A1 WO 0023539A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical element
crystal optical
voltage
curable compound
Prior art date
Application number
PCT/JP1999/005765
Other languages
English (en)
French (fr)
Inventor
Satoshi Niiyama
Shinya Tahara
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29862098A external-priority patent/JP2000119655A/ja
Priority claimed from JP29862498A external-priority patent/JP4352480B2/ja
Priority claimed from JP29862198A external-priority patent/JP2000119654A/ja
Priority to US09/807,425 priority Critical patent/US6723393B1/en
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to EP99947972A priority patent/EP1154006B1/en
Priority to DE69932358T priority patent/DE69932358T2/de
Publication of WO2000023539A1 publication Critical patent/WO2000023539A1/ja
Priority to US10/780,643 priority patent/US7011870B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state

Definitions

  • the present invention relates to controlling the transmission, scattering, and reflection states of an element by applying an electric field and not applying Z.
  • the present invention relates to a liquid crystal optical element that can be used for a light control element, a display element, an optical shutter, and the like.
  • BACKGROUND ART A transmission-scattering optical element has been proposed in which a liquid crystal and a transparent polymer are combined to produce a difference in refractive index between the polymer and the liquid crystal or between the liquid crystals (between minute regions). They are called liquid crystal Z polymer composite elements, liquid crystal resin composite elements, or dispersion type liquid crystal elements. Since this device does not require a polarizing plate in principle, it has a great advantage that light absorption loss is small, high scattering performance is obtained, and light use efficiency in the entire device is high.
  • Example 1 U S P 5 188 760
  • an element using a liquid crystal and a polymerizable liquid crystal was disclosed.
  • the liquid crystal in the device and the superimposed liquid crystal have the same alignment direction when no voltage is applied, so that the device exhibits a transparent state when viewed from any direction.
  • the orientation of the liquid crystal in the device is controlled by the electric field, and the orientation of the liquid crystal molecules changes in a small area in various ways, so that the device exhibits a scattering state.
  • the contrast ratio was improved by providing a helical structure in the initial orientation by adding a chiral agent.
  • This device is called “anisotropic gel” or “liquid crystal gel”.
  • a mesogen having an acryloyl group Monomer was used.
  • a device having a similar configuration was also disclosed in Conventional Example 2 (International Patent Publication W092Z19695).
  • Conventional Example 2 International Patent Publication W092Z19695.
  • a small amount of polymer is dispersed in chiral nematic liquid crystal to obtain a transparent state when no voltage is applied and a scattering state when voltage is applied.
  • This device is called PSC (Polymer-Saturated-Billed-Cholesteric 'Texture).
  • This Conventional Example 2 also discloses a mesogenic monomer having an acryloyl group at the terminal.
  • a liquid crystal optical element obtained by preparing a mixture of liquid crystal and an uncured curable compound and curing the curable compound to form a liquid crystal non-cured compound composite layer has characteristics of the liquid crystal cured material. It largely depends on the structure of the complex. Furthermore, the molecular structure of the uncured curable compound used has a great effect on the structure of the formed liquid crystal cured product composite.
  • curable compounds containing a mesogenic structure such as a biphenyl structure have been reported to have a high elastic modulus after curing at the cured sites at both ends and a high glass transition temperature of the resulting polymer. ing.
  • the cured product formed by using these compounds alone had properties due to the molecular structure. That is, in the device disclosed in Conventional Example 1, since the use of a monomer having a liquid crystallinity is an essential requirement, the uncured curable compound has a highly crystalline and rigid mesogen structure as shown in the formula (2). In addition, in the compound of the formula (3) used in the conventional example (2), the distance between the mesogen structure and the cured site (in this case, an acryloyl group) is short, so that the molecular weight between crosslinking points is small. Thus, the obtained cured product becomes hard and brittle. In addition, since the motility of the uncured part is significantly impaired during curing, a considerably long curing time is required for sufficient curing.
  • the voltage transmittance curve of the element is changed by driving the electric field a plurality of times, and the contrast when the electric field is not applied Z is still low.
  • the physical properties of the resin, which is the cured product of the liquid crystal cured product composite layer are involved in the electro-optical properties of the liquid crystal optical element. In a drive voltage range that is extremely low, a sufficient contrast ratio may not be obtained in a change in transmittance or a change in reflectance without applying voltage Z.
  • Conventional Example 1 includes adding a chiral agent to the mixture, A helical structure is introduced into the orientation of the curable compound after curing, and in Conventional Example 2, the helical pitch is adjusted to 0.5 to 4 mm by adding a chiral agent.
  • the addition of the chiral agent may cause problems such as an increase in the driving voltage of the device and a decrease in the transmittance of the device when it is transparent.
  • a large amount of chiral agent is used when injecting a mixture of liquid crystal and uncured curable compound into a liquid crystal cell, or when sandwiching between substrates with transparent electrodes, for example, between resin film substrates with electrodes. Then, there is a problem that uneven injection and narrow holding are likely to occur.
  • the present invention provides a highly reliable, high-contrast liquid crystal optical element in which the voltage transmissivity curve of the element hardly changes even when the electric field is not applied multiple times.
  • the present invention provides a manufacturing method capable of easily and stably manufacturing a liquid crystal optical element with a high yield.
  • -Also for example, to provide a liquid crystal optical element which can be manufactured in a short curing time and has a high contrast ratio even at a low driving voltage.
  • the present invention provides a liquid crystal optical element that minimizes the addition of a chiral agent and that can exhibit a high contrast ratio in transmittance characteristics obtained when no voltage is applied and that does not increase the driving voltage as much as possible.
  • the present invention provides a liquid crystal device in which a mixture of liquid crystal and an uncured curable compound is sandwiched between a pair of substrates with electrodes, at least one substrate with electrodes is transparent, and the curable compound is cured.
  • A,, A 2 each independently acryloyl, methacryloyl, glycidyl
  • R,, R 2 each independently an alkylene group having 2 to 6 carbon atoms
  • n, m each independently an integer from 1 to 10
  • Z is a 4,4′-biphenylene group, or part or all of hydrogen is substituted with an alkyl or halogen atom having 1 to 2 carbon atoms. And 4,4'-biphenylene groups.
  • Ri and R 2 are each independently an ethylene group or a propylene group. Further, in one embodiment of the present invention, there is provided a production method wherein A and A 2 are each independently an acryloyl group or a methacryloyl group.
  • n and m are each independently 1 to 4.
  • a method for producing a liquid crystal optical element wherein the curable compound contains two kinds of curable compounds having different molecular weights by at least two times.
  • three or more compounds having different molecular weights can be used, and among them, at least two compounds may satisfy the above conditions.
  • a method for producing a liquid crystal optical element wherein the curable compound contains both a curable compound having a mesogen structure in a molecule and a curable compound not having a mesogen structure in a molecule. I do.
  • a chiral agent is contained in the mixture, and the helical pitch of the spiral agent is 4 / m or more and 3 times or less the electrode gap.
  • the present invention provides a liquid crystal optical element manufactured by using the above manufacturing method.
  • FIG. 3 is a schematic view showing an example of use of the liquid crystal optical element of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a mesogen structure part in an uncured curable compound and a cured part By introducing an oxyalkylene structure with high molecular mobility between them, the molecular mobility of the cured part in the curing process is improved, and the state when an electric field is applied / not applied is stable even during a short curing reaction Thus, a liquid crystal optical element having high reliability and high contrast can be obtained.
  • FIG. 1 shows a flowchart of an example of the method for manufacturing a liquid crystal optical element of the present invention.
  • the curing site (A t , A 2 ) in the formula (1) may be any of the above functional groups that can be generally photo-cured and heat-cured together with a curing catalyst. Among them, the curing temperature is controlled. An acryloyl group and a methacryloyl group, which are suitable for photocuring, are preferable because they can be used.
  • the number of carbon atoms of and 2 in the oxyalkylene moiety of the formula (1) is preferably 2 to 6 in view of its mobility, and more preferably a chain of an ethylene group having 2 carbon atoms and a propylene group having 3 carbon atoms.
  • divalent polyphenylene in which two or more 1,4-phenylene groups are linked is preferable.
  • the polyphenylene group may be a divalent organic group in which a part of the 1,4-phenylene group is substituted with a 1,4-cyclohexylene group.
  • Z is a biphenylene group in which two 1,4-phenylene groups are linked (hereinafter, referred to as 4,4'-biphenylene group), a diphenylene group in which three linking groups are formed, Is a divalent organic group in which 1 to 4 hydrogen atoms are substituted with an alkyl group having 1 to 2 carbon atoms, a fluorine atom, a chlorine atom or a carboxyl group.
  • Z is an unsubstituted 4,4 * -biphenylene group.
  • n and m in the formula (1) are each independently 1 to 10, and 1 to 4 are more preferable in consideration of the device characteristics after curing.
  • the uncured curable compound By allowing the uncured curable compound to contain two types of curable compounds whose molecular weights differ by more than twice, the curing process and the molecules between the crosslinking points of the cured resin The amount can be varied. Alternatively, the crystallinity of the resin can be controlled. Because of these, the curability in the curing process can be improved, and the viscosity of the cured resin can be adjusted, so that a liquid crystal optical element that can exhibit high contrast even at a low driving voltage can be obtained.
  • the uncured curable compound does not include the curable compound containing a mesogen structure in the molecule. It is preferable that the compound and the compound are both contained. This is because the mesogen structure part improves the compatibility with the liquid crystal at the time of uncuring, while unnecessarily increasing the elastic modulus of the cured resin.
  • the two uncured curable compounds contained can be bonded to each other, which causes phase separation between the resins in the resin formed by curing, increasing the haze during transmission or reflection. It is preferable because it does not occur.
  • a curable compound having a relatively large molecular weight as the uncured curable compound. .
  • a curable compound having a molecular weight of 1000 or more is preferable.
  • the mixture of the liquid crystal and the uncured curable compound may contain a curing catalyst, and in the case of photocuring, the initiation of photopolymerization generally used for photocurable resins such as benzoin ether, acetophenone, and phosphine oxide Agents can be used.
  • curing catalysts such as peroxides, thiols, amines, and acid anhydrides can be used according to the type of curing site, and curing aids such as amines can be used as necessary. it can.
  • the content of the curing catalyst is preferably 20% by weight or less of the uncured curable compound contained. If a high molecular weight or a high specific resistance of the cured product after curing is required, it should be 1 to 10% by weight. More preferably,
  • a chiral agent can be added to a mixture of the liquid crystal and the uncured curable compound in order to improve the contrast of the device when no electric field is applied. If the helical pitch induced by this is too small, the drive voltage will increase, and if it is too large, sufficient contrast will not be obtained, so it is 4 m or more and 3 times or less the electrode gap. It is preferable that -If the helical pitch is smaller than 4 m, problems such as a decrease in transmittance when no voltage is applied and an increase in drive voltage will occur.
  • the helical pitch is larger than three times the gap between the pair of electrodes sandwiching the liquid crystal resin composite, the transmittance when applying a voltage is high, and the contrast ratio in the transmittance when no voltage is applied is reduced. Furthermore, by making the helical pitch larger than 5 / m and twice or less the electrode gap, it becomes possible to adjust the balance between low driving voltage and high contrast.
  • the uncured curable compound in the mixture of the liquid crystal and the uncured curable compound is used to improve the compatibility with the liquid crystal to obtain a plurality of uncured curable compounds having different n and m in the formula (1). Objects, which can further improve the contrast.
  • the mixture of the liquid crystal and the uncured curable compound is preferably a homogeneous solution after mixing. Further, the mixture of the liquid crystal and the uncured curable compound may exhibit a liquid crystal phase when sandwiched between the electrodes.
  • the mixture of the liquid crystal and the uncured curable compound may exhibit a liquid crystal phase when cured.
  • the combination of the orientation directions of the pair of orientation-treated substrates may be any of parallel and orthogonal, and the angle may be set so as to minimize unevenness when the mixture is sandwiched.
  • the distance can be kept at a certain level, and the interval is preferably 4 to 50 m, more preferably 5 to 30 m. If the electrode spacing is too small, the contrast will decrease, and if it is too large, the driving voltage will increase.
  • FIG. 2 shows a schematic cross-sectional view of the liquid crystal optical element of the present invention.
  • FIG. 3 schematically shows a state in which the liquid crystal optical element of the present invention is used for a window glass of an automobile. It has the advantage of high transmittance in oblique directions.
  • the substrate supporting the electrodes may be a glass substrate or a resin substrate, or a combination of a glass substrate and a resin substrate.
  • One may be a reflective electrode of aluminum or a dielectric multilayer film.
  • a substrate with electrodes supplied continuously is sandwiched between two rubber rolls, etc., and a mixture of a liquid crystal containing a dispersed spacer and an uncured curable compound is supplied and sandwiched between them.
  • High productivity because it can be cured continuously thereafter.
  • a small amount of spacer is sprayed on the surface of the electrode, and the four sides of the opposing substrate are sealed with epoxy or other sealing material to form a sealing cell.
  • One is immersed in a mixture of liquid crystal and an uncured curable compound, and the other is sucked from the other to fill the mixture in the cell and cure to obtain a liquid crystal optical element.
  • a vacuum injection method can be used.
  • a t , A 2 is an acryloyl group
  • R 2 is an ethylene group
  • the mesogen structure of Z is a 4,4′-biphenylene group
  • n This corresponds to the case where both m are 1.
  • a pair of substrates obtained by rubbing the mixture A in one direction with a polyimide thin film formed on a transparent electrode is opposed to each other so that the rubbing directions are orthogonal to each other, and a small amount of resin beads having a diameter of 13 / zm is sprayed.
  • the mixture was injected through a fat bead into a liquid crystal cell produced by laminating epoxy resins printed on the four sides with a width of about lmm.
  • the compound of the formula (3) is a compound of the formula (1) wherein A 2 is an acryloyl group, the mesogen structure of Z is a 4,4′-biphenylene group, and both n and m are 0. Hit.
  • Example 2 A voltage was applied to this liquid crystal optical element as in Example 1. After that, the transmittance was measured using the same measurement system as in Example 1. The transmittance was 72% without voltage applied, and 29% with 50V rms applied. The difference between the transmittance when no voltage was applied and when no voltage was applied was That was 43%.
  • a mixture (mixture B) was prepared by dissolving 2.5 wt% of a chiral agent (mixture of S-811 manufactured by Merck and C15 manufactured by Merck at a weight ratio of 1: 1) to the mixture A prepared in Example 1.
  • This mixture B was injected into the same liquid crystal cell as in Example 1 and held at ⁇ 25.HgXe lamp with the same main wavelength of about 365 nm was used as in Example 1 and 3 mWZcm 2 from above and the same C from below. Irradiation with ultraviolet light of about 3 mWZcm 2 was performed for 3 minutes to obtain a liquid crystal optical element.
  • a liquid crystal optical element was obtained in the same manner as in Example 2, except that the uncured curable compound represented by the formula (5) was used instead of the compound represented by the formula (4).
  • a 2 is an acryloyl group
  • R 2 is a propylene group
  • the mesogen structure of Z is a 4,4′-biphenylene group
  • n This is equivalent to a case where m is 1.
  • a liquid crystal optical element was obtained in the same manner as in Example 2, except that the compound of the formula (3) was used instead of the compound of the formula (4) as the uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 2, the transmittance was measured using the same measurement system. The transmittance was 61% without the voltage applied, and the transmittance when this value was applied at 50 V rms was applied. The value of the contrast divided by the ratio was 17. (Example 4).
  • This mixture C was injected into the same liquid crystal cell as in Example 1 and kept at 25 ° C, and the same main wavelength as in Example 1 was measured using an HgX e lamp with a wavelength of about 365 nm, and SmWZcm 2 from the upper side and about the same from the lower side. Irradiation with ultraviolet light of 3 mWZcm 2 was performed for 30 minutes to obtain a liquid crystal optical element.
  • Example 2 The chiral agent used in Example 2 2.5 wt% uniformly dissolved in a cyano nematic liquid crystal (BL-009 manufactured by Merck) 97 parts, uncured curable compound of formula (4) 2 Part, 1 part of the uncured curable compound of formula (6),
  • a t and A 2 are acryloyl groups, and R This corresponds to the case where 2 is an ethylene group, the mesogenic structure of Z is 4, 4'-biphenylene group, and n and m are 3.
  • This mixture D was injected into the same liquid crystal cell as in Example 1 and held at 25.With the same HgXe lamp with a dominant wavelength of about 365 nm as in Example 1, 3 mWZcm- 2 from the upper side and about 3 mWZ from the lower side Irradiation with UV light of cm 2 was performed for 30 minutes to obtain a liquid crystal optical element.
  • the operation of applying a rectangular wave of 50 Hz and a voltage of 20 V rms to the liquid crystal optical element for 10 minutes and then removing the voltage was repeated 10 times.
  • the transmittance was measured by a transmittance measurement system similar to the above using a measurement light source having a half-width of about 20 nm with a center wavelength of 530 nm, and it was 82% when no voltage was applied.
  • the contrast value obtained by dividing the value by the transmittance when 20 V rms was applied was 28.
  • a liquid crystal optical element was obtained in the same manner as in Example 4, except that the compound of the formula (3) was used instead of the compound of the formula (4) as the uncured curable compound.
  • the operation of applying a rectangular wave of 50 Hz and a voltage of 20 V rms to the liquid crystal optical element for 10 minutes and then removing the voltage was repeated 10 times.
  • the transmittance was measured by a transmittance measurement system similar to the above using a measurement light source with a half-width of about 20 nm centered at 530 nm, and found to be 57% with no voltage applied.
  • the contrast value obtained by dividing the value by the transmittance when 20 V rms was applied was 10.
  • a liquid crystal optical element was obtained in the same manner as in Example 6, except that the compound of the formula (3) was used as the uncured curable compound instead of the compound of the formula (4). After applying a voltage to this liquid crystal optical element in the same manner as in Example 5, the reflectance was measured using the same measurement system. The result was 16% when no voltage was applied and 9% when 50 V rms was applied. The difference in reflectance between the time and the non-application was 7%.
  • This mixture F is printed with a width of about lmm on each side via a small amount of 6 / m resin beads so that a pair of substrates with a polyimide thin film for vertical alignment formed on a transparent electrode is opposed to the polyimide thin film. It was injected into a liquid crystal cell fabricated by bonding with the epoxy resin.
  • the liquid crystal optical element was irradiated with ultraviolet rays of 3 mWZcm 2 from the upper side and about 3 mW / cm 2 from the lower side for 10 minutes by an HgXe lamp with a main wavelength of about 365 nm. Obtained.
  • a liquid crystal optical element was obtained in the same manner as in Example 7, except that the compound of the formula (3) was used as the uncured curable compound instead of the compound of the formula (4). After applying a voltage to this liquid crystal optical element in the same manner as in Example 7, the transmittance was measured using the same measurement system. The result was 64% when no voltage was applied and 20% when 30 V rms was applied. The difference in transmittance between the time and the time when no voltage was applied was 44%. Table 1 below summarizes the results of each example.
  • Example 8-Cyanonic nematic liquid crystal (Merck BL-009) 94.6 parts, Kyral (Merck S-1511 and Merck C15 1: 1 by weight) 2.
  • curable compound of the formula (4) having a molecular weight of 382 2.5 parts, urethane acrylate oligomer having a molecular weight of 1500 or more (EB-270 manufactured by UCB) 0.5 part, benzoin isopropyl ether 0.09
  • a part of the mixture (mixture A) was prepared.
  • a pair of substrates obtained by rubbing the mixture A in one direction with a polyimide thin film formed on a transparent electrode are opposed to each other so that the rubbing directions are orthogonal to each other. It was injected into a liquid crystal cell produced by laminating with epoxy resin printed at lmm.
  • the dominant wavelength is about 365: 1111?
  • Ultraviolet rays of 3 mW / cm 2 from the upper side and about 3 mWZ cm 2 from the lower side were irradiated with 186 lamps for 10 minutes to obtain a liquid crystal optical element.
  • a liquid crystal optical element was obtained in the same manner as in Example 8, except that only the compound of the formula (4) was used as the uncured curable compound. After applying a voltage to this liquid crystal optical element in the same manner as in Example 8, the transmittance was measured using the same measurement system.83% without the voltage was applied, and this value was divided by the transmittance when 20 V rms was applied. The contrast ratio value was 1 1
  • Example 10 The mixture A prepared in Example 8 was injected into the same liquid crystal cell as in Example 8, and the mixture was held at 25. The mixture was irradiated with ultraviolet rays for 3 minutes in the same manner as in Example 8 to obtain a liquid crystal optical element.
  • the transmittance was measured by a transmittance measurement system (F-number of optical system: 11.5) using a measurement light source with a half-width of about 20 nm centered at 530 nm.
  • the contrast ratio which was 79%, divided by the transmittance when 20 V rms was applied, was 43.
  • a liquid crystal optical element was obtained in the same manner as in Example 10, except that only the compound of the formula (4) was used as the uncured curable compound.
  • a chiral agent (a mixture of S-8111 manufactured by Merck and C15 manufactured by Merck in a weight ratio of 1: 1; hereinafter, chiral agent A) was prepared by uniformly dissolving 3.5 parts in 100 parts of mixture A. (Mixture H). Then, when the pitch was measured by injecting it into a wedge cell for helical pitch measurement, the helical pitch was 5.1 m. A pair of substrates, in which the mixture H is rubbed in one direction with a polyimide thin film formed on a transparent electrode, are opposed to each other so that the rubbing directions are orthogonal to each other. It was injected into a liquid crystal cell produced by laminating with an epoxy resin printed at about 1 mm.
  • the cell being maintained at 25, the main wavelength of about 365 nm of HgXe lamp, 3MWZcm 2 than the upper, the same about 3 mWZ cm 2 ultraviolet than the lower irradiation for 10 minutes to form a liquid crystal optical element .
  • the operation of applying a rectangular wave of 50 Hz and 50 Vrms to the liquid crystal optical element for 10 minutes and then removing the voltage was repeated 10 times.
  • the transmittance was measured using a transmittance measurement system (F-number of optical system: 11.5) using a measurement light source with a half-width of about 20 nm centered at 530 nm. %, And this value was divided by the transmittance when 50 V rms was applied_, and the value of the contrast ratio was 23.
  • a mixture was prepared by uniformly dissolving 1.5 parts of the chiral agent A of Example 12 in 100 parts of the mixture A of Example 12 (mixture I).
  • the pitch was measured by injecting into a wedge cell for helical pitch measurement, and the helical pitch was 10.8 wm.
  • This mixture I was injected into a liquid crystal cell having the same structure as that used in Example 12, and similarly irradiated with ultraviolet light at 25 to cure the uncured curable compound to form a liquid crystal optical element.
  • Example 12 Without adding a chiral agent to mixture A of Example 12, the mixture was injected into a liquid crystal cell having the same structure as that used in Example 12, and irradiated with ultraviolet rays at 25 X: in the same manner to cure the uncured curable compound. A liquid crystal optical element was obtained. ,
  • the mixture A when injected into the cell, apparently exhibits a helical pitch about four times the distance between the electrodes of the cell.
  • a voltage of 50 Hz, 50 V rms square wave is applied to this liquid crystal optical element for 10 minutes. The operation of removing was repeated 10 times.
  • the transmittance was measured using the same transmittance measurement system as in Example 1-2. As a result, the contrast ratio was 79% with no voltage applied, and this value was divided by the transmittance when 50 V rms was applied. 2 and V 50 was 18.
  • This mixture J was injected into a liquid crystal cell having the same constitution as that used in Example 12, and similarly irradiated with ultraviolet rays at 25 ° C. to cure the uncured curable compound to form a liquid crystal optical element.
  • Example 1 100 parts of mixture A of 2 and 2 parts of chiral agent (mixture of chiral agent B) (1: 1 weight ratio of R-811 from Merck and CB15 from Merck, hereinafter referred to as chiral agent B)
  • chiral agent B 1: 1 weight ratio of R-811 from Merck and CB15 from Merck, hereinafter referred to as chiral agent B
  • a mixture was prepared by disassembling (mixture).
  • the pitch was measured by pouring into a wedge cell for helical pitch measurement, the helical pitch was 5.7 im.
  • This mixture K was injected into a liquid crystal cell having the same configuration as that used in Example 12, and irradiated with ultraviolet light for 1 minute at 25 ° C in the same manner as in Example 12 to cure the uncured curable compound.
  • a liquid crystal optical element was formed.
  • a mixture was prepared by uniformly dissolving 0.5 part of the chiral agent B of Example 16 in 100 parts of the mixture A of Example 12 (mixed). As in Example 12, the pitch was measured by injecting it into a wedge cell for helical pitch measurement, and the helical pitch was 21 m.
  • This mixture L was injected into a liquid crystal cell similar to that used in Example 12, and irradiated with ultraviolet rays in 25 in the same manner as in Example 16 to cure the uncured curable compound to obtain a liquid crystal optical element.
  • the chiral agent was not added to the mixture A of Example 12, and the mixture was injected into a liquid crystal cell having the same structure as that used in Example 12, and irradiated with ultraviolet rays at 25 to cure the uncured curable compound as in Example 16. Thus, a liquid crystal optical element was obtained.
  • liquid crystal cell is a cell in which the orientation directions are orthogonal to each other, when the mixture A is injected into the cell, it apparently exhibits a helical pitch about four times the distance between the electrodes of the cell.
  • a mixture was prepared by uniformly dissolving 100 parts of the mixture A of Example 12 and 4 parts of the chiral agent B of Example 16 (Mixture M). Helical pitch measurement as in Example 12 The helical pitch was 3.0 mm when injected into a wedge cell and measured for pitch.
  • This mixture was injected into a liquid crystal cell similar to that used in Example 12 and irradiated with ultraviolet rays at 25 ° C. in the same manner as in Example 16 to cure the uncured curable compound, thereby forming a liquid crystal optical element. Formed.
  • the operation of applying a rectangular wave of 50 Hz and a voltage of 50 V rms to the liquid crystal optical element for 10 minutes and then removing the voltage was repeated 10 times. After that, when the transmittance was measured by the same transmittance measurement system as in Example 12, the value of the contrast was 79% without voltage applied, and this value was divided by the transmittance when 50 V rms was applied. 2 5 and V 5 . Was 28 V rms.
  • the liquid crystal optical element of the present invention has a high transmittance when it is transparent, and has a high transmittance difference and a high contrast when an electric field is not applied. It is suitable for a light control glass and a light shirt.
  • the curable compound contains two kinds of curable compounds having molecular weights different from each other by a factor of two or more, the curability of the curable compound used is high, so that the transmittance and the reflectance when no electric field is applied are applied.
  • a liquid crystal optical element having a high contrast can be manufactured in a short curing time, so that the productivity is high.
  • the mixture is made to contain a chiral agent, and the helical pitch of the chiral agent is set to 4 m or more and 3 times or less of the electrode gap to operate at a low driving voltage.
  • the helical pitch of the chiral agent is set to 4 m or more and 3 times or less of the electrode gap to operate at a low driving voltage.
  • liquid crystal optical element is suitable for high-quality dimming glass, optical shirts, etc. because the element has a high transmittance when it is transparent and can reduce unevenness in the transparency caused by the injection step and the holding step. Can be provided.
  • the contrast ratio can be greatly improved at a low voltage without greatly increasing the driving voltage, it can be used for a display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Description

明細書 - 液晶光学素子およびその製造方法 技術分野 本発明は、 電界の印加 Z非印加により、 素子の透過、 散乱、 反射状態を制御し
、 調光素子や表示素子、 光学シャッター等に利用可能な液晶光学素子に関する。 背景技術 液晶と透明な高分子とを複合して、 高分子と液晶、 または液晶内部 (微小領域 間) の屈折率差を生じせしめた透過一散乱型の光学素子が提案された。 液晶 Z高 分子複合体素子、 液晶 樹脂複合体素子あるいは分散型液晶素子などと呼ばれて いる。 この素子は原理的に偏光板を必要としないので、 光の吸収損失が少なく、 かつ高い散乱性能が得られ、 素子全体における光の利用効率が高いことが大きな 利点となっている。
この特性を生かして、 調光ガラス、 光シャツ夕一、 レーザ一装置および表示装 置などに用いられている。 電圧非印加で散乱状態、 電圧印加で透明状態のものが 商用化された。
さらに、 従来例 1 (U S P 5 1 8 8 7 6 0 ) では、 液晶と重合性の液晶を用い た素子が開示された。 この従来例 1は、 電圧非印加時において素子内の液晶と重 合された液晶とが同じ配向方向を有しているので、 素子をどの方向から見ても透 明状態を呈する。 そして、 電圧印加時には、 素子内の液晶の配向が電界によって 制御され、 液晶分子の配列方向が微小領域においてさまざまに変化することによ り、 素子は散乱状態を呈する。
また、 カイラル剤を添加して初期配向にヘリカル構造を設けることで、 コント ラス卜比が向上することが開示された。 この素子は、 「異方性ゲル」 または 「液 晶ゲル」 と呼ばれている。 この従来例 1ではァクリロイル基を末端に持つメソゲ ンモノマーが使用された。
また、 従来例 2 (国際特許公開 W0 9 2 Z 1 9 6 9 5 ) にも同様の構成を持つ 素子が開示された。 従来例 1と同様の動作モードであって、 カイラルネマチック 液晶中に微量の高分子を分散させ、 電圧非印加時に透明状態、 電圧印加時に散乱 状態を得る。 この素子は P S C T (ポリマー ·ス夕ビラィズド · コレステリック 'テクスチャー) と呼ばれている。 この従来例 2にもァクリロイル基を末端に持 っメソゲンモノマーが開示された。
液晶と未硬化の硬化性化合物よりなる混合物を準備し、 その硬化性化合物を硬 化させることで液晶ノ硬化物複合体層を形成して得られた液晶光学素子の特性は 、 その液晶 硬化物複合体の構造に大きく依存する。 さらに、 用いる未硬化の硬 化性化合物の分子構造は形成された液晶 硬化物複合体の構造に大きな影響を与 える。
一般にビフエ二ル構造などのメソゲン構造を含む硬化性化合物は、 両端の硬化 部位が結合し、 硬化した後の弾性率は大きく、 かつ、 得られる高分子のガラス転 移温度も高いことが報告されている。
一方このことは、 硬化途中の硬化性化合物の分子運動や自由体積に制限を与え るものであり、 硬化過程の後期においては、 硬化部位の反応性が抑制される可能 性があり、 硬化反応が充分行われない、 または、 非常に長時間の硬化時間が必要 となるといった問題点が生じている。
すなわち、 未硬化の硬化性化合物の構造として、 従来例 1では、 式 (2 ) の化 合物が、 また、 従来例 2では式 (3 ) の化合物が例示された。 o 0
CH^CH— C一 0-(CH2)6— 0- -0-(CH2)e-0-C-CH=CH2 Q
-O— C一 CH=CH2
式 ( 3 ) しかしながらこれらの化合物を単独で用いて形成した硬化物は分子構造に起因 した特性を有していた。 すなわち、 従来例 1で開示される素子においては、 液晶 性を有するモノマーの使用が必須要件となるため、 未硬化の硬化性化合物が式 ( 2 ) のように結晶性が高く剛直なメソゲン構造部を含むことから、 又、 従来例 ( 2 ) で使用される式 (3 ) の化合物においてはメソゲン構造部と硬化部位 (この 場合ァクリロイル基) 間の距離が短いため架橋点間分子量が小さくなることから 、 得られた硬化物が硬く脆くなる。 また、 そのために、 硬化途中において未硬化 部位の運動性が著しく損なわれるため、 充分な硬化のためにはかなり長時間の硬 化時間が必要になる、 といつた問題点があつた。
また、 従来例の液晶光学素子は、 複数回の電界印加駆動により素子の電圧透過 率曲線に変化が生じたり、 電界印加 Z非印加時のコントラストもまだ低いもので あった。 特に、 液晶 硬化物複合体層の硬化物である樹脂の物性が液晶光学素子 の電気光学特性に関与し、 樹脂の弾性率が高すぎたり、 また脆いと、 必要な駆動 電圧が大きくなり、 比較的低い駆動電圧レンジでは、 電圧印加 Z非印加での透過 率変化や反射率変化において充分なコントラス卜比が得られないことがあった。 また、 従来技術において、 電圧の印加 非印加時に得られる液晶光学素子の透 過率 (または反射率) のコントラスト比を改良する手段として、 従来例 1は、 そ の混合物にカイラル剤を添加し、 硬化後の硬化性化合物の配向形態にヘリカル構 造を導入しており、 また、 従来例 2は、 カイラル剤の添加によりヘリカルピツチ を 0 . 5〜4 ΓΠとしている。
しかしながら、 カイラル剤の添加は素子の駆動電圧の増大させたり、 素子の透 明時の透過率を低下させるといった問題を引き起こすことがある。 さらに、 液晶 と未硬化の硬化性化合物との混合物を液晶セルへ注入する場合、. または、 透明電 極付き基板、 たとえば電極付き樹脂フィルム基板間へ狭持せしめる場合に、 カイ ラル剤を多く含有すると、 注入むらや狭持むらを発生させやすいといった問題が ある。 本発明では、 複数回の電界印加 非印加の駆軌によっても素子の電圧透過率曲 線がほとんど変化せず、 信頼性が高く、 高いコントラストの液晶光学素子を提供 する。 また、 容易に、 かつ安定して高い歩留で液晶光学素子を製造できる製造方 法を提供する。 ― また、 例えば短かい硬化時間で製造でき、 かつ、 低い駆動電圧でも高コントラ スト比の液晶光学素子を提供する。
さらに、 カイラル剤の添加をできるだけ最小限にとどめ、 かつ電圧印加 非印 加時に得られる透過率特性において、 高いコントラスト比を発現でき、 かつ、 で きるだけ駆動電圧を上昇させない液晶光学素子を提供する。 発明の開示 本発明は、 一対の電極付き基板間に液晶と未硬化の硬化性化合物との混合物を 狭持し、 少なくとも一方の電極付き基板を透明とし、 前記硬化性化合物を硬化さ せて液晶 硬化物複合体層を形成する液晶光学素子の製造方法において、 前記硬 化性化合物が式 (1) の化合物を含有することを特徴とする液晶光学素子の製造 方法を提供する。
At - (OR! ) n -0-Z-0- (R2 O) m -A2 · · '式 (1)
A, , A2 :それぞれ独立にァクリロイル基、 メタクリロイル基、 グリシジル基
、 ァリル基
R , 、 R2 :それぞれ独立に炭素数 2〜 6のアルキレン基
Z : 2価のメソゲン構造部
n、 m:それぞれ独立に 1〜 10の整数
また、 本発明の 1つの態様において、 上記の製造方法において、 Zが 4, 4' -ビフエ二レン基または、 一部または全部の水素が炭素数 1〜 2のアルキルまた はハロゲン原子に置換された 4, 4' —ビフエ二レン基である製造方法を提供す る。
また、 本発明の 1つの態様において、 Ri および R2 がそれぞれ独立にェチレ ン基またはプロピレン基である製造方法を提供する。 また、 本発明の 1つの態様において、 および A 2 がそれぞれ独立にァクリ ロイル基またはメタクリロイル基である製造方法を提供する。
また、 本発明の 1つの態様において、 n、 mがそれぞれ独立に 1〜4である製 造方法を提供する。 - また、 本発明の 1つの態様において、 前記硬化性化合物が、 分子量が 2倍以上 異なる 2種の硬化性化合物を含有することを特徴とする液晶光学素子の製造方法 を提供する。 上記の製造方法において、 分子量の異なる 3種以上の化合物を用い ることができ、 そのなかで少なくとも 2種の化合物が上記の条件を満足すればよ い。
また、 本発明の 1つの態様において、 前記硬化性化合物に、 分子内にメソゲン 構造部を含む硬化性化合物と、 メソゲン構造部を含まない硬化性化合物をともに 含有する液晶光学素子の製造方法を提供する。
また、 本発明の 1つの態様において、 前記混合物にカイラル剤を含有させ、 力 ィラル剤のヘリカルピツチを 4 / m以上、 かつ、 電極間隙の 3倍以下とすること を特徴とする液晶光学素子の製造方法を提供する。 このように、 従来では用いら れることのなかった大きなヘリカルピツチを採用することにより、 高いコントラ スト比と、 低い駆動電圧とを両立できる。 また、 上記の製造方法を用いた製造した液晶光学素子を提供する。 図面の簡単な説明 第 1図は本発明の液晶光学素子の製造方法の一例を示すフローチャートである。 第 2図は本発明の液晶光学素子の一例の模式的断面図である。
第 3図は本発明の液晶光学素子の使用の一例を示す模式図である。 発明を実施するための最良の形態 本発明においては、 未硬化の硬化性化合物中のメソゲン構造部と硬化部位との 間に分子運動性の高いォキシアルキレン構造を導入することで、 硬化過程におけ る硬化部位の分子運動性を向上させ、 短時間の硬化反応においても、 電界印加/ 非印加時の状態が安定で信頼性が高く、 かつコントラストも高い液晶光学素子が 得られる。 図 1に本発明の液晶光学素子の製造方法の一例のフローチャートを示 す。
式 (1 ) の硬化部位 (A t 、 A 2 ) としては、 一般に硬化触媒とともに光硬化 、 熱硬化可能な上記の官能基であればいずれでもよいが、 なかでも、 硬化時の温 度を制御できることから光硬化に適するァクリロイル基、 メタクリロイル基が好 ましい。
式 (1 ) のォキシアルキレン部の および R 2 の炭素数については、 その運 動性から 2〜 6が好ましく、 さらに炭素数 2のェチレン基の連鎖および炭素数 3 のプロピレン基が好ましい。
式 (1 ) のメソゲン構造部 (Z ) としては、 1、 4—フエ二レン基が 2個以上 連結した 2価のポリフエ二レンが好ましい。 また、 このポリフエ二レン基中の一 部の 1 , 4—フエ二レン基が 1 , 4—シクロへキシレン基で置換された 2価の有 機基であってもよい。
これらポリフエニレン基ゃ 2価の有機基の水素原子の一部または全部は炭素数 1〜2のアルキル基、 ハロゲン原子、 カルボキシル基、 アルコキシカルボニル基 などの置換基に置換されていてもよい。 好ましい Zは、 1 , 4一フエ二レン基が 2個連結したビフエ二レン基 (以下、 4, 4 ' —ビフエ二レン基という。 ) 、 3 個連結した夕一フエ二レン基、 およびこれらの水素原子の 1〜4個が炭素数 1〜 2のアルキル基、 フッ素原子、 塩素原子もしくはカルボキシル基に置換された 2 価の有機基である。 最も、 好ましい Zは置換基を有しない 4, 4 * ービフエニレ ン基である。
式 (1 ) の n、 mはあまり大きいと液晶との相溶性が低下するため、 それぞれ 独立に 1〜 1 0であり、 硬化後の素子特性を考慮すると 1〜4がさらに好ましい 本発明においては、 未硬化の硬化性化合物が、 分子量が 2倍以上異なる 2種の 硬化性化合物を含有せしめることで、 硬化過程及び硬化後の樹脂の架橋点間分子 量を変化させることができる。 もしくは、 樹脂の結晶性を制御することができる 。 これらのことにより硬化過程の硬化性を向上させ、 さらに、 硬化後の樹脂の弹 性率を調節できるため、 低い駆動電圧でも高いコントラストを発現できる液晶光 学素子が得られる。 - 未硬化時の液晶との相溶性と、 硬化後の樹脂の弾性率を調節するためには、 未 硬化の硬化性化合物が、 分子内にメソゲン構造部を含む硬化性化合物と含まない 硬化性化合物とを、 ともに含有することが好ましい。 これは、 メソゲン構造部が 、 未硬化時の液晶との相溶性を向上させる一方で、 硬化後の樹脂の弾性率を必要 以上に大きくしてしまうためである。
含有する 2種の未硬化の硬化性化合物は、 お互いに結合可能である方が、 硬化 して形成される樹脂内で、 樹脂同士で相分離して、 透過時または反射時のヘイズ を上昇させることがなく好ましい。
架橋点間分子量を大きくして硬化時の硬化性を向上させ、 硬化後の樹脂の弹性 率を低下させるためには、 未硬化の硬化性化合物として比較的分子量大きい硬化 性化合物を用いることが好ましい。 具体的には分子量 1 0 0 0以上の硬化性化合 物が好ましい。
液晶と未硬化の硬化性化合物の混合物が硬化触媒を含有していてもよく、 光硬 化の場合、 ベンゾインエーテル系、 ァセトフエノン系、 フォスフィンオキサイド 系などの一般に光硬化樹脂に用いられる光重合開始剤を使用できる。
熱硬化の場合は、 硬化部位の種類に応じて、 パーォキサイド系、 チオール系、 アミン系、 酸無水物系などの硬化触媒を使用でき、 また、 必要に応じてアミン類 などの硬化助剤も使用できる。
硬化触媒の含有量は、 含有する未硬化の硬化性化合物の 2 0 w t %以下が好ま しく、 硬化後の硬化物の高い分子量や高い比抵抗が要求される場合、 l〜 1 0 w t %とすることがさらに好ましい。
また、 電界印加ノ非印加時の素子のコントラストを向上させるために、 液晶と 未硬化の硬化性化合物の混合物にカイラル剤を添加することもできる。 それによ り誘起されるヘリカルピツチは、 小さすぎると駆動電圧が上昇し、 大きすぎると 充分なコントラス卜が得られないため、 4 m以上、 かつ、 電極間隙の 3倍以下 とすることが好ましい。 - ヘリカルピツチを 4 mより小さくすると、 電圧非印加時の透過率が低下した り、 駆動電圧が上昇するなどの問題が発生する。 また、 ヘリカルピツチを、 液晶 樹脂複合体を狭持する一対の電極間隙の 3倍より大きくすると、 電圧印加時の― 透過率が高く、 電圧印加 Z非印加時の透過率におけるコントラス卜比が低下する さらに、 ヘリカルピツチを 5 / mより大きく、 かつ、 電極間隙の 2倍以下にす ることで、 低い駆動電圧と高いコントラス卜のバランスを調節することが可能と なる。
液晶と未硬化の硬化性化合物の混合物中の未硬化の硬化性化合物は、 液晶との 相溶性を向上させるために、 式 (1 ) で n、 mの異なる複数の未硬化の硬化性化 合物を含んでいてもよく、 それによりさらにコントラストを改善することができ る。
—方、 液晶と未硬化の硬化性化合物の混合物は、 混合後均質な溶液であること が好ましい。 また、 液晶と未硬化の硬化性化合物の混合物は、 電極付き基板に狭 持されるとき、 液晶相を示していてもよい。
液晶と未硬化の硬化性化合物の混合物は、 硬化されるとき、 液晶相を示してい てもよい。 液晶と未硬化の硬化性化合物の混合物を狭持する電極付き基板の電極 表面を直接研磨したり、 樹脂の薄膜を設けそれをラビングするなどして、 電極表 面に液晶を配向させる機能を付与することもでき、 それにより、 液晶と未硬化の 硬化性化合物の混合物を狭持する際のむらを低減させることもできる。
また、 一対の配向処理済み基板の配向方向の組み合わせとしては、 平行、 直交 、 いずれでもよく、 混合物狭持時のむらが最小となるよう角度を設定すればよい 電極間の距離は、 スぺ一サ一等で保持することができ、 間隔は 4〜 5 0 mが 好ましく、 さらには 5〜 3 0 mが好ましい。 電極間隔は小さすぎるとコントラ ストが低下し、 大きすぎると駆動電圧が上昇する。 図 2に本発明の液晶光学素子 の模式的断面図を示す。
ガラス基板 1 A、 1 B、 電極 2 A、 2 B、 配向膜 3 A、 3 B、 液晶ノ硬化物複 合体層 4が備えられた液晶光学素子 1 0である。 電圧非印加で透明状態、 電圧印 加で散乱状態を呈する素子である。 図 3には本発明の液晶光学素子を自動車の窓 ガラスに用いる状態を模式的に示したものである。 斜め方向における透過率が高 いという利点を備えている。 ― 電極を支持する基板は、 ガラス基板でも樹脂基板でもよく、 またガラス基板と 樹脂基板の組み合わせでもよい。 また、 片方がアルミニウムや誘電体多層膜の反 射電極であってもよい。
フィルム基板の場合、 連続で供給される電極付き基板を 2本のゴムロール等で 挟み、 その間に、 スぺーサ一を含有分散させた液晶と未硬化の硬化性化合物との 混合物を供給し、 挟み込み、 その後連続で硬化させることができるので生産性が 高い。
ガラス基板の場合、 電極面内に微量のスぺーサーを散布し、 対向させた基板の 4辺をエポキシ樹脂等のシール剤で封止セルとし、 2力所以上の設けたシールの 切り欠きの一方を液晶と未硬化の硬化性化合物の混合物に浸し、 他方より吸引す ることでセル内に混合物を満たし、 硬化させ液晶光学素子を得ることができる。 また、 真空注入法を用いることもできる。
以下、 例 1〜 7 (実施例) および例 A〜E (比較例) について詳細に説明する
(例 1 )
シァノ系ネマティック液晶 (メルク社製 B L— 0 0 6、 誘電異方性は正) 9 5部、 式 (4 ) の未硬化の硬化性化合物 5部、 ベンゾインイソプロピルエーテル 0 . 1 5部の混合物 (混合物 A) を調製した。
Figure imgf000011_0001
式 (4 )
この式 (4 ) の化合物は、 式 (1 ) で A t 、 A 2 がァクリロイル基で、 、 R 2 がエチレン基で、 Zのメソゲン構造部が 4 , 4 ' —ビフエ二レン基で、 n、 mがともに 1である場合に相当する。 .
この混合物 Aを、 透明電極上に形成したポリイミド薄膜を一方向にラビングし た一対の基板を.ラビング方向が直交するように対向させ、 直径が 13 /zmの樹脂 ビーズを微量散布し、 この榭脂ビーズを介して、 四辺に幅約 lmmで印刷したェ- ポキシ樹脂により張り合わせて作製した液晶セルに注入した。
この液晶セルを 25でに保持した状態で、 主波長が約 365 nmのHgXeラ ンプにより、 上側より 3 mW/ cm2 、 下側より同じく約 3 mW/ c m2 の紫外 線を 10分間照射し、 液晶光学素子を製造した。
この液晶光学素子に、 矩形波 50Hz、 50 V rmsの電圧を 10分印加後電 圧を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半 値幅約 20 nmの測定光源を用いた透過率測定系 (光学系の F値 1 1. 5) で液 晶セルの透過率を測定したところ、 電圧を印加しない状態で 79 %、 50 V rm s印加した状態で 23%であり、 電圧印加時と非印加時の透過率の差は 56%で めった。
(例 A)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (3) の未硬 化の硬化性化合物 (4, 4' 一ビスァクリロイルォキシビフエニル) を用いた以 外は例 1と同様にして液晶光学素子を得た。
この式 (3) の化合物は、 式 (1) 中で 、 A2 がァクリロイル基、 Zのメ ソゲン構造部が 4, 4 ' ービフエ二レン基で、 n、 mがともに 0である場合に相 当する。
この液晶光学素子に例 1と同様に、 電圧を印加した。 その後、 例 1と同じ測定 系で透過率を測定したところ、 電圧を印加しない状態で 72 %、 50V rms印 加した状態で 29%であり、 電圧印加時と非印加時の透過率の差は 43%であつ た。
(例 2)
例 1で調製した混合物 Aに、 カイラル剤 (メルク社製 S— 81 1とメルク社 製 C 15の重量比 1 : 1の混合物) を 2. 5wt %溶解した混合物 (混合物 B ) を調製した。 この混合物 Bを、 例 1と同じ液晶セルに注入し、- 25 に保持した状態で、 例 1と同じ主波長が約 365 nmの HgXeランプにより、 上側より 3mWZcm 2 、 下側より同じ C丄く約 3mWZcm2 の紫外線を 3分間照射し、 液晶光学素子を 得た。 - この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値 幅約 20 nmの測定光源を用いた透過率測定系 (光学系の F値 1 1. 5) で透過 率を測定したところ、 電圧を印加しない状態で 78 %であり、 この値を 50V r m s印加した時の透過率で割ったコントラストの値は 33であった。
(例 3)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (5) の未硬 化の硬化性化合物を用いた以外は例 2と同様にして液晶光学素子を得た。
o
/=\ /=\ CH3 O
CH2=CH-C-0-CH -CH2-0-^ ^~0-CH2— CH— Ο- δ- CH=CH2 式 (5 )
この式 (5) の化合物は、 式 (1) で At 、 A2 がァクリロイル基で、 、 R2 がプロピレン基で、 Zのメソゲン構造部が 4, 4 ' —ビフエ二レン基で、 n 、 mがともに 1である場に相当する。
この液晶光学素子に例 2と同様に電圧を印加後、 同じ測定系で透過率を測定し たところ、 電圧を印加しない状態で 80 %であり、 この値を 50 V rms印加し た時の透過率で割ったコントラス卜の値は 28であった。
(例 B)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (3) の化合 物を用いた以外は例 2と同様にして液晶光学素子を得た。 この液晶光学素子に例 2と同様に電圧を印加後、 同じ測定系で透過率を測定したところ、 電圧を印加し ない状態で 6 1 %であり、 この値を 50 V rms印加した時の透過率で割ったコ ン卜ラス卜の値は 1 7であった。 (例 4) .
シァノ系ネマティック液晶 (メルク社製 BL— 009) に、 例 2にて使用し たカイラル剤を 2. 5w t %均一に溶解したものを 97部、 式 (4) の未硬化の 硬化性化合物 3部、 ベンゾインイソプロピルエーテル 0. 09部の混合物 (混合— 物 C) を調製した。
この混合物 Cを、 例 1と同じ液晶セルに注入し、 25°Cに保持した状態で、 例 1と同じ主波長が約 365 nmの HgX eランプにより、 上側より SmWZcm 2 、 下側より同じく約 3mWZcm2 の紫外線を 30分間照射し、 液晶光学素子 を得た。
この液晶光学素子に矩形波 50Hz、 20 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値 幅約 20 nmの測定光源を用いた上記と同様の透過率測定系で透過率を測定した ところ、 電圧を印加しない状態で 82 %であり、 この値を 20 V rms印加した 時の透過率で割ったコントラス卜の値は 1 1であった。
さらに、 この液晶光学素子に矩形波 50Hz、 30 V rmsの電圧を 10分印 加後電圧を除去する操作を 10回繰り返した後、 同様に透過率を測定したところ 、 電圧を印加しない状態で 82 %であり、 この値を 30V rms印加した時の透 過率で割ったコントラス卜の値は 40であった。
(例 5 )
シァノ系ネマティック液晶 (メルク社製 BL— 009) に、 例 2にて使用し たカイラル剤を 2. 5 w t %均一に溶解したもの 97部、 式 (4) の未硬化の硬 化性化合物 2部、 式 (6) の未硬化の硬化性化合物 1部、
ルエーテル 0. 09部の混合物 (混合物 D) を調製した。
Figure imgf000014_0001
( 6 )
この式 (6) の化合物は、 式 (1) で At 、 A2 がァクリロイル基で 、 R 2 がエチレン基で、 Zのメソゲン構造部が 4, 4 ' -—ビフエ二レン基で n、 mが 3の場合に相当する。
この混合物 Dを、 例 1と同じ液晶セルに注入し、 25 に保持した状態で、 例 1と同じ主波長が約 365 nmの HgXeランプにより、 上側より 3mWZcm- 2 、 下側より同じく約 3 mWZ cm2 の紫外線を 30分間照射し、 液晶光学素子 を得た。
この液晶光学素子に矩形波 50Hz、 20 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後; 530 nmを中心波長とした半値 幅約 20 nmの測定光源を用いた、 上記と同様の透過率測定系で透過率を測定し たところ、 電圧を印加しない状態で 82 %であり、 この値を 20V rms印加し た時の透過率で割ったコントラス卜の値は 28であった。
(例 C)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (3) の化合 物を用いた以外は例 4と同様にして液晶光学素子を得た。 この液晶光学素子に矩 形波 50Hz、 20 V rmsの電圧を 10分印加後電圧を除去する操作を 10回 繰り返した。
その後、 530 nmを中心波長とした半値幅約 20 nmの測定光源を用いた上 記と同様の透過率測定系で透過率を測定したところ、 電圧を印加しない状態で 5 7 %であり、 この値を 20 V rms印加した時の透過率で割ったコントラス卜の 値は 10であった。
さらに、 この液晶光学素子に矩形波 50 Hz、 30 V rmsの電圧を 10分印 加後電圧を除去する操作を 10回繰り返した。 その後、 上記と同様に透過率を測 定したところ、 電圧を印加しない状態で 49 %であり、 この値を 30 V rms印 加した時の透過率で割ったコントラス卜の値は 6であった。
(例 6)
シァノ系ネマティック液晶 (メルク社製 BL— 006) 65部に、 カイラル 剤 (メルク社製 R— 81 1とメルク社製 CB 15の重量比 1 : 1の混合物) を 35部、 式 (4) の未硬化の硬化性化合物 3. 1部、 ベンゾインイソプロピル エーテル 0. 09部の混合物 Eを調製した。 この混合物 Eを、 例 1と同じ液晶セルに注入し、.25°Cに保持した状態で、 例 1と同じ主波長が約 365 nmのH gXeランプにより、 上側より 3 mWZ c m 2 、 下側より同じく約 3mW/cm2 の紫外線を 30分間照射し、 液晶光学素子 を得た。 - この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値 幅約 20 nmの測定光源を用いた反射率測定系 (光学系の F値 8. 2) において 、 光をほぼ反射しない黒い紙の上に液晶光学素子を載せて反射率を測定したとこ ろ、 電圧を印加しないときが 23 %、 50V rms印加したときが 8%であり、 電圧印加時と非印加時との反射率の差は 15%であった。
(例 D)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (3) の化合 物を用いた以外は例 6と同様にして液晶光学素子を得た。 この液晶光学素子に例 5と同様に電圧を印加後、 同じ測定系で反射率を測定したところ、 電圧を印加し ないときが 16%、 50 V rms印加したときが 9 %であり、 電圧印加時と非印 加時との反射率の差は 7 %であった。
(例 7)
誘電異方性が負であるネマティック液晶 (T =98°C. Δ ε = — 5. 6、 Δ η = 0. 220) 95部、 式 (4) で示される未硬化の硬化性化合物 5部、 ベン ゾインイソプロピルエーテル 0. 15部の混合物 (混合物 F) を調製した。
この混合物 Fを、 透明電極上に垂直配向用ポリイミド薄膜を形成した一対の基 板をポリイミド薄膜が対向するように、 微量の 6 / mの樹脂ビーズを介して、 四 辺に幅約 lmmで印刷したエポキシ樹脂により張り合わせて作製した液晶セルに 注入した。
このセルを 25 °Cに保持した状態で、 主波長が約 365 nmの HgXeランプ により、 上側より 3mWZcm2 、 下側より同じく約 3 mW/ c m2 の紫外線を 10分間照射し、 液晶光学素子を得た。
この液晶光学素子に矩形波 50Hz、 30 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値幅約 0 nmの測定光源を用いた透 過率測定系 (光学系の F値 1 1. 5) で透過率を測定したところ、 電圧を印加し ない状態で 86%、 50 V rms印加した状態で 24%であり、 電圧印加時と非 印加時の透過率の差は 62 %であった。 ― (例 E)
未硬化の硬化性化合物として、 式 (4) の化合物の代わりに、 式 (3) の化合 物を用いた以外は例 7と同様にして液晶光学素子を得た。 この液晶光学素子に例 7と同様に電圧を印加後、 同じ測定系で透過率を測定したところ、 電圧を印加し ない状態で 64%、 30 V rms印加した状態で 20 %であり、 電圧印加時と非 印加時との透過率の差は 44%であった。 次の表 1に各例の結果をまとめて示す
[¾1]
例 主な使用材料 条 件 T 1一 VON 丁 VO F F ΔΤ CR
1 式 (4) 後 79 % 23 % 56 %
2 式 (4) +カイラル剤 78 % 約 2 % 33
3 式 (5) 十カイラル剤 80 % 約 3 % 28
4 式 (4) +カイラル剤 20Vrms 82 % 約 7 % 1 1
30Vrms 82 % 約 2 % 40
5 式 (4) +式 (6) +カイラル 82 % 約 3 % 28 剤
6 式 (4) +カイラル剤 反射型 23 % 8 % 1 5 %
7 式 (4) + Δ εが負 86 % 24 % 62 %
A 式 (3) 72 % 29 % 43 %
B 式 (3) +カイラル剤 6 1 % 約 4 % 1 7
C 式 (3) +カイラル剤 20Vrms 57 % 約 6 % 1 0
30Vrms 49 % 約 8 % 6
D 式 (3) +カイラル剤 反射型 16 % 9 % 7 %
E 式 (3) + Δ εが負 64 % 20 % 44 % 注 CRはコントラス卜比、 ΔΤ は T "VON T VO F F の差 次に例 8〜1 1により、 未硬化の硬化性化合物が、 分子量が 2倍以上異なる 2 種の硬化性化合物を含有せしめることの効果について説明する。 例 8、 10はこ の効果がある場合、 例 9、 1 1はこの効果がない場合である
(例 8) ― シァノ系ネマティック液晶 (メルク社製 BL— 009) 94. 6部、 カイラ ル剤 (メルク社製 S— 81 1とメルク社製 C 15の重量比 1 : 1の混合物) 2. 4部、 分子量 382である式 (4) の硬化性化合物 2. 5部、 分子量 150 0以上であるウレタンァクリレートオリゴマー (UCB社製 EB— 270) 0 . 5部、 ベンゾインイソプロピルエーテル 0. 09部の混合物 (混合物 A) を調 製した。
この混合物 Aを、 透明電極上に形成したポリイミド薄膜を一方向にラビングし た一対の基板をラビング方向が直交するように対向させ、 微量の直径 13 mの 樹脂ビーズを介して、 四辺に幅約 lmmで印刷したエポキシ榭脂により張り合わ せて作製した液晶セルに注入した。
この液晶セルを 25 °Cに保持した状態で、 主波長が約 365:1111の?18 6ラ ンプにより、 上側より 3 mW/ cm2 、 下側より同じく約 3 mWZ c m2 の紫外 線を 10分間照射し、 液晶光学素子を得た。
この液晶光学素子に矩形波 50Hz、 20 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値 幅約 20 n mの測定光源を用いた透過率測定系 (光学系の F値 1 1. 5 ) で透過 率を測定したところ、 電圧を印加しない状態で 83 %、 この値を 20 V rms印 加したときの透過率で割ったコントラスト比の値は 31であった。
(例 9)
未硬化の硬化性化合物として式 (4) の化合物のみを用いた以外は例 8と同様 にして液晶光学素子を得た。 この液晶光学素子に例 8と同様に電圧を印加後、 同 じ測定系で透過率を測定したところ、 電圧を印加しない状態で 83 %、 この値を 20V rms印加したときの透過率で割ったコントラスト比の値は 1 1であった
(例 10 ) 例 8で調製した混合物 Aを例 8と同じ液晶セルに _注入し、 25 に保持した状 態で、 例 8と同様にして紫外線を 3分間照射し、 液晶光学素子を得た。
この液晶光学素子に矩形波 50Hz、 20 V rmsの電圧を 10分印加後、 電 圧を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半 値幅約 20 nmの測定光源を用いた透過率測定系 (光学系の F値 1 1. 5) で透 過率を測定したところ、 電圧を印加しない状態で 79 %、 この値を 20 V rms 印加したときの透過率で割ったコントラス卜比の値は 43であった。
(例 1 1 )
未硬化の硬化性化合物として式 (4) の化合物のみを用いた以外は例 10と同 様にして液晶光学素子を得た。
この液晶光学素子に例 10と同様に電圧を印加後、 同じ測定系で透過率を測定 したところ、 電圧を印加しない状態で 81 %、 この値を 20V rms印加した時 の透過率で割ったコントラスト比の値は 12であった。.
さらに、 前記混合物にカイラル剤を含有させ、 カイラル剤のヘリカルピツチを 4 m以上、 かつ、 電極間隙の 3倍以下とすることの効果について例 12〜19 を用いて説明する。 例 12、 13、 16、 17、 はこの効果がある場合、 例 14 、 15、 18、 19はこの効果がない場合である。
(例 12 )
混合物 A 100部に、 カイラル剤 (メルク社製 S— 81 1とメルク社製 C 15の重量比 1 : 1の混合物、 以後カイラル剤 A) 3. 5部を均一に溶解した混 合物を調製した (混合物 H) 。 そして、 ヘリカルピツチ測定用のくさびセルに注 入してピッチを測定したところ、 そのヘリカルピツチは 5. 1 mであった。 この混合物 Hを、 透明電極上に形成したポリイミド薄膜を一方向にラビングし た一対の基板を、 ラビング方向が直交するように対向させ、 微量の直径 13 m の樹脂ビーズを介して、 四辺に幅約 1 mmで印刷したエポキシ樹脂により張り合 わせて作製した液晶セルに注入した。
このセルを 25でに保持した状態で、 主波長が約 365 nmの HgXeランプ により、 上側より 3mWZcm2 、 下側より同じく約 3 mWZ c m2 の紫外線を 10分間照射し、 液晶光学素子を形成した。 この液晶光学素子に矩形波 50 H z、 50 V r m.sの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 530 nmを中心波長とした半値 幅約 20 nmの測定光源を用いた透過率測定系 (光学系の F値 1 1. 5) で透過 率を測定したところ、 電圧を印加しない状態で 78 %、 この値を 50V rms印 _ 加したときの透過率で割つたコントラスト比の値は 23であった。
この液晶光学素子の電圧印加しないときの透過率を 100%、 50Vrmsの 電圧を印加したときの透過率を 0%としたときに、 50%を示す印加電圧、 すな わち 5割の透過率変化を示すときの印加電圧の値 (V50) は、 23V rmsであ つた。
(例 13)
例 12の混合物 Aを 100部に、 同じく例 12のカイラル剤 Aを 1. 5部を均 一に溶解して混合物を調製した (混合物 I) 。 例 12と同様に、 ヘリカルピツチ 測定用のくさびセルに注入してピッチを測定したところ、 そのヘリカルピツチは 10. 8 wmであった。
この混合物 Iを例 12で使用したものと同様の構成の液晶セルに注入し、 25 でで同様に紫外線を照射して未硬化の硬化性化合物を硬化させて液晶光学素子を 形成した。
この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 12と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 81 %、 この値を 50 V rms印 加したときの透過率で割ったコントラスト比の値は 23であり、 V5。は 19 V r msであった。
(例 14)
例 12の混合物 Aにカイラル剤を添加せず、 例 12で使用したものと同じ構成 の液晶セルに注入し、 25 X:で同様に紫外線を照射して未硬化の硬化性化合物を 硬化させて液晶光学素子を得た。 ,
この液晶セルは配向方向を直交させてあるため、 混合物 Aはセルに注入された 状態では、 見かけ上、 セルの電極間距離の約 4倍のヘリカルピツチを呈する。 この液晶光学素子に矩形波 50Hz、 50V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 1-2と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 79 %、 この値を 50V rms印 加したときの透過率で割ったコントラスト比の値は 3. 2であり、 V50は 1 8で あった。
(例 1 5 )
例 1 2の混合物 Aを 1 00部に、 例 1 2のカイラル剤 Aを 7. 5部を均一に溶 解して混合物を調製した (混合物 J) 。 例 1 2と同様に、 ヘリカルピツチ測定用 のくさびセルに注入してピッチを測定したところ、 そのヘリカルピツチは 2. 4 11 mであつ 7こ。
この混合物 Jを例 1 2で使用したものと同じ構成の液晶セルに注入し、 25°C で紫外線を同様に照射して未硬化の硬化性化合物を硬化させて液晶光学素子を形 成した。
この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 1 0分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 12と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 73 %、 この値を 50 V rms印 加したときの透過率で割ったコントラスト比の値は 1 3であり、 V5。は 3 1であ つた。
(例 1 6 )
例 1 2の混合物 Aを 100部に、 カイラル剤 (メルク社製 R— 8 1 1とメル ク社製 CB 1 5の重量比 1 : 1の混合物、 以後カイラル剤 B) 2部を均一に溶 解して混合物を調製した (混合物 ) 。 ヘリカルピツチ測定用のくさびセルに注 入してピッチを測定したところ、 そのヘリカルピツチは 5. 7 imであった。 この混合物 Kを例 12で使用したものと同じ構成の液晶セルに注入し、 25°C で例 1 2と同様にして紫外線を 1分間を照射して未硬化の硬化性化合物を硬化さ せて液晶光学素子を形成した。
この液晶光学素子に矩形波 50Hz、 50V rmsの電圧を 1 0分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 1 2と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 8 1 %、 この値を 50V rms印 加したときの透過率で割ったコントラス卜の値は 3 1であり、 V5。は 22 V rm sであった。 .
(例 17)
例 12の混合物 Aを 100部に、 同じく例 16のカイラル剤 Bを 0. 5部を均 一に溶解して混合物を調製した (混合物し) 。 例 12と同様に、 ヘリカルピツチ 測定用のくさびセルに注入してピッチを測定したところ、 そのへリカルピッチは 21 mであった。
この混合物 Lを例 12で使用したものと同様の液晶セルに注入し、 25 で例 16と同様にして紫外線を照射して未硬化の硬化性化合物を硬化させて液晶光学 素子を得た。
この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 12と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 80 %、 この値を 50 V rms印 加したときの透過率で割ったコントラス卜比の値は 14であり、 V50は 17 V r m sであった。
(例 18 )
例 12の混合物 Aにカイラル剤を添加せず、 例 12で使用したものと同様構成 の液晶セルに注入し、 25でで例 16と同様に紫外線を照射して未硬化の硬化性 化合物を硬化させて液晶光学素子を得た。
この液晶セルは配向方向を直交させたセルであるため、 混合物 Aはセルに注入 された状態では、 見かけ上、 セルの電極間距離の約 4倍のヘリカルピツチを呈す る。
この液晶光学素子に矩形波 50Hz、 50 V rmsの電圧を 10分印加後電圧 を除去する操作を 10回繰り返した。 その後、 例 12と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 78 %、 この値を 50 V rms印 加したときの透過率で割ったコントラス卜の値は 3. 9であり、 V5Qは 10V r m sであった。
(例 19 )
例 12の混合物 Aを 100部に、 同じく例 16のカイラル剤 Bを 4部を均一に 溶解して混合物を調製した (混合物 M) 。 例 12と同様に、 ヘリカルピツチ測定 用のくさびセルに注入してピッチを測定したところ、 そのヘリカルピッチは 3 . 0 ΓΓΙでめった。
この混合物 Μを例 1 2で使用したものと同様の液晶セルに注入し、 2 5 °Cで例 1 6と同様に紫外線を照射して未硬化の硬化性化合物を硬化させて液晶光学素子 を形成した。
この液晶光学素子に矩形波 5 0 H z、 5 0 V r m sの電圧を 1 0分印加後電圧 を除去する操作を 1 0回繰り返した。 その後、 例 1 2と同じ透過率測定系で透過 率を測定したところ、 電圧を印加しない状態で 7 9 %、 この値を 5 0 V r m s印 加した時の透過率で割ったコントラストの値は 2 5であり、 V 5。は 2 8 V r m s であった。 産業上の利用可能性 本発明の液晶光学素子は、 透明時の透過率が高く、 電界の印加 Z非印加時の透 過率差やコントラス卜が高いため、 透明時に高い光の透過性が要求される調光ガ ラスや光シャツ夕一等に好適である。
反射型の液晶光学素子とした場合も電圧非印加時の反射率が高く、 電界の印加 Z非印加時のコントラス卜を高くできる。
また、 液晶光学素子への電界の印加 Z非印加時操作の繰り返しによる素子の電 圧一透過率曲線または電圧一反 It率曲線の変動が小さいため、 信頼性の高い液晶 光学素子を提供することができる。
特に、 前記硬化性化合物が、 分子量が 2倍以上異なる 2種の硬化性化合物を含 有することにより、 用いる硬化性化合物の硬化性が高いため、 電界の印加 非印 加時の透過率や反射率におけるコントラス卜が高い液晶光学素子を短かい硬化時 間で作製することができるので生産性が高い。
また、 硬化した樹脂の架橋点間分子量や弾性率を制御できるために、 低い駆動 電圧でも高コントラスト比を示す液晶光学素子が得られる。
さらに、 混合物にカイラル剤を含有させ、 カイラル剤のヘリカルピツチを 4 m以上、 かつ、 電極間隙の 3倍以下とすることにより、 低い駆動電圧で動作させ ることが可能で、 かつ、 電界の印加/非印加時の透過率におけるコントラスト比 が高い液晶光学素子が得られる。
また、 素子の透明時の透過率が高く、 また、 注入工程や狭持工程に由来する透 明時のむらを小さくできるため、 高品位の調光ガラスや光シャツ夕一等に好適な 液晶光学素子を提供することができる。
さらに、 駆動電圧を大きく上昇させずに、 低電圧でコントラスト比を大きく改 善できるので表示素子に用いることもできる。

Claims

請求の範囲
1. 少なくとも一方が透明な一対の電極付き基板間に液晶と未硬化の硬化性化合 - 物との混合物を狭持し、 前記硬化性化合物を硬化させて液晶/硬化物複合体層を 形成する液晶光学素子の製造方法において、 前記硬化性化合物が式 (1) の化合 物を含有することを特徴とする液晶光学素子の製造方法。
A, - (OR, ) n -O-Z-O- (R2 O) m — A2 . · '式 (1)
A, , A2 :それぞれ独立にァクリロイル基、 メ夕クリロイル基、 グリシジル基
、 ァリル基
Rx 、 R2 :それぞれ独立に炭素数 2〜 6のアルキレン基
Z : 2価のメソゲン構造部
n、 m:それぞれ独立に:!〜 10の整数
2. Zが 4, 4' ービフエ二レン基または、 一部または全部の水素が炭素数 1〜 2のアルキルまたはハロゲン原子に置換された 4, 4' —ビフエ二レン基である 請求項 1に記載の液晶光学素子の製造方法。
3. R, および R2 がそれぞれ独立にエチレン基またはプロピレン基である請求 項 1または 2に記載の液晶光学素子の製造方法。
4. A, および A2 がそれぞれ独立にァクリロイル基またはメ夕クリロイル基で ある請求項 1、 2または 3に記載の液晶光学素子の製造方法。
5. n、 mがそれぞれ独立に 1〜4である請求項 1、 2、 3または 4に記載の液 晶光学素子の製造方法。
6. 前記硬化性化合物が、分子量が 2倍以上異なる 2種の硬化性化合物を含有す ることを特徴とする液晶光学素子の製造方法。
7. 前記硬化性化合物に、 分子内にメソゲン構造部を含む硬化性化合物と、 メソ ゲン構造部を含まない硬化性化合物をともに含有する請求項 6に記載の液晶光学 素子の製造方法。 -
8. 前記 2種の硬化性化合物が、 互いに結合可能な硬化部位を有する請求項 6ま たは 7に記載の液晶光学素子の製造方法。
9. 分子量 1000以上の硬化性化合物を含有する請求項 6、 7または 8に記載 の液晶光学素子の製造方法。
10. 前記混合物にカイラル剤を含有する請求項 1〜 9のいずれか 1項に記載の 液晶光学素子の製造方法。
1 1. 前記混合物にカイラル剤を含有させ、 カイラル剤のヘリカルピツチを 4 m以上、 かつ、 電極間隙の 3倍以下とする請求項 1〜9のいずれか 1項に記載の 液晶光学素子の製造方法
12. 電極間隙が 4〜 5 O^mである請求項 1 1に記載の液晶光学素子の製造方 法。
13. ヘリカルピツチを 5 im以上、 かつ、 電極間隙の 2倍以下とする請求項 1 1または 12に記載の液晶光学素子の製造方法。
14. 前記混合物に微量の硬化触媒を含有する請求項 1〜13のいずれか 1項に 記載の液晶光学素子の製造方法。
15. 式 (1) の化合物であって、 n、 mが異なる複数の化合物を組み合わせて 用いる請求項 1〜 14のいずれか 1項に記載の液晶光学素子の製造方法。
1 6 . 請求項 1〜 1 5のいずれか 1項に記載の製造方法で製造した液晶光学素子
PCT/JP1999/005765 1998-10-20 1999-10-19 Element optique a cristal liquide et procede de preparation associe WO2000023539A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/807,425 US6723393B1 (en) 1998-10-20 1999-10-09 Liquid crystal optical element and method for preparing the same
EP99947972A EP1154006B1 (en) 1998-10-20 1999-10-19 Liquid crystal optical element and method for preparing the same
DE69932358T DE69932358T2 (de) 1998-10-20 1999-10-19 FLüSSIGKRISTALLINES, OPTISCHES ELEMENT UND VERFAHREN ZU DESSEN HERSTELLUNG
US10/780,643 US7011870B2 (en) 1998-10-20 2004-02-19 Liquid crystal optical element and method for its production

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/298624 1998-10-20
JP29862098A JP2000119655A (ja) 1998-10-20 1998-10-20 液晶光学素子及びその製造方法
JP29862498A JP4352480B2 (ja) 1998-10-20 1998-10-20 液晶光学素子およびその製造方法
JP10/298621 1998-10-20
JP10/298620 1998-10-20
JP29862198A JP2000119654A (ja) 1998-10-20 1998-10-20 液晶光学素子の製造方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/807,425 A-371-Of-International US6723393B1 (en) 1998-10-20 1999-10-09 Liquid crystal optical element and method for preparing the same
US09807425 A-371-Of-International 1999-10-09
US10/780,643 Continuation US7011870B2 (en) 1998-10-20 2004-02-19 Liquid crystal optical element and method for its production

Publications (1)

Publication Number Publication Date
WO2000023539A1 true WO2000023539A1 (fr) 2000-04-27

Family

ID=27338234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005765 WO2000023539A1 (fr) 1998-10-20 1999-10-19 Element optique a cristal liquide et procede de preparation associe

Country Status (4)

Country Link
US (2) US6723393B1 (ja)
EP (2) EP1690918B1 (ja)
DE (2) DE69939501D1 (ja)
WO (1) WO2000023539A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723393B1 (en) * 1998-10-20 2004-04-20 Asahi Glass Company, Limited Liquid crystal optical element and method for preparing the same
JPWO2003057799A1 (ja) * 2001-12-28 2005-05-19 旭硝子株式会社 調光素子およびその製造方法
JPWO2004005426A1 (ja) * 2002-07-05 2005-11-04 旭硝子株式会社 調光素子およびその製造方法
WO2004023200A1 (en) 2002-09-03 2004-03-18 Optrex Corporation Image display system
KR20040023551A (ko) * 2002-09-11 2004-03-18 옵트렉스 가부시키가이샤 복합 표시 장치 및 그 구동 방법
US7459189B2 (en) * 2003-12-19 2008-12-02 Asahi Glass Company, Limited Liquid crystal optical element and process for its production
TWI325982B (en) * 2005-06-08 2010-06-11 Au Optronics Corp Method for fabricating liquid crystal display
JP5242390B2 (ja) * 2006-06-27 2013-07-24 旭硝子株式会社 液晶光学素子および液晶光学素子の製造方法
US7703196B2 (en) * 2006-07-13 2010-04-27 John Mezzalingua Associates, Inc. Compression tool length adjuster
JP2008275761A (ja) * 2007-04-26 2008-11-13 Hitachi Displays Ltd 液晶表示装置とその製造方法
FR2917093B1 (fr) * 2007-06-06 2010-09-24 Commissariat Energie Atomique Melange destine a la fabrication de gels organiques adhesifs et son utilisation.
US7933509B2 (en) * 2007-12-31 2011-04-26 Motorola, Inc. Device and method for reducing optical blurring
JP5329445B2 (ja) * 2008-02-22 2013-10-30 株式会社Adeka 重合性化合物を含有する液晶組成物及び該液晶組成物を用いた液晶表示素子
TW200944918A (en) * 2008-03-19 2009-11-01 Asahi Glass Co Ltd Image display with function for transmitting light from subject to be observed
KR101499238B1 (ko) * 2008-08-07 2015-03-05 삼성디스플레이 주식회사 액정 표시 장치
US8294850B2 (en) * 2009-03-31 2012-10-23 Apple Inc. LCD panel having improved response
CN103459555B (zh) 2011-03-28 2016-01-13 三菱化学株式会社 液晶元件及液晶组合物
JP2012220673A (ja) * 2011-04-07 2012-11-12 Asahi Glass Co Ltd 液晶光学装置、及びその製造方法
TWI498646B (zh) * 2012-01-31 2015-09-01 Innocom Tech Shenzhen Co Ltd 具有液晶顯示裝置之影像顯示系統及液晶顯示裝置之製造方法
DE102012205373A1 (de) 2012-04-02 2013-10-02 Kyocera Display Europe Gmbh Senkrecht orientierendes Flüssigkristalldisplay mit multiplen "Pretilt"-Winkeln und Herstellungsverfahren hierfür
CN103197459A (zh) * 2013-04-19 2013-07-10 南京晶多新材料科技有限公司 一种反式电控调光玻璃及其制造方法和应用
JP6808915B2 (ja) 2015-08-06 2021-01-06 Agc株式会社 液晶組成物および液晶光学素子
WO2017149640A1 (ja) * 2016-03-01 2017-09-08 東洋ゴム工業株式会社 液晶性化合物、熱応答性材料及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272551A (ja) * 1988-04-22 1989-10-31 Dainippon Printing Co Ltd 重合性2官能アクリレートモノマー
JPH0289023A (ja) * 1988-09-26 1990-03-29 Dainippon Ink & Chem Inc 液晶デバイス及びその製造方法
WO1993022397A1 (en) * 1992-04-27 1993-11-11 Merck Patent Gmbh Electrooptical liquid crystal system
WO1994008268A1 (en) * 1992-10-02 1994-04-14 Merck Patent Gmbh Liquid crystalline material
US5674576A (en) * 1994-09-21 1997-10-07 Nec Corporation Liquid crystalline optical device operable at a low drive voltage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261712A1 (en) * 1986-09-04 1988-03-30 Koninklijke Philips Electronics N.V. Picture display cell, method of forming an orientation layer on a substrate of the picture display cell and monomeric compounds for use in the orientation layer
US6122021A (en) 1988-10-04 2000-09-19 Asahi Glass Company, Ltd. Liquid crystal display element and a projection type liquid crystal display apparatus
NL9000808A (nl) 1990-04-06 1991-11-01 Koninkl Philips Electronics Nv Vloeibaar kristallijn materiaal en beeldweergeefcel die dit materiaal bevat.
DE69106966T2 (de) 1990-07-26 1995-08-24 Asahi Glass Co Ltd Flüssigkristallanzeigeelement sowie Flüssigkristall-Projektionsanzeigevorrichtung mit einer aktiven Matrix.
US5216531A (en) 1990-08-28 1993-06-01 Asahi Glass Company Ltd. Projection type active matrix polymer dispersed liquid crystal display apparatus with particles of liquid crystal material randomly oriented
US5558813A (en) * 1991-03-25 1996-09-24 Fuji Xerox Co., Ltd. Liquid crystal-polymer composite film
TW240240B (ja) * 1992-03-27 1995-02-11 Philips Nv
KR100320567B1 (ko) 1992-05-18 2002-06-20 액정광변조장치및재료
JP3610579B2 (ja) * 1993-03-29 2005-01-12 セイコーエプソン株式会社 電子機器
BE1007485A3 (nl) * 1993-09-08 1995-07-11 Philips Electronics Nv Schakelbaar cholesterisch filter en verlichtingsarmatuur voorzien van een filter.
DE69419120T2 (de) * 1993-12-24 1999-10-28 Dainippon Ink & Chemicals Polymerisierbare Flüssigkristallzusammensetzung und optisch anisotroper Film, der eine solche Zusammensetzung enthält
DE69815283T2 (de) * 1997-04-29 2004-05-06 Koninklijke Philips Electronics N.V. Flüssigkristall-zusammensetzung zur herstellung eines vernetzten, makroskopisch orientierten polymers
US6128056A (en) * 1997-06-04 2000-10-03 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element in which the polymer liquid crystal composite layer is divided into an active area and a non-active area and method of manufacturing the same
US6723393B1 (en) * 1998-10-20 2004-04-20 Asahi Glass Company, Limited Liquid crystal optical element and method for preparing the same
JP4655371B2 (ja) * 1998-12-25 2011-03-23 チッソ株式会社 負の誘電率異方性値を有する液晶性化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272551A (ja) * 1988-04-22 1989-10-31 Dainippon Printing Co Ltd 重合性2官能アクリレートモノマー
JPH0289023A (ja) * 1988-09-26 1990-03-29 Dainippon Ink & Chem Inc 液晶デバイス及びその製造方法
WO1993022397A1 (en) * 1992-04-27 1993-11-11 Merck Patent Gmbh Electrooptical liquid crystal system
WO1994008268A1 (en) * 1992-10-02 1994-04-14 Merck Patent Gmbh Liquid crystalline material
US5674576A (en) * 1994-09-21 1997-10-07 Nec Corporation Liquid crystalline optical device operable at a low drive voltage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1154006A4 *

Also Published As

Publication number Publication date
EP1690918A2 (en) 2006-08-16
DE69932358T2 (de) 2007-07-05
US20040161549A1 (en) 2004-08-19
DE69939501D1 (de) 2008-10-16
EP1154006B1 (en) 2006-07-12
EP1154006A4 (en) 2003-05-28
US6723393B1 (en) 2004-04-20
EP1690918B1 (en) 2008-09-03
EP1154006A1 (en) 2001-11-14
DE69932358D1 (de) 2006-08-24
EP1690918A3 (en) 2006-11-08
US7011870B2 (en) 2006-03-14

Similar Documents

Publication Publication Date Title
WO2000023539A1 (fr) Element optique a cristal liquide et procede de preparation associe
JP4360444B2 (ja) 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法
JP5240486B2 (ja) 高分子安定化液晶表示素子用組成物及び高分子分散型液晶表示素子
JP5620006B2 (ja) 液晶表示装置の製造方法
KR101802218B1 (ko) 액정 배향막
WO2015022866A1 (ja) 複合液晶組成物、表示素子及び電界検出器
JP5040400B2 (ja) 高分子安定化液晶組成物および高分子安定化液晶表示素子
JP5309645B2 (ja) 高分子安定化強誘電性液晶組成物及び液晶表示素子
WO2018025996A1 (ja) 液晶デバイス用材料および液晶デバイス
EP4296765A1 (en) Liquid crystal/polymer composite electrically controlled dimming films and preparation method thereof
JP4352480B2 (ja) 液晶光学素子およびその製造方法
JP2000119656A5 (ja)
CN111198452B (zh) 液晶显示器件
JP3890841B2 (ja) 車両用液晶調光窓
JP6318528B2 (ja) 液晶・ポリマー複合材料、光学素子、及び光学素子の製造方法、並びに、液晶・ポリマー複合材料の製造方法
CN111198459B (zh) 液晶显示器件
JP2000119655A5 (ja)
JP2000119655A (ja) 液晶光学素子及びその製造方法
JP3790929B2 (ja) 重合性液晶化合物
JPH09179101A (ja) 液晶表示素子及びその製造方法
JP5136597B2 (ja) 液晶光学素子及びその製造方法
JP2014021182A (ja) 液晶表示素子および液晶表示素子の製造方法
JP7310796B2 (ja) 液晶表示素子
JP2000119654A5 (ja)
JP2000119654A (ja) 液晶光学素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999947972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09807425

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999947972

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999947972

Country of ref document: EP