WO2000006685A1 - Particulate compositions having a plasma-induced, water-soluble coating and process for making same - Google Patents

Particulate compositions having a plasma-induced, water-soluble coating and process for making same Download PDF

Info

Publication number
WO2000006685A1
WO2000006685A1 PCT/IB1999/001310 IB9901310W WO0006685A1 WO 2000006685 A1 WO2000006685 A1 WO 2000006685A1 IB 9901310 W IB9901310 W IB 9901310W WO 0006685 A1 WO0006685 A1 WO 0006685A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
composition
water
monomer
gas
Prior art date
Application number
PCT/IB1999/001310
Other languages
English (en)
French (fr)
Inventor
Wim Johan Van Ooij
Jean Wevers
Paul Amaat France
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to JP2000562469A priority Critical patent/JP2002521557A/ja
Priority to BR9912551-0A priority patent/BR9912551A/pt
Priority to CA002337171A priority patent/CA2337171A1/en
Priority to AU46415/99A priority patent/AU4641599A/en
Priority to EP99929640A priority patent/EP1100859A1/en
Publication of WO2000006685A1 publication Critical patent/WO2000006685A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the present invention generally relates to particulate compositions, and more particularly, to particulate compositions which have a plasma-induced, water-soluble coating.
  • the particulate compositions may be used in shampoos, skin care and other cosmetic products, deodorant products, laundry, dishwashing, carwashing or other similar applications.
  • the plasma-induced, water-soluble coating can control solubility, dispersion, flowability, enhance chemical stability or be a functional additive to the particulate composition.
  • the invention also provides a process for making such plasma-induced, coated particulate compositions.
  • clumps are especially prevalent under cold temperature washing conditions and/or when the order of addition to the washing machine is laundry detergent first, clothes second and water last (commonly known as the "Reverse Order Of Addition” or "ROOA").
  • ROOA Reverse Order Of Addition
  • this clumping phenomenon can contribute to the incomplete dispensing of detergent in washing machines equipped with dispenser drawers or in other dispensing devices, such as a granulette. In this case, the undesired result is undissolved detergent residue in the dispensing device.
  • compositions and a process for making such compositions, which have improved physical properties, solubility and/or chemical stability.
  • the invention meets the above-identified needs by providing a composition having a plasma-induced, water-soluble coating for controlling solubility, chemical stability and physical properties.
  • the invention also provides a process for making such a composition involving subjecting a particulate material to a plasma glow zone in which an organic hydrophilic monomer is introduced such that it ultimately deposits on the detergent material to form a water soluble coating.
  • the plasma glow zone is contained in a plasma chamber and operated at selected power and pressures so as not to destroy or otherwise alter the functionality or stability of the coating or the particulate material that is being coated.
  • a composition comprising a particulate material having at least a portion which has a plasma- induced, water-soluble coating, wherein the portion of the particulate material is coated in a plasma chamber operated at a pressure of from about 1 mTorr to about 300 Torr and a power of from about 0.1 Watts to about 500 Watts.
  • a process for producing a composition comprises the steps of: (a) providing a particulate material; (b) subjecting the particulate material to plasma glow zone in which a gas is ionized and an organic hydrophilic monomer is introduced such that the organic hydrophilic monomer deposits on the particulate material to form a water-soluble coating, wherein the plasma glow zone is contained in a plasma chamber operated at a pressure of from about 1 mTorr to about 300 Torr and a power of from about 0.1 Watts to about 500 Watts.
  • the "plasma glow zone” is the space or region where plasma is generated using electricity, such as the space between two electrodes in a plasma vacuum chamber.
  • the phrase "plasma chamber” or “plasma vacuum chamber” includes or can be embodied in fluidized beds, tumbling drums, vibrating belts and other similar apparatus. All percentages, ratios and proportions used herein are by weight, unless otherwise indicated. All documents including patents and publications cited herein are incorporated herein by reference.
  • the invention is directed to particulate compositions having a plasma- induced, water-soluble coating.
  • the particulate material is selected from water-insoluble particles such as those used in cosmetic and shampoo compositions, soluble particles such as spray dried granules, agglomerates and mixtures thereof which are typically used in detergent compositions.
  • the particulate compositions herein are used in laundry or dishwashing products for conventional laundry machines and dishwashing machines, respectively.
  • the water-soluble coating is formed from an organic hydrophilic monomer, which is even more preferably selected from the group consisting of acrylates, methacrylates, acrylamides, methacrylamides, maleates, fumarates, vinyl ethers and mixtures thereof. More preferably, the organic monomer is selected from the group consisting of 2- hydroxyethyl methacrylate, N,N-dimethylacrylamide, acrylic acid, methacrylic acid and mixtures thereof. Most preferably, the organic monomer is acrylic acid.
  • the water-soluble coating is on at least a portion of the compositions described herein.
  • at least a portion it is meant that at least 1%, preferably 90% to 100% of the particulate or non-particulate composition has a water-soluble coating on it.
  • a plasma coating process is used to place the water-soluble coating on the composition. As detailed hereinafter, this is accomplished by ionizing a gas, such as argon, using high frequency electricity in a plasma vacuum chamber. Suitable gases may be selected from the group consisting of argon, helium, oxygen, nitrogen and mixtures thereof.
  • Typical plasma chambers will have a "plasma glow zone" which can be the region between the two electrodes used to generate the high frequency electricity, and thus the plasma therebetween.
  • the pressure inside the plasma chamber is typically maintained at a pressure of from about 5 mTorr to about 300 Torr, more preferably from about 10 mTorr to about 1 Torr, and most preferably from about 50 mTorr to about 250 mTorr.
  • the power used in the plasma chamber is selected to be from about 0.1 Watts to about 500 Watts, more preferably from about 0.5 Watts to about 100 Watts, and most preferably from about 1 Watt to about 10 Watts.
  • plasma-induced means that which has been deposited, coated or otherwise layered using one or more of plasma deposition techniques which should be contrasted with simple spraying techniques that do not employ gas ionized with electricity.
  • This application of a high frequency electric field to a gas to form a plasma of gas ions is a known technique used in polymerization of monomers such as organic hydrophilic monomers which are suitable for use herein to form the water-soluble coating on the detergent composition.
  • This technique has been described, for example, in Luster, U.S. Patent No. 2,257,177. In general, this involves continuous contact of the polymerizing monomer in the vapor phase with the gas plasma until substantial completion of the graft polymerization on the substrate.
  • Another plasma coating technique is to initiate polymerization by use of a non- equilibrium ionized gas plasma and to complete the majority of the polymerization in the absence of the plasma. In this manner, a high molecular weight polymer is formed.
  • the formation of the ionized gas plasma may be accomplished in any of the techniques known to produce such plasmas. For example, see J. R. Hollahan and A. T. Bell, eds., "Techniques in Applications of Plasma Chemistry", Wiley, New York, 1974 and M Shen, ed.' lasma Chemistry of Polymers", Marcel Dekker, New York, 1976.
  • an ionizable gas is contained under vacuum between parallel plate electrodes connected to a radio frequency generator which is sold by International Plasma Corporation under the designation "Model 3001".
  • the plasma can be created with such parallel plates either external or internal to the plasma chamber.
  • an external induction coil creates an electric field which produces the plasma of ionized gas.
  • oppositely charged electrode points are placed directly into the plasma vacuum chamber in spaced apart relationship to create the plasma. Any plasma formed by these techniques or any other one in which an electric field creates a path of electrical conduction totally within the gas phase is suitable for use in the invention.
  • the term "plasma" is to be distinguished from any liquid or solid environment in which an electric field is applied to create ions in a path through the solid or liquid. This is not to exclude the possibility that an electric field would also be applied across the non-vapor monomer. However, if it were, it is not believed that it would have any beneficial function; instead, it would be extraneous to the vapor phase plasma.
  • the operating parameters for the plasma vary from monomer to monomer. In general, it is preferable to employ reduced gas pressures to form a glow discharge by electron liberation which causes ionization in the gas phase.
  • a plasma is created in a chamber including a monomer gas at a pressure below atmospheric pressure
  • the plasma is formed when the interelectrode potential exceeds a threshold value which is sufficient to ionize or "breakdown" the gas.
  • a threshold value which is sufficient to ionize or "breakdown" the gas.
  • This is a function of the composition of the gas, its pressure and the distance between the electrodes. After breakdown, the gas is conductive and a stable plasma may be maintained over a wide range of currents.
  • the exact composition of the plasma is not known, it is believed to include electrons, ions, free radicals, and other reactive species.
  • the free radicals and/or ions in the plasma may be supplied by collision of plasma electrons with monomer vaporized from the non-vapor monomer to be polymerized.
  • the monomer may be in the form of a liquid, a solid, or a solid-liquid mixture.
  • the monomer vapor is supplied by evaporation of monomer into the plasma which is facilitated by the application of a vacuum.
  • the solid monomer such free radicals and/or ions are supplied by sublimed monomer vapor.
  • the non-vapor monomer to be activated will be described herein as being in the liquid state unless otherwise specified.
  • the creation of active sites in the monomer may be facilitated by direct activation from the ionized gas, itself, in the plasma.
  • the presence of any ionizable gas under the conditions prevalent in the plasma may be employed.
  • water vapor may be ionized to create active polymerization sites for certain monomers.
  • gases which have been ionized by such plasmas include hydrogen chloride, carbon tetrachloride, and inert gases such as helium or neon. Those gases which are ionizable in the plasma are well known to those in the field.
  • the monomer to be activated may be in the essentially pure monomeric state or in solution.
  • organic or inorganic solvents capable of complete dissolution of the monomer may be employed.
  • Typical organic solvents for certain monomers include benzene and acetone.
  • a glow- discharge type of plasma When a glow- discharge type of plasma is employed, excess vaporization of monomer may interfere with the plasma.
  • a pure normally liquid monomer of relatively high vapor pressure it is desirable to reduce its vapor pressure.
  • the monomer may be frozen to a solid form for plasma initiation in that state or warmed to a mixed solid-liquid state prior to plasma initiation.
  • the process may involve the use of high frequency microwaves to ionize the gas in the plasma chamber.
  • high frequency radio waves or direct current electricity can be used, for example to ionize the gas between two oppositely charged electrode points used to define the plasma glow zone in a plasma vacuum chamber.
  • Another option is to pulsate or otherwise intermittently ionize the gas in the plasma glow zone in the plasma chamber so as to control the plasma-induced deposition of the monomer onto the particulate detergent material.
  • Further control of plasma-induced deposition can be achieved in the process of the present invention by positioning the particulate detergent material to be coated with the hydrophilic monomer outside of the plasma glow zone.
  • the water-soluble hydrophilic monomer may be introduced outside of the plasma glow zone, as well, to provide further control of the deposition.
  • the water-soluble coating is formed from an organic hydrophilic monomer, some of which are mentioned above.
  • the compositions preferably contain an effective amount of such monomer so as to achieve the desired solubility, flowability, chemical stability and/or other desired function for the particulate or non- particulate composition.
  • the coating which is formed of the monomer grafted onto the particulate or non-particulate composition will have a thickness in the range of from about 0.001 microns to about 1000 microns, more preferably from about 0.05 microns to about 50 microns and most preferably from about 0.01 microns to about 10 microns.
  • Suitable organic hydrophilic monomers include generally water soluble conventional vinyl monomers such as: acrylates and methacrylates of the general structure
  • H 2 C C— C— COOR 3
  • R 2 is hydrogen or methyl and R 3 is hydrogen or is an aliphatic hydrocarbon group of up to about 10 carbon atoms substituted by one or more water solublizing groups such as carboxy, hydroxy, amino, lower alkylamino, lower dialkylamino, a polyethylene oxide group with from 2 to about 100 repeating units, or substituted by one or more sulfate, phosphate, sulfonate, phosphonate, carboxamido, sulfonamido or phosphonamido groups, or mixtures thereof; acrylamides and methyacrylamides of the formula
  • R 4 is lower alkyl of 1 to 3 carbon atoms and R 2 is as defined above; maleates and fumarates of the formula
  • R 2 CH — CHR 3 where R 2 is as defined above and R 3 is as defined above with the proviso that R 3 is other than hydrogen; and vinyl substituted heterocycles, such as vinyl pyridines, piperidines and imidazoles and N-vinyl lactams, such as N-vinyl-2-pyrrolidone.
  • vinyl substituted heterocycles such as vinyl pyridines, piperidines and imidazoles and N-vinyl lactams, such as N-vinyl-2-pyrrolidone.
  • water-soluble monomers include: 2-hydroxyethyl-, 2- and 3- hydroxypropyl-, 2,3-dihydroxypropyl-, polyethoxyethyl-, and polyethoxypropyl acrylates, methacrylates, acrylamides and methacrylamides; acrylamide, methacrylamide, N- methylacrylamide, N-methylmethacrylamide, N, N-dimethylacrylamide, N, N- dimethylmethacrylamide; N, N-dimethyl- and N, N-diethyl-aminoethyl acrylate and methacrylate and the corresponding acrylamides and methacrylamides; 2- and 4- vinylpyridine; 4- and 2-methyl-5-vinylpyridine; N-methyl-4-vinylpiperidine; 2-methyl-l- vinylimidazole; N, N-dimethylallyalamine; dimethylaminoethyl vinyl ether, N- vinylpyrrolidone; acrylic and methacrylic acid;
  • Preferred water soluble monomers include 2-hydroxyethylmethacrylate; N, N- dimethylacrylamide; acrylic acid and methacrylic acid; and most preferably 2-hydroxyethyl methacrylate.
  • the particulate and non-particulate compositions described herein can be in the form of detergent compositions which preferably contain a detersive surfactant and a detergent builder, and optionally, a variety of common detergent ingredients.
  • the surfactant system of the detergent composition may include anionic, nonionic, zwitterionic, ampholytic and cationic classes and compatible mixtures thereof.
  • Detergent surfactants are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, and in U.S. Patent 3,919,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference.
  • Cationic surfactants include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980, both of which are also incorporated herein by reference.
  • Nonlimiting examples of surfactant systems include the conventional C j-Ci g alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C1Q-C20 alkyl sulfates ("AS"), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH 2 ) x (CHOS0 3 " M + ) CH 3 and CH 3 (CH 2 )y(CHOS0 3 " M + ) CH 2 CH 3 where x and
  • (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the Cl0"Cl8 a ⁇ alkoxy sulfates 0'AE ⁇ S"; especially EO 1-7 ethoxy sulfates), Ci ⁇ -Ci g alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the Ci ⁇ .i g glycerol ethers, the Ci rj-Ci g alkyl polyglycosides and their corresponding sulfated polyglycosides, and Ci2-C ⁇ 8 alpha-sulfonated fatty acid esters.
  • M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the Cl0"Cl8 a ⁇
  • the conventional nonionic and amphoteric surfactants such as the C12-C1 g alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C1 g betaines and sulfobetaines ("sultaines"), C j n-Cig amine oxides, and the like, can also be included in the surfactant system.
  • the C I Q-C I g N- alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12- Ci N-methylglucamides.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as Ci Q-Ci g N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C12-C1 g glucamides can be used for low sudsing.
  • Ci 0-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C f j -Ci 6 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • the detergent composition can, and preferably does, include a detergent builder.
  • Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
  • the alkali metal especially sodium, salts of the above.
  • Preferred for use herein are the phosphates, carbonates, silicates, C ] 0 , occasional fatty acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, sodium silicate, and mixtures thereof (see below).
  • inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphates.
  • polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1 -hydroxy- 1, 1 -diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid.
  • Other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, all of which are incorporated herein by reference.
  • nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicates having a weight ratio of SiO- to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about
  • Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates.
  • polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is incorporated herein by reference.
  • Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
  • Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the nonsoap anionic surfactant.
  • polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al., and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al., both of which are incorporated herein by reference.
  • These polyacetal carboxylates can be prepared by bringing together under polymerization conditions an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
  • Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987, the disclosure of which is incorporated herein by reference.
  • Water-soluble silicate solids represented by the formula SiO-»M»0, M being an alkali metal, and having a SiO ⁇ :M 2 0 weight ratio of from about 0.5 to about 4.0, are useful salts in the detergent granules of the invention at levels of from about 2% to about 15% on an anhydrous weight basis, preferably from about 3% to about 8%.
  • Anhydrous or hydrated particulate silicate can be utilized, as well.
  • any number of additional ingredients can also be included as components in the granular detergent composition.
  • these include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, anti-tarnish and anti-corrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, nonbuilder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., incorporated herein by reference.
  • Bleaching agents and activators are described in U.S. Patent 4,412,934, Chung et al., issued November 1, 1983, and in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, both of which are incorporated herein by reference.
  • Chelating agents are also described in U.S. Patent 4,663,071, Bush et al., from Column 17, line 54 through Column 18, line 68, incorporated herein by reference.
  • Suds modifiers are also optional ingredients and are described in U.S. Patents 3,933,672, issued January 20, 1976 to Bartoletta et al., and 4,136,045, issued January 23, 1979 to Gault et al., both incorporated herein by reference.
  • Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al., issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference.
  • Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987, both incorporated herein by reference.
  • compositions of the present invention can also be in the form of cosmetic compositions or components thereof.
  • such compositions contain insoluble particles at levels of from about 0.1% to about 20%, more preferably from about 0.25% to about 15%, and most preferably from about 0.5% to about 10%, based on the weight of the total composition.
  • insoluble particles are useful for enhancing the cleansing effect, when the compositions of the present invention are in the form of a cleansing composition.
  • the term "insoluble”, as used herein, means that the particles are essentially insoluble in the compositions of the present invention.
  • the insoluble particles should have a solubility less than about 1 gram per 100 grams of composition at 25.degree. C, preferably less than about 0.5 grams per 100 grams of composition at 25. degree. C, and more preferably less than about 0.1 grams per 100 grams of composition at 25. degree. C.
  • micronized particles for the most part, are of a size that is below the tactile threshold and are essentially nonabrasive to the skin.
  • the conventional size particles are tactilely perceptible and are added for the scrubbing and abrasive effect which they provide.
  • micronized particles have a mean particle size diameter and particle size distribution such that they are below the tactile perception threshold of most users, and yet are not so small as to be ineffective for aiding in oil, dirt, and debris (e.g., make-up) removal. It is found herein that particles having a mean particle size diameter greater than about 75 microns are tactilely perceived during the cleansing process and it is important to minimize the amount of these larger particles if it is desired that the particles not be felt by the user. Conversely, it is found that particles having a mean particle size diameter of less than about 1 to about 5 microns are generally less effective for providing a cleansing benefit.
  • the micronized cleansing particles should be of a size that is on the order of the thickness of the dirt, oil, or debris layer to be cleaned away. This layer is believed to be on the order of a few microns in thickness in most instances. It is therefore found in the present invention that the micronized particles should have a mean particle size diameter from about 1 to about 75 microns, more preferably from about 15 to about 60 microns, and most preferably from about 20 to about 50 microns, so as to provide effective cleansing without being tactilely perceptible. Particles having a wide range of shapes, surface characteristics, and hardness characteristics can be utilized herein provided the particle size requirements are met.
  • Micronized particles of the present invention can be derived from a wide variety of materials including those derived from inorganic, organic, natural, and synthetic sources.
  • Nonlimiting examples of these materials include those selected from the group consisting of almond meal, alumina, aluminum oxide, aluminum silicate, apricot seed powder, attapulgite, barley flour, bismuth oxychloride, boron nitride, calcium carbonate, calcium phosphate, calcium pyrophosphate, calcium sulfate, cellulose, chalk, chitin, clay, corn cob meal, com cob powder, com flour, com meal, com starch, diatomaceous earth, dicalcium phosphate, dicalcium phosphate dihydrate, fullers earth, hydrated silica, hydroxyapatite, iron oxide, jojoba seed powder, kaolin, loofah, magnesium trisilicate, mica, microcrystalline cellulose, montmorillonite, oat bran, oat flour, oatmeal, peach pit
  • polytetrafluoroethylene polyhalogenated olefins
  • pumice rice bran rye flour, sericite, silica, silk, sodium bicarbonate, sodium silicoaluminate, soy flour synthetic hectorite, talc, tin oxide, titanium dioxide, tricalcium phosphate, walnut shell powder, wheat bran, wheat flour, wheat starch, zirconium silicate, and mixtures thereof.
  • micronized particles made from mixed polymers (e.g., copolymers, terpolymers, etc.), such as polyethylene polypropylene copolymer, polyethylene/propylene/isobutylene copolymer, polyethylene/styrene copolymer, and the like.
  • the polymeric and mixed polymeric particles are treated via an oxidation process to destroy impurities and the like.
  • the polymeric and mixed polymeric particles can also optionally be crosslinked with a variety of common crosslinking agents, nonlimiting examples of which include butadiene, divinyl benzene, methylenebisacrylamide, allyl ethers of sucrose, allyl ethers of pentaerythritol, and mixtures thereof.
  • Other examples of useful micronized particles include waxes and resins such as paraffins, camuba wax, ozekerite wax, candellila wax, urea-formaldehyde resins, and the like. When such waxes and resins are used herein it is important that these materials are solids at ambient and skin temperatures.
  • micronized particulate materials useful herein are the synthetic polymeric particles selected from the group consisting of polybutylene, polyethylene, polyisobutylene, polymethylstyrene, polypropylene, polystyrene, polyurethane, nylon, teflon, and mixtures thereof. Most preferred are polyethylene and polypropylene micronized particles, with the oxidized versions of these materials being especially preferred. Examples of commercially available particles useful herein include the ACumistTM. micronized polyethylene waxes available from Allied Signal (Morristown, N.J.) available as the A, B, C, and D series in a variety of average particle sizes ranging from 5 microns to 60 microns.
  • ACumistTM Preferred are the ACumistTM.
  • Examples of commercially available polypropylene particles include the Propyltex series available from Micro Powders (Dartek).
  • the conventional size insoluble particles are well-known to formulation chemists in the art. These particles typically have larger particle sizes than the micronized particles described herein. These particles generally have an average particle size diameter that is about 75 microns or greater, which is about the tactile threshold described above. These conventional size particles typically have average particle sizes ranging up to about 400 microns and larger. These particles can be made from the same materials as for the micronized particles just described.
  • the preferred conventional size particulate materials useful herein are the synthetic polymeric particles selected from the group consisting of polybutylene, polyethylene, polyisobutylene, polymethylstyrene, polypropylene, polystyrene, polyurethane, nylon, teflon, and mixtures thereof.
  • polyethylene and polypropylene micronized particles are particularly preferred.
  • An example of a commercially available conventional size particle useful herein is ACuscrub.TM. 51, available from Allied Signal (Morristown, N.J.) having a mean particle size of about 125 microns.
  • a dishwashing tablet having the formula set forth in Table I below is placed on the bottom (20 cm below the bottom electrode) of a vacuum chamber of plasma discharge unit (commercially available from APS Inc., Model D).
  • the plasma chamber is depressurized to 20 mTorr.
  • a carrier gas (Argon) is continuously introduced into the chamber at a constant rate (10 seem), so the pressure inside the chamber is maintained at 63 mTorr by the balance of continuous evacuation and introduction of the carrier gas.
  • low temperature plasma is generated inside the chamber for a period of 1 minute by supplying high frequency electricity (100 Watts) at a frequency of 40 kHz so as to expose the surface of the tablet to the low temperature plasma.
  • an organic hydrophilic monomer (acrylic acid) is introduced into the chamber at a constant rate to maintain constant pressure in the chamber of 165 mTorr for 10 minutes during which time low temperature plasma (100 W, 40 kHz) is generated continuously and deposited onto the tablet.
  • the chamber is evacuated (30 mTorr) and flooded with atmospheric air.
  • the resultant tablet has a water-soluble coating formed of the deposited monomer.
  • the water solubility of the tablet is unexpectedly equal to uncoated tablets and superior to tablets coated by means other than plasma deposition.
  • the resulting compositions are exemplified below.
  • the base granule is prepared by a conventional spray drying process in which the starting ingredients are formed into a slurry and passed though a spray drying tower having a countercurrent stream of hot air (200-300°C) resulting in the formation of porous granules.
  • the admixed agglomerates are formed from two feed streams of various starting detergent ingredients which are continuously fed, at a rate of 1400 kg/hr, into a L ⁇ dige CB-30 mixer/densifier, one of which comprises a surfactant paste containing surfactant and water and the other stream containing starting dry detergent material containing aluminosilicate and sodium carbonate.
  • the rotational speed of the shaft in the Lodige CB-30 mixer/densifier is about 1400 ⁇ m.
  • the contents from the L ⁇ dige CB-30 mixer/densifier are continuously fed into a L ⁇ dige KM-600 mixer/densifier for further agglomeration.
  • the resulting detergent agglomerates are then fed to a fluid bed dryer and to a fluid bed cooler before being admixed with the spray dried granules.
  • the remaining adjunct detergent ingredients are sprayed on or dry added to the blend of agglomerates and granules. ⁇ in rv
  • Admixed Agglomerates C 14-15 alkyl sulfate, Na 5.0 5.0 -
  • Polyvinylpyrrilidone 0.5 0.5 - Polyvinylpyridine N-oxide 0.5 0.5 - Polyvinylpyrrolidone-polyvinylimidazole 0.5 0.5 - Distearylamine & Cumene sulfonic acid 2.0 2.0 -
  • the resulting detergent compositions unexpectedly have improved chemical stability and flowability.
  • Termamyl amylase 60 KNU/g 3 0.3 0.3 0.3 Sodium sulfate 3.0 3.0 5.0 Miscellaneous (water, etc.) balance balance balance Total 100.0 100.0 100.0
  • the resulting detergent compositions unexpectedly have improved chemical stability, flowability, and excellent dissolution characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
PCT/IB1999/001310 1998-07-29 1999-07-23 Particulate compositions having a plasma-induced, water-soluble coating and process for making same WO2000006685A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000562469A JP2002521557A (ja) 1998-07-29 1999-07-23 プラズマ誘導水溶性被覆を有する粒状組成物およびそれらの製造方法
BR9912551-0A BR9912551A (pt) 1998-07-29 1999-07-23 Composições particuladas tendo um revestimentohidrossolúvel, induzido por plasma e processopara preparar as mesmas
CA002337171A CA2337171A1 (en) 1998-07-29 1999-07-23 Particulate compositions having a plasma-induced, water-soluble coating and process for making same
AU46415/99A AU4641599A (en) 1998-07-29 1999-07-23 Particulate compositions having a plasma-induced, water-soluble coating and process for making same
EP99929640A EP1100859A1 (en) 1998-07-29 1999-07-23 Particulate compositions having a plasma-induced, water-soluble coating and process for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9449798P 1998-07-29 1998-07-29
US60/094,497 1998-07-29

Publications (1)

Publication Number Publication Date
WO2000006685A1 true WO2000006685A1 (en) 2000-02-10

Family

ID=22245520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1999/001310 WO2000006685A1 (en) 1998-07-29 1999-07-23 Particulate compositions having a plasma-induced, water-soluble coating and process for making same

Country Status (7)

Country Link
EP (1) EP1100859A1 (pt)
JP (1) JP2002521557A (pt)
CN (1) CN1310752A (pt)
AU (1) AU4641599A (pt)
BR (1) BR9912551A (pt)
CA (1) CA2337171A1 (pt)
WO (1) WO2000006685A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477224A (zh) * 2021-08-09 2021-10-08 南京理工大学 一种有机膦改性羟基磷灰石的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021002702A2 (pt) * 2018-08-14 2021-05-11 Unilever Ip Holdings B.V. composição detergente para lavanderia, processo para preparar partículas de distribuição contendo agente de benefício, processo para preparação de uma composição detergente para lavanderia, método para fornecer um benefício desejado a um tecido e composição compreendendo agente de benefício

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421930A (en) * 1965-02-04 1969-01-14 Continental Can Co Condensation of monomer and low n-mer vapors to increase polymerization rates in a corona discharge
GB1269018A (en) * 1969-03-10 1972-03-29 Progil A method of and apparatus for encapsulating pulverulent materials
EP0271992A2 (en) * 1986-11-14 1988-06-22 Unilever Plc Machine dishwashing composition
US4756844A (en) * 1986-12-29 1988-07-12 The Dow Chemical Company Controlled-release composition having a membrane comprising submicron particles
US4810524A (en) * 1982-06-18 1989-03-07 Tdk Corporation Inorganic powders with improved dispersibility
GB2252559A (en) * 1991-02-09 1992-08-12 Tioxide Group Services Ltd Method of coating inorganic particles
EP0716144A2 (en) * 1994-11-14 1996-06-12 Unilever Plc Detergent tablet having a water-soluble coating
US5595762A (en) * 1992-11-30 1997-01-21 Laboratoires Virbac Stabilized pulverulent active agents, compositions containing them, process for obtaining them and their applications
WO1997021497A1 (en) * 1995-12-08 1997-06-19 Novartis Ag Plasma-induced polymer coatings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421930A (en) * 1965-02-04 1969-01-14 Continental Can Co Condensation of monomer and low n-mer vapors to increase polymerization rates in a corona discharge
GB1269018A (en) * 1969-03-10 1972-03-29 Progil A method of and apparatus for encapsulating pulverulent materials
US4810524A (en) * 1982-06-18 1989-03-07 Tdk Corporation Inorganic powders with improved dispersibility
EP0271992A2 (en) * 1986-11-14 1988-06-22 Unilever Plc Machine dishwashing composition
US4756844A (en) * 1986-12-29 1988-07-12 The Dow Chemical Company Controlled-release composition having a membrane comprising submicron particles
GB2252559A (en) * 1991-02-09 1992-08-12 Tioxide Group Services Ltd Method of coating inorganic particles
US5595762A (en) * 1992-11-30 1997-01-21 Laboratoires Virbac Stabilized pulverulent active agents, compositions containing them, process for obtaining them and their applications
EP0716144A2 (en) * 1994-11-14 1996-06-12 Unilever Plc Detergent tablet having a water-soluble coating
WO1997021497A1 (en) * 1995-12-08 1997-06-19 Novartis Ag Plasma-induced polymer coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477224A (zh) * 2021-08-09 2021-10-08 南京理工大学 一种有机膦改性羟基磷灰石的制备方法
CN113477224B (zh) * 2021-08-09 2023-11-03 南京理工大学 一种有机膦改性羟基磷灰石的制备方法

Also Published As

Publication number Publication date
JP2002521557A (ja) 2002-07-16
CN1310752A (zh) 2001-08-29
BR9912551A (pt) 2001-11-20
CA2337171A1 (en) 2000-02-10
AU4641599A (en) 2000-02-21
EP1100859A1 (en) 2001-05-23

Similar Documents

Publication Publication Date Title
US6440918B1 (en) Particulate compositions having a plasma-induced, graft polymerized, water-soluble coating and process for making same
US6303558B1 (en) Detergent composition containing at least two granular components
JPH08502546A (ja) プロテアーゼ酵素と漂白剤とを有する粒状洗剤
MXPA02000029A (es) Composicion detergente.
US6462012B1 (en) Detergent composition having a plasma-induced, water soluble coating and process for making same
EP0882125A1 (en) Process for making a low density detergent composition by agglomeration with an inorganic double salt
US6608021B1 (en) Granular detergent composition having improved appearance and solubility
JPH09502220A (ja) 洗剤組成物の調製方法
EP1100859A1 (en) Particulate compositions having a plasma-induced, water-soluble coating and process for making same
MXPA01001022A (en) Particulate compositions having a plasma-induced, water-soluble coating and process for making same
MXPA01001021A (en) Particulate compositions having a plasma-induced, graft polymerized, water-soluble coating and process for making same
WO2000022083A1 (en) Method for making a nanoporous granular material and a detergent composition
MXPA01001020A (en) Detergent composition having a plasma-induced, water-soluble coating and process for making same
JP2003513154A (ja) 洗剤組成物および洗浄方法
JP2003513151A (ja) 洗剤組成物
JP2003513152A (ja) 攪拌前に加える起泡性製品を利用する洗浄法
CA2039891A1 (en) Stable peroxycarboxylic acid granules
EP1446471A2 (en) Tablet of compacted particulate cleaning composition
JP2003513153A (ja) 洗剤組成物
JP2000510525A (ja) アニオン界面活性剤およびポリマー状ポリカルボキシレートを含んでなる散在粒子
WO2000018874A1 (en) Granular detergent composition having improved appearance and solubility
MXPA01003101A (en) Granular detergent composition having improved appearance and solubility
MXPA00000626A (en) Process for making high-active detergent agglomerates by multi-stage surfactant paste injection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809027.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2337171

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999929640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 562469

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/001022

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1999929640

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999929640

Country of ref document: EP