WO2000003707A1 - Composition therapeutique a base d'isoflavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques - Google Patents

Composition therapeutique a base d'isoflavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques Download PDF

Info

Publication number
WO2000003707A1
WO2000003707A1 PCT/FR1999/001715 FR9901715W WO0003707A1 WO 2000003707 A1 WO2000003707 A1 WO 2000003707A1 FR 9901715 W FR9901715 W FR 9901715W WO 0003707 A1 WO0003707 A1 WO 0003707A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
treatment
protocol
chosen
oncol
Prior art date
Application number
PCT/FR1999/001715
Other languages
English (en)
Inventor
Francis Darro
Robert Kiss
Armand Frydman
Original Assignee
Laboratoire L. Lafon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire L. Lafon filed Critical Laboratoire L. Lafon
Priority to BR9912817-9A priority Critical patent/BR9912817A/pt
Priority to IL14058099A priority patent/IL140580A0/xx
Priority to AU46282/99A priority patent/AU761417B2/en
Priority to CA002337256A priority patent/CA2337256A1/fr
Priority to EA200100141A priority patent/EA200100141A1/ru
Priority to KR1020017000477A priority patent/KR20020006510A/ko
Priority to EP99929481A priority patent/EP1096929A1/fr
Priority to JP2000559842A priority patent/JP2002520357A/ja
Publication of WO2000003707A1 publication Critical patent/WO2000003707A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

La présente invention concerne une composition ayant une activité sur la prolifération de cellules clonogènes dans des tumeurs et qui comprend une quantité thérapeutiquement efficace d'un isoflavonoïde ou d'un composé analogue de type chromone, notamment d'un composé choisi parmi les composés de formule (I) dans laquelle: R1, R2, R3 et R4, R5 et R6 sont tels que définis à la reventication (2). Cette composition est destinée à être utilisée dans le traitement des tumeurs par des agents cytotoxiques.

Description

COMPOSITION THERAPEUTIQUE A BASE D'ISOFLAVONOÏDES DESTINEE
A ETRE UTILISEE DANS LE TRAITEMENT DES TUMEURS
PAR DES AGENTS CYTOTOXIQUES
La présente invention concerné l'utilisation de composés de type isoflavonoïde dans le traitement des cancers par des agents cytotoxiques.
Un cancer est un désordre des gènes somatiques au cours duquel des dysfonctionnements génétiques s'amplifient au fur et à mesure que le processus tumoral progresse de l'état de lésion précancéreuse à celui de transformation maligne, la tumeur cancéreuse devenant métastasique et souvent résistante aux médicaments cytotoxiques.
En dépit des efforts très importants conduits dans tous les pays développés, en particulier à travers des programmes de recherche expérimentale et clinique, la mortalité due aux différents cancers (tumeurs solides et néoplasies hématologiques) demeure inacceptablement élevée. Dans de nombreux pays, la mortalité par cancer est au second rang, juste après les maladies cardio-vasculaires.
En termes de cancers nouvellement diagnostiqués, la répartition entre tumeurs solides et néoplasies hématologiques (moelle osseuse, sang, système lymphatique)* montre que 9 cancers sur 10 sont des tumeurs solides. Au contraire de ce qui est observé en oncologie hématologique (succès thérapeutiques dans 40 à 90 % des cancers des cellules du sang), seul un petit nombre de tumeurs solides avancées ou disséminées répond aux seuls traitements chimiothérapeutiques. C'est en partie pour cette raison que la mortalité globale par cancer a cru aux U.S.A. entre 1973 et 1992.
Il n'est malheureusement pas sûr que cette tendance pourra s'inverser seulement par l'apparition, à côté de l'arsenal chimiothérapeutique établi, de nouveaux médicaments antitumoraux tels que les taxanes (paclitaxel et docetaxel) qui interfèrent avec la formation des microtubules (W.P. Me Guire et al., Am. Intern. Med., 1989), les inhibiteurs de topoisomérases I dérivés de la camptothecine (topotecan et irinotecan), la vinorelbine (nouvel alcaloïde issu de la pervenche), la gemeitabine (nouvel antimétabolique cytotoxique), le raltitrexed (inhibiteur de la thymidylate synthétase) et la miltefosine (premier représentant de la famille des alkylphosphocholines). Ces traitements s'ajoutent, soit en première intention, soit en seconde intention, aux médicaments dont l'activité spécifique est maintenant bien reconnue comme la doxorubicine, le cisplatine, la vincristine, le méthotréxate, le 5-fluorouracile.
Un des plus difficiles problèmes actuels de la chimiothérapie anticancéreuse est dû au fait que de nombreuses populations de cellules malignes présentent une résistance importante aux substances cytotoxiques établies. Le plus souvent, cette situation résulte de l'existence de gènes de multi-résistance ou de la fréquence de mutations génétiques chez certains types de tumeurs. Ainsi, le traitement des cancers nécessite de -nouvelles approches, complémentaires de celles actuellement mises en oeuvre, et destinées à mieux lutter contre l'extension et l'hétérogénéité de la charge tumorale et l'acquisition de la résistance "multi-drogues cytotoxiques".
Parmi ces nouvelles approches, certaines sont déjà prometteuses. C'est le cas de l'induction de l'apoptose, l'inhibition de l'angiogénèse tumorale et des processus métastasiques sans parler de la thérapie génique ou de l'immunothérapie.
Les inventeurs se sont intéressés à une approche différente. L'objectif recherché était de rendre la population de cellules tumorales plus sensible aux traitements anticancéreux de référence afin d'atteindre un double bénéfice : 1 ) augmenter l'activité cytotoxique donc l'efficacité et
2) diminuer la fréquence et la sévérité de certains effets secondaires grâce à la réduction de posologie qui pourrait suivre l'induction de l'augmentation de l'efficacité anti-tumorale.
C'est cette stratégie qui est à l'origine de la découverte d'un mécanisme original provoqué par des substances - à faible pouvoir antitumoral ou même dépourvues de ce pouvoir - mais capables d'induire une augmentation très significative de l'activité cytotoxique de médicaments anticancéreux éprouvés. Ce mécanisme original relève de la possibilité pour ces substances, soit de stimuler le recrutement de cellules clonogènes au sein de la tumeur rendant celle-ci plus sensible au traitement conventionnel par des agents cytotoxiques, soit d'inhiber la prolifération de cellules clonogènes, contribuant ainsi à la régression de la tumeur.
La présente invention a ainsi pour objet l'utilisation dans le traitement des cancers avec au moins un antitumoral choisi parmi les agents cytotoxiques, d'un composé ayant une activité sur la prolifération de cellules clonogènes, choisi parmi les isoflavonoïdes et les composés analogues de type chromone et notamment les composés de formule :
Figure imgf000004_0001
formule dans laquelle :
- R R2, R3 et R4 sont choisis indépendamment l'un de l'autre parmi H, OH, un groupe aikoxy en C^C, un groupe -OCOR7, R7 étant un groupe alkyle en 0,-04, au moins l'un des substituants R1( R2, R3 ou R4 étant autre que H et R2 et R3 pouvant former ensemble un groupe méthylènedioxy, - R5 est choisi parmi H, OH, un groupe aikoxy en CrC4, un groupe O-glycosyle, et un groupe cyclohexyle,
- R6 est choisi parmi un groupe cyclohexyle, un groupe phényle et un groupe phényle 1 à 3 fois substitué par des groupes choisis parmi H, OH et un groupe aikoxy en 0,-04, - et désigne soit une double liaison, soit une simple liaison.
Une classe préférée de composés de formule I sont ceux dans lesquels Rβ est choisi parmi le groupe phényle, 4-hydroxyphenyle et les groupes 4-(alkoxy en 0,-04) phényle.
Les agents cytotoxiques peuvent être utilisés à leur dose habituelle et dans ce cas, leur efficacité est améliorée, ou à des doses plus faibles compte tenu de l'augmentation de leur efficacité antitumorale si l'objectif recherché est d'abord d'améliorer la tolérance du malade au traitement.
La présente invention a également pour objet une composition ayant une activité sur la prolifération de cellules clonogènes en interférant sur la génération de cellules clonogènes, soit par stimulation de la prolifération et recrutement, soit par inhibition de la prolifération, comprenant une quantité thérapeutiquement efficace d'un isoflavonoïde ou d'un composé analogue de type chromone, et notamment d'un composé choisi parmi les composés de formule :
Figure imgf000005_0001
formule dans laquelle :
- R,, R2, R3 et R4 sont choisis indépendamment l'un de l'autre parmi H, OH, un groupe aikoxy en 0,-04, un groupe -OCOR7, R7 étant un groupe alkyle en C,-C4l au moins l'un des substituants R,, R2, R3 ou R4 étant autre que H et R2 et R3 pouvant former ensemble un groupe méthylènedioxy, - Rs est choisi parmi H, OH, un groupe aikoxy en C,-C4, un groupe O-glycosyle, et un groupe cyclohexyle,
- Rβ est choisi parmi un groupe cyclohexyle, un groupe phényle et un groupe phényle 1 à 3 fois substitué par des groupes choisis parmi H, OH et un groupe aikoxy en C,-C4)
- e désigne soit une double liaison, soit une simple liaison. La présente invention a également pour objet l'utilisation d'un isoflavonoïde, en particulier d'un composé de formule I telle que définie ci-dessus, pour la fabrication d'un médicament destiné à interférer (par induction ou inhibition) avec la génération de cellules clonogènes dans les tumeurs lors d'un traitement par au moins un agent cytotoxique.
Dans le traitement chimiothérapeutique des cancers par des agents cytotoxiques, les isoflavonoïdes et en particulier les composés de formule I peuvent être administrés au début des traitements chimiothérapeutiques soit en une fois, soit sur plusieurs jours au début de ces traitements (par exemple pendant 5 à 7 jours) et, en fonction du protocole chimiothérapeutique, au début de chaque cycle de traitement (par exemple pendant 2 à 5 jours) au cours de chaque cure.
Les isoflavonoïdes et en particulier les composés de formule I sont avantageusement administrés par perfusion (généralement en 1 à 3 heures) à des doses de 5 à 50 mg/kg/jour ou 200 à 2000 mg/m2/jour.
Afin d'obtenir un effet maximal sur la production de cellules clonogènes, les isoflavonoïdes doivent être administrés de telle manière que les concentrations tissulaires obtenues soient les plus élevées qu'il est possible d'envisager. Pour les protocoles de traitement dans les phases aiguës des cures, la voie intraveineuse est à privilégier en utilisant :
- des solutés de perfusion prêts à l'emploi (poches, flacons ...) destinés à être administrés tels quels par perfusion intraveineuse à l'aide d'une ligne de perfusion et selon le débit recommandé : - des lyophilisats à remettre en solution pour la perfusion intraveineuse à l'aide des solutés pharmaceutiques connus de l'homme de l'art ;
- pour les traitements d'entretien, il est également possible d'envisager la voie orale lorsque le traitement de la chimiothérapie privilégie l'administration de cytostatiques par voie orale. A cette fin, pourront être utilisés des lyocs (pour absorption orale ou perlinguale), des comprimés à libération instantanée ou retardée, les solutions orales, les suspensions, les granulés, les gélules ...
Les composés de formule (I) sont pour leur majorité des composés d'origine naturelle ou sont des dérivés de composés d'origine naturelle. Comme exemples on peut citer : - la génistéine,
- la biochanine A,
- la daidzéine,
- la formononétine,
- la 7-acétyl formononétine, - la glycétéine,
- l'orobol ou 5,7,3',4'-tétrahydroxy-isofIavone, — l'irizolone ou 6,7-méthylènedioxy 4'-hydroxy-isoflavone,
- l'irigénine ou 3',5,7-trihydroxy 4',5',6-méthoxy-isoflavone,
- la tectorigénine ou 4',5,7-trihydroxy-6-méthoxy isoflavone,
- la 2-hydroxy-8-méthoxy-2,3-dihydro isoflavone, - la 4',7-dihydroxy-5-méthoxy isoflavone.
D'autres isoflavones utilisables sont décrits par Donnelly et al. dans Natural Product Reports, 1995, 321 , ou peuvent être préparés par les méthodes décrites dans cet article.
Les agents cytotoxiques peuvent être choisis parmi : i) des agents intercalants, notamment la doxorubicine (Adriamycine), la daunorubicine, l'épirubicine, l'idarubicine, la zorubicine, l'aclarubicine, la pirarubicine, l'acridine, la mitoxanthrone, l'actinomycine D, l'acétate d'eptilinium ; ii) des agents alkylants choisis parmi les dérivés du platine (cisplatine, carboplatine, oxaliplatine...) , iii) un composé choisi parmi les autres groupes d'agents alkylants :
- cyclophosphamide, ifosfamide, chlormétrine, melphalan, chlorambucil, estramustine,
- busulfan, mitomycine C,
- nitrosourées BCNU (carmustine), CCNU (lomustine), fotémustine, streptozotocine,
- triazènes ou dérivés : procarbazine, dacarbazine,
- pipobroman,
- éthylène-imines : altrétamine, triéthylène-thiophosphoramide, iv) un composé choisi parmi les autres groupes d'agents anti-métaboliques : - antifoliques : méthotrexate, raltitrexed,
- antipyrimidiques : 5-fluorouracil (5-FU), cytarabine (Ara-C),
- hydroxyurée
- antipuriques : purinéthol, thioguanine, pentostatine, cladribine
- inducteurs de la synthèse de nucléosides cytotoxiques : gemcitabine, v) un composé choisi parmi les autres groupes d'agents tubulo-affins :
- vinca-alcaloïdes désorganisant le fuseau mitotique : vincristine, vinblastine, vindésine, navelbine
- agents bloquant la dépolymérisation du fuseau mitotique : paclitaxel, docetaxel
- agents induisant des cassures de l'ADN par inhibition de la topoisomérase II : étoposide, téniposide - inhibiteurs de la topoisomérase I induisant des coupures de l'ADN : topotecan, irinotecan, vi) un agent scindant, fragmentant l'ADN, telle la bléomycine, vii) un des composés suivants ; plicamycine, L asparaginase, mitoguazone, dacarbazine, viii) un stéroïde progestatif anticancéreux : médroxy-progestérone, mégestrol, ix) un stéroïde oestrogénique anticancéreux : diéthylstilbestrol ; fosfestrol tétrasodique, x) un anti-oestrogène : tamoxifène, droloxifène, raloxifène, amino-gluthétimide, xi) un anti-androgène stéroïdien (ex cyprotérone) ou un anti-androgène non stéroïdien (flutamide, nilutamide).
En particulier, les composés de formule I peuvent être associés à tous les traitements par les agents cytotoxiques majeurs utilisés dans les polychimiothérapies des tumeurs solides tels : - la doxorubicine
- les agents alkylants oxazophorines (cyclophosphamide, ifosfamide, chlorambucil, melphalan)
- les nitrosourées
- la mitomycine C - les anti-métabolites comme le méthotrexate, le 5-FU, l'Ara-C, la capecitabine
- les agents interférant avec la tubuline : vinca-alcaloïdes (vincristine, vinblastine, vindésine, navelbine), les taxoïdes (paclitaxel, docétaxel), les dérivés des épipodophyllotoxines (étoposide, téniposide)
- la bléomycine - les inhibiteurs de la topoisomérase I : topotecan, irinotecan.
De même, les composés de formule I peuvent être associés aux traitement par les agents cytotoxiques majeurs utilisés en oncohematologie pour le traitement des cancers du sang :
- maladie de Hodgkin : cyclophosphamide, mechloréthamine, chlorambucil, melphalan, ifosfamide, étoposide, doxorubicine, daunorubicine ;
- leucémies aiguës : méthotrexate, 6-mercaptopurine, cytarabine, vinblastine, vincristine, doxorubicine, daunorubicine, L-asparaginase ;
- lymphomes malins non hodgkiniens mechloréthamine, chlorambucil, cyclophosphamide, melphalan, ifosfamide, méthotrexate, cytarabine, vinblastine, vincristine, étoposide, doxorubicine, daunorubicine, carmustine, lomustine, cisplatine ; - leucémies lymphoïdes chroniques méchlorétamine, chlorambucil, cyclophosphamide, melphalan, ifosfamide.
On donnera ci-après des résultats d'essais pharmacologiques mettant en évidence les effets obtenus.
1 - Interaction (stimulation ou inhibition de la prolifération) avec la génération de cellules clonogènes (test clonogénique)
Le test utilisé est celui décrit par Hamburger et al. (Science, 1977; 197, 461-463) et Salmon et al. (New England J. Med., 298, 1321-1327). Une cellule est considérée clonogénique si elle possède la capacité de proliférer et de donner naissance à une colonie cellulaire. Les « human tumor stem cells » ou « cellules souches tumorales humaines » sont les cellules qui sont à l'origine des cellules néoplasiques qui constituent une tumeur donnée. Ces cellules souches tumorales sont responsables des processus de récidives observables après résection chirurgicale des tumeurs primaires et sont également responsables de la formation des métastases. Au niveau d'une tumeur ou d'une lignée cellulaire tumorale, ces cellules souches clonogéniques se différencient des autres cellules de la tumeur ou de la lignée cellulaire néoplasique considérée, par le fait qu'elles conservent leur capacité à proliférer en l'absence de tout support solide.
Dans ce test, les cellules tumorales sont mises en culture sur un support semi- solide constitué par de l'agar. Seules les cellules ne nécessitant pas de support solide pour leur croissance (c'est-à-dire les cellules très tumorigéniques appelées "anchorage- independent cells" par M.l. Dawson et al., Cancer Res. 1995 ; 55 : 4446-4451 ; également dénommées cellules clonogènes en référence à "clonal growth") sont capables de se développer sur un tel support à base d'agar. En effet, sur un tel milieu, les cellules normales -qui sont à croissance en "mode adhérent" ("anchorage- dependent cells" selon la terminologie de M.l. Dawson)- comme par exemple les fibroblastes, ne survivent pas. Au sein d'une population cellulaire tumorale, cultivée sur un tel support, ce sont ces cellules clonogènes (associées à un nombre illimité de divisions cellulaires et dont la prolifération est appelée par M.l. Dawson "anchorage- independent [clonal] growth") qui sont capables de croître. Le pourcentage de ces cellules clonogènes au sein d'une tumeur ou d'une lignée cellulaire varie entre 0,1% et 0,001%. Les cellules non-clonogènes (associées à un nombre limité de divisions cellulaires) ne se développent pas dans ce test car elles nécessitent un support solide pour leur croissance qui doit se faire en "mode adhérent" ("anchorage-dependent [adhèrent] growth", selon M.l. Dawson et al., Cancer Res. 1995 ; 55 : 4446-51)." L'influence de composés de formule (I) sur la croissance des colonies cellulaires obtenues en cultivant, par exemple, les lignées tumorales mammaires MCF7 et MXT et la lignée colorectale HT-29 sur le milieu de culture semi-liquide appelé "soft agar" a été mesurée. Sur un tel milieu, seules les cellules clonogènes appelées par M.l. Dawson "anchorage-independent (clonal) cells" survivent et se développent. La croissance de ces cellules en un tel mode "non adhérent" témoigne de leur degré de tumorigénicité.
L'inhibition de la croissance de la taille d'une tumeur dans laquelle s'est développé un plus grand nombre de cellules clonogènes devient alors le témoin d'une activité cytotoxique renforcée. A l'inverse, ce test peut aussi révéler qu'un composé est capable d'inhiber la génération/prolifération de cellules clonogènes, ce qui rend la tumeur moins apte à se développer, donc diminue la population de cellules tumorales.
Les lignées cellulaires tumorales étudiées sont maintenues en culture dans des boîtes falcon de 25 cm2. Elles sont ensuite trypsinisées et les cellules bien dissociées le§ unes des autres. Le pourcentage de cellules vivantes est déterminé après coloration au bleu trypan. Une suspension cellulaire à la concentration de 5.104 à 15.10" cellules/ml (selon le type cellulaire considéré) est préparée dans une solution d'agar à 0,3%. Ensuite, 200 μl de cette suspension sont ensemencés dans des boîtes de pétri de 35 mm de diamètre, dans lequelles sont déposés 3 ml d'une couche de base constituée d'une solution d'agar à 0,5%. Les 200 μl de suspension cellulaire sont à leur tour recouverts par 1 ,8 ml d'une couche supérieure constituée d'une solution d'agar à 0,3%. Les boîtes sont ensuite placées dans un incubateur à 37° C, 5% CO2 et 70% d'humidité jusqu'au traitement. Ce dernier est effectué environ 1 à 2 heures après l'ensemencement. Les composés à tester sont préparés à une concentration 100 fois supérieure à la concentration souhaitée et 50 μl de ces solutions traitantes sont déposés sur la couche supérieure d'agar des boîtes correspondantes. Dans la présente étude, la concentration finale des produits testés est 10"5, 10"7 et 10"9 M. Les boîtes sont ensuite maintenues 21 jours dans l'incubateur. Au 21 è jour les boîtes sont traitées en déposant sur la couche supérieure 100 μl d'une solution de MTT (bromure de 3-(4,5- dimethylthiazol-2-yl)-2,5-diphényltetrazoiinium) à 1 mg/ml préparé avec du milieu RPMI 1640 pendant 3 h à 37°C. Après ce laps de temps, les colonies cellulaires sont fixées en ajoutant 2 ml de formol par boîte. Après 24 heures de fixation, le formol est évaporé et le nombre de colonies cellulaires colorées, donc constituées de cellules métaboliquement actives, et dont la surface est supérieure à 100 μm2 est déterminé à l'aide d'un microscope inversé. Le nombre moyen de clones de cellules clonogènes déterminé pour chaque condition expérimentale étudiée est exprimé en pourcentage par rapport au nombre moyen de clones de cellules clonogènes comptabilisé dans la condition contrôle et posé égal à 100%. Ces valeurs, exprimées en pourcentage par rapport à la condition contrôle, sont consignées dans le Tableau I.
TABLEAU I
Figure imgf000011_0001
- Les résultats récapitulés dans ce tableau représentent les valeurs moyennes + l'erreur standard sur la moyenne (ESM) établies sur au moins 6 cupules.
- Condition contrôle = 100%
- (NS : p>0,05; * : p<0,05; ** : p<0,01; *** : p<0,001).
En fonction de la lignée cellulaire étudiée, la génistéine peut :
- recruter les cellules clonogènes au sein de la tumeur (lignées cellulaires HT-29 aux concentrations de 10"5 M et 10"7, et MXT aux concentrations de 10'7 M et 10"9 M), c'est à dire induire une augmentation significative du nombre de colonies de ces cellules par rapport à celui obtenu dans la condition contrôle, et rend alors celles-ci plus sensibles au traitement conventionnel par les agents cytotoxiques, ou
- être capable d'inhiber directement la prolifération de ces cellules clonogènes (lignée cellulaire MCF7 aux concentrations de 10"5 M et 10"7 M).
2 - Activité cytotoxique au niveau des cellules non-clonogènes : "test MTT"
L'influence des composés de formule (I) sur les cellules non-clonogènes a été évaluée à l'aide du test colorimétrique MTT.
Le principe du test MTT est basé sur la réduction mitochondriale par les cellules vivantes métaboliquement actives du produit MTT (bromure de 3-(4,5-diméthylthiazol-2- yl)-2,5 diphényltétrazolium) de couleur jaune en un produit de couleur bleue, le formazan. La quantité de formazan ainsi obtenue est directement proportionnelle à la quantité de cellules vivantes présentes dans le ou les puits de culture. Cette quantité de formazan est mesurée par spectrophotométrie. Les lignées cellulaires sont maintenues en culture monocouche à 37° C dans des boîtes de culture à bouchon fermé contenant du milieu de base MEM 25 MM HEPES
(Minimum Essential Médium). Ce milieu est bien adapté à la croissance d'une gamme de cellules variées diploïdes, ou primaires, de mammifères. Ce milieu est ensuite additionné : - d'une quantité de 5% de SVF (Sérum de Veau Foetal) décomplémenté à 56° C pendant 1 heure,
- de 0,6 mg/ml de L-glutamine,
- de 200 lU/ml de pénicilline,
- de 200 μg/ml de streptomycine, - de 0,1 mg/ml de gentamicine.
Les 12 lignées cellulaires cancéreuses humaines qui ont été utilisées ont été obtenues auprès de VAmerican Type Culture Collection (ATCC, Rockville, MD, USA). Ces 12 lignées cellulaires sont :
- U-373MG (code ATCC : HTB-17) et U-87MG (code ATCC : HTB-14) qui sont deux glioblastomes,
- SW1088 (code ATCC : HTB-12) qui est un astrocytome,
- A549 (code ATCC : CCL-185) et A-427 (code ATCC : HTB-53) qui sont deux cancers du poumon non-à-petites-cellules,
- HCT-15 (code ATCC : CCL-225) et LoVo (code ATCC : CCL-229) qui sont deux cancers colorectaux,
- T-47D (code ATCC : HTB-133) et MCF7 (code ATCC : HTB-22) qui sont deux cancers du sein,
- J82 (code ATCC : HTB-1 ) et T24 (code ATCC : HTB-4) qui sont deux cancers de la vessie, - PC-3 (code ATCC : CRL-1435) qui est un cancer de la prostate.
Au plan expérimental : 100 μl d'une suspension cellulaire contenant 20 000 à 50 000 (selon le type cellulaire utilisé) cellules/ml de milieu de culture sont ensemencés en plaques multi-puits de 96 puits à fond plat et sont mis à incuber à 37°C, sous atmosphère comprenant 5% CO2 et 70% d'humidité. Au bout de 24 heures d'incubation, le milieu de culture est remplacé par 100 μl de milieu frais contenant soit les différents composés à tester à des concentrations variant de 10 -5 à 10 -10 M soit le solvant ayant servi à la mise en solution des produits à tester (condition contrôle). Après 72 heures d'incubation dans les conditions précédentes, le milieu de culture est remplacé par 100 μl d'une solution jaunâtre de MTT dissous à raison de 1 mg/ml dans du RPMI 1640. Les microplaques sont remises à incuber pendant 3 heures à 37°C puis centrifugées pendant
10 minutes à 400 g. La solution jaunâtre de MTT est éliminée et les cristaux de formazan bleu formés au niveau cellulaire sont dissous dans 100 μl de DMSO. Les microplaques sont ensuite mises sous agitation pendant 5 minutes. L'intensité de la coloration bleue résultant donc de la transformation du produit MTT jaune en formazan bleu par les cellules encore vivantes au terme de l'expérience est quantifiée par spectrophotométrie à l'aide d'un appareil de type DYNATECH IMMUNOASSAY SYSTEM aux longueurs d'onde de 570 nm et 630 nm correspondant respectivement aux longueurs d'ondes d'absorbance maximale du formazan et au bruit de fond. Un logiciel intégré au spectrophotomètre calcule les valeurs moyennes de densité optique ainsi que les valeurs de déviation standard (Dév. Std.) et d'erreur standard sur la moyenne (ESM).
A titre d'exemple non limitatif, on donnera dans le tableau II les résultats de la densité optique moyenne, exprimés en pourcentage par rapport à la densité optique moyenne mesurée dans la condition contrôle (posée égale à 100%), obtenus avec un isoflavonoïde : la génistéine, sur les 5 lignées cellulaires tumorales U-87MG, J82, HCT-
15, T-47D et A549.
TABLEAU II
Figure imgf000014_0001
- xx ± yy = valeur moyenne ± erreur standard sur la moyenne
- condition contrôle = 100 % - (NS : p >0,05; * : p <0,05; ** p <0,01 ; *** : p< 0,001).
La génistéine présente un pouvoir antitumoral faible. Ce produit non cytotoxique induit, lorsque c'est le cas, une inhibition de la prolifération cellulaire globale de ces lignées seulement à la concentration de 10"5 M et cette inhibition ne dépasse pas 20%. Aux autres concentrations testées, seuls quelques effets marginaux peuvent être mis en évidence.
3. - Détermination de la dose maximaie tolérée (DMT) :
L'évaluation de la dose maximale tolérée a été réalisée chez des souris B6D2F1/Jico âgées de 4 à 6 semaines. Les composés ont été administrés par voie intrapéritonéale à des doses croissantes s'échelonnant de 2,5 à 160 mg/kg. La valeur de la DMT (exprimée en mg/kg) est déterminée à partir de l'observation du taux de survie des animaux sur une période de 14 jours après une administration unique du produit considéré. L'évolution pondérale des animaux est également suivie pendant cette période. Lorsque que la valeur de la DMT est supérieure à 160 mg/kg, la valeur de la DMT est assimilée à 160 mg/kg par défaut.
La génistéine est associée par défaut à une DMT égale à 160 mg/kg. Ce résultat suggère que les produits de la famille des isoflavonoïdes ne présentent pas de toxicité directe et peuvent être utilisés à des concentrations tissulaires élevées, donc à des posologies fortes.
4. - Activité antitumorale in vivo en association avec un agent cytotoxique
Les essais ont été réalisés sur les modèles de :
- adénocarcinome mammaire murin MXT hormonosensible (MXT-HS),
- lymphome P 388, en présence ou non d'agents cytotoxiques tels que le cyclophosphamide, l'étoposide, la doxorubicine ou la vincristine.
Lorsque la valeur de DMT d'un produit a été déterminée, son activité antitumorale in vivo a été caractérisée aux doses de DMT/2, DMT/4 et DMT/8 sur le modèle de l'adénocarcinome mammaire d'origine murine MXT-HS et sur le modèle du lymphome P388. C'est la dose qui a présenté la meilleure activité antitumorale sur ces différents modèles qui a été retenue et utilisée dans le cadre des traitements combinés avec les cytotoxiques.
Dans tous les exemples présentés ci-après, quelque que soit le modèle (adénocarcinome mammaire MXT-HS ou lymphome P 388), la condition contrôle est représentée par un lot de 9 souris auxquelles est administré pendant 5 semaines consécutives et à raison de 5 administrations (lundi, mardi, mercredi, jeudi et vendredi) par semaine un volume de 0,2 ml de sérum physiologique contenant le solvant utilisé pour dissoudre les différents composés de formule (I) utilisés.
Au cours de ces essais, ont été déterminés :
0- le taux de survie des souris.
Ce taux de survie a été calculé sous forme d'un rapport T/C :
(Nombre de jours (Souris (Nombre de souris mortes de survie de la souris médiane - dans les jours qui ont médiane du lot de traitée) précédé celui de la souris souris traitées) médiane traitée)
T =
(Nombre de souris mortes le même jour que la souris médiane traitée) (Nombre de jours (Souris (Nombre de souris mortes de survie de la souris médiane dans les jours qui ont médiane du lot de traitée) précédé celui de la souris souris contrôle) médiane traitée)
C =
(Nombre de souris mortes le même jour que la souris médiane contrôle)
Ce rapport représente le temps de survie moyen de la souris médiane du lot des souris traitées par rapport au temps de survie moyen de la souris médiane du lot des souris contrôles. Ainsi, une molécule induit une augmentation significative (P < 0.05) de la survie des animaux lorsque l'indice T/C excède 130%. Par contre elle présente un effet toxique lorsque cette valeur de T/C est inférieure à 70%.
ii)- La croissance tumorale en mesurant deux fois par semaine (lundi et vendredi) la surface des tumeurs MXT-HS et P388 greffées. Cette surface est calculée, en effectuant le produit de la valeur des deux plus grands axes perpendiculaires de la tumeur. La valeur de ces axes est mesurée à l'aide d'un pied à coulisse.
4.1. Adénocarcinome mammaire murin (MXT-HS)
Le modèle de l'adénocarcinome mammaire murin MXT hormono-sensible (MXT- HS) greffé sur des souris B6D2F1/Jlco âgées de 4 à 6 semaines est un modèle dérivé des canaux galactophores de glande mammaire (Watson C. et al. Cancer Res. 1977; 37: 3344-^8).
On donnera à titre d'exemple les résultats obtenus en utilisant la génistéine soit seule, soit en association avec les agents cytotoxiques.
Traitement 1
La génistéine est administrée seule. La première injection du produit est réalisée au septième jour post-greffe (J7) pendant quatre semaines consécutives à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) et à la dose de 20 mg/kg.
Traitement 2 Le cyclophosphamide (CPA) est administré seul. La première injection du produit est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) et à la dose de 10 mg/kg.
Traitement 3
La vincristine (VCR) est administrée seule. La première injection du produit est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) et à la dose de 0,63 mg/kg.
Traitement 4
L'étoposide (ETO) est administré seul. La première injection du produit est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) et à la dose de 10 mg/kg.
Traitement 5
La génistéine est co-administrée avec le cyclophosphamide. Dans ce cas, la première injection de la génistéine est réalisée au septième jour post-greffe (J7) pendant quatre semaines consécutives à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) à la dose de 20 mg/kg et la première injection du cyclophosphamide est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) à la dose de 10 mg/kg.
Traitement 6
La génistéine est co-administrée avec la vincristine. Dans ce cas, la première injection de la génistéine est réalisée au septième jour post-greffe (J7) pendant quatre semaines consécutives à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) à la dose de 20 mg/kg et la première injection de la vincristine est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) à la dose de 0,63 mg/kg.
Traitement 7
La génistéine est co-administrée avec l'étoposide. Dans ce cas, la première injection de la génistéine est réalisée au septième jour post-greffe (J7) pendant quatre semaines consécutives à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) à la dose de 20 mg/kg et la première injection de l'étoposide est réalisée au quatorzième jour post-greffe (J14) pendant trois semaines consécutives à raison de 3 injections par semaine (lundi, mercredi et vendredi) à la dose de 10 mg/kg.
On donnera ci-après les résultats obtenus pour le temps de survie (tableau III) pour la génistéine.
TABLEAU III
Figure imgf000018_0001
Ces résultats montrent que la co-administration de la génistéine avec les cytotoxiques : cyclophosphamide, vincristine ou étoposide, augmente de manière significative le temps de survie moyen de la souris médiane des différents lots de souris ainsi traitées par rapport au temps de survie moyen de la souris médiane du lot des souris contrôles. De plus, cette augmentation du temps de survie moyen de la souris médiane des différents lots de souris traitées avec ces co-administrations est significativement plus long que celui obtenu avec les traitements impliquant la génistéine ou ces cytotoxiques utilisés seuls.
L'étude de la croissance tumorale a par ailleurs mis en évidence les résultats suivants. Dans le tableau IV ci-dessous, sont indiqués en pourcentage les diminutions (-) ou les augmentations (+) de la surface des tumeurs MXT-HS induites avec les différents traitements 1r2, 3, 4, 5, 6 et 7 par rapport à la condition contrôle au 28èmβ jour après la greffe tumorale, soit après 15 administrations de génistéine et 6 administrations des différents cytotoxiques utilisés ou non en co-administrations avec la génistéine. Au 28 èmβ jour post-greffe, 89% des animaux contrôles sont encore en vie (soit 8 animaux sur 9).
Figure imgf000019_0001
Ces résultats montrent que la co-administration de la génistéine avec les cytotoxiques vincristine et étoposide induit de manière significative une diminution de la croissance des tumeurs MXT-HS plus importante que celle induite par les traitements impliquant la génistéine seule (qui n'a pas d'effet clinique pertinent) ou ces deux derniers cytotoxiques utilisés seuls.
4.2.Lymphone P 388 :
Les souris CDF1 âgées de 4 à 6 semaines sont greffées avec un morceau de tumeur P388 (provenant d'une banque de tumeurs maintenues au laboratoire) en sous- cutanée dans le flanc droit au jour J0. Afin de se placer dans une situation proche de la réalité clinique, nous attendons le 5èmβ jour post-greffe (J5) avant de commencer le traitement: Ceci car, après ce laps de temps, les tumeurs P388 sous cutanées sont palpables.
A titre d'exemple les résultats obtenus avec la génistéine seule ou en association avec la vincrinstine sont reportés ci-après. Traitement 1
La génistéine est administrée seule. La première injection du produit est réalisée au cinquième jour post-greffe (J5) à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) pendant cinq semaines consécutives et à la dose de 40 mg/kg.
Traitement 2
La vincristine (VCR) est administrée seule. La première injection du produit est réalisée au cinquième jour post-greffe (J5) à raison de 3 injections par semaine (lundi, mercredi et vendredi) pendant trois semaines consécutives et à la dose de 0,63 mg/kg.
Traitement 3 La génistéine est co-administrée avec la vincristine. Dans ce cas, la première injection de la génistéine est réalisée au cinquième jour post-greffe (J5) à raison de 5 injections par semaine (lundi, mardi, mercredi, jeudi et vendredi) pendant cinq semaines consécutives à la dose de 40 mg/kg et la première injection de vincristine est réalisée au cinquième jour post-greffe (J5) à raison de 3 injections par semaine (lundi, mercredi et vendredi) pendant trois semaines consécutives à la dose de 0,63 mg/kg.
Ci-après dans le tableau V sont présentés les résultats obtenus avec les traitements 1 ,2 et 3 sur le temps de survie des souris.
Tableau V
Figure imgf000020_0001
Ces résultats montrent que la co-administration de la génistéine avec la vincristine augmente de manière très hautement significative le temps de survie moyen de la souris médiane des différents lots de souris ainsi traitées par rapport au temps de survie moyen de la souris médiane du lot des souris contrôles. De plus, cette augmentation du temps de survie moyen de la souris médiane des différents lots de souris ainsi traitées est hautement significative par rapport au temps de survie moyen de la souris médiane des différents lots de souris traitées avec la génistéine ou la vincristine utilisées seules.
On donnera ci-après des exemples de modalité d'utilisation des composés de formule I dans des protocoles de mono ou polychimiothérapie par des agents cytotoxiques.
A. Tu meu rs solides
1°/ Cancers du poumon 1.1. non à petites cellules (stade avancé) :
- au protocole recommandé (T. Le Chevalier et al., J. Clin. Oncol. 1994 ; 12: 360-367) sont ajoutées les perfusions intraveineuses de génistéine ou d'un autre isoflavonoïde :
Figure imgf000021_0001
Cette cure est à répéter 8 fois.
1.2. à petites cellules (stade avancé) :
- au protocole recommandé CAV ou VAC (B.J. Roth et al., J. Clin. Oncol. 1992 ; 10 : 282-291) sont ajoutées les perfusions d'isoflavonoïde :
Figure imgf000021_0002
Figure imgf000022_0001
Cette cure est à répéter 6 fois tous les 21 jours. au protocole recommandé Pt-E (B.J. Roth et al., J. Clin. Oncol. 1992 ; 10 282-291) sont ajoutées les perfusions de génistéine
Figure imgf000022_0002
chaque cycle est répété tous les 21 jours et la cure comprend 6 cycles.
1.3. cancer bronchique non à petites cellules, localement avancé ou métastatique :
• monochimiothérapie :
Figure imgf000022_0003
la cure pouvant comporter la répétition de ce cycle de 4 semaines. association gemcitabine/cisplatine
Figure imgf000023_0001
la cure comportant la répétition de ce cycle tous les 21 jours.
°/ Cancers du sei n
- protocole CMF en traitement adjuvant du cancer du sein opérable (G. Bonnadonna et al., N. Engl. J. Med. ;1976 ; 294 : 405-410) :
Figure imgf000023_0002
chaque cycle est répété tous les 28 jours et la cure comporte 6 cycles. protocole AC (B. Fisher et al., J. Clin. Oncol. ; 1990 ; 8 : 1483 - 1496) en traitement adjuvant :
Figure imgf000024_0001
chaque cycle est répété tous les 21 jours et la cure comporte 4 cycles.
cancers du sein avec métastases
dans le protocole FAC (A.U. Buzdar et al., Cancer 1981 ; 47 : 2537 - 2542) et ses différentes adaptations, les perfusions d'isoflavonoïde sont ajoutées selon le schéma (non limitatif) suivant :
Figure imgf000024_0002
chaque cycle est répété toutes les 3 semaines jusqu'au diagnostic d'une nouvelle progression de la maladie. dans le protocole CAF (G. Falkson et al., Cancer 1985 ; 56 : 219 - 224)
Figure imgf000025_0001
chaque cycle est répété tous les 28 jours jusqu'au diagnostic d'une nouvelle progression de la maladie.
- dans le protocole CMF :
Figure imgf000025_0002
ce cycle est à répéter toutes les 3 à 5 semaines et la cure comporte 6 cycles. dans le protocole CMF-VP
Figure imgf000026_0001
cette cure est à répéter toutes les 4 semaines.
dans le protocole FEC
Figure imgf000026_0002
cette cure est à répéter toutes les 3 semaines. - dans le protocole MMC-VBC (C. Brambilla et al., Tumori, 1989 ; 75 : 141-144)
Figure imgf000027_0001
cette cure est à répéter tous les 28 jours jusqu'au diagnostic de progression de la maladie.
dans le protocole NFL (S.E. Jones et al., J. Clin. Oncol. 1991 ; 9 : 1736 1739) :
Figure imgf000027_0002
la cure comporte deux cycles espacés de 21 jours puis nécessite une évaluation.
Les perfusions d'isoflavonoïde peuvent également être associées au traitement des cancers du sein avec métastases lorsque un taxoïde est utilisé, par exemple:
- avec paclitaxel (F.A. Holmes et al., J. Natl Cancer Inst. 1991 ; 83 : 1797 - 1805) dans le traitement des formes avec métastases éventuellement résistantes aux anthracyclines :
Figure imgf000028_0001
Ce cycle est répété tous les 21 jours jusqu'à ce qu'une nouvelle progression de la maladie soit diagnostiquée.
avec docetaxel (C.A. Hudis et al., J. Clin. Oncol. 1996 ; 14 : 58 -65), dans le cancer du sein localement avancé ou métastatique, résistant ou en rechute après chimiothérapie cytoxique (ayant comporté une anthracycline) ou en rechute au cours d'un traitement adjuvant :
Figure imgf000028_0002
Ce cycle est répété tous les 21 jours pour une cure de 2 cycles ou jusqu'à apparition d'une progression de la maladie.
dans les protocoles d'intensification de dose, associant une transplantation de cellules médullaires autologues et de cellules-souches du sang périphérique, en consolidation du traitement de première intention, par exemple :
• protocole CPB (W.P. Peters et al., J. Clin. Oncol. 1993 ; 11 : 132 - 1143), dans lequel la perfusion i.v. de cellules-souches a lieu les jours J.1f J0et J, :
Figure imgf000029_0001
protocole CTCb (K. Antman et al., J. Clin. Oncol. 1992 ; 10 : 102 - 110), dans lequel la perfusion i.v. de cellules-souches a lieu le jour J0 :
Figure imgf000029_0002
- protocole CTM (L.E. Damon et al., J. Clin. Oncol. 1989 ; 7 : 560-571 et I.C. Henderson et al., J. Cellular Biochem. 1994 (SuppI 18B) : 95) dans lequel la perfusion i.v. de cellules-souches hématopoïetiques a lieu le jour J0:
Figure imgf000030_0001
3°/ Cancers gynécologiques
3.1 Cancer de l'ovaire :
- pour le traitement des carcinomes ovariens, en particulier métastatiques :
i) protocole PAC (G. A. Omura et al. J. Clin. Oncol. 1989 ; 7 : 457 - 465) : les perfusions d'isoflavonoïdes sont administrées selon le schéma suivant :
Figure imgf000030_0002
ce cycle est répété tous les 21 à 28 jours et la cure comporte 8 cycles.
ii) protocole altretamine, d'après A. Marietta et al. (Gynecol. Oncol. 1990 ; 36: 93 -96) :
Figure imgf000031_0001
la cure comportant deux cycles, espacés de 28 jours.
ii) protocole paclitaxel : les isoflavonoïdes peuvent être ajoutés au protocole de paclitaxel tel qu'il a été décrit par W.P. Me Guire et al. (Ann. Intern. Med. 1989 ; 111 : 273 - 279) :
Figure imgf000031_0002
la cure comportant deux de ces cycles, espacés de 28 jours (avec évaluation à l'issue).
pour le traitement des carcinomes ovariens métastatiques et réfractaires, les isoflavonoïdes peuvent être ajoutés au protocole de seconde intention, à base de topotecan :
Figure imgf000031_0003
la cure comportant deux cycles, espacés de 21 jours (avec évaluation à l'issue)
d'après A.P. Kudelka et al. (J. Clin. Oncol. 1996 ; 14 : 1552 - 1557).
3.2 Tumeurs trophoblastiques :
- chez les patientes à faible risque, les isoflavonoïdes pourront être associés au protocole décrit par H. Takamizawa et al. (Semin. Surg. Oncol. 1987 ; 3 : 36 - 44) :
Figure imgf000032_0001
(protocole MTX-DATC).
3.3 Cancers de l'utérus :
les isoflavonoïdes peuvent également être associées au protocole CAV (ou VAC) selon le schéma ci-après :
Figure imgf000032_0002
la cure comportant la répétition de ce cycle tous les 21 jours.
- dans le protocole FAP :
Figure imgf000033_0001
la cure comportant la répétition de ce cycle tous les 21 ou 28 jours.
°/ Cancers du testicule et de la prostate
- les isoflavonoïdes peuvent également être associées aux protocoles du cancer des testicules :
Figure imgf000033_0002
la cure comportant 3 cycles, à raison de 1 cycle tous les 21 jours. °/ Ca ncers de l a vess i e
les isoflavonoïdes peuvent être associés au protocole CISCA2 (aussi appelé PAC)
Figure imgf000034_0001
le cycle étant à répéter toutes les 3 semaines.
dans le protocole MVAC (d'après CN Sternberg et I., J. Urol. 1988 ; 139 : 461 469) :
ce cycle étant répété toutes les 4 à 5 semaines, au minimum pour 2 cycles. 6°/ Carci nomes naso-pharvnqés / Cancers de la tête et du cou
- Les isoflavonoïdes peuvent être valablement associées aux protocoles de polychimiothérapie utilisés dans le traitement de ces cancers :
6.1 Cancers naso-pharyngés :
- protocole ABVD :
la cure comportant 1 à 6 cycles répétés à raison de 1 cycle toutes les 4 semaines.
6.2 Cancers de la tête et du cou avec métastases : - dans le protocole Pt-FU (ex : pour les cancers du pharynx) : d'après le DVAL
Study Group (New Engl. J. M. 1991 ; 324 : 1685 - 1690) :
Figure imgf000035_0002
la cure comportant deux cycles, à raison de 1 cycle toutes les 3 semaines.
7°/ Sarcomes des tiss us mous
- Les isoflavonoïdes peuvent être introduits dans un protocole tel que le protocole CYVADIC : - d'après H. M. Pinedo et al. (Cancer 1984 ; 53 : 1825) :
Figure imgf000036_0001
pour 2 cycles.
8°/ Cancer de la prostate hormono-refractaire. avec métastases
- dans le protocole VBL-estramustine, d'après G.R. Hudis et al. (J. Clin. Oncol. 1992 ; 10 : 1754 : 1761) :
Figure imgf000036_0002
ycle de traitement durant 6 semaines et étant suivi de 2 semaines d'intervalle libre.
9°/ Cancers des cellules qerminales
i) pour les tumeurs de pronostic favorable : - protocole Pt-E, d'après G.J. BosI et al. (J. Clin. Oncol. 1988 ; 6 : 1231 - 1238)
Figure imgf000037_0001
la cure comportant 4 cycles, à raison de 1 cycle tous les 21 ou 28 jours.
ii) pour les tumeurs avec métastases :
- protocole PEB, d'après S.D. Williams et al. (N. Eng. J. Med. 1987 ; 316 1435-1440) :
Figure imgf000037_0002
la cure comportant 4 cycles, à raison de 1 cycle tous les 21 jours. 0°/ Cancers d u rei n
- carcinome rénal métastatique : les isoflavonoïdes peuvent être introduits dans le protocole décrit par M. J. Wilkinson et al. (Cancer 1993 ; 71 : 3601- 3604) :
Figure imgf000038_0001
la cure comportant deux cycles espacés de 28 jours.
néphroblastome : les isoflavonoïdes peuvent être introduits dans le protocole DAVE :
Figure imgf000038_0002
à raison d'un cycle toutes les 3 à 4 semaines. 1 1 °/ Cancers du tube digestif
11.1 Cancers de l'oesophage :
- les isoflavonoïdes peuvent être introduits dans le protocole FAP selon
Figure imgf000039_0001
ce cycle étant répété toutes les 3 à 4 semaines.
11.2 Cancers de l'estomac
- dans les carcinomes gastriques avancés et/ou avec métastases :
- protocole EAP (d'après P. Preusser et al. , J. Clin. Oncol. 1989 ; 7 : 1310)
Figure imgf000039_0002
à raison de 1 cycle tous les 28 jours. - protocole FAMtx : d'après J.A. Wils et ai. (J. Clin. Oncol. 1991 ; 89 : 827):
Figure imgf000040_0001
la cure comportant d'abord deux cycles, espacés de 28 jours. chez certains malades, ce protocole ou sa variante (l'épirubicine remplaçant la doxorubicine) pourront être utilisés selon le schéma suivant :
Figure imgf000040_0002
12°/ Cancers colo-rectaux
- les isoflavonoïdes peuvent être introduits dans le protocole de traitement adjuvant FU-Levamizole du cancer colo-rectal (d'après C.G. Moertel et al. , N. Eng. J. Med. 1990 ; 322 : 352) :
Figure imgf000041_0001
le traitement en bolus par le 5-FU étant répété chaque semaine après la phase d'induction J, - J5, pendant .52 semaines ; celui par un isoflavonoïde étant répété sur le même rythme, le jour du bolus de 5-FU puis les 2 jours suivants.
pour le traitement du cancer colo-rectal, refractaire au traitement par 5- fluorouracile (5-FU) et avec métastases :
- d'après M.L. Rothenberg ét al. (J. Clin. Oncol. 1996 ; 14 : 1128-1135) :
Figure imgf000041_0002
la cure comportant deux cycles, espacés de 42 jours. 3°/ Sarcomes de Kaposi
- les isoflavonoïdes peuvent être associés aux deux protocoles utlisant des antracyclines formulées en liposomes :
i) protocole décrit par P.S. Gill et al. (J. Clin. Oncol. 1995 ; 13 : 996-1003) et C.A. Presant et al. (Lancet 1993 ; 341 : 1242-1243) :
Figure imgf000042_0001
la cure comportant deux cycles répétés à 28 jours d'intervalle avant d'évaluer les effets.
ii) protocole de M. Harrison et al. (J. Clin. Oncol. 1995 ; 13 : 914-920) :
Figure imgf000042_0002
la cure comportant deux cycles répétés à 28 jours d'intervalle avant d'évaluer les effets.
4°/ Mélanomes métastatiques
- les isoflavonoïdes peuvent également être incorporés aux protocoles combinés de traitement des mélanomes malins métastatiques :
- protocole DTIC/TAM : d'après G. Cocconi et al. (N. Eng. J. Med. 1992 ; 327 : 516), la cure comprenant la répétition de 4 cycles, à raison de 1 cycle tous les 21 jours, selon le schéma ci-après :
Figure imgf000043_0001
la cure comportant 4 cycles à raison de 1 cycle tous les 21 jours.
15°/ Carcinome neuroendocrine
- les isoflavonoïdes peuvent être associées au protocole décrit par C.G. Moertel et al. (Cancer 1991 ; 68 : 227) :
- protocole Pt-E :
Figure imgf000043_0002
la cure comportant deux cycles répétés tous les 28 jours.
16°/ Cancer du pancréas
- adéno-carcinome pancréatique de stade avancé : les isoflavonoïdes peuvent être associés au traitement par gemcitabine, selon le protocle de M. Moore et al. (Proc. Am. Soc. Clin. Oncol. 1995 ; 14 : 473)
Figure imgf000044_0001
B . O nco-hématol oqie
1°/ Leucémies aiguës de l'adulte
1.1. Leucémie lymphoblastique aiguë :
1.1.1. Protocole de Linker
Les isoflavonoïdes peuvent être ajoutés aux protocoles de Linker - Chimiothérapie d'induction et chimiothérapie de consolidation . (voir C.A. Linker et al. Blood 1987 ; 69 : 1242-1248 et C.A. Linker et al. Blood 1991 ; 78 : 2814-2822) selon les schémas suivants :
0 chimiothérapie d'induction
Figure imgf000044_0002
Figure imgf000045_0001
ii) chimiothérapie de consolidation (régime A) :
Figure imgf000045_0002
la cure de consolidation A comprend 4 cycles consécutifs tels que celui décrit ci-dessus = Cycles 1 , 3, 5 et 7.
iii) chimiothérapie de consolidation (régimes B et C) :
Les régimes décrits ci-dessous correspondent aux cycles de consolidation 2, 4, 6 et 8 (régime B) et 9 (régime C), décrits par C.A. Linker et al. :
Figure imgf000045_0003
Figure imgf000046_0001
1.1.2. Protocole de Hoeizer
Les produits revendiqués pourront être ajoutés aux cytotoxiques de ce protocole de polychimiotherapie (D. Hoeizer et al., Blood 1984 ; 64 : 38-47, D. Hoeizer et al. , Blood 1988 ; 71 : 123-131) selon le schéma suivant : i) chimiothérapie d'induction / Phase 1 :
Figure imgf000046_0002
ii) chimiothérapie d'induction / Phase 2 :
La phase 2 de l'induction pourra être réalisée comme suit
Figure imgf000047_0001
in) chimiothérapie de ré-induction / Phase 1
Figure imgf000047_0002
iv) chimiothérapie de ré-induction / Phase 2 :
Figure imgf000048_0001
1.2. Leucémies myéloïdes aiguës :
1.2.1. Traitement de l'adulte de tout âge
Les isoflavonoïdes peuvent être ajoutés, selon le schéma ci-dessous, au traitement incorporant la dose standard de cytarabine antérieurement décrit par R.O. Dilleman et al. (Blood, 1991 ; 78 : 2520-2526), Z.A. Arlin et al. (Leukemia 1990 ; 4 : 177-183) et P.H. Wiernik et al. (Blood 1992 ; 79 : 313- 319) :
Figure imgf000048_0002
.2. Traitement de l'adulte d'âge inférieur à 60 ans
i) chimiothérapie d'induction :
Ce cycle d'induction incorpore l'administration de cytarabine à forte dose selon le schéma suivant :
Figure imgf000049_0001
(afin de réduire le risque de toxicité S.N.C., en cas d'insuffisance rénale, ajuster la posologie de cytarabine à la clairance de la créatinine) d'après L.E. Damon et al. (Leukemia 1994 ; 8 : 535-541), G.L. Phillips et al. (Blood 1991 ; 77 : 1429-1435) et G. Smith et al. (J. Clin. Oncol. 1997 ; 15 : 833-839).
ii) chimiothérapie de consolidation :
Le cycle, décrit ci-après, sera répété 8 fois, à raison de 1 cycle toutes les 4 à 6 semaines (d'après R.J. Mayer et al., N. Engl J. Med. 1994 ; 331 : 896-903) :
Figure imgf000050_0001
iii) chimiothérapie de consolidation (avec forte dose de cytarabine) :
Le cycle, décrit ci-après, devra être répété 2 fois et est adapté d'après G.L. Phillips et al. (Blood 1991 ; 77 : 1429-1435) ; S.N. Wolff et al. (J. Clin. Oncol. 1989 ; 7 : 1260 -1267) ; R.J. Mayer et al. (N. Engl J. Med. 1994 ; 331 : 896- 903) :
Figure imgf000050_0002
1.2.3. Traitement de l'adulte d'âge égal ou supérieur à 60 ans
Les substances revendiquées pourront être ajoutées aux protocoles de chimiothérapies de consolidation ci-après : i) selon R.O. Dilman et al. (Blood 1991 ; 78 ; 2520-2526), Z.A. Arlin et al. (Leukemia 1990 ; 4 : 177-183), P.H. Wiernik et al. (Blood1992 ; 79 : 313-319) :
Figure imgf000051_0001
// selon R.J. Mayer et al. (N. Engl. J. Med. 194 ; 331 : 896-903) :
Figure imgf000051_0002
iii) selon C.A. Linker et al. (Blood 1993 ; 81 : 311-318), N. Chao et al. (Blood 1993 ; 81 : 319-323) et A.M. Yeager at al. (N. Eng. J. Med. 1986 ; 315 : 145-147) : Ce protocole comprend une transplantation de moelle osseuse autologue
(pratiquée le jour J0) :
Figure imgf000052_0001
Ou
Figure imgf000052_0002
iv) en cas de transplantation de moelle osseuse allogène HLA-compatible selon: P.J. Tutscha et al. Blood 1987 ; 70 : 1382-1388, F.R. Applebaum et al., Ann. Int. Med. 1984 ; 101 : 581-588 :
Figure imgf000052_0003
2°/ Leucémies chroniques de l'adulte
2.1 Leucémie myéloïde chronique
En phase myéloblastique, les isoflavonoïdes peuvent être ajoutés au traitement HU-Mith, décrit par C.A. Koller et al. (N. Engl. J. med. 1986 ; 315 : 1433-1438) :
Figure imgf000053_0001
2.2 Leucémie lymphocytaire chronique
2.2.1 Protocole FCG-CLL
Les isoflavonoïdes peuvent être ajoutés aux combinaisons "chlorambucil puisé" telles que décrites par E. Kimby et al. (Leuk. Lymphoma 1991 ; 5 (SuppI.) 93-96) et par le FCGCLL (Blood 1990 ; 75 : 1422-1425) :
Figure imgf000053_0002
2.2.2 Protocole fludarabine-CdA d'après H.G. Chun et al. (J. Clin. Oncol. 1991 ; 9 : 175-188), M.J. Keating et ai. (Blood 1989 ; 74 : 19-25 / J. Clin. Oncol. 1991 ; 9 : 44-49) et A. Saven et al. (J. Clin. Oncol. 1995 ; 13 : 570-574) :
Figure imgf000054_0001
3°/ Maladies iymphoprolifératives
3.1 Maladie de Hodgkin
Les isoflavonoïdes peuvent être incorporés aux protocoles de polychimiotherapie utilisés classiquement pour le traitement du lymphome de Hodgkin :
3.1.1 Protocole AVDB d'après G. Bonnadonna et al. (Cancer Clin. Trials 1979 ; 2 : 217-226) et G. P. Canellos et al. (N. Engl. J. Med. 1993 ; 327 : 1478-1484) :
Figure imgf000055_0001
la cure comportant 6 à 8 cycles, à raison de 1 cycle tous les 28 jours.
3.1.2 Protocole MOPP/ABVD d'après G. Bonnadonna et al. (Ann. Intern. Med. 1986 ; 104 : 739-746) et G. P. Canellos et al. (N. Engl. J. Med. 1993 ; 327 : 1478-1484) :
Le protocole MOPP doit être alterné avec le protocole ABVD (cf. § 3.1.1) tous les 28 jours et la cure comporte 6 cycles :
Figure imgf000055_0002
.1.3 Protocole Stanford V d'après N.L. Bartlett et al. (J. Clin. Oncol. 1995 ; 13 : 1080-1088) :
Figure imgf000056_0001
la cure comportant 3 cycles à raison de 1 cycle tous les 28 jours.
3.1.4 Protocole EVA d'après G. P. Canellos et al. (Proc. Am. Soc. Clin. Oncol. 1991 ; 10 : 273)
Figure imgf000057_0001
la cure comportant 6 cycles, à raison de 1 cycle tous les 28 jours.
3.1.5 Protocole B-CAVe d'après W.G. Harker et al. (Ann. Intern. Med. 1984 ; 101 : 440-446)
Figure imgf000057_0002
la cure comportant 8 cycles, à raison de 1 cycle tous les 28 jours. 3.2. Lymphomes non hodgkiniens.
3.2.1. de bas grade de malignité
i)- protocole CVP
- d'après CM. Bagley et al. (Ann. Intern. Med. 1972 ; 76 : 227 - 234) et C.S. Portlock et al. (Blood 1976 ; 47 : 747 - 756)
Figure imgf000058_0001
Ce cycle est répété tous les 21 jours jusqu'à réponse maximale
ii)- protocole l-COPA
- d'après RV Smalley et al. (N. Eng. J. Med. 1992 ; 327 : 1336 - 1341 )
Figure imgf000059_0001
La cure comprend 8 à 10 cycles, à raison d'un cycle tous les 28 jours.
iii)- protocole fludarabine-CdA
- d'après P. Solol-Celigny et al. (Blood 1994 ; 84 (Supp. 1) : 383a), H. Hoeschster et al. ; (Blood 1994 ; 84 (SuppI. 1) : 564a et A.C. Kay (J. Clin. Oncol. 1992 ; 10 : 371 - 377)
Figure imgf000059_0002
Pour la fludaribine, chaque cycle est répété tous les 28 jours ; pour la cladribine, chaque cycle est répété tous les 35 jours. .2.2. de grade de malignité intermédiaire
i)- protocole CHOP ou CNOP
- d'après EM McKelvey et al. (Cancer 1976 ; 38 : 1484 - 1493), J.O Armitage et al. (J. Clin. Oncol. 1984 ; 2 : 898 - 902) , S. Paulovsky et al. (Ann. Oncol. 1992 ; 3 : 205 - 209)
Figure imgf000060_0001
pour le protocole CHOP
La mitoxantrone (N) peut être utilisée pour remplacer (protocole CNOP) la doxorubicine chez les patients de plus de 60 ans (dose : 12 mg/m2 en bolus i;v. au jour J1 de chaque cycle).
La cure par le protocole CHOP ou CNOP comprend 6 à 8 cycles à raison de 1 cycle tous les 21 jours.
ii)- protocole MACOP-B d'après P. Klimo et al. (Ann. Intern. Med. 1985 ; 102 : 596 602) et LA. Cooper et al. (J. Clin. Oncol. 1994 ; 12 : 769 - 778)
Figure imgf000061_0001
Ce protocole de traitement s'étale sur 12 semaines et correspond à 1 cycle.
iii)- protocole VACOP-B d'après J.M. Connors et al. (Proc. Am. Soc. Clin. Oncol. 1990 ; 9 :254) :
Figure imgf000062_0001
Chaque cycle durant 12 semaines.
iv)- protocole m-BACOD / M-BACOD d'après M.A. Shipp et al. (Ann. Int. Med. 1986 ; 140 : 757 765) et A.T. Skarin et al. (J. Clin. Oncol. 1983 ; 1 : 91 - 98)
Figure imgf000063_0001
La cure comportant 10 cycles, à raison de 1 cycle tous les 21 jours.
v)- protocole ProMACE/CytaBOM d'après D.L. Longo et al. (J. Clin. Oncol. 1991 ; 9 : 25 - 38)
Figure imgf000064_0001
La cure comportant 6 à 8 cycles, à raison de 1 cycle tous les 14 jours.
3.2.3. de grade de malignité bas ou intermédiaire
i)- protocole de sauvetage ESHAP en cas de récidive ou en cas d'échec du traitement de première ligne, d'après W.S. Velasquez et al. (J. Clin. Oncol. 1994 ; 12 : 1169 - 1176)
Figure imgf000065_0001
La cure comportant 6 cycles, à raison de 1 cycle tous les 28 jours.
ii)- protocole de sauvetage MINE en cas de récidive ou en cas d'échec du traitement de première ligne, d'après F. Cabanillas et al. (Semin. Oncol. 1990 ; 17 (SuppI. 10) : 28 - 33)
Figure imgf000065_0002
Ce cycle étant à répéter tous les 21 jours. 3.3. Lymphomes non hodgkiniens : lymphome de Burkitt, lymphome à petites cellules, lymphome iymphobiastique.
3.3.1. Protocole de Magrath
- Les produits revendiqués pourront être associés aux protocoles de Magrath selon les schémas suivants :
i)- cycle 1
- d'après I.T. Magrath et al. ( Blood 1984 ; 63 : 1102 - 1111 )
Figure imgf000066_0001
ii)- cycles 2 à 15
- d'après I.T. Magrath et al. (1984) également
Figure imgf000067_0001
la cure comportant 14 cycles, à raison d'un cycle tous les 28 jours.
3.4 Macroglobulinémie de Waldenstrôm
3.4.1 Protocole CVP d'après le protocole CVP décrit par M.A. Dimopoulous et al. (Blood 1994 ; 83 1452-1459) et C.S. Portlock et al. (Blood 1976 ; 47 : 747-756)
Figure imgf000068_0001
la cure étant à poursuivre indéfiniment (1 cycle tous les 21 jours).
3.4.2 Protocole Fludarabine-CdA d'après H.M. Kantarjian et al. (Blood 1990 ; 75 : 1928-1931) et M.A. Dinopoulous et al. (Ann. Intern. Med. 1993 ; 118 : 195-198) :
Figure imgf000068_0002
ou
Figure imgf000068_0003
la cure comportant 6 à 12 cycles espacés de 28 jours dans le cas de la fludarabine et 2 cycles espacés de 28 jours également dans le cas de la cladribine.
3.5 Myélome multiple
3.5.1 Protocole MP d'après R. Alexanian et al. (JAMA 1969 ; 208 : 1680-1685), A. Belch et al. (Br. J. Cancer 1988 ; 57 : 94-99) et F. Mandelli et al. (N. Engl. J. med. 1990 ; 322 : 1430-1434) :
Figure imgf000069_0001
ou
Figure imgf000069_0002
la cure comportant au moins 12 cycles, à raison de 1 cycle toutes les 4 à 6 semaines. 3.5.2 Protocole VAD d'après B. Barlogie ét al. (N. Engl. J. Med. 1984 ; 310 : 1353-1356) :
Figure imgf000070_0001
3.5.3 Protocole MP-interferon α d'après O. Osterborg et al. (Blood 1993 ; 81 : 1428-1434) :
Figure imgf000070_0002
la cure comportant la répétion indéfinie de ce cycle, à raison de 1 cycle tous les 42 jours. .5.4 Protocole VCAP ou VBAP d'après S.E. Salmon ét al. (J. Clin. Oncol. 1983 ; 1 : 453-461 ) protocole VCAP :
Figure imgf000071_0001
protocole VBAP : le cyclophosphamide est remplacé par la carmustine (BCNU), le reste étant identique :
Figure imgf000071_0002
C. TUMEURS DE L'ENFANT - Oncologie pédiatrique
Les isoflavonoïdes peuvent également être incorporés aux protocoles polychimiothérapeutiques de traitement des tumeurs pediatriques afin d'améliorer l'efficacité antitumorale tout en réduisant la sévérité des effets secondaires grâce à l'action sur le recrutement et la mobilisation des cellules clonogènes et à la possibilité de réduire les doses actives. 1 Sarcome d'Ewing / Tumeur neuroectodermale primitive
Les isoflavonoïdes peuvent être introduits dans le protocole VCR-Doxo-CY-lfos- Mesna-E (E. D. Bergert et al., J. Clin. Oncol. 1990 ; 8 : 1514 - 1524 ; W.H. Meyer et al., J. Clin. Oncol. 1992 ; 10 : 1737 - 1742) :
Figure imgf000072_0001
la cure comprend 6 à 10 de ces cycles en fonction de la sévérité initiale du sarcome et de l'amplitude de la réponse.
27 Leucémie lymphoblastique aiguë de l'enfant 2.1. Chimiothérapie d'induction (jours J, - J.30)
Les isoflavonoïdes peuvent être ajoutés aux protocoles recommandés (P.S. Gaynon et al., J. Clin. Oncol., 1993, 11 , 2234-2242 ; J. Pullen et al., J. Clin. Oncol. 1993 ; 11 : 2234 -2242 ; J. Pullen et al., J. Clin. Oncol. 1993 ; 11 : 839 -849 ; VJ Land at al., J. Clin. Oncol. 1994 ; 12 :1939 -1945)
Figure imgf000073_0001
en fonction du résultat de l'examen de la moelle osseuse, le passage à la phase de consolidation se fait le jour J28 du protocole de traitement.
2.2. Chimiothérapie de consolidation / maintenance
Les isoflavonoïdes peuvent être introduits dans le protocole de maintenance (P.S. Gaynon et al., J. Clin. Oncol. 1993 ; 11 : 2234 -2242 ; J. Pullen et al., J. Clin. Oncol. 1993 ; 11 : 839 -849 ; V.J. Land et al., J. Clin. Oncol. 1994 ; 12 :1939 -1945) selon le schéma suivant :
Figure imgf000074_0001
37 Leucémie myéloïde aiguë de l'enfant
Les isoflavonoïdes sont ajoutés aux protocoles d'induction et de consolidation / maintenance selon les schémas suivants :
3.1. Chimiothérapie d'induction
D'après Y. Ravindranath et al., J. Clin. Oncol. 1991 ; 9 : 572 -580 ; M.E. Nesbit et al., J. Clin. Oncol. 1994 ; 12 : 127 - 135 ; RJ Wells et al., J. Clin. Oncol. 1994 ; 12 : 2367 - 2377) :
Figure imgf000075_0001
ce cycle étant répété à partir de J28.
3.2. Chimiothérapie de consolidation / maintenance
D'après Y. Ravidranath et al., J. Clin. Oncol. 1991 ; 9 : 572 -580 ; M.E. Nesbit et al., J. Clin. Oncol. 1994 ; 12 : 127 - 135 ; R.J. Wells et al, J. Clin. Oncol. 1994 ; 12 : 2367 - 2377) :
Figure imgf000076_0001
47 Maladie de Hodgkin de l'enfant
Les isoflavonoïdes peuvent être ajoutés au protocole MOPP-ABVD selon EA Gehan et al. (Cancer 1990 ; 65 : 1429 - 1437), SP Hunger et al. (J. Clin. Oncol. 1994 ; 12 : 2160 - 2166) et MM Hudson et al. (J. Clin. Oncol. 1993 ; 11 : 100 - 108) :
Figure imgf000077_0001
Ce cycle doit être répété 6 fois à raison de 1 cycle toutes les 8 semaines, la cure comportant 6 cycles.
Si une transplantation de moelle osseuse autologue (autogreffe) est prescrite, le protocole CVB décrit par R. Chopra et al. (Blood 1993 ; 81 : 1137 - 1145), C. Wheeler et al. (J. Clin. Oncol. 1990 ; 8 : 648 - 656) et RJ Jones et al (J. Clin Oncol 1990, 8, 527-537) pourra être mis en œuvre selon le schéma suivant (l'allogreffe ayant lieu le jour J0) :
Figure imgf000078_0001
Lymphome lymphoblastique de l'enfant
Les isoflavonoïdes pourront également être associés aux protocoles de chimiothérapie d'induction (A.T. Meadows et al., J. Clin. Oncol. 1989 ; 7 : 92 - 99 - C. Patte et al., Med. Ped. Oncol. 1992 ; 20 : 105 - 113 et A. Reiter et al., J. Clin. Oncol. 1995 ; 13 : 359 - 372) et de chimiothérapie de maintenance :
5.1 Chimiothérapie d'induction
Figure imgf000079_0001
5.2 Chimiothérapie de maintenance selon le schéma suivant :
Figure imgf000080_0001
la cure comportant 10 cycles
67 Neuroblastome pédiatrique
Le protocole de polychimiotherapie recommandé Doxo-E-Cy-Pt est adapté de R.P. Castleberry et al. (J. Clin. Oncol. 1992 ; 10 : 1299 -1304), A. Garaventa et al. (J. Clin. Oncol. 1993 ; 11 : 1770 - 1779) et D.C. West et al. (J. Clin. Oncol. 1992 ; 11 : 84 - 90) :
Figure imgf000081_0001
L'évaluation de la réponse thérapeutique est faite après 9 semaines afin de décider de l'attitude : résection chirurgicale, radiothérapie ou nouvelle chimiothérapie.
77 Ostéosarcome pédiatrique
Les isoflavonoïdes peuvent être ajoutés au protocole Doxo-Pt-Mtx-Lcv tel qu'il est décrit par M. Hudson et al. (J. Clin. Oncol. 1990 ; 8 : 1988 - 1997), PA Meyers (J. Clin. Oncol. 1992 ; 10 : 5 - 15), et V.H.C. Bramwell et al. (J. Clin. Oncol. 1992 ; 10 : 1579-1591) :
Figure imgf000082_0001
87 Rhabdomyosarcome de l'enfant
Le protocole Vcr-Dact-CY-Mesna (H. Maurer et al., Cancer 1993 ; 71 : 1904 - 1922 et LR Mandell et al., Oncology 1993 ; 7 : 71 - 83) peut inclure la perfusion i.v. des isoflavonoïdes selon le schéma suivant :
Figure imgf000082_0002
A la fin de la 9ème semaine de traitement, l'efficacité doit être évaluée pour décider des suites (chirurgie, radiothérapie, poursuite de la chimiothérapie). 97 Tumeur de Wilms chez l'enfant
Dans le protocole Ver - Dact tel qu'il est décrit par GJ D'Angio et al. (Cancer, 1989 ; 64 : 349 - 360) et DM Green et al. (J. Clin. Oncol. 1993 ; 11 : 91 - 95) :
Figure imgf000083_0001
Ce protocole étant démarré après la résection chirurgicale.
En cas de transplantation de moelle osseuse autologue (auto-greffe) selon A. Garaventar et al. (Med. Pediatr. Oncol. 1994 ; 22 : 11 - 14), le protocole E- Thio-Cy pourra être modifié comme suit
Figure imgf000083_0002
la transplantation de moelle osseuse ayant lieu à J0

Claims

REVENDICATIONS
1. Composition ayant une activité sur la prolifération de cellules clonogènes dans les tumeurs et qui comprend une quantité thérapeutiquement efficace d'un isoflavonoïde ou d'un analogue de type chromone.
2. Composition selon la revendication 1 , dans laquelle l'isoflavonoïde est choisi parmi les composés de formule :
Figure imgf000084_0001
formule dans laquelle :
- R1f R2, R3 et R4 sont choisis indépendamment l'un de l'autre parmi H, OH, un groupe aikoxy en CrC4, un groupe -OCOR7, R7 étant un groupe alkyle en C1-C4, au moins l'un des substituants R^ R2, R3 ou R4 étant autre que H, et R2 et R3 pouvant former ensemble un groupe méthylènedioxy,
- R5 est choisi parmi H, OH, un groupe aikoxy en C^O,, un groupe O-glycosyle et un groupe cyclohexyle, - .Rβ est choisi parmi un groupe cyclohexyle, un groupe phényle et un groupe phényle 1 à 3 fois substitué par des groupes choisis parmi H, OH et un groupe aikoxy en C C4,
- et désigne soit une double liaison, soit une simple liaison.
3. Composition selon la revendication 2, dans laquelle l'isoflavonoïde est choisi parmi la génistéine, la daidzeine et la biochanine A.
4. Utilisation d'un isoflavonoïde ou d'un analogue de type chromone pour la fabrication d'un médicament destiné à interférer avec la génération de cellules clonogènes dans les tumeurs lors d'un traitement de ces tumeurs par au moins un agent cytotoxique.
5. Utilisation d'un composé choisi parmi les composés de formule :
Figure imgf000084_0002
formule dans laquelle : - R R2, R3 et R4 sont choisis indépendamment l'un de l'autre parmi H, OH, un groupe aikoxy en C^C^ un groupe -OCOR7, R7 étant un groupe alkyle en C^C, au moins l'un des substituants R,, R2, R3 ou R4 étant autre que H, et R2 et R3 pouvant former ensemble un groupe méthylènedioxy, - R5 est choisi parmi H, OH et un groupe aikoxy en C C4, un groupe O-glycosyle et un groupe cyclohexyle,
- R6 est choisi parmi un groupe cyclohexyle, un groupe phényle et un groupe phényle 1 à 3 fois substitué par des groupes choisis parmi H, OH et un groupe aikoxy en CrC4,
- et désigne soit une double liaison, soit une simple liaison, pour la fabrication d'un médicament destiné à interférer avec la génération de cellules clonogènes dans les tumeurs lors d'un traitement de ces tumeurs par au moins un agent cytotoxique.
6. Utilisation selon la revendication 5, dans laquelle le composé de formule I est choisi parmi la génistéine, la daidzeine et la biochanine A.
7. Procédé de traitement chimiothérapeutique d'une tumeur chez un patient par au moins un agent cytotoxique, qui comprend l'administration au cours du traitement par l'agent cytotoxique d'une quantité thérapeutiquement efficace d'un isoflavonoïde ou d'un analogue de type chromone.
8. Procédé selon la revendication 7, dans lequel l'isoflavonoïde ou l'analogue de type chromone est administré au début du traitement chimiothérapeutique et au début de chaque cycle de traitement chimiothérapeutique.
PCT/FR1999/001715 1998-07-15 1999-07-13 Composition therapeutique a base d'isoflavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques WO2000003707A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR9912817-9A BR9912817A (pt) 1998-07-15 1999-07-13 Composição terapêutica à base de isoflavonóides destinada a ser utilizada no tratamento dos tumores por agentes citotóxicos
IL14058099A IL140580A0 (en) 1998-07-15 1999-07-13 Isoflavonoid-based therapeutic composition intended to be used in the treatment of tumours with cytotoxic agents
AU46282/99A AU761417B2 (en) 1998-07-15 1999-07-13 Therapeutic composition based on flavonoids for use in the treatment of tumours with cytotoxic agents
CA002337256A CA2337256A1 (fr) 1998-07-15 1999-07-13 Composition therapeutique a base d'isoflavonoides destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques
EA200100141A EA200100141A1 (ru) 1998-07-15 1999-07-13 Терапевтическая композиция на основе изофлавоноидов для применения в лечении опухолей цитотоксическими агентами
KR1020017000477A KR20020006510A (ko) 1998-07-15 1999-07-13 세포독성물질을 이용한 종양의 치료에 사용되는플라보노이드류를 기초로한 치료 조성물
EP99929481A EP1096929A1 (fr) 1998-07-15 1999-07-13 Composition therapeutique a base d'isoflavono des destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques
JP2000559842A JP2002520357A (ja) 1998-07-15 1999-07-13 細胞障害性因子を使用する腫瘍の処置において使用することを意図するイソフラノボイドをベースとする処置治療組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/09059 1998-07-15
FR9809059A FR2781154B1 (fr) 1998-07-15 1998-07-15 Composition therapeutique a base d'isoflavonoides destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques

Publications (1)

Publication Number Publication Date
WO2000003707A1 true WO2000003707A1 (fr) 2000-01-27

Family

ID=9528649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001715 WO2000003707A1 (fr) 1998-07-15 1999-07-13 Composition therapeutique a base d'isoflavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques

Country Status (11)

Country Link
EP (1) EP1096929A1 (fr)
JP (1) JP2002520357A (fr)
KR (1) KR20020006510A (fr)
CN (1) CN1139383C (fr)
AU (1) AU761417B2 (fr)
BR (1) BR9912817A (fr)
CA (1) CA2337256A1 (fr)
EA (1) EA200100141A1 (fr)
FR (1) FR2781154B1 (fr)
IL (1) IL140580A0 (fr)
WO (1) WO2000003707A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017986A1 (fr) * 1999-09-06 2001-03-15 Novogen Research Pty Ltd Compositions et methodes therapeutiques mettant en jeu des isoflavones et des analogues d'isoflavones
US6599536B1 (en) 1998-03-26 2003-07-29 Novogen Research Pty Ltd Therapy of estrogen-associated disorders
WO2003075943A2 (fr) * 2002-03-06 2003-09-18 The Medical Research And Education Trust Compositions d'extrait botanique et procedes d'utilisation
US7033621B1 (en) 1997-04-28 2006-04-25 Novogen, Inc. Isoflavone compositions produced from legumes
US7906554B2 (en) 2002-10-02 2011-03-15 Novogen Research Pty Ltd Combination chemotherapy compositions and methods
US7985738B2 (en) 2007-05-23 2011-07-26 Institut National De La Recherche Scientifique Cytosine nucleoside analogs and isoflavones and uses thereof
US9044409B2 (en) 2003-08-18 2015-06-02 Merck Patent Gmbh Use of chromen-4-one derivatives

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL205635B1 (pl) * 2001-04-09 2010-05-31 Inst Farmaceutyczny Nowe pochodne genisteiny i zawierające je środki farmaceutyczne
CN106265669A (zh) * 2016-08-04 2017-01-04 大连理工大学 大豆苷元与10‑羟基喜树碱的药物组合及其应用
CN113842387A (zh) * 2021-11-19 2021-12-28 大连理工大学盘锦产业技术研究院 10-羟基喜树碱与鹰嘴豆芽素a的药物组合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946217A (ja) * 1982-09-09 1984-03-15 Rikagaku Kenkyusho 制癌剤
US5506211A (en) * 1994-05-09 1996-04-09 The Uab Research Foundation Genistein for use in inhibiting osteroclasts
WO1997046208A2 (fr) * 1996-06-07 1997-12-11 Mt. Sinai School Of Medicine Of The City Of New York Genisteine utilisee commme agent preventif contre les problemes de la peau et les cancers de la peau induits par les rayons ultraviolets
WO1998008503A1 (fr) * 1996-08-30 1998-03-05 Novogen Research Pty. Ltd. Procedes therapeutiques et compositions integrant des isoflavones
EP0829261A2 (fr) * 1996-09-13 1998-03-18 Director General of Shikoku National Agricultural Experiment Station, Ministry of Agriculture, Forestry and Fisheries Composition contenant de l'isoflavone ou ses derives pour promouvoir la degradation de graisse dans des cellules de graisse
US5733926A (en) * 1996-12-13 1998-03-31 Gorbach; Sherwood L. Isoflavonoids for treatment and prevention of alzheimer dementia and reduced cognitive functions
WO1998017662A1 (fr) * 1996-10-18 1998-04-30 Novartis Ag Derives d'heterocyclyle bicyclique a substitution phenyle et utilisation de ces derives

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946217A (ja) * 1982-09-09 1984-03-15 Rikagaku Kenkyusho 制癌剤
US5506211A (en) * 1994-05-09 1996-04-09 The Uab Research Foundation Genistein for use in inhibiting osteroclasts
WO1997046208A2 (fr) * 1996-06-07 1997-12-11 Mt. Sinai School Of Medicine Of The City Of New York Genisteine utilisee commme agent preventif contre les problemes de la peau et les cancers de la peau induits par les rayons ultraviolets
WO1998008503A1 (fr) * 1996-08-30 1998-03-05 Novogen Research Pty. Ltd. Procedes therapeutiques et compositions integrant des isoflavones
EP0829261A2 (fr) * 1996-09-13 1998-03-18 Director General of Shikoku National Agricultural Experiment Station, Ministry of Agriculture, Forestry and Fisheries Composition contenant de l'isoflavone ou ses derives pour promouvoir la degradation de graisse dans des cellules de graisse
WO1998017662A1 (fr) * 1996-10-18 1998-04-30 Novartis Ag Derives d'heterocyclyle bicyclique a substitution phenyle et utilisation de ces derives
US5733926A (en) * 1996-12-13 1998-03-31 Gorbach; Sherwood L. Isoflavonoids for treatment and prevention of alzheimer dementia and reduced cognitive functions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI DERWENT PUBLICATIONS LTD., LONDON, GB; XP002099058 *
HOFFMAN R: "POTENT INHIBITION OF BREAST CANCER CELL LINES BY THE ISOFLAVONOID KIEVITONE: COMPARISON WITH GENISTEIN", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 211, no. 2, 15 June 1995 (1995-06-15), pages 600 - 606, XP000590861 *
KONOSHIMA T ET AL: "STUDIES ON INHIBITORS OF SKIN TUMOR PROMOTION (V) INHIBITORY EFFECTS OF FLAVONOIDS ON EPSTEIN-BARR VIRUS ACTIVATION. II", JAPANESE JOURNAL OF PHARMACOGNOSY (SHOYAKUGAKU ZASSHI), vol. 43, no. 2, 1989, pages 135 - 141, XP002037231 *
MIDDLETON E ET AL: "POTENTIAL HEALTH-PROMOTING PROPERTIES OF CITRUS FLAVONOIDS SEVERAL HEALTH-PROMOTING EFFECTS HAVE BEEN ASCRIBED TO THE FLAVONOIDS ON THE BASIS OF IN-VITRO AND ANIMAL STUDIES", FOOD TECHNOLOGY, vol. 48, no. 11, 1 November 1994 (1994-11-01), pages 115 - 119, XP000483354 *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 134 (C - 230) 21 June 1984 (1984-06-21) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033621B1 (en) 1997-04-28 2006-04-25 Novogen, Inc. Isoflavone compositions produced from legumes
US6599536B1 (en) 1998-03-26 2003-07-29 Novogen Research Pty Ltd Therapy of estrogen-associated disorders
WO2001017986A1 (fr) * 1999-09-06 2001-03-15 Novogen Research Pty Ltd Compositions et methodes therapeutiques mettant en jeu des isoflavones et des analogues d'isoflavones
WO2003075943A2 (fr) * 2002-03-06 2003-09-18 The Medical Research And Education Trust Compositions d'extrait botanique et procedes d'utilisation
WO2003075943A3 (fr) * 2002-03-06 2004-04-22 Sophie Chen Ph D Compositions d'extrait botanique et procedes d'utilisation
US7906554B2 (en) 2002-10-02 2011-03-15 Novogen Research Pty Ltd Combination chemotherapy compositions and methods
US9044409B2 (en) 2003-08-18 2015-06-02 Merck Patent Gmbh Use of chromen-4-one derivatives
US7985738B2 (en) 2007-05-23 2011-07-26 Institut National De La Recherche Scientifique Cytosine nucleoside analogs and isoflavones and uses thereof

Also Published As

Publication number Publication date
JP2002520357A (ja) 2002-07-09
FR2781154B1 (fr) 2001-09-07
BR9912817A (pt) 2001-05-08
CN1312712A (zh) 2001-09-12
EP1096929A1 (fr) 2001-05-09
CN1139383C (zh) 2004-02-25
KR20020006510A (ko) 2002-01-19
IL140580A0 (en) 2002-02-10
FR2781154A1 (fr) 2000-01-21
AU4628299A (en) 2000-02-07
CA2337256A1 (fr) 2000-01-27
EA200100141A1 (ru) 2001-06-25
AU761417B2 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
CA2149055C (fr) Compositions antitumorales contenant des derives du taxane
EP1097138B1 (fr) Compositions pharmaceutiques comprenant des 2-quinolones
AU2002311985B2 (en) Methods for inhibiting angiogenesis
US6537990B1 (en) Combined preparations comprising morpholine anthracyclines and anticancer agent
US6441026B1 (en) Antitumor compositions containing taxane derivatives
EP1740212A2 (fr) Compositions pharmaceutiques contenant des derives de beta­carboline, et leur utilisation pour le traitement des cancers
WO2000003707A1 (fr) Composition therapeutique a base d&#39;isoflavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques
WO2000003706A1 (fr) Composition therapeutique a base de flavonoïdes destinee a etre utilisee dans le traitement des tumeurs par des agents cytotoxiques
CN109152839A (zh) 双极性反式类胡萝卜素连同化疗和放射治疗在治疗癌症中的用途
Lee et al. Taxol, camptothecin and beyond for cancer therapy
US20080176932A1 (en) Pharmaceutical Compositions Containing Baicalein And Baicalin With Synergistic Effect In Tumor Treatment
US5552440A (en) Use of L-canavanine as a chemotherapeutic agent for the treatment of pancreatic cancer
WO2006115202A1 (fr) Composition pour diminuer la toxicite de la nicotine
CN111773388A (zh) A-失碳-5α雄甾烷化合物类药物与抗癌药物的联合应用
MXPA01000389A (en) Therapeutic composition based on flavonoids for use in the treatment of tumours with cytotoxic agents
Wolf et al. Treatment options for small cell lung cancer
Papakotsi Enhancing GDF1 Expression with Devil’s Club (Oplopanax horridus) Extracts in Acute Myeloid Leukemia
MXPA01000387A (en) Therapeutic composition based on flavonoids for use in the treatment of tumours with cytotoxic agents
XIAOXIA Pharmacokinetic and pharmacodynamic mechanisms for reduced toxicity of CPT-11 by thalidomide and St John's wort

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809547.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 140580

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1999929481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/00237

Country of ref document: ZA

Ref document number: 200100237

Country of ref document: ZA

Ref document number: 46282/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020017000477

Country of ref document: KR

Ref document number: PA/a/2001/000389

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2337256

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09743614

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 559842

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200100141

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1999929481

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017000477

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 46282/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999929481

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017000477

Country of ref document: KR