WO2000008777A1 - Dispositif radio et son procede d'etalonnage - Google Patents

Dispositif radio et son procede d'etalonnage Download PDF

Info

Publication number
WO2000008777A1
WO2000008777A1 PCT/JP1999/004173 JP9904173W WO0008777A1 WO 2000008777 A1 WO2000008777 A1 WO 2000008777A1 JP 9904173 W JP9904173 W JP 9904173W WO 0008777 A1 WO0008777 A1 WO 0008777A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal transmission
circuit
transmission system
transmission
Prior art date
Application number
PCT/JP1999/004173
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Doi
Toshinori Iinuma
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP99933242A priority Critical patent/EP1104122B1/en
Priority to AU49335/99A priority patent/AU757396C/en
Priority to JP2000564314A priority patent/JP3332911B2/ja
Priority to DE69936210T priority patent/DE69936210T2/de
Priority to US09/762,049 priority patent/US6870878B1/en
Publication of WO2000008777A1 publication Critical patent/WO2000008777A1/ja
Priority to HK02103513A priority patent/HK1042603A1/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • the present invention relates to a radio apparatus and a calibration method thereof, and more particularly to a radio apparatus used in an adaptive array radio base station and a calibration method thereof.
  • an adaptive array wireless base station using an array antenna has been put into practical use as a wireless base station of a mobile communication system such as a mobile phone.
  • the principle of operation of such an adaptive array radio base station is described in, for example, the following document.
  • FIG. 68 is a schematic diagram conceptually showing the operation principle of such an adaptive array radio base station.
  • one adaptive array radio base station 1 has an array antenna 2 composed of n antennas # 1, # 2, # 3,.
  • the range is represented as the first hatched area 3.
  • a range in which radio waves of another adjacent wireless base station 6 can reach is represented as a second hatched area 7.
  • a radio signal is transmitted and received between the mobile phone 4 as the terminal of the user A and the adaptive array wireless base station 1 (arrow 5).
  • transmission and reception of radio signals are performed between the mobile phone 8 as the terminal of the other user B and the radio base station 6 within the area 7 (arrow 9).
  • the frequency of the radio signal of the mobile phone 4 of the user A coincides with the frequency of the radio signal of the mobile phone 8 of the user B, depending on the position of the user B, the frequency of the radio signal from the mobile phone 8 of the user B is changed.
  • the radio signal becomes an unnecessary interference signal in the area 3 and is mixed into the radio signal between the mobile phone 4 of the user A and the adaptive array radio base station 1.
  • the adaptive array radio base station 1 receiving the mixed radio signals from both the users A and B, if no processing is performed, a signal in which the signals from both the users A and B are mixed Will be output, and the call of User A, who should be calling, will be interrupted.
  • FIG. 69 is a schematic block diagram showing a configuration of the adaptive array radio base station 1. As shown in FIG.
  • the received signal X 1 (1) at the first antenna # 1 constituting array antenna 2 in FIG. t) is expressed as:
  • X 1 (t) a 1 X A (t) + b 1 X B (t)
  • a 2 and b 2 are also coefficients that change in real time.
  • a 3 and b 3 are also coefficients that change in real time.
  • the received signal X n (t) at the n-th antenna #n is expressed as:
  • a n and b n are also coefficients that change in real time.
  • the above coefficients a1, a2, a3,..., an are relative to the radio signal from user A, respectively, of antennas # 1, # 2, # 3,..., #n constituting array antenna 2. Since the positions are different (each antenna is spaced apart from each other by 5 times the wavelength of the radio signal, that is, about 1 meter), there is a difference in the reception strength of each antenna. Is represented.
  • the signals X 1 (t), x 2 (t), x 3 (t),..., X n (t) received by the respective antennas are the corresponding switches 10-1, 10-2, 10- 3,..., 10 1 n, enter the receiver 1 R constituting the adaptive array radio base station 1, and are provided to the ⁇ eight vector controller 11, and the corresponding multipliers 12-1, 1 2-2, 1 2—3, ⁇ , 1 2_n.
  • weights wl, w2, w3,..., Wn for the signals received at the respective antennas are applied from weight vector control section 11. These weights are calculated in real time by the weight vector controller 11 as described later. Therefore, the received signal x 1 (t) at antenna # 1 passes through multiplier 1 2—1 and becomes wl X (a 1 A (t) + b 1 B (t)).
  • the signal x 2 (t) passes through the multiplier 1 2—2 and becomes w2X (a 2 A (t) + b 2 B (t)), and the received signal x 3 (t) at antenna # 3 is , Through multiplier 1 2—3, and becomes w3 X (a 3A (t) + b 3 B (t)). Further, the received signal xn (t) at antenna #n passes through multiplier 1 2—n , WnX (an A (t) + bn B (t)). The outputs of these multipliers 12-1, 1-2-2, 12-3, ..., 12-n are added by an adder 13 and the output is as follows:
  • the adaptive array radio base station 1 identifies the users A and B, and extracts the weights w1, w2, w3,..., Wn so that only signals from desired users can be extracted. Is calculated.
  • the weight vector control unit 11 extracts coefficients al, a2, a3,..., an in order to extract only the signal A (t) from the user A that should originally be talking.
  • bl, b2, b3,..., bn are regarded as constants, and the coefficient of signal A (t) is 1 as a whole and the coefficient of signal B (t) is 0 as a whole.
  • the weight vector control unit 11 solves the following simultaneous linear equations to obtain the weights wl, w2, w3, and w3 for which the coefficient of the signal A (t) is 1 and the coefficient of the signal B (t) is 0. ⁇ , Calculate wn in real time:
  • the output signal of the adder 13 is as follows:
  • FIG. 70 is a schematic diagram showing a frame configuration of a radio signal of the mobile phone.
  • the radio signal of a mobile phone is mainly composed of a preamble consisting of a signal sequence known to the radio base station and data (such as voice) consisting of a signal sequence unknown to the radio base station.
  • the signal sequence of the preamble includes a signal sequence of information for identifying whether the user is a desired user to talk to the radio base station.
  • the weight vector control unit 11 (FIG. 69) of the adaptive array radio base station 1 compares the training signal corresponding to the user A retrieved from the memory 14 with the received signal sequence, and generates a signal sequence corresponding to the user A. Weight vector control (determination of weight) is performed so as to extract a signal that seems to contain. The signal of user A extracted in this way is output from adaptive array radio base station 1 to the outside as output signal S RX (t).
  • the input signal S TX (t) from the outside enters the transmitting section 1T constituting the adaptive array radio base station 1, and the multipliers 15—1, 15—2, 15—13 , ⁇ , 1 5— n is given to one input.
  • the weights wl, w2, w3,..., Wn previously calculated based on the received signal by the weight vector control unit 11 are copied and applied to the other inputs of these multipliers, respectively. Is done.
  • the input signals weighted by these multipliers are passed through the corresponding switches 10-1, 10-2, 10-3,..., 10-n to the corresponding antennas # 1, # 2, # 3,..., Sent to #n and sent in area 3 in Figure 66.
  • FIG. 71 is a diagram showing an image of transmission and reception of a radio signal between the user A and the adaptive array radio base station 1 as described above. Electricity in reality In contrast to region 3 in Fig. 68, which shows the reach of the waves, as shown in virtual region 3a in Fig. 71, the mobile phone 4 of user A is targeted from the adaptive array radio base station 1. A state in which a radio signal is skipped with directivity is imagined.
  • the weights wl, w2, w3,..., wn must be strictly calculated, and the receiver 1R and the transmitter 1T need to equally weight the received signal and the transmitted signal.
  • the transmission characteristics of the transmission signal may change with respect to the reception signal, and the transmission signal may not be able to be skipped toward the target.
  • switches 10-1, 10-2, 10-3,..., 10-n and corresponding multiplier 1 of receiving section 1R The distance between 2—1, 1 2-2, 1 2-3,..., 1 2 _ n and the switches 1 0 —1, 10-2, 10—3,.
  • the distances between the corresponding multipliers 15-1, 15-2, 15-3, ..., 15-n of the transmitter 1T are usually not exactly the same. If there is a difference between these distances, there will be a difference in the amount of phase rotation and a difference in the amount of amplitude fluctuation between the received signal and the transmitted signal transmitted and received by each antenna, and the target user and the adaptive Radio signals cannot be transmitted and received with good directivity with the array radio base station.
  • Each of the paths between 0—3,..., 10—n and the corresponding multiplier of the receiving unit 1R includes necessary receiving circuits, and the path between these switches and the corresponding multiplier of the transmitting unit 1T.
  • Each of these paths contains the necessary transmitting circuitry. Therefore, depending on the characteristics of the amplifiers, filters, and other components that make up these circuits, a difference in the amount of phase rotation and a difference in the amount of amplitude fluctuation may occur between the received signal transmitted and received by each antenna and the transmitted signal. become.
  • the transmission characteristics such as the amount of phase rotation and amplitude fluctuation of the receiving circuit, and the amount of phase rotation and amplitude fluctuation of the transmitting circuit Measurement of transmission characteristics such as Need to compensate.
  • a measurement circuit for measuring these transmission characteristics was separately provided in the adaptive array radio base station, so that the circuit configuration of the adaptive array radio base station became larger, more complicated, and higher in cost. There was a problem.
  • An object of the present invention is to provide a radio apparatus capable of estimating and compensating for a difference in transmission characteristics between a receiving circuit and a transmitting circuit with a simple and inexpensive configuration without providing a special measuring circuit, and providing a calibration method thereof. Aim. Disclosure of the invention
  • the present invention relates to a wireless device capable of calibrating transmission characteristics, and includes n (n is an integer of n3) signal transmission systems, a control device, a signal processing circuit, a memory, and an arithmetic circuit. I have.
  • Each of the n signal transmission systems includes an antenna, and a transmission circuit and a reception circuit that share the antenna.
  • control device transmits a known signal from each of the transmission circuits of the n signal transmission systems, and receives the transmitted signal by a plurality of reception circuits of the n signal transmission systems. Control.
  • the signal processing circuit is provided for each signal transmission system, and performs a predetermined signal processing on a signal received by the reception circuit of the signal transmission system using a known signal.
  • the memory stores signals obtained by the signal processing circuits in a plurality of signal transmission systems.
  • the arithmetic circuit is configured to calculate a phase rotation amount and an amplitude fluctuation amount generated in the signal by passing the signal through each of the transmission circuits and the reception circuits of the n signal transmission systems based on the signal stored in the memory. Is calculated for at least one of the following.
  • the present invention provides a calibration for a wireless communication device having n (n is an integer of n ⁇ 3) signal transmission systems, each including an antenna, a transmission circuit and a reception circuit sharing the antenna.
  • the method includes a control step, a signal processing step, a storage step, a calculation step, and a calibration step.
  • the control step is to perform each of the transmission circuits of the n signal transmission systems during calibration.
  • the control is performed such that a known signal is transmitted from the receiver and the transmitted signal is received by a plurality of receiving circuits of the n signal transmission systems.
  • the signal processing step performs a predetermined signal processing on a signal received by the receiving circuit for each signal transmission system using a known signal.
  • the storing step stores signals obtained as a result of signal processing in a plurality of signal transmission systems.
  • the calculating step is based on the stored signal, and calculates the phase rotation amount and the amplitude fluctuation amount generated in the signal by passing the signal through each of the transmission circuit and the reception circuit of each of the n signal transmission systems. Calculate information about at least one.
  • the calibration step performs, based on the calculated information, calibration of at least one of a difference between a phase rotation amount and a difference between amplitude fluctuation amounts between each of the transmission circuits and reception circuits of the n signal transmission systems.
  • FIG. 1 is a schematic block diagram showing a main part of a first basic configuration of an adaptive array radio base station according to the present invention.
  • FIG. 2 is a schematic block diagram showing a modified example of the first basic configuration of the adaptive array radio base station according to the present invention.
  • FIG. 3 is a schematic block diagram showing a main part of a second basic configuration of the adaptive array radio base station according to the present invention.
  • FIG. 4 is a schematic block diagram showing a modified example of the second basic configuration of the adaptive array radio base station according to the present invention.
  • FIG. 5 is a diagram showing a phase rotation amount and amplitude fluctuation amount of a signal in each part of the first and second basic configurations.
  • FIG. 6 is a schematic diagram showing a mode of signal transmission and reception at the time of calibration in the adaptive array radio base station according to the first basic configuration of the present invention.
  • FIG. 7 is a flowchart showing the first half of the operation of the first basic configuration.
  • FIG. 8 is a flowchart showing the latter half of the operation of the first basic configuration.
  • FIG. 9 is a flowchart showing the first half of the operation of the modification of the first basic configuration.
  • FIG. 10 is a flowchart showing the latter half of the operation of the modification of the first basic configuration.
  • FIG. 11 is a schematic block diagram showing a modification of the first basic configuration of the present invention.
  • FIG. 12 is a flowchart showing the operation of the modification shown in FIG.
  • FIG. 13 is a schematic block diagram showing a further modified example of the first basic configuration of the present invention.
  • FIG. 14 is a flowchart showing the operation of the modification shown in FIG.
  • FIG. 15 is a block diagram showing Embodiment 1 of the first basic configuration of the present invention.
  • FIG. 16 is a flowchart showing the operation of the first embodiment shown in FIG.
  • FIG. 17 is a block diagram showing Embodiment 2 of the first basic configuration of the present invention.
  • FIG. 18 is a flowchart showing the operation of the second embodiment shown in FIG.
  • FIG. 19 is a schematic diagram showing a mode of transmitting and receiving signals during calibration in the adaptive array radio base station according to the second basic configuration of the present invention.
  • FIG. 20 is a flowchart showing the first half of the operation of the second basic configuration.
  • FIG. 21 is a flowchart showing the latter half of the operation of the second basic configuration.
  • FIG. 22 is a flowchart showing the first half of the operation of the modification of the second basic configuration.
  • FIG. 23 is a flowchart showing the latter half of the operation of the modification of the second basic configuration.
  • FIG. 24 is a schematic block diagram showing a modification of the second basic configuration of the present invention.
  • FIG. 25 is a flowchart showing the first half of the operation of the modification shown in FIG.
  • FIG. 26 is a flowchart showing the latter half of the operation of the modification shown in FIG.
  • FIG. 27 is a schematic block diagram showing a further modified example of the second basic configuration of the present invention.
  • FIG. 28 is a flowchart showing the first half of the operation of the modification shown in FIG.
  • FIG. 29 is a flowchart showing the latter half of the operation of the modification shown in FIG.
  • FIG. 30 is a block diagram showing Embodiment 3 of the second basic configuration of the present invention.
  • FIG. 31 is a flowchart showing the operation of the third embodiment shown in FIG.
  • FIG. 32 is a block diagram showing Embodiment 4 of the second basic configuration of the present invention.
  • FIG. 33 is a flowchart illustrating the operation of the fourth embodiment shown in FIG.
  • FIG. 34 is a block diagram showing a specific circuit configuration according to the fifth embodiment of the present invention.
  • FIG. 35 is a flowchart showing an operation of the fifth embodiment shown in FIG.
  • FIG. 36 is a flowchart showing a calculation routine of the operation in FIG.
  • FIG. 37 is a block diagram showing a specific circuit configuration of the sixth embodiment of the present invention.
  • FIG. 38 is a block diagram showing a specific circuit configuration according to the seventh embodiment of the present invention.
  • FIG. 39 is a flowchart comprehensively showing the operations of the sixth and seventh embodiments of the present invention.
  • FIG. 40 is a flowchart showing a calculation routine for the operation of FIG.
  • FIG. 41 is a flowchart showing a calculation routine for the operation of FIG.
  • FIG. 42 is a block diagram showing a specific circuit configuration according to the eighth embodiment of the present invention.
  • FIG. 43 is a block diagram showing a specific circuit configuration of Embodiment 9 of the present invention.
  • FIG. 44 is a flowchart showing a calculation routine of the operation of FIG.
  • FIG. 45 is a flowchart showing a calculation routine for the operation of FIG.
  • FIG. 46 is a block diagram showing a specific circuit configuration of the tenth embodiment of the present invention.
  • FIG. 47 is a flowchart showing the operation of the tenth embodiment shown in FIG.
  • FIG. 48 is a block diagram showing a specific circuit configuration of Embodiment 11 of the present invention.
  • FIG. 49 is a block diagram showing a specific circuit configuration of Embodiment 12 of the present invention.
  • FIG. 50 is a flowchart comprehensively showing the operations of Embodiments 11 and 12 of the present invention.
  • FIG. 51 is a block diagram showing a specific circuit configuration of Embodiment 13 of the present invention.
  • FIG. 52 is a block diagram showing a specific circuit configuration of Embodiment 14 of the present invention.
  • FIG. 53 is a block diagram showing a specific circuit configuration according to Embodiment 15 of the present invention.
  • FIG. 54 is a flowchart showing a calculation routine of the embodiment 15 shown in FIG. 53.
  • FIG. 55 is a block diagram showing a specific circuit configuration of Embodiment 16 of the present invention.
  • FIG. 56 is a diagram illustrating the first half of the operation of the seventeenth embodiment of the present invention.
  • FIG. 57 is a flowchart showing a calculation routine for the operation of FIG.
  • FIG. 58 is a flowchart showing the first half of the operation of Embodiment 18 of the present invention.
  • FIG. 59 is a flowchart showing the latter half of the operation of Embodiment 18 of the present invention.
  • FIG. 60 is a flowchart showing the first half of the operation of the modification of the embodiment 18 of the present invention.
  • FIG. 61 is a flowchart showing the latter half of the operation of the modification of Embodiment 18 of the present invention.
  • FIG. 62 is a flowchart showing the latter half of the operation of Embodiment 19 of the present invention.
  • FIG. 63 is a flowchart showing the first half of the operation of the twenty-second embodiment of the present invention.
  • FIG. 64 is a flowchart showing the latter half of the operation of Embodiment 20 of the present invention.
  • FIG. 65 is a block diagram showing a specific circuit configuration according to Embodiment 21 of the present invention.
  • FIG. 66 is a block diagram showing Embodiment 23 of the third basic configuration of the present invention.
  • FIG. 67 is a block diagram showing an embodiment 24 of the third basic configuration of the present invention.
  • FIG. 68 is a schematic diagram conceptually showing the basic operation of the adaptive array radio base station.
  • FIG. 69 is a schematic block diagram showing a configuration of an adaptive array wireless base station.
  • C FIG. 70 is a schematic diagram showing a frame configuration of a radio signal of a mobile phone.
  • FIG. 71 is a schematic diagram illustrating transmission and reception of a radio signal between an adaptive array radio base station and a user.
  • BEST MODE FOR CARRYING OUT THE INVENTION [Overview of the first basic configuration]
  • FIG. 1 is a schematic block diagram showing a main part of a first basic configuration of an adaptive array radio base station according to the present invention.
  • the basic configuration of FIG. 1 shows only those portions of the adaptive array radio base station related to the estimation of the amount of phase rotation and amplitude fluctuation and the calibration thereof related to the present invention.
  • the parts corresponding to the receiver 1R and the transmitter 1T for weighting the reception signal and the transmission signal shown in 69 are not shown. The same applies to the embodiments described below.
  • the signal processing circuit 20, a known signal to be sent from each antenna element during calibration (t), ..., Sj ( t), ..., S k (t), ⁇ , S n (t) is A memory 21 for storing each signal calculated beforehand and described later; a control device 22 for transmitting and receiving a control signal and data to and from the memory 21; Phase shifter, P Sj, PS k , PS n , attenuator ⁇ ,, provided between memory 21 and transmission circuit TX corresponding to element ⁇ , ATTj, ⁇ , ATT k , ⁇ ⁇ , ATT n and the transmission signal output device SG!, ⁇ , S Gj, ..., corresponding to the SG k, ..., and SG n, each of the antenna element ,..., SMj,..., SM k ,..., SM n , a phase extraction circuit PE ⁇ ..., PE 3 ,..., PE k , ⁇ , PE n and the amplitude extraction circuit, ⁇
  • Each of the transmission circuits TX..., TXj,..., TX k ,..., TX n is composed of, for example, a frequency converter, an amplifier, a filter, a spreader, etc.
  • the circuits existing on the path from the power unit SG to the corresponding antenna duplexer SW shall be generically called.
  • the illustration of each transmission circuit TX is omitted, and the line TX between each transmission signal output device SG and the corresponding antenna duplexer SW is the same. It is assumed that this indicates the presence of a transmission circuit.
  • each of the receiving circuits..., RXj,..., RX k ,..., RX n consists of, for example, frequency converters, amplifiers, filters, despreaders, etc., and is supported by the corresponding antenna duplexer SW.
  • the circuits existing on the path up to the received signal measuring device SM to be used are generically called.
  • the illustration of each reception circuit RX is omitted, and the line RX between each antenna duplexer SW and the corresponding reception signal measurement device SM is shown in FIG. It is assumed that such a receiving circuit is present.
  • phase shifters PS t ,..., P Sj,..., PS are..., PS n rotate the phase by 0 ⁇ ..., 0J,..., 0 k ,..., 0 n , and the signal Si (t) exp (i ⁇ J), ⁇ , Sj (t) exp (i ⁇ ), ⁇ , S k (t) exp (i 6 k), ⁇ ⁇ , S n (t ) exp (i ⁇ ⁇ ).
  • the amount of phase rotation of each phase shifter is controlled by a control signal from the control device 22.
  • phase-rotated signal corresponding Atsuteneta ⁇ ⁇ , ..., ATTj, ⁇ , ATT k, ⁇ , the ATT n, Alpha had ..., A,, ⁇ , A k, ⁇ ⁇ , a n only allowed to amplitude variations, signal At Si (t) exp (i Q), ..., Aj S "(t) exp (i ⁇ j ), ⁇ , a k S k (t) exp (i ⁇ k), it becomes..., and a n S n (t) exp (i 0 n).
  • the amplitude variation of each attenuator is controlled by a control signal from the controller 22.
  • Each of these antenna duplexers SW transmits a signal from a corresponding transmitting circuit TX according to a control signal from control device 22 to a corresponding antenna element ANT or a receiving circuit. Switch to selectively apply to any of RX.
  • the signal given from each of the antenna duplexers SW to the corresponding antenna element ANT is emitted as a radio signal.
  • the antenna duplexer SW is not connected to the antenna element side, the transmission signal entering the antenna duplexer is received by the corresponding receiving circuit RX as it is.
  • the signals received by each antenna element ⁇ ⁇ , ⁇ , AN ⁇ ”, ⁇ , ANT k) ..., ANT n are converted to the corresponding antenna duplexer SW t , ⁇ ⁇ , SWj, ..., SW k ) ..., via the SW n, corresponding to the received signal measurement equipment SMi, ⁇ , SMj, ⁇ , SM k, ⁇ , given to the SM n.
  • the antenna duplexer SW is not connected to the antenna element side, the signal from the corresponding transmitting circuit TX, not the antenna element, is given to the corresponding received signal measuring device SM. Become.
  • information extracted by the phase extraction circuit PE and the amplitude extraction circuit AE is provided to the memory 21 and stored therein.
  • the operation of n is controlled by a control signal from the control device 22.
  • a transmission signal weighted for each transmission system by a transmission unit (not shown) (see 1T in FIG. 69) is used instead of a known signal from the memory 21.
  • the signal is supplied to the phase shifter PS of the transmission system via a signal path not to be transmitted, and thereafter transmitted by the antenna element ANT via the attenuator ATT, the transmission signal output device SG, the transmission circuit TX, and the antenna duplexer SW.
  • the signal received by each antenna element ANT is sent to the received signal measuring device SM via the antenna duplexer SW and the receiving circuit RX of the transmission system.
  • the signal After receiving the signal, the signal is given not to the phase extraction circuit PE and the amplitude extraction circuit AE but to a receiver (not shown) (see 1R in FIG. 69) via a signal path (not shown), and a weighting process is performed. It is supplied to the outside as an output signal.
  • FIG. 2 is a schematic block diagram showing a modification of the first basic configuration of the adaptive array radio base station of FIG.
  • the configuration in FIG. 2 is the same as the first basic configuration shown in FIG. 1 except for the following points.
  • phase shifter PS and the attenuator ATT of each transmission system are provided in the signal processing circuit 20, but in the modification shown in FIG. 2, these phase shifter PS and the attenuator ATT are provided. It is provided outside the signal processing circuit 20, that is, between the transmission signal output device SG of the transmission system and the transmission circuit TX.
  • the location of the phase shifter PS and the attenuator ATT is not limited as long as the location is between the memory 21 and each antenna duplexer SW.
  • the other processing circuit 20 may be arranged outside the signal processing circuit 20. Further, the phase shifter PS and the attenuator ATT may be provided both inside and outside the signal processing circuit 20.
  • FIG. 3 is a schematic block diagram showing a main part of a second basic configuration of the adaptive array radio base station according to the present invention.
  • the second basic configuration shown in FIG. 3 is the same as the first basic configuration shown in FIG. 1 except for the following points.
  • FIG. 4 is a schematic block diagram showing a modification of the second basic configuration of the adaptive array radio base station of FIG.
  • the configuration in FIG. 4 is the same as the second basic configuration shown in FIG. 3, except for the following points.
  • phase shifter PS and the attenuator ATT of each transmission system are provided in the signal processing circuit 20, but in the modification shown in FIG. 4, these phase shifter PS and the attenuator ATT are provided. It is provided outside the signal processing circuit 20.
  • phase shifter PS and the attenuator ATT there is no restriction on the location of the phase shifter PS and the attenuator ATT as long as the location is between the memory 21 and each antenna duplexer SW.
  • One of the phase shifter PS and the attenuator ATT may be separately arranged in the signal processing circuit 20, and the other may be separately arranged outside thereof. Further, the phase shifter PS and the attenuator ATT may be provided both inside and outside the signal processing circuit 20.
  • RX Jk (t) Signal output from j-th transmission signal output device SGj Sj (t) 1S Signal measured by k-th reception signal measurement device SM k
  • a RX ⁇ The amount of phase rotation of the signal caused by the signal passing through the j-th receiving circuit RXj
  • a 0 TXj The amount of phase rotation of the signal caused by the signal passing through the j-th transmission circuit TXj
  • Aj Amplitude fluctuation of signal caused by signal passing through jth attenuator ATTj
  • ARXj Amplitude fluctuation of the signal caused by the signal passing through the j-th receiving circuit
  • ATXj amplitude fluctuation quantity of a signal caused by the j-th transmission circuit Taukai lambda signal passes
  • a jk The amplitude fluctuation of the signal caused by the signal passing from the j-th antenna duplexer SWj to the j-th antenna element ANTj, and from the j-th antenna element A NTj to the k-th antenna element AN T k Sum of the amplitude fluctuation of the signal caused by the propagation of the radio signal and the amplitude fluctuation of the signal caused by the signal passing from the k-th antenna element ANT k to the k-th antenna duplexer SW k
  • n Number of antenna elements (number of transmission systems)
  • FIG. 5 is a diagram showing, among the above-described various variables, the phase rotation amount and the amplitude fluctuation amount of the signal at corresponding portions of the first and second basic configurations described above.
  • FIG. 6 is a diagram schematically showing a signal transmission / reception mode at the time of calibration in the adaptive array radio base station according to the first basic configuration of the present invention shown in FIG.
  • the operating principle of the adaptive array radio base station according to the first basic configuration of the present invention will be described with reference to FIG.
  • a known signal Sj (t) corresponding to the j-th transmission system is output from the memory 21 under the control of the control device 22, and the phase shifter PS attenuator AT Tj of the transmission system, the transmission signal output device SGj, It is transmitted as a radio signal via the transmission circuit ⁇ ”, the antenna duplexer SW and the antenna element ANTj.
  • the transmitted radio signal is received by each of the other transmission systems except the j-th transmission system, for example, the antenna element ANT k and the reception circuit RX k of the k-th transmission system, and the received signal transmission device SM It is measured at k as the received signal RX Jk (t).
  • the switch of the j-th transmission-system antenna duplexer S Wj is switched by the control signal from the control device 22 so that the transmission circuit ⁇ ”is connected to the reception circuit RXj of the same transmission system.
  • the transmission signal of the transmission system is received by the reception circuit RXj of the transmission system itself, and is measured as the reception signal RXjj (t) by the reception signal measuring device SMj.
  • the signal RX jk (t) transmitted from the j-th transmission system and received and measured by the k-th transmission system is expressed by the following equation (1-1), and further transmitted by the j-th transmission system.
  • RX jk (t) A jk ATXj ARX k exp ⁇ i ( ⁇ jk + A ⁇ TXj + ⁇ ⁇ RX k ) ⁇ Sj (t) + n jk (t),
  • Equation (1-7) and (1-8) the values on the right-hand side of Equations (1-7) and (1-8) can be easily obtained by calculation.
  • Equations (1-7) and (1-8) are Y Jk and X Jk , respectively, the following equations (1-9) and It is expressed as in equation (1-10).
  • Y jk 0 jk + A ⁇ TXj + ⁇ ⁇ RX k ,
  • ⁇ 12 ⁇ 12 + ⁇ 0TX x + A 0RX 2
  • RX ⁇ ⁇ ⁇ ⁇ + ⁇ 0RX n- (1-11)
  • Xi2 log e [A 12 ] + log e [ATX + log e [ARX 2 ]
  • X m log e [ATX n ] + log e [ARX n ]-(1-12)
  • a Jk and A kJ Are the amplitude fluctuations of signals passing through the exact same circuit or propagation path, although their directions of propagation are opposite, and their values agree with each other (where j ⁇ k).
  • the sum of the equations constituting each simultaneous linear equation The number ⁇ 2 must be at least the same as the number of unknown variables ( ⁇ 2 + 3 ⁇ ) 2. That is, when ⁇ is 3 or more, ⁇ 2 ( ⁇ 2 + 3 ⁇ ) / 2 is satisfied. Therefore, if the number of signal transmission systems ⁇ is 3 or more, the simultaneous linear equations (1 1 1 1) and (1 In each of 1) and 2), the number of equations exceeds the number of unknown variables, and it becomes possible to obtain the values of all unknown variables in both simultaneous linear equations.
  • the amount of phase rotation ⁇ TX of the signal and the amount of amplitude variation AT ⁇ '' and the amount of phase rotation ⁇ RXj and the amount of amplitude variation ARXj of the signal caused by passing through the receiving circuit RXj can be calculated. it can.
  • the information of the difference in the amount of phase rotation between the receiving circuit and the transmission circuit for each transmission system estimated by such calculation is given to the phase shifter of the transmission system, and the reception circuit for each transmission system is provided.
  • the amount of phase rotation between the received signal and the transmission signal and the amount of amplitude fluctuation for each transmission system can compensate for the difference between the two, and can calibrate the transmission characteristics.
  • the natural logarithm of the signal obtained by dividing the measured signal RX Jk (t) by the known signal Sj (t) is calculated and divided into an imaginary part and a real part.
  • the operation of the adaptive array radio base station according to the present invention is also possible.
  • the principle can be realized. That is, even if the I signal and the Q signal output from the quadrature detection circuit are used, the phase component and the amplitude component of the received signal can be easily extracted.
  • the signal ⁇ RX jk (t) Sj (t) ⁇ on the right side of Equation (1-3) obtained by dividing the measured received signal by the known signal is input to the quadrature detection circuit, and the I signal and Q It is assumed that the signal is separated from the signal.
  • the amplitude value of the input signal of the quadrature detection circuit is A, it is expressed by the following equation.
  • the quadrature detection circuit Even if the quadrature detection circuit is used, the phase component and the amplitude component can be easily separated.
  • the technique for extracting the phase component and the quadrature component using the quadrature detection circuit is a well-known technique.
  • the received signal can be separated into an equation relating to the phase and an equation relating to the amplitude.
  • the phase rotation difference and the amplitude between the transmitting circuit and the receiving circuit are calculated by the same procedure as described above.
  • a variation difference can be calculated.
  • the technique of the quadrature detection circuit described above can be used to extract the phase component and the amplitude component from a signal obtained by dividing a received signal by a known signal.
  • the adaptive array radio base station of the present invention estimates and calibrates the transmission characteristics as described above for several hours. Every other day, several times a day.
  • FIG. 7 and FIG. 8 are flowcharts when the operation of the above-described first basic configuration is realized as software using a microcomputer.
  • step S1-1 when a phase and amplitude error estimation command is issued at a predetermined timing (or by an external command), the above-described calibration operation is started.
  • a known signal (t) corresponding to the first transmission system is output from the memory 21.
  • step S1-6 the received signal RX U (t) is measured by the received signal measuring device SA ⁇ of the first transmission system based on the above equation (1-1), and the equation (1- Calculate RX tract(t) / S, (t) by 3) and separate it into imaginary part and real part by formulas (1-6), (1-7), (1-8).
  • RX "(t) / S 1 the phase component of (t) are extracted as shown in equation (1- 9) Y" stored in the memory 2 1 as, RXu (t) / S, the amplitude of the (t)
  • the components are extracted as in equation (111) and stored in memory 21 as X tract.
  • the antenna duplexer is switched to connect the antenna element ⁇ ⁇ .
  • step S1-6 the radio signal transmitted from the antenna element ANT of the first transmission system is measured by the reception signal measuring device SM k of the k-th transmission system, and RXlk (t) is calculated.
  • the phase component Y lk and the amplitude component X lk of RX lk (t) / S, (t) are calculated by equations (1-6) to (1-10) and stored in the memory 21.
  • k has reached n
  • step S1-13 the calculated difference between the amount of phase rotation between the transmission circuit and the reception circuit for each transmission system and the ratio of the amount of amplitude variation are set to (beforehand set to 0) Set to phase shifter PS and attenuator ATT (set to 1 in advance). As a result, at the time of transmission in each transmission system, the above difference in transmission characteristics is compensated for, and calibration is performed.
  • FIGS. 9 and 10 are flow charts showing a modification of the operation shown in FIGS. 7 and 8 described above.
  • step S1-2a such a setting is not made, and the phase rotation amount ⁇ "of the phase shifter P Sj and the amplitude fluctuation amount ⁇ " of the attenuator A TTj at that time are measured. It is stored in the memory 21.
  • step S1-13 for each transmission system, the calculated difference between the amount of phase rotation between the transmission circuit and the reception circuit and the ratio of the amount of amplitude fluctuation are compared with the corresponding transmission system.
  • the phase shifter set to 0 in advance and the attenuator set to 1 in advance calibration that compensates for the phase rotation amount difference and amplitude fluctuation amount difference is performed.
  • steps S1-13a the initial values of the file shifter and the attenuator measured in step S1-2a of FIG. The calibration is performed by reading these initial values and compensating for these initial values with the ratio of the calculated phase rotation amount and the amplitude fluctuation amount.
  • FIG. 11 is a modification of the first basic configuration of the present invention shown in FIG. 1, and is a case where only the phase rotation amount difference between the transmission circuit and the reception circuit of each transmission system is estimated.
  • FIG. 2 is a block diagram showing a configuration of a signal processing circuit 20 of the adaptive array wireless base station.
  • FIG. 12 is a flowchart when the operation of the circuit shown in FIG.
  • FIG. 11 is realized as software using a microcomputer, except that the operation related to the amplitude component is omitted. Since the operation flow is the same as that of the first basic configuration shown in FIGS. 7 and 8, the description of FIGS. 7 and 8 will be used, and the description of FIG. 12 will be omitted.
  • FIG. 13 shows a further modified example of the first basic configuration of the present invention shown in FIG. 1, in which only the amplitude variation difference between the transmission circuit and the reception circuit of each transmission system is estimated.
  • FIG. 2 is a block diagram showing a configuration of a signal processing circuit 20 of the adaptive array radio base station. The circuit configuration in Fig. 13 is shown in Fig.
  • FIG. 14 is a flowchart when the operation of the circuit shown in FIG. 13 is realized by software using a microcomputer. Except for omitting the operation related to the phase component, FIG. Since this is the same as the operation flow chart of the first basic configuration shown in FIG. 8 and FIG. 8, the description of FIG. 14 is omitted with reference to the description of FIG. 7 and FIG.
  • FIG. 15 is a block diagram showing Embodiment 1 which is a specific circuit configuration of the signal processing circuit 20 of the adaptive array radio base station according to the first basic configuration of the present invention shown in FIG. .
  • FIG. 16 is a flowchart illustrating the operation of the first embodiment shown in FIG. 15, and corresponds to the first half of the operation of the first basic configuration shown in FIG.
  • the content of the signal processing performed in step S1-6 of FIG. 7 is specifically described by step S1-6d of FIG. That is, in step S 1 — 6 d in FIG. 16, the natural logarithm of RX jk (t) Sj (t) is calculated, and its imaginary and real parts are extracted to obtain the phase component equation (1 ⁇ 1). 9) and the equation (1-10) of the amplitude component are obtained.
  • FIG. 17 is a block diagram showing Embodiment 2 which is another specific circuit configuration of the signal processing circuit 20 of the adaptive array radio base station according to the first basic configuration of the present invention shown in FIG. It is.
  • the one subtractor SAj calculates the natural logarithm of the known transmission signal Sj (t) of the transmission system from the imaginary part of the given received signal, and calculates the imaginary part I m [1 og e ⁇ Sj (t) ⁇ ] Is subtracted.
  • the other subtracter SB j calculates the natural logarithm Re [1 og e (Sj ( t) ⁇ ] is subtracted.
  • the received signal is divided by a known signal prior to separation into an imaginary part and a real part, and the order of the operations is Is around.
  • circuit configuration shown in Fig. 17 is also considered equivalent to the first basic configuration shown in Fig. 1.
  • FIG. 18 is a flowchart for explaining the operation of the second embodiment shown in FIG. 17, and corresponds to the first half of the operation of the first basic configuration shown in FIG.
  • the content of the signal processing performed in step S1_6 of FIG. 7 is specifically described by step S1-6e of FIG.
  • step S16 of FIG. 18 the imaginary part and the real part of the natural logarithm of RX jk (t) are calculated, and the imaginary part and the real part of the natural logarithm of Sj (t) are calculated.
  • Embodiments 1 and 2 shown in FIGS. 15 to 18 are effective when the SZN ratio of the received signal is good, and have a relatively small signal processing amount as compared with other embodiments described later.
  • FIG. 19 is a diagram schematically showing an aspect of signal transmission and reception at the time of calibration in the adaptive array wireless base station according to the second basic configuration of the present invention shown in FIG.
  • the operating principle of the adaptive array radio base station according to the second basic configuration of the present invention will be described with reference to FIG.
  • memory A known signal Sj (t) corresponding to the j-th transmission system is output from the control device 22 under the control of the control device 22, and the phase shifter PS "attenuator A of the transmission system concerned is output.
  • TT is transmitted as a radio signal via the transmission signal output device SGj, the transmission circuit TX, the antenna duplexer SWj, and the antenna element ⁇ ”.
  • the transmitted radio signal is received by each of the other transmission systems except the j-th transmission system, for example, the antenna element ANT k and the reception circuit RX k of the k-th transmission system, and the received signal measurement device SM It is measured at k as the received signal R jk (t).
  • the adaptive array radio base station according to the second basic configuration shown in FIG. 19 is different from the adaptive array radio base station according to the first basic configuration shown in FIG.
  • the antenna duplexer SW is not switched so that the transmission circuit TX and the reception circuit RX are connected.
  • the signal RX Jk (t) transmitted from the j-th transmission system and received and measured by the k-th transmission system is expressed by the following equation ( 1-1 13).
  • the transmission system of the first to n-th is sequentially switched, and each time, the measured signal RX Jk (t) received by all the first to n-th transmission systems except the transmission system which is transmitting is It is expressed by the following equation (1-14).
  • RX jk (t) A jk ATXj ARX k exp ⁇ i ( jk + A ⁇ ⁇ , + ⁇ 0RX k ) ⁇ Sj (t) + n jk (t)
  • RXj k (t) A jk ATXj ARX k exp ⁇ i ( ⁇ jk + ⁇ ⁇ TXj + ⁇ ⁇ RX k ) ⁇ Sj (t) + n jk (t)
  • equation (1-19) which is an equation relating to phase
  • equation (1-20) which is an equation relating to amplitude
  • RX jk (t) in these equations is the actually measured signal, and Sj (t) is a known signal. Therefore, the value on the right side of each of Eqs. (1-19) and (1-20) can be obtained by calculation.
  • X jk log e [Aj k ] + log e [ATXj] + log e [ARX k ],
  • V jk (log e [Aj k ] -log e [A kj ]) + (log e [ARX k ] -log e [ATX k ])
  • 1 og e [A Jk ] and 1 og e [A kJ ] are the amplitude fluctuations of signals passing through exactly the same circuit and propagation path, although the directions of propagation are opposite, respectively. are equal to each other (where j) k). That is, the following equation (1-26) holds.
  • the simultaneous linear equations constitute the total number of equations eta (.eta. 1) Bruno 2 of at least an unknown Must be the same as the number of variables ⁇ . That is, when ⁇ is 3 or more, ⁇ ( ⁇ -1) 2 ⁇ holds, and if the number of transmission systems ⁇ is 3 or more, each of the simultaneous linear equations (1-31) and (1-32) In, the number of equations exceeds the number of unknown variables, and it becomes possible to find the values of all unknown variables in both simultaneous linear equations.
  • FIG. 20 and FIG. 21 are flowcharts when the operation of the above-described second basic configuration is realized by software using a microcomputer.
  • step S 2- 1 when a phase and amplitude error estimation command is issued at a predetermined timing (or by an external command), the above-described calibration operation is started.
  • a known signal St (t) corresponding to the first transmission system is output from the memory 21.
  • step S2-4 the radio signal transmitted from the antenna element ANT ⁇ of the first transmission path is measured for the reception signal of the k-th transmission system.
  • Determine the RX lk (t) by measuring with the device SM k and calculate the phase of RX lk (t) / S x (t) according to the equations ( 1-1-3 ) to ( 1-2-2 ) as described above.
  • the component Ylk and the amplitude component Xlk are calculated and stored in the memory 21 .
  • j is incremented by 1 through steps S2—15 and S2—16, and the above-described Z and Y Jk calculations are repeated.
  • step S2-18 the calculated difference in the amount of phase rotation and the difference in the amount of amplitude fluctuation between the transmitting circuit and the receiving circuit for each transmission system is set to (preset to 0) for the transmission system.
  • Set to the phase shifter and the attenuator set to 1 in advance.
  • FIGS. 22 and 23 are flowcharts showing modified examples of the operations shown in FIGS. 20 and 21 described above.
  • the operations shown in FIGS. 22 and 23 are the same as the operations shown in FIGS. 20 and 21 except for the following, and the description of the common operations will not be repeated.
  • step S2-2a such a setting is not performed in step S2-2a, and the phase rotation amount of the phase shifter PS and the amplitude fluctuation amount of the attenuator ⁇ ⁇ ⁇ ”at that time are not changed”.
  • step S2-18 the calculated difference in the amount of phase rotation and the difference in the amount of amplitude variation between the transmission circuit and the reception circuit is corresponded for each transmission system.
  • phase shifter preset By setting the phase shifter preset to 0 and the attenuator preset to 1 in the transmission system, calibration is performed to compensate for the above difference.
  • the initial values and of the phase shifter and the attenuator measured in step S 2-2 a of FIG. 22 and stored in the memory 21 are read out, and these initial values are read.
  • Calibration is performed by correcting the value with the calculated difference in phase rotation and difference in amplitude fluctuation.
  • FIG. 24 shows a modification of the second basic configuration of the present invention shown in FIG. 3, in which only the phase rotation amount difference between the transmission circuit and the reception circuit of each transmission system is estimated.
  • FIG. 3 is a block diagram illustrating a configuration of a signal processing circuit 20 of the adaptive array wireless base station.
  • FIG. 25 and FIG. 26 are flowcharts when the operation of the circuit shown in FIG.
  • FIGS. 20 and 21 are the same as the flowcharts shown in FIGS. 20 and 21, the description of FIGS. 20 and 21 is omitted, and the description of FIGS. 25 and 26 is omitted.
  • FIG. 27 shows a further modified example of the second basic configuration of the present invention shown in FIG. 3, in which only the amplitude variation difference between the transmission circuit and the reception circuit of each transmission system is estimated.
  • FIG. 2 is a block diagram showing a configuration of a signal processing circuit 20 of an adaptive array radio base station.
  • FIG. 28 and FIG. 29 are flowcharts when the operation of the circuit shown in FIG. 27 is realized by software using a microcomputer, and it is noted that the operation related to the phase component is omitted. Except for this, the flow chart is the same as the flow charts shown in FIGS. 20 and 21, and therefore, the description of FIGS. 20 and 21 will be used, and the description of FIGS. 28 and 29 will be omitted.
  • FIG. 30 is a block diagram showing Embodiment 3 which is a specific circuit configuration of the signal processing circuit 20 of the adaptive array radio base station according to the second basic configuration of the present invention shown in FIG.
  • the received signal measurement device SMj The measured received signal is divided by the known transmission signal Sj (t) of the transmission system.
  • step S2-6d is a flowchart for explaining the operation of the third embodiment shown in FIG. 30, and corresponds to the first half of the operation of the second basic configuration shown in FIG.
  • the content of the signal processing performed in step S2-5 of FIG. 20 is specifically described by step S2-6d of FIG. That is, in step S2-6d in FIG. 31, the natural logarithm of RX Jk (t) Sj (t) is calculated, and its imaginary part and real part are extracted to obtain the phase component equation (1-1). 21) and the amplitude component equation (1-22) are obtained.
  • FIG. 32 is a block diagram showing Embodiment 4 which is another specific circuit configuration of the signal processing circuit 20 of the adaptive array radio base station according to the second basic configuration of the present invention shown in FIG. is there.
  • the signal processing circuit SP for each transmission system calculates the natural logarithm of the received signal measured by the received signal measuring device SMj, and extracts the imaginary part thereof. Then, it is given to one subtractor S Aj, and the real part is extracted and given to the other subtractor SB j.
  • the one subtractor SAj calculates the natural logarithm of the known transmission signal Sj (t) of the transmission system from the imaginary part of the given received signal, and calculates the imaginary part I m [1 og e ⁇ Sj (t) ⁇ ] Is subtracted.
  • the other multiplier SB is a real part Re [1 og e ⁇ Sj (tj) of the real logarithm of the known transmission signal Sj (t) of the transmission system calculated from the real part of the given received signal. ) ⁇ ] Is subtracted.
  • the result of subtraction of the imaginary part by one of the above subtractors SAj is extracted as Y mJ , and Form the equation relating to the phase of ( 1-2-1) , and extract the result of the subtraction of the real part by the other subtractor SBj as Xmj , and form the equation relating to the amplitude of equation ( 1-2-2 ) .
  • Embodiment 4 of FIG. 32 after separating the imaginary part and the real part of the received signal first, the imaginary part and the real part of the known signal S j (t) are respectively subtracted. are doing.
  • the received signal is divided by a known signal prior to separation of the imaginary part and the real part, and The order is mixed.
  • the equations represented by the equations (1-21) and (1-22) are eventually obtained. Therefore, the circuit configuration shown in FIG. It is considered equivalent to the configuration.
  • FIG. 33 is a flowchart for explaining the operation of the fourth embodiment shown in FIG. 32, and corresponds to the first half of the operation of the second basic configuration shown in FIG.
  • the content of the signal processing performed in step S2-5 of FIG. 20 is specifically described by step S2-5e of FIG. That is, in Sutetsu flop S 2-5 e in FIG. 3 3, from the imaginary part and real part despite computes the natural logarithm of RX Jk (t), the imaginary part and despite computes the natural logarithm of S j (t) Real
  • the equation (1-121) of the phase component and the equation (1-22) of the amplitude component are obtained.
  • Embodiments 3 and 4 shown in FIGS. 30 to 33 are effective when the S / N ratio of the received signal is good, and are relatively small compared to other embodiments described later.
  • signal processing it is possible to estimate the phase rotation difference and the amplitude fluctuation difference between the transmission circuit and the reception circuit of each transmission system.
  • FIG. 34 is a block diagram showing a specific circuit configuration of the fifth embodiment of the present invention.
  • Embodiment 5 shown in FIG. 34 is obtained by adding a time averaging circuit to Embodiment 1 of the first basic configuration of the present invention shown in FIG. 15.
  • the known signal S ”(t) corresponding to the j-th transmission system is read from the memory 21 and transmitted via the antenna element ANTj.
  • the transmission signal from the transmission circuit TXj receives the transmission signal of the transmission system itself. It is measured as the received signal RXjj (t) in the SM.
  • the signal RX Jk (t) transmitted from the j-th transmission system and received and measured by the k-th transmission system is calculated by the equation (1-1) described above with reference to the first basic configuration in FIG.
  • the transmission system for transmitting the signal is sequentially switched from the first transmission system to the n-th transmission system, and each time, the signal RX Jk (t ) Is represented by the equation (1-2) described above. Note that in these equations, n jk (t) represents noise.
  • X jk log e [Aj k ] + log e [ATXj] + log e [ARX k ],
  • the phase difference information between the receiving circuit and the transmitting circuit for each transmission system estimated in this way is given to the fuse shifter of the transmission system, and the amplitude variation information for each transmission system is given to the attenuator of the transmission system.
  • the transmission characteristics between the reception signal and the transmission signal can be calibrated for each transmission system.
  • FIG. 35 is a flowchart for explaining the operation of the fifth embodiment shown in FIG. 34, and corresponds to the operation of the first embodiment shown in FIG.
  • FIG. 35 is different in that a time-average operation represented by Av e [ ⁇ ] is added in step S1-6f. That is, by extracting the imaginary part and real part of 1 og e [Ave ⁇ RX Jk (t) Sj (t) ⁇ ] at step S 1-6 f in FIG. 35, the phase component equation ( 2-6) and the equation of the amplitude component (2-7) are obtained.
  • FIG. 36 is a flowchart showing in detail the calculation routine of step S1-6f in FIG.
  • the temporary variable Tmp is set to 0, and the accumulation of RX jk (t) Sj (t) is performed until time T is reached.
  • the cumulative The calculation result is divided by T to calculate the time average Tm ⁇ / T, and the natural logarithm is calculated to extract the imaginary part Y jk and the real part X jk.
  • step S1-6f The other processes except for step S1-6f are the same as those in the flowchart of FIG. 16, and a description thereof will be omitted.
  • Embodiment 5 of the present invention terms including noise components can be eliminated by providing a time-average circuit for each transmission system, so that even if the received signal has many noise components, the SZN ratio Even if the noise is poor, it is possible to suppress the estimation error due to the influence of noise, and it is possible to satisfactorily estimate the phase difference and amplitude fluctuation information of each transmission system.
  • FIG. 37 is a block diagram showing a specific circuit configuration of the sixth embodiment of the present invention.
  • Embodiment 6 shown in FIG. 37 differs from Embodiment 1 of the first basic configuration of the present invention shown in FIG. 15 in that a time averaging circuit is added at a different position from Embodiment 5 in FIG. It is.
  • FIG. 38 is a block diagram showing a specific circuit configuration of the seventh embodiment of the present invention.
  • the signal processing circuit S Pj in the first embodiment 1 of the present invention shown in FIG. 15 is replaced by a logarithmic calculation circuit LCj, a time average circuit TAj, and an IZQ separation circuit I. ⁇ 3 ”.
  • the time averaging circuit TAj is applied to the equation (2-8). Perform time average operation.
  • the first and second terms on the left side of Equation (2-8) are constants with respect to time, and the term including the noise component N jk (t) becomes 0 by time average. (2-11) is obtained.
  • FIG. 39 is a flowchart comprehensively describing the operations of Embodiments 6 and 7 shown in FIGS. 37 and 38, and corresponds to the operations of Embodiment 1 shown in FIG.
  • FIG. 40 is a flowchart showing a calculation routine according to the sixth embodiment corresponding to step S 1-6 g of the flowchart of FIG. 39.
  • FIG. 41 is a flowchart showing step S 1 of the flowchart of FIG.
  • FIG. 21 is a flowchart illustrating a calculation routine according to a seventh embodiment, corresponding to —6 g.
  • step S1-6g the imaginary part and the real part of log e ⁇ RX Jk (t) / Sj (t) ⁇ are separated, time averaged, and phase The minute Y jk and the amplitude component x jk are obtained.
  • Y jk and X Jk are set to 0, and the imaginary part and the real part of 1 og e ⁇ RX Jk (t) / S j (t) ⁇ are set until time T is reached. Is accumulated. Then, the accumulated result is divided by T to calculate a time average Y jk / T, X Jk ZT, and output them as a phase component Y Jk and an amplitude component X Jk . Except for this step S 1-6 g, other processes in the sixth embodiment are the same as those in the first embodiment in FIG.
  • step S1-6g after time averaging log e ⁇ RX jk (t) / Sj (t) ⁇ , the imaginary part and the real part are separated and the phase component Y Jk And the amplitude component X Jk .
  • a temporary one variable T BP 0 Distant performs accumulation to reach the time T 1 og e ⁇ RX Jk ( t) Sj (t) ⁇ . Then, the accumulated result is divided by T to calculate a time average T réelle p T, and the imaginary part is extracted as a phase component Y Jk and the real part is extracted as an amplitude component X Jk . Except for 6 g, other processes in the seventh embodiment are the same as those in the first embodiment in FIG.
  • FIG. 42 is a block diagram showing a specific circuit configuration of the eighth embodiment of the present invention.
  • the embodiment 8 shown in FIG. 42 differs from the embodiment 6 shown in FIG. 37 in that the division by the known signal Sj (t) is not performed on the measured received signal RX jk ( The only difference is that the logarithm is calculated and separated into an imaginary part and a real part, and the final step is performed on the time-averaged received signal.
  • FIG. 43 is a block diagram showing a specific circuit configuration of Embodiment 9 of the present invention.
  • the embodiment 9 shown in FIG. 43 differs from the embodiment 7 shown in FIG. 38 in that the division by the known signal S ”(t) is performed on the measured received signal RX jk (t). The only difference is that the natural logarithm is calculated, time averaged, and the final step is performed on the received signal separated into the imaginary part and the real part.
  • the operations of Embodiments 8 and 9 shown in FIGS. 42 and 43 are also comprehensively shown by the flow chart of FIG. Fig. 44 shows the flow chart of Fig. 39.
  • FIG. 45 is a flowchart showing a calculation routine according to the eighth embodiment corresponding to step S1-6g.
  • FIG. 45 is a flowchart showing the calculation according to the ninth embodiment corresponding to step S1-6g in the flowchart in FIG. It is a flowchart which shows a routine.
  • step S1-6g time averaging is performed after separating the imaginary part and the real part of log e ⁇ RX Jk (t) ⁇ , and then the log e ⁇
  • the phase component Y jk and the amplitude component X jk are obtained by subtracting the average values of the imaginary and real parts of Sj (t) ⁇ .
  • Y jk and X Jk are set to 0, and the imaginary part and the real part of 1 og e ⁇ RX Jk (t) ⁇ are accumulated until time T is reached. U. Then, the accumulated result is divided by ⁇ to calculate a time average Y Jk ZT, x Jk ZT, from which the imaginary part and real number of 1 og e ⁇ Sj (t) ⁇ stored in the memory 21 are calculated. The average value of each part is subtracted, and output as the phase component Y jk and the amplitude component X jk . Except for this step S1-6g, other processes in the eighth embodiment are the same as those in the first embodiment in FIG.
  • step S1-6g after performing time averaging of log e ⁇ RX Jk (t) ⁇ , the result is separated into an imaginary part and a real part.
  • the phase components Y Jk and X jk are obtained by subtracting the imaginary part and the real part of the average value of e ⁇ Sj (t) ⁇ , respectively.
  • a temporary variable Tmp is set to 0, and 1 og e ⁇ RX Jk (t) ⁇ is accumulated until time T is reached. Then, the accumulated result is divided by T to calculate a time average TmpZT, from which the imaginary part and the real part of the average value of 1 og e ⁇ Sj (t) ⁇ stored in the memory 21 are respectively calculated. By subtraction, a phase component Y jk and an amplitude component X jk are obtained.
  • the term including the noise component can be eliminated by providing the time averaging circuit for each transmission system, so that the S / N ratio of the received signal is low.
  • the estimation error due to the influence of noise it is possible to satisfactorily estimate the phase difference and amplitude fluctuation information of each transmission system.
  • FIG. 46 is a block diagram showing a specific circuit configuration of the tenth embodiment of the present invention.
  • Embodiment 10 shown in FIG. 46 is a modification of the tenth embodiment of the present invention shown in FIG.
  • a time averaging circuit is added to the third embodiment of the second basic configuration.
  • the operation principle of the adaptive array radio base station according to the tenth embodiment will be described.
  • the antenna duplexer is not switched so that the transmission circuit and the reception circuit are connected in each transmission system.
  • the signal RX Jk (t) transmitted from the j-th transmission system and received and measured by the k-th transmission system is calculated by the equation (1-13) described earlier with reference to the second basic configuration in FIG.
  • the transmission system for transmitting the signal is sequentially switched from the first transmission system to the n-th transmission system, and each time, the signal is received and measured by all the transmission systems from the first transmission system to the n-th transmission system except the transmitting transmission system
  • the signal RX jk (t) is expressed by the equation (1-14) explained earlier. In these equations, n Jk (t) represents noise.
  • Vjk -X kj k - ⁇ ”,
  • the phase difference information between the receiving circuit and the transmitting circuit for each transmission system estimated in this way is given to the phase shifter of the transmission system, and the amplitude fluctuation amount information for each transmission system is given to the attenuator of the transmission system.
  • the transmission characteristics between the received signal and the transmitted signal can be calibrated for each transmission system.
  • FIG. 47 is a flowchart for explaining the operation of the tenth embodiment shown in FIG. 46, and corresponds to the operation of the third embodiment shown in FIG. In contrast to the flowchart of FIG. 31, FIG. 47 is different in that a time averaging operation represented by AV e [ ⁇ ] is added in step S2-5f. That is, at step S2-5f in FIG. 47, the imaginary part and real part of log e [Ave ⁇ RX Jk (t) / Sj (t) ⁇ ] are extracted to obtain the phase component equation. (2-18) and the equation (1-19) for the amplitude component are obtained.
  • step S2-5f is the same as the calculation routine of FIG. 36 described in relation to the fifth embodiment, and a description thereof will be omitted.
  • step S2-5f Except for step S2-5f, the other processes are the same as those in the flowchart of FIG. 31, and a description thereof will be omitted.
  • a term including a noise component can be eliminated by providing a time averaging circuit for each transmission system. Even if the noise component is large and the SZN ratio is poor, the estimation error due to the noise can be suppressed, and the phase difference and amplitude fluctuation information of each transmission system can be satisfactorily estimated.
  • FIG. 48 is a block diagram showing a specific circuit configuration of Embodiment 11 of the present invention.
  • Embodiment 11 shown in FIG. 48 is a modification of the present invention shown in FIG.
  • Embodiment 3 of the first basic configuration a time averaging circuit is applied to a position different from that of Embodiment 10 in FIG.
  • FIG. 49 is a block diagram showing a specific circuit configuration of Embodiment 12 of the present invention.
  • the signal processing circuit SP ⁇ in Embodiment 3 of the second basic configuration of the present invention shown in FIG. 30 is replaced by a logarithmic calculation circuit LCj and a time averaging circuit ⁇ ”and I / Q separation circuit Replaced with I Qj.
  • both sides of the above equation (1-2) are divided by the known signal Sj (t) by the multiplier MPj, and the natural logarithm of both sides is calculated by the logarithmic calculation circuit LCj to perform Tiller expansion.
  • the result of the Tiller expansion is the above equation (218).
  • the time averaging circuit TAj applies the time averaging circuit TAj to Equation (2-8). Perform averaging.
  • the first and second terms on the left side of Equation (2-8) are constants with respect to time, and the term including the noise component N jk (t) becomes 0 by time average. 2—1 1) is obtained.
  • FIG. 50 is a flowchart for comprehensively explaining the operation of the embodiments 11 and 12 shown in FIGS. 48 and 49, and is a flowchart of the embodiment 3 shown in FIG. 31. Operation is supported.
  • step S2-5g in the case of the embodiment 12 is the same as the calculation routine of FIG. 40 described above in relation to the embodiment 6, and therefore the description is omitted.
  • the calculation routine of step S2-5g in the case of Embodiment 11 is the same as the calculation routine of FIG. 41 described above in relation to Embodiment 7, and thus the description is omitted.
  • Embodiments 11 and 12 of the present invention by providing a time averaging circuit for each transmission system, even if the SZN ratio of the received signal is poor, the phase difference due to the influence of noise can be obtained. The information estimation error can be suppressed.
  • FIG. 51 is a block diagram showing a specific circuit configuration of Embodiment 13 of the present invention.
  • the embodiment 13 shown in FIG. 51 differs from the embodiment 11 shown in FIG. 48 in that the division by the known signal (t) is performed on the measured received signal RX Jk (t). The only difference is that the natural logarithm is calculated and separated into an imaginary part and a real part, and the final step is performed on the time-averaged received signal.
  • FIG. 52 is a block diagram showing a specific circuit configuration of Embodiment 14 of the present invention.
  • the embodiment 14 shown in FIG. 52 is different from the embodiment 12 shown in FIG. 49 in that the division by the known signal S j (t) is performed by dividing the measured reception signal RX jk (t) However, the only difference is that the natural logarithm is calculated, time-averaged, and performed at the final stage on the received signal separated into the imaginary part and the real part.
  • Embodiments 13 and 14 shown in FIGS. 51 and 52 are also the same as those in FIGS. Is comprehensively shown by the flow chart of FIG.
  • step S2-5g in the case of the thirteenth embodiment is the same as the calculation routine of FIG. 44 described above in relation to the eighth embodiment, and thus the description is omitted.
  • the calculation routine of step S2-5g in the case of the fourteenth embodiment is the same as the calculation routine of FIG. 45 described above with reference to the ninth embodiment, and thus the description is omitted.
  • the thirteenth and fourteenth embodiments of the present invention by providing the time averaging circuit for each transmission system, even if the S / N ratio of the received signal is low, the position due to the influence of noise is reduced. An estimation error of the phase difference and the amplitude variation information can be suppressed.
  • FIG. 53 is a block diagram showing a specific circuit configuration of Embodiment 15 of the present invention.
  • the operation principle of the adaptive array radio base station according to Embodiment 15 will be described below.
  • the transmission signal from the transmission circuit ⁇ ” is received by the transmission system itself. It is measured as the received signal RXjj (t) in the circuit SM.
  • the transmission system for transmitting the signal is sequentially switched from the first to the n-th, and each time, the measured signal RX Jk (t) received in all the first to the n-th transmission systems is It is expressed by the following equation (3-1).
  • RX jk (t) A ik ATX ARX k exp
  • I jk (t) is the combined signal of all the interference signals included in the received signal. It represents.
  • the interference signal includes a radio signal or the like from another user as described in the related art.
  • a cross-correlation value CS jk between the received signal RX jk (t) and the corresponding known signal Sj (t) of the transmission system is calculated.
  • the cross-correlation value is obtained by multiplying the two signals, which are functions of time t, on a common time axis and adding the results, and calculating the time average, as shown in the following equation (3-2) Is represented by Then, when this equation (3-2) is calculated, it becomes equation (3-3).
  • equation (3-8) When focusing on the imaginary part of equation (3-8), equation (3-9) is derived, and when focusing on the real part, equation (3-10) is derived.
  • ⁇ jk + A 0TXj + A 0RX k Im [log e [CS jk ]]
  • the phase difference information between the receiving circuit and the transmitting circuit for each transmission system estimated in this way is given to the phase shifter of the transmission system, and the amplitude fluctuation amount information for each transmission system is given to the attenuator of the transmission system.
  • the transmission characteristics between the received signal and the transmitted signal can be calibrated for each transmission system.
  • FIG. 54 is a flowchart showing a routine for calculating Y jk , ⁇ in the fifteenth embodiment, corresponding to step S 1-6 d in the flowchart of the first embodiment in FIG.
  • the temporary variable Tmp is set to 0, and RX Jk (t) ⁇ Sj (t) is accumulated until time T is reached. Then, the accumulated result is divided by T to calculate a time average Tmp / T, and the natural logarithm thereof is calculated to extract an imaginary part Y jk and a real part X Jk .
  • Embodiment 15 of the present invention a correlation circuit is provided for each transmission system to perform a correlation process between received signal RX jk (t) and known signal Sj (t).
  • the noise component N jk (t) and the interference signal I jk (t) disappear. Therefore, if the SZN ratio of the received signal is poor, or if the received signal is mixed with an interference signal, or both, the estimation error due to the noise component and / or the interference signal should be suppressed.
  • the phase difference and amplitude fluctuation amount information for each transmission system can be satisfactorily estimated.
  • FIG. 55 is a block diagram showing a specific circuit configuration of Embodiment 16 of the present invention.
  • C Rj 1, 2 , ⁇ -, N
  • a known signal Sj (t) corresponding to the j-th transmission system is read from the memory 21 and transmitted via the antenna element ANTj.
  • the antenna duplexer is not switched so that the transmission circuit and the reception circuit are connected in each transmission system.
  • the signal transmission system is sequentially switched from the first transmission system to the n-th transmission system, and each time, the measured signal RX Jk ( t) is expressed by the following equation (3-1-3).
  • RX jk (t) A jk ATXj ARX k exp ⁇ i ( jk + A ⁇ TXj + ⁇ 0RX k ) ⁇ Sj (t) + I jk (t) + n jk (t)
  • equation (3-16) When focusing on the imaginary part of this equation (3-16-1), equation (3-17-1) is derived, and when focusing on the real part, equation (3-18) is derived.
  • the phase difference information between the reception signal and the transmission signal for each transmission system estimated in this way is given to the phase shifter of the transmission system, and the amplitude variation information for each transmission system is given to the attenuator of the transmission system.
  • the transmission characteristics between the received signal and the transmitted signal can be calibrated for each transmission system.
  • a correlation circuit is provided for each transmission system to perform correlation processing between received signal RX jk (t) and known signal Sj (t).
  • the noise component N jk (t) and the interference signal I jk (t) have disappeared. Therefore, if the SZN ratio of the received signal is poor, or if the received signal is mixed with an interference signal, or both, the estimation error due to the noise component and / or the interference signal should be suppressed.
  • the phase difference and amplitude fluctuation amount information for each transmission system can be satisfactorily estimated.
  • the transmission systems for transmitting signals are numbered 1 to n.
  • the signals received in all of the first to n-th transmission systems except the transmission system that is transmitting are measured, and the above processing is performed.
  • signals are simultaneously transmitted from all transmission systems, and signals are simultaneously received by all transmission systems. The time required for calibration has been reduced.
  • a known signal Sj (t) corresponding to all transmission systems is read from the memory 21 and transmitted simultaneously via all the antenna elements ANTj.
  • the signal RX k (t) that is simultaneously received and measured by all other transmission system powers in the received signal measuring device SM k of the k-th transmission system is expressed by the following equation (4-1).
  • RX k (t) A lk AT t ARX k exp ⁇ i (0 11 ⁇ + ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ RX k ) ⁇ (t)
  • the cross-correlation value between the transmission signal and the noise is 0, and the equation (3-3) As shown in —4), the self-correlation value of the transmitted signal is 1.
  • equation (4-2) is expressed as the following equation (4-4).
  • Equation (3-15) When the natural logarithm of the equation (3-15) is calculated, it is expressed as the equation (3-16) of the above-described Embodiment 16. Equation (3-19) is derived, and focusing on the real part, equation (3-20) is derived. Subsequent processes are the same as those in Embodiment 16 and will not be described.
  • FIG. 56 is a flowchart for explaining the first half of the operation of the seventeenth embodiment.
  • FIG. 57 is a flowchart corresponding to step S3-2 in the flowchart of FIG.
  • FIG. 7 is a flowchart showing a calculation routine of FIG.
  • step S3-1 a known signal Sj (t) is simultaneously transmitted from all transmission systems, and in step S3-2, the measurement of the received signal is performed simultaneously in all transmission systems. This is different from any of the preceding embodiments.
  • the configuration may be such that the phase rotation amount and the amplitude fluctuation amount are obtained.
  • Embodiment 17 simultaneous transmission and reception of the known signal Sj (t) are performed at the time of calibration, so that the transmission system for transmission is sequentially switched as compared with the preceding embodiments. In addition, the time required for calibration can be reduced.
  • Embodiment 18 described below is an improvement of this point.Before performing calibration, the phase rotation amount of the phase shifter or the amplitude fluctuation amount of the attenuator, By setting both of them to predetermined values in advance, it is possible to avoid that the difference between the phase rotation amount between the transmitting and receiving circuits and the difference between ⁇ or the amplitude fluctuation amount become almost the same between the transmission systems. It improves the accuracy of estimating the difference between the phase rotation amount and the difference between the amplitude fluctuations of the transmission system.
  • the phase of the j-th transmission system is previously determined.
  • the phase rotation amount of the shifter P Sj is set to “0”, and the amplitude fluctuation amount of the attenuator ATTj is set to Aj.
  • the phase rotation of each phase shifter is set to 6 '' ⁇ 0 k, and the amplitude fluctuation of each attenuator is set to Aj ⁇ A k Shall be.
  • the known signal Sj (t) corresponding to the j-th transmission system is read from the memory 21 and output via the transmission circuit. Then, the transmitted signal is received by each of the receiving circuits of all the other transmission systems except the j-th transmission system, and is received by the received signal measuring device SM k as a received signal RX Jk (t).
  • the signal transmission system is sequentially switched from the first transmission system to the n-th system, and the signal RX Jk (t) received and measured by all transmission systems except the transmission system transmitting each time is calculated by the following equation (5) — Expressed by 3).
  • RX jk (t) A jk Aj ATXj ARX k exp
  • X jk log e [A jk ] + log e [Aj] + log e [ATXj] + log e [ARX k ],
  • FIG. 58 and FIG. 59 are flowcharts when the operation of the above-described embodiment 18 is realized by software using a microcomputer.
  • the flowcharts shown in FIGS. 58 and 59 are the same as the operations of the second basic configuration of the present invention shown in FIGS. 20 and 21 except for the following points.
  • step S2-2h the phase rotation amount of the phase shifter PSj of the transmission system is set to a known value 0 j instead of 0, and the amplitude variation amount of the attenuator AT Tj is set to a known value ⁇ ⁇ ] Is set.
  • FIG. 60 and FIG. 61 show the embodiment shown in FIG. 58 and FIG.
  • FIG. 18 is a flowchart showing a modified example of 18.
  • the phase rotation amount of the phase shifter of each transmission system is set to ⁇ j
  • the amplitude fluctuation amount of the attenuator is set to ⁇ ”
  • Signal S j (t) is transmitted
  • Z jk and V jk are calculated by exactly the same arithmetic processing as in the eighteenth embodiment.
  • step S2—19 the calculated absolute value of Z Jk is compared with MZ, which is the minimum value of Z. If IZ jk I is smaller than MZ, the MZ is further increased in step S2—20. Is replaced by the current IZ Jk
  • step S2—21 the calculated absolute value of V jk is compared with MV, which is the minimum value of V. If IV jk I is smaller than MV, further in step S2—22 MV is replaced by the current IV Jk I.
  • step S2-23 when it is determined that the finally obtained MZ and MV are smaller than the predetermined reference values CZ and CV, respectively, in step S2-23, the phase shifter phase It is assumed that Aj is not sufficient, which is the initial setting value of the rotation amount and the amplitude fluctuation amount of the attenuator, and that the phase rotation amount 0j and the amplitude fluctuation amount Aj are set to appropriate values in step S2-24. After the change, the calculation of Z Jk and V jk is performed again. As a result, if it is determined that the obtained MZ and MV are larger than CZ and CV, respectively, the same processing as that of Embodiment 18 in FIG. 59 is performed thereafter.
  • the simultaneous linear equations relating to the phase rotation amount and the simultaneous linear equations relating to the amplitude fluctuation amount are solved to obtain the phase rotation amount, the amplitude fluctuation amount, and the phase rotation amount.
  • the amount difference and the amplitude fluctuation amount difference are calculated.
  • Embodiment 19 of the present invention when the number of antenna elements is four or more, all independent equations constituting a simultaneous linear equation calculated based on a measured received signal and a transmitted signal are described. Of these, the required number of equations derived with higher accuracy, that is, the same number as the number of unknown variables, is selected to solve the system of linear equations.
  • Embodiment 19 of the present invention the selection of this equation takes a large value from the values obtained by measurement or calculation, namely, I x Jk I, IY Jk I, I v jk I, or I z Jk I.
  • the equations will be selected in order.
  • FIG. 62 is a flowchart illustrating the operation of this embodiment 19, and is the same as the latter half operation of the second basic configuration of the present invention shown in FIG. 21 except for the following points. . That is, calculate the absolute values of all Z j k in step S 2 — 25 and sort them in descending order of values, and calculate the absolute values of all V Jk in step S 2 — 26 Sort in descending order of value. Then, select n equations corresponding to the number of unknown variables in descending order of the value of I ⁇ i to construct a system of linear equations related to the phase rotation difference.
  • the simultaneous equations for calculating the phase rotation difference between the transmitting and receiving circuits consist of the following independent equations (6-1) to (6-6).
  • ⁇ 2 ⁇ ⁇ 9- ⁇ ⁇ I (6-1)
  • ⁇ 13 rum 0 3 - ⁇ 01 (6-2)
  • FIGS. 63 and 64 are flowcharts showing the operation of this embodiment 20. The operation is the same as that of the embodiment 19 of the present invention shown in FIG. 62 except for the following points. is there.
  • step S 2-28 each of the simultaneous linear equations consisting of n independent equations relating to the phase difference information and the simultaneous linear equations consisting of n independent equations relating to the amplitude variation difference information is solved. computes the solution, Oite to step S 2-2 9, the computed solution, by substituting the equations were not used in the calculation of this solution, the maximum value Z ma of Z Jk and V,, V na, the Calculate each. Then, in step S 2-30, it is determined whether or not the calculated maximum values are respectively equal to or less than predetermined reference values CZ and CV. The measurement and calculation are repeated.
  • the information on the estimated phase rotation amount and the information on the amplitude fluctuation amount are stored in the phase shifter as the phase rotation device of each transmission system and the attenuator as the amplitude fluctuation device.
  • the compensation is fi 1 so that the phase rotation amount difference and the amplitude fluctuation amount difference between the transmission and reception circuits of each transmission system become zero.
  • the phase characteristics and the amplitude characteristics may change and the above-mentioned compensation may not be possible.
  • Embodiment 21 of the present invention is capable of performing the estimation operation even when the phase characteristics and the amplitude characteristics are changed by the power of the signal input to the transmission circuit or the power of the signal input to the reception circuit as described above. This is to correct the phase rotation amount and the amplitude fluctuation amount set in the phase shifter and the attenuator to appropriate values using the calibration result obtained once and the correction table recorded in the memory in advance. is there.
  • FIG. 65 is a block diagram showing a specific circuit configuration of such an embodiment 21.
  • key spear blade Chillon information delta phi There delta phi 2 that are calculated to compensate for the phase rotation amount, ⁇ ⁇ ⁇ , a delta phi eta, that to compensate for the amplitude change amount calibration information calculated for the ⁇ , ⁇ ⁇ 2, ⁇ ⁇ ⁇ , a delta Alpha eta.
  • the relatively low power of the transmission signal when estimating these pieces of calibration information is PC TX
  • the relatively low power of the reception signal is PC RX .
  • the power of the current transmission signal is ⁇ and the power of the reception signal is P RX , where information for correcting phase rotation amount information and amplitude fluctuation amount information is stored in advance in the memory.
  • the controller 22 reads out the correction information of the transmission system corresponding to ⁇ and PC TX or the correction information of the reception system corresponding to P RX and PC RX from the memory 21 and calculates the above. After being added to the respective calibration values obtained, the signals are given to a phase shifter as a phase rotation device and an attenuator as an amplitude fluctuation device.
  • the optimum calibration regarding the phase rotation amount difference information and the amplitude fluctuation amount difference information is always performed regardless of the reception signal power or the transmission signal power. Can be performed.
  • correction information thinned out at appropriate intervals may be stored in the memory, and an optimum correction value may be obtained by interpolation when using the correction information. It is possible. [Calibration method of amplitude]
  • the difference in the amount of amplitude fluctuation between the receiving circuit and the transmitting circuit in each transmission system is estimated.
  • the amplitude fluctuation device of each transmission system is set so that the difference in amplitude fluctuation between the reception circuit and the transmission circuit of each transmission system becomes zero as in the above-described embodiments.
  • the amplitude fluctuation device of each transmission system is controlled so that the amplitude fluctuation difference between the transmission and reception circuits of each transmission system becomes a common value. It may be configured to control one amplitude fluctuation amount.
  • FIG. 66 is a schematic block diagram showing an outline of a third basic configuration of the adaptive array radio base station according to the present invention.
  • the third basic configuration shown in FIG. 66 is the same as the first and second basic configurations described above, except that the adaptive array radio base station has a phase rotation amount and an amplitude fluctuation amount related to the present invention. According to the estimation, only the parts related to these calibrations are shown.
  • the adaptive array radio base station shown in Fig. 66 consists of four signal transmission systems, and the antenna elements (total of four) of each signal transmission system must be located exactly at the top of the square. It is characterized by.
  • the adaptive array radio base station shown in FIG. 66 includes a signal processing circuit 20 including a memory and a control device (not shown), and antenna elements ANT 1, ANT 2, and ANT 3 forming a square array antenna.
  • ANT4 the antenna duplexers SW1, SW2, SW3 and SW4 provided corresponding to the respective antenna elements, and the antenna duplexer and the signal processing circuit 20 corresponding to the respective antenna elements. It has transmission circuits TX1, TX2, TX3, TX4 and reception circuits RX1, RX2, RX3, RX4 provided between them.
  • the signal processing circuit 20 in FIG. At the time of calibration, a known signal is transmitted from each antenna element, a received signal from another antenna element is measured, a predetermined calculation is performed using the measured value, and a reception response vector and a transmission It has a digital signal processing function that calculates the vector and performs calibration of the amount of phase rotation and the amount of amplitude variation according to the calculation result.
  • Each of the transmission circuits TX1, ⁇ 2, ⁇ 3, and ⁇ 4 is a generic term for circuits existing in the path from the signal processing circuit 20 to the corresponding antenna duplexer SW, and the reception circuits RX1, RX2 , RX3, and RX4 collectively refer to the circuits existing on the path from the corresponding antenna duplexer SW to the signal processing circuit 20.
  • each of ⁇ ⁇ ⁇ , ⁇ ⁇ 2, ⁇ ⁇ 3, and 0 ⁇ 4 passes the signal output from the signal processing circuit 20 through the corresponding transmission circuit ⁇ and antenna duplexer SW in each transmission system.
  • 6 RX1, ⁇ RX2, ⁇ RX3, and ⁇ RX4 represent the corresponding antenna element ANT in each transmission system. Represents the amount of phase rotation from the time when the signal received at the signal processing circuit 20 passes through the corresponding antenna sharing device SW and the receiving circuit RX to the signal processing circuit 20.
  • 0 1 2 is the phase rotation amount of the signal between the antenna elements ANT 1 and ANT 2
  • ⁇ 13 is the phase rotation amount of the signal between the antenna elements ANT 1 and ANT 3
  • 0 14 is the antenna element ANT 1 , ANT 4 signal phase rotation amount
  • ⁇ 23 is the signal phase rotation amount between antenna elements ANT 2 and ANT 3
  • 0 24 is the signal phase rotation amount between antenna elements ANT 2 and ANT 4
  • 634 is the antenna Indicates the amount of phase rotation of the signal between the elements ANT3 and ANT4.
  • Embodiment 23 of the third basic configuration of the present invention obtains a reception response vector and a transmission response vector in the configuration of FIG. 66, and obtains a difference between the phase data as a correction value.
  • phase rotation amount 0 R 21 of the signal received by the signal processing circuit 20 via the antenna element ⁇ 2, the antenna duplexer SW2, and the receiving circuit RX2 0 R 21 is given by the following equation (7— It is expressed by 1).
  • phase rotation amount 0 R 41 of the signal received by the signal processing circuit 20 via the antenna element ANT 4, the antenna duplexer SW 4, and the receiving circuit RX 4 from the transmission to the reception 0 R 41 is represented by the following equation ( 7–3).
  • R4 1 e TX l + 0 1 4 + 0 RX4 --- (7-3)
  • R3 1-6 R4 1 0 RX3-0 RX4 + ( ⁇ 1 3- ⁇ 1 4)
  • the initial phase from the signal processing circuit 20 ⁇ IT 2 is fixed to 0
  • the specified signal passes through the transmitting circuit TX2 and the antenna element via the antenna duplexer SW2.
  • phase rotation amount 0 R32 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT3, the antenna duplexer SW3, and the receiving circuit RX3 is represented by the following equation (7 ⁇ 8).
  • phase rotation amount 0 R 42 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ⁇ 4, the antenna duplexer SW4, and the receiving circuit RX 4 is calculated by the following equation (7 ⁇ 9).
  • the initial phase from the signal processing circuit 20 ⁇ is transmitted to the antenna element via the transmitting circuit TX3 and the antenna duplexer SW3 Transmitted from ANT3 and received by other antenna elements ANT1, ANT2, ANT4.
  • phase rotation from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT1, the antenna duplexer SW1, and the receiving circuit RX1 0 R1 3 is given by the following equation (7-13) Is represented by
  • phase rotation amount 0 R23 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT2, the antenna duplexer SW2, and the receiving circuit RX2 is expressed by the following equation (7 —14)
  • phase rotation amount 0 R43 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT4, the antenna duplexer SW4, and the receiving circuit RX4 is expressed by the following equation (7 ⁇ 1 5)
  • the initial phase from the signal processing circuit 20 ⁇ A signal with IT 4 fixed to 0 is transmitted from the antenna element ⁇ 4 via the transmission circuit TX4 and the antenna duplexer SW4, and the other antenna elements ⁇ Received at 1, ⁇ 2, ⁇ 3 Is done.
  • phase rotation amount 6 R 14 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT 1, the antenna duplexer SW 1, and the receiving circuit RX 1 is represented by the following equation (7-1) 9).
  • phase rotation from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT2, the antenna duplexer SW2, and the receiving circuit RX2 0 R
  • R14-0 R24 e RXl-e RX2 + ( ⁇ 14- 0 24)
  • (6 RX4-0 RX1) can be obtained from each of the above equations (7-12) and (7-18), but in order to further improve the accuracy, take the average of both equations.
  • the difference between the phase rotation amounts is calculated by the measured values as (6 RX1-0 RX2) and ( ⁇ RX2- ⁇ RX 3).
  • phase rotation amount of any one transmission system for example, R (1) to the reference value 0
  • R (1) — R (2) ( ⁇ RX 1- ⁇ RX 2)
  • R (2) R (1)-(0 RX1 -0 RX2), and the value of R (2) is calculated based on the measured value of the above difference.
  • R (3) R (2) One ( ⁇ RX2-0 RX3), and the value of R (3) is calculated based on the measured value of the difference.
  • R (4) R (3) One ( ⁇ RX3-6 RX4), and the value of R (4) is calculated based on the measured value of the difference.
  • R (1) -R (3) ( ⁇ RX 1- ⁇ RX 3), but if the measurement is performed correctly,
  • R (2) -R (4) ( ⁇ RX2- ⁇ RX4), but if the measurement is performed correctly,
  • rt mp I ⁇ R (2) -R (4) ⁇ -(6 RX2-6 RX4)
  • T (1) ⁇ TX 1
  • T (2) ⁇ TX 2
  • T (3) ⁇ TX 3
  • T (4)
  • T X4 the vector T having components (T (1), T (2), T (3), T (4)) is the transmission response vector of the phase data.
  • phase rotation amount of any one transmission system for example, T (1) as the reference value 0
  • T (1) ( ⁇ TX 1- ⁇ TX 2)
  • T (2) T (1)-( ⁇ 1- ⁇ 2). Then, the value of T (2) is calculated.
  • ⁇ (3) ⁇ (2) One ( ⁇ 2- ⁇ 3), and the value of ⁇ (3) is calculated based on the measured value of the difference.
  • ⁇ (4) ⁇ (3)-( ⁇ 3- ⁇ 4), and the value of ⁇ (4) is calculated based on the measured value of the difference.
  • phase rotation amount of any one transmission system As described above, by setting the phase rotation amount of any one transmission system to 0, the phase rotation amounts of the other transmission systems are individually obtained, and as a result, a transmission response vector of phase data is obtained. become.
  • r tmp
  • T (2) — ⁇ (4) ( ⁇ ⁇ 2- ⁇ ⁇ 4), but if the measurement is performed correctly,
  • the signal processing circuit 20 executes the calibration of the phase rotation amount by, for example, previously shifting the initial phase of the transmission signal based on the phase correction amount calculated for each transmission system as described above.
  • FIG. 67 shows the amplitude variation of each part in the third basic configuration of the present invention shown in FIG. 66, and the configuration itself of the adaptive array radio base station shown in FIG. Is the same as
  • each of ATXl, ATX2, ATX3, and ATX4 is an antenna corresponding to a signal output from the signal processing circuit 20 passing through the corresponding transmission circuit TX and the antenna duplexer SW in each transmission system.
  • ARX, ARX2, ARX3, and ARX4 represent the amount of amplitude fluctuation up to the element ANT.
  • the signal received by the corresponding antenna element ANT and the corresponding antenna duplexer SW and It represents the amount of amplitude fluctuation from passing through the receiving circuit RX to reaching the signal processing circuit 20.
  • A12 is the amplitude variation of the signal between antenna elements ANT1 and ANT2
  • A13 is the amplitude of the signal between antenna elements ANT1 and ANT3.
  • A14 is the amplitude variation of the signal between antenna elements ANT1 and ANT4,
  • A23 represents the amplitude variation of the signal between antenna elements ANT2 and ANT3
  • A24 represents the amplitude variation of the signal between antenna elements ANT2 and ANT4
  • A34 represents the amplitude variation of the signal between antenna elements ANT3 and ANT4.
  • Embodiment 24 of the third basic configuration of the present invention obtains a reception response vector and a transmission response vector in the configuration of FIG. 67, and obtains a difference between the amplitude data as a correction value.
  • a signal whose initial amplitude AIT1 is fixed to 1 from the signal processing circuit 20 is transmitted from the antenna element ANT1 via the transmission circuit TX1 and the antenna duplexer SW1, and transmitted to the other antenna elements. Received on ⁇ 2, ⁇ 3, ⁇ 4.
  • the amplitude variation A R21 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ⁇ 2, the antenna duplexer SW2, and the receiving circuit RX2 is expressed by the following equation (8-1) Is represented by
  • AR 21 ATX 1 A 12 ARX 2 (8-1)
  • the amplitude fluctuation AR31 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT3, the antenna duplexer SW3, and the receiving circuit RX3 is expressed by the following equation (8-2) ).
  • AR31 ATX 1 * A13 * ARX3--(8-2)
  • the amplitude variation AR41 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT4, the antenna duplexer SW4, and the receiving circuit RX4 is expressed by the following equation (8— 3)
  • AR4 1 ATX 1 * A 14 * ARX4 --- (8-3)
  • AR 21 / AR3 1 ARX 2 / ARX 3 * (A 1 2 / A 1 3)
  • AR31 / AR41 ARX3 ARX4 * (A 13 / A 14)
  • AR21 / AR41 ARX 2 / ARX4 * (A 12 / A 14)
  • the signal whose initial amplitude AIT2 is fixed to 1 from the signal processing circuit 20 is transmitted from the antenna element ⁇ 2 via the transmitting circuit TX2 and the antenna duplexer SW2, and the other antenna elements are transmitted. Received on ANT 1, # 3, # 4.
  • AR 1 2 ATX 2 * A 1 2 ARX "(8-7)
  • the amplitude fluctuation AR from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT3, the antenna duplexer SW3, and the receiving circuit RX3
  • AR 32 ATX 2 * A 23 * ARX 3 (8-8)
  • the amplitude variation AR from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT 4, the antenna duplexer SW4, and the receiving circuit RX 4
  • AR42 ATX2 * A24 * ARX4 --- (8-9)
  • AR 1 2 / AR 32 ARX l / ARX 3 * (A1 2 / A23)
  • AR42 / AR 1 2 ARX4 ARX 1 * (A 24 / A 1 2)
  • the signal fixed to the initial amplitude AIT3 power S1 from the signal processing circuit 20 is transmitted from the antenna element ⁇ 3 via the transmission circuit TX3 and the antenna duplexer SW3, and is transmitted from the other antenna element. Received on ANT 1, ⁇ 2, ⁇ 4.
  • the amplitude fluctuation AR 13 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ⁇ 1, the antenna duplexer SW1, and the receiving circuit RX1 is expressed by the following equation (8 ⁇ 8). 1 3)
  • AR 1 3 ATX 3 * A 1 3 * ARX 1 (8-13)
  • the amplitude fluctuation AR23 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT2, the antenna duplexer SW2, and the reception circuit RX2 is expressed by the following equation (8— 1 4)
  • AR 23 ATX 3 A 23 * ARX 2 (8-14)
  • the amplitude fluctuation AR43 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT4, the antenna duplexer SW4, and the receiving circuit RX4 is expressed by the following equation (8-1) 5)
  • AR43 ATX 3 * A34 * ARX4 --- (8- 15)
  • AR 13 / AR 23 ARX 1 / ARX 2 * (A 13 / A23)
  • AR23 / AR43 ARX 2 / ARX4 * (A 23 / A34)
  • ARX 2 / ARX4) (AR 23 / AR43) / (A 23 / A 34)
  • AR43 / AR 13 ARX4 / ARX 1 * (A 34 / A 13)
  • the signal whose initial amplitude AIT4 is fixed to 1 is transmitted from the signal processing circuit 20 to the antenna element # 4 via the transmitting circuit TX4 and the antenna duplexer SW4, and the other antenna elements ANT1 , ⁇ 2, ⁇ 3.
  • the amplitude fluctuation AR14 from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ⁇ 1, the antenna duplexer SW1, and the receiving circuit RX1 is expressed by the following equation (8-19) Is represented by
  • AR 14 ATX4 * A 14 * ARX 1... (8—19)
  • the amplitude fluctuation AR from transmission to reception of the signal received by the signal processing circuit 20 via the antenna element ANT2, the antenna duplexer SW2, and the receiving circuit RX2
  • AR24 ATX4 * A24 * ARX2 --- (8-20)
  • AR 34 ATX 4 A 34 * ARX 3 ... (8-21)
  • AR14 / AR24 ARXl ARX2 * (A 14 / A24)
  • AR 24 / AR 34 ARX 2 / ARX 3 * (A 24 / A34)
  • AR14 / AR34 ARX 1 / ARX3 * (A 14 / A34)
  • ARX1ZARX2 can be obtained from each of the above equations (8-16) and (8-22), but in order to further improve the accuracy, take the average of both equations. Note that the first term on the right side of both equations can be obtained from the measured value, and the second term can be calculated exactly from the antenna element spacing. Therefore, only when the difference between the calculated values of the two equations is equal to or smaller than the error threshold, the following averaging process is performed on the assumption that there is no measurement error. The same applies to the description of the subsequent averaging process.
  • (ARX 1 / ARX 2) [ ⁇ (AR 14 / AR 24) / (A 14 / A2 4) ⁇ + ⁇ (AR1 3 / AR23) / (A1 3 / A 23) ⁇ ] / 2
  • (ARX 2 / ARX 3) [((AR 21 / AR 3 1) / (A 1 2 / A 1 3) ⁇ + ⁇ (AR 24 / AR 34) / (A 24 / A 34) ⁇ ] / 2
  • (ARX3 / ARX4) [ ⁇ (AR3 1 / AR41) / (A 13 / A 1 4) ⁇ + ⁇ (AR32 / AR42) / (A 23 / A 24) ⁇ ] / 2
  • ARX4 ARX1 can be obtained from each of the above equations (8-12) and (8-18), but in order to further improve the accuracy, take the average of both equations.
  • ARX 4 / ARX 1 [ ⁇ (AR42 / AR 1 2) / (A 24 / A 1 2) ⁇ + ⁇ (AR43 / AR 1 3) / (A34 / A 1 3) ⁇ ] / 2
  • the difference between the amplitude fluctuations is calculated by (ARX1 / ARX2), (ARX2 / ARX3), (ARX3 / ARX4) and (ARX4 / ARX 1) are specifically calculated.
  • AR (1), AR (2), AR (3), and AR (4) Lacks information.
  • the amplitude variation of any one transmission system for example, AR (1)
  • AR (1) / AR (2) (ARX 1 / ARX 2)
  • AR (2) AR (1) / (ARX 1 / ARX 2), and the value of AR (2) is calculated based on the measured value of the difference.
  • AR (3) AR (2) / (ARX 2 / ARX3), and the value of AR (3) is calculated based on the measured value of the difference.
  • AR (4) AR (3) / (ARX3 / ARX4), and the value of AR (4) is calculated based on the measured value of the difference.
  • the amplitude fluctuation amount of any one transmission system is individually obtained, and as a result, the reception response vector of the amplitude data is obtained Will be.
  • rtmp IAR (4) / (ARX4 / ARX1)-1
  • AR (1) / AR (3) (ARX 1 / ARX3), but if the measurement is performed correctly, essentially, (AR (1) / AR (3) ⁇ / (ARX ARX 3) should be almost 1.
  • AR (2) / AR (4) (ARX 2 / ARX4), but if the measurement is performed correctly,
  • AR3 1 / AR3 2 ATX 1 / ATX 2 * (A 13 / A 23)
  • AR4 1 / AR4 2 ATX 1 / ATX 2 * (A 14 / A 24)
  • AR 1 2 / AR 1 3 ⁇ 2 / ⁇ 3 * (A 1 2 / A 1 3)
  • AR4 2 / AR4 3 ATX 2 / ATX 3 * (A 24 / A 34)
  • (ATX 2 / ATX 3) [((AR 1 2 / AR 1 3) / (A 1 2 / A 1 3) ⁇ + ⁇ (AR4 2 / AR43) / (A24 / A34) ⁇ ] / 2 (8-34) Since the right side of this equation is obtained based on the measured value and the value calculated in advance from the antenna element spacing, the value of the difference (ATX2ZAX3) is calculated.
  • AR 13 / AR 14 ATX 3 / ATX * (A 13 / A 14)
  • AR23 / AR24 ATX3 / ATX4 * (A 23 / A24)
  • (ATX 3 / ATX 4) [ ⁇ (AR 13 / AR 14) / (A 13 / A 14) ⁇ + ⁇ (AR 23 / AR 24) / (A 23 / A24) ⁇ ] / 2
  • AR 24 / AR 21 ATX4 ATX 1 * (A24 / A1 2)
  • AR34 / AR31 ATX4 / ATX 1 * (A34 / A 13)
  • (ATX4 / ATX 1) (AR34 / AR3 l) / (A34 / A 13) ... (8-39) (ATX4ZATX 1) can be obtained from each of these equations (8-38) and (8-39). To improve the accuracy, take the average of both equations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

明細書 無線装置おょぴそのキヤリブレ一シヨン方法 技術分野
この発明は、 無線装置およびそのキャリブレーション方法に関し、 特に、 ァダ プティプアレイ無線基地局において用いられる無線装置およびそのキヤリブレー ション方法に関する。 背景技術
近年、 携帯電話等の移動通信システムの無線基地局として、 アレイアンテナを 用いたァダプティブアレイ (adaptive array) 無線基地局が実用化されている。 このようなァダプティブアレイ無線基地局の動作原理については、 たとえば下記 の文献に説明されている。
B. Widrow, et al. : Adaptive Antenna Systems, Proc. IEEE, vol. 5o,
No. 12, pp. 2143-2159 (Dec. 1967 ) .
S. P. Applebaum : "Adaptive Arrays " , IEEE Trans. Antennas & Propag. , vol. AP - 24, No. 5, pp. 585- 598 (Sept. 1976) .
0. し Frost, III : ' Adaptive Least Squares Optimization Subject to Linear Equality Constraints, " SEL - 70- 055, Technical Report, No. 6796 - 2, Information System Lab., Stanford Univ. (Aug. 1970 ) .
B. Widrow and S. D. Stearns : " Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs (1985) .
R. A. Monzingo and T. W. Miller : "Introduction to Adaptive Arrays, John Wiley & Sons, New York (1980) .
J. E. Hudson : Adaptive Array Principles, " Peter Peregrinus Ltd. , London (1981) .
R. T. Compton, Jr. : "Adaptive Antennas ― Concepts and Performance, " Prentice-Hall, Englewood Cliffs (1988) . E. Nicolau and D. Zaharia: "Adaptive Arrays,,, Elsevier, Amsterdam (
1989) .
図 6 8は、 このようなァダプティブアレイ無線基地局の動作原理を概念的に示 す模式図である。 図 6 8において、 1つのァダプティブアレイ無線基地局 1は、 n本のアンテナ # 1, # 2, # 3, · · ·, # nからなるアレイアンテナ 2を備えて おり、 その電波が届く範囲を第 1の斜線領域 3として表わす。 一方、 隣接する他 の無線基地局 6の電波が届く範囲を第 2の斜線領域 7として表わす。
領域 3内で、 ュ一ザ Aの端末である携帯電話機 4とァダプティブアレイ無線基 地局 1との間で電波信号の送受信が行なわれる (矢印 5 ) 。 一方、 領域 7内で、 他のユーザ Bの端末である携帯電話機 8と無線基地局 6との間で電波信号の送受 信が行なわれる (矢印 9 )。
ここで、 たまたまユーザ Aの携帯電話機 4の電波信号の周波数とユーザ Bの携 帯電話機 8の電波信号の周波数とが等しいとき、 ユーザ Bの位置によっては、 ュ 一ザ Bの携帯電話機 8からの電波信号が領域 3内で不要な干渉信号となり、 ユー ザ Aの携帯電話機 4とァダプティブアレイ無線基地局 1との間の電波信号に混入 してしまうことになる。
このように、 ユーザ Aおよび Bの双方からの混合した電波信号を受信したァダ プティブアレイ無線基地局 1では、 何らかの処理を施さなければ、 ユーザ Aおよ び Bの双方からの信号が混じった信号を出力することとなり、 本来通話すべきュ —ザ Aの通話が妨げられることになる。
ァダプティブアレイ無線基地局 1では、 このユーザ Bからの信号を出力信号か ら除去するために、 次のような処理を行なっている。 図 6 9は、 ァダプティブァ レイ無線基地局 1の構成を示す概略ブロック図である。
まず、 ユーザ Aからの信号を A ( t ) 、 ユーザ Bからの信号を B ( t ) とする と、 図 6 8のアレイアンテナ 2を構成する第 1のアンテナ # 1での受信信号 X 1 ( t ) は、 次式のように表わされる :
X 1 ( t ) = a 1 X A ( t ) + b 1 X B ( t )
ここで、 a l, b 1は、 後述するようにリアルタイムで変化する係数である。 次に、 第 2のアンテナ # 2での受信信号 X 2 ( t ) は、 次式のように表わされ る:
x 2 ( t ) = a 2 X A ( t) + b 2 X B ( t )
ここで、 a 2, b 2も同様にリアルタイムで変化する係数である。
次に、 第 3のアンテナ # 3での受信信号 X 3 ( t ) は、 次式のように表わされ る :
X 3 ( t ) = a 3 X A ( t ) + b 3 X B ( t )
ここで、 a 3, b 3も同様にリアルタイムで変化する係数である。
同様に、 第 nのアンテナ #nでの受信信号 X n (t) は、 次式のように表わさ れる:
X n ( t ) = a n X A ( t ) + b n X B ( t )
ここで、 a n, b nも同様にリアルタイムで変化する係数である。
上記の係数 a 1, a 2, a 3, …, a nは、 ユーザ Aからの電波信号に対し、 アレイアンテナ 2を構成するアンテナ # 1, # 2, #3, …, #nのそれぞれの 相対位置が異なるため (各アンテナ同士は互いに、 電波信号の波長の 5倍、 すな わち 1メートル程度の間隔をあけて配されている) 、 それぞれのアンテナでの受 信強度に差が生じることを表わしている。
また、 上記の係数 b l, b 2, b 3, ···, b nも同様に、 ユーザ Bからの電波 信号に対し、 アンテナ # 1, # 2, #3, …, #nのそれぞれでの受信強度に差 が生じることを表わしている。 各ユーザは移動しているため、 これらの係数はリ アルタイムで変化する。
それぞれのアンテナで受信された信号 X 1 ( t) , x 2 ( t) , x 3 ( t ) , ···, X n ( t ) は、 対応するスィッチ 10— 1, 10— 2, 10-3, …, 10 一 nを介してァダプティブアレイ無線基地局 1を構成する受信部 1 Rに入り、 ゥ エイトベク トル制御部 1 1に与えられるとともに、 対応する乗算器 1 2— 1, 1 2 - 2, 1 2— 3, ···, 1 2_nの一方入力にそれぞれ与えられる。
これらの乗算器の他方入力には、 ウェイトべクトル制御部 1 1からそれぞれの アンテナでの受信信号に対する重み wl, w2, w3, ···, wnが印加される。 これらの重みは、 後述するように、 ウェイトべクトル制御部 1 1により、 リアル タイムで算出される。 したがって、 アンテナ # 1での受信信号 x 1 (t) は、 乗算器 1 2— 1を経て、 wl X (a 1 A (t) +b 1 B (t) ) となり、 アンテナ # 2での受信信号 x 2 (t) は、 乗算器 1 2— 2を経て、 w2X (a 2 A ( t) + b 2 B ( t) ) とな り、 アンテナ # 3での受信信号 x 3 (t) は、 乗算器 1 2— 3を経て、 w3 X ( a 3A (t) +b 3 B (t) ) となり、 さらにアンテナ # nでの受信信号 x n ( t) は、 乗算器 1 2— nを経て、 wnX (a n A (t) +b n B (t) ) となる。 これらの乗算器 1 2—1, 1 2-2, 1 2— 3, ···, 12— nの出力は、 加算 器 1 3で加算され、 その出力は下記のようになる:
w 1 (a 1 A ( t) + b 1 B ( t) ) +w 2 (a 2 A ( t) +b 2 B ( t) ) +w 3 (a 3 A ( t ) + b 3 B ( t ) ) -|—— hwn (a n A ( t ) + b n B ( t ) )
これを信号 A (t) に関する項と信号 B (t) に関する項とに分けると次のよ うになる :
(wl a l +w2 a 2+w3 a 3H wn a n) A ( t ) + (w 1 b 1 + w 2 b 2 +w 3 b 3 H hwn b n) B ( t )
ここで、 後述するように、 ァダプティブアレイ無線基地局 1は、 ユーザ A, B を識別し、 所望のユーザからの信号のみを抽出できるように上記重み w 1, w2, w3, …, wnを計算する。 たとえば、 図 69の例では、 ウェイトベクトル制御 部 1 1は、 本来通話すべきュ一ザ Aからの信号 A (t) のみを抽出するために、 係数 a l, a 2, a 3 , …, a n, b l, b 2, b 3 , ···, b nを定数とみなし、 信号 A (t) の係数が全体として 1、 信号 B (t) の係数が全体として 0となる よつに、 直み w 1, w 2 , w 3 , · ·, wnを g十算する。
すなわち、 ウェイトべクトル制御部 1 1は、 下記の連立一次方程式を解くこと により、 信号 A (t) の係数が 1、 信号 B (t) の係数が 0となる重み wl, w 2, w3, ···, wnをリアルタイムで算出する:
w 1 a 1 + w 2 a 2 + w J a ύ -\ hwn a n = 1
w 1 b l+w2 b 2 +w 3 b 3 H hwn b n = 0
この連立一次方程式の解法の説明は省略するが、 先に列挙した文献に記載され ているとおり周知であり、 現にァダプティブァレイ無線基地局において既に実用 ィ匕されているものである。
このように重み wl, w2, w3, ···, wnを設定することにより、 加算器 1 3の出力信号は下記のとおりとなる:
出力信号 = 1 XA (t) +O XB (t) =A (t)
なお、 前記のユーザ A, Bの識別は次のように行なわれる。 図 70は、 携帯電 話機の電波信号のフレーム構成を示す概略図である。 携帯電話機の電波信号は大 きくは、 無線基地局にとって既知の信号系列からなるプリアンブルと、 無線基地 局にとって未知の信号系列からなるデータ (音声など) とから構成される。
プリアンブルの信号系列は、 当該ユーザが無線基地局にとって通話すべき所望 のユーザかどうかを見分けるための情報の信号系列を含んでいる。 ァダプティブ アレイ無線基地局 1のウェイトベク トル制御部 1 1 (図 69) は、 メモリ 14か ら取出したユーザ Aに対応したトレーニング信号と、 受信した信号系列とを対比 し、 ユーザ Aに対応する信号系列を含んでいると思われる信号を抽出するように ウェイトべクトル制御 (重みの決定) を行なう。 このようにして抽出されたユー ザ Aの信号は、 出力信号 SRX (t) としてァダプティブアレイ無線基地局 1から 外部出力される。
一方、 図 69において、 外部からの入力信号 STX ( t) は、 ァダプティブァレ ィ無線基地局 1を構成する送信部 1 Tに入り、 乗算器 1 5— 1, 1 5— 2, 1 5 一 3, ···, 1 5— nの一方入力に与えられる。 これらの乗算器の他方入力にはそ れぞれ、 ウェイトべクトル制御部 1 1により先に受信信号に基づいて算出された 重み wl, w 2, w3, ···, wnがコピーされて印加される。
これらの乗算器によって重み付けされた入力信号は、 対応するスィッチ 10— 1, 10— 2, 10— 3, …, 10— nを介して、 対応するアンテナ # 1, #2, # 3, …, #nに送られ、 図 66の領域 3内に送信される。
ここで、 受信時と同じアレイアンテナ 2を用いて送信される信号には、 受信信 号と同様にユーザ Aをターゲットとする重み付けがされているため、 送信された 電波信号はあたかもユーザ Aに対する指向性を有するかのようにユーザ Aの携帯 電話機 4により受信される。 図 71は、 このようなユーザ Aとァダプティブァレ ィ無線基地局 1との間での電波信号の授受をイメージ化した図である。 現実に電 波が届く範囲を示す図 68の領域 3に対比して、 図 71の仮想上の領域 3 aに示 すようにァダプティプアレイ無線基地局 1からはユーザ Aの携帯電話機 4をター ゲットとして指向性を伴って電波信号が飛ばされている状態がイメージされる。 ところで、 所望のユーザとァダプティブアレイ無線基地局 1との間でこのよう な指向性を伴った電波信号の送受信を実現するためには、 ァダプティブアレイ無 線基地局 1において重み wl, w2, w3, ···, wnが厳密に算出され、 受信部 1 Rと送信部 1 Tとで、 受信信号および送信信号に対し同等に重み付けされる必 要がある。 しかしながら、 たとえ重み付けの制御が完全になされたとしても、 受 信信号に対し、 送信信号の伝送特性が変化し、 目標に向かって送信信号を飛ばす ことができない場合がある。
たとえば、 図 69に示したァダプティブアレイ無線基地局 1において、 スイツ チ 10— 1, 10— 2, 10— 3, ···, 10— nおよび受信部 1 Rの対応する乗 算器 1 2— 1, 1 2-2, 1 2-3, ···, 1 2 _ nの間の距離と、 スィッチ 1 0 —1, 10-2, 10— 3, ···, 10— nおよび送信部 1 Tの対応する乗算器 1 5— 1, 1 5-2, 1 5— 3, ···, 1 5— nの間の距離とは、 通常は完全に同一 であることはない。 これらの距離に差があれば、 各アンテナで送受信される受信 信号と送信信号との間に位相回転量の差、 振幅変動量の差などが生じてしまい、 ターゲットとなるユーザとァダプティプアレイ無線基地局との間で良好な指向性 をもって電波信号の送受信を行なうことができなくなる。
特に、 図 69には示していないが、 通常は、 スィッチ 10— 1, 10— 2, 1
0— 3, …, 10— nと受信部 1 Rの対応する乗算器との間の経路はそれぞれ、 必要な受信回路を含み、 これらのスィツチと送信部 1 Tの対応する乗算器との間 の経路はそれぞれ、 必要な送信回路を含んでいる。 したがって、 これらの回路を 構成するアンプ、 フィルタ等の特性によっても、 各アンテナで送受信される受信 信号と送信信号との間に位相回転量の差、 振幅変動量の差などが生じてしまうこ とになる。
したがって、 ァダプティブアレイ無線基地局 1においては、 アレイアンテナ 2 を構成する各アンテナごとに、 受信回路の位相回転量、 振幅変動量などの伝送特 性と、 送信回路の位相回転量、 振幅変動量などの伝送特性とを測定し、 その差を 補償する必要がある。 従来はこれらの伝送特性を測定するための測定回路がァダ プティブァレイ無線基地局に別途設けられていたため、 ァダプティブァレイ無線 基地局の回路構成が大型化および複雑化し、 コストも高くなるという問題点があ つた。
この発明は、 特別な測定回路を設けることなく簡単かつ安価な構成で受信回路 および送信回路の伝送特性の差を推定し、 補償することができる無線装置および そのキヤリブレーション方法を提供することを目的とする。 発明の開示
この発明は、 伝送特性のキャリブレーションが可能な無線装置に関し、 n ( n は n 3の整数) 個の信号伝送系と、 制御装置と、 信号処理回路と、 メモリと、 演算回路とを備えている。
n個の信号伝送系の各々は、 アンテナと、 アンテナを共用する送信回路および 受信回路とを含んでいる。
制御装置は、 キャリブレーション時に、 n個の信号伝送系の各々の送信回路か ら既知の信号を送信し、 かつ送信された信号を n個の信号伝送系の複数のものの 受信回路で受信するように制御を行なう。
信号処理回路は、 信号伝送系ごとに設けられ、 当該信号伝送系の受信回路で受 信された信号に対し既知の信号を用いて所定の信号処理を行なう。
メモリは、 信号伝送系の複数のものにおける信号処理回路によって得られた信 号を記憶する。
演算回路は、 メモリに記憶された信号に基づいて、 n個の信号伝送系の各々の 送信回路および受信回路のそれぞれを信号が通過することによって当該信号に生 じる位相回転量および振幅変動量の少なくとも一方に関する情報を算出する。 さらに、 この発明は、 アンテナと、 アンテナを共用する送信回路および受信回 路とを各々が含む、 n ( nは n≥3の整数) 個の信号伝送系を備えた無線装匱の ためのキャリブレーション方法に関し、 制御ステップと、 信号処理ステップと、 記憶ステップと、 演算ステップと、 キャリブレーションステップとを含んでいる。 制御ステップは、 キャリブレーション時に、 n個の信号伝送系の各々の送信回路 から既知の信号を送信し、 かつ送信された信号を n個の信号伝送系の複数のもの の受信回路で受信するように制御を行なう。 信号処理ステツプは、 信号伝送系ご とに受信回路で受信された信号に対し既知の信号を用いて所定の信号処理を行な う。 記憶ステップは、 信号伝送系の複数のものにおける信号処理の結果得られた 信号を記憶する。 演算ステップは、 記憶された信号に基づいて、 n個の信号伝送 系の各々の送信回路おょぴ受信回路のそれぞれを信号が通過することによって当 該信号に生じる位相回転量および振幅変動量の少なくとも一方に関する情報を算 出する。 キャリブレーションステップは、 算出された情報に基づいて、 n個の信 号伝送系の各々の送信回路および受信回路の間の位相回転量の差および振幅変動 量の差の少なくとも一方のキャリブレーションを行なう。 図面の簡単な説明
図 1は、 この発明によるァダプティプアレイ無線基地局の第 1の基本構成の要 部を示す概略プロック図である。
図 2は、 この発明によるァダプティブアレイ無線基地局の第 1の基本構成の変 形例を示す概略ブロック図である。
図 3は、 この発明によるァダプティプアレイ無線基地局の第 2の基本構成の要 部を示す概略ブロック図である。
図 4は、 この発明によるァダプティプアレイ無線基地局の第 2の基本構成の変 形例を示す概略ブロック図である。
図 5は、 第 1および第 2の基本構成の各部における信号の位相回転量および振 幅変動量を示した図である。
図 6は、 この発明の第 1の基本構成によるァダプティブァレイ無線基地局にお けるキヤリプレーション時の信号の送受信の態様を示す模式図である。
図 7は、 第 1の基本構成の動作の前半を示すフロー図である。
図 8は、 第 1の基本構成の動作の後半を示すフロー図である。
図 9は、 第 1の基本構成の変形例の動作の前半を示すフロー図である。
図 1 0は、 第 1の基本構成の変形例の動作の後半を示すフロー図である。 図 1 1は、 この発明の第 1の基本構成の変形例を示す概略ブロック図である。 図 1 2は、 図 1 1に示した変形例の動作を示すフロー図である。
図 1 3は、 この発明の第 1の基本構成のさらなる変形例を示す概略ブロック図 である。
図 1 4は、 図 1 3に示した変形例の動作を示すフロー図である。
図 1 5は、 この発明の第 1の基本構成の実施の形態 1を示すプロック図である。 図 1 6は、 図 1 5に示した実施の形態 1の動作を示すフロー図である。
図 1 7は、 この発明の第 1の基本構成の実施の形態 2を示すプロック図である。 図 1 8は、 図 1 7に示した実施の形態 2の動作を示すフロー図である。
図 1 9は、 この発明の第 2の基本構成によるァダプティブアレイ無線基地局に おけるキヤリブレーシヨン時の信号の送受信の態様を示す模式図である。
図 2 0は、 第 2の基本構成の動作の前半を示すフロー図である。
図 2 1は、 第 2の基本構成の動作の後半を示すフロー図である。
図 2 2は、 第 2の基本構成の変形例の動作の前半を示すフロー図である。
図 2 3は、 第 2の基本構成の変形例の動作の後半を示すフロー図である。
図 2 4は、 この発明の第 2の基本構成の変形例を示す概略プロック図である。 図 2 5は、 図 2 4に示した変形例の動作の前半を示すフロー図である。
図 2 6は、 図 2 4に示した変形例の動作の後半を示すフロー図である。
図 2 7は、 この発明の第 2の基本構成のさらなる変形例を示す概略ブロック図 である。
図 2 8は、 図 2 7に示した変形例の動作の前半を示すフロー図である。
図 2 9は、 図 2 7に示した変形例の動作の後半を示すフロー図である。
図 3 0は、 この発明の第 2の基本構成の実施の形態 3を示すプロック図である。 図 3 1は、 図 3◦に示した実施の形態 3の動作を示すフロー図である。
図 3 2は、 この発明の第 2の基本構成の実施の形態 4を示すブロック図である。 図 3 3は、 図 3 2に示した実施の形態 4の動作を説明するフロー図である。 図 3 4は、 この発明の実施の形態 5の具体的な回路構成を示すプロック図であ る。
図 3 5は、 図 3 4に示した実施の形態 5の動作を示すフロー図である。
図 3 6は、 図 3 5の動作の計算ル一チンを示すフロー図である。 図 3 7は、 この発明の実施の形態 6の具体的な回路構成を示すプロック図であ る。
図 3 8は、 この発明の実施の形態 7の具体的な回路構成を示すプロック図であ る。
図 3 9は、 この発明の実施の形態 6および 7の動作を包括的に示すフロー図で ある。
図 4 0は、 図 3 9の動作の計算ルーチンを示すフロー図である。
図 4 1は、 図 3 9の動作の計算ルーチンを示すフロー図である。
図 4 2は、 この発明の実施の形態 8の具体的な回路構成を示すブロック図であ る。
図 4 3は、 この発明の実施の形態 9の具体的な回路構成を示すブロック図であ る。
図 4 4は、 図 3 9の動作の計算ル一チンを示すフロー図である。
図 4 5は、 図 3 9の動作の計算ルーチンを示すフロー図である。
図 4 6は、 この発明の実施の形態 1 0の具体的な回路構成を示すプロック図で ある。
図 4 7は、 図 4 6に示した実施の形態 1 0の動作を示すフロー図である。 図 4 8は、 この発明の実施の形態 1 1の具体的な回路構成を示すプロック図で ある。
図 4 9は、 この発明の実施の形態 1 2の具体的な回路構成を示すブロック図で ある。
図 5 0は、 この発明の実施の形態 1 1および 1 2の動作を包括的に示すフロー 図である。
図 5 1は、 この発明の実施の形態 1 3の具体的な回路構成を示すブロック図で ある。
図 5 2は、 この発明の実施の形態 1 4の具体的な回路構成を示すブロック図で ある。
図 5 3は、 この発明の実施の形態 1 5の具体的な回路構成を示すプロック図で ある。 図 5 4は、 図 5 3に示した実施の形態 1 5の計算ルーチンを示すフロー図であ る。
図 5 5は、 この発明の実施の形態 1 6の具体的な回路構成を示すプロック図で ある。
図 5 6は、 この発明の実施の形態 1 7の動作の前半を説明するフ口一図である。 図 5 7は、 図 5 6の動作の計算ルーチンを示すフロー図である。
図 5 8は、 この発明の実施の形態 1 8の動作の前半を示すフロー図である。 図 5 9は、 この発明の実施の形態 1 8の動作の後半を示すフロー図である。 図 6 0は、 この発明の実施の形態 1 8の変形例の動作の前半を示すフロー図で ある。
図 6 1は、 この発明の実施の形態 1 8の変形例の動作の後半を示すフロー図で ある。
図 6 2は、 この発明の実施の形態 1 9の動作の後半を示すフロー図である。 図 6 3は、 この発明の実施の形態 2 0の動作の前半を示すフロー図である。 図 6 4は、 この発明の実施の形態 2 0の動作の後半を示すフロー図である。 図 6 5は、 この発明の実施の形態 2 1の具体的な回路構成を示すプロック図で ある。
図 6 6は、 この発明の第 3の基本構成の実施の形態 2 3を示すブロック図であ る。
図 6 7は、 この発明の第 3の基本構成の実施の形態 2 4を示すプロック図であ る。
図 6 8は、 ァダプティブアレイ無線基地局の基本動作を概念的に示す模式図で ある。
図 6 9は、 ァダプティブアレイ無線基地局の構成を示す概略ブロック図である c 図 7 0は、 携帯電話機の電波信号のフレーム構成を示す概略図である。
図 7 1は、 ァダプティブアレイ無線基地局とユーザとの間の電波信号の授受を ィメージ化した模式図である。 発明を実施するための最良の形態 [第 1の基本構成の概要]
図 1は、 この発明によるァダプティブアレイ無線基地局の第 1の基本構成の要 部を示す概略プロック図である。 図 1の基本構成は、 ァダプティブアレイ無線基 地局のうち、 この発明に関連する位相回転量および振幅変動量の推定ならびにそ れらのキャリブレーションに関する部分のみを示しており、 前述の図 6 9に示し た受信信号および送信信号の重み付けのための受信部 1 Rおよび送信部 1 Tに対 応する部分は図示省略している。 以後説明する各実施の形態においても同様であ る。
図 1に示すァダプティブァレイ無線基地局は、 信号処理回路 2◦と、 アレイァ ンテナを構成する n個のアンテナ素子 ANT!, ···, ANTj , …, ANTk, …, ANTnと、 それぞれのアンテナ素子に対応して設けられたアンテナ共用器 , ···, SWj , …, SWk , ···, SWnと、 それぞれのアンテナ素子に対応して、 アンテナ共用器と信号処理回路 20との間に設けられた送信回路 , …, T X" ···, TXk , …, TXnおよび受信回路 , ···, RXj , ···, RXk, …, RXnとを備えている。
信号処理回路 20は、 キャリブレーション時にそれぞれのアンテナ素子から送 信すべき既知の信号 ( t) , …, Sj ( t ) , …, Sk ( t) , ···, Sn ( t ) が予め記憶されるとともに後述する算出された各信号を記憶するためのメモリ 2 1と、 このメモリ 2 1との間で制御信号おょぴデータの送受信を行なう制御装 置 2 2と、 それぞれのアンテナ素子に対応してメモリ 2 1と送信回路 TXとの間 に設けられた、 フェイズシフタ ···, P Sj , ···, P Sk, ···, P Sn、 ァ ッテネータ ΑΤΤ, , ···, ATTj , ···, ATTk, ■··, ATTnおよび送信信号 出力装置 SG! , ···, S Gj , …, S Gk, …, S Gnと、 それぞれのアンテナ素 子に対応して受信回路 RXとメモリ 2 1との間に設けられた受信信号測定装置 S M, , …, SMj , …, SMk, …, SMn、 位相抽出回路 PE^ …, PE3 , …, P Ek, ···, PEnおよび振幅抽出回路 , ···, AEj , …, AEk, …, AE nとを備えている。
なお、 送信回路 TX …, TXj , ···, TXk, …, TXnの各々は、 たとえ ば周波数変換器、 アンプ、 フィルタ、 拡散器などからなり、 対応する送信信号出 力装置 S Gから対応するァンテナ共用器 S Wまでの経路に存在する回路を総称す るものとする。 なお、 図 2以降の各図においては、 図示の都合上、 各送信回路 T Xの図示を省略しており、 各送信信号出力装置 S Gと対応のアンテナ共用器 S W との間のライン TXがそのような送信回路の存在を示しているものとする。
同様に、 受信回路 …, RXj , ···, RXk , …, RXnの各々も、 たと えば周波数変換器、 アンプ、 フィルタ、 逆拡散器などからなり、 対応するアンテ ナ共用器 S Wから対応する受信信号測定装置 S Mまでの経路に存在する回路を総 称するものとする。 なお、 図 2以降の各図においては、 図示の都合上、 各受信回 路 RXの図示を省略しており、 各アンテナ共用器 SWと対応の受信信号測定装置 SMとの間のライン RXがそのような受信回路の存在を示しているものとする。 キャリブレーション時に、 メモリ 2 1から出力されたそれぞれのアンテナ素子 に対応する既知の信号 ( t) , ·■·, Sj ( t ) , …, Sk ( t ) , …, Sn ( t) は、 対応するフェイズシフタ P St , ···, P Sj , ···, P Sい …, P Snに より 0ぃ …, 0J , …, 0k, …, 0nだけ位相が回転させられ、 信号 Si (t ) e x p ( i Θ J ) , ···, Sj ( t ) e x p ( i Θ } ) , ···, Sk ( t ) e x p ( i 6k) , ■■·, Sn ( t) e x p ( i θη) となる。 なお、 それぞれのフェイズシフ タの位相回転量は制御装置 22からの制御信号により制御される。
これらの位相回転された信号はそれぞれ、 対応するアツテネータ ΑΤΤ\, …, ATTj , ···, ATTk, ···, ATTnにより、 Αい …, A, , ···, Ak, ···, An だけ振幅変動させられ、 信号 At Si ( t) e x p ( i Q ) , …, Aj S」 (t) e x p ( i Θ j ) , ···, Ak Sk ( t ) e x p ( i Θ k ) , ···, An Sn ( t ) e x p ( i 0n) となる。 なお、 それぞれのアツテネータの振幅変動量は制御装置 2 2からの制御信号により制御される。
これらの信号は、 それぞれ、 対応する送信信号出力装置 S Gi, ■··, S G} , …, SGk, ···, SGnから送信され、 対応する送信回路 TXい ···, TXj , …, TXk , ···, TXnを介して対応するアンテナ共用器 SWい ···, SWj , ···, S wk , ·■·, swnに与えられる。
これらのアンテナ共用器 SWの各々は、 制御装置 22からの制御信号に応じて、 対応する送信回路 TXからの信号を、 対応するアンテナ素子 ANTまたは受信回 路 RXのいずれかに選択的に与えるよう切換わる。
アンテナ共用器 SWのそれぞれから対応するアンテナ素子 ANTに与えられる 信号は、 電波信号として放出される。 なお、 アンテナ共用器 SWがアンテナ素子 側に接続されていない場合、 当該アンテナ共用器に入った送信信号はそのまま対 応する受信回路 RXによって受信される。
—方、 キャリブレーション時に、 それぞれのアンテナ素子 ΑΝΤ\, ···, AN Τ』, ···, ANTk ) …, ANTnで受信された信号は、 対応するアンテナ共用器 SWt , ···, SWj, …, SWk ) …, SWnを介して、 対応する受信信号測定装 置 SMi , ···, SMj , ···, SMk, ··, SMnに与えられる。 なお、 前述のよう に、 アンテナ共用器 SWがアンテナ素子側に接続されていない場合には、 アンテ ナ素子ではなく対応する送信回路 T Xからの信号が対応する受信信号測定装置 S Mに与えられることになる。
これらの受信信号測定装置で受取られた信号はそれぞれ、 対応する位相抽出回 路 PE1 ; ···, PEj, ···, PEk, ···, PEnおよび振幅抽出回路 AEい …, A Ej , ···, AEk, …, AEnに並列に与えられる。 後述するように、 これらの位 相抽出回路 PEおよび振幅抽出回路 AEで抽出された情報はメモリ 21に与えら れ、 そこに蓄えられる。
なお、 送信信号出力装置 SGi , ···, SGj, ···, SGk, ·■·, SGnおよび受 信信号測定装置 SM,, ···, SMj, …, SMk, …, SMnの動作は、 制御装置 22からの制御信号によって制御される。
以後、 各々のアンテナ素子を介する信号の送受信に関係する一群の回路構成を
(信号) 伝送系と称することとする。
なお、 キャリブレーション時以外の通常の信号送受信時には、 メモリ 21から の既知の信号ではなく、 図示しない送信部 (図 69の 1 T参照) によって各伝送 系ごとに重みづけされた送信信号が、 図示しない信号経路を介して当該伝送系の フェイズシフタ PSに与えられ、 以後アツテネータ ATT、 送信信号出力装置 S G、 送信回路 TX、 およびアンテナ共用器 SWを介してアンテナ素子 ANTによ り送出される。 また、 各アンテナ素子 ANTによって受信された信号は、 当該伝 送系のァンテナ共用器 S W、 受信回路 R Xを介して受信信号測定装置 S Mによつ て受信された後、 位相抽出回路 PEおよび振幅抽出回路 AEではなく、 図示しな い信号経路を介して、 図示しない受信部 (図 69の 1 R参照) に与えられて重み づけ処理がなされ、 出力信号として外部へ供給される。
図 2は、 図 1のァダプティプアレイ無線基地局の第 1の基本構成の変形例を示 す概略ブロック図である。 図 2の構成は、 以下の点を除いて、 図 1に示した第 1 の基本構成と同じである。
すなわち、 図 1では、 それぞれの伝送系のフェイズシフタ P Sおよびアツテネ ータ ATTが信号処理回路 20内に設けられているが、 図 2に示した変形例では、 これらのフェイズシフタ P Sおよびアツテネータ ATTが、 信号処理回路 20の 外部に、 すなわち当該伝送系の送信信号出力装置 SGと送信回路 TXとの間に設 けられている。
このように、 フェイズシフタ P Sおよびアツテネータ ATTの配置場所につい ては、 メモリ 21と各アンテナ共用器 SWとの間であれば制約はなく、 特に図示 しないが、 フェイズシフタ P Sおよびアツテネータ ATTの一方を信号処理回路 20内に、 他方を信号処理回路 20外に、 別々に配するように構成してもよい。 またフェイズシフタ P Sおよびアツテネータ ATTは、 信号処理回路 20の内部 および外部の双方に設けてもよい。
[第 2の基本構成の概要]
図 3は、 この発明によるァダプティブアレイ無線基地局の第 2の基本構成の要 部を示す概略ブロック図である。 図 3に示した第 2の基本構成は、 以下の点を除 いて、 図 1に示した第 1の基本構成と同じである。
すなわち、 各伝送系のアンテナ共用器 SWには、 制御装置 22から制御信号は 与えられておらず、 図 1の第 1の基本構成のように、 送信回路 TXからの信号が 直接受信回路 R Xに与えられるように各ァンテナ共用器 S Wが切換わることはな い。 したがって、 各伝送系の送信回路 TXからの信号は必ず対応するアンテナ共 用器 SWを介してアンテナ素子 ANTから送信され、 アンテナ素子 ANTで受信 された信号は対応するアンテナ共用器 SWを介して受信回路 RXに与えられる。 その他の構成は、 図 1の第 1の基本構成と同じであり、 ここでは説明を繰返さな 図 4は、 図 3のァダプティプアレイ無線基地局の第 2の基本構成の変形例を示 す概略ブロック図である。 図 4の構成は、 以下の点を除いて、 図 3に示した第 2 の基本構成と同じである。
すなわち、 図 3 は、 それぞれの伝送系のフェイズシフタ P Sおよびアツテネ ータ ATTが信号処理回路 20内に設けられているが、 図 4に示した変形例では、 これらのフェイズシフタ P Sおよびアツテネータ ATTが、 信号処理回路 20の 外部に設けられている。
図 2の変形例に関して説明したように、 フェイズシフタ P Sおよぴァッテネー タ AT Tの配置場所については、 メモリ 21と各アンテナ共用器 SWとの間であ れば制約はなく、 特に図示しないが、 フェイズシフタ PSおよびアツテネータ A TTの一方を信号処理回路 20内に、 他方をその外部に、 別々に配するように構 成してもよい。 また、 フェイズシフタ P Sおよびアツテネータ ATTを、 信号処 理回路 20の内部および外部の双方に設けてもよい。
以下に、 これらの第 1および第 2の基本構成の動作原理および具体的な実施の 形態について個別に説明することとするが、 その前に、 以後の説明に用いる各種 の変数について、 以下にように定義することとする:
Sj ( t) : j番目の送信信号出力装置 SGjから出力される既知の信号
RXJk ( t) : j番目の送信信号出力装置 SGjから出力された信号 Sj (t) 1S k番目の受信信号測定装置 SMkによって測定された信号
0 j : j番目のフェイズシフタ P Sjを信号が通過することによって生じる信 号の位相回転量
A RX} : j番目の受信回路 RXjを信号が通過することによって生じる信 号の位相回転量
A 0 TXj : j番目の送信回路 TXjを信号が通過することによって生じる信 号の位相回転量
0Jk: j番目のアンテナ共用器 SWjから j番目のアンテナ素子 ANTjまでを 信号が通過することによって生じる信号の位相回転量と、 j番目のァンテナ素子 ANTjから k番目のアンテナ素子 AN Tkまで電波信号が伝播することによつ て生じる信号の位相回転量と、 k番目のアンテナ素子 ANT\から k番目のアン テナ共用器 s wkまでを信号が通過することによって生じる信号の位相回転量と の合計値
Aj : j番目のアツテネータ ATTjを信号が通過することによって生じる信 号の振幅変動量
ARXj : j番目の受信回路 RXjを信号が通過することによって生じる信号 の振幅変動量
ATXj : j番目の送信回路 ΤΧΛを信号が通過することによって生じる信号 の振幅変動量
Ajk: j番目のアンテナ共用器 SWjから j番目のアンテナ素子 ANTjまで信 号が通過することによって生じる信号の振幅変動量と、 j番目のアンテナ素子 A NTjから k番目のアンテナ素子 AN Tkまで電波信号が伝播することによって 生じる信号の振幅変動量と、 k番目のァンテナ素子 A N Tkから k番目のアンテ ナ共用器 S Wkまでを信号が通過することによって生じる信号の振幅変動量との 合計値
n :アンテナ素子数 (伝送系の数)
なお、 図 5は、 上述の各種の変数のうち、 信号の位相回転量および振幅変動量 を、 先に説明した第 1および第 2の基本構成の該当部位に表示した図である。
[第 1の基本構成の動作原理]
図 6は、 図 1に示したこの発明の第 1の基本構成によるァダプティプアレイ無 線基地局におけるキャリブレーション時の信号の送受信の態様を模式的に示す図 である。 以下に、 図 6を参照して、 この発明の第 1の基本構成によるァダプティ プアレイ無線基地局の動作原理について説明する。
まず、 キャリブレーション時には、 制御装置 22からの制御信号に応じて、 た とえば j番目の伝送系のフェイズシフタ P S jの位相回転量が 0に、 アツテネー タ ΑΤΤ』の振幅変動量 Ajが 1 (=O d B) にセットされる。 そしてメモリ 2 1からは制御装置 22の制御により、 この j番目の伝送系に対応する既知の信号 Sj (t) が出力され、 当該伝送系のフェイズシフタ PS アツテネータ AT Tj、 送信信号出力装置 SGj、 送信回路 ΤΧ』、 アンテナ共用器 SWい および アンテナ素子 ANTjを介して電波信号として送出される。 送信された電波信号は、 j番目の伝送系を除く他のすべての伝送系の各々、 た とえば k番目の伝送系のアンテナ素子 A N Tkおよび受信回路 R Xkで受信され、 受信信号送信装置 SMkで受信信号 RXJk (t) として測定される。
なお、 制御装置 22からの制御信号により j番目の伝送系のアンテナ共用器 S Wjのスィツチが送信回路 ΤΧ』を同じ伝送系の受信回路 RXjに接続するように 切換えることにより、 送信回路 T Xjからの送信信号が当該伝送系自身の受信回 路 RXjで受信され、 受信信号測定装置 SMjで受信信号 RXjj (t) として測定 される。
j番目の伝送系から送出され、 k番目の伝送系で受信され測定された信号 RX jk (t) は、 下記の式 (1一 1) で表わされるが、 さらに信号を送信する j番目 の伝送系を 1番目から n番目まで順次切換えて、 その都度 1番目から n番目まで のすベての伝送系で受信された測定された信号 RXjk (t) は、 下記の式 (1— 2) で表わされる。 RXjk(t)=Ajk ATXj ARXk exp{i ( jk+A φ TXj+Δ 0RXk)}Sj(t)+njk(t),
(k=l, 2, …, n) ·'·(1— 1)
RXjk(t)=Ajk ATXj ARXk exp{i ( φ jk+A φ TXj+Δ ø RXk) }Sj (t)+njk(t),
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 Ajk=l, φ jk=0, ( kのとき) ·'·(1- 2) なお、 これらの式において、 njk (t) は雑音を表わし、 iは虚数単位 ( i2 =- 1) を表わしている。
次に、 上記の式 (1— 2) の両辺を、 送信時における既知の信号 Sj (t) で 割ると、 下記の式 (1— 3) で表わされるようになり、 さらにその式の両辺の自 然対数を計算すると下記の式 (1—4) で表わされるようになる。 Ajk ATXj ARXk exp { i ( ø jk+ Δ φ TXj+ Δ φ RXk) } +njk (t) /S j (t)
Figure imgf000021_0001
loge[Ajk ATXj ARXkexp { i ( φ jk+ Δ φ TXj+ Δ φ RXk) } +njk (t) /S j (t) ]
=loge[RXjk(t)/Sj(t)] -(1-4) なお、 これらの式において、 1 o ge [ · ] は [ ·] の自然対数を意味する。 ここで、 式 (1—4) の左辺を 1 o ge [v+w] と表わす。 ただし、
AjkATXj ARXk e x p { i (0jk+A φ TXj +Δ ø RXk) } = v
Figure imgf000021_0002
ここで、 信号電力対雑音電力比 (S N比) が十分よいと仮定すれば v>wと なる。
上述のような置換えを行なった式 (1—4) の左辺をティラー展開すると、 下 記の式 (1— 5) のとおりになり、 上述のように SZN比が十分よい U wZv I << 1) と仮定したので、 式 (1— 5) の右辺の wZv以後の項は無視するこ とができる。 ここで、 先の式 (1—4) の右辺と、 式 (1— 5) の右辺とから、 下記の等式 (1一 6) が導かれる。 loge [v+w] =loge [v] +w/v- (w/v) z/2+ (w/v) 3/3- · · …(1-5) loge[Ajk ATXj ARXk] +i ( jk+ Δ TXj+ Δ φ RXk) =loge [RXjk (t) /S j (t) ]
-(1-6) 上記の式 (1一 6) の虚数部に注目すると下記の式 (1一 7) が導かれ、 実数 部に着目すると下記の式 (1— 8) が導かれる。 なお、 これらの式において、 I m [ · ] は ] の虚数部を意味し、 R e [ · ] は [ · ] の実数部を意味するも のとする。 φ +Δ φΤΧ」+Δ 0RXk=Im[loge{RXjk(t)/Sj (t)}]
=Im[loge {RXjk (t) } ] - Im [loge (t)}],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、
Figure imgf000022_0001
(j=kのとき) (1-7) loge[Ajk ATXj ARXk]=Re[loge{RXjk(t)/Sj(t)}]
二 Re [loge {RXjk (t) } ] -Re [loge {Sj (t) } ],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, (j=kのとき) (1-8) 以上の処理により、 位相に関する方程式である式 (1— 7) と、 振幅に関する 方程式である式 (1一 8) とを別々に分離している。
ここで、 これらの式中の RXJk (t) は実際に測定された受信信号であり、 Sj (t) は既知の信号である。 したがって、 式 (1— 7) および式 (1—8) のそ れぞれの右辺の値は計算によって容易に求めることができる。
そこで、 式 (1一 7) および式 (1— 8) のそれぞれの右辺の計算によって求 められた値を YJk, XJkとすると、 それぞれの式は、 下記の式 (1— 9) および 式 (1— 10) のように表わされる。 Yjk=0 jk+A φ TXj+ Δ φ RXk,
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 0jk=O, (j=kのとき) (1-9)
Xjk=loge [Ajk] +loge [ATXj] +loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, (j=kのとき) (1-10) 上記の位相に関する式 (1— 9) は n2個の一次方程式からなる連立一次方程 式であり、 下記の式 (1— 1 1) のように表現される。 Υη=Δ φΤΧ^Δ 0RXL
Υ1212+Δ 0TXx+A 0RX2
Υηη=Δ φΤΧη+Δ 0RXn -(1-11) ここで、 0Jkと 0kjとは、 それぞれ伝播する方向は逆であるが、 全く同一の回 路および伝播路を通過した信号の位相回転量であり、 それらの値は互いに一致す る (ただし j≠k) 。 したがって、 連立一次方程式 (1一 1 1) 中の未知の変数 である 0jkの個数は n (n— 1) Z2個であり、 未知の変数である ΔφΤΧ』、 A<i>RXkの個数は 2 η個である ( (j =l, 2, …, n) , (k= 1 , 2, …, n) ) 。 したがって、 上記の連立一次方程式 (1一 11) の未知の変数の総計は (n2 +3 n) /2個となる。
一方、 上述の振幅に関する式 (1— 10) も n2個の一次方程式からなる連立 一次方程式であり、 下記の式 (1— 12) のように表現される。
Figure imgf000023_0001
Xi2=loge [A12] +loge [ATX +loge [ARX2] Xm= loge[ATXn]+loge[ARXn] -(1-12) ここで、 AJkと AkJとは、 それぞれ伝播する方向は逆であるが、 全く同一の回 路または伝播路を通過した信号の振幅変動量であり、 それらの値は互いに一致す る (ただし j≠k) 。 したがって、 連立一次方程式 (1— 12) 中の未知の変数 である 1 o ge [AJk] の個数は n (n- 1) 2個であり、 未知の変数である 1 o ge [ATXj] 、 1 o ge [ARXk] の個数は 2 n個である ( ( j = 1, 2, …, n) , (k=l, 2, …, n) ) 。 したがって、 上記の連立一次方程式 (1— 12) の未知の変数の総数も (η2 + 3 η) Ζ 2個となる。
これらの連立一次方程式を解くためには、 各連立一次方程式を構成する式の総 数 η 2が少なくとも未知の変数の個数 (η2 + 3 η) 2と同じでなければなら ない。 すなわち、 ηが 3以上のとき、 η22 + 3 η) /2が成立するため、 信号伝送系の数 ηが 3以上であれば、 連立一次方程式 ( 1一 1 1 ) および ( 1一 1 2) の各々において、 方程式の個数が未知の変数の個数を上回り、 双方の連立 一次方程式においてすベての未知の変数の値を求めることが可能となる。
すなわち、 これら連立一次方程式 (1一 1 1) および (1— 1 2) を解くこと により、 すべての伝送系において、 送信回路 ΤΧ』 ( j = 1, 2, ···, n) を通 過することによって生じる信号の位相回転量 Δ φ T X」および振幅変動量 AT Χ』 と、 受信回路 RXjを通過することによって生じる信号の位相回転量 Δ φ RXj および振幅変動量 ARXjとを算出することができる。
そして、 このような計算により推定された、 各伝送系ごとの受信回路と送信回 路との間の位相回転量の差の情報を当該伝送系のフェイズシフタに与え、 各伝送 系ごとの受信回路と送信回路との間の振幅変動量の差に関する情報を当該伝送系 のアツテネータに与えることにり、 各伝送系ごとに、 受信信号と送信信号との間 の位相回転量おょぴ振幅変動量の差を補償し、 伝送特性のキヤリブレーシヨンを 行なうことができる。
なお、 上述の動作原理の説明では、 測定された信号 RXJk (t) を既知の信号 Sj (t) で除算して得られた信号の自然対数を計算して虚数部と実数部とに分 離するように構成されているが、 入力信号を実数部と虚数部とに分離して出力す る機能を有する直交検波回路を用いても、 この発明によるァダプティブアレイ無 線基地局の動作原理を実現することができる。 すなわち、 直交検波回路から出力 される I信号と Q信号とを用いても、 容易に受信信号の位相成分と振幅成分とを 抽出することが可能である。
たとえば、 測定された受信信号を既知の信号で除算して得られる式 (1一 3) の右辺の信号 {RXjk (t) Sj ( t) } が直交検波回路に入力され、 I信号 と Q信号とに分離されたものとする。 ここで直交検波回路の入力信号の振幅値を Aとすると、 次式で表わされる。
A= (I2 +Q2) 1/2
一方、 直交検波回路の入力信号の位相値を 0とすると、 次式で表わされる。 θ = T a η "1 (Q/ I ) (Q〉0の場合)
θ = T a η "1 (Q/ I ) + π (Qく 0の場合)
ただし、 0く T a n -1 (Q/ I ) く πであるとする。
したがって、 このように直交検波回路を用いても、 位相成分と振幅成分とを容 易に分離することができる。 なお、 直交検波回路を用いて位相成分と直交成分と を抽出する技術自体は周知の技術である。
このように直交検波回路を用いてこの発明の第 1の基本構成を実現した場合、 位相抽出回路の出力信号を YJk, 振幅抽出回路の出力信号を XJkとすると、 次式 で表わされる。
Figure imgf000025_0001
したがって、 受信信号を位相に関する方程式と振幅に関する方程式とに分離す ることができ、 以下、 これまでに説明した手順と同様の手順により、 送信回路と 受信回路との間の位相回転量差および振幅変動量差を計算することができる。 なお、 以下に説明する各実施の形態においても、 受信信号を既知の信号で除算 した信号から位相成分と振幅成分とを抽出する際に、 上述の直交検波回路の技術 を用いることができる。
なお、 送信回路および受信回路の伝送特性は気温などの外部の要因によって常 に変化するため、 この発明のァダブティブアレイ無線基地局では、 上述のような 伝送特性の推定およびキャリブレーションは数時間おきに、 1日数回の頻度で行 なわれる。
上述のようなこの発明の第 1の基本構成の動作は、 現実には、 信号処理回路 2 0を構成するマイクロコンピュータにより、 ソフトウェア的に実行される。 図 7 および図 8は、 上述の第 1の基本構成の動作をマイクロコンピュータを用いてソ フトウェア的に実現する際のフロー図である。
まず、 所定のタイミングで (または外部からの指令により) 位相および振幅誤 差の推定命令が発せられると、 上述のキャリブレーション動作が開始される。 まず、 ステップ S 1— 1において、 j = 1番目の伝送系が選択され、 ステップ S 1—2において、 当該伝送系のフェイズシフタ P S ,の位相回転量を 0に、 ァ ッテネータ ATT!の振幅変動量 A,が 1 (=O d B) にセットされる。 そして、 メモリ 2 1からは、 この 1番目の伝送系に対応する既知の信号 ( t ) が出力 される。
次に、 ステップ S 1— 3において、 変数 kが 1に設定され、 ステップ S 1—4 において、 当該伝送系が k = l番目に該当するか否かが判断される。 ここで k = j = lなので、 ステップ S 1— 5において、 当該伝送系の送信回路 と受信 回路 RXtとを接続するようにアンテナ共用器 SW,が切換えられる。
次に、 ステップ S 1— 6において、 1番目の伝送系の受信信号測定装置 SA^ により、 上述の式 (1— 1 ) に基づいて受信信号 RXU ( t ) を測定し、 式 (1 - 3) により RX„ ( t ) /S, ( t ) を算出し、 さらに式 ( 1 - 6) 、 (1一 7) 、 (1— 8) により、 虚数部と実数部とに分離する。 そして、 RX„ ( t ) /S1 ( t ) の位相成分を式 (1— 9) のように抽出して Y„としてメモリ 2 1 に記憶し、 RXu ( t ) /S, ( t ) の振幅成分を式 (1一 1 0) のように抽出 して X„としてメモリ 2 1に記憶する。
次に、 ステップ S 1— 7, S 1— 8, S 1—4において kの値を 1ずつインク リメントしながら、 ステップ S 1— 9において当該伝送系 (j = l ) の送信回路 TX,とアンテナ素子 ΑΝΤ\とを接続するようにアンテナ共用器 が切換え られる。
次に、 ステップ S 1— 6において、 1番目の伝送系のアンテナ素子 ANT,か ら送信された電波信号を k番目の伝送系の受信信号測定装置 S Mkで測定して R Xlk ( t) を求め、 前述のように式 (1 — 6) 〜 (1 — 1 0) により、 RXlk ( t) /S, ( t ) の位相成分 Ylk、 振幅成分 Xlkを算出してメモリ 2 1に記憶する。 ステップ S 1— 7において、 kが nに達したことが判定されると、 ステップ S 1 - 1 0, S 1 - 1 1において jの値を 1インクリメントして、 次の伝送系 j = 2において、 上述のステップ S 1— 2〜S 1— 9の動作を繰返す。
このようにして、 ステップ S 1— 1 0において、 jが nに達したことが判定さ れると、 (j = l, 2, ···, n) , (k = l, 2, ···, n) のすベての組合せに 対する Yjk, XJkが算出され、 メモリ 2 1に記憶されたことになる。
次に、 図 8のステップ S 1— 1 2において、 メモリ 2 1に記憶されているすべ ての Yjk, XJk ( j = 1 , 2, ···, n) , (k = 1 , 2, ···, n) を用いて、 上 述の式 (1— 1 1) および (1— 1 2) の 2つの連立一次方程式を解く。
次に、 ステップ S 1— 1 3において、 算出された伝送系ごとの送信回路と受信 回路との間の位相回転量の差および振幅変動量の比を、 対応する伝送系の (予め 0に設定されている) フェイズシフタ PSおよび (予め 1に設定されている) ァ ッテネ一タ ATTにそれぞれ設定する。 これにより、 各伝送系の送信時に上記の 伝送特性の差がそれぞれ補償され、 キャリブレーションが実行される。
次に、 図 9および図 10は、 上述の図 7および図 8に示した動作の変形例を示 すフロー図である。 図 9および図 10に示す動作は、 以下の点を除いて図 7およ び図 8に示した動作と同じであり、 共通する動作については説明を繰返さない。 すなわち、 図 7の例では、 ステップ S 1—2において、 各伝送系のフェイズシ フタの位相回転量を 0に、 アツテネータの振幅変動量を 1 (=O dB) に設定し ているが、 図 9の例では、 ステップ S 1—2 aにおいて、 そのような設定を行な わず、 そのときのフェイズシフタ P Sjの位相回転量 θ」およびアツテネータ A TTjの振幅変動量 Α」を測定し、 それぞれメモリ 21に記憶している。
そして、 図 8の例では、 ステップ S 1— 13において、 伝送系ごとに、 算出さ れた送信回路と受信回路との間の位相回転量の差および振幅変動量の比を、 対応 する伝送系の予め 0に設定されたフェイズシフタおよぴ予め 1に設定されたァッ テネータに設定することにより、 位相回転量差および振幅変動量差を補償するキ ヤリブレーシヨンを行なっているのに対し、 図 10の例では、 ステップ S 1— 1 3 aにおいて、 キャリブレーションの開始時に図 9のステップ S 1—2 aで測定 されメモリ 21に記憶されているフヱイズシフタおよびアツテネータの初期値で ある および Α」を読出し、 これらの初期値を、 算出された位相回転量の差お よび振幅変動量の比で捕償することにより、 キヤリブレーションを行なっている。 次に、 図 1 1は、 図 1に示したこの発明の第 1の基本構成の変形例であり、 各 伝送系の送信回路と受信回路との間の位相回転量差のみを推定する場合のァダプ ティブアレイ無線基地局の信号処理回路 20の構成を示すプロック図である。 図 1 1の回路構成は、 各伝送系ごとにアツテネータ ΑΤΤ」および振幅抽出回路 A Ej (j = 1, 2, ···, n) が省略されている点を除いて、 図 1に示した第 1の 基本構成と同じであるので、 図 1の説明を援用して、 図 1 1の説明を省略する。 また、 図 1 2は、 図 1 1に示した回路の動作をマイクロコンピュータを用いてソ フトウェア的に実現する際のフロー図であり、 振幅成分に関する演算が省略され ている点を除いて、 図 7および図 8に示した第 1の基本構成の動作フロー図と同 じであるので、 図 7および図 8の説明を援用して、 図 1 2の説明を省略する。 次に、 図 1 3は、 図 1に示したこの発明の第 1の基本構成のさらなる変形例で あり、 各伝送系の送信回路と受信回路との間の振幅変動量差のみを推定する場合 のァダプティプアレイ無線基地局の信号処理回路 20の構成を示すプロック図で ある。 図 1 3の回路構成は、 各伝送系ごとにフェイズシフタ PSjおよび位相抽 出回路 PEj ( j =1, 2, ···, n) が省略されている点を除いて、 図 1に示し た第 1の基本構成と同じであるので、 図 1の説明を援用して、 図 13の説明を省 略する。
また、 図 14は、 図 13に示した回路の動作をマイクロコンピュータを用いて ソフトウエア的に実現する際のフロー図であり、 位相成分に関する演算が省略さ れている点を除いて、 図 7およぴ図 8に示した第 1の基本構成の動作フロー図と 同じであるので、 図 7およぴ図 8の説明を援用して、 図 14の説明を省略する。
[第 1の基本構成の実施の形態]
実施の形態 1
次に、 図 1 5は、 図 1に示したこの発明の第 1の基本構成によるァダプティブ ァレイ無線基地局の信号処理回路 20の具体的な回路構成である実施の形態 1を 示すブロック図である。
図 1の回路構成と対比して、 第 1の基本構成のうち、 各伝送系の位相抽出回路 ΡΕ および振幅抽出回路 AEj ( j = 1, 2, ···, n) 力 1つの乗算器 ΜΡ と 1つの信号処理回路 S Pjとによって構成されている。
各伝送系の乗算器 MP」 (j =l, 2, ···, n) は、 図 6に関連して説明した 式 (1一 3) の演算を行なう。 すなわち、 受信信号測定装置 SMjで測定された 受信信号を、 当該伝送系の既知の送信信号 Sj (t) で除算する。
次に、 各伝送系の信号処理回路 S Pj ( j =1, 2, …, n) は、 図 6に関連 して説明した式 (1—4) 〜 (1— 10) の演算を行なう。 すなわち、 信号処理 回路 S Pjは、 対応する乗算器 MPjの出力の自然対数を計算し、 その虚数部を
Ymjとして抽出して式 (1—9) の位相に関する方程式を形成し、 かつ実数部を XmJとして抽出して式 (1一 10) の振幅に関する方程式を形成する。
図 1 6は、 図 1 5に示した実施の形態 1の動作を説明するフロー図であり、 図 7に示した第 1の基本構成の動作の前半に対応している。 図 7のフロー図と対応 して、 図 7のステップ S 1—6で行なわれる信号処理の内容が、 図 16のステツ プ S 1— 6 dにより特定的に記載されている。 すなわち、 図 1 6のステップ S 1 — 6 dにおいて、 RXjk (t) Sj (t) の自然対数を計算し、 その虚数部お よび実数部を抽出することにより、 位相成分の方程式 (1一 9) および振幅成分 の方程式 (1— 10) が得られる。
実施の形態 2
次に、 図 1 7は、 図 1に示したこの発明の第 1の基本構成によるァダプティブ ァレイ無線基地局の信号処理回路 20の他の具体的な回路構成である実施の形態 2を示すブロック図である。
図 1の回路構成と対比して、 第 1の基本構成のうち、 各伝送系の位相抽出回路 PEjおよび振幅抽出回路 AEj ( j = 1 , 2, ···, と n) 力 1つの信号処理 回路 S Pjと 2つの減算器 S Aj, S Bjとによって構成されている。
まず、 各伝送系の信号処理回路 S Pj (j = l, 2, …, n) は、 受信信号測 定装置 SMjで測定された受信信号の自然対数を計算し、 その虚数部を抽出して —方の減算器 S Ajに与え、 かつ実数部を抽出して他方の減算器 S Bjに与える。 上記一方の減算器 SAjは、 与えられた受信信号の虚数部から、 当該伝送系の 既知の送信信号 Sj (t) の自然対数を計算したものの虚数部 I m [ 1 o ge { Sj (t) } ] を減算する。 上記他方の減算器 S B jは、 与えられた受信信号の 実数部から、 当該伝送系の既知の送信信号 S」 (t) の自然対数を計算したもの の実数部 Re [ 1 o ge {Sj (t) } ] を減算する。
上述の一方の減算器 SA」による虚数部の減算の結果を Ynjとして抽出し、 式 (1 -9) の位相に関する方程式を 成し、 かつ他方の減算器 S B jによる実数 部の減算の結果を XnJとして抽出し、 式 (1— 1 0) の振幅に関する方程式を形 成する。 以上のように、 図 17の実施の形態 2では、 先に受信信号の虚数部と実数部と の分離を行なった後に、 既知の信号 Sj ( t ) の虚数部おょぴ実数部をそれぞれ 減算している。
これに対し、 図 6および図 15に関連して説明した実施の形態 1では、 虚数部 と実数部とに分離するのに先立って受信信号を既知の信号で除算しており、 演算 の順序が前後している。 しかしながら、 いずれの方法でも最終的には、 式 (1一
9) および (1— 10) で表わす方程式が得られるため、 図 17に示す回路構成 も図 1に示す第 1の基本構成と等価なものと考えられる。
図 18は、 図 17に示した実施の形態 2の動作を説明するフロー図であり、 図 7に示した第 1の基本構成の動作の前半に対応している。 図 7のフロー図と対比 して、 図 7のステップ S 1 _ 6で行なわれる信号処理の内容が、 図 18のステツ プ S 1—6 eにより特定的に記載されている。 すなわち、 図 18のステップ S 1 一 6 eにおいて、 RXjk (t) の自然対数を計算したものの虚数部および実数部 力 、 Sj (t) の自然対数を計算したものの虚数部および実数部をそれぞれ減 算することにより、 位相成分の方程式 ( 1— 9 ) および振幅成分の方程式 ( 1―
10) が得られる。
なお、 これらの実施の形態 1および 2の説明においては、 先に述べたように、 SZN比が十分よいことを前提とした。 すなわち、 図 15〜図 18に示す実施の 形態 1および 2は、 受信信号の SZN比が良好な場合に有効であり、 後述する他 の実施の形態に比べても、 比較的少ない信号処理量で、 各伝送系の送信回路,受 信回路間の位相回転量差および振幅変動量差の推定を行なうことができる。
[第 2の基本構成の動作原理]
図 19は、 図 3に示したこの発明の第 2の基本構成によるァダプティブアレイ 無線基地局におけるキヤリブレーション時の信号の送受信の態様を模式的に示す 図である。 以下に、 図 19を参照して、 この発明の第 2の基本構成によるァダプ ティブアレイ無線基地局の動作原理について説明する。
まず、 キャリブレーション時には、 制御装置 22からの制御信号に応じて、 た とえば j番目の伝送系のフェイズシフタ P Sjの位相回転量が 0に、 アツテネー タ ΑΤΤ』の振幅変動量 Α」が 1 (=O d B) にセットされる。 そして、 メモリ 21からは制御装置 22の制御により、 この j番目の伝送系に対応する既知の信 号 Sj (t) が出力され、 当該伝送系のフェイズシフタ PS" アツテネータ A
TTい 送信信号出力装置 SGj、 送信回路 TXい アンテナ共用器 SWj、 およ びアンテナ素子 ΑΝΤ」を介して電波信号として送出される。
送信された電波信号は、 j番目の伝送系を除く他のすべての伝送系の各々、 た とえば k番目の伝送系のアンテナ素子 A N Tkおよび受信回路 R Xkで受信され、 受信信号測定装置 SMkで受信信号 Rjk (t) として測定される。
なお、 この図 19に示す第 2の基本構成によるァダプティブアレイ無線基地局 では、 図 6に示した第 1の基本構成によるァダプティプアレイ無線基地局とは異 なり、 同じ伝送系において送信回路 TXと受信回路 RXとが接続さるようにアン テナ共用器 SWが切換わることはない。
j番目の伝送系から送出され、 k番目の伝送系で受信され測定された信号 RX Jk (t) は、 下記の式 (1一 1 3) で表わされるが、 さらに信号を送信する j番 目の伝送系を 1番目から n番目まで順次切換えて、 その都度、 送信している伝送 系を除く 1番目から n番目までのすべての伝送系で受信された測定された信号 R XJk (t) は、 下記の式 (1— 14) で表わされる。
RXjk(t)=Ajk ATXj ARXk exp{i ( jk+A ø ΤΧ,+ Δ 0RXk)} Sj(t)+njk(t)
(k=l, 2, ···, n) ただし、 k≠j ·'·(1- 13)
RXjk (t) =Ajk ATXj ARXk exp { i ( ø jk+ Δ φ TXj+ Δ φ RXk) } Sj (t) +njk (t)
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k …ひ- 14) 次に、 上記の式 (1一 14) の両辺を、 送信時における既知の信号 Sj (t) で割ると下記の式 (1— 1 5) で表わされるようになり、 さらにその式の両辺の 自然対数を計算すると下記の式 (1— 16) で表わされるようになる。 Ajk ATXj ARXk exp { i ( φ jk+ Δ φ TXj+ Δ φ RXk) } +n jk (t) /S j (t)
Figure imgf000032_0001
loge[Ajk ATXj ARXkexp { i ( φ jk+ Δ ø TXj+ Δ φ RXk) } +njk (t) /S j (t) ]
Figure imgf000032_0002
ここで、 式 (1一 16) の左辺を 1 o ge [v+w] と表わす。 ただし、 AjkATXj ARXk e x p { i (0 jk+厶 0 ΤΧ』 +Δ ø RXk ) } = v
Figure imgf000032_0003
ここで、 信号電力対雑音電力比 (SZN比) が十分よいと仮定すれば、 v〉w となる。
上述のような置換えを行なった式 (1— 16) の左辺をティラー展開すると、 下記の式 (1— 17) のとおりになり、 上述のように SZN比が十分よい ( | w Zv I << 1) と仮定したので、 式 (1一 1 7) の右辺の wZv以後の項は無視 することができる。
ここで、 先の式 (1一 16) の右辺と、 式 (1— 17) の右辺とから、 下記の 等式 (1— 18) が導かれる。
1 oge [v+w] =loge [v] +w/v- (w/v) 2/2+ (w/v) 3/3- · · · …( 1— 17) loge[Ajk ATXj ARXk]+i(0jk+A 0T j+A
Figure imgf000032_0004
…(ト 18) 上記の式 (1— 18) の虚数部に注目すると下記の式 (1— 19) が導かれ、 実数部に注目すると下記の式 (1— 20) が導かれる。 ø jk+△ ø TXj+厶 φ RXk=Im [loge {RXjk (t) /Sj (t) } ]
=Im[loge {RXjk (t) }]-Im [loge {Sj(t)}],
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (1-19) loge[Ajk ATXj ARXk]=Re[loge{RXjk(t)/Sj(t)}]
=Re [loge {RXjk (t) } ] - Re [loge {S j (t) } ],
(j=l, 2, '··, n), (k=l, 2, ···, n),
ただし、 j≠k (1-20) 以上の処理により、 位相に関する方程式である式 (1— 1 9) と、 振幅に関す る方程式である式 (1— 20) とを、 別々に分離している。
ここで、 これらの式中の RXjk ( t) は実際に測定された信号であり、 Sj ( t) は既知の信号である。 したがって、 式 (1— 1 9) および式 (1— 20) の それぞれの右辺の値は計算によって求めることができる。
そこで、 式 (1— 1 9) および式 (1— 20) のそれぞれの右辺の計算によつ て求められた値を YJk, XJkとすると、 それぞれの式は、 下記の式 (1一 21) および式 (1— 22) のように表わされる。 Yjk=0 jk+Δ 0TXj+A 0RXk, (j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k --(1-21)
Xjk=loge [Ajk] +loge [ATXj]+loge [ARXk] ,
(j=l, 2, ···, n), (k=l, 2, ·.·' n),
ただし、 j≠k (1-22) このように求められた位相情報のうち、 Yjk— YkJ=Zjkとおいて式 (1— 21 ) に代入すると、 下記の式 (1— 23) が得られる。 また、 得られた振幅情報の うち、 Xjk— Xkj=VJkとおいて式 (1— 22) に代入すると、 下記の式 (1— 2 4) が得られる c
Figure imgf000034_0001
jk— 0k +(A 0RXk一△ ΦΤ )-( 0RXj—△ 0TXj),
( 1, 2, ■··, n-l), (k二 j+2, ···, n) (1-23)
Vjk= (loge [Ajk] -loge [Akj] ) + (loge [ARXk]-loge [ATXk] )
- (loge [組 j] - loge[ATXj]),
(j=l, 2, ···, n-l), (k=j+l, j+2, ···, n) (1-24) ここで、 0jkと 0kjとは、 それぞれ伝播する方向は逆であるが、 全く同一の回 路および伝播路を通過した信号の位相回転量であり、 それらの値は互いに一致す る (ただし j≠k) 。 したがって、 下記の式 (1— 25) が成り立つ。
一方、 1 o ge [AJk] と 1 o ge [AkJ] とは、 それぞれ伝播する方向は逆で あるが、 全く同一の回路および伝播路を通過した信号の振幅変動量であり、 それ らの値は互いに一致する (ただし j≠k) 。 すなわち、 下記の式 (1— 26) が 成り立つ。
jk= Φ kj» -1» 2, n), (k=l, 2, n),
ただし、 j≠k -(1-25) loge[Ajk]=loge[Akj], (j=l, 2, n), (k=l, 2, ·, n),
ただし、 j≠k -(1-26) ここで、 j番目の伝送系の受信回路を信号が通過することによって生じる信号 の位相回転量と同じ伝送系の送信回路を信号が通過することによって生じる信号 の位相回転量の差を Δ<^とすると、 下記の式 (1— 27) のように表わされ、 j番目の伝送系の受信回路を信号が通過することによって生じる信号の振幅変動 量と同じ伝送系の送信回路を信号が通過することによって生じる信号の振幅変動 量との差を ΔΑ』とすると、 下記の式 (1ー28) のように表わされる。 Δ φ」=△ 0RXr Δ 0TXj, (j=l, 2, …, n) …(ト 27)
Δ Aj=loge [ARXj] -loge [ATXj] , (j=l, 2, ···, n) …(1— 28) 上記の式 (1一 23) に、 これらの式 (1— 25) および (1— 27) を代入 すると、 下記の式 (1— 29) となる。
Figure imgf000035_0001
(j=l, 2, ···, n— 1), (k=j+l, j+2, ···, n) "'(1—29) この式は、 未知の変数の個数が n個、 独立した一次方程式の個数が n (n- 1 ) /2個の連立方程式であり、 次の式 (1— 30) のように表わされる。 Ζ12=Δφ2-厶
Ζ13=Δ φ3—Δ φ i
Figure imgf000035_0002
一方、 上記の式 (1— 24) に、 これらの式 (1 -26) および式 (1ー28 ) を代入すると、 下記の式 (1一 31) となる。
(j=l, 2, …, n - 1), (k=j+l, j+2, ···, η) ·'·(1一 31) この式も、 未知の変数の個数が η個、 独立した一次方程式の個数が η (η- 1 ) 2個の連立方程式であり、 次の式 (1— 32) のように表わされる。 ν12=ΔΑ2- AAJL
ν13=ΔΑ3-ΔΑ1
VN一丄 Η=ΔΑΗ- ΔΑ,Η …ひ- 32) これらの連立一次方程式を解くためには、 各連立一次方程式を構成する式の総 数 η (η- 1) ノ 2が少なくとも未知の変数の個数 ηと同じでなければならない。 すなわち、 ηが 3以上のとき、 η (η- 1) 2 ηが成立するため、 伝送系の 数 ηが 3以上であれば、 連立一次方程式 (1— 31) および (1—32) の各々 において、 方程式の個数が未知の変数の個数を上回り、 双方の連立一次方程式に おいてすベての未知の変数の値を求めることが可能となる。
すなわち、 これらの連立一次方程式 (1— 3 1) および (1一 32) を解くこ とにより、 すべての伝送系において、 送信回路および受信回路を通過する信号の 間の位相回転量の差 Δφ』 ( j = 1 , 2, ···, n) および振幅変動量の差 ΔΑΛ ( j =1, 2, -n) を算出することができる。
そして、 このような計算により推定された、 各伝送系ごとの受信回路と送信回 路との間の位相回転量の差に関する情報を当該伝送系のフェィズシフタに与え、 各伝送系ごとの受信回路と送信回路との間の振幅変動量の差に関する情報を当該 伝送系のアツテネータに与えることにより、 各伝送系ごとに、 受信信号と送信信 号との間の位相回転量および振幅変動量の差を補償し、 伝送特性のキヤリブレー シヨンを行なうことができる。
上述のような、 この発明の第 2の基本構成の動作は、 現実には、 信号処理回路 20を構成するマイクロコンピュータにより、 ソフトウェア的に実行される。 図 20およぴ図 21は、 上述の第 2の基本構成の動作をマイクロコンピュータを用 いてソフトウェア的に実現するときのフロー図である。
まず、 所定のタイミングで (または外部からの指令により) 位相および振幅誤 差の推定命令が発せられると、 上述のキャリブレーション動作が開始される。 まず、 ステップ S 2— 1において、 j = 1番目の伝送系が選択され、 ステップ S 2— 2において、 当該伝送系のフェイズシフタ P Stの位相回転量が 0に、 ァ ッテネータ AT 1\の振幅変動量 A,が 1 (=0 d B) にセットされる。 そして、 メモリ 2 1からは、 この 1番目の伝送系に対応する既知の信号 St ( t) が出力 される。
次に、 ステップ S 2— 3において、 変数 kが 1に設定され、 ステップ S 2— 4 において、 当該伝送系が k= 1番目に該当するか否かが判断される。 ここで k= j = lなので、 何ら処理を行なわず、 ステップ S 2— 6, S 2— 7において kの 値を 1インクリメントする。 ステップ S 2— 4で k≠ jが判断されれば、 ステツ プ S 2— 5において、 1番目の伝送路のアンテナ素子 ANT\から送信された電 波信号を k番目の伝送系の受信信号測定装置 SMkで測定して RXlk ( t) を求 め、 前述のように式 (1— 1 3) 〜式 (1— 2 2) により、 RXlk ( t ) /Sx (t) の位相成分 Ylk、 振幅成分 Xlkを算出してメモリ 2 1に記憶する。
ステップ S 2— 6において、 kが nに達したことが判定されると、 ステップ S 2— 8、 S 2— 9において jの値を 1インクリメントして、 次の伝送系 j = 2に おいて、 上述のステップ S 2— 2〜S 2— 7の動作を繰返す。
このようにして、 ステップ S 2— 8において、 jが nに達したことが判定され ると、 (j = l, 2, ···, n) , (k = l, 2, ···, n) のすベての組合せ (た だし j ≠k) に対する Yjk, Xjkが算出され、 メモリ 2 1に記憶されたことにな る。
次に、 図 2 1のステップ S 2— 1 0において、 j = 1、 ステップ S 2- 1 1に おいて k= j + 1に設定し、 前述のように ZJk=Yjk— Yw、 および VJk=XJk— X kJを計算し、 メモリ 2 1に記憶する。 ステップ S 2— 1 3および S 2— 1 4を介 して kを 1ずつインクリメントしながら ZJk、 Vjkを計算し、 ステップ S 2— 1 3で kが nに達したことが判定されると、 ステップ S 2— 1 5、 S 2— 1 6を介 して jを 1ずつインクリメントし、 上述の Z 、 YJk計算を繰返す。 ステップ S 2— 1 5で jが n— 1に達したことが判定されると、 (j = l, 2, ···, n) , (k = 1 , 2, ···, n) のすベての組合せ (ただし j ≠ k) に対する Z , VJk が算出され、 メモリ 2 1に記憶されたことになる。
次に、 ステップ S 2— 1 7において、 メモリ 2 1に記憶されているすべての Z jk, Vjk ( j = 1 , 2, ···, η) (k= l , 2, ···, η) (ただし j ≠ k) を用 いて、 上述の式 (1—3 0 ) および式 (1— 3 2 ) の 2つの連立一次方程式を解
< o
最後に、 ステップ S 2— 1 8において、 算出された伝送系ごとの送信回路と受 信回路との間の位相回転量の差および振幅変動量の差を、 当該伝送系の (予め 0 にセットされている) フェイズシフタおよび (予め 1に設定されている) アツテ ネータにそれぞれ設定する。 これにより、 各伝送系の送信時、 上記の伝送特性の 差がそれぞれ補償され、 キヤリブレーションが実行される。
次に、 図 2 2およぴ図 2 3は、 上述の図 2 0および図 2 1に示した動作の変形 例を示すフロー図である。 図 2 2および図 2 3に示す動作は、 以下の点を除いて 図 2 0および図 2 1に示した動作と同じであり、 共通する動作については説明を 繰返さない。
すなわち、 図 2 0の例では、 ステップ S 2— 2において、 各伝送系のフェイズ シフタの位相回転量を 0に、 アツテネ一タの振幅変動量を 1 (== O d B ) に設定 しているが、 図 2 2の例では、 ステップ S 2— 2 aにおいて、 そのような設定を 行なわず、 そのときのフェイズシフタ P S」の位相回転量 およびアツテネー タ Α Τ Τ』の振幅変動量 Α』を測定し、 それぞれメモリ 2 1に記憶している。 そして、 図 2 1の例では、 ステップ S 2— 1 8において、 伝送系ごとに、 算出 された送信回路と受信回路との間の位相回転量の差および振幅変動量の差を、 対 応する伝送系の予め 0に設定されたフェイズシフタおよび予め 1に設定されたァ ッテネータに設定することにより、 上記差を補償するキャリブレーションを行な つているのに対し、 図 2 3の例では、 ステップ S 2— 1 8 aにおいて、 キヤリブ レーシヨンの開始時に図 2 2のステップ S 2 - 2 aで測定されメモリ 2 1に記憶 されているフェイズシフタおよびアツテネ一タの初期値 および を読出し、 これらの初期値を、 算出された位相回転量の差および振幅変動量の差で補正する ことにより、 キャリブレーションを行なっている。
次に、 図 2 4は、 図 3に示したこの発明の第 2の基本構成の変形例であり、 各 伝送系の送信回路と受信回路との間の位相回転量差のみを推定する場合のァダプ ティブアレイ無線基地局の信号処理回路 2 0の構成を示すプロック図である。 図 2 4の回路構成は、 各伝送系ごとにアツテネータ A T Τ」および振幅抽出回路 A Ej ( j = 1, 2, ···, n) が省略されている点を除いて、 図 3に示した第 2の 基本構成と同じであるので、 図 3の説明を援用して、 図 24の説明を省略する。 また、 図 25および図 26は、 図 24に示した回路の動作をマイクロコンピュ ータを用いてソフトウェア的に実現する際のフロー図であり、 振幅成分に関する 演算が省略されている点を除いて、 図 20および図 21に示したフロー図と同じ であるので、 図 20およぴ図 21の説明を援用して、 図 25およぴ図 26の説明 を省略する。
次に、 図 27は、 図 3に示したこの発明の第 2の基本構成のさらなる変形例で あり、 各伝送系の送信回路と受信回路との間の振幅変動量差のみを推定する場合 のァダプティプアレイ無線基地局の信号処理回路 20の構成を示すプロック図で ある。 図 27の回路構成は、 各伝送系ごとにフェイズシフタ PSjおよび位相抽 出回路 PEj (j =l, 2, ···, n) が省略されている点を除いて、 図 3に示し た第 2の基本構成と同じであるので、 図 3の説明を援用して、 図 27の説明を省 略する。
また、 図 28およぴ図 29は、 図 27に示した回路の動作をマイクロコンピュ ータを用いてソフトウェア的に実現する際のフロー図であり、 位相成分に関する 演算が省略されている点を除いて、 図 20およぴ図 21に示したフロー図と同じ であるので、 図 20および図 21の説明を援用して、 図 28および図 29の説明 を省略する。
[第 2の基本構成の実施の形態]
実施の形態 3
次に、 図 30は、 図 3に示したこの発明の第 2の基本構成によるァダプティブ アレイ無線基地局の信号処理回路 20の具体的な回路構成である実施の形態 3を 示すブロック図である。
図 3の回路構成と対比して、 第 2の基本構成のうち、 各伝送系の位相抽出回路 ΡΕ』および振幅抽出回路 AEj (j =l, 2, ···, n) 力 1つの乗算器 ΜΡ』 と 1つの信号処理回路 S Pjとによって構成されている。
まず、 各伝送系の乗算器 MPj ( j =1, 2, …, n) は、 図 1 9に関連して 説明した式 (1— 15) の演算を行なう。 すなわち、 受信信号測定装置 SMjで 測定された受信信号を、 当該伝送系の既知の送信信号 Sj (t) で除算する。 次に、 各伝送系の信号処理回路 S Pj (j = l, 2, ···, n) は、 図 1 9に関 連して説明した式 (1— 16) 〜式 (1— 22) の演算を行なう。 すなわち、 信 号処理回路 S Pjは、 対応する乗算器 MPjの出力の自然対数を計算し、 その虚 数部を Ynjとして抽出して式 (1— 21) の位相に関する方程式を形成し、 かつ 実数部を XDJとして抽出して式 (1ー22) の振幅に関する方程式を形成する。 図 31は、 図 30に示した実施の形態 3の動作を説明するフロー図であり、 図 20に示した第 2の基本構成の動作の前半に対応している。 図 20のフロー図と 対比して、 図 20のステップ S 2— 5で行なわれる信号処理の内容が図 31のス テツプ S 2— 6 dにより特定的に記載されている。 すなわち、 図 31のステップ S 2— 6 dにおいて、 RXJk (t) Sj ( t) の自然対数を計算し、 その虚数 部おょぴ実数部を抽出することにより、 位相成分の方程式 (1一 21) および振 幅成分の方程式 (1ー22) が得られる。
実施の形態 4
次に、 図 32は、 図 3に示したこの発明の第 2の基本構成によるァダプティブ ァレイ無線基地局の信号処理回路 20の他の具体的な回路構成である実施の形態 4を示すブロック図である。
図 3の回路構成と対比して、 第 2の基本構成のうち、 各伝送系の位相抽出回路 PEjおよび振幅抽出回路 AEj ( j = 1 , 2, …, n) 1つの信号処理回 路 S Pjと 2つの減算器 S Aj, S Β』とによって構成されている。
まず、 各伝送系の信号処理回路 S P」 (j = 1, 2, ···, n) は、 受信信号測 定装置 SMjで測定された受信信号の自然対数を計算し、 その虚数部を抽出して 一方の減算器 S Ajに与え、 かつ実数部を抽出して他方の減算器 S B jに与える。 上記一方の減算器 SAjは、 与えられた受信信号の虚数部から、 当該伝送系の 既知の送信信号 Sj (t) の自然対数を計算したものの虚数部 I m [ 1 o ge { Sj (t) } ] を減算する。 上記他方の乗算器 S B』は、 与えられた受信信号の 実数部から、 当該伝送系の既知の送信信号 Sj (t) の自然対数を計算したもの の実数部 Re [ 1 o ge {Sj (t) } ] を減算する。
上述の一方の減算器 SAjによる虚数部の減算の結果を YmJとして抽出し、 式 ( 1 - 2 1 ) の位相に関する方程式を形成し、 かつ他方の減算器 S B jによる実 数部の減算の結果を Xmjとして抽出し、 式 (1ー2 2 ) の振幅に関する方程式を 形成する。
以上のように、 図 3 2の実施の形態 4では、 先に受信信号の虚数部と実数部と の分離を行なった後に、 既知の信号 S j ( t ) の虚数部および実数部をそれぞれ 減算している。
これに対し、 図 1 9およぴ図 3 0に関連して説明した実施の形態 3では、 虚数 部と実数部との分離に先立って受信信号を既知の信号で除算しており、 演算の順 序が前後している。 しかしながら、 いずれの方法でも、 結果的には式 (1— 2 1 ) および式 (1— 2 2 ) で表わす方程式が得られるため、 図 3 2に示す回路構成 も図 3に示す第 2の基本構成と等価なものと考えられる。
図 3 3は、 図 3 2に示した実施の形態 4の動作を説明するフロー図であり、 図 2 0に示した第 2の基本構成の動作の前半に対応している。 図 2 0のフロー図と 対比して、 図 2 0のステップ S 2— 5で行なわれる信号処理の内容が、 図 3 2の ステップ S 2— 5 eにより特定的に記載されている。 すなわち、 図 3 3のステツ プ S 2—5 eにおいて、 R XJk ( t ) の自然対数を計算したものの虚数部および 実数部から、 S j ( t ) の自然対数を計算したものの虚数部および実数部をそれ ぞれ減算することにより、 位相成分の方程式 (1一 2 1 ) および振幅成分の方程 式 (1— 2 2 ) が得られる。
なおこれらの実施の形態 3および 4の説明においても、 前述のように、 S ZN 比が十分よいことを前提とした。 すなわち、 図 3 0〜図 3 3に示す実施の形態 3 および 4は、 受信信号の S /N比が良好な場合に有効であり、 後述する他の実施 の形態に比べても、 比較的少ない信号処理で、 各伝送系の送信回路 ·受信回路間 の位相回転量差および振幅変動量差の推定を行なうことができる。
[第 1の基本構成に時間平均回路を設ける方式]
実施の形態 5
次に、 図 3 4は、 この発明の実施の形態 5の具体的な回路構成を示すブロック 図である。 この図 3 4に示す実施の形態 5は、 図 1 5に示したこの発明の第 1の 基本構成の実施の形態 1に、 時間平均回路を付加したものである。 以下に、 この 実施の形態 5のァダプティブアレイ無線基地局の動作原理について説明する。 まず、 キャリブレーション時には、 j番目 (j =l, 2, ···, n) の伝送系の フェイズシフタ P S」の位相回転量 Θ jが 0に、 アツテネータ A T T」の振幅変動 量 Ajが 1 (=0 dB) にセットされる。 そして、 メモリ 21からは、 この j番 目の伝送系に対応する既知の信号 S」 (t) が読出され、 アンテナ素子 ANTj を介して送信される。
送信された信号は、 j番目の伝送系を除く他のすべての伝送系のアンテナ素子 ANTk (k= l, 2, ···, n、 ただし j ≠k) で受信され、 各伝送系の受信信 号測定装置 SMkで受信信号 RJk (t) として測定される。
なお、 j番目の伝送系のアンテナ共用器 SWjが送信回路 ΤΧ」を同じ伝送系 の受信回路 RXjに接続するように切換わることにより、 送信回路 TXjからの 送信信号が当該伝送系自身の受信回路 SM』で受信信号 RXjj (t) として測定 される。
j番目の伝送系から送出され、 k番目の伝送系で受信され測定された信号 RX Jk (t) は、 図 6の第 1の基本構成に関連して先に説明した式 (1— 1) で表わ されるが、 さらに信号を送信する伝送系を 1番目から n番目まで順次切換えて、 その都度、 1番目から n番目までのすべての伝送系で受信され測定された信号 R XJk (t) は、 先に説明した式 (1— 2) で表わされる。 なお、 これらの式にお いて、 njk (t) は雑音を表わす。
この式 (1— 2) の両辺を各伝送系の乗算器 MP」で既知の信号 Sj (t) で 除算し、 雑音を含む項を左辺から右辺へ移行すると、 下記の式 (2— 1) となる。 そして、 各伝送系の時間平均回路 ΤΑ^ ( j = 1, 2, ···, n) でこの式 (2— 1) に対して時間平均を行なうと、 左辺は時間に対して常に定数であるので、 下 記の式 (2— 2) となる。
Ajk ATXj ARXk exp{i(0jk+A φ TXj+ Δ φ RXk) }
=RXjk (t) /Sj (t) -njk (t) /Sj (t) …(2—1) Ajk ATXj ARXkexp{i (φ jk+A φ TXj+Δ φ RXk) }
=Ave [RXjk (t) /Sj (t) ] -Ave [njk (t) /Sj (t) ] (2-2) なお、 上式において、 Av e [ ·] は、 ] の時間平均操作を意味する。 ここで、 雑音の性質から、 Av e [nJk (t) /Ss (t) ] = 0なので、 各 伝送系の信号処理回路 S P」で上記の式 (2— 2) の両辺の自然対数を計算する と、 下記の式 (2— 3) で表わされるようになる。 そして、 その虚数部に着目す ると下記の式 (2— 4) が導かれ、 その実数部に着目すると下記の式 (2— 5) が導かれる。 loge[Ajk ATXj ARXk]+i ( φ +Δ φ TXj+Δ φ RXk)
Figure imgf000043_0001
φ + φ TXj+ Δ φ RXk=Im [loge [Ave [RXjk (t) /Sj (t)]]],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 0jk=O, ( kのとき) (2-4) loge[Ajk ATXj ARXk] =Re [loge [Ave [RXjk (t) /S j (t) ] ] ] ,
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, (j=kのとき) (2-5) ここで、 式 (2— 4) および (2— 5) のそれぞれの右辺は、 各伝送系ごとに 測定および計算によって求めることができ、 その算出結果はメモリ 21に記憶さ れる。
そこで、 式 (2— 4) および (2— 5) のそれぞれの右辺の値を YJk, XJkと すると、 それぞれの式は、 下記の式 (2— 6) および (2— 7) のように表わさ れる。
Figure imgf000044_0001
(j=l, 2, ··', n), (k=l, 2, ···, n)、
ただし、 0jk=O, (j=kのとき) (2-6)
Xjk=loge [Ajk] +loge [ATXj]+loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, … n)、
ただし、 Ajk=l, ( kのとき) (2-7) これ以後の処理は、 図 6に関連して説明した処理と同じであり、 伝送系の数 n が 3以上であれば、 メモリ 21に記憶された値 YJk, Xjkを用いて上述の連立一 次方程式 (2— 6) および (2— 7) を解くことにより、 すべての伝送系におい て、 送信回路 ΤΧ』 ( j = 1, 2, …, n) を通過することによって生じる信号 の位相回転量 A0TXjおよび振幅変動量 ATXjと、 受信回路 RX」を通過する ことによって生じる信号の位相回転量 Δ φ RXjおよび振幅変動量 ARXjとを 算出することができる。
そして、 このように推定された各伝送系ごとの受信回路と送信回路との間の位 相差情報を当該伝送系のフユイズシフタに与え、 各伝送系ごとの振幅変動量情報 を当該伝送系のァッテネータに与えることにより、 各伝送系ごとに受信信号と送 信信号との間の伝送特性のキャリブレーションを行なうことができる。
図 35は、 図 34に示した実施の形態 5の動作を説明するフロー図であり、 図 16に示した実施の形態 1の動作に対応している。 図 16のフロー図と対比して、 図 35では、 ステップ S 1— 6 f において Av e [ ·] で表わされる時間平均操 作が加わっている点で異なっている。 すなわち、 図 35のステップ S 1— 6 f に おいて、 1 o ge [Av e {RXJk (t) Sj (t) } ] の虚数部および実数部 を抽出することにより、 位相成分の方程式 (2— 6) および振幅成分の方程式 ( 2— 7) を得ている。
図 36は、 この図 35のステップ S 1 - 6 f の計算ルーチンを詳細に示すフロ 一図である。 図 36のフロー図において、 テンポラリーな変数 Tmpを 0とおき、 時間 Tに達するまで RXjk (t) Sj (t) の累算を行なう。 そして、 その累 算結果を Tで除算して時間平均 Tm ρ /Tを算出し、 その自然対数を計算して虚 数部 Y j k, 実数部 X j kを抽出している。
このステップ S 1— 6 f を除く他の処理は図 16のフロー図と同じであり、 そ の説明を省略する。
以上のように、 この発明の実施の形態 5によれば、 各伝送系ごとに時間平均回 路を設けることにより雑音成分を含む項を消去できるので、 たとえ受信信号の雑 音成分が多く SZN比が悪くても、 雑音の影響による推定の誤差を抑えることが でき、 各伝送系の位相差および振幅変動量情報を良好に推定することが可能とな る。
実施の形態 6および 7
次に、 図 37は、 この発明の実施の形態 6の具体的な回路構成を示すブロック 図である。 この図 37に示す実施の形態 6は、 図 15に示したこの発明の第 1の 基本構成の実施の形態 1において、 図 34の実施の形態 5とは異なる位置に時間 平均回路を付加したものである。
すなわち、 前述の式 (1— 2) の両辺を既知の信号 S」 (t) で除算し、 実施 の形態 5のように時間平均を行なうことなく、 自然対数を計算し、 ティラー展開 する。 SZN比がそれほど良くない条件では、 テイラー展開の結果は下記の近似 式 (2— 8) で表現される。
この式 (2— 8) の両辺の虚数部および実数部を別々に抽出して時間平均を行 なうと、 左辺の雑音成分 Njk (t) を含む項は 0となり、 他の項は時間に対して 定数であるので、 下記の式 (2— 9) および (2— 10) が得られる。 loge[Ajk ATXj ARXk] +i ( φ jk+ Δ φ TXj+ Δ φ RXk)
+njk(t)/[Ajk ATXj ARXk exp
{i(0jk+A 0TXj+A 0RXk)} Sj (t)
Figure imgf000045_0001
(t) ]
ー(2 - 8)
Figure imgf000046_0001
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 0jk=O, (j=kのとき) (2-9) loge[Ajk ATXj ARXk] =Ave [Re [loge [RXjk (t) /Sj (t) ] ] ] ,
(j=l, 2, ···, n), (k=l, 2, '··, n)、
ただし、 Ajk=l, (j=kのとき) (2 - 10) ここで式 (2— 9) および (2— 10) のそれぞれの右辺は、 各伝送系ごとに 測定および計算によって求めることができ、 その算出結果はすべてメモリ 21に 記憶される。
そこで式 (2— 9) および (2— 1 0) のそれぞれの右辺の値を Yjk, Xjkと すると、 それぞれの式は、 図 34に関連して説明した連立一次方程式 (2— 6) および (2— 7) となり、 以後の処理は図 34に関連して説明した処理と同じで ある。
次に、 図 38は、 この発明の実施の形態 7の具体的な回路構成を示すプロック 図である。 この図 38に示す実施の形態 7は、 図 1 5に示したこの発明の第 1の 実施の形態 1における信号処理回路 S Pjを、 対数計算回路 LCjと時間平均回 路 TAjと IZQ分離回路 I <3』とで置換えたものである。
すなわち、 乗算器 MPjにより前述の式 (1— 2) の両辺を既知の信号 Sj ( t) で除算し、 対数計算回路 LCjで両辺の自然対数を計算してティラー展開す る。 SZN比がそれほど良くない条件では、 テイラ一展開の結果は前述の式 (2 -8) となる。
この実施の形態 7では、 前述の実施の形態 6のように、 この段階で虚数部と実 数部との分離を行なうことなく、 式 (2— 8) に対して時間平均回路 TAjによ り時間平均操作を行なう。 この場合、 式 (2— 8) の左辺第 1項および第 2項は 時間に対して定数であり、 雑音成分 Njk (t) を含む項は時間平均により 0とな るので、 下記の式 (2— 1 1) が得られる。
そして、 この I/Q分離回路 I Q」によりこの式 (2— 1 1) の両辺の虚数部 および実数部を別々に抽出すると、 下記の式 (2 2) および (2— 1 3) が 得られる。 loge[Ajk ATXj ARXk]+i (0jk+A φ TXj+Δ φ RXk)
Figure imgf000047_0001
0 jk+Δ 0ΤΧ」+Δ
Figure imgf000047_0002
(t)]]],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 0jk=O, ( kのとき) (2-12) loge[Ajk ATXj ARXk] =Re [Ave [loge [RXjk (t) /S j (t) ] ] ] ,
(j=l, 2, ···, n), (k=l, 2, '··, n)、
ただし、 Ajk=l, (j=kのとき) (2-13) ここで式 (2— 1 2) および (2— 1 3) のそれぞれの右辺は、 各伝送系ごと に測定おょぴ計算によって求めることができ、 その算出結果はすべてのメモリ 2 1に記憶される。
そこで式 (2— 1 2) および (2— 1 3) のそれぞれの右辺の値を YJk, XJk とすると、 それぞれの式は、 図 34に関連して説明した連立一次方程式 (2— 6 ) および (2— 7) となり、 以後の処理は図 34に関連して説明した処理と同じ である。
図 39は、 図 37および図 38に示した実施の形態 6および 7の動作を包括的 に説明するフロー図であり、 図 1 6に示した実施の形態 1の動作に対応している。 また、 図 40は、 図 39のフロー図のステップ S 1 -6 gに対応する、 実施の 形態 6の計算ルーチンを示すフロー図であり、 図 41は、 図 39のフロー図のス テツプ S 1—6 gに対応する、 実施の形態 7の計算ルーチンを示すフロー図であ る。
実施の形態 6では、 ステップ S 1— 6 gにおいて、 l o ge {RXJk (t) / Sj (t) } の虚数部および実数部を分離した後、 時間平均を行なって、 位相成 分 Yjk、 振幅成分 xjkを得ている。
より詳細に説明すると、 図 40のフロー図において、 Yjk, XJkを 0とおき、 時間 Tに達するまで 1 o ge {RXJk (t) /Sj (t) } の虚数部および実数部 の累算を行なう。 そして、 その累算結果を Tで除算して時間平均 Yjk/T, XJk ZTを算出し、 位相成分 YJk、 振幅成分 XJkとして出力する。 このステップ S 1 — 6 gを除いて、 実施の形態 6の他の処理は図 16の実施の形態 1の処理と同じ である。
実施の形態 7では、 ステップ S 1— 6 gにおいて、 l o ge {RXjk (t) / Sj (t) } の時間平均を行なった後、 虚数部と実数部とを分離して位相成分 Y Jkと振幅成分 XJkとを得ている。
より詳細に説明すると、 図 41のフロー図において、 テンポラリ一な変数 TBP を 0とおき、 時間 Tに達するまで 1 o ge {RXJk (t) Sj (t) } の累算を 行なう。 そして、 その累算結果を Tで除算して時間平均 T„pノ Tを算出し、 その 虚数部を位相成分 YJkとして、 実数部を振幅成分 XJkとして抽出している。 この ステップ S 1— 6 gを除いて、 実施の形態 7の他の処理は図 16の実施の形態 1 の処理と同じである。
実施の形態 8および 9
次に、 図 42は、 この発明の実施の形態 8の具体的な回路構成を示すブロック 図である。 この図 42に示す実施の形態 8は、 図 37に示す実施の形態 6と対比 して、 既知の信号 Sj (t) による除算を、 測定された受信信号 RXjk ( に 対してでなく、 自然対数が計算され力つ虚数部および実数部に分離されて時間平 均された受信信号に対して最終段階で行なう点で相違しているだけである。
次に、 図 43は、 この発明の実施の形態 9の具体的な回路構成を示すブロック 図である。 この図 43に示す実施の形態 9は、 図 38に示す実施の形態 7と対比 して、 既知の信号 S」 (t) による除算を、 測定された受信信号 RXjk (t) に 対してでなく、 自然対数が計算され、 時間平均され、 力 虚数部および実数部に 分離された受信信号に対して最終段階で行なう点で相違しているだけである。 図 42および図 43に示した実施の形態 8および 9の動作もまた、 図 39のフ ロー図によって包括的に示される。 また、 図 44は、 図 39のフロー図のステツ プ S 1— 6 gに対応する、 実施の形態 8の計算ルーチンを示すフロー図であり、 図 45は、 図 39のフロー図のステップ S 1—6 gに対応する、 実施の形態 9の 計算ルーチンを示すフロー図である。
実施の形態 8では、 ステップ S 1—6 gにおいて、 l o ge {RXJk (t) } の虚数部および実数部を分離した後、 時間平均を行ない、 その後、 メモリに入つ ている l o ge {Sj (t) } の虚数部おょぴ実数部の平均値をそれぞれ減算し て、 位相成分 Yjk、 振幅成分 Xjkを得ている。
より詳細に説明すると、 図 44のフロー図において、 Yjk, XJkを 0とおき、 時間 Tに達するまで 1 o ge {RXJk (t) } の虚数部および実数部の累算を行 なう。 そして、 その累算結果を τで除算して時間平均 YJkZT, xJkZTを算出 し、 そこから、 メモリ 21に記憶されている 1 o ge {Sj (t) } の虚数部お よび実数部の平均値をそれぞれ減算して、 位相成分 Yjk、 振幅成分 Xjkとして出 力する。 このステップ S 1—6 gを除いて、 実施の形態 8の他の処理は図 1 6の 実施の形態 1の処理と同じである。
実施の形態 9では、 ステップ S 1—6 gにおいて、 l o ge {RXJk (t) } の時間平均を行なった後、 虚数部および実数部に分離し、 その後、 メモリに入つ ている 1 o ge {Sj (t) } の平均値の虚数部および実数部をそれぞれ減算し て、 位相成分 YJk, Xjkを得ている。
より詳細に説明すると、 図 45のフロー図において、 テンポラリーな変数 Tm pを 0とおき、 時間 Tに達するまで 1 o ge {RXJk ( t) } の累算を行なう。 そして、 その累算結果を Tで除算して時間平均 TmpZTを算出し、 そこから、 メモリ 21に記憶されている 1 o ge {Sj (t) } の平均値の虚数部および実 数部をそれぞれ減算して、 位相成分 Yjkおよび振幅成分 Xjkを得ている。
以上のように、 これらの実施の形態 6ないし 9によれば、 各伝送系ごとに時間 平均回路を設けることにより雑音成分を含む項を消去できるので、 たとえ受信信 号の S/N比が悪くても、 雑音の影響による推定の誤差を抑えることができ、 各 伝送系の位相差および振幅変動量情報を良好に推定することが可能となる。
[第 2の基本構成に時間平均回路を設ける方式]
実施の形態 10 次に、 図 46は、 この発明の実施の形態 10の具体的な回路構成を示すブロッ ク図である。 この図 46に示す実施の形態 10は、 図 30に示したこの発明の第
2の基本構成の実施の形態 3に、 時間平均回路を付加したものである。 以下に、 この実施の形態 10のァダプティプアレイ無線基地局の動作原理について説明す る。
まず、 キャリブレーション時には、 j番目 (j = l, 2, …, n) の伝送系の フェイズシフタ P の位相回転量 が 0に、 アツテネ一タ ΑΤΤ」の振幅変動 量 Ajが 1 (=O dB) にセットされる。 そして、 メモリ 21からは、 この j番 目の伝送系に対応する既知の信号 (t) が読出され、 アンテナ素子 ΑΝΤ』 を介して送信される。
送信された信号は、 j番目の伝送系を除く他のすべての伝送系のアンテナ素子 ANTk (k=l, 2, ···, n、 ただし j ^k) で受信され、 各伝送系の受信信 号測定装置 SMkで受信信号 RXjk (t) として測定される。
なお、 この図 46に示す実施の形態 10では、 各伝送系において送信回路と受 信回路とが接続されるようにアンテナ共用器が切換わることはない。
j番目の伝送系から送出され、 k番目の伝送系で受信され測定された信号 R X Jk (t) は、 図 19の第 2の基本構成に関連して先に説明した式 (1— 13) で 表わされるが、 さらに信号を送信する伝送系を 1番目から n番目まで順次切換え て、 その都度、 送信している伝送系を除く 1番目から n番目までのすべての伝送 系で受信され測定された信号 RXjk (t) は、 先に説明した式 (1— 14) で表 わされる。 なお、 これらの式において、 nJk ( t) は雑音を表わす。
この式 (1— 14) の両辺を各伝送系の乗算器 MP jで既知の信号 Sj (t) で除算し、 雑音を含む項を左辺から右辺へ移行すると、 図 34に関して先に説明 した式 (2—1) となる。 そして、 各伝送系の時間平均回路 TAj ( j =1, 2, ···, n) でこの式 (2—1) に対して時間平均を行なうと、 左辺は時間に対して 定数であるので、 先の式 (2— 2) となる。
ここで、 雑音の性質から、 Av e [nJk ( t) Sj (t) ] = 0なので、 各 伝送系の信号処理回路 SPjで先の式 (2— 2) の両辺の自然対数を計算すると、 下記の式 (2— 3) で表わされるようになる。 そして、 その虚数部に着目すると 下記の式 (2— 14) が導かれ、 その実数部に着目すると下記の式 (2— 1 5) が導かれる。
Figure imgf000051_0001
(j=l, 2, …, n), (k=l, 2, ···, n),
ただし、 j≠k (2-14) loge[Ajk ATXj ARXk] =Re [loge [Ave [RXjk (t) /Sj (t) ]]],
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (2-15) ここで、 式 (2— 14) および (2— 1 5) のそれぞれの右辺は、 各伝送系ご とに測定および計算によって求めることができ、 その算出結果は、 メモリ 21に 記憶される。
そこで、 式 (2— 14) および (2— 1 5) のそれぞれの右辺の値を Yjk, X Jkとすると、 それぞれの式は、 下記の式 (2— 1 6) および (2— 1 7) のよう に表わされる。
Yjk=0 jk+A 0TXj+A 0RXk, (j=l, 2, …, n), (k=l, 2, ···, n),
ただし、 j≠k (2- 16)
Xjk=loge [Ajk] +loge [ATXj]+loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (2-17) このように求められた位相情報のうち、 Yjk— Ykj=Zjkとおいて式 (2— 1 6 ) に代入すると、 下記の連立一次方程式 (2— 18) が得られる。 また、 得られ た振幅情報のうち、 XJk— XkJ=Vjkとおいて、 式 (2— 1 7) に代入すると、 下 記の式 (2—1 9) が得られる。
Figure imgf000052_0001
(j=l, 2, ···, n-1), (k=j+l, j+2, '··, n) (2-18)
Vjk -Xkj= k- ΔΑ』,
(j=l, 2, ···, n-1), (k=j+l, j+2, n) (2-19) これ以後の処理は、 図 19に関連して説明した処理と同じであり、 伝送系の数 nが 3以上であれば、 メモリ 21 (こ記憶された値 Yjk, XJkを用いて、 上述の連 立一次方程式 (2—18) および (2— 1 9) を解くことにより、 すべての伝送 系において、 送信回路および受信回路を通過する信号の間の位相回転量の差 Δ 0 jおよび振幅変動量の差 ΔΑ」を算出することができる。
そして、 このように推定された各伝送系ごとの受信回路と送信回路との間の位 相差情報を当該伝送系のフェイズシフタに与え、 各伝送系ごとの振幅変動量情報 を当該伝送系のアツテネータに与えることにより、 各伝送系ごとに受信信号と送 信信号との間の伝送特性のキャリブレーションを行なうことができる。
図 47は、 図 46に示した実施の形態 10の動作を説明するフロー図であり、 図 3 1に示した実施の形態 3の動作に対応している。 図 3 1のフロー図と対比し て、 図 47では、 ステップ S 2— 5 f において A V e [ ·] で表わされる時間平 均操作が加わっている点で異なっている。 すなわち、 図 47のステップ S 2— 5 f において、 l o ge [Av e {RXJk (t) /Sj (t) } ] の虚数部おょぴ実 数部を抽出することにより、 位相成分の方程式 (2—1 8) および振幅成分の方 程式 (1— 1 9) を得ている。
ステップ S 2— 5 f の計算ルーチンは実施の形態 5に関連して説明した図 36 の計算のルーチンと同じなので、 説明を省略する。
このステップ S 2— 5 f を除く他の処理は図 31のフロー図と同じであり、 そ の説明を省略する。
以上のように、 この発明の実施の形態 10によれば、 各伝送系ごとに、 時間平 均回路を設けることにより雑音成分を含む項を消去できるので、 たとえ受信信号 の雑音成分が多く SZN比が悪くても、 雑音の影響による推定の誤差を抑えるこ とができ、 各伝送系の位相差および振幅変動量情報を良好に推定することが可能 となる。
実施の形態 11および 12
次に、 図 48は、 この発明の実施の形態 1 1の具体的な回路構成を示すプロッ ク図である。 この図 48に示す実施の形態 1 1は、 図 30に示したこの発明の第
1の基本構成の実施の形態 3において、 図 46の実施の形態 10とは異なる位置 に時間平均回路を付力 fjしたものである。
すなわち、 前述の式 (1—2) の両辺を既知の信号 Sj (t) で除算し、 実施 の形態 10のように時間平均を行なうことなく、 自然対数を計算し、 ティラー展 開する。 S/N比がそれほど良くない条件では、 ティラー展開の結果は先の近似 式 (2— 8) で表現できる。 この式 (2— 8) の両辺の虚数部および実数部を別 々に抽出して時間平均を行なうと、 左辺の雑音成分 Njk (t) を含む項は 0とな り、 他の項は時間に対して定数であるので下記の式 (2— 20) および (2— 2 1) が得られる。 φ jk+Δ 0ΤΧ』+Δ
Figure imgf000053_0001
(t)]]]
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (2-20) loge[Ajk ATXj ARXk] =Ave [Re [loge [RXjk (t) /Sj (t) ] ] ] ,
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k •*(2-21) ここで式 (2— 20) および (2— 21) のそれぞれの右辺は、 各伝送系ごと に測定および計算によって求めることができ、 その算出結果はすべてメモリ 21 に記憶される。
そこで式 (2— 20) および (2— 21) のそれぞれの右辺の値を Yjk, XJk とすると、 それぞれの式は、 図 46に関連して説明した式 (2— 16) および ( 2-1 7) となり、 以後の処理は図 46に関連して説明した処理と同じである。 次に、 図 49は、 この発明の実施の形態 1 2の具体的な回路構成を示すブロッ ク図である。 この図 49に示す実施の形態 1 2は、 図 30に示したこの発明の第 2の基本構成の実施の形態 3における信号処理回路 S P}を、 対数計算回路 LCj と時間平均回路 ΤΑ』と I/Q分離回路 I Qjとで置換えたものである。
すなわち、 乗算器 MPjにより前述の式 (1— 2) の両辺を既知の信号 Sj ( t) で除算し、 対数計算回路 LCjで両辺の自然対数を計算してティラー展開す る。 S/N比がそれほど良くない条件では、 ティラー展開の結果は前述の式 (2 一 8) となる。
この実施の形態 1 2では、 前述の実施の形態 1 1のように、 この段階で虚数部 と実数部との分離を行なうことなく、 式 (2— 8) に対して時間平均回路 TAj により時間平均操作を行なう。 この場合、 式 (2— 8) の左辺第 1項および第 2 項は時間に対して定数であり、 雑音成分 Njk (t) を含む項は時間平均により 0 となるので、 前述の式 (2—1 1) が得られる。
そして、 IZQ分離回路 I Qjによりこの式 (2— 1 1) の両辺の虚数部およ び実数部を別々に抽出すると、 下記の式 (2— 22) および (2— 23) が得ら れる。
0jk+A 0TXj+A
Figure imgf000054_0001
Im [Ave [loge [RX,k (t) /Sj (t) ] ] ]
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (2-22) loge[Ajk ATXj ARXk]= Re[Ave[loge[RXjk(t)/Sj(t)]]],
(j=l, 2, ···, n), (k=l, 2, ···, n),
ただし、 j≠k (2-23) ここで式 (2— 22) および (2— 23) のそれぞれ右辺は、 各伝送系ごと 測定および計算によって求めることができ、 その算出結果はすべてメモリ 21 \ 記憶される。 そこで、 式 (2— 2 2 ) および (2— 2 3 ) のそれぞれの右辺の値を Yjk, X
Jkとすると、 それぞれの式は、 図 4 6に関連して説明した連立一次方程式 (2—
1 6 ) および (2— 1 7 ) となり、 以後の処理は図 4 6に関連して説明した処理 と同じである。
図 5 0は、 図 4 8およぴ図 4 9に示した実施の形態 1 1および 1 2の動作を包 括的に説明するフロー図であり、 図 3 1に示した実施の形態 3の動作に対応して いる。
実施の形態 1 2の場合のステップ S 2 - 5 gの計算ルーチンは、 実施の形態 6 に関連して先に説明した図 4 0の計算ルーチンと同じなので、 説明を省略する。 また、 実施の形態 1 1の場合のステップ S 2— 5 gの計算ルーチンは、 実施の形 態 7に関連して先に説明した図 4 1の計算ルーチンと同じなので、 説明を省略す る。
以上のように、 この発明の実施の形態 1 1および 1 2によれば、 各伝送系ごと に時間平均回路を設けることにより、 たとえ受信信号の S ZN比が悪くても雑音 の影響による位相差情報の推定誤差を抑えることができる。
実施の形態 1 3および 1 4
次に、 図 5 1は、 この発明の実施の形態 1 3の具体的な回路構成を示すブロッ ク図である。
この図 5 1に示す実施の形態 1 3は、 図 4 8に示す実施の形態 1 1と対比して、 既知の信号 ( t ) による除算を、 測定された受信信号 R XJk ( t ) に対して でなく、 自然対数が計算されかつ虚数部および実数部に分離されて時間平均され た受信信号に対して最終段階で行なう点で相違しているだけである。
次に、 図 5 2は、 この発明の実施の形態 1 4の具体的な回路構成を示すブロッ ク図である。 この図 5 2に示す実施の形態 1 4は、 図 4 9に示す実施の形態 1 2 と対比して、 既知の信号 S j ( t ) による除算を、 測定された受信信号 R Xjk ( t ) に対してでなく、 自然対数が計算され、 時間平均され、 かつ虚数部および実 数部に分離された受信信号に対して最終段階で行なう点で相違しているだけであ る。
図 5 1およぴ図 5 2に示した実施の形態 1 3および 1 4の動作もまた、 図 5 0 のフロー図によつて包括的に示される。
実施の形態 13の場合のステップ S 2— 5 gの計算ルーチンは、 実施の形態 8 に関連して先に説明した図 44の計算ルーチンと同じなので説明は省略する。 実施の形態 14の場合のステップ S 2— 5 gの計算ルーチンは、 実施の形態 9 に関連して先に説明した図 45の計算ルーチンと同じなので説明を省略する。 以上のように、 この発明の実施の形態 13および 14によれば、 各伝送系ごと に時間平均回路を設けることにより、 たとえ受信信号の S/N比が悪くても、 雑 音の影響による位相差および振幅変動量情報の推定誤差を抑えることができる。
[第 1の基本構成に相関回路を設ける方式]
実施の形態 15
次に、 図 53は、 この発明の実施の形態 1 5の具体的な回路構成を示すブロッ ク図である。 この図 53に示す実施の形態 1 5は、 図 1 5に示したこの発明の第 1の基本構成の実施の形態 1の各伝送系の乗算器 MP」を相関器 CRj ( j =1, 2, …, n) で置換えたものである。 以下に、 この実施の形態 1 5のァダプティ ブアレイ無線基地局の動作原理について説明する。
まず、 キャリブレーション時には、 j番目 (j =l, 2, ···, n) の伝送系の フェイズシフタ P S」の位相回転量 0』が 0に、 アツテネータ A T T』の振幅変動 量 Ajが 1 (=0 d B) にセットされる。 そして、 メモリ 21からは、 この j番 目の伝送系に対応する既知の信号 Sj ( t) が読出され、 アンテナ素子 ANT を介して送信される。
送信された信号は、 j番目の伝送系を除く他のすべての伝送系のアンテナ素子 ANTk (k=l, 2, …, n、 ただし j≠k) で受信され、 各伝送系の受信信 号測定装置 SMkで受信信号 Rjk (t) として測定される。
なお、 j番目の伝送系のアンテナ共用器 SWjが送信回路 ΤΧ」を同じ伝送系 の受信回路 RXjに接続するように切換わることにより、 送信回路 ΤΧ』からの 送信信号が当該伝送系自身の受信回路 SM」で受信信号 RXjj (t) として測定 される。
信号を送信する伝送系を 1番目から n番目まで順次切換えて、 その都度、 1番 目から n番目までのすべての伝送系で受信された測定された信号 RXJk (t) は、 下記の式 (3— 1) で表わされる。
RXjk(t)=Aik ATX ARXk exp
{i ( ; k+Δ 0TXj+A 0RXk)} S,(t)+Lk(t)+njk(t),
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, φ jk=0, (j=kのとき) (3-1) なお、 この式において、 Ijk (t) は、 受信信号に含まれるすべての干渉信号 の合成信号を表わしている。 ここで干渉信号とは、 従来の技術で説明したような 他のユーザからの電波信号等を含んでいる。
次に、 受信信号 RXjk (t) と、 対応する伝送系の既知の信号 Sj (t) との 相互相関値 CSjkを計算する。 相互相関値は、 時間 tの関数である 2つの信号を 共通の時間軸上で互いに乗算した結果を加算し、 その時間平均を求めたものであ り、 次の式 (3— 2) のように表わされる。 そして、 この式 (3— 2) を計算す ると式 (3— 3) となる。
CSjk=<RX 、jikk(t) -S^t)) (3-2)
CSjk=Ajk ATXj ARXk exp{i(0 jk+A φΤΧ.+ Δ 0RXk)}
く Sj (t) · Sj (t) >+<Ijk (t) · Sj (t) >+<njk (t) · Sj (t) >,
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, φ jk=0, (j=kのとき) (3-3) 上述の相関処理の性質上、 送信信号と干渉信号との間、 および送信信号と雑音 成分との間には、 相関がない。 このため、 既知の信号 Sj (t) 、 干渉信号 Ijk (t) 、 および雑音成分 Njk (t) の間には、 次の式 (3— 4) 、 (3— 5) お よび (3— 6) が成立する。 <Sj(t)-Sj (t)>=l (3-4)
<Ijk(t)-Sj(t)>=0 • (3-5)
<njk(t) -Sj (t) >=0 ■ (3-6) したがって、 これらの式 (3-4) , (3-5) および (3— 6) を、 上述の 式 (3— 3) に代入すると、 下記の式 (3— 7) で表わされるようになり、 その 自然対数を計算すると式 (3— 8) のように表わされる。
CSjk=Ajk ATXj ARXk exp {i ( φ jk+A 0 TXj+Δ φ RXk) },
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, φ jk=0, ( kのとき) (3-7) loge[Ajk ATXj ARXk]+i(0jk+A φΤΧ Δ 0RXk)=loge[CSjk]
(3-8) この式 (3— 8) の虚数部に着目すると式 (3— 9) が導かれ、 実数部に着目 すると式 (3— 10) が導かれる。 φ jk+A 0TXj+A 0RXk=Im[loge[CSjk]]
(j=l, 2, …, n), (k=l, 2, ···, n)、
ただし、 0jk=O, (j=kのとき) (3-9) loge[Ajk ATXj ARXk]=Re[loge[CSjk]],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 Ajk=l, (j=kのとき) (3-10) ここで、 式 (3— 9) および (3— 10) のそれぞれの右辺は各伝送系ごとに 測定おょぴ計算によって求めることができ、 その結果はメモリ 21に記憶される。 そこで、 式 (3— 9) および (3— 10) のそれぞれの右辺の値を Y , XJk とすると、 それぞれの式は、 下記の式 (3— 1 1) および (3 2) のように 表わされる。
Figure imgf000059_0001
(j=l, 2, …, n), (k=l, 2, n)、
ただし、
Figure imgf000059_0002
( kのとき) (3—11)
Xjk=loge [Ajk] +loge [ATXj] +loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, ··-, n)
ただし、 Ajk=l, (j=kのとき) (3-12) これ以後の処理は、 図 6に関連して説明した処理と同じであり、 伝送系の数 n が 3以上であれば、 メモリ 21に記憶された値 YJk, Xjkを用いて、 上述の連立 方程式 (3— 1 1) および (3— 1 2) を解くことにより、 すべての伝送系にお いて、 送信回路 ΤΧ」を通過することによって生じる信号の位相回転量 Δ0ΤΧΛ および振幅変動量 ATXjと、 受信回路 RXjを通過することによって生じる信 号の位相回転量 RXjおよび振幅変動量 ARXjとを算出することができる。 そして、 このように推定された各伝送系ごとの受信回路と送信回路との間の位 相差情報を当該伝送系のフェイズシフタに与え、 各伝送系ごとの振幅変動量情報 を当該伝送系のアツテネータに与えることにより、 各伝送系ごとに受信信号と送 信信号との間の伝送特性のキャリブレーションを行なうことができる。
図 54は、 図 16の実施の形態 1のフロー図のステップ S 1-6 dに対応する、 実施の形態 1 5の Yjk, Χ の計算ルーチンを示すフロー図である。 図 54のフ ロー図において、 テンポラリーな変数 Tmpを 0とおき、 時間 Tに達するまで R XJk (t) · Sj (t) の累算を行なう。 そして、 この累算結果を Tで除算して 時間平均 Tmp/Tを算出し、 その自然対数を計算して虚数部 Yjk、 実数部 XJk を抽出している。
この計算ルーチンを除く他の処理は図 1 6の実施の形態 1のフロー図と同じで あり、 その説明を省略する。 以上のように、 この発明の実施の形態 1 5によれば、 各伝送系ごとに相関回路 を設けて受信信号 RXjk (t) と既知の信号 Sj (t) との相関処理を行なうこ とにより、 雑音成分 Njk (t) および干渉信号 I jk ( t) が消失している。 した がって、 受信信号の SZN比が悪い場合、 または受信信号に干渉信号が混入した 場合、 またはその双方の場合において、 雑音成分、 または干渉信号、 またはその 双方の影響による推定誤差を抑えることができ、 各伝送系ごとの位相差および振 幅変動量情報を良好に推定することができる。
[第 2の基本構成に相関回路を設ける方式]
実施の形態 1 6
次に、 図 55は、 この発明の実施の形態 1 6の具体的な回路構成を示すブロッ ク図である。 この図 55に示す実施の形態 1 6は、 図 30に示したこの発明の第 2の基本構成の実施の形態 3の各伝送系の乗算器 MP jを相関器 C Rj ( j = 1, 2, ·-, n) で置換えたものである。 以下に、 この実施の形態 16のァダプティ プアレイ無線基地局の動作原理について説明する。
まず、 キャリブレーション時には、 j番目 (j =l, 2, …, n) の伝送系の フェイズシフタ P S」の位相回転量 Θ jが 0に、 アツテネータ AT Tjの振幅変動 量 Ajが 1 (=0 d B) にセットされる。 そして、 メモリ 21からは、 この j番 目の伝送系に対応する既知の信号 Sj ( t) が読出され、 アンテナ素子 ANTj を介して送信される。
送信された信号は、 j番目の伝送系を除く他のすべての伝送系のアンテナ素子 ANTk (k= 1, 2, ···, n、 ただし j≠k) で受信され、 各伝送系の受信信 号測定器装置 SMkで受信信号 RXJk (t) として測定される。
なお、 図 55に示す実施の形態 16では、 各伝送系において送信回路と受信回 路とが接続されるようにアンテナ共用器が切換わることはない。
信号を伝送する伝送系を 1番目から n番目まで順次切換えて、 その都度、 送信 している伝送系を除く 1番目から n番目までのすべての伝送系で受信された測定 された信号 RXJk (t) は、 下記の式 (3— 1 3) で表わされる。 RXjk(t)=Ajk ATXj ARXk exp{i ( jk+A φ TXj+Δ 0RXk)} Sj(t) +Ijk(t) +njk(t)
(j=l, 2, '··, n), (k=l, 2, ···, n)
ただし、 j≠k … - 13) 次に、 受信信号 RXjk (t) と、 対応する伝送系の既知の信号 Sj (t) との 相互相関値 CSjkを計算すると、 式 (3— 14) となる。
CSjk=Aik ATXj ARXk βχρ{ϊ(φ jk+A φ TXj+Δ φ RXk) }
<Sj (t) · S^t) >+<Ijk(t) · Sj(t)>+< njk(t) · Sj (t) >
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k 〜(3-14) 前述の式 (3— 4) 、 (3-5) および (3— 6) を、 上述の式 (3— 14) に代入すると、 下記の式 (3— 1 5) で表わされるようになり、 その自然対数を 計算すると式 (3— 16) のように表わされる。
CSjk= Ak ATX, ARXk exp{i(0 jk+A 0TXj+A 0RXk)}
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k ·'·(3- 15) loge[Ajk ATXj ARXk] + j ( Φ jk+ Δ φ TXj+ Δ φ RXk) =loge [CSjk]
— (3- 16) この式 (3— 1 6) の虚数部に着目すると式 (3— 1 7) が導かれ、 実数部に 着目すると式 (3— 18) が導かれる。
Figure imgf000062_0001
(j=l, 2, ···, n), (k=l, 2, ·· n)
ただし、 j≠k (3-17) loge[Ajk ATXj ARXk]= Re[loge[CSjk]]
(j=l, 2, ··', n), (k=l, 2, ···, n)
ただし、 j k (3-18) ここで、 式 (3— 17) および (3— 1 8) のそれぞれの右辺は各伝送系ごと に測定および計算によって求めることができ、 その結果はメモリ 21に記憶され る。
そこで、 式 (3— 1 7) および (3— 1 8) のそれぞれの右辺の値を Yjk, X Jkとすると、 それぞれの式は、 下記の式 (3— 1 9) および (3— 20) のよう に表わされる。
Yjk=0 jk+Δ 0TXj+厶 0RXk,
(j=l, 2, ···, n), (k=l, 2, n)、
ただし、 j≠k (3-19) Xjk-loge [Ajk] +loge [ATXj]+loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 j≠k (3-20) このようにして求められた位相情報のうち、 Yjk—YkJ=Zjkとおいて式 (3— 1 9) に代入すると下記の連立一次方程式 (3— 21) が得られ、 また得られた 振幅情報のうち Xjk— XkJ=VJkとおいて、 式 (3— 20) に代入すると下記の連 立一次方程式 (3— 22) が得られる。 Zjk=Yjk- Ykj=A0k- Δφ』
(j=l, 2, ···, n-1), (k=j+l, j+2, ···, n) (3-21)
Vjk=Xjk-Xkj=AAk-AAj,
(j=l, 2, ···, n), (k=j+l, j+2, ·'·, n) (3-22) これ以後の処理は、 図 19に関連して説明した処理と同じであり、 伝送系の数 nが 3以上であれば、 メモリ 21に記憶された Yjk, Xjkを用いて上述の連立一 次方程式 (3— 21) および (3— 22) を解くことにより、 すべての伝送系に おいて、 送信回路および受信回路を通過する信号の間の位相回転量の差および振 幅変動量の差を算出することができる。
そして、 このように推定された各伝送系ごとの受信信号と送信信号との間の位 相差情報を当該伝送系のフェイズシフタに与え、 各伝送系ごとの振幅変動量情報 を当該伝送系のァッテネータに与えることにより、 各伝送系ごとに受信信号と送 信信号との間の伝送特性のキヤリブレーションを行なうことができる。
なお、 実施の形態 16の Yjk, XJkの計算ルーチンは、 図 54に示した実施の 形態 15の計算ルーチンと同じなので、 その図示および説明は省略する。
この計算ルーチンを除く他の処理は図 31の実施の形態 3のフロー図と同じで あり、 その説明を省略する。
以上のように、 この発明の実施の形態 16によれば、 各伝送系ごとに相関回路 を設けて受信信号 RXjk (t) と既知の信号 Sj (t) との相関処理を行なうこ とにより、 雑音成分 Njk (t) および干渉信号 I jk (t) が消失している。 した がって、 受信信号の SZN比が悪い場合、 または受信信号に干渉信号が混入した 場合、 またはその双方の場合において、 雑音成分、 または干渉信号、 またはその 双方の影響による推定誤差を抑えることができ、 各伝送系ごとの位相差および振 幅変動量情報を良好に推定することができる。
[信号を同時に送信する方式]
実施の形態 17
なお、 図 55の実施の形態 16では、 信号を伝送する送信系を 1番目から n番 目まで順次切換えて、 その都度、 送信している伝送系を除く 1番目から n番目ま でのすベての伝送系で受信された信号を測定し、 上述の処理を行なっている。 しかしながら、 以下に説明するように、 この実施の形態 17では、 図 55に示 した構成において、 すべての伝送系から同時に信号を送信し、 かつすベての伝送 系で同時に信号を受信することにより、 キャリブレーションに要する時間を短縮 している。
まず、 キャリブレーション時には、 図 55に示した構成において、 すべての伝 送系のフェイズシフタ PSjの位相回転量 0 jが 0に、 アツテネ一タ ATTjの振 幅変動量 Ajが 1 (=O dB) にセットされる。 そして、 メモリ 21からは、 す ベての伝送系に対応する既知の信号 Sj (t) が読出され、 すべてのアンテナ素 子 ANTjを介して同時に送信される。
各伝送系から送信された信号は、 当該伝送系を除く他のすべての伝送系のアン テナ素子 ANTk (k = 1, 2, ···, n、 ただし j≠k) で受信される。
したがって、 k番目の伝送系の受信信号測定装置 S Mkで他のすべての伝送系 力 同時に受信され測定される信号 RXk (t) は下記の式 (4— 1) で表わさ れる。
RXk(t)=Alk AT t ARXk exp{i ( 011ζ+Δ φ ΤΧ^Δ ø RXk) 丄(t)
+A2k ATX2 ARXk exp{i( 2k+A φ ΤΧ2+Δ φ RXk) } S2 (t)
+
+Ajk ATXj ARXk exp{i(0 jk+A 0T j+A 0RXk)}Sj (t)
+
+Ak_! k ATXk一丄 ARXk exp{i(0k_! k+ Δ φ TXk_j + Δ φ RXk) } Sk_! (t)
+Ak+i k ATXk+1 ARXk exp{i(0k+1 k+A0TXk+1+A 0 RXk) } Sk+1 (t)
+
+Ank ATX ARXk exp { i ( φ nk+ Δ φ TXn+ Δ φ RXk) } Sn (t)
+nk(t), (k=l, 2, ···, n) --(4-1) 次に、 受信信号 RXk (t) と、 既知の信号 Sj (t) との相互相関値 CSjkを 計算する。 この相互相関値は、 次の式 (4— 2) のように表わされる。
但し、 Sj (t) , ( j =1, 2, ···, n) はすべて互いに異なる信号系列で あり、 その相互相関値は次の式 (4一 3) を満たす。
CS;k=<RXk(t) - Sj(t)> (4-2) <S,(t) -Sk(t)>^0,
(j=l, 2, ···, n), (k=l, 2, ···, n)、
ただし、 k≠j (4-3) また、 前述の実施の形態 15の式 (3— 6) で示したように、 送信信号と雑音 との間の相互相関値は 0であり、 式 (3—4) に示したように送信信号の自己相 関値は 1である。
したがって、 式 (4— 1) の RXk (t) と Sj (t) との相互相関値を計算 すると、 式 (4— 2) は下記の式 (4— 4) のように表わされ、 この RXk ( t ) と Sj (t) との相互相関処理を、 すべての既知の送信信号 Sj (t) , ( j =1, 2, ···, n、 ただし j≠k) およびすベての受信信号 RXk (t) , (k =1, 2, …, n) に対して行なうと、 得られる相互相関値は実施の形態 17の 式 (3— 15) で表わされる値となる。 CSk=<RXk (t) · S; (t)〉=Ajk ATXj ARXk exp { i ( φ Δ ø TX ;+△ φ RXk) },
•••(4-4) この式 (3— 15) の自然対数を計算すると、 前述の実施の形態 16の式 (3 -16) のように表わされ、 その虚数部に着目すると前述の式 (3— 19) が導 かれ、 実数部に着目すると式 (3— 20) が導かれる。 以後の処理は、 実施の形 態 16の処理と同じなので説明を省略する。
次に、 図 56は、 上述の実施の形態 17の動作の前半を説明するフロー図であ り、 図 57は、 図 56のフロー図のステップ S 3— 2に対応する、 実施の形態 1 7の計算ルーチンを示すフロー図である。 図 56のフロー図は、 ステップ S 3— 1において、 すべての伝送系から既知の 信号 Sj ( t) が同時に送信され、 ステップ S 3— 2において、 すべての伝送系 で受信信号の測定が同時に行なわれる点で、 先行するいずれの実施の形態とも相 違している。
図 57のフロー図において、 送信信号 Sj (t) 毎に、 テンポラリーな変数 T mpを 0として、 時間 Tに達するまで RXk (t) - Sj (t) の累算を行なう。 そして、 この累算結果を Tで除算して時間平均 Tmp/Tを算出し、 その自然対 数を計算して、 虚数部 YJk、 実数部 XJkを抽出している。
この演算をすベての送信信号 Sj (t) に対して行なうことにより、 すべての 伝送系からの送信信号 (t) とすべての伝送系で受信された信号 RXk (t ) との相互相関処理が行なわれることになる。
以後の処理は図 21のフロー図と同じであるので、 説明を省略する。
なお、 図 56の実施の形態 1 7と同じステップ S 3— 1および S 3— 2により、 すべての伝送系からの送信信号 S j (t) とすべての伝送系で受信された信号 R Xk (t) との相互相関処理を行ない、 得られた YJkの連立一次方程式 (3— 1 9) および Yjkの連立一次方程式 (3— 20) を直接解くことにより、 各伝送系 の受信回路の位相回転量および振幅変動量を求めるように構成してもよい。
以上のように、 この実施の形態 1 7では、 キャリブレーション時に既知の信号 Sj (t) の同時送受信を行なっているので、 送信する伝送系を順次切り換えて いた先行する各実施の形態と比べても、 キャリブレーションに要する時間を短縮 することができる。
[位相 ·振幅オフセット方式]
実施の形態 18
なお、 図 1 9に示したこの発明の第 2の基本構成のァダプティブアレイ無線基 地局では、 最終的に前述の連立一次方程式 (1— 30) および (1— 32) を解 くことにより、 すべての伝送系の受信回路および送信回路を通過する信号の位相 回転量の差 Δ φ」および振幅変動量の差 Δ Ajを求めている。
ここで、 すべての伝送系において送受信回路の位相回転量の差 Δφ」, ( j = 1, 2, -, n) が同じ値であった場合には下記の式 (5— 1) が成り立ち、 す ベての伝送系において送受信回路の振幅変動量の差 AAj, ( j = 1 , 2, ···, n) が同じ値であった場合には、 下記の式 (5— 2) が成り立つ。
Δ :厶 … =Δ 0η ·'·(5- 1)
Αί= Α2= ■·■ =ΔΑη …(5-2) これらの場合、 各送信回路および受信回路において現実に位相回転量の差また は振幅変動量の差が生じていても、 前述の式 (1— 30) および (1— 32) か ら導出される連立方程式はすべて縦続関係になってしまい、 解が不定となる。 し たがって、 正確な位相回転量の差および振幅変動量の差を推定することができな い場合が生じ得る。
以下に説明する実施の形態 18は、 このような点を改善したものであり、 キヤ リブレーシヨンを行なう前に、 各伝送系の、 フェイズシフタの位相回転量、 また はアツテネータの振幅変動量、 またはその両方を、 それぞれ予めある値に設定し ておくことにより、 送受信回路間の位相回転量の差および Ζまたは振幅変動量の 差が、 伝送系の間でほぼ同じ値になることを回避し、 各伝送系の位相回転量の差 および振幅変動量の差の推定の精度を向上させたものである。
この発明の実施の形態 18によれば、 図 1 9に示したこの発明の第 2の基本構 成によるァダプティブアレイ無線基地局において、 キャリブレーション時に、 予 め、 j番目の伝送系のフェイズシフタ P Sjの位相回転量が 0」に、 アツテネー タ ATTjの振幅変動量が Ajにセットされる。 伹し、 伝送系の間では、 それぞ れのフェイズシフタの位相回転量は 6」≠ 0kとなるように、 そしてそれぞれの アツテネータの振幅変動量は Aj≠Akとなるように設定されるものとする。
メモリ 21から、 この j番目の伝送系に対応する既知の信号 Sj (t) が読出 され、 送信回路を介して出力される。 そして、 送信された信号は、 j番目の伝送 系を除く他のすべての伝送系の各々の受信回路で受信され、 受信信号測定装置 S Mkで受信信号 RXJk (t) として受信される。 信号を送信する伝送系を 1番目 から n番目まで順次切換えて、 その都度送信している伝送系を除くすべての伝送 系で受信され測定された信号 RXJk (t) は、 下記の式 (5— 3) で表わされる。 RXjk(t)=Ajk Aj ATXj ARXk exp
{ί(φ jk+ 0 j+厶 0ΤΧ」+Δ 0RXk)} Sj(t)+njk(t)
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k (5-3) 次に、 上記の式 (5— 3) の両辺を、 送信時における既知の信号 Sj (t) で 割り、 さらに両辺の自然対数を計算してテイラー展開すると、 S/N比が十分よ ければ、 下記の式 (5— 4) が得られる。 そして、 この式 (5— 4) の虚数部に 注目すると下記の式 (5— 5) が導かれ、 実数部に注目すると下記の式 (5— 6 ) が導かれる。 loge[Ajk Aj ATXj ARXk]
+i ( jk+ θ .+ Δ 0TXj+A
Figure imgf000068_0001
(t)]
(5-4) ό ik+ 0 j+厶 Φ TXj+ Δ φ RXk=Im [loge [RXjk (t) /Sj (t)]];
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k (5-5) loge[Ajk Aj ATXj ARXk]=Re[loge[RXjk(t)/Sj(t)]],
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k (5-6) ここで、 式 (5— 5) および (5— 6) のそれぞれの右辺の値は計算によって 求めることができる。 そこで、 式 (5— 5) および (5— 6) のそれぞれの右辺 の計算によって求められた値を Yjk、 Xjkとすると、 それぞれの式は、 下記の式 (5-7) および (5— 8) のように表わされる。 Yjk= φ jk+0 j+Δ φ TXj+Δ φ RXk,
(j=l, 2, ···, n), (k=l; 2, · ·, n)
ただし、 j≠k (5-7)
Xjk=loge [Ajk] +loge [Aj] +loge [ATXj] +loge [ARXk],
(j=l, 2, ···, n), (k=l, 2, ···, n)
ただし、 j≠k (5-8) ここで、 上述のように予め設定された初期オフセット値を考慮して、 各伝送系 の送受信回路間の位相回転量の差 Δ および振幅変動量の差 AAjを下記の式 (5— 10) および (5— 11) のように定義する。
Δ φ j=A 0RXr{A φΤΧ,+ θ j}, (j=l, 2, ···, n) (5-10) Δ Aj=loge [ARXj]- {loge [ATXj] +loge [Aj] },
(j=l, 2, ···, n) (5-11) 次に、 Yjk— YkJ=Zjkとおいて式 (5— 7) に代入すると下記の式 (5— 12 ) が得られ、 XJk— XkJ=VJkとおいて式 (5— 8) に代入すると下記の式 (5— 13) が得られる。
Z.ik=Yjk— Ykj=A0k- A0j,
(j=l, 2, n - 1), (k=j+l, j+2, n) (5-12) Vjk=Xjk-Xkj=AAk-AAj,
(j=l, 2, ···, n - 1), (k=j+l, j+2, ···, n) (5-13) 以後の動作は、 図 19を参照して説明したこの発明の第 2の基本構成の動作と 同じであり、 これらの連立一次方程式 (5— 12) および (5— 13) を解けば、 各伝送系における送受信回路間の位相回転量の差および振幅変動量の差を算出す ることができる。
次に、 図 5 8および図 5 9は、 上述のような実施の形態 1 8の動作をマイクロ コンピュータを用いてソフトウェア的に実現する際のフロー図である。 図 5 8お ょぴ図 5 9に示したフロー図は、 以下の点を除いて図 2 0および図 2 1に示した この発明の第 2の基本構成の動作と同じである。
すなわち、 ステップ S 2— 2 hにおいて、 当該伝送系のフェイズシフタ P S j の位相回転量が、 0ではなく既知の値 0 jに、 アツテネータ A T Tjの振幅変動 量が、 1ではなく既知の値 Α』にセットされる。
そして、 最後のステップ S 2— 1 8 hにおいて、 キャリブレーションのための 各伝送系のフェイズシフタの位相回転量およぴァッテネータの振幅変動量を設定 する際に、 上述の既知の値 Θ jおよび がそれぞれ考慮されている。
その他の動作については、 図 2 0および図 2 1のフロー図に関する説明を援用 して、 ここではその説明を省略する。
次に、 図 6 0および図 6 1は、 上述の図 5 8およぴ図 5 9に示した実施の形態
1 8の変形例を示すフロー図である。 この変形例においては、 上述の実施の形態 1 8と同様に、 まず各伝送系のフェイズシフタの位相回転量を Θ jに、 アツテネ ータの振幅変動量を Α」に設定した後、 既知の信号 S j ( t ) を送信しており、 その後も実施の形態 1 8と全く同じ演算処理により、 Z jkと Vjkとが算出されて いる。
伹し、 この図 6 1のフロー図では、 算出された Z jk、 VJkの絶対値が十分な大 きさを有しているか否かが判定される。 すなわち、 ステップ S 2— 1 9で、 算出 された Z Jkの絶対値が Zの最小値である M Zと比較され、 I Z jk Iが M Zより小 さければ、 ステップ S 2— 2 0でさらに M Zがそのときの I Z Jk |で置換えられ る。 同様に、 ステップ S 2— 2 1で、 算出された Vjkの絶対値が Vの最小値であ る MVと比較され、 I Vjk Iが MVより小さければ、 ステップ S 2— 2 2でさら に MVがそのときの I VJk Iで置換えられる。
次に、 ステップ S 2— 2 3において最終的に得られた M Z、 MVがそれぞれ所 定の基準値 C Z、 C Vよりも小さいことが判定されると、 フェイズシフタの位相 回転量およびアツテネータの振幅変動量の初期設定値である 0」、 Ajが十分で はなかったとして、 ステップ S 2— 2 4において、 位相回転量 0 jおよび振幅変 動量 Ajがそれぞれ適当な値に変更された後、 Z Jk、 Vjkの算出が再度行なわれる。 その結果、 得られた M Z、 MVがそれぞれ C Z、 C Vよりも大きいことが判定さ れれば、 以後は図 5 9の実施の形態 1 8と同じ処理が行なわれる。
[方程式選択方式]
実施の形態 1 9
これまでに説明した実施の形態のいずれにおいても、 最終的には位相回転量に 関する連立一次方程式および振幅変動量に関する連立一次方程式を解くことによ り、 位相回転量、 振幅変動量、 位相回転量差および振幅変動量差を算出している。 ところで、 いずれの実施の形態においても、 アンテナ素子数が 3本の場合、 未 知の変数の数と各連立一次方程式を構成する独立の方程式の数とが共に 3個であ り、 等しい。 したがってこの場合には 3個の方程式のすべてが連立一次方程式を 解くのに用いられる。 しかしながら、 アンテナ素子数が 4本以上になると、 独立 の方程式の数が未知の変数の数を上回ることになる。
この発明の実施の形態 1 9では、 アンテナ素子数が 4本以上の場合、 測定され た受信信号と送信した信号とに基づいて計算された連立一次方程式を構成するす ベての独立の方程式のうち、 より高い精度で導出された方程式を必要数、 すなわ ち未知の変数の個数と同数だけ選択して、 連立一次方程式を解くように構成して いる。
この発明の実施の形態 1 9では、 この方程式の選択は、 測定や計算によって得 られた値である I xJk I 、 I YJk I 、 I vjk I、 または I zJk Iが大きな値をとる 方程式から順に選択されることになる。
図 6 2は、 この実施の形態 1 9の動作を説明するフロー図であり、 以下の点を 除いて、 図 2 1に示したこの発明の第 2の基本構成の後半の動作と同じである。 すなわち、 ステップ S 2— 2 5ですベての Z jkの絶対値を計算して値の大きい順 にソートし、 かつステップ S 2— 2 6ですベての VJkの絶対値を計算して値の大 きい順にソートする。 そして、 I Ζ iの値の大きい順に、 未知の変数の個数に 相当する n個の方程式を選択して位相回転量差に関する連立一次方程式を構成し て解を計算し、 また I vjk Iの値の大きい順に、 n個の方程式を選択して振幅変 動量差に関する連立一次方程式を構成して解を計算する。 その他の動作について は、 図 20およぴ図 2 1のフロー図に関する説明を援用して、 ここではその説明 を省略する。
以上のように、 この実施の形態 1 9では、 高い精度で導出された方程式を選び 出して連立一次方程式を構成しているので、 位相回転量および振幅変動量に関す る精度の高い推定結果を得ることができる。
[余剰方程式利用方式]
実施の形態 20
なお、 上述のように、 アンテナ素子数が 4本以上の場合、 各連立一次方程式を 構成する複数の独立の方程式のうち、 解を得るために用いられない方程式が出て くる。 この発明の実施の形態 20では、 このように解を得るために用いられた方 程式以外の方程式を、 位相回転量および振幅変動量に関する情報の推定結果の検 証に用いるものである。 たとえば、 アンテナ素子数が 4本で、 送受信回路の位相 回転量差を求める場合の連立方程式は、 下記の独立の方程式 (6— 1) 〜 (6— 6) から構成されることになる。
Ζΐ2=Δ ø 9 - Δ φ I (6-1)
Ζ13=厶 03- Δ 01 (6-2)
Ζ14=Δ φ4 Φ l (6-3) 23 03—△ 2 (6-4)
Ζ24=厶 Φ 4一 Φ 2 (6-5)
Ζ3 - φ -Α φ3 (6-6) ここで、 たとえば上述の 6つの独立の方程式のうち、 式 (6— 1) 、 (6— 2
) 、 (6— 5) 、 (6 _ 6) を用いて 4個の未知の変数 Δ 〜Δ φ4を算出す るものとし、 実際に計算された値を t mp A c^ , ( j = 1 , 2, 3, 4) とす る。 この実施の形態 20では、 これらの値 t mp Δ 0jを、 解を算出するのに用 いられなかった式 (6— 3) 、 (6— 4) に導入し、 誤差 e i, (1 = 1, 2, ··'、 を計算する。 この場合未使用の 2つの方程式を用いて 2つの誤差 , e 2 が下記の式 (6— 7 ) および (6— 8 ) のように算出される。 e^Z^- itmpA 4-tmpA φ (6-7)
e2=Z23- (tmp Δ φ 3-tmpA φ 2) (6—8) そして、 これらの誤差 eい e 2がそれぞれ所定の基準値よりも小さければ、 上述の推定結果 t m p Δ 0 ( j = 1 , 2 , 3, 4 ) は正しいものとみなし、 出力されることになる。 一方、 誤差 eい e 2が所定の基準値よりも大きければ、 上述の 4つの式を用いた推定結果は正しくないとみなし、 誤差 eい e 2が所定 の基準値よりも小さくなるまで、 測定をやり直すなどして、 推定処理を続行する。 図 6 3および図 6 4は、 この実施の形態 2 0の動作を示すフロー図であり、 以 下の点を除いて図 6 2に示したこの発明の実施の形態 1 9の動作と同じである。 すなわち、 ステップ S 2— 2 8において、 位相差情報に関する n個の独立の方 程式からなる連立一次方程式および振幅変動量差情報に関する n個の独立の方程 式からなる連立一次方程式のそれぞれを解いて解を求め、 ステップ S 2— 2 9に おいて、 計算された解を、 この解の算出に用いられなかった方程式に代入して、 Z Jkおよび V の最大値 Z ma, , Vna,をそれぞれ算出する。 そして、 ステップ S 2 - 3 0において、 算出された最大値がそれぞれ所定の基準値 C Z, C V以下であ るか否かが判断され、 所定の基準値以上であることが判断されるまで以上の測定 および演算が繰返される。
その他の動作は、 前述の実施の形態 1 9の動作と同様である。
[テーブル参照補正方式]
実施の形態 2 1
これまでに説明した実施の形態のいずれにおいても、 推定された位相回転量に 関する情報および振幅変動量に関する情報を、 各伝送系の位相回転装置としての フェイズシフタおょぴ振幅変動装置としてのアツテネータに伝達し、 各伝送系の 送受信回路間において、 位相回転量差および振幅変動量差が 0となるように補償 を fi1なっている。 ところが、 各伝送系の送信回路または受信回路が非線形特性を有する回路要素
(たとえばアンプ) を含む場合、 送信回路に入力される信号のパワーまたは受信 回路に入力される信号のパワーによっては、 位相特性および振幅特性が変化して 上述の補償がきかなくなることがある。
この発明の実施の形態 2 1は、 上述のように送信回路に入力される信号のパヮ 一または受信回路に入力される信号のパワーにより位相特性および振幅特性が変 ィ匕した場合でも、 推定動作によって一旦得られたキャリブレーション結果と、 メ モリに予め記録されている補正テーブルとを用いて、 フェイズシフタおよびアツ テネータに設定される位相回転量および振幅変動量を適正な値に補正するもので ある。
図 6 5は、 このような実施の形態 2 1の具体的な回路構成を示すブロック図で ある。 図 6 5の実施の形態において、 位相回転量を補償するために計算されるキ ヤリブレーシヨン情報は Δ φい Δ φ 2, ·■·, Δ φ ηであり、 振幅変動量を補償す るために計算されるキャリブレーション情報は厶 , Δ Α2, · · ·, Δ Αηである。 ここで、 これらのキャリブレーション情報を推定したときの送信信号の比較的 低いパワーを P CTX、 受信信号の比較的低いパワーを P CRXとする。 一方、 現在 の送信信号のパワーを Ρτχ、 受信信号のパワーを P RXとする、 ここでメモリ内に は位相回転量情報および振幅変動量情報の補正用の情報が予め記憶されているも のとし、 制御装置 2 2により、 Ρτχと P CTXに対応する送信系の補正情報を、 ま たは P RXと P CRXとに対応する受信系の補正情報をメモリ 2 1から読出し、 上述 の算出されたそれぞれのキヤリブレーシヨン値に加えた後、 位相回転装置として のフェイズシフタおよび振幅変動装置としてのアツテネータに与えるように構成 されている。 これにより、 送信回路または受信回路に非線形回路要素が含まれる 場合であっても、 受信信号パワーまたは送信信号パワーに拘らず、 常に位相回転 量差情報および振幅変動量差情報に関する最適のキヤリブレーションを行なうこ とができる。
なお、 メモリに蓄える補正情報の量を減らすために、 適当な間隔で間引いた補 正情報をメモリに記憶しておき、 補正情報の使用時に補間により最適な補正値を 求めるように構成することも可能である。 [振幅のキャリブレーション方式]
実施の形態 22
これまでに説明した実施の形態のいずれにおいても、 各伝送系において受信回 路と送信回路との間の振幅変動量の差が推定される。 しかしながら、 位相回転量 の場合とは異なり、 振幅変動量の場合には、 送信回路と受信回路との間に特性差 があること自体は大きな問題ではなく、 送受信回路間の振幅変動量差がそれぞれ の伝送系において異なっていることが最大の問題である。 したがって、 振幅情報 のキヤリブレーシヨンに関しては、 上述の各実施の形態のように各伝送系の受信 回路と送信回路との間の振幅変動量差が 0となるように各伝送系の振幅変動装置 であるアツテネータの振幅変動量を制御する方法の他に、 それぞれの伝送系の送 受信回路間の振幅変動量差が共通のある値になるように、 各伝送系の振幅変動装 置であるァッテネ一タの振幅変動量を制御するように構成してもよい。
[第 3の基本構成の概要]
図 66は、 この発明によるァダプティブアレイ無線基地局の第 3の基本構成の 概要を示す概略ブロック図である。 図 66の第 3の基本構成は、 先に説明した第 1および第 2の基本構成と同様に、 ァダプティブアレイ無線基地局のうち、 この 発明に関連する位相回転量およぴ振幅変動量の推定ならぴにこれらのキヤリブレ ーシヨンに関する部分のみを示している。
図 66に示すァダプティブアレイ無線基地局においては、 4つの信号伝送系か らなり、 それぞれの信号伝送系のアンテナ素子 (合計 4個) が正確に正方形の頂 点にそれぞれ配置されていることを特徴としている。
より特定的に、 図 66に示すァダプティブアレイ無線基地局は、 図示しないメ モリおよび制御装置からなる信号処理回路 20と、 正方形のアレイアンテナを構 成するアンテナ素子 ANT 1 , ANT 2, ANT3およぴ ANT4と、 それぞれ のアンテナ素子に対応して設けられたアンテナ共用器 SW1, SW2, SW3お ょぴ SW4と、 それぞれのアンテナ素子に対応してアンテナ共用器と信号処理回 路 20との間に設けられた送信回路 TX 1, TX 2, TX3, TX 4および受信 回路 RX 1, RX 2, RX3, RX4とを備えている。
前述の第 1およぴ第 2の基本構成と同様に、 図 66の信号処理回路 20は、 キ ヤリブレーシヨン時にそれぞれのアンテナ素子から既知の信号を送信し、 他のァ ンテナ素子からの受信信号を実測し、 実測値を用いて所定の演算を行い、 後述す る受信応答べクトルおよび送信べクトルを算出し、 その算出結果に応じて位相回 転量および振幅変動量のキヤリブレーションを行うデジタル信号処理機能を有し ているものとする。
なお、 送信回路 TX1, ΤΧ 2, ΤΧ 3, ΤΧ4の各々は、 信号処理回路 20 力 ら対応するアンテナ共用器 SWまでの経路に存在する回路を総称するものであ り、 受信回路 RX1, RX 2, RX 3, RX4の各々は、 対応するアンテナ共用 器 SWから信号処理回路 20までの経路に存在する回路を総称するものである。
[第 3の基本構成の実施の形態]
実施の形態 23
図 66において、 Θ ΤΧ Ι, θ ΤΧ 2, θ ΤΧ 3 , 0ΤΧ4の各々は、 各伝送 系において、 信号処理回路 20から出力された信号が対応する送信回路 ΤΧおよ びァンテナ共用器 S Wを通過して対応するァンテナ素子 A Ν Tに至るまでの位相 回転量を表わし、 6 RX 1, Θ RX 2, Θ RX3, Θ RX 4の各々は、 各伝送系 にお 、て、 対応するァンテナ素子 A N Tで受信された信号が対応するアンテナ共 用器 S Wおよび受信回路 R Xを通過して信号処理回路 20に至るまでの位相回転 量を表わしている。
さらに図 66中、 0 1 2はアンテナ素子 ANT 1, ANT 2間における信号の 位相回転量、 θ 13はアンテナ素子 ANT 1, ANT 3間における信号の位相回 転量、 0 14はアンテナ素子 ANT 1, ANT 4問における信号の位相回転量、 Θ 23はアンテナ素子 ANT 2, ANT 3間における信号の位相回転量、 0 24 はアンテナ素子 ANT2, ANT 4間における信号の位相回転量、 634はアン テナ素子 ANT3, ANT 4間における信号の位相回転量を表わしている。 この発明の第 3の基本構成の実施の形態 23は、 図 66の構成において受信応 答べクトルと送信応答べクトルとを求め、 その位相データの差を補正値として求 めるものである。
( 1 ) 受信応答べクトルの測定方法
まず、 受信応答べクトルの測定方法について説明する。 ① 図 66の構成において、 信号処理回路 20から初期位相 Θ I T 1が 0に固 定された信号が、 送信回路 TX 1、 アンテナ共用器 SW1を介してアンテナ素子 ANT 1から送信され、 他のアンテナ素子 ΑΝΤ 2, ΑΝΤ 3, ΑΝΤ4で受信 される。
このうち、 アンテナ素子 ΑΝΤ2、 アンテナ共用器 SW2、 受信回路 RX 2を 介して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 2 1は、 次の式 (7— 1) で表わされる。
Θ R2 1 = 0 TX 1 + θ 1 2 + 0 RX 2··· (7— 1)
同様に、 アンテナ素子 ANT3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 3 1は、 次の式 (7— 2) で表わされる。
6 R3 1 = Θ ΤΧ 1 + Θ 1 3 + 0 RX 3--- (7- 2)
同様に、 アンテナ素子 ANT 4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 4 1は、 次の式 (7— 3) で表わされる。
6 R4 1 = e TX l + 0 1 4 + 0 RX4--- (7-3)
ここで (7— 1) 式から (7— 2) 式を減じると、
6 R2 1— 0 R3 1 = 0 RX 2— 0 RX3+ (θ 1 2- θ 1 3)
(Θ RX 2- Θ RX 3) = (0 R2 1 - 0 R3 1) 一 (0 1 2— 0 1 3) … (7-4)
同様に、 (7— 2) 式から (7— 3) 式を減じると、
0 R3 1 - 6 R4 1 = 0 RX3 - 0 RX4+ (θ 1 3 - θ 1 4)
(Θ RX 3 - Θ RX4) = (0 R3 1 - 0 R4 1) - (0 1 3— 0 1 4) … (7- 5)
同様に、 (7— 3) 式から (7— 1) 式を減じると、
0 R4 1 - 0 R2 1 = 0 RX4- 6 RX 2+ (0 1 4— 0 1 2)
(Θ RX4- 6 RX 2) = (Θ R4 1 - Θ R2 1) ― (θ 1 4 - θ 1 2) … (7— 6)
② 図 66の構成において、 信号処理回路 20から初期位相 Θ I T 2が 0に固 定された信号が、 送信回路 TX2、 アンテナ共用器 SW2を介してアンテナ素子
ΑΝΤ2から送信され、 他のアンテナ素子 ΑΝΤ 1, ΑΝΤ3, ΑΝΤ4で受信 される。
このうち、 アンテナ素子 ΑΝΤ1、 アンテナ共用器 SW1、 受信回路 RX 1を 介して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 Θ R12は、 次の式 (7— 7) で表わされる。
0 R 1 2 = θ TX 2 + θ 1 2+ 0 RX 1… (7-7)
同様に、 アンテナ素子 ANT3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 32は、 次の式 (7— 8) で表わされる。
0 R32 = ΘΤΧ2 + 023 + 6 RX3'" (7-8)
同様に、 アンテナ素子 ΑΝΤ4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 42は、 次の式 (7— 9) で表わされる。
Θ R42 = Θ ΤΧ2 + Θ 24 + Θ RX4-" (7-9)
ここで、 (7— 7) 式から (7— 8) 式を減じると、
8 R1 2-0 R32 = e RXl -0 RX3+ (0 1 2- Θ 23)
(Θ RX 1 - Θ RX 3) = (0 R1 2-0 R32) - (θ 1 2- θ 23) ··· (7- 10)
同様に、 (7— 8) 式から (7— 9) 式を減じると、
e R32-0 R42 = 0 RX3-0 RX4+ (Θ 23 - Θ 24)
(Θ RX3-0 RX4) = (Θ R32- Θ R42) 一 (0 23— 6 24) … (7- 1 1)
同様に、 (7— 9) 式から (7— 7) 式を減じると、
0 R42-e R1 2=e RX4-G RXl + (Θ 24-Θ 1 2)
(Θ RX4- Θ RX 1) = (0 R42-0 R1 2) - (6 24— 0 1 2) … (7— 12)
③ 図 66の構成において、 信号処理回路 20から初期位相 Θ 1丁3が0に固 定された信号が、 送信回路 TX3、 アンテナ共用器 SW3を介してアンテナ素子 ANT 3から送信され、 他のアンテナ素子 ANT 1, ANT 2, ANT4で受信 される。
このうち、 アンテナ素子 ANT1、 アンテナ共用器 SW1、 受信回路 RX1を 介して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R1 3は、 次の式 (7— 13) で表わされる。
0 R13 = ΘΤΧ3 + Θ 13 + 0 RX l--- (7-13)
同様に、 アンテナ素子 ANT 2、 アンテナ共用器 SW2、 受信回路 RX 2を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 23は、 次の式 (7—14) で表わされる。
Θ R 23 = θ TX 3 + Θ 23 + Θ RX 2··· (7-14)
同様に、 アンテナ素子 ANT4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R 43は、 次の式 (7— 1 5) で表わされる。
6 R43 = 0TX3 + 034 + 6 RX4--- (7-1 5)
ここで、 (7— 13) 式から (7— 14) 式を減じると、
9 R1 3-e R23 = 0 RXl -0 RX2+ (θ 1 3 - Θ 23)
(Θ RX 1 - Θ RX 2) = (0 R1 3-0 R23) - (0 1 3— 0 23) … (7- 16)
同様に、 (7— 14) 式から (7— 1 5) 式を減じると、
8 R23-e R43 = e RX2-6 RX4 + (Θ 23-Θ 34)
(Θ RX 2- Θ RX4) = (0 R23-0 R43) 一 (0 23— 034) … (7-17)
同様に、 (7— 1 5) 式から (7— 1 3) 式を減じると、
0 R43— 6 R1 3 = 0 RX4— 0 RX 1 + (Θ 34— Θ 13)
(Θ RX4- Θ RX 1) = (0 R43— 0 R13) - (Θ 34— Θ 13)
… (7-18)
④ 図 66の構成において、 信号処理回路 20から初期位相 Θ I T 4が 0に固 定された信号が、 送信回路 TX4、 アンテナ共用器 SW4を介してアンテナ素子 ΑΝΤ4から送信され、 他のアンテナ素子 ΑΝΤ 1, ΑΝΤ 2, ΑΝΤ3で受信 される。
このうち、 アンテナ素子 ANT 1、 アンテナ共用器 SW1、 受信回路 RX1を 介して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 6 R 14は、 次の式 (7—1 9) で表わされる。
0 R 14 = 0 TX 4 + θ 14 + 0 RX 1… (7— 1 9)
同様に、 アンテナ素子 ANT2、 アンテナ共用器 SW2、 受信回路 RX 2を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R
24は、 次の式 (7— 20) で表わされる。
6 R24 = 0 TX4 + e 24 + 0 RX2--- (7-20)
同様に、 アンテナ素子 ANT 3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの位相回転量 0 R
34は、 次の式 (7— 21) で表わされる。
0 R 34 = 0 TX4 + Θ 34 + 0 RX 3… (7— 21)
ここで、 (7— 1 9) 式から (7— 20) 式を減じると、
6 R14-0 R24 = e RXl-e RX2+ (Θ 14- 0 24)
(Θ RX 1 - Θ RX 2) = (0 R14— 0 R24) — (θ 14 - θ 24) ··· (7— 22)
同様に、 (7— 20) 式から (7— 21) 式を減じると、
8 R24-e R34 = 6 RX2-0 RX3+ (024— Θ 34)
(Θ RX2-0 RX3) = (0 R24— 6 R34) — (Θ 24 - Θ 34)
… (7-23)
同様に、 (7— 21) 式から (7—1 9) 式を減じると、
0 R34— 0 R14 = 0 RX3— 6 RX 1 + (034— 0 14)
(Θ RX 3 - Θ RX 1) = (0 R34— 0 R14) ― (634— Θ 14) ··· (7-24)
⑤ アンテナ素子 ANT1および ANT 2の受信信号の位相回転量の差 (0 R X1 -G RX2) を算出する:
上述の式 (7— 1 6) および (7— 22) の各々より (0 RX 1— 6 RX2) は求まるが、 より精度を向上させるため、 両式の平均をとる。 (6 RX 1— 0 RX 2) = C { (0 R 1 4- 6 R 24) - (0 1 4— 0 2
4) } + { (0 R13-0 R23) - (θ 13 - θ 23) } ] / 2
この式より、
(6 RX 1— 0 RX 2) = C { (0 R 1 4— 0 R 24) — ( θ 1 4 - θ 2 3) } + { (0 R13-0 R23) - (Θ 13-Θ 24) } ] /2
図 66のアンテナ素子は正方形を構成するように配されているため、 0 14= Θ 23, θ 13 = 6 24が成り立つ。 したがって、 上式は、 次の式 (7— 25) となる。
(Θ RX 1 - Θ RX 2) = { (0 R14— 6 R24) + (0 R1 3-0 R2 3) } /2- - (7-25)
この式の右辺は実測値から求められるため差分 (0 RX 1— 0 RX2) の値が 昇出される。
⑥ アンテナ素子 ANT 2および ANT 3の受信信号の位相回転量の差 (0 R X2- Θ RX3) を算出する:
上述の式 (7— 4) および (7— 23) の各々より (0 RX2— 0 RX3) は 求まるが、 より精度を向上させるため、 両式の平均をとる。
(Θ RX 2- 0 RX 3) = [ { (0 R21— 0 R3 1) - (6 1 2— 0 1
3) } + { (Θ R24-6 R34) - (0 24— 034) } ] /2
この式より、
( Θ RX 2 - Θ RX 3) = [ { (0 R21— 0 R3 1) - (0 1 2— Θ 3
4) } + { (0 R24— 0 R34) - (0 24— 0 13) } ] /2
ここで Θ 1 2 = 034, 6 1 3 = 024が成り立っため、 上式は、 次の式 ( 7 — 26) となる。
(Θ RX 2- Θ RX3) = { (Θ R21-0 R31) + (0 R24-0 R3 4) } /2 -- (7-26)
この式の右辺は実測値から求められるため差分 (0 RX2— 0 RX3) の値が 算出 ^れる。
⑦ アンテナ素子 ΑΝΤ 3および ΑΝΤ 4の受信信号の位相回転量の差 (0 R Χ3 - Θ RX4) を算出する: 上述の式 (7— 5) および (7— 1 1) の各々より (0 RX3— 0 RX4) は 求まるが、 より精度を向上させるため、 両式の平均をとる。
(Θ RX 3 - Θ RX 4) = [ { (0 R3 1— 0 R4 1) — (0 1 3— 0 1
4) } + { (Θ R32- Θ R42) 一 (0 23— 0 24) } ] /2
この式より、
(Θ RX 3 - Θ RX 4) = [ { (0 R3 1— 0 R4 1) ― (0 1 3— 0 2
4) } + { (Θ R32- Θ R42) 一 (023— 0 14) } ] /2
ここで、 0 1 3 = 0 24, 0 23 = 0 14が成り立つため、 上式は、 次の式
(7-27) となる。
(Θ RX3-6 RX4) = { (Θ R3 1 - Θ R41) + (Θ R32- Θ R4
2) } /2- (7-27)
この式の右辺は実測値から求められるため差分 (0 RX3— 6 RX4) の値が 算出 2·4ΐ¾ο
⑧ アンテナ素子 ΑΝΤ 4および ANT 1の受信信号の位相回転量の差 (0 R Χ4- Θ RX 1) を算出する:
上述の式 (7— 12) および (7— 18) の各々より (6 RX4— 0 RX1) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(Θ RX 4 - Θ RX 1 ) = [ { (0 R42— 0 R 1 2) — (Θ 24 - θ 1
2) } + { (Θ R43 - Θ R 13) - (034— 0 1 3) } ] /2
この式より
(Θ RX 4 - Θ RX 1 ) = [ { (0 R42- 6 R 1 2) 一 ( Θ 24 - θ 1
3) } + { (0 R43-0 R13) - (034— 0 12) } ] /2
ここで、 0 24= 0 1 3, Θ 34 = 0 1 2が成り立つため、 上式は、 次の式 (7-28) となる。
(Θ RX4-0 RX 1) = { (0 R42— 0 R1 2) + (Θ R43-0 R1
3) } /2-- (7-28)
この式の右辺は実測値から求められるため差分 (0 RX4— 6 RX1) の値が 算出 ^れ 。
⑨ 受信応答べクトルを求める: 4つの伝送系のそれぞれのアンテナ素子による受信信号の位相回転量を R (1) = Θ RX 1 , R (2) = Θ RX 2, R (3) = Θ RX 3, R (4) = Θ R X4と表わすと、 R (1) , R (2) , R (3) , R (4) を成分とするべクト ル尺が
位相データの受信応答べクトルである。
上述の (7— 25) 式〜 (7— 28) 式で求めたように、 それぞれの位相回転 量の差分は、 実測値により (6 RX1— 0 RX2) , (Θ RX 2- Θ RX 3) ,
(Θ RX3-0 RX4) , (Θ RX4- Θ RX 1) の値として具体的に算出され ているが、 個々の位相回転量 R (1) , R (2) , R (3) , R (4) の値を知 るには情報が不足している。
そこで、 どれか 1つの伝送系の位相回転量、 たとえば R (1) を基準値 0とお くことにより、 上述の各差分の算出値から残りの伝送系の位相回転量を個々に算 出することが可能となる。 すなわち、 たとえば R (1) =0とおけば、
R (1) — R (2) = (Θ RX 1 - Θ RX 2) より
R (2) =R (1) ― (0 RX1 -0 RX2) となり、 上記差分の実測値に基 づいて R (2) の値が算出される。
同様に R (2) -R (3) = (Θ RX2- Θ RX3) より
R (3) =R (2) 一 (Θ RX2-0 RX3) となり、 上記差分の実測値に基 づいて R (3) の値が算出される。
同様に R (3) 一 R (4) = (Θ RX 3 - Θ RX4) より
R (4) =R (3) 一 (Θ RX3-6 RX4) となり、 上記差分の実測値に基 づいて R (4) の値が算出される。
以上のように、 いずれか 1つの伝送系の位相回転量を 0とおくことにより、 他 の伝送系の位相回転量が個々に求まり、 その結果、 位相データの受信応答べクト ルが得られることになる。
ここで、 上述の測定結果にミスがないかを検査するレ、くつかの方法について説 明する。
( i ) まず、 R (4) — R (1) = (Θ RX 4 - Θ RX 1 ) であるが、 R (1) =0とおいているため、 測定が正しく行われていれば、 本来的に R (4) 一 (Θ RX4- Θ RX 1) はほぼ 0となるはずである。
したがって、 r tmp= | R (4) — (0 RX4— 6 RX 1) | とおき、 もし も r t mpが誤差しきい値以上であれば、 測定にミスがあったものと判断される。
(ϋ) 次に、 上述の (7— 10) 式および (7— 24) 式の平均をとること により、 アンテナ素子 ANT 1および ΑΝΤ3の位相回転量の差 (0 RXl— 6
RX 3) を求める。
(Θ RX 1 - Θ RX 3) = [ { (0 R 1 2— 0 R32) - ( θ 1 2 - Θ 2
3) } ― { (0 R34— 0 R14) - (Θ 34- θ 14) } ] /2
ここで、 Θ 1 2 = Θ 23, Θ 34 = θ 14が成り立つため、
(Θ RX 1 - Θ RX 3) = { (0 R1 2— 0 R32) — (6 R34-0 R1
4) } /2
この式の右辺は実測値から求められるため (0 RX1— 6 RX3) の値が算出 される。
ここで、 R (1) -R (3) = (Θ RX 1 - Θ RX 3) であるが、 測定が正し く行われていれば、 本来的に、
{R (1) 一 R (3) } — (Θ RX 1 - Θ RX3) はほぼ 0となるはずであ る。
したがって、 r tmp= | {R (1) -R (3) } — (0 RX 1-0 RX3) Iとおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミスがあったも のと判断される。
(iii) 次に、 上述の (7— 1 7) 式および (7— 6) 式の平均をとることに より、 アンテナ素子 ANT 2および ANT 4の位相回転量の差 (0 RX2— 6 R X4) を求める。
( Θ RX 2 - Θ RX 4) = [ { (6 R23— 0 R43) — ( Θ 23 - Θ 3 4) } 一 { (0 R41— 0 R21) — (6 14— Θ 1 2) } ] /2
ここで、 6 23 = 634, 0 14 = θ 1 2が成り立つため、
(Θ RX 2— Θ RX4) = { (6 R23— 6 R43) — (Θ R41 - Θ R 2 1) } /2
この式の右辺は実測値から求められるため (0 RX2— 6 RX4) の値が算出 される。
ここで、 R (2) -R (4) = (Θ RX 2- Θ RX4) であるが、 測定が正し く行われていれば、 本来的に、
{R (2) — R (4) } - (Θ RX 2- Θ RX4) はほぼ 0となるはずである。 したがって r t mp = I {R (2) -R (4) } - (6 RX2-6 RX4) | とおき、 もしも r t mpが誤差しきい値以上であれば、 測定にミスがあったもの と判断される。
( 2 ) 送信応答べクトルの測定方法
次に送信応答べクトルの測定方法について説明する。
① アンテナ素子 ANT 1および ANT2の送信信号の位相回転量の差 (0 T
X 1 - θ TX 2) を算出する:
前述の (7— 2) 式から (7— 8) 式を減じると、
0 R31— 6 R32 = 0TX1— 6TX2+ (0 13— 023)
(Θ TX 1 - θ TX 2) = (0 R31-0 R32) - ( θ 1 3 - Θ 23 ) ··· (7-29)
同様に、 (7— 3) 式から (7— 9) 式を減じると、
0 R41— 0 R42=0TX1— 0TX2+ (θ 14 - Θ 24)
(Θ TX 1 - θ TX 2) = (0 R41 -0 R42) 一 (0 14— 024) … (7-30)
これらの式 (7— 29) および (7— 30) の各々より (0 TX 1— 0 TX
2) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(Θ TX 1 - θ TX 2) = [ { (0 R3 1— 6 R32) — (6 1 3— 6 2
3) } + { (0 R41— 0 R42) - (0 14— 024) } ] / 2
この式より、
(Θ TX 1 - θ TX 2) = [ { (0 R3 1— 0 R32) — ( θ 1 3 - Θ 2
4) } + { (Θ R41 - Θ R42) 一 (θ 14 - Θ 23) } ] /2
ここで Θ 1 3 = 024, 6 14 = 0 23が成り立つため、 上式は、 次の式 (7 -31) となる。
(Θ TX 1 - θ TX 2) = { (0 R31— 0 R32) + (Θ R41 - Θ R4 2) } / 2·'· (7 - 31)
この式の右辺は実測値から求められるため (0TX 1— 0TX2) の値が算出 される。
② アンテナ素子 ANT 2および A NT 3の送信信号の位相回転量の差 (0 T X 2- θ TX3) を算出する:
前述の (7— 7) 式から (7— 13) 式を減じると、
0 R12-0 R13 = Θ ΤΧ2-ΘΤΧ3 + ( θ 1 2 - θ 1 3 )
(Θ ΤΧ2— ΘΤΧ3) = (0 R1 2— 0 R13) — (6 1 2— 0 13) ··· (7— 32)
同様に、 (7— 9) 式から (7— 1 5) 式を減じると
0 R42-6 R43=0 TX2-0 TX3+ (0 24—034)
(θ TX 2- θ TX 3) = (Θ R42- Θ R43) 一 (Θ 24 - Θ 34) … (7-33)
これらの式 (7— 32) および (7— 33) の各々より (Θ ΤΧ 2— 0 TX 3) は求まるが、 より精度を向上させるため、 両式の平均をとる。
( θ TX 2 - θ TX 3) = [ { (6 R 1 2- 0 R 1 3) 一 ( θ 1 2 - θ 1
3) } + { (Θ R42- Θ R43) 一 (024— Θ 34) } ] /2
この式より、
(θ TX 2- θ TX 3) = [ { (0 R 1 2— 0 R 1 3) — ( θ 1 2 - Θ 3 4) } + { (Θ R42- Θ R43) - (Θ 24— Θ 1 3) } ] /2
ここで、 6 1 2= 6 34, 0 24 = 0 1 3が成り立つため、 上式は、 次の式 (7-34) となる。
(θ TX 2- θ TX 3) = { (0 R1 2— 0 R13) + (Θ R42-6 R4 3) } /2- - (7-34)
この式の右辺は実測値から求められるため (Θ ΤΧ2— 0TX3) の値が算出 される。
③ アンテナ素子 ANT 3および ANT 4の送信信号の位相回転量の差 (0 T X 3 - θ TX4) を算出する:
前述の (7—13) 式から (7—1 9) 式を減じると、 (6 R13-0 R14) =ΘΤΧ3-Θ ΤΧ4+ (0 13— 0 14)
(θ TX 3 - θ TX4) = (0 R1 3-0 R14) ― (0 1 3— 0 14)
… (7-35)
同様に、 (7— 14) 式から (7— 20) 式を減じると、
Θ R 23 - Θ R 24 = θ ΤΧ 3 - θ ΤΧ4 + (Θ 23-Θ 24)
(θ ΤΧ 3 - θ ΤΧ4) = (0 R23— 0 R24) — (023— 024) ··· (7-36)
これらの式 (7— 35) および (7— 36) の各々より (6 ΤΧ3— 6 ΤΧ 4) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(0 ΤΧ 3— Θ ΤΧ4) = [ { (0 R 1 3- 0 R 14) 一 (0 1 3— 0 1
4) } + { (Θ R23-Θ R24) 一 (023— 024) } ] /2
この式より、
(θ ΤΧ 3 - θ ΤΧ4) = [ { (0 R 1 3— 0 R 14) - (0 1 3— 0 2 4) } + { (Θ R23-0 R24) ― (Θ 23- θ 14) } ] /2
ここで、 Θ 1 3 = 024, 0 23 = 0 14が成り立つため、 上式は、 次の式
(7-37) となる。
( θ ΤΧ 3 - θ ΤΧ 4) = { (0 R 1 3— 0 1 4) + (0 R23— 0 R2 4) } /2-- (7-37)
この式の右辺は実測値から求められるため (0 ΤΧ3— 0ΤΧ4) の値が算出 される。
④ アンテナ素子 ΑΝΤ 4および ANT 1の送信信号の位相回転量の差 (Θ Τ Χ4- Θ TX 1) を算出する:
前述の (7— 20) 式より (7—1) 式を減じると、
0 R24-0 R21 = 0TX4-0 TX 1+ (024— 0 1 2)
(θ TX 4 - Θ TX 1 ) = (0 R24-0 R21) - (0 24— 0 1 2)
… (7-38)
同様に、 (7— 21) 式より (7— 2) 式を減じると、
6 R34— 6 R31 = 6 TX4— Θ ΤΧ 1 + (Θ 34 - θ 13)
(Θ TX4- Θ TX 1) = (0 R34— 0 R31) - (034— 0 1 3) … (7-39)
これらの式 (7— 38) および (7— 39) の各々より (Θ ΤΧ4— 0 TX 1) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(Θ TX4- θ TX 1) = [ { (0 R24-0 R21) - (024— 0 1 2) } + { (G R34-e R3 l) - (Θ 34-Θ 13) } ] /2
この式より、
(Θ TX4- Θ TX 1) = [ { (0 R24— 0 R21) — (024— 6 1 3) } + { (Θ R34-Θ R31) 一 (Θ 34 - θ 12) } ] / 2
ここで、 624=0 1 3, 034 = 0 12が成り立つため、 上式は、 次の式 (7-40) となる。
(Θ TX4- Θ TX 1) = { (Θ R24— Θ R21) + (Θ R34-Θ R3 1) } ハ… (7 - 40)
この式の右辺は実測値から求められるため (0TX4— 0TX1) の値が算出 される。
⑤ 送信応答べクトルを求める:
4つの伝送系のそれぞれのアンテナ素子による送信信号の位相回転量を T (1) = Θ TX 1 , T (2) = θ TX 2, T (3) = θ TX 3, T (4) = θ T X4と表わすと、 (T (1) , T (2) , T (3) , T (4) ) を成分とするベ クトル Tが位相データの送信応答べクトルである。
上述の式 (7— 31) , (7— 34) , (7— 37) , (7— 40) で求めた ように、 それぞれの位相回転量の差分は、 実測値により (0TX1— 0TX2) , (ΘΤΧ2-ΘΤΧ3) , (θ TX 3 - θ TX4) , (ΘΤΧ4— 0TX1) の 値として具体的に算出されているが、 個々の位相回転量 T (1) , T (2) , T (3) , T (4) の値を知るには情報が不足している。
そこで、 いずれか 1つの伝送系の位相回転量、 たとえば T (1) を基準値 0と おくことにより、 上述の各差分の算出値から残りの伝送系の位相回転量を個々に 算出することが可能となる。 すなわち、 たとえば T (1) =0とおけば、
T (1) 一 T (2) = (Θ TX 1 - θ TX 2) より
T (2) =T (1) - (ΘΤΧ1-ΘΤΧ2) となり、 上記差分の実測値に基 づいて T (2) の値が算出される。
同様に Τ (2) — Τ (3) = (θ ΤΧ 2- 0 ΤΧ 3) より
Τ (3) =Τ (2) 一 (ΘΤΧ2-ΘΤΧ3) となり、 上記差分の実測値に基 づいて Τ (3) の値が算出される。
同様に Τ (3) — Τ (4) = (θ ΤΧ 3 - θ ΤΧ4) より
Τ (4) =Τ (3) - (ΘΤΧ3-ΘΤΧ4) となり、 上記差分の実測値に基 づいて Τ (4) の値が算出される。
以上のように、 いずれか 1つの伝送系の位相回転量を 0とおくことにより、 他 の伝送系の位相回転量が個々に求まり、 その結果、 位相データの送信応答べクト ルが得られることになる。
ここで、 上述の測定結果にミスがないかを検査するいくつかの方法について説 明する。
( i ) まず、 T (4) 一 T (1) = (0 ΤΧ4-Θ TX 1) であるが、 T (1) =0とおいているため、 測定が正しく行われていれば、 本来的に T (4) - (ΘΤΧ4-ΘΤΧ1) はほぼ 0となるはずである。
したがって, r tmp= | T (4) - (Θ TX4- Θ TX 1) | とおき、 もし も r tmpが誤差しきい値以上であれば、 測定ミスがあったものと判断する。
(ii) 次に、 アンテナ素子 ANT1および ANT3の位相回転量の差 (0T X 1— θ TX 3) を求める。
まず、 (7— 1) 式から (7— 14) 式を減じると、
6 R21— 6 R23 = 6TX1— 0TX3+ (012— 023)
(Θ TX 1 - θ TX 3) = (0 R21-0 R23) - (612— 023) … (7-41)
同様に、 (7— 3) 式から (7— 15) 式を減じると、
0 R41 -0 R43 = 0TX1-0TX3+ (Θ 14-034)
(Θ TX 1 - Θ TX 3) = (0 R41— 6 R43) - (θ 14— 034) … (7— 42)
これら (7— 41) 式および (7— 42) 式の平均をとることにより
(Θ ΤΧ 1— 0 ΤΧ3) = [ { (0 R21 -6 R23) 一 ( θ 1 2 - Θ 2 3) } + { (6 R41 -9 R43) - (Θ 14-Θ 34) } ] /2
ここで Θ 12 = 023, 014 = 034が成り立っため、
(θ ΤΧ 1 - θ ΤΧ 3) = { (0 R21— 6 R23) + (0 R41-6 R4
3) } /2
この式の右辺は実測値から求められるため (0TX1— 0TX3) の値が算出 される。
ここで、 Τ (1) 一 Τ (3) = (ΘΤΧ1-ΘΤΧ3) であるが、 測定が正し く行われていれば、 本来的に、
{Τ (1) 一 Τ (3) } 一 (θ ΤΧ 1 - 0 ΤΧ 3) はほぼ 0となるはずである。 したがって, r tmp= | {T (1) -T (3) } — (ΘΤΧ1-0ΤΧ3) | とおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミスがあったもの と判断される。
(iii) 次に、 アンテナ素子 ANT 2および ANT 4の位相回転量の差 (Θ TX 2 - θ TX4) を求める。
まず、 (7— 7) 式から (7— 19) 式を減じると、
0 R12-0 R14 = 0TX2-0TX4+ (012—014)
(Θ TX 2- θ TX4) = (0 R12-0 R14) - (012— 0 14) … (7-43)
同様に、 (7— 8) 式から (7— 21) 式を減じると、
Θ R32-Θ R34 = ΘΤΧ2-ΘΤΧ4+ (Θ 23-Θ 34)
(θ TX 2- θ ΤΧ4) = (6 R32— 0 R34) - (623— 034) … (7-44)
これら (7— 43) 式おょぴ (7— 44) 式の平均をとることにより
(θ TX 2- θ TX 4) = [ { (0 R 12-0 R 14) - (0 1 2— 0 1 4) } + { (0 R32— 0 R34) — (Θ 23 - Θ 34) } ] /2
ここで、 612=0 14, 023 = 034が成り立つため、
(θ TX 2- θ TX4) = { (0 R12-0 R14) + (θ R32-Θ R3
4) } /2
この式の右辺は実測値から求められるため (0ΤΧ2— 0ΤΧ4) の値が算出 される。
ここで、 T (2) — Τ (4) = (θ ΤΧ 2- θ ΤΧ4) であるが、 測定が正し く行なわれていれば、 本来的に、
{Τ (2) — Τ (4) } 一 (θ ΤΧ 2- 0 ΤΧ4) はほぼ 0となるはずであ る。
したがって r tmp= I {T (2) 一 Τ (4) } 一 (θ ΤΧ 2- θ ΤΧ4) | とおき、 もしも r t mpが誤差しきい値以上であれば、 測定にミスがあったもの と判断される。
(3) キャリブレーション
前述のように算出した受信応答ベクトル Rの位相回転量 R (1) , R (2) ,
R (3) , R (4) から、 送信応答べクトル Tの位相回転量 T (1) , T (2) , T (3) , T (4) をそれぞれ減算することにより、 対応する伝送系ごとに位相 回転量の受信時と送信時との差、 すなわち位相補正量を算出することができる。 信号処理回路 20は、 このようにして伝送系ごとに算出された位相補正量によ り、 たとえば送信信号の初期位相を予めシフトすることにより、 位相回転量のキ ヤリブレーシヨンを実行する。
実施の形態 24
図 67は、 図 66に示したこの発明の第 3の基本構成において、 各部の振幅変 動量を示したものであり、 ァダプティプアレイ無線基地局の構成そのものは図 6 6に示したものと同じである。
図 67において、 ATXl, ATX 2, ATX3, ATX4の各々は、 各伝送 系において、 信号処理回路 20から出力された信号が対応する送信回路 TXおよ ぴアンテナ共用器 SWを通過して対応するアンテナ素子 ANTに至るまでの振幅 変動量を表わし、 ARX, ARX 2, ARX 3, ARX4の各々は、 各伝送系に おいて、 対応するアンテナ素子 ANTで受信された信号が対応するアンテナ共用 器 S Wおよび受信回路 R Xを通過して信号処理回路 20に至るまでの振幅変動量 を表わしている。
さらに、 図 67中、 A 1 2はアンテナ素子 ANT 1, ANT2間における信号 の振幅変動量、 A 13はアンテナ素子 ANT 1, ANT 3間における信号の振幅 変動量、 A 14はアンテナ素子 ANT 1, ANT 4間における信号の振幅変動量、
A23はアンテナ素子 ANT2, ANT 3間における信号の振幅変動量、 A24 はアンテナ素子 ANT2, ANT 4間における信号の振幅変動量、 A34はアン テナ素子 ANT3, ANT 4間における信号の振幅変動量を表わしている。
この発明の第 3の基本構成の実施の形態 24は、 図 67の構成において受信応 答べクトルと送信応答べクトルとを求め、 その振幅データの差を補正値として求 めるものである。
( 1 ) 受信応答べクトルの測定方法
まず、 受信応答べクトルの測定方法について説明する。
① 図 67の構成において、 信号処理処理回路 20から初期振幅 A I T 1が 1 に固定された信号が、 送信回路 TX 1、 アンテナ共用器 SW1を介してアンテナ 素子 ANT 1から送信され、 他のアンテナ素子 ΑΝΤ 2, ΑΝΤ3, ΑΝΤ4で 受信される。
このうち、 アンテナ素子 ΑΝΤ2、 アンテナ共用器 SW2、 受信回路 RX 2を 介して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 A R21は、 次の式 (8— 1) で表わされる。
AR 21 =ATX 1ネ A 12ネ ARX 2··· (8-1)
同様に、 アンテナ素子 ANT3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR 31は、 次の式 (8— 2) で表わされる。
AR31 =ATX 1 *A13 *ARX3- - (8-2)
同様に、 アンテナ素子 ANT 4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 A R 41は、 次の式 (8— 3) で表わされる。
AR4 1 =ATX 1 *A 14 *ARX4--- (8-3)
ここで (8— 1) 式を (8— 2) 式で除算すると、
AR 21/AR3 1 =ARX 2/ARX 3 * (A 1 2/A 1 3)
(ARX 2/ARX 3) = (AR21/AR3 1) / (A 1 2/A 13) … (8-4) 同様に、 (8— 2) 式を (8— 3) 式で除算すると、
AR31/AR41 =ARX3 ARX4 * (A 13/A 14)
(ARX3/ARX4) = (AR31/AR41) / (A 1 3/A 14)
··· (8-5)
同様に、 (8— 1) 式を (8— 3) 式で除算すると、
AR21/AR41 =ARX 2/ARX4 * (A 12/A 14)
(ARX 2/ARX4) = (AR21/AR41 ) / (A 1 2/A 14) … (8-6)
② 図 67のf成において、 信号処理回路 20から初期振幅 A I T 2が 1に固 定された信号が、 送信回路 TX2、 アンテナ共用器 SW2を介してアンテナ素子 ΑΝΤ 2から送信され、 他のアンテナ素子 ANT 1, ΑΝΤ3, ΑΝΤ4で受信 される。
このうち、 アンテナ素子 ΑΝΤ 1、 アンテナ共用器 SW1、 受信回路 RX1を 介して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 A R 12は、 次の式 (8— 7) で表わされる。
AR 1 2=ATX 2 * A 1 2ネ ARX " (8-7)
同様に、 アンテナ素子 ANT3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR
32は、 次の式 (8— 8) で表わされる。
AR 32 =ATX 2 * A 23 * ARX 3 · · (8-8)
同様に、 アンテナ素子 ANT 4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR
42は、 次の式 (8— 9) で表わされる。
AR42=ATX2*A24 *ARX4--- (8— 9)
ここで、 (8— 7) 式を (8— 8) 式で除算すると、
AR 1 2/AR 32=ARX l/ARX 3 * (A1 2/A23)
(ARX 1/ARX3) = (AR1 2/AR32) / (A 1 2/A 23) … (8-10)
同様に、 (8— 8) 式を (8— 9) 式で除算すると、 AR3 2/AR4 2=ARX3/ARX4 * (A 1 3 /A 24)
(ARX3/ARX4) = (AR3 2/AR4 2) / (A 23/A24)
… (8- 1 1)
同様に、 (8— 9) 式を (8— 7) 式で除算すると、
AR42/AR 1 2=ARX4 ARX 1 * (A 24/A 1 2)
(ARX4/ARX 1 ) = (AR4 2/AR 1 2) / (A 24/A 1 2)
… (8- 1 2)
③ 図 67の構成において、 信号処理回路 20から初期振幅 A I T 3力 S 1に固 定された信号が、 送信回路 TX3、 アンテナ共用器 SW3を介してアンテナ素子 ΑΝΤ 3から送信され、 他のアンテナ素子 ANT 1 , ΑΝΤ 2, ΑΝΤ4で受信 される。
このうち、 アンテナ素子 ΑΝΤ 1、 アンテナ共用器 SW1、 受信回路 RX 1を 介して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 A R 1 3は、 次の式 (8— 1 3) で表わされる。
AR 1 3 =ATX 3 * A 1 3 * ARX 1 · · (8 - 1 3)
同様に、 アンテナ素子 ANT 2、 アンテナ共用器 SW2、 受信回路 RX 2を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR 23は、 次の式 (8— 1 4) で表わされる。
AR 23 =ATX 3ネ A 23 * ARX 2··· (8- 1 4)
同様に、 アンテナ素子 ANT4、 アンテナ共用器 SW4、 受信回路 RX 4を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR 43は、 次の式 (8— 1 5) で表わされる。
AR43=ATX 3 *A34 *ARX4--- (8- 1 5)
ここで、 (8— 1 3) 式を (8— 1 4) 式で除算すると、
AR 1 3/AR 23 =ARX 1/ARX 2 * (A 1 3/A23)
(ARX 1/ARX 2) = (AR 1 3/AR 23) / (A 1 3/ A 23) … (8— 1 6)
同様に、 (8— 1 4) 式を (8— 1 5) 式で除算すると、
AR23/AR43=ARX 2/ARX4 * (A 23/A34) (ARX 2/ARX4) = (AR 23/AR43) / (A 23 /A 34)
… (8- 1 7)
同様に、 (8— 1 5) 式を (8— 13) 式で除算すると、
AR43/AR 13 =ARX4/ARX 1 * (A 34/ A 1 3)
(ARX4/ARX 1) = (AR43/AR 13) / (A34/ A 13)
… (8- 18)
④ 図 67の構成において、 信号処理回路 20から初期振幅 A I T 4が 1に固 定された信号が、 送信回路 TX4、 アンテナ共用器 SW4を介してアンテナ素子 ΑΝΤ4から送信され、 他のアンテナ素子 ANT 1, ΛΝΤ2, ΑΝΤ3で受信 される。
このうち、 アンテナ素子 ΑΝΤ1、 アンテナ共用器 SW1、 受信回路 RX1を 介して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 A R 14は、 次の式 (8— 1 9) で表わされる。
AR 14=ATX4 *A 14 *ARX 1… (8— 1 9)
同様に、 アンテナ素子 ANT2、 アンテナ共用器 SW2、 受信回路 RX 2を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR
24は、 次の式 (8— 20) で表わされる。
AR24=ATX4 *A24 *ARX2--- (8-20)
同様に、 アンテナ素子 ΛΝΤ3、 アンテナ共用器 SW3、 受信回路 RX 3を介 して信号処理回路 20で受信された信号の、 送信から受信までの振幅変動量 AR
34は、 次の式 (8— 21) で表わされる。
AR 34 =ATX 4ネ A 34 * ARX 3… (8-21 )
ここで、 ( 8— 1 9 ) 式を ( 8— 20 ) 式で除算すると、
AR14/AR24=ARXl ARX2 * (A 14/A24)
(ARX 1/ARX 2) = (AR14/AR24) / (A14/A24)
… (8-22)
同様に、 (8— 20) 式を (8— 21) 式で除算すると、
AR 24/AR 34 =ARX 2/ARX 3 * (A 24/A34)
(ARX2/ARX3) = (AR24/AR34) / (A 24/Λ34) … (8-23)
同様に、 (8— 1 9) 式を (8— 21) 式で除算すると、
AR14/AR34=ARX 1/ARX3 * (A 14/ A34)
(ARX 1/ARX 3) = (AR 14/AR 34) / (A 14 /A 34) ··· (8— 24)
⑤ アンテナ素子 ANT 1および A NT 2の受信信号の振幅変動量の差 (AR X 1/ARX 2) を算出する:
上述の式 (8— 16) および (8— 22) の各々より (ARX1ZARX2) は求まるが、 より精度を向上させるため、 両式の平均をとる。 なお、 両式の右辺 第 1項は実測値から得ることができ、 第 2項については、 アンテナ素子間隔から 厳密な値を計算することができる。 したがって、 算出された両式の値の差が誤差 しきい値以下の場合にのみ、 測定ミスがないものとして以下の平均化処理を行な う。 以後の平均化処理の説明についても同様である。
(ARX 1/ARX 2) = [ { (AR 14/AR 24) / (A 14/ A 2 4) } + { (AR1 3/AR23) / (A 1 3 /A 23) } ] /2
… (8-25) 上述のように、 この式の右辺は実測値および予めアンテナ素子間隔から計算さ れた値に基づいて求められるため、 差分 (ARX 1ZARX2) の値が算出され る。
⑥ アンテナ素子 ANT 2および ANT 3の受信信号の振幅変動量の差 (AR
X 2/ARX 3) を算出する:
上述の式 (8— 4) および (8— 23) の各々より (ARX2 ARX3) は 求まるが、 より精度を向上させるため、 両式の平均をとる。
(ARX 2/ARX 3) = [ { (AR 21 /AR 3 1 ) / (A 1 2/A 1 3) } + { (AR 24/AR 34) / (A 24/A 34) } ] / 2
··· (8— 26) この式の右辺は実測値および予めアンテナ素子間隔から計算した値に基づいて 求められるため、 差分 (ARX2/ARX3) の値が算出される。
⑦ アンテナ素子 ANT 3および ΛΝΤ 4の受信信号の振幅変動量の差 (AR X 3/ARX4) を算出する:
上述の式 (8— 5) および (8— 1 1) の各々より (ARX3ZARX4) は 求まるが、 より精度を向上させるため、 両式の平均をとる。
(ARX3/ARX4) = [ { (AR3 1 /AR41) / (A 1 3/ A 1 4) } + { (AR32/AR42) / (A 23 /A 24) } ] /2
■·· (8-27) この式のお辺は実測値おょぴ予めアンテナ素子間隔から計算した値に基づいて 求められるため、 差分 (ARX3ZARX4) の値が算出される。
⑧ アンテナ素子 ANT 4および ANT1の受信信号の振幅変動量の差 (AR X4/ARX 1) を算出する:
上述の式 (8— 1 2) および (8— 18) の各々より (ARX4 ARX1) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(ARX 4/ARX 1) = [ { (AR42/AR 1 2) / (A 24/A 1 2) } + { (AR43/AR 1 3) / (A34/A 1 3 ) } ] / 2
■·· (8-28) この式の右辺は実測値おょぴ予めアンテナ素子間隔から計算した値に基づいて 求められるため、 差分 (ARX4/ARX 1) の値が算出される。
⑨ 受信応答べク トルを求める:
4つの伝送系のそれぞれアンテナ素子による受信信号の振幅変動量を A R (1) =ARX 1 , AR (2) =ARX 2, AR (3) =ARX 3, AR (4)
= ARX4と表わすと、 AR (1) , AR (2) , AR (3) , AR (4) を成 分とするべクトル A Rが振幅データの受信応答べクトルである。
上述の (8— 25) 式〜 (8— 28) 式で求めたように、 それぞれの振幅変動 量の差分は、 実測値等により (ARX1/ARX2) , (ARX2/ARX3) , (ARX 3/ARX4) , (ARX4/ARX 1) の値として具体的に算出され ているが、 個々の振幅変動量 AR (1) , AR (2) , AR (3) , AR (4) の値を知るには情報が不足している。
そこで、 どれか 1つの伝送系の振幅変動量、 たとえば AR (1) を基準値 1と おくことにより、 上述の各差分の算出値から残りの伝送系の振幅変動量を個々に 算出することが可能となる。 すなわち、 たとえば R (1) = 1とおけば、
AR (1) /AR (2) = (ARX 1/ARX 2) より
AR (2) =AR (1) / (ARX 1/ARX 2) となり、 上記差分の実測値 に基づいて AR (2) の値が算出される。
同様に、 AR (2) /AR (3) = (ARX 2/ARX 3) より
AR (3) =AR (2) / (ARX 2/ARX3) となり、 上記差分の実測値 に基づいて A R (3) の値が算出される。
同様に、 AR (3) /AR (4) = (ARX3/ARX4) より
AR (4) =AR (3) / (ARX3/ARX4) となり、 上記差分の実測値 に基づいて A R (4) の値が算出される。
以上のように、 いずれか 1つの伝送系の振幅変動量を 1とおくことにより、 他 の伝送系の振幅変動量が個々に求まり、 その結果、 振幅データの受信応答べク ト ルが得られることになる。
ここで、 上述の測定結果にミスがないかを検査するいくつかの方法について説 明する。
( i ) まず、 AR (4) /AR (1) = (ARX4/ARX 1) であるが、 AR (1) =1とおいているため、 測定が正しく行なわれていれば、 本来的に A R (4) / (ARX4/ARX 1) はほぼ 1となるはずである。
したがって、 r t mp = I AR (4) / (ARX4/ARX 1) —1 | とおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミスがあったものと判断さ れる。
(ii) 次に、 上述の (8— 10) 式および (8— 24) 式の平均をとること により、 アンテナ素子 ANT 1および ANT3の振幅変動量の差 (ARX lZA RX 3) を求める。
(ARX 1 /ARX 3 ) = [ { (AR 1 2/AR 32) / (A 1 2/A 2
3) } + { (AR 14/AR 34) / (A14/A34) } ] /2
ここで、 Al 2=A23 =A34 = A 14が成り立つため、
(ARX 1/ARX3) = { (AR 1 2/AR 32) + (AR 14/AR 3
4) } /2 この式の右辺は実測値から求められるため、 (ARX 1ZARX3) の値が算 出される。
ここで、 AR (1) /AR (3) = (ARX 1/ARX3) であるが、 測定が 正しく行なわれていれば、 本来的に、 {AR (1) /AR (3) } / (ARX 1 ノ ARX 3) はほぼ 1となるはずである。
したがって、 r t mp= I {AR (1) /AR (3) } / (ARX 1/ARX
3) -1 Iとおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミスが あったものと判断される。
(iii) 次に、 上述の (8— 1 7) 式および (8— 6) 式の平均をとること により、 アンテナ素子 ANT 2および ANT 4の振幅変動量の差 (ARX2/A RX4) を求める。
(ARX 2/ARX 4) = [ { (AR 23 /AR 43 ) / (A 23 /A 3
4) } + { (AR21/AR41) / (A 1 2/A 14) } ] / 1
ここで、 A12=A23=A34=A14が成り立つため、
(ARX 2/ARX4) = { (AR 23/AR43) + (AR 21 /AR4
1) } /2
この式の右辺は実測値から求められるため、 (ARX2ZARX4) の値が算 出される。
ここで、 AR (2) /AR (4) = (ARX 2/ARX4) であるが、 測定が 正しく行なわれていれば、 本来的に、
{AR (2) /AR (4) } / (ARX 2/ARX4) はほぼ 1となるはずで ある。
したがって、 r t mp = I {AR (2) /AR (4) } / (ARX 2/ARX 4) —1 Iとおき、 もしも r t mpが誤差しきい値以上であれば、 測定にミスが あったものと判断される。
( 2 ) 送信応答べクトルの測定方法
次に送信応答べクトルの測定方法について説明する。
① アンテナ素子 ANT1および ΛΝΤ 2の送信信号の振幅変動量の差 (A TX 1/ATX 2) を算出する: 前述の (8— 2) 式を (8— 8) 式で除算すると、
AR3 1/AR3 2=ATX 1/ATX 2 * (A 1 3 /A 23)
(ATX l/ATX 2) = (AR3 1/AR3 2) / (A 1 3 /A 23)
… (8- 29) 同様に、 (8— 3) 式を (8— 9) 式で除算すると、
AR4 1/AR4 2=ATX 1/ATX 2 * (A 1 4/A 24)
(ATX 1/ATX 2) = (AR4 1/AR4 2) / (A 1 4/A 24)
··· (8— 30) これらの式 (8- 29) および (8— 30) の各々より (ATX 1ZATX 2) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(ATX 1 /ATX 2) = [ { (AR 3 1 /AR 3 2) / (A 1 3 /A 2 3) } + { (AR4 1 / AR4 2) / (A 1 4/A24) } ] /2
… (8- 3 1) この式の右辺は実測値および予めアンテナ素子間隔から計算した値に基づレ、て 求められるため差分 (ATX 1ZATX2) の値が算出される。
② アンテナ素子 ANT 2および ΛΝΤ 3の送信信号の振幅変動量の差 (A TX 2/ATX 3) を算出する:
前述の (8— 7) 式を (8— 1 3) 式で除算すると、
AR 1 2/AR 1 3 =ΑΤΧ 2/ΛΤΧ 3 * (A 1 2/A 1 3)
(ATX 2/ATX 3) = (AR 1 2/AR 1 3) / (A 1 2/A 1 3)
… (8- 3 2) 同様に、 (8— 9) 式を (8— 1 5) 式で除算すると、
AR4 2/AR4 3 =ATX 2/ATX 3 * (A 24/A 34)
(ATX 2/ATX 3) = (AR4 2/AR4 3) / (A 24/A 34)
- - (8- 3 3) これらの式 (8-3 2) および (8— 3 3) の各々より (ATX 2/ATX 3) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(ATX 2/ATX 3 ) = [ { (AR 1 2/AR 1 3 ) / (A 1 2/A 1 3) } + { (AR4 2/AR43) / (A24/A34) } ] /2 ··· (8-34) この式の右辺は実測値および予めァンテナ素子間隔から計算した値に基づいて 求められるため差分 (ATX2ZAX3) の値が算出される。
③ アンテナ素子 ANT 3および A NT 4の送信信号の振幅変動量の差 (A TX 3//ATX4) を算出する:
前述の (8— 13) 式を (8— 19) 式で除算すると、
AR 13/AR 14 =ATX 3/ATX * (A 1 3 /A 14)
(ATX 3 ATX 4) = (AR 1 3/AR 14) / (A 13 /A 14)
… (8-35) 同様に、 (8— 14) 式を (8— 20) 式で除算すると、
AR23/AR24=ATX3/ATX4 * (A 23/A24)
(ATX3/ATX4) = (AR 23/AR 24) / (A 23/A24)
… (8— 36) これらの式 (8-35) および (8— 36) の各々より (ATX3ZATX 4) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(ATX 3/ATX 4) = [ { (AR 1 3/AR 1 4) / (A 1 3/A 1 4) } + { (AR 23/AR 24) / (A 23/A24) } ] /2
… (8-37) この式の右辺は実測値および予めアンテナ素子間隔から計算した値に基づいて 求められるため差分 (ATX3/ATX4) の値が算出される。
④ アンテナ素子 ANT 4および ANT 1の送信信号の振幅変動量の差 (A TX4/ATX 1) を算出する:
前述の (8— 20) 式を (8— 1) 式で除算すると、
AR 24/AR 21 =ATX4 ATX 1 * (A24/A1 2)
(ATX4/ATX 1 ) = (AR 24/AR 21 ) / (A 24/A 1 2)
… (8-38) 同様に、 (8— 21) 式を (8— 2) 式で除算すると、
AR34/AR31 =ATX4/ATX 1 * (A34/A 13)
(ATX4/ATX 1 ) = (AR34/AR3 l) / (A34/A 13) … (8-39) これらの式 (8-38) および (8— 39) の各々より (ATX4ZATX 1) は求まるが、 より精度を向上させるため、 両式の平均をとる。
(ATX 4/ATX 1 ) = [ { (AR 24/AR 2 1 ) / (A 24/A 1 2) } + { (AR34/AR31) / (A34/A1 3) } ] /2
… (8-40) この式の右辺は実測値および予めアンテナ素子間隔から計算した値に基づいて 求められるため差分 (ATX4ZATX 1) の値が算出される。
⑤ 送信応答ぺク トルを求める:
4つの伝送系のそれぞれのアンテナ素子による送信信号の振幅変動量 AT
(1) =ATX 1 , AT (2) =ATX 2, AT (3) =ATX 3 , AT (4) = ATX4と表わすと、 (AT (1) , AT (2) , AT (3) , AT (4) ) を成分とするべクトル ATが振幅データの送信応答べクトルである。
上述の式 (8— 3 1) , (8— 34) , (8-37) , (8— 40) で求めた ように、 それぞれの振幅変動量の差分は、 実測値により (ΛΤΧ 1/ΑΤΧ2) , (ATX 2/ATX 3) , (ATX3/ATX4) , (ΑΤΧ4ΖΛΤΧ 1) の 値として具体的に算出されているが、 個々の振幅変動量 AT (1) , AT (2) , AT (3) , AT (4) の値を知るには情報が不足している。
そこで、 いずれか 1つの伝送系の振幅変動量、 たとえば AT (1) を基準値 1 とおくことにより、 上述の各差分の算出値から残りの伝送系の振幅変動量を個々 に算出することが可能となる。 すなわち、 たとえば AT (1) = 1とおけば、 AT (1) /AT (2) = (ATX 1/ATX 2) より
AT (2) =AT (1) / (ATX 1/ATX2) となり、 上記差分の実測値 に基づいて AT (2) の値が算出される。
同様に AT (2) /AT (3) = (ATX 2/ATX 3) より
AT (3) =AT (2) / (ATX 2/ATX 3) となり、 上記差分の実測値 に基づいて AT (3) の値が算出される。
同様に AT (3) /AT (4) = (ATX 3/ATX4) より
AT (4) =AT (3) / (ATX3/ATX4) となり、 上記差分の実測値 に基づいて AT (4) の値が算出される。
以上のように、 いずれか 1つの伝送系の振幅変動量を 1とおくことにより、 他 の伝送系の振幅変動量が個々に求まり、 その結果、 振幅データの送信応答べクト ルが得られることになる。
ここで、 上述の測定結果にミスがないかを検查するいくつかの方法について説 明する。
( i ) まず、 AT (4) /AT (1) = (ATX4/AT 1) であるが、 A T (1) = 1とおいているため、 測定が正しく行なわれていれば、 本来的に AT
(4) / (ATX4/ATX 1) はほぼ 1となるはずである。
したがって、 r t mp = I AT (4) / (ATX4/ATX l) — 1 | とおき、 もしも r t mpが誤差しきい値以上であれば、 測定ミスがあったものと判断する。
(ii) 次に、 アンテナ素子 ANT 1および ANT 3の振幅変動量の差 (AT X 1/ATX3) を求める。
まず、 (8— 1) 式を (8— 1 4) 式で除算すると、
AR 21/AR 23 =ΑΤΧ 1/ΛΤΧ 3 * (A 1 2/A23)
(ATX 1/ATX3) = (AR2 1/AR 23) / (A 1 2 /A 23)
… (8-4 1) 同様に、 (8— 3) 式を (8— 1 5) 式で除算すると、
AR4 1/AR43=ATX 1/ATX 3 * (A 1 4/A34)
(ATX 1/ATX3) = (AR4 1/AR43) / (A 1 4/A34)
··· (8-42) これら (8— 4 1) 式および (8— 4 2) 式の平均をとることにより、
(ATX 1 /ATX 3) = [ { (AR 2 1 /AR 2 3 ) / (A 1 / K 2 3) } + { (AR4 1/AR4 3) / (A 1 4/A34) } ] /2
ここで A1 2 =A 23 =A 34 =A 1 4が成り立つため、
(ATX 1/ATX3) = { (AR2 1/AR23) + (AR4 1/AR4 3) } /2
この式の右辺は実測値から求められるため (ATX 1/ATX 3) の値が算出 される。 ここで、 AT (1) /AT (3) = (ATX 1 /ATX 3) であるが、 測定が 正しく行なわれていれば、 本来的に、
{AT (1) /AT (3) } / (ATX 1/ATX3) はほぼ 1となるはずで ある。 したがって、 r t mp= I {AT (1) /AT (3) } / (ATX l/A TX3) - 1 Iとおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミ スがあったものと判断される。
(iii) 次に、 アンテナ素子 ANT 2および ANT 4の振幅変動量の差 (A
TX 2/ATX 4) を求める。
まず、 (8— 7) 式を (8— 1 9) 式で除算すると、
AR 1 2/AR 14 =ATX 2/ATX 4 * (A 1 2/A 14)
(ATX 2/ATX4) = (AR 1 2/AR 14) / (A 1 2/ A 1 )
… (8-43) 同様に、 (8— 8) 式を (8— 21) 式で除算すると、
AR32/AR34=ATX2 ATX4 * (A 23/A34)
(ATX 2/ATX4) = (AR 32/AR 34) / (A 23 /A 34)
··· (8-44) これら (8— 43) 式おょぴ (8— 44) 式の平均をとることにより
(ATX 2/ATX 4 ) = [ { (AR 1 2/AR 1 4) / (A 1 2/A 1 4) } + { (AR32/AR34) / (A23/A34) } ] /2
ここで、 A12=Α23=Α34=Λ14が成り立つため、
(ATX 2/ΑΤΧ4) = { (AR12/AR14) + (A32/Α34) } /2
この式の右辺は実測値から求められるため (ΑΤΧ2ΖΑΤΧ4) の値が算出 される。
ここで、 AT (2) /AT (4) = (ATX 2ノ ATX 4) であるが、 測定が 正しく行なわれていれば、 本来的に、
{AT (2) /AT (4) } / (ATX 2/ATX4) はほぼ 1となるはずで ある。
したがって r t mp = I {AT (2) /AT (4) } / (ATX 2/ATX 4) -1 Iとおき、 もしも r tmpが誤差しきい値以上であれば、 測定にミスが あったものと判断される。
(3) キャリブレーション
前述のように算出した受信応答ベク トル ARの振幅変動量 AR (1) , AR
(2) , AR (3) , AR (4) から、 送信応答べクトル ΛΤの振幅変動量 AT
(1) , AT (2) , AT (3) , AT (4) をそれぞれ減算することにより、 対応する伝送系ごとに振幅変動量の受信時と送信時との差、 すなわち振幅補正量 を算出することができる。
信号処理回路 20は、 このようにして伝送系ごとに算出された振幅補正量によ り、 たとえば送信信号の初期振幅を予め調整することにより、 振幅変動量のキヤ リブレ一シヨンを実行する。
以上のように、 この発明によれば、 複数の伝送系を含む無線装置において、 そ れぞれの伝送系において送信した既知の信号と測定された受信信号とに基づいて 当該伝送系の伝送特性に関する情報を推定するように構成したので、 特別な測定 回路を別途設けることなく簡単かつ安価な構成で、 各伝送系の受信回路と送信回 路との間の伝送特性のキヤリブレ一ションを行なうことができる。

Claims

請求の範囲
1 . 伝送特性のキャリブレーションが可能な無線装置であって、 ' アンテナ (AN T) と、 前記アンテナを共用する送信回路 (T X) および受信 回路 (R X) とを各々が含む、 n ( nは n≥3の整数) 個の信号伝送系と、 キヤリブレーシヨン時に、 前記 n個の信号伝送系の各々の前記送信回路から既 知の信号を送信し、 かつ前記送信された信号を前記 n個の信号伝送系の複数のも のの前記受信回路で受信するように制御を行なう制御手段 (2 2 ) と、
前記信号伝送系ごとに設けられ、 当該信号伝送系の前記受信回路で受信された 信号に対し前記既知の信号を用いて所定の信号処理を行なう信号処理手段 (P E, A E) と、
前記信号伝送系の前記複数のものにおける前記信号処理手段によつて得られた 信号を記憶する記憶手段 (2 1 ) と、
前記記憶手段に記憶された信号に基づいて、 前記 n個の信号伝送系の各々の前 記送信回路および前記受信回路のそれぞれを信号が通過することによって当該信 号に生じる位相回転量および振幅変動量の少なくとも一方に関する情報を算出す る演算手段 (2 2 ) とを備えた、 無線装置。
2 . 前記演算手段によって算出された情報に基づいて、 前記 n個の信号伝送系の 各々の前記送信回路および前記受信回路の間の位相回転量の差および振幅変動量 の差の少なくとも一方が 0になるように、 位相回転量おょぴ振幅変動量の少なく とも一方のキャリブレーションを行なうキャリブレーション手段 (P S, A T T) をさらに備えた、 請求項 1に記載の無線装置。
3 . 前記演算手段によって算出された情報に基づいて、 前記 η個の信号伝送系の 各々の前記送信回路および前記受信回路の間の振幅変動量の差が前記 η個の信号 伝送系の間で互いに等しくなるように、 振幅変動量のキャリブレーションを行な うキャリブレーション手段 (ΑΤ Τ) をさらに備えた、 請求項 1に記載の無線装
4 . 前記制御手段は、 前記 η個の信号伝送系の各々の前記送信回路から送信され た前記既知の信号を、 前記 η個の信号伝送系のすべての前記受信回路で受信する ように制御を行なう、 請求項 1に記載の無線装置。
5 . 前記制御手段は、 前記 n個の信号伝送系の各々の前記送信回路から送信され た前記既知の信号を、 前記 n個の信号伝送系のうち前記既知の信号を送信した当 該信号伝送系を除く信号伝送系の前記受信回路で受信するように制御を行なう、 請求項 1に記載の無線装置。
6 . 前記制御手段は、 前記 n個の信号伝送系の各々の前記送信回路からの前記信 号の送信を逐次的に行なう、 請求項 1に記載の無線装置。
7 . 前記制御手段は、 前記 n個の信号伝送系の各々の前記送信回路からの前記信 号の送信を同時に行なう、 請求項 5に記載の無線装置。
8 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (MP ) と、
前記除算により得られた各々の信号の位相成分と振幅成分とを抽出する手段 ( S P) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって抽 出された前記位相成分とからなる第 1の連立一次方程式を導出する手段と、 前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって抽 出された前記振幅成分とからなる第 2の連立一次方程式を導出する手段と、 前記第 1およぴ第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 6 に記載の無線装置。
9 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (M P ) と、
前記除算により得られた信号の各々の自然対数を計算し、 かつ虚数部と実数部 とに分離する手段 (S P ) とを含み、 前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記虚数部とからなる第 1の連立一次方程式を導出する手段と、 前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記実数部とからなる第 2の連立一次方程式を導出する手段と、 前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 6 に記載の無線装置。
1 0. 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々の自然対数を計算し、 かつ虚数部と実数部とに分離する 手段 (S P ) と、
前記分離された虚数部から、 前記既知の信号の自然対数を計算した信号の虚数 部を減ずる第 1の減算を行なう手段 (S A) と、
前記分離された実数部から、 前記既知の信号の自然対数を計算した信号の実数 部を減ずる第 2の減算を行なう手段 (S B ) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 1の減算により得られた虚数部と力 らなる第 1の連立一次方程式を導出する手 段と、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 2の減算により得られた実数部とからなる第 2の連立一次方程式を導出する手 段と、
前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 6 に記載の無線装置。
1 1 . 前記信号処理手段の前記所定の信号処理は、 信号の時間平均処理を含む、 請求項 6に記載の無線装置。
1 2 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (M P ) と、
前記除算により得られた信号の各々を時間平均する手段 (T A) と、 前記時間平均された信号の各々の自然対数を計算し、 かつ虚数部と実数部とに 分離する手段 (S P ) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記虚数部とからなる第 1の連立一次方程式を導出する手段と、 前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記実数部とからなる第 2の連立一次方程式を導出する手段と、 前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 1に記載の無線装置。
1 3 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (M P ) と、
前記除算により得られた各々の信号の位相成分と振幅成分とを抽出する手段 ( S P ) と、
前記抽出された位相成分および振幅成分の各々を時間平均する手段 (T A) と を含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって時 間平均された前記位相成分とからなる第 1の連立一次方程式を導出する手段と、 前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって時 間平均された前記振幅成分とからなる第 2の連立一次方程式を導出する手段と、 前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 1に記載の無線装置。
1 4 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (M P) と、
前記除算により得られた信号の各々の自然対数を計算し、 かつ虚数部と実数部 とに分離する手段 (S P ) と、
前記分離された虚数部および実数部の各々を時間平均する手段 (T A) とを含 み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって時 間平均された前記虚数部とからなる第 1の連立一次方程式を導出する手段と、 前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって時 間平均された前記実数部とからなる第 2の連立一次方程式を導出する手段と、 前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 1に記載の無線装置。
1 5 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々を前記既知の信号で除算する手段 (M P ) と、
前記除算により得られた信号の各々の自然対数を計算する手段 (L C) と、 前記自然対数を計算した信号を時間平均する手段 (T A) と、 前記時間平均された信号を虚数部と実数部とに分離する手段 (I Q) とを含み、 前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記虚数部とからなる第 1の連立一次方程式を導出する手段と、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記実数部とからなる第 2の連立一次方程式を導出する手段と、
前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 1に記載の無線装置。
1 6 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々の自然対数を計算し、 かつ虚数部と実数部とに分離する 手段 (S P ) と、
前記分離された虚数部および実数部の各々を時間平均する手段 (T A) と、 前記時間平均された虚数部から、 前記既知の信号の自然対数を計算した信号の 虚数部を減ずる第 1の減算を行なう手段 (S A) と、
前記時間平均された実数部から、 前記既知の信号の自然対数を計算した信号の 実数部を減ずる第 2の減算を行なう手段 (S B ) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 1の減算により得られた虚数部とからなる第 1の連立一次方程式を導出する手 段と、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 2の減算により得られた実数部とからなる第 2の連立一次方程式を導出する手 段と、 WO QO/08777 PCT/JP99/04173 , 前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1
1に記載の無線装置。
1 7 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々の自然対数を計算する手段 (L C) と、
前記自然対数を計算した信号を時間平均する手段 (T A) と、
前記時間平均された信号を虚数部と実数部とに分離する手段 (I Q) と、 前記分離された虚数部から、 前記既知の信号の自然対数を計算した信号の虚数 部を減ずる第 1の減算を行なう手段 (S A) と、
前記分離された実数部から、 前記既知の信号の自然対数を計算した信号の実数 部を減ずる第 2の減算を行なう手段 (S B) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 1の減算により得られた虚数部とからなる第 1の連立一次方程式を導出する手 段と、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段による前記 第 2の減算により得られた実数部とからなる第 2の連立一次方程式を導出する手 段と、
前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 1に記載の無線装置。
1 8 . 前記信号処理手段の前記所定の信号処理は、 信号の相関処理を含む、 請求 項 1に記載の無線装置。
1 9 . 前記信号処理手段は、
前記信号伝送系のそれぞれの前記送信回路から当該信号伝送系の前記受信回路 で受信された信号の各々と前記既知の信号との相関処理を行なう手段 (C R) と、 前記相関処理により得られた信号の各々の自然対数を計算し、 かつ虚数部と実 数部とに分離する手段 (S P ) とを含み、
前記演算手段は、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の位相回転量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記虚数部とからなる第 1の連立一次方程式を導出する手段と、
前記信号伝送系のそれぞれの前記送信回路および前記受信回路の振幅変動量に 関する未知の変数と、 前記信号伝送系のそれぞれの前記信号処理手段によって分 離された前記実数部と力 らなる第 2の連立一次方程式を導出する手段と、
前記第 1および第 2の連立一次方程式を解いて前記未知の変数としての前記位 相回転量および前記振幅変動量に関する情報を算出する手段とを含む、 請求項 1 8に記載の無線装置。
2 0 . 各前記信号伝送系ごとの前記送信回路および前記受信回路のそれぞれの位 相回転量の差が前記 n個の信号伝送系の間で互いに異なり、 かつ各前記信号伝送 系ごとの前記送信回路および前記受信回路のそれぞれの振幅変動量の差が前記 n 個の信号伝送系の間で互いに異なるように、 各前記信号伝送系ごとに前記位相回 転量の差および前記振幅変動量の差をオフセットする手段をさらに備えた、 請求 項 5に記載の無線装置。
2 1 . 前記演算手段は、 各前記連立一次方程式を構成する方程式の数が、 前記未 知の変数を算出するのに必要な方程式の数よりも多いときに、 より高い精度で導 出された方程式を選択して前記未知の変数の算出に用いる、 請求項 8、 9、 1 0、 1 2、 1 5、 1 6または 1 7に記載の無線装置。
2 2 . 前記演算手段は、 各前記連立一次方程式を構成する方程式のうち選択され なかった方程式を、 選択された方程式を用いて算出された変数の検証に用いる、 請求項 2 1に記載の無線装置。
2 3 . 各前記信号伝送系の前記送信回路または前記受信回路に入力される信号の パワーに応じて、 前記キャリブレーション手段による前記キャリブレーションの 量を補正する手段をさらに備えた、 請求項 2または 3に記載の無線装置。
2 4 . アンテナ (A N T) と、 前記アンテナを共用する送信回路 (T X) および 受信回路 (R X) とを各々が含む、 n ( nは n≥3の整数) 個の信号伝送系を備 えた無線装置のためのキヤリブレーシヨン方法であって、
キヤリブレーシヨン時に、 前記 n個の信号伝送系の各々の前記送信回路から既 知の信号を送信し、 かつ前記送信された信号を前記 n個の信号伝送系の複数のも のの前記受信回路で受信するように制御を行なうステップと、
前記信号伝送系ごとに前記受信回路で受信された信号に対し前記既知の信号を 用いて所定の信号処理を行なうステップと、
前記信号伝送系の前記複数のものにおける前記信号処理の結果得られた信号を 記憶するステップと、
前記記憶された信号に基づいて、 前記 n個の信号伝送系の各々の前記送信回路 およぴ前記受信回路のそれぞれを信号が通過することによつて当該信号に生じる 位相回転量および振幅変動量の少なくとも一方に関する情報を算出するステップ と、
前記算出された情報に基づいて、 前記 n個の信号伝送系の各々の前記送信回路 および前記受信回路の間の位相回転量の差および振幅変動量の差の少なくとも一 方のキヤリブレ一シヨンを行なうステップとを含む、 キヤリブレーシヨン方法。
2 5 . 前記制御を行なうステップは、 前記 n個の信号伝送系の各々の前記送信回 路から送信された前記既知の信号を、 前記 n個の信号伝送系のすべての前記受信 回路で受信するように制御を行なうステップを含む、 請求項 2 4に記載のキヤリ ブレーシヨン方法。
2 6 . 前記制御を行なうステップは、 前記 n個の信号伝送系の各々の前記送信回 路から送信された前記既知の信号を、 前記 n個の信号伝送系のうち前記既知の信 号を送信した当該信号伝送系を除く信号伝送系の前記受信回路で受信するように 制御を行なうステップを含む、 請求項 2 4に記載のキヤリブレ一シヨン方法。
2 7 . 前記制御を行なうステップは、 前記 n個の信号伝送系の各々の前記送信回 路からの前記信号の送信を逐次的に行なうステップを含む、 請求項 2 4に記載の キャリブレーション方法。
2 8 . 前記制御を行なうステップは、 前記 n個の信号伝送系の各々の前記送信回 路からの前記信号の送信を同時に行なうステップを含む、 請求項 2 6に記載のキ ャリブレ一シヨン方法。
2 9 . 前記所定の信号処理を行なうステップは、 信号の時間平均処理を行なうス テツプを含む、 請求項 2 7に記載のキャリブレーション方法。
3 0 . 前記所定の信号処理を行なうステップは、 信号の相関処理を行なうステツ プを含む、 請求項 2 4に記載のキャリブレーション方法。
3 1 . 各前記信号伝送系ごとの前記送信回路および前記受信回路のそれぞれの位 相回転量の差が前記 n個の信号伝送系の間で互いに異なり、 かつ各前記信号伝送 系ごとの前記送信回路および前記受信回路のそれぞれの振幅変動量の差が前記 n 個の信号伝送系の間で互いに異なるように、 各前記信号伝送系ごとに前記位相回 転量の差および前記振幅変動量の差をオフセットするステップをさらに含む、 請 求項 2 6に記載のキヤリブレーション方法。
3 2 . 各前記信号伝送系の前記送信回路または前記受信回路に入力される信号の パワーに応じて、 前記キャリブレーションするステップによる前記キヤリブレー シヨンの量を補正するステップをさらに含む、 請求項 2 4に記載のキヤリブレー シヨン方法。
3 3 . 伝送特性のキャリブレーションが可能な無線装置であって、
アンテナ素子 (AN T) と、 前記ナンテナ素子を共用する送信回路 (T X) お よび受信回路 (R X) とを各々が含む、 4個の信号伝送系を備え、 前記 4個の信 号伝送系のそれぞれの前記アンテナ素子は、 正方形の頂点に位置するようにそれ ぞれ配され、
前記 4個の信号伝送系の各々の前記送信回路から初期位相が固定された信号を 送信し、 前記信号を送信した当該信号伝送系を除く残りの信号伝送系の前記受信 回路で受信して、 受信した前記信号伝送系ごとに、 前記信号の送信から受信まで の位相回転量を測定する手段と、
前記測定された位相回転量に基づいて、 前記正方形上で隣接する 2つの信号伝 送系の組合せごとに、 前記受信回路間の位相回転量の差を算出する手段と、 前記 4個の信号伝送系のいずれか 1つの前記受信回路の位相回転量を所定の基 準値におくことにより、 残りの信号伝送系の個々の受信回路の位相回転量を算出 する手段と、 前記測定された位相回転量に基づいて、 前記正方形上で隣接する 2つの信号伝 送系の組合せごとに、 前記送信回路間の位相回転量の差を算出する手段と、 前記 4個の信号伝送系のいずれか 1つの前記送信回路の位相回転量を所定の基 準値におくことにより、 残りの信号伝送系の個々の送信回路の位相回転量を算出 する手段と、
前記信号伝送系ごとに算出された受信回路の位相回転量およぴ送信回路の位相 回転量の差を位相補正量として算出する手段とをさらに備えた、 無線装置。
3 4 . 伝送特性のキヤリブレーシヨンが可能な無線装置であって、
アンテナ素子 (AN T) と、 前記アンテナ素子を共用する送信回路 (T X) お よび受信回路 (R X) とを各々が含む、 4個の信号伝送系を備え、 前記 4個の信 号伝送系のそれぞれの前記アンテナ素子は、 正方形の頂点に位置するようにそれ ぞれ配され、
前記 4個の信号伝送系の各々の前記送信回路から初期振幅が固定された信号を 送信し、 前記信号を送信した当該信号伝送系を除く残りの信号伝送系の前記受信 回路で受信して、 受信した前記信号伝送系ごとに、 前記信号の送信から受信まで の振幅変動量を測定する手段と、
前記測定された振幅変動量に基づいて、 前記正方形上で隣接する 2つの信号伝 送系の組合せごとに、 前記受信回路間の振幅変動量の差を算出する手段と、 前記 4個の信号伝送系のいずれか 1つの前記受信回路の振幅変動量を所定の基 準値におくことにより、 残りの信号伝送系の個々の受信回路の振幅変動量を算出 する手段と、
前記測定された振幅変動量に基づいて、 前記正方形上で隣接する 2つの信号伝 送系の組合せごとに、 前記送信回路間の振幅変動量の差を算出する手段と、 前記 4個の信号伝送系のいずれか 1つの前記送信回路の振幅変動量を所定の基 準値におくことにより、 残りの信号伝送系の個々の送信回路の振幅変動量を算出 する手段と、
前記信号伝送系ごとに算出された受信回路の振幅変動量および送信回路の振幅 変動量の差を振幅補正量として算出する手段とをさらに備えた、 無線装置。
PCT/JP1999/004173 1998-08-05 1999-08-02 Dispositif radio et son procede d'etalonnage WO2000008777A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP99933242A EP1104122B1 (en) 1998-08-05 1999-08-02 Radio device and method of calibration thereof
AU49335/99A AU757396C (en) 1998-08-05 1999-08-02 Radio device and method of calibration thereof
JP2000564314A JP3332911B2 (ja) 1998-08-05 1999-08-02 無線装置およびそのキャリブレーション方法
DE69936210T DE69936210T2 (de) 1998-08-05 1999-08-02 Funkgerät und verfahren zu seiner kalibrierung
US09/762,049 US6870878B1 (en) 1998-08-05 1999-08-02 Radio device and method of calibration thereof
HK02103513A HK1042603A1 (en) 1998-08-05 2002-05-08 Radio device and method of calibration thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/221810 1998-08-05
JP22181098 1998-08-05

Publications (1)

Publication Number Publication Date
WO2000008777A1 true WO2000008777A1 (fr) 2000-02-17

Family

ID=16772557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004173 WO2000008777A1 (fr) 1998-08-05 1999-08-02 Dispositif radio et son procede d'etalonnage

Country Status (10)

Country Link
US (1) US6870878B1 (ja)
EP (1) EP1104122B1 (ja)
JP (1) JP3332911B2 (ja)
KR (1) KR100404833B1 (ja)
CN (1) CN1146140C (ja)
AU (1) AU757396C (ja)
DE (1) DE69936210T2 (ja)
HK (1) HK1042603A1 (ja)
ID (1) ID27970A (ja)
WO (1) WO2000008777A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109952A1 (ja) * 2003-06-02 2004-12-16 Fujitsu Limited アレーアンテナ通信装置およびアレーアンテナ通信装置のキャリブレーション方法
WO2005041444A1 (ja) * 2003-10-27 2005-05-06 Hitachi Kokusai Electric Inc. 無線通信装置
JP2005538666A (ja) * 2002-09-10 2005-12-15 アイピーアール ライセンシング インコーポレイテッド Mimo無線装置で位相オフセットおよび振幅オフセットを補正する技法
WO2006003826A1 (ja) * 2004-06-30 2006-01-12 Kyocera Corporation 通信装置、キャリブレーション方法及びプログラム
US8325789B2 (en) 2008-02-04 2012-12-04 Sony Corporation Wireless communication apparatus, antenna calibration method and program
WO2018105147A1 (ja) * 2016-12-05 2018-06-14 住友電気工業株式会社 アレイアンテナシステム
JP2021519017A (ja) * 2018-03-23 2021-08-05 中興通訊股▲ふん▼有限公司Zte Corporation 送受信機、受信チャネル、送信チャネルの補正方法及び装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651430B2 (ja) * 2001-09-17 2005-05-25 日本電気株式会社 アレーアンテナの校正装置及び校正方法
JP4226442B2 (ja) * 2002-11-14 2009-02-18 パナソニック株式会社 無線通信装置
KR100608736B1 (ko) 2003-04-29 2006-08-04 엘지전자 주식회사 스마트 안테나 시스템의 기준신호 발생장치
US7075485B2 (en) 2003-11-24 2006-07-11 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Low cost multi-beam, multi-band and multi-diversity antenna systems and methods for wireless communications
KR100633047B1 (ko) * 2004-12-02 2006-10-11 삼성전자주식회사 신호 보정 장치 및 방법을 구현하는 스마트 안테나 통신 시스템
US20060240784A1 (en) * 2005-04-22 2006-10-26 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US8498669B2 (en) 2005-06-16 2013-07-30 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US9118111B2 (en) 2005-11-02 2015-08-25 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US8280430B2 (en) 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
US7768453B2 (en) * 2008-08-08 2010-08-03 Raytheon Company Dynamically correcting the calibration of a phased array antenna system in real time to compensate for changes of array temperature
EP2173005B1 (en) * 2008-10-02 2017-12-13 Nokia Solutions and Networks Oy Improved probe calibration for an active antenna
EP2173010A1 (en) * 2008-10-02 2010-04-07 Nokia Siemens Networks OY Improved probe calibration for an active antenna
US8416126B2 (en) 2010-12-01 2013-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Obtaining a calibration parameter for an antenna array
CN103229354A (zh) * 2010-12-01 2013-07-31 瑞典爱立信有限公司 获得至少一个校准参数的方法、天线阵列、计算机程序和计算机程序产品
US20140320344A1 (en) * 2012-05-07 2014-10-30 QUALCOMM ATHEROS Incorporated Techniques for operating phased array antennas in millimeterwave radio modules
US9680232B2 (en) 2012-05-07 2017-06-13 Qualcomm Incorporated Graded-ground design in a millimeter-wave radio module
US9966661B2 (en) * 2012-08-24 2018-05-08 City University Of Hong Kong Phased array, a coherent source array, an antenna array and a system for controlling thereof
WO2017145257A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 アレーアンテナ装置およびその校正方法
JP2018032893A (ja) * 2016-08-22 2018-03-01 富士通株式会社 無線装置、及び検出方法
US10326538B2 (en) * 2017-04-05 2019-06-18 Cisco Technology, Inc. Remote radio head reciprocity calibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265302A (ja) * 1989-04-05 1990-10-30 Mitsubishi Electric Corp アンテナ装置
JPH10503892A (ja) * 1994-06-03 1998-04-07 テレフオンアクチーボラゲツト エル エム エリクソン アンテナアレイの校正
JPH1146180A (ja) * 1997-03-18 1999-02-16 Matsushita Electric Ind Co Ltd アレーアンテナ無線受信装置のキャリブレーション装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171849A (en) * 1985-02-25 1986-09-03 Secr Defence Improvements in or relating to the alignment of phased array antenna systems
CA1300289C (en) * 1987-10-27 1992-05-05 Paul Anton Nysen Passive universal communicator
JPH01146180A (ja) * 1987-12-02 1989-06-08 Matsushita Electric Ind Co Ltd 電源装置
EP0938204A4 (en) 1997-03-18 2005-01-26 Matsushita Electric Ind Co Ltd CALIBRATION DEVICE FOR WIRELESS RECEIVER OF NETWORK ANTENNA
JP3519276B2 (ja) 1998-06-18 2004-04-12 松下電器産業株式会社 キャリブレーション装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265302A (ja) * 1989-04-05 1990-10-30 Mitsubishi Electric Corp アンテナ装置
JPH10503892A (ja) * 1994-06-03 1998-04-07 テレフオンアクチーボラゲツト エル エム エリクソン アンテナアレイの校正
JPH1146180A (ja) * 1997-03-18 1999-02-16 Matsushita Electric Ind Co Ltd アレーアンテナ無線受信装置のキャリブレーション装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538666A (ja) * 2002-09-10 2005-12-15 アイピーアール ライセンシング インコーポレイテッド Mimo無線装置で位相オフセットおよび振幅オフセットを補正する技法
WO2004109952A1 (ja) * 2003-06-02 2004-12-16 Fujitsu Limited アレーアンテナ通信装置およびアレーアンテナ通信装置のキャリブレーション方法
WO2005041444A1 (ja) * 2003-10-27 2005-05-06 Hitachi Kokusai Electric Inc. 無線通信装置
WO2006003826A1 (ja) * 2004-06-30 2006-01-12 Kyocera Corporation 通信装置、キャリブレーション方法及びプログラム
US8325789B2 (en) 2008-02-04 2012-12-04 Sony Corporation Wireless communication apparatus, antenna calibration method and program
WO2018105147A1 (ja) * 2016-12-05 2018-06-14 住友電気工業株式会社 アレイアンテナシステム
JP2021519017A (ja) * 2018-03-23 2021-08-05 中興通訊股▲ふん▼有限公司Zte Corporation 送受信機、受信チャネル、送信チャネルの補正方法及び装置
JP7130054B2 (ja) 2018-03-23 2022-09-02 中興通訊股▲ふん▼有限公司 送受信機、受信チャネル、送信チャネルの補正方法及び装置

Also Published As

Publication number Publication date
AU757396B2 (en) 2003-02-20
HK1042603A1 (en) 2002-08-16
EP1104122A1 (en) 2001-05-30
AU757396C (en) 2004-04-08
DE69936210T2 (de) 2008-01-17
EP1104122B1 (en) 2007-05-30
KR100404833B1 (ko) 2003-11-07
JP3332911B2 (ja) 2002-10-07
CN1146140C (zh) 2004-04-14
CN1322414A (zh) 2001-11-14
ID27970A (id) 2001-05-03
KR20010085330A (ko) 2001-09-07
DE69936210D1 (de) 2007-07-12
US6870878B1 (en) 2005-03-22
EP1104122A4 (en) 2005-08-24
AU4933599A (en) 2000-02-28

Similar Documents

Publication Publication Date Title
WO2000008777A1 (fr) Dispositif radio et son procede d&#39;etalonnage
JP3768350B2 (ja) 無線受信装置及びその方法
EP1440526B1 (en) Method of operating a wireless communication system
KR101513889B1 (ko) 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
JP3305938B2 (ja) フェーズドアレイアンテナ装置
EP2396851B1 (en) Communication system, apparatus and methods for calibrating an antenna array
EP1187354A1 (en) Radio device and method of calibration of antenna directivity
KR100546357B1 (ko) 공간 다이버시티 및 빔형성을 이용한 디지털 tv신호를수신하는 방법 및 장치
KR20020014774A (ko) 다중 송신 및 수신 안테나들을 구비한 무선 시스템들용시공간 처리
TW201436498A (zh) 近場mimo無線發射功率測量測試系統、結構及程序
JP2002135032A (ja) 送信アンテナ指向性制御装置及びその方法
US20050282587A1 (en) Base station apparatus with reception and diversity weight combining
EP1520357A1 (en) Wireless transmitter, transceiver and method for beamforrming and diverssity
JP2003264501A (ja) 適応アンテナ基地局装置
WO2000001093A1 (fr) Dispositif de communication radio et procede de regulation de la puissance d&#39;emission
TW200835204A (en) Method and system for OFDM based MIMO system with enhanced diversity
WO2003088522A1 (fr) Dispositif recepteur a antenne reseau adaptative et procede d&#39;etalonnage de reseau d&#39;antennes
CN111123220B (zh) 一种毫米波雷达的多通道幅相校准方法及系统
WO2001039394A1 (fr) Recepteur sans fil et procede d&#39;etalonnage de ce dernier
EP2647084A1 (en) Method, antenna array, computer program and computer program product for obtaining at least one calibration parameter
ATE510363T1 (de) Mehrfachzugriffsstörungsunterdrückung
JP4704306B2 (ja) 無線通信装置およびキャリブレーション方法
US7492841B2 (en) Relative phase/amplitude detection system
CN107889556A (zh) 无线多天线系统中上行链路和下行链路信道状态信息的校准方法
KR20060070949A (ko) 내장된 송수신기들 간의 반송파 주파수 차를 보상하는다중 송수신 시스템 및 그 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811726.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09762049

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999933242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017001512

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 49335/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/300/CHE

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1999933242

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017001512

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 49335/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020017001512

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999933242

Country of ref document: EP