WO2000006330A1 - Filiere d'etirage et d'extrusion et procede de traitement de surface de ladite filiere d'etirage et d'extrusion - Google Patents
Filiere d'etirage et d'extrusion et procede de traitement de surface de ladite filiere d'etirage et d'extrusion Download PDFInfo
- Publication number
- WO2000006330A1 WO2000006330A1 PCT/JP1999/001699 JP9901699W WO0006330A1 WO 2000006330 A1 WO2000006330 A1 WO 2000006330A1 JP 9901699 W JP9901699 W JP 9901699W WO 0006330 A1 WO0006330 A1 WO 0006330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- die
- sliding contact
- extrusion
- surface treatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
- C23C26/02—Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
Definitions
- the present invention relates to a die for drawing and extrusion and a surface treatment method for a die for drawing and extrusion.
- the dies for bowing and extrusion are required to have high abrasion resistance, especially on the sliding surface of the work material formed by the inner peripheral surface of the die hole. .
- dies for drawing and extrusion have generally been made of high-hardness metal materials such as carbon tool steel and alloy tool steel, and have been subjected to heat treatment to improve wear resistance. Extending the life of dies (die) in drawing and extrusion is one of the most important issues. With the increasing precision and diversification of drawing and extrusion, the demands on the life of dies are becoming increasingly severe. Therefore, it is becoming difficult to secure the required durability by surface treatment by heat treatment.
- the present invention has been made in order to solve the above-mentioned problems, and a work material sliding contact surface constituted by an inner peripheral surface of a die hole has excellent wear resistance and excellent mold life.
- a surface treatment method for drawing and extruding dies and drawing and extruding dies that can process high-precision, high-quality drawn and extruded products even during long-term use. I have. Disclosure of the invention
- the drawing / extrusion die according to the present invention is characterized in that an electrode-consumed molten material of a discharge electrode generated by a discharge energy due to a submerged discharge applied to a work material sliding contact surface or a material thereof.
- the reaction product adheres and accumulates, and a modified layer is formed on the sliding contact surface of the work material by the molten material consumed by the electrode or the reaction product thereof.
- the modified layer is a hard coating.
- the self-modifying layer is WC :, T i C
- T a C like carbides, T i B 2, Z r B boride such as 2, T i New, are due alone or in combination, of nitrides such as T r New.
- the surface treatment method of the drawing / extrusion processing die is a method of processing the drawing / extrusion processing die in such a manner that a work material sliding contact surface of the drawing and extrusion processing die and a discharge electrode face each other with a predetermined discharge gap.
- a discharge is generated between the sliding surface of the material and the discharge electrode, and the molten material that is consumed by the electrode due to the discharge energy causes the reactant to adhere and deposit on the sliding surface of the material, thereby forming a work material.
- the modified layer is formed on the contact surface by the electrode consumable molten material or its reactant.
- the surface treatment method for the drawing and extrusion dies according to the following invention is a method for compressing a hard metal powder such as Zr, V, Ta, or a powder of a hydride powder thereof, A modified layer is formed by using a metal electrode made of the above metal and an electric discharge machining oil containing HC as a machining fluid.
- the surface treatment method of the drawing / extrusion processing die according to the following invention is a method in which the drawing / extrusion processing die to be processed is formed by wire electric discharge machining.
- the gap between the surface and the simple shape electrode is maintained at a predetermined value, and the simple shape electrode and the drawing die to be processed are relatively displaced using the machining program used in the wire electric discharge machining, and the machining is performed.
- a modified layer is formed on the sliding surface of the material.
- the surface treatment method of the drawing / extrusion processing die uses a simple shaped negative electrode, and performs inter-electrode servo control between the work material sliding contact surface and the fine simple shape electrode.
- the gap between the workpiece sliding contact surface and the simple shape electrode is maintained at a predetermined value, and the simple shape electrode and the drawing and extrusion dies to be processed follow the workpiece sliding contact surface shape.
- the surface treatment method of the drawing / extrusion dies uses a wire electrode, and maintains the gap between the workpiece sliding contact surface and the wire electrode at a predetermined value, and the wire electrode and the object to be processed.
- the die for extrusion and extrusion is displaced relative to the sliding surface of the workpiece to form a modified layer on the sliding surface of the workpiece.
- the surface treatment method of the drawing / extrusion dies is a method in which the bow I to be processed / extrusion dies are formed by wire electric discharge machining.
- the gap between the contact surface and the wire electrode is maintained at a predetermined value.
- the machining program used in the wire electric discharge machining is used to relatively displace the wire electrode and the drawing / extrusion dies to be processed.
- the modified layer is formed on the sliding contact surface.
- the surface treatment method of the die for drawing and extrusion according to the next invention is performed by using the same wire electric discharge machine, performing die machining using the wire electrode for wire electric discharge machining, and thereafter performing the surface treatment.
- a modified layer is formed on a work material sliding contact type surface by using a wire electrode for use.
- FIG. 1 is a configuration diagram showing a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a drawing / extrusion die according to the present invention.
- FIG. 2 is a drawing / extrusion according to the present invention.
- FIG. 3 is a perspective view showing a state in which a modified layer is formed on a surface of a processing material slidable contact type of an extrusion die using a simple shape electrode in the surface treatment method of the processing die
- FIG. FIG. 4 is an explanatory diagram showing the correction procedure of the movement path of the simple shape electrode in the surface treatment method for the drawing and extrusion dies.
- FIG. 4 is a graph showing the correction value characteristics of the movement path of the simple shape electrode.
- FIG. 6 is a block diagram showing a second embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a drawing / extrusion die according to the present invention. Electrode movement Is an explanatory view showing a scan, FIG. 7 is a pull-extrusion according to the invention FIG. 8 is a configuration diagram showing a third embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a die for drawing, and FIG. 8 shows a wire electrode in the surface treatment method for a die for drawing and extrusion according to the present invention.
- FIG. 9 is a perspective view showing a state in which a modified layer is formed on a surface of a work material sliding contact type of an extrusion die using the method of FIG. FIG.
- FIG. 10 is a cross-sectional view showing a state in which a modified layer is formed on a surface of a work material slidably contacting a tapered portion of an extrusion-forming die using a wire electrode.
- FIG. 11 is a configuration diagram showing a fourth embodiment of a surface treatment apparatus used for carrying out a surface treatment method for dies.
- FIG. 11 shows a modified layer formed by the surface treatment method for a die for drawing and extrusion according to the present invention.
- Formed press Aru a sectional view showing a form of a single "" ⁇ exemplary processing die to.
- FIG. 1 shows a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a drawing / extrusion die according to the present invention.
- This surface treatment device is a kind of electric discharge machine and has a superimposed structure of an X-axis table 1 movable in the horizontal X-axis direction and a Y-axis table 3 movable in the horizontal Y-axis direction.
- a work tank 7 is fixed on the work table 5.
- a processing material mounting table 9 is provided in the processing tank 7, and a drawing / extrusion die, which is a processing material, and a drawing die 100 in the illustrated example are mounted on the processing material mounting table 9. Is fixed.
- a processing liquid is supplied into the processing tank 7 from a processing liquid supply device (not shown), and the drawing die 100 on the workpiece mounting table 9 is immersed in the processing liquid.
- An electrode support bed 11 movable in the vertical Z-axis direction is provided above the processing tank 7.
- a rotary electrode support device 13 having an electrode support bed 11 is provided.
- the electrode support device 13 exchangeably supports the simple shape electrode 15 using a thin rod, and rotates the simple shape electrode 15 around the electrode axis.
- the simple-shaped electrode 15 has a round bar shape, and the outer diameter of the electrode can be selected according to the size of the material to be processed, and may be set to a size that fits into the die hole 102.
- the X-axis table 1, Y-axis table 3, and electrode support pad 11 are provided by the X-axis support unit 17, the Y-axis support unit 19, and the Z-axis support unit 21, respectively. Positioning is driven, the X-axis servo motor 17 and the Y-axis servo motor 19 and the Z-axis servo motor 21 are controlled by the axis commands output by the locus movement control unit 25 of the numerical controller 23. Position controlled.
- the trajectory movement control unit 25 of the numerical controller 23 receives the trajectory movement data (electrode path information) from the electrode movement trajectory generation CAM device 27, and based on the trajectory movement data, the X-axis, Y-axis, and Z-axis. Generate a position index for each axis.
- the die hole 102 is formed by grinding or wire electric discharge machining.
- the drawing die 100 is set on the processing material mounting table 9, the processing liquid is stored in the processing tank 7, and the drawing die 100 on the processing material mounting table 9 is set as the processing liquid. Immerse in it.
- a pulse discharge is generated by applying a pulse voltage between the workpiece sliding contact surface 104 and the simple shaped electrode 15 with the predetermined surface and the predetermined surface facing each other with a predetermined discharge gap g (see Fig. 3). Let it.
- the electrode consumable molten material generated by the discharge energy or a reaction product of the electrode consumable and the machining fluid component adheres and deposits on the work material sliding contact surface 104 a, and the entire surface of the work material sliding contact surface 104 a
- a reformed layer 108 is formed by the electrode consumable molten material or its reactant.
- the modified layer 108 is a hard coating having excellent wear resistance.
- Te is, WC, T i C, Z r C :, VC, carbides such as TaC, T i B 2, Z r B boride such as 2, T i N, single nitrogen ⁇ things such as T r N, Alternatively, a combination thereof may be used.
- a powder of a hard metal such as Ti, Zr, V, Ta, or a green compact electrode obtained by compression-molding a powder of a hydride thereof, or a metal of these metals
- EDM oil containing HC as the machining fluid
- metal carbides such as TiC, ZrC, VC ;, NbC, TaC, etc.
- the method of forming the modified layer 108 by the above-described pulse discharge conforms to a method called a discharge surface treatment method by gap discharge in liquid, and this discharge surface treatment method is disclosed in Japanese Patent Laid-Open No. 6-182626.
- the formation of the modified layer 108 is performed uniformly over the entire circumference of the work material sliding contact surface 104a.
- the gap g between the workpiece sliding contact surface 104a and the simple shape electrode 105 is maintained at a predetermined value, and the fine simple shape electrode 15 and the die to be processed are drawn and extruded.
- the drawing die 100 is relatively displaced in accordance with the surface shape of the workpiece sliding contact determined by the plane shape of the die hole. Due to this relative displacement, the modified layer 108 can be formed on the entire periphery of the work material sliding contact surface 104
- the relative displacement between the simple shape electrode 15 and the drawing die 100 according to the surface shape of the workpiece sliding contact is performed by moving the X axis table 1 in the X axis direction and the Y axis table 3 in the Y axis direction. It can be done by moving.
- the trajectory movement control unit 25 provided inside the numerical controller 23 moves the simple shape electrode 15 for surface treatment in the horizontal direction based on the electrode movement path information created by the CAM 27 for electrode trajectory generation in advance. That is, the drive control of the X-axis table 1 and the Y-axis table 3 is performed so that the trajectory movement of the simple-shaped electrode 15 traces the workpiece sliding contact surface 104a.
- the cutting edge 106 has a constant height in accordance with the position in the Z-axis direction.
- the electrode moving program for the electric discharge surface treatment is created using a dedicated CAM, but the die hole 100 of the drawing die 100 is formed by wire electric discharge machining.
- the simple shape electrode i5 and the drawing die 100 are relatively displaced using the machining program used in the wire electric discharge machining of the die hole, and the work material sliding contact surface 10 0 It is also possible to form the modified layer 108 on 4a.
- FIG. 2 shows a state in which a discharge surface treatment is performed on a surface of a workpiece slidable die surface of a drawing die 100 as a material to be processed.
- the modified layer 108 is formed on the contact surface 104 of the work material of the drawing die 100 by using the side surface of the simple shape electrode 15. Do it.
- the simple electrode 15 is rotated around the electrode axis by using the rotary electrode support device 13.
- the simple shape electrode 15 When the discharge surface treatment is performed by tracing the cutting edge shape using the side surface of the simple shape electrode 15, the simple shape electrode 15 is consumed as the discharge surface treatment progresses, and the electrode diameter gradually increases. Therefore, as shown in FIG. 3, it is necessary to correct the electrode moving path P in a direction in which the electrode moving path P approaches the material to be processed, according to the moving amount (machining distance) of the simple shape electrode 15.
- the processing distance and the correction amount cg is in a proportional relationship with a certain proportionality constant. Therefore, it is sufficient to perform linear tool diameter correction with respect to the machining distance in the normal direction of the cutting edge shape with the correction amount c g.
- FIG. 5 shows a second embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a drawing / extrusion die according to the present invention.
- parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof will be omitted.
- a U-axis moving means 31 for moving the simple shape electrode 15 in the horizontal U-axis direction on the electrode support portion and a simple shape electrode 15 V-axis moving means 33 for moving in the V-axis direction is provided.
- U-axis moving means 3 KV-axis moving means 33 is driven by U-axis servomotor 35 and V-axis servomotor 37, respectively.
- U-axis servomotor 35 and V-axis servomotor 37 are numerically controlled. The position is controlled by each axis command output from the gap servo movement control unit 39 of the device 23.
- the movement control unit 39 for the gap between rollers receives the average voltage between the simple shape electrode 15 detected by the average voltage detecting means 41 and the material to be processed, and inputs the average voltage (detection result) to this average voltage. Based on this, the U-axis position command and V-axis position command are output so that the distance g between the workpiece surface (working material sliding contact surface 104 a) and the simple shape electrode 15 is kept constant.
- the distance between the workpiece sliding contact surface 104a and the simple shape electrode 15 is kept constant with respect to electrode wear.
- the average voltage of the shape electrode 15 is detected, and the electric discharge machine uses a constant average voltage servo which performs movement control so as to keep the general average voltage constant.
- FIG. 6 shows the direction of the electrode movement path and the gap between the electrodes.
- the side surface servo is taken in the normal direction to the electrode moving path.
- the processing material sliding contact surface 104a which is the surface to be processed, and the simple shape electrode 15 Discharge surface treatment is performed so as to trace the cutting edge shape while removing the gap between the poles (side surface relief), and a hard coating is generated on the workpiece sliding contact surface 10.4a.
- the life of the die can be significantly improved. Furthermore, since the electric discharge surface treatment is performed while removing the gap between the gaps, there is an effect that the machining time can be reduced.
- FIG. 7 shows a third embodiment of a surface treatment apparatus used for carrying out the method for surface treatment of a drawing / extrusion die according to the present invention.
- parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof will be omitted.
- This surface treatment device is a type of wire electric discharge machine, and has a superposed structure of an X-axis table 51 movable in the horizontal X-axis direction and a Y-axis table 53 movable in the horizontal Y-axis direction. It has a work table 5 5 depending on the body.
- a work table 55 is provided on the work table 55, and a drawing / extrusion die, which is a work material, is drawn on the work table 57, and in the illustrated example, a drawing die 100 is provided. 0 is fixed.
- the X-axis table 51 and the Y-axis table 53 are positioned and driven by the X-axis servo motor 59 and the Y-axis servo motor 61, respectively. Position 61 is controlled by each axis command output from the locus movement control unit 25 of the numerical controller 23.
- Wire electrode guides 63, 65 are provided above and below the workpiece mounting table 57, respectively, and the wire electrode 69 for surface treatment unreeled from the wire bobbin 67 is provided with the wire electrode guide 63. It is designed to run vertically between 65.
- the wire electrode 69 is provided between the wire electrode guides 63, 65, the die hole 100 of the drawing die 100 on the workpiece mounting table 57, and the work material sliding contact surface 100. 4 Run up and down with a predetermined discharge gap with respect to a.
- a machining fluid is sprayed from a machining fluid nozzle 71 to a discharge gap between the wire electrode 69 and the workpiece sliding contact surface 104a.
- the drawing in which the die hole 102 is formed by grinding or wire electric discharge machining is performed.
- the processing die 100 is set on the processing material mounting table 57, and the processing liquid is sprayed from the processing liquid nozzle 71.
- the workpiece sliding surface 10 4a and the wire electrode 6 9 provided by the inner peripheral surface of 2 a are opposed to each other with a predetermined discharge gap between the workpiece sliding surface 10 4 a and the wire electrode 69.
- a pulse voltage is applied to generate a pulse discharge in the machining fluid ejected from the machining fluid nozzle 71.
- the electrode consumable molten material generated by the discharge energy or the reaction product of the electrode consumable and the machining fluid component adheres and deposits on the work material sliding contact surface 104a, and as shown in FIG.
- a reformed layer 108 is formed on the entire surface of the material contacting type surface 104a by the electrode consumable molten material or a reaction product thereof.
- a wire electrode made of a hard metal such as Ti, Zr, V, Ta, etc. is used as the wire electrode 69, an electric discharge machining oil containing HC is used as a machining fluid, and the electrode material and HC in the electric discharge machining oil are used.
- a hard coating made of a metal carbide such as TiC, ZrC ;, VC; and TaC can be efficiently and satisfactorily formed on the work contact surface 104a.
- the modified layer 106 is formed uniformly over the entire circumference of the work material sliding contact surface 104a. For this purpose, the gap between the workpiece sliding contact surface 104a and the wire electrode 69 is maintained at a predetermined value, and the wire electrode 69 and the object to be processed are drawn and extruded. 100 is relatively displaced according to the shape of the workpiece sliding contact surface determined by the planar shape of the die hole. By this relative displacement, the modified layer 108 can be formed on the entire circumference of the work material sliding contact surface 104a.
- the relative displacement between the wire electrode 69 and the drawing die 100 following the surface shape of the workpiece sliding contact is achieved by moving the X-axis table 51 in the X-axis direction and the Y-axis table 53 in the Y-axis direction. It can be done by moving.
- the trajectory movement control unit 25 provided inside the numerical control device 23 has an electrode movement generated in advance by the electrode trajectory generation CAM 15, as in the first embodiment. Based on the motion path information, the lateral movement of the surface treatment wire electrode 69, that is, the drive control of the X-axis table 51 and the Y-axis table 53, is performed, and the trajectory movement of the wire electrode 69 is processed material sliding. The tangent surface 104a is traced.
- the electrode moving program for the electric discharge surface treatment is created by using the dedicated CAM, but the die hole 102 of the punching die 100 is formed by the discharge electric machining.
- the work material sliding contact surface is formed.
- a modified layer 108 may be formed on 104a.
- the formation of the modified layer 108 on the work material sliding contact surface 104 a of the drawing die 100 is performed using the wire electrode 69 as shown in FIG.
- the wire electrode 69 is consumed, a new wire electrode 69 for surface treatment is always supplied from the wire bobbin 67, so that the discharge surface treatment can be performed without being aware of the consumption of the wire electrode 69. Therefore, the movement path of the wire electrode 69 may be the same as the movement path of the electrode in wire electric discharge machining.
- the modified layer 108 of the hard coating is formed on the surface of the workpiece sliding contact type. can do.
- the wire electrode 69 is inclined so that the die hole of the wire drawing die 100 is formed.
- the modified layer 108 can also be formed on the taper portion 102b of 102.
- FIG. 10 shows a fourth embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a die for drawing and extrusion according to the present invention.
- parts corresponding to FIG. 7 are given the same reference numerals as those given in FIG. Description is omitted.
- a wire for performing a die machining is provided separately from the wire electrode 69 for the surface treatment.
- a wire electrode 73 for electric discharge machining is provided, and one of the wire electrode 69 for surface treatment and the wire electrode 73 for wire electric discharge machining is switched by the wire electrode switching means 75. ing.
- the wire electrode 69 for surface treatment is paid out from the wire bobbin 67, guided by the wire electrode guide 63, reaches the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide 6 are provided. Travel between 5 and.
- the wire electrode 73 for wire electric discharge machining is drawn out from the wire bobbin 77, guided by the wire electrode guide section 79 to the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide section. Drive between 6 and 5.
- the wire electrode 69 for surface treatment and the wire electrode 73 for wire electric discharge machining are set as the setup work, and the material of the drawing die 100 is set on the work table 57. I do.
- the wire electrode 73 for wire electric discharge machining is used as the first step, and the machining fluid is sprayed from the machining fluid nozzle 71 to the discharge gap. Process the whole of 02.
- the wire electrode to be used is changed from the wire electrode for wire electric discharge machining 73 to the wire electrode for surface treatment 69 9 by the wire electrode switching means 75.
- a wire electrode 69 for surface treatment is used, and the discharge between the wire electrode 69 and the workpiece sliding contact surfaces 104a and 104b is performed in the same manner as in the second embodiment.
- a machining fluid is sprayed from the machining fluid nozzle 71 to the gap, and the discharge surface treatment is applied to the work material sliding contact surfaces 104a and 104b of the die hole 102 machined by wire electric discharge machining.
- a modified layer 108 see FIGS.
- the trajectory movement control unit 25 provided inside the numerical control device 23 is configured to control the side of the wire electrode 73 for wire discharge application based on the electrode path information created in advance by the electrode trajectory generation CAM 27.
- the relative movement control of the directions that is, the axis control of the X-axis table 51 and the Y-axis table 53 is performed, and the trajectory movement of the wire electrode 73 is adapted to the processing shape of the die hole 102.
- the trajectory movement control unit 25 of the numerical controller 23 uses the same method as the normal finishing processing of wire electric discharge machining, based on the electrode path information created in advance by the electrode trajectory generation CAM 27.
- the axis control of the X-axis table 51 and the Y-axis table 53 is performed, and the trajectory movement of the wire electrode 69 is traced on the workpiece sliding contact surfaces 104a and 104b.
- the die hole for the die for drawing and extrusion is made by wire electric discharge machining, and after the die hole processing, the discharge surface treatment by the gap discharge in liquid is applied to the workpiece sliding contact surface to form the die hole shape.
- the discharge surface treatment by the gap discharge in liquid is applied to the workpiece sliding contact surface to form the die hole shape.
- the wire electrode 73 for wire electric discharge machining and the wire electrode 69 for surface treatment are automatically switched using the electrode switching means 75.
- the machining may be performed later by replacing the wire electrode manually. In this case, the trouble of replacing the wire electrode is increased, but there is a merit that the electrode switching means 75 can be omitted and the device can be provided at low cost.
- the modified layer 1 is formed by a discharge surface treatment using a submerged gap discharge on the sliding surface of the workpiece.
- the formation of 08 can be similarly performed on the work material sliding contact surface 202 of the extrusion die 200 as shown in FIG.
- the surface of the work-piece sliding contact surface is subjected to the discharge surface treatment by the gap discharge in the liquid, thereby reforming the electrode consumable material or the reactant thereof. Since the layer is formed, the die life is greatly improved.
- the work material sliding contact surface is coated with the hard film generated by the discharge surface treatment by the submerged gap discharge.
- the wear resistance is improved and the life of the die is greatly improved.
- the electrode-consumed molten material or its material is discharged by the discharge surface treatment by the submerged gap discharge on the work material sliding contact surface of the drawing die for extrusion processing. Since the modified layer is formed by the reactant, the die life of the drawing / extrusion die can be greatly improved.
- the contact between the electrode material and the HC of the electric discharge machining oil causes the work material sliding contact surface to have a TiC, ZrC :, VC. Since it is covered with a hard coating such as T a C, the wear resistance of the work-piece sliding contact surface can be improved, and the life of the die can be greatly improved.
- the simple shape electrode is used, and the gap between the workpiece sliding contact surface and the simple shape electrode is maintained at a predetermined value.
- Drawing and extrusion die to be processed are relatively displaced according to the shape of the workpiece sliding contact surface determined by the die hole shape, and a modified layer is formed on the workpiece sliding contact surface. No need to prepare electrodes in the die, greatly increasing the life of the die It can be improved.
- the gap discharge between the workpiece sliding surface of the die and the simple shape electrode is maintained at a predetermined value, and the discharge of the die is formed.
- a special processing program for surface treatment is used since the modified program is used to relatively displace the simple shape electrode and the die to be processed using the processing program used in the processing to form the reformed layer on the sliding surface of the workpiece.
- the surface treatment of the sliding surface of the work material of the die for drawing and extrusion can be performed without the need for a die.
- the work material is formed by using the simple shape electrode and performing inter-electrode servo control between the work material sliding contact surface and the simple shape electrode.
- the gap between the sliding contact surface and the simple shape electrode is maintained at a predetermined value, and the simple shape electrode and the drawing / extrusion die to be processed follow the shape of the material sliding contact surface determined by the die hole shape. Since the modified layer is formed on the sliding surface of the workpiece by relative displacement, a hard coating can be formed on the sliding surface of the workpiece, and the life of the die can be significantly improved. In addition, the time required for surface treatment can be significantly reduced.
- the wire electrode is used, and the gap between the workpiece sliding contact surface and the wire electrode is maintained at a predetermined value.
- Drawing and extruding dies to be processed are displaced relative to each other according to the shape of the workpiece sliding surface determined by the shape of the die hole, and a modified layer is formed on the workpiece sliding surface. Therefore, it is not necessary to prepare a dedicated electrode, and the life of the die can be greatly improved.
- the surface treatment can be performed without being conscious of electrode consumption, and the reformed layer can be formed with high precision on the sliding surface of the workpiece.
- the die is removed by keeping the gap between the work material sliding contact surface of the drawing / extrusion die and the wire electrode at a predetermined value.
- the machining program used in wire electric discharge machining of the above relative displacement between the simple shape electrode and the drawing / extrusion dies to be processed to form a modified layer on the sliding surface of the work material. Requires a special machining program Without this, it is possible to perform the surface treatment of the sliding surface of the workpiece of the extrusion die.
- the surface treatment method of the die for drawing / extrusion processing according to the next invention, in the same wire electric discharge machine, die-type machining is performed using the wire electrode for wire electric discharge machining, and thereafter, the wire for surface treatment is used. Since the electrode is used to form the modified layer on the sliding surface of the workpiece, it is possible to form a hard coating on the sliding surface of the workpiece by setting the die hole processing and the surface treatment in the same setup. In addition to significantly improving the life of the die, the time required for surface treatment can be significantly reduced. Industrial applicability
- the surface treatment method of the die for drawing and extruding and the die for drawing and extruding according to the present invention are particularly suitable for obtaining the required durability (mold life). It is suitable for the surface treatment method of drawing dies and extrusion dies that require high wear resistance on the work material sliding contact surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Metal Extraction Processes (AREA)
Description
明 細 書 引抜き ·押出し加工用ダイスおよび引抜き ·押出し加工用ダイスの表面処理方法 技術分野
この発明は引抜き ·押出し加工用ダイスおよび引抜き ·押出し加工用ダイスの 表面処理方法に関するものである。 背景技術
弓股き加工用ダイス、 押出し加工用ダイスは、 所要の耐久性 (型寿命) を得る ために、 特に、 ダイス孔内周面がなす加工材摺接型面に高い耐摩耗性を要求され る。
従来一般に、 引抜き ·押出し加工用ダイスは、 炭素工具鋼、 合金工具鋼など、 高硬度の金属材料で構成され、 熱処理により耐摩耗性の向上を図られている。 引抜き加工、 押出し加工におけるダイス (金型) の長寿命化はもつとも重要な 課題の一つであり、 引抜き加工、 押出し加工の高精度化、 多様化に伴い、 ダイス の寿命に対する要求が益々厳しくなつており、 熱処理による表面処理では、 要求 される耐久性を確保することが難しくなつてきている。
この発明は、 上述の如き問題点を解消するためになされたもので、 ダイス孔内 周面により構成される加工材摺接型面が良好な耐摩耗性を有して優れた型寿命を 示し、 長期間の使用においても高精度、 高品質の引抜き加工品、 押出し加工品を 加工することができる引抜き ·押出し加工用ダイスおよび引抜き ·押出し加工用 ダイスの表面処理方法を提供することを目的としている。 発明の開示
この発明による引抜き ·押出し加工用ダイスは、 加工材摺接型面に液中放電加 ェによる放電エネルギによって生じる放電電極の電極消耗溶融物質あるいはそれ
の反応物が付着堆積し、 加工材摺接型面に電極消耗溶融物質あるいはそれの反応 物による改質層が形成されているものである。
つぎの発明による引抜き,押出し加工用ダイスは、 前記改質層が硬質被膜であ るものである。
つぎの発明による引抜き ·押出し加工用ダイスは、 前言己改質層が WC:、 T i C
、 Z r C、 V C. T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物、 T i Ν、 Τ r Ν等の窒化物の単体、 あるいは組合せによるものである。
また、 この発明による引抜き ·押出し加工用ダイスの表面処理方法は、 加工液 中において引抜き ·押出し加工用ダイスの加工材摺接型面と放電電極とを所定の 放電ギヤップをおいて対向させて加工材摺接型面と放電電極との間に放電を発生 させ、 放電工ネルギによって生じる電極消耗溶融物質あるレ、はそれの反応物を加 ェ材摺接型面に付着堆積させ、 加工材摺接型面に電極消耗溶融物質あるいはそれ の反応物による改質層を形成するものである。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法は、 Z r、 V、 T a等の硬質金属の粉体、 もしくはこれらの水素化物の粉体を圧縮成形した圧粉 体電極、 あるいはこれらの金属による金属電極を使用し、 加工液として H Cを含 む放電加工油を使用して改質層を形成するものである。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法は、 処理対象の 引抜き ·押出し加工用ダイスがワイヤ放電加工により形成されたものであり、 単 純形状電極を使用し、 加工材摺接型面と単純形状電極との間の間隙を所定値に保 つて前記ワイヤ放電加工で使用した加工プログラムを使用して単純形状電極と処 理対象の引抜き ·押出し加工用ダイスとを相対変位させ、 加工材摺接型面に改質 層を形成するものである。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法は、 単純形伏電 極を使用し、 前記加工材摺接型面と微細単純形状電電極との間で極間サーボ制御 を行うことで加工材摺接型面と単純形状電極との間の間隙を所定値に保ち、 単純 形状電極と処理対象の引抜き,押出し加工用ダイスとを加工材摺接型面形状に倣
つて相対変位させ、 加工材摺接型面に改質層を形成するものである。
つぎの発明による引抜き ·押出.し加工用ダイスの表面処理方法は、 ワイヤ電極 を使用し、 加工材摺接型面とワイヤ電極との間の間隙を所定値に保つてワイヤ電 極と処理対象の引抜き ·押出し加工用ダイスとを加工材摺接型面形状に倣って相 対変位させ、 加工材摺接型面に改質層を形成するものである。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法は、 処理対象の 弓 I抜き ·押出し加工用ダイスがワイヤ放電加工により形成されたものであり、 ヮ ィャ電極を使用し、 加工材摺接型面とワイヤ電極との間の間隙を所定値に保つて 前記ワイヤ放電加工で使用した加工プログラムを使用してワイヤ電極と処理対象 の引抜き ·押出し加工用ダイスとを相対変位させ、 加工材摺接型面に改質層を形 成するものである。
つぎの発明による引抜き■押出し加工用ダイスの表面処理方法は、 同一のワイ ャ放電加工機にぉレ、て、 ヮィャ放電加工用のヮィャ電極を使用して型加工を行レヽ 、 この後に表面処理用のワイヤ電極を使用して加工材摺接型面に改質層を形成す るものである。 図面の簡単な説明
第 1図は、 この発明による引抜き ·押出し加工用ダイスの表面処理方法の実施 に使用される表面処理装置の実施の形態 1を示す構成図であり、 第 2図は、 この 発明による引抜き ·押出し加工用ダイスの表面処理方法において単純形状電極を 使用して押出し加工用ダイスの加工材摺接型面に改質層を形成する様子を示す斜 視図であり、 第 3図は、 この発明による引抜き,押出し加工用ダイスの表面処理 方法における単純形状電極の移動パスの補正要領を示す説明図であり、 第 4図は 、 単純形状電極の移動パスの補正値特性を示すグラフであり、 第 5図は、 この発 明による引抜き ·押出し加工用ダイスの表面処理方法の実施に使用される表面処 理装置の実施の形態 2を示す構成図であり、 第 6図は、 極間サーボによる単純形 状電極の移動パスを示す説明図であり、 第 7図は、 この発明による引抜き ·押出
し加工用ダイスの表面処理方法の実施に使用される表面処理装置の実施の形態 3 を示す構成図であり、 第 8図は、 この発明による引抜き ·押出し加工用ダイスの 表面処理方法においてワイヤ電極を使用して押出し加工用ダイスの加工材摺接型 面に改質層を形成する様子を示す斜視図であり、 第 9図は、 この発明による引抜 き ·押出し加工用ダイスの表面処理方法においてワイヤ電極を使用して押出し加 ェ用ダイスのテーパ部の加工材摺接型面に改質層を形成する様子を示す断面図で あり、 第 1 0図は、 この発明による引抜き ·押出し加工用ダイスの表面処理方法 の実施に使用される表面処理装置の実施の形態 4を示す構成図であり、 第 1 1図 は、 この発明による引抜き ·押出し加工用ダイスの表面処理方法により改質層を 形成された押出し加工用ダイスの一"" ^の実施の形態を示す断面図でぁる。 発明を実施するための最良の形態
以下に添付の図を参照して、 この発明による引抜き ·押出し加工用ダイスおよ び引抜き ·押出し加工用ダイスの表面処理方法にかかる実施の形態を詳細に説明 する。
第 1図はこの発明による引抜き ·押出し加工用ダイスの表面処理方法の実施に 使用される表面処理装置の実施の形態 1を示している。
この表面処理装置は、 放電加工機の一種であり、 水平方向の X軸方向に移動可 能な X軸テーブル 1と水平方向の Y軸方向に移動可能な Y軸テーブル 3との重ね 合わせ構造体によるワークテーブル 5を有し、 ワークテーブル 5上に加工槽 7を 固定されている。
加工槽 7内には被処理材載置台 9が設けられており、 被処理材載置台 9上に被 処理材である引抜き ·押出し加工用ダイス、 図示例では引抜き加工用ダイス 1 0 0が載置固定される。 また、 加工槽 7内には、 図示されていない加工液供給装置 より加工液が供給され、 被処理材載置台 9上の引抜き加工用ダイス 1 0 0は加工 液中に浸漬される。
加工槽 7の上方部には、 垂直 Z軸方向に移動可能な電極支持ベッド 1 1が設け
られており、 電極支持べッ ド 1 1の回転式の電極支持装置 1 3が設けられている 。 電極支持装置 1 3は、 細棒による単純形状電極 1 5を交換可能に支持し、 単純 形状電極 1 5を電極軸心周りに回転させる。 単純形状電極 1 5は丸棒状をなして おり、 これの外径寸法は被処理材の大きさに応じて選定でき、 ダイス孔 1 0 2内 に入る寸法に設定されればよい。
X軸テーブル 1、 Y軸テーブル 3、 電極支持べッ ド 1 1は、 それぞれ、 X軸サ 一ボモ一夕 1 7、 Y軸サ一ボモ一夕 1 9、 Z軸サ一ボモー夕 2 1により位置決め 駆動され、 X軸サーボモ一夕 1 7、 Y軸サ一ボモータ 1 9、 Z軸サ一ボモ一夕 2 1は、 数値制御装置 2 3の軌跡移動制御部 2 5が出力する各軸指令により位置制 御される。
数値制御装置 2 3の軌跡移動制御部 2 5は、 電極移動軌跡生成用 C AM装置 2 7より軌跡移動データ (電極パス情報) を入力し、 軌跡移動データに基づいて X 軸、 Y軸、 Z軸の各軸の位置指合を生成する。
上述のような構成による表面処理装置を用レ、てこの発明による引抜き ·押出し 加工用ダイスの表面処理方法を実施する場合には、 研削加工あるいはワイヤ放電 加工によってダイス孔 1 0 2の加工がなされた引抜き加工用ダイス 1 0 0を被処 理材載置台 9上にセッ トし、 加工槽 7内に加工液を溜めて被処理材載置台 9上の 引抜き加工用ダイス 1 0 0を加工液中に浸漬させる。
加工槽 7内の加工液中において、 引抜き加工用ダイス 1 0 0のダイス孔 1 0 2 におけるストレート部 1 0 2 aの内周面が与える加工材摺接型面 1 0 4 aと単純 形状電極 1 5とを所定の放電ギャップ g (第 3図参照) をおいて対向させて加工 材摺接型面 1 0 4と単純形状電極 1 5との間にパルス電圧を印加してパルス放電 を発生させる。 これにより、 放電エネルギによって生じる電極消耗溶融物質ある いはそれと加工液成分との反応物が加工材摺接型面 1 0 4 aに付着堆積し、 加工 材摺接型面 1 0 4 aの全面に電極消耗溶融物質あるいはそれの反応物による改質 層 1 0 8 (第 2図参照) が形成される。
改質層 1 0 8は、 耐摩耗性に優れた硬質被膜であり、 改質層 1 0 8の材質とし
ては、 WC、 T i C、 Z r C:、 VC、 TaC等の炭化物、 T i B2 、 Z r B2 等 の硼化物、 T i N、 T r N等の窒^物の単体、 あるいはそれらの組合せによるも のが挙げられる。
また、 単純形状電極 1 5として、 T i、 Z r、 V、 T a等の硬質金属の粉体、 もしくはこれらの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの 金属による金属電極を使用し、 加工液として HCを含む放電加工油を使用し、 電 極材料と放電加工油中の HCとの反応により、 T i C、 Zr C、 VC;、 NbC、 TaC等の金属炭化物による硬質被膜を加工材摺接型面 1 04 aの全体に効率よ く良好に形成することができる。
上述のようなパルス放電による改質層 1 08の形成法は、 液中ギャップ放電に よる放電表面処理法と呼ばれる方法に準拠したものであり、 この放電表面処理法 は、 特開平 6— 1 82626号公報、 特開平 8 - 25784 1号公報、 特開平 9 - 1 9829号公報、 特開平 9— 1 92937号公報にそれぞれ示されている。 改質層 1 0 8の形成は加工材摺接型面 1 04 aの全周に亙って一様に面状に行 われる。 このために、 加工材摺接型面 1 04 aと単純形状電極 1 05との間の間 隙 gを所定値に保って微細単純形状電極 1 5と処理対象の引抜き ·押出し加工用 ダイスである引抜き加工用ダイス 1 00とをダイス孔平面形状により決まる加工 材摺接型面形状に倣って相対変位させる。 この相対変位によって加工材摺接型面 1 04 aの全周に改質層 1 08を形成することができる。
単純形状電極 1 5と引抜き加工用ダイス 1 00とを加工材摺接型面形状に倣つ て相対変位させることは、. X軸テーブル 1の X軸方向移動と Y軸テーブル 3の Y 軸方向移動により行うことができる。
数値制御装置 23の内部に設けられた軌跡移動制御部 25は、 予め電極軌跡生 成用 CAM27によって作成された電極移動パス情報に基づき、 表面処理用の単 純形状電極 1 5の横方向の移動、 すなわち、 X軸テーブル 1と Y軸テーブル 3の 駆動制御を行い、 単純形状電極 1 5の軌跡移動を加工材摺接型面 1 04 aをなぞ るようにしている。 ここで、 単純形状電極 1 5の Z軸方向 (深さ方向) の制御は
、 切刃 1 0 6の Z軸方向位置に合わせて一定の高さとしている。
上述の実施の形態では、 放電表面処理加工の電極移動プログラムは、 専用の C AMを使用して作成しているが、 引抜き加工用ダイス 1 0 0のダイス孔 1 0 2が ワイヤ放電加工により形成される場合には、 ダイス孔明けのワイヤ放電加工で使 用した加工プログラムを使用して単純形状電極 i 5と引抜き加工用ダイス 1 0 0 とを相対変位させ、 加工材摺接型面 1 0 4 aに改質層 1 0 8を形成することもで さる。
第 2図は被処理材である引抜き加工用ダイス 1 0 0の加工材摺接型面部分に放 電表面処理加工を行う伏態を示している。 引抜き加工用ダイス 1 0 0の加工材摺 接型面 1 0 4に対する改質層 1 0 8の形成は、 第 2図に示されているように、 単 純形状電極 1 5の側面を使用して行う。
この放電表面処理では、 放電表面処理の進行に伴レ、電極材料が消耗するので、 単純形状電極 1 5の側面が消耗してやせ細り、 放電状態が安定しない。 そこで、 放電状態が安定するように、 回転式の電極支持装置 1 3を使用し、 単純形状電極 1 5を電極軸心周りに回転させている。
単純形状電極 1 5の側面を使用して、 切刃形状をなぞるようにして放電表面処 理を行うと、 放電表面処理の進行に伴い単純形状電極 1 5が消耗し、 電極径が次 第に小さくなるので、 第 3図に示されているように、 単純形状電極 1 5の移動量 (加工距離) に応じて電極移動パス Pを被処理材に近づける方向に補正する必要 がある。
この補正量 e gとしては、 加工送り量、 電極回転数がともに一定の場合、 加工 距離と電極の消耗量は一定であることから、 第 4図に示されているように、 加工 距離と補正量 c gとは或る比例定数をもって比例関係になる。 従って、 補正量 c gをもつて切刃形状の法線方向に加工距離に対して直線的な工具径補正を行えば よい。
以上のように切刃形状の側面をなぞるように単純形状電極 1 5を移動させ、 切 刃形状の法線方向に電極消耗分の補正値 c gを与えながら適正間隙 (放電ギヤッ
プ) gを保って放電表面処理を行うことで、 引抜き加工用ダイス 1 0 0の加工材 摺接型面 1 0 4の全域に硬質被膜による改質層 1 0 8を形成することができる。 第 5図はこの発明による引抜き ·押出し加工用ダイスの表面処理方法の実施に 使用される表面処理装置の実施の形態 2を示している。 なお、 第 6図において、 第 1図に対応する部分は、 第 1図に付した符号と同一の符号を付けて、 その説明 を省略する。
この実施の形態では、 極間サ―ボ制御を行うために、 電極支持部に、 単純形状 電極 1 5を水平 U軸方向に移動させる U軸移動手段 3 1と、 単純形状電極 1 5を 水平 V軸方向に移動させる V軸移動手段 3 3とが設けられている。 U軸移動手段 3 K V軸移動手段 3 3はそれぞれ、 U軸サーボモータ 3 5、 V軸サーボモータ 3 7により位置決め駆動され、 U軸サーボモータ 3 5、 V軸サーボモ一夕 3 7は 、 数値制御装置 2 3の極間サーボ用移動制御部 3 9が出力する各軸指令により位 置制御される。
極間サ一ボ用移動制御部 3 9は、 平均電圧検出手段 4 1により検出される単純 形状電極 1 5と被処理材との間の平均電圧を入力し、 この平均電圧 (検出結果) に基づいて被処理面 (加工材摺接型面 1 0 4 a ) と単純形状電極 1 5の距離 gを 一定に保つように、 U軸位置指令と V軸位置指令を出力する。
この実施の形態では、 電極消耗に対して加工材摺接型面 1 0 4 aと単純形状電 極 1 5との距離力一定となるように、 第 6図に示されているように、 単純形状電 極 1 5の電極径の減少分に応じた U軸制御および V軸制御による極間サーボを行 極間サーボの方法としては、 平均電圧検出手段 4 1を使用して被処理材と単純 形状電極 1 5の平均電圧を検出し、 放電加工機では一般的な平均電圧を一定とな るように移動制御を行う平均電圧一定サ一ボを取るようにしている。
第 6図は電極移動パスと極間サ一ボの方向を示している。 極間サーボの方向と しては電極移動パスに対して法線方向に側面サ一ボを取るようになる。
以上のように、 被処理面である加工材摺接型面 1 0 4 aと単純形状電極 1 5の
間で極間サ一ボ (側面サ一ボ) を取りながら、 切刃形状になぞるように放電表面 処理を行い、 加工材摺接型面 1 0. 4 aに硬質被膜を生成することで、 実施の形態 1 と同様にダイス型寿命を大幅に向上させることが可能となる。 さらに、 極間サ 一ボを取りながら放電表面処理加工を行うので、 加工時間を短縮できるという効 果がある。
第 7図はこの発明による引抜き '押出し加工用ダイスの表面処理方法の実施に 使用される表面処理装置の実施の形態 3を示している。 なお、 第 7図においても 、 第 1図に対応する部分は、 第 1図に付した符号と同一の符号を付けて、 その説 明を省略する。
この表面処理装置は、 ワイヤ放電加工機の一種であり、 水平 X軸方向に移動可 能な X軸テーブル 5 1 と水平方向の Y軸方向に移動可能な Y軸テーブル 5 3との 重ね合わせ構造体によるワークテーブル 5 5を有している。 ワークテーブル 5 5 上には被処理材載置台 5 7が設けられており、 被処理材載置台 5 7上に被処理材 である引抜き ·押出し加工用ダイス、 図示例では引抜き加工用ダイス 1 0 0が載 置固定される。
X軸テーブル 5 1、 Y軸テーブル 5 3は、 それぞれ、 X軸サーボモータ 5 9、 Y軸サ一ボモ一夕 6 1により位置決め駆動され、 X軸サ一ボモ一夕 5 9、 Y軸サ ーボモータ 6 1は、 数値制御装置 2 3の軌跡移動制御部 2 5が出力する各軸指令 により位置制御される。
被処理材載置台 5 7の上方と下方にはそれぞれワイヤ電極ガイド部 6 3、 6 5 が設けられており、 ワイヤボビン 6 7より繰り出される表面処理用のワイヤ電極 6 9がワイヤ電極ガイド部 6 3、 6 5間を垂直に走行するようになっている。 ワイヤ電極 6 9は、 ワイヤ電極ガイド部 6 3、 6 5間で被処理材載置台 5 7上 の引抜き加工用ダイス 1 0 0のダイス孔 1 0 2内を、 加工材摺接型面 1 0 4 aに 対して所定の放電ギヤップを保って上下に走る。
ワイヤ電極 6 9と加工材摺接型面 1 0 4 aとの放電ギヤップ部分には、 加工液 ノズル 7 1より加工液が噴射される。
上述のような構成による表面処理装置を用いてこの発明による引抜き ·押出し 加工用ダイスの表面処理方法を実施する場合には、 研削加工あるいはワイャ放電 加工によってダイス孔 1 0 2の加工がなされた引抜き加工用ダイス 1 0 0を被処 理材載置台 5 7上にセッ トし、 加工液ノズル 7 1より加工液を噴射する。
この状態で、 引抜き加工用ダイス 1 0 0のダイス孔 1 0 2のストレート部 1 0
2 aの内周面が与える加工材摺接型面 1 0 4 aとワイヤ電極 6 9とを所定の放電 ギヤップをおいて対向させて加工材摺接型面 1 0 4 aとワイヤ電極 6 9との間に パルス電圧を印加して加工液ノズル 7 1より噴射された加工液中でパルス放電を 発生させる。 これにより、 放電エネルギによって生じる電極消耗溶融物質あるい はそれと加工液成分との反応物が加工材摺接型面 1 0 4 aに付着堆積し、 第 8図 に示されているように、 加工材措接型面 1 0 4 aの全体に電極消耗溶融物質ある いはそれの反応物による改質層 1 0 8が形成される。
ワイヤ電極 6 9として、 T i、 Z r、 V、 T a等の硬質金属によるワイヤ電極 を使用し、 加工液として H Cを含む放電加工油を使用し、 電極材料と放電加工油 中の H Cとの反応により、 T i C、 Z r C;、 V C;、 T a C等の金属炭化物による 硬質被膜を加工材摺接型面 1 0 4 aに効率よく良好に形成することができる。 改質層 1 0 6の形成は加工材摺接型面 1 0 4 aの全周に亙って面状に一様に行 われる。 このために、 加工材摺接型面 1 0 4 aとワイヤ電極 6 9との間の間隙を 所定値に保ってワイヤ電極 6 9と処理対象の引抜き ·押出し加工用ダイスである 引抜き加工用ダイス 1 0 0とをダイス孔平面形状により決まる加工材摺接型面形 状に倣って相対変位させる。 この相対変位によって加工材摺接型面 1 0 4 aの全 周に改質層 1 0 8を形成することができる。
ワイヤ電極 6 9と引抜き加工用ダイス 1 0 0とを加工材摺接型面形状に倣って 相対変位させることは、 X軸テーブル 5 1の X軸方向移動と Y軸テーブル 5 3の Y軸方向移動により行うことができる。
数値制御装置 2 3の内部に設けられた軌跡移動制御部 2 5は、 実施の形態 1に おける場合と同様に、 予め電極軌跡生成用 C AM 1 5によって作成された電極移
動パス情報に基づき、 表面処理用のワイヤ電極 6 9の横方向の移動、 すなわち、 X軸テーブル 5 1 と Y軸テーブル 5 3の駆動制御を行い、 ワイヤ電極 6 9の軌跡 移動を加工材摺接型面 1 0 4 aをなぞるようにしている。
上述の実施の形態では、 放電表面処理加工の電極移動プログラムは、 専用の C AMを使用して作成しているが、 弓 ί抜き加工用ダイス 1 0 0のダイス孔 1 0 2が ヮィャ放電加工により形成される場仓には、 ダイス孔明けのワイャ放電加工で使 用した加工プログラムを使用してワイヤ電極 6 9と引抜き加工用ダイス 1 0 0と を相対変位させ、 加工材摺接型面 1 0 4 aに改質層 1 0 8を形成することもでき る。
引抜き加工用ダイス 1 0 0の加工材摺接型面 1 0 4 aに対する改質層 1 0 8の 形成は、 第 8図に示されているように、 ワイヤ電極 6 9を使用して行うから、 ヮ ィャ電極 6 9が消耗するが、 表面処理用の新しいワイヤ電極 6 9がワイヤボビン 6 7より常に供給されるので、 ワイヤ電極 6 9の消耗を意識せずに放電表面処理 が行える。 したがって、 ワイヤ電極 6 9の移動パスとしては、 ワイヤ放電加工の 電極移動ノ、°スと同様のものでよい。
以上のように、 切刃形状の側面をなぞるようにワイヤ電極 6 9を移動させて表 面処理を行うことで、 加工材摺接型面部分に、 硬質被膜の改質層 1 0 8を形成す ることができる。
これにより、 実施の形態 1における場合と同様の引抜き ,押出し加工用ダイス が得られ、 金型の長寿化を実現できる。
また、 第 9図に示されているように、 上下のガイド部 6 3、 6 5の位置調整に より、 ワイヤ電極 6 9を斜行させることによって、 ワイヤ引抜き加工用ダイス 1 0 0のダイス孔 1 0 2のテ一パ部 1 0 2 bにも改質層 1 0 8形成することができ る。
第 1 0図はこの発明による引抜き ,押出し加工用ダイスの表面処理方法の実施 に使用される表面処理装置の実施の形態 4を示している。 なお、 第 1 0図におい て、 第 7図に対応する部分は、 第 7図に付した符号と同一の符号を付けて、 その
説明を省略する。
この実施の形態では、 一^ Dのワイヤ放電加工機において、 ダイス孔形成などの 型加工と放電表面処理とを行うために、 表面処理用のワイヤ電極 6 9とは別に、 型加工を行うワイヤ放電加工用のワイヤ電極 7 3が設けられ、 表面処理用のワイ ャ電極 6 9とワイヤ放電加工用のワイヤ電極 7 3の何れか一方がワイヤ電極切替 手段 7 5によって切替使用されるようになっている。
表面処理用のワイヤ電極 6 9は、 ワイヤボビン 6 7より繰り出され、 ワイヤ電 極ガイド部 6 3に案内されてワイヤ電極切替手段 7 5に至り、 ワイヤ電極切替手 段 7 5とワイヤ電極ガイド部 6 5との間を走行する。
ワイヤ放電加工用のワイヤ電極 7 3は、 ワイヤボビン 7 7より繰り出され、 ヮ ィャ電極ガイド部 7 9に案内されてワイヤ電極切替手段 7 5に至り、 ワイヤ電極 切替手段 7 5とワイヤ電極ガイド部 6 5との間を走行する。
つぎに、 この実施の形態の動作について説明する。 加工の手順としては、 まず
、 段取り作業として、 表面処理用のワイヤ電極 6 9とワイヤ放電加工用のワイヤ 電極 7 3とをセッ トし、 引抜き加工用ダイス 1 0 0の素材を被処理材載置台 5 7 上にセッ トする。
段取り作業完了後に、 第 1工程として、 ワイヤ放電加工用のワイヤ電極 7 3を 使用し、 放電ギャップ部分に加工液ノズル 7 1より加工液を噴射した状態で、 ヮ ィャ放電加工によってダイス孔 1 0 2の全体を加工する。
型加工 (第 1工程) が完了すれば、 つぎに、 使用するワイヤ電極をワイヤ電極 切替手段 7 5によってワイヤ放電加工用のワイヤ電極 7 3より表面処理用のワイ ャ電極 6 9に変更し、 第 2工程として、 表面処理用のワイヤ電極 6 9を使用し、 実施の形態 2の場合と同様に、 ワイヤ電極 6 9と加工材摺接型面 1 0 4 a , 1 0 4 bとの放電ギヤップ部分に加工液ノズル 7 1より加工液を噴射し、 ワイヤ放電 加工で加工したダイス孔 1 0 2の加工材摺接型面 1 0 4 a、 1 0 4 bに対して放 電表面処理加工を行い、 加工材摺接型面 1 0 4 a、 1 0 4 bに硬質被膜による改 質層 1 0 8 (第 8図、 第 9図参照) を形成する。
第 1工程であるワイヤ放電加工時には、 引抜き加工用ダイス 1 0 0の型加工素 材にダイス孔 1 0 2を加工するよう、 ワイヤ電極 7 3の軌跡移動を制御する必要 がある。 数値制御装置 2 3の内部に設けられた軌跡移動制御部 2 5は、 予め電極 軌跡生成用 C AM 2 7によって作成された電極パス情報に基づき、 ワイヤ放電加 ェ用のワイヤ電極 7 3の横方向の相対移動制御、 すなわち、 X軸テーブル 5 1、 Y軸テーブル 5 3の軸制御を行い、 ワイヤ電極 7 3の軌跡移動を、 ダイス孔 1 0 2の加工形状に適合したものとする。
第 2工程である表面処理加工時には、 ワイヤ電極 6 9の軌跡移動を引抜き加工 用ダイス 1 0 0のダイス孔形状に従ったものに制御をする必要がある。 この場合 、 数値制御装置 2 3の軌跡移動制御部 2 5はワイヤ放電加工の通常の仕上げ加工 と同様の方法にて、 予め電極軌跡生成用 C A M 2 7により作成された電極パス情 報に基づき、 X軸テーブル 5 1、 Y軸テーブル 5 3の軸制御を行い、 ワイヤ電極 6 9の軌跡移動を、 加工材摺接型面 1 0 4 a、 1 0 4 bをなぞるものとする。 上述のように、 引抜き ·押出し加工用ダイスのダイス孔加工をワイヤ放電加工 で行い、 ダイス孔加工後に、 加工材摺接型面に対して液中ギャップ放電による放 電表面処理をダイス孔形状になぞるように行い、 加工材摺接型面 1 0 4 a、 1 0 4 bに硬質被膜を生成することで、 実施の形態 1 と同様に金型寿命を大幅に向上 させることが可能となる。
また、 弓 ί抜き ·押出し加工用ダイスのダイス孔加工と表面処理加工とが同一段 取りで加工可能となるので、 加工時間の短縮と、 段取り作業を大幅に簡略化でき るという効果がある。
なお、 この実施の形態では、 ワイヤ放電加工用のワイヤ電極 7 3と表面処理用 のワイヤ電極 6 9とを電極切替手段 7 5を使用して自動的に切り替えるようにし ているが、 ワイャ放電加工後に手作業にてヮィャ電極を交換して加工を行っても よい。 この場合には、 ワイヤ電極を交換する手間は増えるが、 電極切替手段 7 5 を省略でき、 装置を安価に提供できると云うメリッ トがある。
実施の形態 1〜4においては、 引抜き加工用ダイス 1 0 0について説明したが
、 加工材摺接型面に対して液中ギヤップ放電による放電表面処理により改質層 1
0 8を形成することは、 第 1 1図に示されているような押出し加工用ダイス 2 0 0の加工材摺接型面 2 0 2にも、 同様に行うことができる。
以上の説明から理解される如く、 この発明による引抜き ·押出し加工用ダイス によれば、 加工材摺接型面に液中ギャップ放電による放電表面処理によって電極 消耗溶融物質あるいはそれの反応物による改質層が形成されているから、 ダイス 型寿命が大幅に向上する。
つぎの発明による引抜き ·押出し加工用ダイスによれば、 加工材摺接型面が液 中ギャップ放電による放電表面処理によって生成された硬質被膜により被覆され る力、ら、 加工材摺接型面の耐摩耗性が向上し、 ダイス型寿命が大幅に向上する。 つぎの発明による引抜き ·押出し加工用ダイスによれば、 加工材摺接型面に W C, T i C:、 Z r C、 V C;、 T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物 、 T i N、 T r N等の窒化物の単体、 あるいは組合せによる改質層が形成される から、 加工材摺接型面の耐摩耗性が向上し、 ダイス型寿命が大幅に向上する。 つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 引抜 き ·押出し加工用ダイスの加工材摺接型面に液中ギヤップ放電による放電表面処 理によって電極消耗溶融物質あるいはそれの反応物による改質層を形成するから 、 引抜き ·押出し加工用ダイスの型寿命を大幅に向上させることができる。 つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 電極 材料と放電加工油の H Cとの反応により、 加工材摺接型面を T i C、 Z r C:、 V C. T a C等の硬質被膜により被覆するから、 加工材摺接型面の耐摩耗性を向上 してダイス型寿命を大幅に向上させることができる。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 単純 形状電極を使用し、 加工材摺接型面と単純形状電極との間の間隙を所定値に保つ て単純形状電極と処理対象の引抜き ·押出し加工用ダイスとをダイス孔形状によ り決まる加工材摺接型面形状に倣って相対変位させ、 加工材摺接型面に改質層を 形成するから、 各ダイス毎に電極を準備する必要がなく、 ダイス型寿命を大幅に
向上させることが可能となる。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 ダイ 金型の加工材摺接型面と単純形状電極との間の間隙を所定値に保つて型形成のヮ ィャ放電加工で使用した加工プログラムを使用して単純形状電極と処理対象のダ ィ金型とを相対変位させ、 加工材摺接型面に改質層を形成するから、 表面処理用 の特別な加工プログラムを必要とすることなく、 引抜き ·押出し加工用ダイスの 加工材摺接型面の表面処理を行うことができる。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 単純 形状電極を使用し、 加工材摺接型面と単純形状電極との間で極間サーボ制御を行 うことで加工材摺接型面と単純形状電極との間の間隙を所定値に保ち、 単純形状 電極と処理対象の引抜き ·押出し加工用ダイスとをダイス孔形状により決まる加 ェ材摺接型面形状に倣つて相対変位させて加工材摺接型面に改質層を形成するか ら、 加工材摺接型面に硬質被膜を生成することが可能となり、 ダイス型寿命を大 幅に向上させることが可能なることに加え、 表面処理に要する時間を大幅に短縮 できる。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 ワイ ャ電極を使用し、 加工材摺接型面とワイヤ電極との間の間隙を所定値に保ってヮ ィャ電極と処理対象の引抜き ·押出し加工用ダイスとをダイス孔形状により決ま る加工材摺接型面形状に倣って相対変位させ、 加工材摺接型面に改質層を形成す るから、 各ダイス毎に専用の電極を準備する必要がなく、 ダイス型寿命を大幅に 向上させることが可能となる。 また、 電極消耗を意識することなく表面処理加工 を行うことができ、 加工材摺接型面に改質層を高精度に形成することができる。 つぎの発明による引抜き,押出し加工用ダイスの表面処理方法によれば、 引抜 き ·押出し加工用ダイスの加工材摺接型面とワイヤ電極との間の間隙を所定値に 保ってダイス孑し加工のワイヤ放電加工で使用した加工プログラムを使用して単純 形状電極と処理対象の引抜き ·押出し加工用ダイスとを相対変位させ、 加工材摺 接型面に改質層を形成するから、 表面処理用の特別な加工プログラムを必要とす
ることなく、 弓 1抜き ·押出し加工用ダイスの加工材摺接型面の表面処理を行うこ とができる。
つぎの発明による引抜き ·押出し加工用ダイスの表面処理方法によれば、 同一 のワイャ放電加工機において、 ヮィャ放電加工用のワイャ電極を使用してダイス 型加工を行い、 この後に表面処理用のワイヤ電極を使用して加工材摺接型面に改 質層を形成するから、 ダイス孔加工と表面処理加工とを同一段取りにして加工材 摺接型面に硬質被膜を生成することが可能となり、 ダイス型の寿命を大幅に向上 させることができることに加え、 表面処理に要する時間を大幅に短縮できる。 産業上の利用可能性
以上のように、 本発明にかかる引抜き ·押出し加工用ダイスおよび引抜き ·押 出し加工用ダイスの表面処理方法は、 所要の耐久性 (型寿命) を得るために、 特 に、 ダイス孔内周面がなす加工材摺接型面に高い耐摩耗性を要求される引抜き加 ェ用ダイス、 押出し加工用ダイスの表面処理方法に適している。
Claims
1. 加工材摺接型面に液中放電加工による放電エネルギによって生じる放電電極 の電極消耗溶融物質あるいはそれの反応物が付着堆積し、 加工材摺接型面に電極 消耗溶融物質あるいはそれの反応物による改質層が形成されていることを特徴と する引抜き ·押出し加工用ダイス。
2. 前記改質層が硬質被膜であることを特徴とする請求の範囲第 1項に記載の引 抜き ·押出し加工用ダイス。
3. 前記改質層が WC:、 Ti C、 ZrC、 VC、 T a C等の炭化物、 T i B 2 、 Z r B2 等の硼化物、 TiN、 TrN等の窒化物の単体、 あるいは組合せによる ものであることを特徴とする請求の範囲第 1項に記載の引抜き ·押出し加工用ダ イス。
4. 加工液中において引抜き ·押出し加工用ダイスの加工材摺接型面と放電電極 とを所定の放電ギャップをおし、て対向させて加工材摺接型面と放電電極との間に 放電を発生させ、 放電エネルギによって生じる電極消耗溶融物質あるいはそれの 反応物を加工材摺接型面に付着堆積させ、 加工材摺接型面に電極消耗溶融物質あ るいはそれの反応物による改質層を形成することを特徴とする引抜き ·押出し加 ェ用ダイスの表面処理方法。
5. 放電電極として、 T i、 Zr、 V、 Ta等の硬質金属の粉体、 もしくはこれ らの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの金属による金 属電極を使用し、 加工液として HCを含む放電加工油を使用して改質層を形成す ることを特徴とする請求の範囲第 4項に記載の引抜き ·押出し加工用ダイスの表 面処理方法。
6 . 単純形状電極を使用し、 加工材摺接型面と単純形状電極との間の間隙を所定 値に保って単純形状電極と処理対象の引抜き ·押出し加工用ダイスとを加工材摺 接型面形状に倣って相対変位させ、 加工材摺接型面に改質層を形成することを特 徵とする請求の範囲第 4項に記載の引抜き ·押出し加工用ダイスの表面処理方法。
7 . 処理対象の引抜き ·押出し加工用ダイスがワイヤ放電加工により形成された ものであり、 単純形状電極を使用し、 加工材摺接型面と単純形状電極との間の間 隙を所定値に保って前記ワイヤ放電加工で使用した加工プログラムを使用して単 純形状電極と処理対象の引抜き ·押出し加工用ダイスとを相対変位させ、 加工材 摺接型面に改質層を形成することを特徴とする請求の範囲第 4項に記載の引抜き
-押出し加工用ダイスの表面処理方法。
8 . 単純形状電極を使用し、 前記加工材摺接型面と微細単純形状電電極との間で 極間サーボ制御を行うことで加工材摺接型面と単純形状電極との間の間隙を所定 値に保ち、 単純形状電極と処理対象の引抜き ·押出し加工用ダイスとを加工材摺 接型面形状に倣って相対変位させ、 加工材摺接型面に改質層を形成することを特 徵とする請求の範囲第 4項に記載の引抜き ·押出し加工用ダイスの表面処理方法
9 . ワイヤ電極を使用し、 加工材摺接型面とワイヤ電極との間の間隙を所定値に 保ってワイヤ電極と処理対象の引抜き ·押出し加工用ダイスとを加工材摺接型面 形状に倣って相対変位させ、 加工材摺接型面に改質層を形成することを特徴とす る請求の範囲第 4項に記載の引抜き ·押出し加工用ダイスの表面処理方法。
1 0 . 処理対象の引抜き ·押出し加工用ダイスがワイヤ放電加工により形成され たものであり、 ワイヤ電極を使用し、 加工材摺接型面とワイヤ電極との間の間隙
を所定値に保って前記ワイヤ放電加工で使用した加工プログラムを使用してワイ ャ電極と処理対象の引抜き ■押出し加工用ダイスとを相対変位させ、 加工材摺接 型面に改質層を形成することを特徴とする請求の範囲第 4項に記載の引抜き ·押 出し加工用ダイスの表面処理方法。
1 1 . 同一のワイヤ放電加工機において、 ワイヤ放電加工用のワイヤ電極を使用 して型加工を行い、 この後に表面処理用のワイヤ電極を使用して加工材摺接型面 に改質層を形成することを特徴とする請求の範囲第 4項に記載の引抜き ·押出し 加工用ダイスの表面処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10/217177 | 1998-07-31 | ||
JP10217177A JP2000042839A (ja) | 1998-07-31 | 1998-07-31 | 引抜き・押出し加工用ダイスおよび引抜き・押出し加工用ダイスの表面処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000006330A1 true WO2000006330A1 (fr) | 2000-02-10 |
Family
ID=16700079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/001699 WO2000006330A1 (fr) | 1998-07-31 | 1999-03-31 | Filiere d'etirage et d'extrusion et procede de traitement de surface de ladite filiere d'etirage et d'extrusion |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000042839A (ja) |
WO (1) | WO2000006330A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117600464A (zh) * | 2024-01-23 | 2024-02-27 | 烟台大学 | 一种高温合金薄壁热挤压装置及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588634B2 (ja) * | 2009-07-09 | 2014-09-10 | 西部電機株式会社 | ワイヤ放電加工装置及びその方法 |
CN103878452B (zh) * | 2014-03-26 | 2016-08-17 | 哈尔滨东安发动机(集团)有限公司 | 内部腔体的电火花加工方法 |
DE102017103169A1 (de) * | 2016-12-22 | 2018-06-28 | Euromicron Werkzeuge Gmbh | Düse und Verfahren zur Herstellung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53137010A (en) * | 1977-05-04 | 1978-11-30 | Inoue Japax Res Inc | Surface treating apparatus |
JPH05148615A (ja) * | 1991-11-18 | 1993-06-15 | Res Dev Corp Of Japan | 金属材料の表面処理方法 |
JPH06182626A (ja) * | 1992-12-17 | 1994-07-05 | Hitachi Ltd | 高耐食性表面処理方法 |
JPH08243843A (ja) * | 1995-03-14 | 1996-09-24 | Sodick Co Ltd | 粉末混入放電加工用加工液及び粉末混入加工液を使用する放電加工方法 |
JPH08300227A (ja) * | 1995-04-14 | 1996-11-19 | Res Dev Corp Of Japan | 放電加工用電極および放電による金属表面処理方法 |
JPH0919829A (ja) * | 1995-07-04 | 1997-01-21 | Mitsubishi Electric Corp | 放電加工による表面処理方法および装置 |
JPH09192937A (ja) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | 液中放電による表面処理方法 |
-
1998
- 1998-07-31 JP JP10217177A patent/JP2000042839A/ja active Pending
-
1999
- 1999-03-31 WO PCT/JP1999/001699 patent/WO2000006330A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53137010A (en) * | 1977-05-04 | 1978-11-30 | Inoue Japax Res Inc | Surface treating apparatus |
JPH05148615A (ja) * | 1991-11-18 | 1993-06-15 | Res Dev Corp Of Japan | 金属材料の表面処理方法 |
JPH06182626A (ja) * | 1992-12-17 | 1994-07-05 | Hitachi Ltd | 高耐食性表面処理方法 |
JPH08243843A (ja) * | 1995-03-14 | 1996-09-24 | Sodick Co Ltd | 粉末混入放電加工用加工液及び粉末混入加工液を使用する放電加工方法 |
JPH08300227A (ja) * | 1995-04-14 | 1996-11-19 | Res Dev Corp Of Japan | 放電加工用電極および放電による金属表面処理方法 |
JPH0919829A (ja) * | 1995-07-04 | 1997-01-21 | Mitsubishi Electric Corp | 放電加工による表面処理方法および装置 |
JPH09192937A (ja) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | 液中放電による表面処理方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117600464A (zh) * | 2024-01-23 | 2024-02-27 | 烟台大学 | 一种高温合金薄壁热挤压装置及方法 |
CN117600464B (zh) * | 2024-01-23 | 2024-03-22 | 烟台大学 | 一种高温合金薄壁热挤压装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2000042839A (ja) | 2000-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0154178B1 (ko) | 방전가공에 의한 표면처리방법 및 그장치 | |
Fuller | Electrical discharge machining | |
US6558231B1 (en) | Sequential electromachining and electropolishing of metals and the like using modulated electric fields | |
EP0547801B1 (en) | Electrical discharge boring apparatus | |
GB2052562A (en) | Scanning electroplating method and apparatus | |
JPH0919829A (ja) | 放電加工による表面処理方法および装置 | |
Rahman et al. | Development of micropin fabrication process using tool based micromachining | |
US6348668B1 (en) | Method and apparatus for treating surface of tool | |
US4317019A (en) | Method and apparatus for electrically cutting work pieces with a wire electrode | |
WO2000006330A1 (fr) | Filiere d'etirage et d'extrusion et procede de traitement de surface de ladite filiere d'etirage et d'extrusion | |
EP1584396B1 (de) | Verfahren und Maschine zur Herstellung einer Walze | |
WO2000006331A1 (fr) | Filiere a emboutir et procede de traitement de la surface de ladite filiere a emboutir | |
Patel et al. | A review on advanced manufacturing techniques and their applications | |
JPS6363331B2 (ja) | ||
JP4333037B2 (ja) | 放電表面処理方法及び装置並びに放電表面処理用電極 | |
Shibayama et al. | Diffusion bonded EDM electrode with micro holes for jetting dielectric liquid | |
JPH08257841A (ja) | 放電表面改質方法及びその装置 | |
JP2000071126A (ja) | 放電表面処理方法および放電表面処理装置 | |
JPH0457453B2 (ja) | ||
CN109128414B (zh) | 挤压模具的电解加工装置及方法 | |
Saleh et al. | 1.13 ELID Grinding and EDM for Finish Machining | |
JPS6021385A (ja) | 型鋼材 | |
US6376793B1 (en) | Method and device for electric discharge surface treatment using a wire electrode | |
JP2018020404A (ja) | 電解加工用電極及び電解加工用電極の製造方法 | |
JP3724173B2 (ja) | 放電による表面処理方法および放電による表面処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CH CN DE KR US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |