WO1999064744A1 - Compresseur a volute de type a commande de capacite en plusieurs etapes - Google Patents

Compresseur a volute de type a commande de capacite en plusieurs etapes Download PDF

Info

Publication number
WO1999064744A1
WO1999064744A1 PCT/JP1999/002761 JP9902761W WO9964744A1 WO 1999064744 A1 WO1999064744 A1 WO 1999064744A1 JP 9902761 W JP9902761 W JP 9902761W WO 9964744 A1 WO9964744 A1 WO 9964744A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compressor
opening
scroll compressor
stage
Prior art date
Application number
PCT/JP1999/002761
Other languages
English (en)
French (fr)
Inventor
Kenji Matsuba
Shigeki Hagiwara
Yoshitaka Shibamoto
Hiroyuki Kuroiwa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to KR1020007001426A priority Critical patent/KR100601270B1/ko
Priority to EP99922489A priority patent/EP1004773B1/en
Priority to DE69943017T priority patent/DE69943017D1/de
Publication of WO1999064744A1 publication Critical patent/WO1999064744A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Definitions

  • the present invention relates to a multi-stage displacement control scroll compressor that enables a partial load operation in a low displacement range.
  • FIGS. 8 and 9 a cross-sectional view taken along the line XX in FIG. 8) as a scroll compressor in which a bypass hole is provided in a spiral to enable a partial load operation
  • This scroll compressor is an asymmetric scroll type scroll compressor in which the end of the spiral of the first scroll 1 is longer than the end of the spiral of the second scroll 2 by ⁇ (rad) in the expansion angle.
  • a first fluid working chamber A formed by the inner surface of the first scroll 1 and the outer surface of the second scroll 2 and a second fluid working chamber formed by the outer surface of the first scroll 1 and the inner surface of the second scroll 2 The chamber B and the force S are alternately opened and closed with respect to the single low-pressure board 3, and approximately one turn from the outermost contact point E of the second scroll 2 with respect to the first scroll 1.
  • a common bypass hole 4 common to the first fluid working chamber A and the second fluid working chamber B is provided at a point J that is rewound inward.
  • the first scroll 1 is provided with a valve hole 5 communicating with the common bypass hole 4, and a bypass passage 6 communicating with the low-pressure port 3 is provided on a side portion of the valve hole 5.
  • a stepped cylindrical bypass valve 7 for opening and closing the common bypass hole 4 is slidably provided in the valve hole 5.
  • a coil spring 8 is locked at the step of the bypass valve 7, and the upper part of the bypass valve 7 is sealed by a lid member 9 and is separated from the discharge dome 10.
  • the operating pressure chamber 11 is connected to an operating pressure line 15 selectively connected to a low pressure line 13 and a high pressure line 14 by an electromagnetic valve 12 via a joint pipe 16.
  • Reference numeral 17 denotes a capillary tube for preventing a short circuit between the high-voltage line 14 and the low-voltage line 13, and reference numeral 18 denotes a case.
  • 19 is a high pressure port.
  • the common bypass hole 4 is provided at the point J where the outermost contact point E of the second scroll 2 with respect to the first scroll 1 is rewound inward by approximately one turn from the force E. I have. Therefore, when the solenoid valve 12 is closed and high-pressure gas is supplied to the operation pressure chamber 11 of the bypass valve 7 and the bypass valve 7 is closed, the discharge capacity becomes the full capacity (100%). On the other hand, when the solenoid valve 12 is opened and the low-pressure gas is supplied to the operating pressure chamber 11 of the bypass valve 7 to open the bypass valve 7, the position of the common bypass hole 4 becomes the compression start point.
  • the discharge capacity is about 60% of the total capacity. Thus, the discharge capacity of the scroll compressor can be switched between 100% and 60%.
  • the conventional multi-stage capacity-controlled scroll compressor has the following problems. First, there is a problem that the operation range is limited because the volume ratio Vr becomes considerably small during the partial load operation of 50% or less.
  • the volume ratio Vr of the compressor is required to be 1 or more even at a partial load.
  • Increasing the specific volume ratio Vr lowers the critical partial load factor and enables partial load operation of 50% or less.However, in that case, the efficiency at full load decreases. It is not possible to increase the specific volume ratio Vr.
  • a multi-type air conditioner in which one outdoor unit handles multiple indoor units, it is 20 ° /. 330% load operation is always required, and when the conventional multi-stage capacity-controlled scroll compressor is applied to the multi-type air conditioner, the operation of the compressor is frequently stopped.
  • problems such as the inability to set optimal air conditioning conditions occur.
  • common bypass holes may be provided at the center of the first and second scrolls.
  • the rigidity is reduced.
  • the gas load in the spirals of the first and second scrolls is significantly reduced, and the balance between the gas load and the centrifugal load of the second scroll on the movable side is lost, resulting in poor lubrication in pin bearings (not shown). And the like, and the second scroll may be overturned. Disclosure of the invention
  • a multi-stage displacement control scroll compressor includes a first bypass passage formed at a predetermined position in a compression chamber and returning compressed gas in a fluid working chamber to a suction port; A first opening / closing means for opening / closing the bypass passage, a second bypass passage communicating between the discharge side and the suction side, and opening / closing the second bypass passage. A second opening / closing means is provided.
  • the second opening / closing means opens and closes the second bypass passage
  • the load on the compressor is switched between 100% and the first predetermined percentage.
  • the first opening / closing means opens and closes the first bypass passage
  • the discharge capacity of the compressor is switched between 100% and the second predetermined%. Therefore, by combining the opening and closing of the first opening / closing means and the opening / closing of the second opening / closing means, the substantial load of the compressor can be switched to four stages.
  • the discharge capacity of the compressor is switched to only the second predetermined percentage by the first opening / closing means. Therefore, the fixed volume ratio of the compressor and the second predetermined percentage are set so that the volume ratio when the discharge capacity of the compressor reaches the second predetermined percentage becomes 1 or more. If this is done, keep the volume ratio at 1 or more even when the actual load on the compressor is minimized. And reliable multi-stage load control is performed.
  • the first scroll and the second scroll forming the compression chamber have a spiral end of one scroll larger than a spiral end of the other scroll. It is characterized by exhibiting an asymmetric spiral shape with an extension angle of 180 degrees.
  • the first fluid working chamber formed by the inner surface of the first scroll and the outer surface of the second scroll, and the second fluid formed by the outer surface of the first scroll and the inner surface of the second scroll are alternately formed at the same position of the first bypass passage. Therefore, the high-pressure gas in each fluid working chamber is returned to the suction port from only one first bypass passage.
  • the second bypass passage is provided outside the compressor body. According to the above configuration, the second bypass passage and the second opening / closing means do not need to be formed in the compressor main body, but may be formed between the discharge line and the suction line. Therefore, a multi-stage displacement control scroll compressor is manufactured at low cost.
  • One embodiment of the multi-stage displacement control scroll compressor according to the present invention is characterized in that a plurality of the second bypass paths and a plurality of second opening / closing means are provided.
  • a plurality of the second bypass passages and the second opening / closing means are provided. Therefore, by combining the opening and closing of each of the second opening and closing means and the opening and closing of the first opening and closing means, multi-stage load control of eight or more stages is performed.
  • the second opening / closing means for opening / closing the second bypass passage is a motor-operated valve that can be controlled to an arbitrary opening.
  • the opening of the second bypass passage is set to an arbitrary opening, so that the load on the compressor is switched between 100% and an arbitrary%. Therefore, the substantial load of the compressor can be switched to any multi-stage by a combination of the opening / closing control of the first opening / closing means and the opening control of the second opening / closing means.
  • the second opening / closing means includes a difference between a pilot pressure and the suction side pressure or the discharge side pressure. It is characterized by being operated by pressure.
  • control system of the second opening / closing means can be simply configured, and the multi-stage capacity control scroll compressor is manufactured at low cost.
  • one embodiment of the multi-stage displacement control scroll compressor according to the present invention is characterized in that a liquid injection pipe for cooling a low-pressure chamber communicating with the suction port is provided.
  • the low-pressure chamber and the drive motor are cooled by the cooling liquid injected from the liquid injection pipe.
  • the rise in the temperature of the low-pressure chamber caused by returning the high-pressure gas in the compression chamber to the suction port is prevented, and the temperature of the discharge gas and the motor is reduced.
  • the first opening / closing means and the second opening / closing means are operated by a pipe pressure, and a pilot of the first opening / closing means is provided.
  • the port and the pilot port of the second opening / closing means are characterized by being connected to each pilot line via one joint fitting provided at the upper center of the compressor body.
  • One embodiment of the multi-stage capacity control scroll compressor according to the present invention includes a standard scroll compressor having a fixed discharge capacity, wherein the multi-stage capacity control scroll compressor and the standard scroll compressor are provided. And a compressor connected in parallel.
  • the multi-stage displacement scroll compressor and the standard scroll compressor constitute a twin multi-stage displacement scroll compressor. Therefore, switching to the two load states of unloading and full load by the above-mentioned standard scroll compressor, and n-stage load switching by the multi-stage capacity control scroll compressor By changing the load, the load is switched in 2 X n stages. In this way, load control is performed in multiple stages.
  • the first opening / closing means operates at a pilot pressure, and a pilot port of the first opening / closing means and the pilot port. It is characterized in that it is connected to the fittings for connecting the pilot line to the port port with screws.
  • the pilot port of the first opening / closing means and the fitting are securely connected by the taper screw. Therefore, a mounting structure that is resistant to vibration of the joint fitting and has high leakage resistance and heat resistance is realized.
  • FIG. 1 is a partial cross-sectional view of a first embodiment of a multistage displacement control scroll compressor according to the present invention.
  • FIG. 2 is a partial cross-sectional view when the discharge capacity of the multi-stage displacement control squeal compressor shown in FIG. 1 is 30%.
  • FIG. 3 is a partial cross-sectional view of a multi-stage displacement scroll compressor different from FIG.
  • FIG. 4 is a cross-sectional view of a multi-stage capacity control squeal compressor according to the second embodiment.
  • FIG. 5 is a partial cross-sectional view of a multi-stage displacement control scroll compressor different from FIG.
  • FIG. 6 is a configuration diagram of a multi-stage capacity control scroll compressor according to the third embodiment.
  • FIGS. 7A and 7B are diagrams showing a mounting structure different from the mounting structure of the joint pipe to the lid member in FIGS. 1 and 3 to 5.
  • FIG. 8 is a partial cross-sectional view of a conventional load control scroll compressor.
  • FIG. 9 is a cross-sectional view taken along the line XX of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a partial cross-sectional view of a multi-stage displacement control scroll compressor according to a first embodiment.
  • a second bypass valve 4 for selectively communicating between the suction side communicating with the low-pressure port 23 and the discharge side in the discharge dome 30 outside the spiral in the first scroll 21. 0 is provided.
  • the bypass valve 27 is referred to as a first bypass valve
  • the bypass valve 40 is referred to as a second bypass valve.
  • the second bypass valve 40 has a cylindrical cylinder portion 42 protruding from the high pressure side surface of the end plate 41 of the first scroll 21, and a cylinder portion 42 having a ball at the tip. It is roughly constituted by a sliding valve body 43 and a spring 44 contracted between the valve body 43 and the cylinder part 42.
  • the low pressure side end of the cylinder portion 42 has a shaft hole communicating with the inside of the cylinder portion 42, and a mounting portion 42a provided with a mounting screw on the outer peripheral surface.
  • the end plate 41 is provided with a through hole 45 penetrating the end plate 41, and a mounting hole for fitting the mounting portion 4 2a of the cylinder portion 42 to the upper end of the through hole 45. 45 5a is provided. Then, by screwing the mounting portion 42 a of the cylinder portion 42 into the mounting hole 45 a of the end plate 41, the cylinder portion 42 protrudes from the surface on the high pressure side of the end plate 41 and is fixed. The suction side and the inside of the cylinder portion 42 communicate with each other through the through hole 45 and the shaft hole of the mounting portion 42a.
  • the upper part of the cylinder part 42 is partitioned from the discharge dome 30 to form an operation pressure chamber 46.
  • the operating pressure chamber 46 contains a second solenoid valve.
  • An operation pressure line 48 selectively communicated with the low pressure line 33 and the high pressure line 34 by 47 is connected via a joint pipe 49.
  • the solenoid valve 32 is referred to as a first solenoid valve
  • the solenoid valve 47 is referred to as a second solenoid valve.
  • Reference numeral 50 denotes a capillary tube for preventing a short circuit between the high voltage line 34 and the low voltage line 33.
  • a step portion having a small diameter on the low pressure side is provided on the outer peripheral surface of the valve body 43, and a spring 44 is mounted on the small diameter portion.
  • a through hole 51 communicating the inside and the outside in the radial direction is provided in the axial middle portion of the cylinder portion 42, and when the valve body 43 slides to the lowermost position, the valve body 43 is closed.
  • the large-diameter portion closes the through hole 51 of the cylinder portion 42.
  • the size of the through hole 51 is set such that the load on the compressor is, for example, 50%.
  • the valve body 4 When the second solenoid valve 47 is closed and high-pressure gas is supplied to the operating pressure chamber 46 of the second bypass valve 40 and the valve body 43 is slid downward, the valve body 4 The large diameter portion of 3 closes the through hole 51, and the load of the compressor is set to 100% (hereinafter, the load thus set is referred to as a set load).
  • the second solenoid valve 47 is opened to supply low-pressure gas to the operating pressure chamber 46 of the second bypass valve 4 ⁇ and the valve body 43 is slid upward, the valve body 4 The through hole 51 of 3 is opened, and the set load of the compressor becomes 50%. That is, in the present embodiment, the second bypass passage is constituted by the through hole 45, and the second opening / closing means is constituted by the second bypass valve 40.
  • the multi-stage displacement control scroll compressor having the above-described configuration enables multi-stage load control as follows by controlling the opening and closing of the first bypass valve 27 and the second bypass valve 40.
  • the first scroll 21 has a point J (see FIG. 9), which is rewound inward by approximately one turn from the outermost contact point E of the second scroll 22 with respect to the first scroll 21. ),
  • the first scroll 21 of the asymmetric spiral scroll compressor has the second scroll 2 with respect to the first scroll 21.
  • the discharge capacity is 60 by communicating with the low pressure port 23.
  • a first bypass valve 27 for setting / 0 is provided.
  • a second bypass valve 40 for selectively setting the suction side and the discharge side to communicate with each other outside the spiral of the first scroll 21 to set the set load of the compressor at 50% is provided.
  • the bypass valve 40 is opened and closed. Therefore, if the second bypass valve 40 and the first bypass valve 27 are closed, the actual load on the compressor can be reduced to 100%. Also, if the second bypass valve 40 is closed and the first bypass valve 27 is opened, the actual load on the compressor can be reduced to 60%. Further, when the second bypass valve 40 and the first bypass valve 27 are opened, the actual load of the compressor can be reduced to 30%.
  • the multi-stage capacity control scroll compressor having the above-described configuration can
  • a conventional asymmetric spiral type multi-stage capacity control scroll having a bypass valve (27) is provided with a through hole (45) penetrating the end plate (41) outside the spiral of the first scroll (21) in the compressor.
  • a simple configuration can be achieved simply by screwing the mounting portion 42a of the cylinder portion 42 to the upper end.
  • the second scroll valve 40 provided outside the spiral does not require the same precision as the first scroll valve 27 provided inside the spiral. Therefore, it can be provided inexpensively with a small number of parts.
  • FIG. 3 is a partial cross-sectional view showing a modified example of the multi-stage capacity control squeal compressor shown in FIG.
  • the operating pressure line 67, the high pressure port 68, the second bypass valve 69, the through hole 70, the second solenoid valve 71, and the operating pressure line 72 are used in the multistage displacement control scroll compressor shown in FIG.
  • the first and second bypass valves 63 and 72 are connected via one joint pipe 74 attached to the center of the top surface of the casing 73 with the operating pressure lines 67 and 72. 6 Connected to 9.
  • Two holes 74a and 74b are provided alternately in the joint pipe 74, and the operation pressure line 67 is connected to the first hole 74a by the first pipe bolt joint 75.
  • an operating pressure line 72 is connected to the second hole 74 b by a second pipe bolt joint 76.
  • an operating pressure chamber 78 of the first bypass valve 63 is connected to the first hole 74 a by a first pipe 77, and a second bypass valve 79 is connected to the second hole 74 b by a second pipe 79.
  • the operation pressure chamber 80 of 69 is connected.
  • FIG. 4 is a partial cross-sectional view illustrating a multi-stage displacement control scroll compressor according to the second embodiment.
  • the bypass valve 84, the first solenoid valve 85, the low pressure line 86, the high pressure line 87, the operating pressure line 88, the joint pipe 89 and the high pressure port 90 are the multi-stage displacement control scrolls shown in Fig. 1.
  • First scroll 21, second scroll 22, low pressure port 23, first bypass valve 27, first solenoid valve 32, low pressure line 33, high pressure line 34, operating pressure line 35 in compressor Has the same configuration as the joint pipe 36 and the high-pressure port 39, and operates similarly.
  • a second bypass valve 40 is provided above a through hole 45 formed in the end plate 41 of the first scroll 21, and a second bypass valve 40 is provided.
  • the set load of the compressor is switched between 100% and 50% by selectively opening and closing the suction port and the suction side and the discharge side.
  • the selective communication between the suction side and the discharge side can be performed by other methods.
  • the low-pressure line 86 and the high-pressure line 87 are connected by a bypass passage 93 provided with a second solenoid valve 91 and a capillary tube 92, so that the suction side and the discharge side are connected. It allows selective communication with the side.
  • the above-mentioned capillary tube 92 prevents a short circuit between the high-pressure line 87 and the low-pressure line 86.
  • the second solenoid valve 91 is configured so that the set load of the compressor when the second solenoid valve 91 is opened is 50% will be described as an example of the multi-stage capacity control scroll compressor according to the present embodiment. The operation will be described.
  • the multi-stage capacity control scroll compressor performs multi-stage load control as follows by controlling the opening and closing of the first solenoid valve 85 and the second solenoid valve 91.
  • the first solenoid valve 85 is closed in this state, the first bypass valve 84 is closed, and the discharge capacity becomes 100%. Therefore, the actual load of the compressor in this case is 100%.
  • the first solenoid valve 85 is opened, the first bypass valve 84 is opened, and the discharge capacity becomes 60%. Therefore, the actual load of the compressor in this case is 60%.
  • the set load of the compressor becomes 50%.
  • the volume ratio Vr at the time of the minimum capacity operation is set to a value equal to or more than “1”, and a highly reliable partial load operation of 50% or less is performed. You can do it.
  • the suction side and the discharge side are connected by a very simple method of connecting the low pressure line 86 and the high pressure line 87 with a bypass passage 93 provided with a second solenoid valve 91. It allows selective communication with the side. Therefore, unlike the first embodiment, there is no need to provide the second bypass valve 40 in the compressor main body, and the cost can be further reduced.
  • the set load of the compressor can be arbitrarily changed in multiple stages. Therefore, in this case, by combining the opening and closing of the first solenoid valve 85, it is possible to perform a reliable multi-stage load control of 50% or less with high reliability.
  • FIG. 5 is a partial cross-sectional view showing a modification of the multi-stage capacity control squeal compressor shown in FIG.
  • First scroll 101, second scroll 1 ⁇ 2, low-pressure port 103, bypass valve 104, first solenoid valve 105, low-pressure line in the multi-stage displacement control scroll compressor shown in Fig. 5 106, high-pressure line 107, operating pressure line 108, fitting tube 109 and high-pressure port 110 are the first scroll in the multi-stage capacity control scroll compressor shown in Fig. 1.
  • 2nd scroll 22, low pressure port 23, 1st no-pass valve 27, 1st solenoid valve 32, low pressure line 33, high pressure line 34, operating pressure line 35, joint pipe 36 and high pressure port It has the same configuration as 39 and operates similarly. However, it is assumed that the bypass valve 104 is provided at a position where the discharge capacity is set to 50%.
  • the low-pressure line 106 and the high-pressure line 107 are connected to each other by a bypass passage 1 provided with a second solenoid valve 111 for setting the set load of the compressor to 75% when the compressor is opened. 1 3 and the bypass passage 1 1 4 with the 3rd solenoid valve 1 1 2 to set the load of the compressor at the time of opening to 65%. Then, by controlling the opening and closing of the first solenoid valve 105, the second solenoid valve 111, and the third solenoid valve 112, multi-stage load control is performed as follows.
  • the set load of the compressor becomes 100% by closing the second solenoid valve 111 and the third solenoid valve 112.
  • the first bypass valve 104 closes, and the discharge capacity becomes 100%. Therefore, the actual load of the compressor in this case is 100 ° / 0 .
  • the first solenoid valve 105 is opened, the first bypass valve 104 is opened and the discharge capacity becomes 50%. Therefore, the actual load on the compressor in this case is 50%.
  • the set load of the compressor becomes 75%.
  • the first solenoid valve 105 is closed in this state, the discharge capacity becomes 100%. Therefore, the actual load of the compressor in this case is 75%.
  • FIG. 6 is a configuration diagram of a multi-stage capacity control scroll compressor according to the third embodiment.
  • a multi-stage capacity control scroll compressor (hereinafter referred to as a capacity controller) having any one of the above embodiments and a scroll compressor (hereinafter referred to as a non-capacity control) having a standard structure (non-capacity control) , Standard equipment) to perform high multi-stage load control of 50% or less.
  • the standard compressor 1 2 1 is a non-capacity control type scroll compressor that has a maximum discharge capacity 1/2 that of the maximum capacity required by the system to be supplied with high-pressure gas (hereinafter simply referred to as the required maximum capacity). is there.
  • the capacity controller 122 is, for example, a multi-stage capacity control squeal compressor shown in FIG. 5, and has a maximum discharge capacity of 112, which is the required maximum capacity of the system.
  • the capacity controller 122 controls the opening and closing of the bypass valve (see Fig. 5) by opening and closing the first solenoid valve 123 to switch the discharge capacity between 100% and 50%.
  • the set load of the compressor is switched between 100% and 75% by opening and closing the second solenoid valve 124, and the compressor is opened and closed by opening and closing the third solenoid valve 125.
  • the set load is switched between 100% and 65%.
  • the capacity controller 122 has a nozzle, for example, outside the spiral of the first scroll.
  • a liquid injection pipe 126 is provided, and a liquid line 127 from the system side is connected.
  • the capacity is 25% of the required maximum capacity.
  • the real load of the capacity controller 122 is set to 75%, the actual discharge capacity to the system is 37.5% of the required maximum capacity. Also, when the real load of the capacity controller 122 is set to 100%, the real discharge capacity to the system becomes 50% of the required maximum capacity.
  • the standard machine 122 is brought into a full load (100%) state.
  • the capacity controller 122 sets the substantial load to 24% as described above.
  • the real load of the capacity controller 122 is set to 50%
  • the real discharge capacity to the system will be 75% of the required maximum capacity.
  • the real load of the capacity controller 122 is set to 75%, the real discharge capacity to the system will be 87.5% of the required maximum capacity.
  • the real load of the capacity controller 122 is set to 100%, the real discharge capacity to the system becomes 100% of the required maximum capacity.
  • a liquid injection pipe 126 is provided in the capacity controller 122 to inject a liquid refrigerant from the system side. Therefore, the injected liquid refrigerant flows down from the compression section composed of the first scroll and the second scroll to the motor side that rotationally drives the second scroll, and the compression section and the motor are cooled. In this way, the discharge gas and motor temperature are reduced, and the operable range is expanded.
  • the mounting of the liquid injection pipe to the capacity controller can be applied to the multi-stage capacity controller scroll compressor in the first and second embodiments.
  • the standard machine 1 2 1 having the maximum discharge capacity of 1/2 of the maximum capacity required by the system and the maximum discharge capacity of 1/2 of the maximum capacity required by the system are used.
  • a twin-stage multi-stage capacity control scroll compressor is composed of the capacity controller 1 2 and Therefore, at the same time as switching the standard machine 12 1 between the unload state and the full load state, the effective load of the capacity controller 122 is switched to 24%, 50%, 75%, and 100%.
  • the actual displacement of the twin multi-stage scroll compressors to the system is 12%, 25%, 37.5%, 50%, 62%, 7% of the required maximum capacity of the system. It is possible to switch to 8 levels of 5%, 87.5% and 100%.
  • the real discharge capacity from the twin multi-step capacity control scroll compressor to the system can be switched to 16 levels.
  • the maximum discharge capacity of the standard unit 122 and the capacity control unit 122 is assumed to be 1/2 of the required maximum capacity of the system, but is not limited to this. Instead, it should be set appropriately according to the required actual discharge capacity.
  • joint pipe 3 6 connected to the operating chamber 3 1 of the Ebaipasu valve 2 7 in has its distal end to the lid member (2) 9 It is installed by inserting it into the drilled hole and sealed with O-ring 52.
  • a mounting structure as shown in FIGS. 7A and 7B is adopted.
  • a male thread 1 32 is provided at the taper at the end of the joint pipe 1 31.
  • a female screw 134 is provided in the tapered hole of the lid member 133. Then, the tapered portion at the tip of the joint pipe 13 1 is screwed into the tapered hole of the lid member 133, and the joint pipe 13 1 is attached to the lid member 133. By sealing with a taper screw in this way, a mounting structure that is resistant to vibration of the joint pipe 13 1 and has high leakage resistance and heat resistance can be obtained.
  • the joint pipe main body 135 and the pipe body 136 are separated, and the pipe body 136 is formed integrally with the lid member 137.
  • the tip of the tube 136 is made to protrude through the hole 13 of the casing 138 and is welded at the hole 13. Then, the tapered hole of the joint pipe main body 135 is screwed into the taper portion at the tip of the pipe 136.
  • the tube 1 36 configured integrally with the lid member 1 37, by coupling with the joint tube body 1 3 5 and tapered thread, the tube 1 36 strong leak resistance and heat resistance to vibration of The height and mounting structure can be obtained.
  • the end of the spiral of the first scroll 21, 61, 81, 101 is more than the end of the spiral of the second scroll 22, 62, 82, 102.
  • the outermost contact point E of the second scroll 22, 62, 82, 102 with respect to the first scroll 21, 61, 8 1, 10 1 is extended by ⁇ (rad) by the extension angle,
  • a so-called asymmetric spiral scroll compressor is described as an example.
  • the present invention is not limited to this, and may be applied to a so-called symmetric scroll type scroll compressor in which the spiral ends of a pair of symmetric scrolls are shifted from each other by ⁇ (rad) at the expansion angle. Applicable.
  • the first fluid working chamber A formed by the inner surface of the first scroll and the outer surface of the second scroll, the outer surface of the first scroll, and the inner surface of the second scroll Since the second fluid working chamber B is formed not in the same position but in opposition to each other, the first bypass valve for changing the displacement of the compressor is provided in the first fluid working chamber A. And the second fluid working chamber B need to be provided at positions facing each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

明 細 書 多段階容量制御スク口一ル圧縮機 技術分野
この発明は、 低容量域の部分負荷運転を可能にする多段階容量制御スクロ一 ル圧縮機に関する。 背景技術
従来、 渦巻き内にバイパス穴を設けて部分負荷運転を可能にしたスクロール 圧縮機として、 図 8および図 9 (図 8の X— X矢視断面図)に示すようなものが ある(特開平 9一 1 7 0 5 7 3号公報)。 このスクロール圧縮機は、 第 1スクロ —ル 1の渦巻巻終を第 2スクロール 2の渦卷卷終よりも伸開角で π (rad)だけ長 くした非対称渦巻き型のスクロール圧縮機である。 そして、 第 1スクロール 1 の内面と第 2スクロール 2の外面とで形成される第 1流体作動室 Aと第 1スク ロール 1の外面と第 2スクロール 2の内面とで形成される第 2流体作動室 Bと 力 S、 単一の低圧ボード 3に対して交互に開閉するようになっており、 第 1スク 口一ル 1に対する第 2スクロール 2の最外方側接触点 Eから略 1巻き分だけ内 方に巻き戻した点 Jに、 第 1流体作動室 Aと第 2流体作動室 Bとに共通の共通 バイパス穴 4を設けている。
そして、 上記第 1スクロール 1には、 共通バイパス穴 4に連通する弁穴 5を 設け、 この弁穴 5の側方部には低圧ポート 3に連通するバイパス通路 6を設け ている。 弁穴 5には、 共通バイパス穴 4を開閉する段付き円柱形のバイパス弁 7を摺動自在に内装している。 また、 バイパス弁 7の段部にはコイルスプリン グ 8を係止させており、 バイパス弁 7の上部は蓋部材 9で密閉されて吐出ド一 ム 1 0と仕切られて操作圧室 1 1を形成している。 尚、 操作圧室 1 1には、 電 磁弁 1 2によって低圧ライン 1 3と高圧ライン 1 4とに選択的に連通される操 作圧ライン 1 5を継手管 1 6を介して接続している。 1 7は高圧ライン 1 4と 低圧ライン 1 3との短絡を防止するキヤビラリチューブであり、 1 8はケーシ ングであり、 1 9は高圧ポートである。
上述のように、 上記共通バイパス穴 4は、 第 1スクロール 1に対する第 2ス クロール 2の最外方側接触点 E力 ら略 1巻き分だけ内方に巻き戻した点 Jに設 けられている。 したがって、 電磁弁 1 2を閉鎖してバイパス弁 7の操作圧室 1 1に高圧ガスを供給し、 バイパス弁 7を閉鎖した場合には吐出容量は全容量(1 0 0 %)となる。 一方、 電磁弁 1 2を開放してバイパス弁 7の操作圧室 1 1に低 圧ガスを供給してバイパス弁 7を開放した場合には、 共通バイパス穴 4の位置 が圧縮開始点となるために吐出容量は全容量の約 6 0 %になる。 こうして、 ス クロ一ル圧縮機の吐出容量が 1 0 0 %と 6 0 %とに切り換えられるのである。 尚、 上記第 1スクロール 1に対する第 2スクロール 2の最外方側接触点 Eか ら略 3 / 4巻分だけ内方に巻き戻した位置と、 1卷き分だけ内方に巻き戻した位 置とに、 2つの共通バイパス穴を設けることによって、 1 0 0 %, 7 0 %, 6 0 %の 3通りの吐出容量を得ることもできる。
し力 しな力 Sら、 上記従来の多段階容量制御スクロール圧縮機には、 以下のよ うな問題がある。 先ず、 5 0 %以下の部分負荷運転時には容積比 Vrがかなり小 さくなるために、 運転範囲が制限されてしまうという問題がある。
例えば、 上記第 1 ,第 2スクロール 1 , 2の固有容積比 Vrが Vr= 2 . 3である 場合には、 圧縮機として部分負荷時でも容積比 Vrが「1」以上必要であることか ら、 限界部分負荷率は 1 / 2 · 3 = 0 . 4 4、 つまり 4 4 %運転が限界となる。 固 有容積比 Vrを上げれば限界部分負荷率は下がって 5 0 %以下の部分負荷運転が 可能になるのではあるが、 その場合には逆に全負荷時の効率が落ちてしまうた めに固有容積比 Vrを上げることは採用できない。 ところ力 1台の室外機で複 数の室内機を受け持つマルチタイプの空気調和機においては 2 0 °/。〜3 0 %負 荷運転が必ず必要であり、 上記従来の多段階容量制御スクロール圧縮機を上記 マルチタイプの空気調和機に適用した場合には、 圧縮機の運転'停止が頻繁に行 われたり、 最適な空調条件を設定できない等の問題が発生する。
また、 負荷制御スクロール圧縮機としては、 上述の構成の他に電動機のイン バータ制御による方法もある。 ところが、 その場合には、 インバータ回路が必 要となって大幅なコストアップにつながる。 また、 特に大型のインバータにお いては高調波が発生するという問題もある。 さらには、 インバ一タ運転時の潤 滑不良の問題があり圧縮機の信頼性が低下するという問題もある。
また、 上述したように共通バイパス穴を多数設けて 5 0 %以下の低部分負荷 運転を狙うと、 加工性や組み立て性の低下を招いたり、 第 1 ,第 2スクロールの 中心部に共通バイパス穴を設けるために剛性が低下したりする。 さらに、 第 1, 第 2スクロールの渦巻き内のガス荷重が大幅に減少するためにガス荷重と可動 側の第 2スクロールの遠心荷重とのバランスが崩れ、 ピン軸受(図示せず)での 潤滑不良等の不具合が生じたり、 第 2スクロールの転覆が発生したりするとい う問題がある。 発明の開示
そこで、 この発明の目的は、 5 0 %以下の部分負荷運転を多段階に変更可能 な安価で信頼性の高い多段階容量制御スクロール圧縮機を提供することにある。 上記目的を達成するため、 本発明の多段階容量制御スクロール圧縮機は、 圧 縮室内の所定位置に形成されて流体作動室内の圧縮ガスを吸い込みポートに返 す第 1バイパス通路と、 上記第 1バイパス通路を開閉する第 1開閉手段と、 吐 出側と吸い込み側とを連通する第 2バイパス通路と、 上記第 2バイパス通路を 開閉すると共に,開放時には吐出側の高圧ガスを所定量だけ吸い込み側に逃がす 第 2開閉手段を備えたことを特徴としている。
上記構成によれば、 第 2開閉手段が第 2バイパス通路を開 '閉することによつ て、 圧縮機の負荷が 1 0 0 %と第 1の所定%とに切り換えられる。 一方、 第 1 開閉手段が第 1バイパス通路を開 '閉することによって、 上記圧縮機の吐出容量 が 1 0 0 %と第 2の所定%とに切り換えられる。 したがって、 上記第 1開閉手 段の開 '閉と上記第 2開閉手段の開 ·閉とを組み合わせることによって、 上記圧 縮機の実質負荷が 4段階に切り換えられる。 その場合に、 上記圧縮機の吐出容 量は、 第 1開閉手段によって上記第 2の所定%のみに切り換えられる。 したが つて、 上記圧縮機の吐出容量が上記第 2の所定%になったときの容積比が 1以 上になるように、 上記圧縮機の固定容積比および上記第 2の所定%を設定して おけば、 上記圧縮機の実質負荷が最小になった場合でも容積比を 1以上に保つ て信頼性の高い多段階負荷制御が行われる。
また、 この発明の多段階容量制御スクロール圧縮機の一形態では、 上記圧縮 室を形成する第 1スクロールと第 2スクロールは、 一方のスクロールの渦卷卷 終を他方のスクロールの渦巻巻終よりも伸開角で 1 8 0度だけ長く した非対称 の渦巻き形状を呈することを特徴としている。
上記構成によれば、 第 1スクロールの内面と第 2スクロールの外面とで形成 される第 1流体作動室と、 第 1スクロ一ルの外面と第 2スクロールの内面とで 形成される第 2流体作動室とが、 同じ第 1バイパス通路の位置に交互に形成さ れる。 したがって、 唯 1つの第 1バイパス通路から各流体作動室内の高圧ガス が吸い込みポートに返される。
また、 この発明の多段階容量制御スクロール圧縮機の一形態では、 上記第 2 バイパス通路は、 圧縮機本体の外に設けられていることを特徴としている。 上記構成によれば、 上記第 2バイパス通路および第 2開閉手段を上記圧縮機 本体内に形成する必要がなく、 吐出ラインと吸入ラインとの間に形成すればよ い。 したがって、 多段階容量制御スクロール圧縮機が安価に製造される。
また、 この発明の多段階容量制御スクロール圧縮機の一形態は、 上記第 2バ ィパス通路および第 2開閉手段を複数備えたことを特徴としている。
上記構成によれば、 上記第 2バイパス通路および第 2開閉手段が複数設けら れている。 したがって、 各第 2開閉手段の開'閉と上記第 1開閉手段の開 '閉と を組み合わせることによって、 8段階以上の多段階負荷制御が行われる。
また、 この発明の多段階容量制御スクロール圧縮機の一形態では、 上記第 2 バイパス通路を開閉する第 2開閉手段は、 任意の開度に制御可能な電動弁であ ることを特徴としている。
上記構成によれば、 上記第 2バイパス通路の開度が任意の開度に設定される ので、 圧縮機の負荷が 1 0 0 %と任意の%とに切り換えられる。 したがって、 上記第 1開閉手段の開 ·閉制御と上記第 2開閉手段の開度制御との組み合わせに よって、 圧縮機の実質負荷が任意の多段階に切り換えられる。
また、 この発明の多段階容量制御スクロール圧縮機の一形態では、 上記第 2 開閉手段は、 パイロット圧と上記吸い込み側の圧力または吐出側の圧力との差 圧によって動作するようになっていることを特徴としている。
上記構成によれば、 上記第 2開閉手段の制御系を簡単に構成でき、 多段階容 量制御スクロール圧縮機が安価に製造される。
また、 この発明の多段階容量制御スクロール圧縮機の一形態は、 上記吸い込 みポートに連通する低圧チャンバを冷却するための液ィンジェクシヨン管を備 えたことを特徴としている。
上記構成によれば、 液インジェクション管から噴射される冷却液によって低 圧チャンバおよび駆動モータが冷却される。 こうして、 上記圧縮室内の高圧ガ スを吸い込みポー卜に返すことによる上記低圧チャンバの温度上昇が防止され、 吐出ガスやモータの温度低下が図られる。
また、 この発明の多段階容量制御スクロール圧縮機の一形態は、 上記第 1開 閉手段および第 2開閉手段はパイ口ット圧によって動作するようになっており、 上記第 1開閉手段のパイロットポートと第 2開閉手段のパイロットポートとは, 圧縮機本体の上部中心に設けられた 1つの継手金具を介して,夫々のパイロット ラインに接続されていることを特徴としている。
上記構成によれば、 上記第 1 ,第 2開閉手段のパイロットポートと夫々のパイ ロットラインとを接続する継手金具は圧縮機本体の上部中心に 1つだけ設けれ ばよく、 ケーシングトップ中心 1箇所からの取り出しとなる。 そのために、 上 記ケ一シングトップの偏心した 2箇所から取り出した場合には操作管との楕円 形の溶接が 2箇所必要に成るに比して、 上記ケーシングトップと操作管との溶 接作業が容易に行え、 組み立て工数が低減されて更なるコストダウンが図られ る。
また、 この発明の多段階容量制御スクロール圧縮機の一形態は、 固定吐出容 量の標準スク口ール圧縮機とを備えて、 上記多段階容量制御スク口一ル圧縮機 と上記標準スク口ール圧縮機とを並列に接続したことを特徴としている。
上記構成によれば、 多段階容量制御スクロール圧縮機と標準スクロール圧縮 機とでツインの多段階容量制御スクロール圧縮機を構成している。 したがって、 上記標準スクロール圧縮機によるアンロードとフルロードとの 2つのロード状 態への切り換えと、 多段階容量制御スク口ール圧縮機による n段階の負荷切り 換えとを組み合わせることによって、 2 X n段階に負荷が切り換えられる。 こ うして、 更に多段階に負荷制御が行われる。
また、 この発明の多段階容量制御スクロール圧縮機の一形態では、 上記第 1 開閉手段はパイ口ット圧で動作するようになっており、 上記第 1開閉手段のパ ィロットポートとこのパイ口ットポートにパイロットラインを接続するための 継手金具とはねじで接続されていることを特徴としている。
上記構成によれば、 上記第 1開閉手段のパイロットポートと継手金具とはテ ーパねじで確実に接続されている。 したがって、 継手金具の振動に強く耐漏れ 性や耐熱性の高い取り付け構造が実現される。 図面の簡単な説明
図 1は、 この発明の多段階容量制御スクロール圧縮機における第 1実施の形 態の部分断面図である。
図 2は、 図 1に示す多段階容量制御スク口ール圧縮機の吐出容量が 3 0 %で ある場合の部分断面図である。
図 3は、 図 1とは異なる多段階容量制御スクロール圧縮機の部分断面図であ る。
図 4は、 第 2実施の形態における多段階容量制御スク口ール圧縮機の断面図 である。
図 5は、 図 4とは異なる多段階容量制御スクロール圧縮機の部分断面図であ る。
図 6は、 第 3実施の形態における多段階容量制御スク口ール圧縮機の構成 図である。
図 7 A, 7 Bは、 図 1,図 3〜図 5における継手管の蓋部材への取付構造とは 異なる取付構造を示す図である。
図 8は、 従来の負荷制御スク口一ル圧縮機の部分断面図である。
図 9は、 図 8の X— X矢視断面図である。 発明を実施するための最良の形態 以下、 この発明を図示の実施の形態により詳細に説明する。 図 1は、 第 1実 施の形態の多段階容量制御スクロール圧縮機における部分断面図である。 第 1 スクロール 2 1,第 2スクロール 2 2 ,低圧ポ一ト 2 3 ,共通バイパス穴 2 4 ,弁 穴 2 5 ,バイパス通路 2 6 ,バイパス弁 2 7 ,コイルスプリング 2 8,蓋部材 2 9 , 吐出ドーム 3 0,操作圧室 3 1 ,電磁弁 3 2 ,低圧ライン 3 3 ,高圧ライン 3 4 ,操 作圧ライン 3 5 ,継手管 3 6,キヤビラリチューブ 3 7 ,ケ一シング 3 8および高 圧ポート 3 9は、 図 8および図 9に示す従来の非対称渦巻き型多段階容量制御 スクロール圧縮機における第 1スクロール 1 ,第 2スクロール 2 ,低圧ポ一ト 3, 共通バイパス穴 4,弁穴 5 ,バイパス通路 6 ,バイパス弁 7 ,コィルスプリング 8 , 蓋部材 9 ,吐出ドーム 1 0 ,操作圧室 1 1 ,電磁弁 1 2,低圧ライン 1 3 ,高圧ライ ン 1 4 ,操作圧ライン 1 5,継手管 1 6,キヤビラリチューブ 1 7 ,ケ一シング 1 8および高圧ポート 1 9と同じ構成を有し、 同様に動作する。
本実施の形態においては、 上記第 1スクロール 2 1における渦巻き外に、 低 圧ポート 2 3に連通する吸入側と吐出ドーム 3 0内の吐出側とを選択的に連通 させる第 2のバイパス弁 4 0を設けている。 以下、 バイパス弁 2 7を第 1バイ パス弁と言い、 バイパス弁 4 0を第 2バイパス弁と言う。 第 2バイパス弁 4 0 は、 第 1スクロール 2 1の鏡板 4 1の高圧側の表面に突出して設けられた円筒 状のシリンダ部 4 2と、 先端にボールを有してシリンダ部 4 2内を摺動する弁 体 4 3と、 この弁体 4 3とシリンダ部 4 2との間に縮装されたスプリング 4 4 で概略構成されている。
上記シリンダ部 4 2の低圧側端部には、 シリンダ部 4 2内に連通する軸孔を 有すると共に外周面には取付ねじが設けられた取付部 4 2 aを設けている。 また、 鏡板 4 1には、 この鏡板 4 1を貫通する貫通孔 4 5が穿たれており、 この貫通 孔 4 5の上端部にシリンダ部 4 2の取付部 4 2 aを蝶合する取付孔 4 5 aを設け ている。 そして、 シリンダ部 4 2の取付部 4 2 aを鏡板 4 1の取付孔 4 5 aに螺 合することによって、 シリンダ部 4 2を鏡板 4 1の高圧側の表面に突出させて 固定し、 上記吸入側とシリンダ部 4 2内とが貫通孔 4 5および取付部 4 2 aの軸 孔を介して連通される。 また、 シリンダ部 4 2の上部は吐出ドーム 3 0とは仕 切られて操作圧室 4 6を形成している。 尚、 操作圧室 4 6には、 第 2の電磁弁 4 7によって低圧ライン 3 3と高圧ライン 3 4とに選択的に連通される操作圧 ライン 4 8を継手管 4 9を介して接続している。 以下、 電磁弁 3 2を第 1電磁 弁と言い、 電磁弁 4 7を第 2電磁弁と言う。 尚、 5 0は高圧ライン 3 4と低圧 ライン 3 3との短絡を防止するキヤビラリチューブである。
上記弁体 4 3の外周面には低圧側が小径である段部が設けられており、 この 小径部にスプリング 4 4が装着されている。 また、 シリンダ部 4 2の軸方向中 間部には半径方向に内側と外側とを連通する貫通孔 5 1が設けられ、 弁体 4 3 が最下部まで摺動した場合に弁体 4 3の大径部でシリンダ部 4 2の貫通孔 5 1 を閉鎖するようになっている。 ここで、 貫通孔 5 1の大きさは、 圧縮機の負荷 が例えば 5 0 %になるように設定される。
したがって、 上記第 2電磁弁 4 7を閉鎖して第 2バイパス弁 4 0の操作圧室 4 6に高圧ガスを供給し、 弁体 4 3を下方に摺動させた場合には、 弁体 4 3の 上記大径部が貫通孔 5 1を閉鎖して圧縮機の負荷は 1 0 0 %に設定される(以下、 このようにして設定された負荷を設定負荷と言う)。 一方、 第 2電磁弁 4 7を開 放して第 2バイパス弁 4◦の操作圧室 4 6に低圧ガスを供給し、 弁体 4 3を上 方に摺動させた場合には、 弁体 4 3の貫通孔 5 1が開放されて圧縮機の設定負 荷は 5 0 %となる。 すなわち、 本実施の形態においては、 上記第 2バイパス通 路を貫通孔 4 5で構成し、 上記第 2開閉手段を第 2バイパス弁 4 0で構成する のである。
上記構成の多段階容量制御スクロール圧縮機は、 第 1バイパス弁 2 7と第 2 バイパス弁 4 0との開閉を制御することによって、 以下のように多段階負荷制 御を可能にしている。 先ず、 上述のように上記第 2電磁弁 4 7を閉鎖すること によって、 第 2バイパス弁 4 0が閉鎖して圧縮機の設定負荷は 1 0 0 %となる。 この状態で、 第 1電磁弁 3 2を閉鎖して第 1バイパス弁 2 7の操作圧室 3 1に 高圧ガスを供給すると、 第 1バイパス弁 2 7は閉鎖して吐出容量は 1 0 0 %と なる。 したがって、 この場合における圧縮機の実質負荷は 1 0 0 % ( == 1 0 0 % X I 0 0 %)となる(図 1の状態)。 また、 第 1電磁弁 3 2を開放して第 1バイパ ス弁 2 7の操作圧室 3 1に低圧ガスを供給すると、 第 1バイパス弁 2 7は開放 して吐出容量は 6 0 %となる。 したがって、 この場合における圧縮機の実質負 荷は 6 0 % ( = 1 0 0 % X 6 0 %)となる。 次に、 第 2電磁弁 4 7を開放するこ とによって、 第 2バイパス弁 4 0が開放して圧縮機の設定負荷は 5 0 %となる。 この状態で、 第 1上記電磁弁 3 2を開放して第 1バイパス弁 2 7を開放すると 吐出容量は 6 0 %となる。 したがって、 この場合における圧縮機の実質負荷は 3 0 % (= 5 0 % X 6 0 %)となる(図 2の状態)。
この場合、 上記第 1スクロール 2 1には、 第 1スクロール 2 1に対する第 2 スクロール 2 2の最外方側接触点 Eから略 1巻き分だけ内方に巻き戻した点 J (図 9を参照)のみに、 唯一つの共通バイパス穴 2 4を穿って第 1バイパス弁 2 7を設けている。 したがって、 最小容量運転時の吐出容量は 6 0 %となる。 そ のために、 第 1,第 2スクロール 2 1, 2 2の固有容積比 Vrが 2 . 3である場合 に、 最小容量運転時の容積比 Vrは 1 . 3 8 (= 2 . 3 X 0 . 6 )となって「 1」以上 の値を呈する。 即ち、 本実施の形態によれば信頼性の高い 5 0 %以下の部分負 荷運転が可能になるのである。
このように、 本実施の形態においては、 上記非対称渦巻き型スクロール圧縮 機の第 1スクロール 2 1には、 第 1スクロール 2 1に対する第 2スクロール 2
2の最外方側接触点 Eから略 1巻き分だけ内方に卷き戻した点 J (図 9参照)に、 低圧ポート 2 3に連通して吐出容量を 6 0。/0にする第 1バイパス弁 2 7を設け る。 さらに、 第 1スクロール 2 1の渦巻き外には、 上記吸入側と吐出側とを選 択的に連通させて圧縮機の設定負荷を 5 0 %にする第 2バイパス弁 4 0を設け ている。 そして、 第 1電磁弁 3 2および第 2電磁弁 4 7の開閉によって、 低圧 ライン 3 3および高圧ライン 3 4の圧力と上記吸入側の圧力との差圧によって 第 1バイパス弁 2 7および第 2バイパス弁 4 0を開閉するようにしている。 し たがって、 第 2バイパス弁 4 0および第 1バイパス弁 2 7を閉鎖すれば、 圧縮 機の実質負荷を 1 0 0 %にできる。 また、 第 2バイパス弁 4 0を閉鎖する一方、 第 1バイパス弁 2 7を開放すれば、 圧縮機の実質負荷を 6 0 %にできる。 また、 第 2バイパス弁 4 0および第 1バイパス弁 2 7を開放すれば、 圧縮機の実質負 荷を 3 0 %にできる。
すなわち、 本実施の形態によれば、 最小容量運転時の容積比 Vrを「1」以上の ィ直にして、 信頼性の高い 5 0 %以下の部分負荷運転を行うことができる。 その場合に、 上記構成を有する多段階容量制御スクロール圧縮機は、 上記第
1バイパス弁 2 7を有する従来の非対称渦巻き型の多段階容量制御スクロール 圧縮機における第 1スクロール 2 1の渦巻き外に、 鏡板 4 1を貫通する貫通孔 4 5を穿ち、 この貫通孔 4 5の上端部にシリンダ部 4 2の取付部 4 2 aを螺合す るだけで簡単に構成することができる。 また、 渦巻き外に設けられる第 2スク ロール弁 4 0は、 渦巻き内に設けられる第 1スクロール弁 2 7のような精密性 を必要とはしない。 したがって、 少ない部品点数で、 安価に提供できる。
図 3は、 図 1に示す多段階容量制御スク口ール圧縮機の変形例を示す部分断 面図である。 図 3に示す多段階容量制御スクロール圧縮機における第 1スクロ —ル 6 1 ,第 2スクロール 6 2 ,第 1バイパス弁 6 3,第 1電磁弁 6 4,低圧ライ ン 6 5,高圧ライン 6 6 ,操作圧ライン 6 7,高圧ポート 6 8 ,第 2バイパス弁 6 9 ,貫通孔 7 0 ,第 2電磁弁 7 1および操作圧ライン 7 2は、 図 1に示す多段階 容量制御スクロール圧縮機における第 1スクロール 2 1 ,第 2スクロール 2 2 , 第 1バイパス弁 2 7 ,第 1電磁弁 3 2,低圧ライン 3 3,高圧ライン 3 4 ,操作圧 ライン 3 5 ,高圧ポ一ト 3 9 ,第 2バイパス弁 4 0 ,貫通孔 4 5,第 2電磁弁 4 7 および操作圧ライン 4 8と同じ構成を有し、 同様に動作する。
本実施の形態においては、 上記操作圧ライン 6 7 , 7 2をケ一シング 7 3の天 面中央に取り付けられた一つの継手管 7 4を介して第 1バイパス弁 6 3および 第 2バイパス弁 6 9に接続している。 継手管 7 4には 2本の孔 7 4 a, 7 4 bが互 い違いに設けられており、 第 1孔 7 4 aには第 1管ボルト継手 7 5によって操作 圧ライン 6 7が接続される一方、 第 2孔 7 4 bには第 2管ボルト継手 7 6によつ て操作圧ライン 7 2が接続されている。 さらに、 第 1孔 7 4 aには第 1配管 7 7 によって第 1バイパス弁 6 3の操作圧室 7 8が接続され、 第 2孔 7 4 bには第 2 配管 7 9によって第 2バイパス弁 6 9の操作圧室 8 0が接続されている。
このように、 上記 2本の操作圧ライン 6 7 , 7 2を一つの継手管 7 4でまとめ てケーシング 7 3のトップ中央から引き出すことによって、 組み立て工数を低 減して更なるコストダウンを図ることができるのである。
図 4は、 第 2実施の形態における多段階容量制御スクロール圧縮機を示す部 分断面図である。 第 1スクロール 8 1,第 2スクロール 8 2 ,低圧ポート 8 3,バ ィパス弁 8 4,第 1電磁弁 8 5,低圧ライン 8 6,高圧ライン 8 7,操作圧ライン 8 8 ,継手管 8 9および高圧ポート 9 0は、 図 1に示す多段階容量制御スクロ一 ル圧縮機における第 1スクロール 2 1 ,第 2スクロール 2 2 ,低圧ポート 2 3,第 1バイパス弁 2 7 ,第 1電磁弁 3 2 ,低圧ライン 3 3,高圧ライン 3 4 ,操作圧ラ イン 3 5 ,継手管 3 6および高圧ポート 3 9と同じ構成を有し、 同様に動作する。 図 1に示す多段階容量制御スクロール圧縮機では、 第 1スクロール 2 1の鏡 板 4 1に穿たれた貫通孔 4 5の上部に第 2バイパス弁 4 0を設け、 第 2バイパ ス弁 4 0を開閉して上記吸入側と吐出側とを選択的に連通させることによって、 圧縮機の設定負荷を 1 0 0 %と 5 0 %とに切り換えるようにしている。 ところ で、 上記吸入側と吐出側との選択的連通は、 他の方法によっても可能である。 図 4においては、 上記低圧ライン 8 6と高圧ライン 8 7とを第 2電磁弁 9 1 およびキヤビラリチューブ 9 2が介設されたバイパス通路 9 3で接続すること によって、 上記吸入側と吐出側との選択的連通を可能にするのである。 尚、 上 記キヤビラリチューブ 9 2は、 高圧ライン 8 7と低圧ライン 8 6との短絡を防 止する。 以下、 例えば、 第 2電磁弁 9 1をその開放時における圧縮機の設定負 荷が 5 0 %になるように構成した場合を例に、 本実施の形態における多段階容 量制御スクロール圧縮機の動作について説明する。
本多段階容量制御スク口ール圧縮機は、 第 1電磁弁 8 5と第 2電磁弁 9 1と の開閉を制御することによって、 以下のように多段階負荷制御を行う。 先ず、 第 2電磁弁 9 1を閉鎖することによって圧縮機の設定負荷は 1 0 0 %となる。 この状態で第 1電磁弁 8 5を閉鎖すると、 第 1バイパス弁 8 4が閉鎖して吐出 容量は 1 0 0 %となる。 したがって、 この場合における圧縮機の実質負荷は 1 0 0 %となる。 また、 第 1電磁弁 8 5を開放すると、 第 1バイパス弁 8 4は開 放して吐出容量は 6 0 %となる。 したがって、 この場合における圧縮機の実質 負荷は 6 0 %となる。 次に、 第 2電磁弁 9 1を開放することによって圧縮機の 設定負荷は 5 0 %になる。 この状態で、 第 1電磁弁 8 5を開放すると吐出容量 は 6 0 %となる。 したがって、 この場合の圧縮機の実質負荷は 3 0 %となるの である。 こう して、 第 1実施の形態の場合と同様に、 最小容量運転時の容積比 Vrを「1」以上の値にして、 信頼性の高い 5 0 %以下の部分負荷運転を行うこと ができるのである。
上記実施の形態においては、 上記低圧ライン 8 6と高圧ライン 8 7とを第 2 電磁弁 9 1が介設されたバイパス通路 9 3で接続するという非常に簡単な方法 によって、 上記吸入側と吐出側との選択的連通を可能にしている。 したがって、 第 1実施の形態のように、 圧縮機本体内に第 2バイパス弁 4 0を設ける必要が なく、 更なるコストダウンを図ることができる。
尚、 上記第 2電磁弁 9 1に換えて、 ステッピングモータ等によって開度を制 御可能な電動弁を用いることによって圧縮機の設定負荷を任意に多段階に変更 できる。 したがって、 その場合には、 第 1電磁弁 8 5の開放'閉鎖と組み合わせ ることによって、 信頼性の高い 5 0 %以下の任意の多段階負荷制御を行うこと が可能となるのである。
図 5は、 図 4に示す多段階容量制御スク口ール圧縮機の変形例を示す部分断 面図である。 図 5に示す多段階容量制御スクロール圧縮機における第 1スクロ ール 1 0 1 ,第 2スクロール 1 ◦ 2 ,低圧ポート 1 0 3 ,バイパス弁 1 0 4 ,第 1 電磁弁 1 0 5 ,低圧ライン 1 0 6,高圧ライン 1 0 7,操作圧ライン 1 0 8 ,継手 管 1 0 9および高圧ポ一ト 1 1 0は、 図 1に示す多段階容量制御スクロール圧 縮機における第 1スクロール 2 1 ,第 2スクロール 2 2,低圧ポート 2 3 ,第 1 ノ ィパス弁 2 7 ,第 1電磁弁 3 2 ,低圧ライン 3 3,高圧ライン 3 4 ,操作圧ライン 3 5,継手管 3 6および高圧ポート 3 9と同じ構成を有し、 同様に動作する。 但 し、 バイパス弁 1 0 4は、 吐出容量を 5 0 %にする位置に設けられているもの とする。
図 5においては、 上記低圧ライン 1 0 6と高圧ライン 1 0 7とを、 開放時に おける圧縮機の設定負荷を 7 5 %にする第 2電磁弁 1 1 1が介設されたバイパ ス通路 1 1 3、 および、 開放時における圧縮機の設定負荷を 6 5 %にする第 3 電磁弁 1 1 2が介設されたバイパス通路 1 1 4で接続するのである。 そして、 第 1電磁弁 1 0 5と第 2電磁弁 1 1 1 と第 3電磁弁 1 1 2との開閉を制御する ことによって、 以下のように多段階負荷制御を行う。
先ず、 第 2電磁弁 1 1 1および第 3電磁弁 1 1 2を閉鎖することによって圧 縮機の設定負荷は 1 0 0 %となる。 この状態で第 1電磁弁 1 0 5を閉鎖すると、 第 1バイパス弁 1 0 4が閉鎖して吐出容量は 1 0 0 %となる。 したがって、 こ の場合における圧縮機の実質負荷は 1 0 0 °/0となる。 また、 第 1電磁弁 1 0 5 を開放すると第 1バイパス弁 1 0 4は開放して吐出容量は 5 0 %となる。 した がって、 この場合における圧縮機の実質負荷は 5 0 %となる。 次に、 第 3電磁 弁 1 1 2を閉鎖する一方第 2電磁弁 1 1 1を開放することによって圧縮機の設 定負荷は 7 5 %になる。 この状態で、 第 1電磁弁 1 0 5を閉鎖すると吐出容量 は 1 0 0 %となる。 したがって、 この場合の圧縮機の実質負荷は 7 5 %となる。 次に、 第 2電磁弁 1 1 1および第 3電磁弁 1 1 2を開放することによって、 圧 縮機の設定負荷は 4 9 % (= 7 5 % X 6 5 %)となる。 この状態で第 1電磁弁 1 0 5を開放すると吐出容量は 5 0 %となる。 したがって、 この場合における圧 縮機の実質負荷は 2 4 % (= 7 5 % X 6 5 % X 5 0 %)となる。 こう して、 最小 容量運転時の容積比 Vrを「1」以上の値にして、 信頼性の高い 5 0 %以下の多段 階負荷制御を行うことができるのである。 尚、 上記説明では 4段階の負荷制御 を例に説明したが、 最大 8段階の負荷制御が可能である。
図 6は、 第 3実施の形態における多段階容量制御スクロール圧縮機の構成図 である。 本実施の形態では、 上記各実施の形態の何れか一つの構造を有する多 段階容量制御スクロール圧縮機 (以下、 容量制御機と言う)と標準の構造 (非容量 制御)のスクロール圧縮機 (以下、 標準機と言う)とを組み合わせることによって、 5 0 %以下の高多段階負荷制御を行うものである。
上記標準機 1 2 1は、 高圧ガス供給対象のシステムが必要とする最大容量(以 下、 単に必要最大容量と言う)の 1 / 2の最大吐出容量を有する非容量制御型の スクロール圧縮機である。 上記容量制御機 1 2 2は、 例えば図 5に示す多段階 容量制御スク口ール圧縮機であり、 上記システムの必要最大容量の 1 1 2の最大 吐出容量を有する。 尚、 容量制御機 1 2 2は、 第 1電磁弁 1 2 3を開閉するこ とによってバイパス弁(図 5参照)の開閉を制御して吐出容量を 1 0 0 %と 5 0 %とに切り換え、 第 2電磁弁 1 2 4を開閉することによって圧縮機の設定負 荷を 1 0 0 %と 7 5 %とに切り換え、 第 3電磁弁 1 2 5を開閉することによつ て圧縮機の設定負荷を 1 0 0 %と 6 5 %とに切り換えるようになつている。 尚、 容量制御機 1 2 2における例えば第 1スクロールの渦巻き外にノズルを有する 液インジェクション管 1 2 6を設け、 システム側からの液ライン 1 2 7を接続 している。
上記構成の多段階容量制御スクロール圧縮機は次のように動作する。 先ず、 標準機 1 2 1をアンロード状態にする。 この状態で、 容量制御機 1 2 2を上述 のようにして上記実質負荷を 24%にする。 そうすると、 標準機 1 2 1からシ ステムへの吐出容量は必要最大容量の 0 % (= 50 % X 0 %)であり、 容量制御 機 1 2 2からシステムへの吐出容量は必要最大容量の 1 2 °/。(= 5 0 % X 2 4%)であるから、 システムへの実質吐出容量は、 必要最大容量の 1 2%(=標 準機 0% +容量制御機 1 2%)となる。 以下、 同様にして、 容量制御機 1 22の 実質負荷を 50%にするとシステムへの吐出容量は必要最大容量の 2 5%(= 5 0 % X 50 %)となるから、 システムへの実質吐出容量は必要最大容量の 2 5 % となる。 また、 容量制御機 1 22の実質負荷を 75%にするとシステムへの実 質吐出容量は必要最大容量の 3 7. 5%となる。 また、 容量制御機 1 2 2の実質 負荷を 1 00 %にするとシステムへの実質吐出容量は必要最大容量の 50 %と なる。
次に、 上記標準機 1 2 1をフルロード(1 00%)状態にする。 この状態で、 容量制御機 1 2 2を上述のようにして上記実質負荷を 24%にする。 そうする と、 標準機 1 2 1からシステムへの吐出容量は必要最大容量の 50 % ( = 50 % X 1 00%)であり、 容量制御機 1 22からシステムへの吐出容量は必要最大容 量の 1 2%(= 50%X 24%)であるから、 システムへの実質吐出容量は必要 最大容量の 6 2 %(=標準機 50% +容量制御機 1 2%)となる。 以下、 同様に して、 容量制御機 1 2 2の実質負荷を 50%にするとシステムへの実質吐出容 量は必要最大容量の 7 5 %となる。 また、 容量制御機 1 2 2の実質負荷を 7 5%にするとシステムへの実質吐出容量は必要最大容量の 8 7. 5%となる。 ま た、 容量制御機 1 2 2の実質負荷を 1 00 %にするとシステムへの実質吐出容 量は必要最大容量の 1 00 %となる。
その場合に、 上記容量制御機 1 22においては、 上記吐出ドーム内の高温高 圧ガスが上記吸入側に戻されるために上記第 1スクロールと第 2スクロールと で構成される圧縮部や上記第 2スクロールを駆動するモータの温度が高温にな る。 そこで、 本実施の形態においては、 容量制御機 1 2 2に液インジェクショ ン管 1 2 6を設けてシステム側から液冷媒を噴射するようにしている。 したが つて、 噴射された液冷媒は、 第 1スクロールと第 2スクロールとで構成される 圧縮部から第 2スクロールを回転駆動するモータ側に流下して、 上記圧縮部や モータが冷却される。 こうして、 吐出ガスやモータ温度の低下が行われ、 運転 可能範囲が拡大する。 尚、 この容量制御機に対する液インジェクション管の取 り付けは、 第 1 ,第 2実施の形態における多段階容量制御機スク口ール圧縮機に 適用しても一向に差し支えない。
上述のように、 本実施の形態においては、 システムが必要とする最大容量の 1 / 2の最大吐出容量を有する標準機 1 2 1とシステムが必要とする最大容量の 1 / 2の最大吐出容量を有する容量制御機 1 2 2とでツインの多段階容量制御ス クロール圧縮機を構成している。 したがって、 標準機 1 2 1をアンロード状態 とフルロード状態とに切り換えると同時に、 容量制御機 1 2 2の実質負荷を 2 4 %, 5 0 %, 7 5 %および 1 0 0 %に切り換えることによって、 ツインの多段 階容量制御スクロール圧縮機からシステムへの実質吐出容量を、 システムの必 要最大容量の 1 2 %, 2 5 %, 3 7 . 5 %, 5 0 %, 6 2 %, 7 5 %, 8 7 . 5 %およ び 1 0 0 %の 8段階に切り換え可能になる。 また、 容量制御機 1 2 2の実質負 荷を最大の 8段階に切り換えれば、 ツインの多段階容量制御スクロール圧縮機 からシステムへの実質吐出容量は 1 6段階に切り換え可能になる。 尚、 上述で は説明を簡単にするために、 標準機 1 2 1および容量制御機 1 2 2の最大吐出 容量をシステムの必要最大容量の 1 / 2であるとしているが、 これに限定される のではなく必要とする実質吐出容量に応じて適宜設定すればょレ、。
ところで、 上記各実施の形態(以下、 第 1実施の形態で代表する)における第 ェバイパス弁 2 7の操作圧室 3 1に接続される継手管 3 6は、 その先端を蓋部 材 2 9に穿たれた穴に挿入して取り付けられ、 Oリング 5 2でシールされてい る。 ところが、 このような取付構造は継手管 3 6の振動に対して弱く、 使用条 件によっては漏れが発生する。 また、 耐熱性の問題もある。 そこで、 第 4実施 の形態においては、 図 7 A, 7 Bに示すような取付構造を採用する。
図 7 Aにおいては、 継手管 1 3 1の先端のテ一パ部に雄ねじ 1 3 2を設ける 一方、 蓋部材 1 33のテーパ穴には雌ねじ 1 34を設ける。 そして、 継手管 1 3 1の先端のテーパ部を蓋部材 1 33のテーパ穴に螺合して継手管 1 3 1を蓋 部材 1 33に取り付けるのである。 こうしてテ一パねじでシールすることによ つて、 継手管 1 3 1の振動に強く耐漏れ性や耐熱性の高い取付構造が得られる。 また、 図 7 Bにおいては、 継手管本体 1 35と管体 1 36とを分離し、 管体 1 36を蓋部材 1 37と一体に形成するのである。 そして、 管体 136の先端を ケ一シング 1 38の穴 1 3 9を通して突出させて、 穴 1 3 9の箇所で溶接止め する。 そして、 管体 1 36の先端のテ一パ部に継手管本体 1 35のテーパ穴を 螺合するのである。 このように、 管体 1 36を蓋部材 1 37とを一体に構成し、 継手管本体 1 3 5とテーパねじで結合することによって、 管体 1 36の振動に も強く耐漏れ性や耐熱性の高レ、取付構造が得られる。
尚、 上記各実施の形態においては、 図 9に示すように、 第 1スクロール 21, 61, 81, 10 1の渦巻巻終を第 2スクロール 22, 62, 82, 102の渦卷卷 終よりも伸開角で π (rad)だけ長く して、 第 1スクロール 21, 61, 8 1, 10 1に対する第 2スクロール 22, 62, 82, 1 02の最外方側接触点 Eを上記渦 卷卷終とした、 所謂非対称渦巻き型のスクロール圧縮機を例に説明している。 しかしながら、 この発明はこれに限定されるものではなく、 対称な一対のスク ロールの渦巻卷終を互いに伸開角で π (rad)だけずらした所謂対称渦巻き型のス クロール圧縮機の場合にも適用できる。 但し、 この対称渦巻き型のスクロール 圧縮機の場合には、 第 1スクロールの内面と第 2スクロールの外面とで形成さ れる第 1流体作動室 Aと第 1スクロールの外面と第 2スクロールの内面とで形 成される第 2流体作動室 Bとは同一位置に形成されずに互いに対向して形成さ れるため、 圧縮機の吐出容量を変えるための第 1バイパス弁は、 第 1流体作動 室 A用と第 2流体作動室 B用との 2つを互いに対向した位置に設ける必要があ る。

Claims

請 求 の 範 囲
1. 圧縮室内の所定位置に形成されて流体作動室内の圧縮ガスを吸い込みポ —ト( 23 )に返す第 1バイパス通路( 26 )と、
上記第 1バイパス通路(26)を開閉する第 1開閉手段(27)と、
吐出側と吸い込み側とを連通する第 2バイパス通路(45)と、
上記第 2バイパス通路(45)を開閉すると共に、 開放時には吐出側の高圧ガ スを所定量だけ吸い込み側に逃がす第 2開閉手段( 40 )を備えたことを特徴と する多段階容量制御スク口ール圧縮機。
2. 請求項 1に記載の多段階容量制御スク口ール圧縮機において、
上記圧縮室を形成する第 1スクロール(21)と第 2スクロール(22)とは、 一方のスクロールの渦巻卷終を他方のスクロールの渦卷卷終よりも伸開角で 1 80度だけ長く した非対称の渦巻き形状を呈することを特徴とする多段階容量 制御スクロール圧縮機。
3. 請求項 1に記載の多段階容量制御スク口一ル圧縮機において、
上記第 2バイパス通路(93)は、 圧縮機本体の外に設けられていることを特 徴とする多段階容量制御スクロール圧縮機。
4. 請求項 1または請求項 3に記載の多段階容量制御スクロール圧縮機にお レ、て、
上記第 2バイパス通路(1 1 3, 1 1 4)および第 2開閉手段(1 1 1, 1 1 2) を複数備えたことを特徴とする多段階容量制御スクロール圧縮機。
5. 請求項 3に記載の多段階容量制御スク口ール圧縮機にぉレ、て、
上記第 2バイパス通路(93)を開閉する第 2開閉手段は、 任意の開度に制御 可能な電動弁であることを特徴とする多段階容量制御スクロール圧縮機。
6. 請求項 1に記載の多段階容量制御スクロール圧縮機において、
上記第 2開閉手段(40)は、 パイロット圧と上記吸い込み側の圧力または吐 出側の圧力との差圧によって動作するようになつていることを特徴とする多段 階容量制御スク口ール圧縮機。
7. 請求項 1に記載の多段階容量制御スク口一ル圧縮機において、 上記吸い込みポート(23)に連通する低圧チャンバを冷却するための液イン ジェクシヨン管(126)を備えたことを特徴とする多段階容量制御スクロール圧 縮機。
8. 請求項 1に記載の多段階容量制御スクロール圧縮機において、
上記第 1開閉手段(63)および第 2開閉手段(69)はパイロット圧によって 動作するようになっており、
上記第 1開閉手段(63)のパイ口ットポートと第 2開閉手段(69)のパイ口 ットポートとは、 圧縮機本体の上部中心に設けられた 1つの継手金具(74)を 介して、 夫々のパイロットライン(67, 72)に接続されていることを特徴とす る多段階容量制御スク口ール圧縮機。
9. 請求項 1に記載の多段階容量制御スク口一ル圧縮機( 1 22 )と、
固定吐出容量の標準スクロール圧縮機(1 21)とを備えて、
上記多段階容量制御スク口ール圧縮機 (1 22) と上記標準スク口ール圧縮 機 (1 21) とを並列に接続したことを特徴とする多段階容量制御スクロール 圧縮機。
10. 請求項 1に記載の多段階容量制御スクロール圧縮機において、
上記第 1開閉手段はパイ口ット圧で動作するようになっており、
上記第 1開閉手段のパイロットポートとこのパイロットポートにパイロットラ インを接続するための継手金具(1 3 1, 135)とは、 ねじで接続されているこ とを特徴とする多段階容量制御スクロール圧縮機。
PCT/JP1999/002761 1998-06-12 1999-05-26 Compresseur a volute de type a commande de capacite en plusieurs etapes WO1999064744A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020007001426A KR100601270B1 (ko) 1998-06-12 1999-05-26 다단계 용량제어 스크롤 압축기
EP99922489A EP1004773B1 (en) 1998-06-12 1999-05-26 Multi-stage capacity control scroll compressor
DE69943017T DE69943017D1 (de) 1998-06-12 1999-05-26 Spiralverdichter mit mehrstufigem mengenregler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10165022A JP2974009B1 (ja) 1998-06-12 1998-06-12 多段階容量制御スクロール圧縮機
JP10/165022 1998-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09462207 A-371-Of-International 2000-01-04
US10/052,530 Continuation US6478550B2 (en) 1998-06-12 2002-01-23 Multi-stage capacity-controlled scroll compressor

Publications (1)

Publication Number Publication Date
WO1999064744A1 true WO1999064744A1 (fr) 1999-12-16

Family

ID=15804366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002761 WO1999064744A1 (fr) 1998-06-12 1999-05-26 Compresseur a volute de type a commande de capacite en plusieurs etapes

Country Status (7)

Country Link
EP (1) EP1004773B1 (ja)
JP (1) JP2974009B1 (ja)
KR (1) KR100601270B1 (ja)
CN (1) CN1094566C (ja)
DE (1) DE69943017D1 (ja)
ES (1) ES2356224T3 (ja)
WO (1) WO1999064744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478550B2 (en) 1998-06-12 2002-11-12 Daikin Industries, Ltd. Multi-stage capacity-controlled scroll compressor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343527C (zh) * 2002-12-25 2007-10-17 乐金电子(天津)电器有限公司 具有防真空能力的涡轮压缩机
KR100547322B1 (ko) 2003-07-26 2006-01-26 엘지전자 주식회사 용량 조절식 스크롤 압축기
KR100557056B1 (ko) 2003-07-26 2006-03-03 엘지전자 주식회사 용량 조절식 스크롤 압축기
KR100695822B1 (ko) * 2004-12-23 2007-03-20 엘지전자 주식회사 스크롤 압축기의 계단형 용량 가변장치
KR100585811B1 (ko) 2004-12-31 2006-06-07 엘지전자 주식회사 용량 가변형 스크롤 압축기
US20090035167A1 (en) 2007-08-03 2009-02-05 Zili Sun Stepped scroll compressor with staged capacity modulation
JP5040907B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 冷凍装置
US8328531B2 (en) * 2009-01-22 2012-12-11 Danfoss Scroll Technologies, Llc Scroll compressor with three-step capacity control
JP5489142B2 (ja) * 2011-02-22 2014-05-14 株式会社日立製作所 スクロール圧縮機
CN106286292B (zh) * 2015-05-27 2018-12-04 珠海格力节能环保制冷技术研究中心有限公司 压缩组件、变容量涡旋压缩机及空调器
CN105275804B (zh) * 2015-10-15 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机的变容机构及涡旋压缩机
KR101747175B1 (ko) 2016-02-24 2017-06-14 엘지전자 주식회사 스크롤 압축기
KR101800261B1 (ko) 2016-05-25 2017-11-22 엘지전자 주식회사 스크롤 압축기
KR101839886B1 (ko) 2016-05-30 2018-03-19 엘지전자 주식회사 스크롤 압축기
US10563891B2 (en) * 2017-01-26 2020-02-18 Trane International Inc. Variable displacement scroll compressor
JP6489166B2 (ja) * 2017-07-05 2019-03-27 ダイキン工業株式会社 スクロール圧縮機
CN211343341U (zh) * 2018-09-19 2020-08-25 艾默生环境优化技术(苏州)有限公司 涡旋压缩机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979152A (ja) * 1995-09-11 1997-03-25 Sanyo Electric Co Ltd スクロール圧縮機
JPH09170573A (ja) * 1995-12-19 1997-06-30 Daikin Ind Ltd スクロール形流体機械

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985472A (en) * 1975-04-23 1976-10-12 International Harvester Company Combined fixed and variable displacement pump system
JPH0744775Y2 (ja) * 1987-03-26 1995-10-11 三菱重工業株式会社 圧縮機の容量制御装置
JPH0615872B2 (ja) * 1987-06-30 1994-03-02 サンデン株式会社 可変容量型スクロ−ル圧縮機
JP2656627B2 (ja) * 1989-08-02 1997-09-24 株式会社日立製作所 密閉形スクロール圧縮機の給油装置
JP3100452B2 (ja) * 1992-02-18 2000-10-16 サンデン株式会社 容量可変型スクロール圧縮機
US5451146A (en) * 1992-04-01 1995-09-19 Nippondenso Co., Ltd. Scroll-type variable-capacity compressor with bypass valve
JP3132888B2 (ja) * 1992-04-01 2001-02-05 株式会社日本自動車部品総合研究所 スクロール型可変容量圧縮機
US5678985A (en) * 1995-12-19 1997-10-21 Copeland Corporation Scroll machine with capacity modulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979152A (ja) * 1995-09-11 1997-03-25 Sanyo Electric Co Ltd スクロール圧縮機
JPH09170573A (ja) * 1995-12-19 1997-06-30 Daikin Ind Ltd スクロール形流体機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478550B2 (en) 1998-06-12 2002-11-12 Daikin Industries, Ltd. Multi-stage capacity-controlled scroll compressor

Also Published As

Publication number Publication date
KR20010022824A (ko) 2001-03-26
EP1004773A1 (en) 2000-05-31
KR100601270B1 (ko) 2006-07-13
CN1272906A (zh) 2000-11-08
EP1004773B1 (en) 2010-12-08
ES2356224T3 (es) 2011-04-06
JPH11351167A (ja) 1999-12-21
JP2974009B1 (ja) 1999-11-08
EP1004773A4 (en) 2004-05-12
CN1094566C (zh) 2002-11-20
DE69943017D1 (de) 2011-01-20

Similar Documents

Publication Publication Date Title
US6478550B2 (en) Multi-stage capacity-controlled scroll compressor
WO1999064744A1 (fr) Compresseur a volute de type a commande de capacite en plusieurs etapes
EP2435707B1 (en) Compressor having capacity modulation or fluid injection systems
US8079228B2 (en) Refrigerant system with multi-speed scroll compressor and economizer circuit
CN101328889B (zh) 具有连续功率调节的涡旋机器
EP0144169A2 (en) Scroll type compressor with displacement adjusting mechanism
US20040184932A1 (en) Economizer/by-pass port inserts to control port size
US6202428B1 (en) Air conditioner
KR20050012636A (ko) 용량 조절식 스크롤 압축기
JP2006258397A (ja) 冷凍装置
EP1983275A1 (en) Refrigerant system with multi-speed scroll compressor and economizer circuit
EP2458217B1 (en) Temperature control through pulse width modulation
CN108361195A (zh) 可变排量涡旋压缩机
JPH0861790A (ja) 空気調和機
WO2021184612A1 (zh) 压缩机、压缩机的运行控制方法和制冷设备
CN111502987B (zh) 容量调节和喷气增焓一体式涡旋压缩机及其系统
JP2007147228A (ja) 冷凍装置
JP3979717B2 (ja) 空気調和装置
CN111981160B (zh) 一种多通阀及热泵系统
JP6915398B2 (ja) 圧縮機
JP2004293896A (ja) 空調装置
JP2009052566A (ja) 圧縮機および冷凍装置
KR20060065801A (ko) 공기조화기
KR20030076355A (ko) 공조 장치
JP2017214829A (ja) スクロール圧縮機及び冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800912.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09462207

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007001426

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999922489

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999922489

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001426

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007001426

Country of ref document: KR