WO1999055654A1 - VERFAHREN ZUR HERSTELLUNG VON GEMISCHEN AUS 1,4-BUTANDIOL, TETRAHYDROFURAN UND η-BUTYROLACTON - Google Patents

VERFAHREN ZUR HERSTELLUNG VON GEMISCHEN AUS 1,4-BUTANDIOL, TETRAHYDROFURAN UND η-BUTYROLACTON Download PDF

Info

Publication number
WO1999055654A1
WO1999055654A1 PCT/EP1999/002685 EP9902685W WO9955654A1 WO 1999055654 A1 WO1999055654 A1 WO 1999055654A1 EP 9902685 W EP9902685 W EP 9902685W WO 9955654 A1 WO9955654 A1 WO 9955654A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
butanediol
alcohol
esterification
absorption
Prior art date
Application number
PCT/EP1999/002685
Other languages
English (en)
French (fr)
Inventor
Rolf Fischer
Gerd Kaibel
Rolf Pinkos
Ralf-Thomas Rahn
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US09/673,847 priority Critical patent/US6433192B1/en
Priority to CA 2329353 priority patent/CA2329353C/en
Priority to JP2000545815A priority patent/JP4555475B2/ja
Priority to DE59906011T priority patent/DE59906011D1/de
Priority to EP19990920726 priority patent/EP1080061B1/de
Publication of WO1999055654A1 publication Critical patent/WO1999055654A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D315/00Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D303/00 - C07D313/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran

Definitions

  • the invention relates to a process for the preparation of mixtures containing 1,4-butanediol, tetrahydrofuran (THF) and ⁇ -butyrolactone (GBL) from the exhaust gas stream of a reactor for the oxidation of butane by a) absorption of maleic anhydride (MSA) with a high-boiling alcohol the exhaust gas stream, b) converting the resulting maleic acid half-ester to maleic acid diester and c) its hydrogenation in the liquid phase
  • MSA maleic anhydride
  • GBL ⁇ -butyrolactone
  • EP-B 0 149 144, EP-B 0 206 194 and EP-B 0 212 121 describe processes for the continuous separation of MSA from gaseous reaction mixtures which are obtained in the catalytic oxidation of hydrocarbons.
  • the gaseous one containing MSA is described Reaction mixture brought into contact with a monohydric alcohol
  • the resulting gaseous substances are countercurrently processed with dicarboxylic acid diesters (EP-B 0 206 194 dibutyl fumaric acid or succinate, EP-B 0 212 121-, fumaric acid, succinic acid or maleic diester, EP-B 0 149 144 Maleic acid dibutyl ester) and the liquid process product is removed from the sump.
  • the liquid process product mainly contains the corresponding mono- and dialkyl esters of maleic acid. These are heated to 110 ° C to 200 ° C to complete the esterification and are then a suitable starting material for hydrogenation to 1,4-butanediol
  • a disadvantage of this process is that, in addition to the alcohol, there is also an additional substance (dicarboxylic acid diester), which is the gaseous substance which is formed from alcohol and MA 2
  • Reaction products transferred into the liquid phase is circulated. This must not be hydrogenated during a hydrogenation, so that only incomplete conversion can be achieved, which means complicated control of the hydrogenation. Furthermore, the dicarboxylic acid dibutyl ester used as the absorbent has to be separated from butanediol in a complicated work-up by distillation.
  • DE-A 31 06 819 also describes a process for the preparation of 1,4-butanediol by catalytic hydrogenation of a mixture which is obtained by treating gaseous reaction mixtures containing MSA with aliphatic alcohols.
  • the MSA is absorbed with mono- or dihydric alcohols with boiling points above 180 ° C. An additional absorbent is not required.
  • the subsequent re-esterification of the absorption discharge takes place at 120 ° C to 150 ° C.
  • the stream containing diester is then catalytically hydrogenated, the space-time yield (0.04 kg butanediol / liter x hour) being low, since the acid number after the esterification is too high.
  • This object is achieved by a process for the preparation of 1,4-butanediol, tetrahydrofuran (THF) and ⁇ -butyrolactone (GBL) by oxidation of butane to a product stream containing maleic anhydride, absorption of maleic anhydride from the product stream with a high-boiling alcohol, a liquid absorption discharge is obtained, the maleic acid and diester as well 3
  • the process according to the invention is then characterized in that the high-boiling alcohol is a polyhydric alcohol with a boiling point at normal pressure of above 233 ° C and the post-esterified discharge has an acid number of less than 30 mg KOH / g and a water content of less than 1% by weight .
  • absorption is understood to mean the separation of MA from a product stream obtained by oxidation of butane with a high-boiling alcohol.
  • a reaction of the MSA with the alcohol takes place to form a maleic acid half ester, which forms the main product of the absorption discharge.
  • MSA absorption in a column or several columns connected in series is preferred.
  • columns come e.g. Bell-bottom columns, packed columns or packed columns are possible, packed columns being preferred. These can be equipped with intercoolers to remove the heat of absorption.
  • the MSA content in the butane oxidation product stream is not critical for the process according to the invention. In common processes, it is in the range of 0.5 to 2% by volume.
  • the temperature of the exhaust gas stream is also generally not critical. In order to avoid caking, this should preferably not be below the thawing and melting temperatures of the individual components, that is to say preferably at least 100 ° C.
  • the by-products that occur during the oxidation of the butane are also not critical for the process. They are either predominantly entrained in the exhaust gas flow or bound during absorption. If they do not react with the esterification alcohol, they are removed during the thermal treatment of the liquid absorption discharge (in part still with the water).
  • Polyhydric alcohols with a boiling point at normal pressure of above 233 ° C., preferably above 250 ° C. are used as alcohols in the process according to the invention.
  • the polyhydric alcohols used are preferably dihydric to dihydric alcohols, particularly preferably dihydric alcohols (diols).
  • dihydric alcohols diols
  • polyethylene glycols, ⁇ , ⁇ -diols and cyclohexanedimethanols such as 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,12-dodecanediol, 1,4-
  • a trihydric alcohol 5 As a trihydric alcohol 5
  • Glycerin as tetravalent alcohol pentaerythritol are used.
  • the alcohols can be used in pure form or as mixtures of different alcohols.
  • the alcohol in relation to MA is used in an up to 30 molar excess, preferably in an up to 15 molar excess, very particularly preferably in an up to 5 molar excess.
  • the MSA and the alcohol first form a maleic acid half-ester. This is high-boiling and therefore no longer volatile at the reaction temperatures.
  • the absorption can be designed in such a way that the esterification of the half ester to the diester already takes place in the apparatus used for the absorption of MA.
  • the half-ester can react with further free alcohol or with another half-ester. If the temperatures are high enough, the water split off in the reaction can be removed with the exhaust gas stream.
  • the liquid discharge contains even larger amounts of half esters, it is preferred to carry out a thermal post-esterification in a residence time vessel and thus to complete the esterification to the diester.
  • the post-esterification can be carried out with or without the addition of an esterification catalyst.
  • esterification catalysts all homogeneous or heterogeneous catalysts known for the esterification of acids can be used as esterification catalysts.
  • Heterogeneous catalysts such as TiO 2 , ZrO 2 , Al 2 O 3 , SiO 2 , silicates, zeolites, heteropolyacids or acidic ion exchangers are preferred.
  • the stream containing monoester is then post-esterified at temperatures of generally 160 ° C. to 300 ° C., preferably 160 ° C. to 250 ° C., particularly preferably 180 ° C. to 240 ° C.
  • the water of reaction is generally removed continuously by distillation.
  • the residence time is usually a maximum of 3 hours, generally between 0, 1 and 3 hours, preferably 0.2 and 2.5 hours, particularly preferably between 0.3 and 2 hours. to 6
  • the free acid content in the esterification discharge is low.
  • the free acid content (measured by titration) before the hydrogenation is below 30 mg KOH / g, preferably below 20 mg KOH / g, particularly preferably below 10 mg KOH / G
  • the hydrogenation can be carried out in the presence of an inert organic solvent, in particular if only small amounts are to be hydrogenated.
  • the esterification output can be diluted with an inert organic solvent, preferably with ethylene glycol dimethyl ether, in order to improve pumpability.
  • an additional solvent is generally dispensed with
  • the hydrogenation is carried out batchwise or continuously in the liquid phase on fixedly arranged or suspended or homogeneous, soluble catalysts.
  • a continuous process is preferred.
  • hydrogenation can be carried out in trickle or bottoms mode, with or without product recirculation.
  • One or more reactors can be operated in series or in parallel For example, the procedure can be such that predominantly the CC double bond of the maleic acid esters is hydrogenated in a first reactor, succinic acid esters being formed and then hydrogenated further in a second reactor to give butanediol, THF and GBL 7
  • Hydrogenation catalysts which can be used in the process according to the invention are generally heterogeneous or homogeneous catalysts suitable for the hydrogenation of carbonyl groups. Heterogeneous catalysts are preferred. Examples of this are described in Houben-Weyl, Methods of Organic Chemistry, Volume IV / lc, pp. 16 to 26, Georg Thieme Verlag, 1980.
  • hydrogenation catalysts preference is given to those which contain at least one element from group Ib, VIb, Vllb and VHIb, and also purple, IVa and Va from the periodic table of the elements, in particular copper, chromium, rhenium, cobalt, rhodium, nickel, palladium, iron, platinum , Indium, tin and antimony.
  • Catalysts containing copper, cobalt, palladium, platinum or rhenium are particularly preferred. From this group, those are particularly preferred which contain copper.
  • An example of the type of catalysts that can be used for the process according to the invention are so-called full catalysts.
  • the catalytically active metals are mostly present without support materials. Examples of this are the so-called Raney catalysts, for example based on Ni, Cu or cobalt.
  • Other examples are Pd black, Pt black, Cu sponge, alloys or mixtures of, for example, Pd / Re, Pt / Re, Pd / Ni, Pd / Co or Pd / Re / Ag.
  • the catalysts used in the process according to the invention can also be so-called precipitation catalysts.
  • Such catalysts can be produced by their catalytically active components from their salt solutions, in particular from their nitrate and / or acetate solutions, for example by adding alkali metal and / or alkaline earth metal hydroxide and / or carbonate solutions, for example as poorly soluble hydroxides, oxide hydrates , basic salts or carbonates.
  • the precipitates obtained are then dried and then by calcination at generally 300 to 700 ° C, preferably 400 to 600 ° C, in the corresponding 8th
  • the catalytically active components can be precipitated in the presence of the support material in question.
  • the catalytically active components can preferably also be precipitated from the relevant salt solutions simultaneously with the support material.
  • Hydrogenation catalysts which contain the metals or metal compounds which catalyze the hydrogenation deposited on a support material are preferably used in the process according to the invention.
  • suitable support materials for the process according to the invention are generally those in which the catalytically hydrogenating components have e.g. have been applied to a carrier material by impregnation.
  • the manner in which the catalytically active metals are applied to the support is generally not critical and can be carried out in various ways.
  • the catalytically active metals can be e.g. by impregnation with solutions or suspensions of the salts or oxides of the relevant elements, drying and subsequent reduction of the metal compounds to the relevant metals or compounds of low oxidation level by means of a reducing agent, preferably with hydrogen or complex hydrides.
  • catalytically active metals Another possibility for applying the catalytically active metals to these supports is to provide the supports with solutions of salts which are easily decomposable thermally, for example with nitrates or complex compounds which are readily decomposable thermally, for example carbonyl 9
  • thermal decomposition of the adsorbed metal compounds to temperatures of 300 to 600 ° C.
  • This thermal decomposition is preferably carried out under a protective gas atmosphere.
  • Suitable protective gases are e.g. Nitrogen, carbon dioxide, hydrogen or the noble gases.
  • the catalytically active metals can be deposited on the catalyst support by vapor deposition or by flame spraying.
  • the content of the supported catalysts in the catalytically active metals is in principle not critical for the success of the process according to the invention. Higher levels of catalytically active metals generally lead to higher space-time conversions than lower levels of these supported catalysts.
  • supported catalysts are used whose content of catalytically active metals is 0.1 to 90% by weight, preferably 0.5 to 40% by weight, based on the total catalyst. Since this content information relates to the entire catalyst including support material, but the different support materials have very different specific weights and specific surfaces, this information can also be exceeded or fallen short of, without this having an adverse effect on the result of the process according to the invention.
  • Several of the catalytically active metals can also be applied to the respective carrier material.
  • the catalytically active metals can be applied to the support, for example by the processes described in DE-A 25 19 817, EP-A 0 147 219 and EP-A 0 285 420.
  • the catalytically active metals are present as an alloy. These are generated, for example, by impregnation with a salt or complex of the aforementioned metals and subsequent thermal treatment and / or reduction. 10
  • Both the precipitation catalysts and the supported catalysts can also be activated in situ at the beginning of the reaction by the hydrogen present, but these catalysts are preferably activated separately before they are used.
  • oxides of aluminum and titanium, zirconium dioxide, silicon dioxide, clays, e.g. Montmorillonite, silicates such as magnesium or aluminum silicates, zeolites such as ZSM-5 or ZSM-10 zeolites, and activated carbon can be used.
  • Preferred carrier materials are aluminum oxides, titanium dioxide, silicon dioxide, zirconium dioxide and activated carbon. Mixtures of different support materials can also serve as supports for the catalysts which can be used in the process according to the invention.
  • heterogeneous catalysts which can be used in the process according to the invention are as follows: cobalt on activated carbon, cobalt on silicon dioxide, cobalt on aluminum oxide, rhenium on activated carbon, rhenium on silicon dioxide, rhenium / tin on activated carbon, rhenium / platinum on activated carbon, copper on activated carbon, copper / Silicon dioxide, copper / aluminum oxide, copper chromite, barium copper chromite, copper / aluminum oxide / manganese oxide, copper / aluminum oxide / zinc oxide and the catalysts according to DE-A 39 32 332, US-A 3 449 445, EP-A 0 044 444, EP-A 0 147 219, DE-A 39 04 083, DE-A 23 21 101, EP-A 0 415 202, DE-A 23 66 264, EP-A 0 552 463 and EP-A 0 100 406.
  • Preferred catalysts contain at least one of the metals copper, manganese, rhenium, cobalt, chromium, palladium, platinum or nickel. Copper, cobalt, palladium, platinum or rhenium are particularly preferred.
  • the content of the individual valuable products in the hydrogenation output 1,4-butanediol, THF and GBL to one another can fluctuate.
  • the following molar ratio of the products to one another may be mentioned by way of example, the sum of the molar proportions of 1,4-butanediol, THF and GBL being 100 mol%: butanediol 50 to 95 mol%, THF 2 to 40 mol%, GBL 0.1 to 20 mol%.
  • the relationship of the valuable products to one another becomes predominant 11
  • the GBL content can be reduced to almost 0 if hydrogenation is carried out at high pressure, low temperature and a long residence time.
  • the THF content can be high if the hydrogenation catalyst has acidic centers.
  • Further products which may or may be contained in the hydrogenation discharge are, for example, water, n-butanol, n-propanol and succinic acid esters and the absorption alcohol.
  • the succinic acid ester can contain both the previously used absorption alcohol and butanediol as the alcohol component.
  • the succinic acid ester can be recycled together with the absorption alcohol.
  • the reaction products can be worked up in a manner familiar to those skilled in the art.
  • Working up by distillation is preferred.
  • the procedure can be such that first low boilers such as THF and any water, butanol or propanol present above the top of a distillation column, and the remaining products butanediol and GBL are then distilled off from the remaining bottom stream.
  • the resulting bottom stream which predominantly contains the absorption alcohol, is then returned to the MSA absorption. If necessary, a small discharge current can be separated.
  • Example 2 Analogously to Example 1, MSA was absorbed with 1,6-hexanediol. 73.5 g of MSA were reacted with 177 g of hexanediol. The post-esterification was carried out at 200 ° C. and 225 ° C. for 1 h. The esterification discharge contained 0.27% by weight of water and had an acid number of 8.3 mg KOH / g. Before the hydrogenation, the mixture was diluted with ethylene glycol dimethyl ether as in Example 1 and hydrogenated as in Example 1, but this time at 220 bar or 110 bar.
  • the colorless hydrogenation product - hexane diol and ethylene glycol dimethyl ether removed - found 85 mol% 1,4-butanediol, 3 mol% THF and approx. 0.2 mol% GBL. The rest consisted mainly of butanol and succinic diesters.
  • Example 2 Analogously to Example 2, MA was reacted with hexanediol, but the esterification was carried out at 150 ° C. for 3 h. The esterification discharge had a water content of 0.2% and an acid number of 49 mg KOH / g. The hydrogenation was carried out at 110 bar as in Example 2. After a short time, the previously colorless hydrogenation output (copper / manganese) turned red-brown and the hydrogenation activity decreased.

Abstract

Verfahren zur Herstellung von 1,4-Butandiol, Tetrahydrofuran und η-Butyrolacton durch Oxidation von Butan zu einem Maleinsäureanhydrid enthaltenden Produktstrom, Absorption von Maleinsäureanhydrid aus dem Produktstrom mit einem hochsiedenden Alkohol, wobei ein flüssiger Absorptionsaustrag erhalten wird, der Maleinsäurehalb-und-diester sowie hochsiedenden Alkohol enthält, Nachveresterung des flüssigen Absorptionsaustrages und anschließende Hydrierung des nachveresterten Austrages in der Flüssigphase, wobei der hochsiedende Alkohol ein mehrwertiger Alkohol mit einem Siedepunkt bei Normaldruck von über 233 °C ist und der nachveresterte Austrag eine Säurezahl von unter 30 mg KOH/g und einen Wassergehalt von unter 1 Gew.-% aufweist.

Description

Verfahren zur Herstellung von Gemischen aus 1,4-Butandiol, Tetrahydrofuran und γ-Butyrolacton
Die Erfindung betrifft ein Verfahren zur Herstellung von Gemischen enthaltend 1,4- Butandiol, Tetrahydrofuran (THF) und γ-Butyrolacton (GBL) aus dem Abgasstrom eines Reaktors zur Oxidation von Butan durch a) Absorption von Maleinsaureanhydrid (MSA) mit einem hochsiedenden Alkohol aus dem Abgasstrom, b) Umsetzung des dabei entstehenden Maleinsaurehalbesters zum Maleinsaurediester und c) dessen Hydrierung in der Flussigphase
Es sind zahlreiche Verfahren zur Umsetzung von MSA zu den entsprechenden Mono- und Diestern und dessen Hydrierung bekannt
In EP-B 0 149 144, EP-B 0 206 194 und EP-B 0 212 121 werden Verfahren zur kontinuierlichen Abscheidung von MSA aus gasformigen Reaktionsgemischen, die man bei der katalytischen Oxidation von Kohlenwasserstoffen erhalt, beschrieben Dabei wird das MSA enthaltende, gasformige Reaktionsgemisch mit einem einwertigen Alkohol in Kontakt gebracht Die dabei anfallenden gasformigen Stoffe werden im Gegenstromverfahren mit Dicarbonsaurendiestern (EP-B 0 206 194 Fumarsaure- oder Bernsteinsauredibutylester, EP-B 0 212 121 Fumarsaure-, Bernsteinsaure- oder Maleinsaurediester, EP-B 0 149 144 Maleinsauredibutylester) in Berührung gebracht, und das flussige Verfahrensprodukt wird dem Sumpf entnommen Das flüssige Verfahrensprodukt enthalt überwiegend die entsprechenden Mono- und Dialkylester der Maleinsäure Diese werden zur Vervollständigung der Veresterung auf 110°C bis 200°C erhitzt und sind danach ein geeignetes Edukt zur Hydrierung zu 1,4-Butandiol
Nachteilig bei diesem Verfahren ist, daß neben dem Alkohol noch ein zusatzlicher Stoff (Dicarbonsaurediester), der die gasformigen, aus Alkohol und MSA entstehenden 2
Reaktionsprodukte in die flüssige Phase überfuhrt, im Kreis geführt wird. Dieser darf bei einer Hydrierung nicht mithydriert werden, so daß immer nur ein unvollständiger Umsatz erreicht werden kann was eine komplizierte Steuerung der Hydrierung bedeutet. Ferner muß bei einer destillativen Aufarbeitung der als Absorptionmittel eingesetzte Dicarbonsäuredibutylester aufwendig von Butandiol abgetrennt werden.
Auch DE-A 31 06 819 beschreibt ein Verfahren zur Herstellung von 1,4-Butandiol durch katalytische Hydrierung eines Gemisches, das man durch Behandlung von MSA enthaltenden gasförmigen Reaktionsgemischen mit aliphatischen Alkoholen erhält. Die Absorp- tion des MSA erfolgt mit ein- oder zweiwertigen Alkoholen mit Siedepunkten über 180°C. Ein zusätzliches Absorptionsmittel ist nicht erforderlich. Die anschließende Nachveresterung des Absorptionsaustrages erfolgt bei 120°C bis 150°C. Der diesterhaltige Strom wird abschließend katalytisch hydriert, wobei die Raum-Zeit- Ausbeute (0,04 kg Butandiol/liter x Stunde) gering ist, da die Säurezahl nach der Nachveresterung zu hoch ist.
Die oben genannten Verfahren sind technisch durchführbar, haben jedoch Nachteile, die zu hohen Herstellkosten führen. Diese Nachteile sind insbesondere eine komplizierte Steuerung der Hydrierung beziehungsweise eine geringe Raum-Zeit-Ausbeute bei der katalytischen Hydrierung.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren bereitzustellen, das möglichst wenig Absorptionsmittel benötigt, bei der katalytischen Hydrierung eine gute Raum-Zeit-Ausbeute mit preiswerten Katalysatoren erreicht und bei der Trennung der Wertprodukte keine aufwendig zu trennenden Stoffgemische bildet.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von 1 ,4-Butandiol, Tetrahydrofuran (THF) und γ-Butyrolacton (GBL) durch Oxidation von Butan zu einem Maleinsaureanhydrid enthaltenden Produktstrom, Absorption von Maleinsaureanhydrid aus dem Produktstrom mit einem hochsiedenden Alkohol, wobei ein flüssiger Absorptionsaustrag erhalten wird, der Maleinsäurehalb- und -diester sowie 3
hochsiedenden Alkohol enthält, Nachveresterung des flüssigen Absorptionsaustrages und anschließende Hydrierung des nachveresterten Austrages in der Flüssigphase. Das erfindungsgemäße Verfahren ist dann dadurch gekennzeichnet, daß der hochsiedende Alkohol ein mehrwertiger Alkohol mit einem Siedepunkt bei Normaldruck von über 233°C ist und der nachveresterte Austrag eine Säurezahl von unter 30 mg KOH/g und einen Wassergehalt von unter 1 Gew.-% aufweist.
Im Kontext der vorliegenden Erfindung ist unter Absorption die Abscheidung von MSA aus einem durch Oxidation von Butan erhaltenen Produktstrom mit einem hochsiedenden Alkohol zu verstehen. Dabei findet eine Reaktion des MSA mit dem Alkohol zu einem Maleinsäurehalbester statt, der das Hauptprodukt des Absorptionsaustrages bildet.
In diesem Verfahren wird durch Zugabe des Veresterungsalkohols bei den herrschenden Reaktionsbedingungen direkt ein flüssiges Verfahrensprodukt erhalten. Der zusätzliche Einsatz eines hochsiedenden Absorptionsmittels wie Dicarbonsäurediester ist nicht notwendig. Dadurch wird eine aufwendige spätere Abtrennung der Wertprodukte vermieden. Die Hydrierung kann aufgrund der niedrigen Säurezahl mit preiswerten Katalysatoren und in guten Ausbeuten mit dem nachveresterten Produkt durchgeführt werden. Dadurch können Kosten eingespart werden.
Durch katalytische Oxidation von Butan oder eines anderen Kohlenwasserstoffs in der Gasphase an einem mit z.B. MoO3 aktivierten Vanadium-Pentoxid-Katalysator erhält man einen MSA und Nebenprodukte wie Kohlendioxid, Essigsäure und Acrylsäure enthaltenden Produktstrom. Im erfindungsgemäßen Verfahren bringt man diesen MSA- enthaltenden, gasförmigen Produktstrom zum Zwecke der MSA-Absorption mit einem hochsiedendem Alkohol in Kontakt. Die Reaktionsgaszufuhr erfolgt bei einer zweckmäßigen Ausführungsform des Verfahrens unterhalb der Oberfläche des flüssigen, hochsiedendem Alkohols, z.B. durch ein Tauchrohr. Bevorzugt ist ein Verfahren, in dem das Reaktionsgemisch direkt von unten in einer Absorptionskolonne eingeleitet wird, wo ihm der flüssige, hochsiedende Alkohol entgegenströmt. Die Arbeitsweise, bei der man 4
die MSA-Absorption in einer Kolonne oder mehreren hintereinander geschalteten Kolonnen durchfuhrt, ist bevorzugt.
Als Kolonnen kommen z.B. Glockenbodenkolonnen, Packungskolonnen oder Füllkörperkolonnen in Frage, dabei werden Füllkörperkolonnen bevorzugt eingesetzt. Diese können mit Zwischenkühlern versehen werden, um die Absorptionswärme abzuführen.
Der Gehalt an MSA im Produktstrom der Butanoxidation ist für das erfindungsgemäße Verfahren nicht kritisch. Bei gängigen Verfahren liegt er im Bereich von 0,5 bis 2 Vol- %. Auch die Temperatur des Abgasstroms ist im allgemeinen nicht kritisch. Diese sollte, um Verbackungen zu vermeiden, möglichst nicht unterhalb der Tau- und Schmelztemperaturen der einzelnen Komponenten liegen, also vorzugsweise mindestens 100°C betragen.
Die bei der Oxidation des Butans auftretenden Nebenprodukte wie CO2, Essigsäure, Acrylsäure sind für das Verfahren ebenfalls nicht kritisch. Sie werden entweder überwiegend mit dem Abgasstrom mitgerissen oder bei der Absorption gebunden. Sofern sie nicht mit dem Veresterungsalkohol reagieren, werden sie bei der thermischen Behandlung des flüssigen Absorptionsaustrages (zum Teil noch mit dem Wasser) entfernt.
Als Alkohole werden im erfindungsgemäßen Verfahren mehrwertige Alkohole mit einem Siedepunkt bei Normaldruck von über 233°C, bevorzugt von über 250°C eingesetzt. Als mehrwertige Alkohole werden dabei bevorzugt 2- bis 4-wertige Alkohole, besonders bevorzugt 2-wertige Alkohle (Diole) eingesetzt. Beispielsweise werden Polyethylenglykole, α,ω-Diole und Cyclohexandimethanole, wie 1,5-Pentandiol, 1,6- Hexandiol, 1,7-Heptandiol, 1,8-Octandiol, 1,12-Dodecandiol, 1,4-
Cyclohexandimethanol, 1,3-Cyclohexandimethanol, Trimethylolpropan, Neopentylglykol, Triethylenglykol, Tetraethylenglykol, Pentaethylenglykol, ganz besonders bevorzugt 1,6- Hexandiol und 1,4-Cyclohexan-dimethanol eingesetzt. Als 3-wertiger Alkohol kann 5
Glycerin, als 4-wertiger Alkohol Pentaerythrit zum Einsatz kommen. Die Alkohole können in reiner Form oder als Gemische verschiedener Alkohole eingesetzt werden.
Im allgemeinen wird der Alkohol im Verhältnis zu MSA in einem bis zu 30-molaren Überschuß, bevorzugt in einem bis zu 15-molaren Überschuß, ganz besonders bevorzugt in einem bis zu 5-molaren Überschuß eingesetzt.
Bei der Absorption entsteht aus dem MSA und dem Alkohol zuerst ein Maleinsäurehalbester. Dieser ist schwersiedend und bei den Reaktionstemperaturen somit nicht mehr flüchtig. Die Absorption kann so gestaltet werden, daß in der zur Absorption von MSA verwendeten Apparatur bereits die Nachveresterung des Halbesters zum Diester erfolgt. Dabei kann der Halbester mit weiterem freien Alkohol oder mit einem anderen Halbester reagieren. Das bei der Reaktion abgespaltene Wasser kann, sofern die Temperaturen hoch genug sind, mit dem Abgasstrom entfernt werden.
Enthält der flüssige Austrag noch größere Mengen Halbester, so ist es bevorzugt, eine thermische Nachveresterung in einem Verweilzeitgefäß durchzuführen und so die Veresterung zum Diester zu vervollständigen. Die Nachveresterung kann mit oder ohne Zugabe eines Veresterungskatalysators erfolgen.
Als Veresterungskatalysatoren können prinzipiell alle zur Veresterung von Säuren bekannten homogenen oder heterogenen Katalysatoren eingesetzt werden. Dabei sind heterogene Katalysatoren wie TiO2, ZrO2, Al2O3, SiO2, Silikate, Zeolithe, Heteropolysäuren, oder saure Ionenaustauscher bevorzugt.
Besonders bevorzugt wird ohne Katalysator, rein thermisch, verestert. Der Monoester enthaltende Strom wird dann bei Temperaturen von im allgemeinen 160°C bis 300°C, bevorzugt 160°C bis 250°C, besonders bevorzugt 180°C bis 240°C nachverestert. Das Reaktionswasser wird im allgemeinen kontinuierlich destillativ entfernt. Die Verweilzeit beträgt üblicherweise maximal 3 Stunden, im allgemeinen zwischen 0, 1 und 3 Stunden, bevorzugt 0,2 und 2,5 Stunden, besonders bevorzugt zwischen 0,3 und 2 Stunden. Zur 6
Abtrennung des Reaktionswassers ist es auch möglich, die Nachveresterung in einer Strippkolonne durchzuführen und das als Wasserdampf freiwerdende Wasser durch Strippgas zu entfernen Es ist weiterhin möglich, Vakuum anzulegen, um das Reaktionswasser leichter abzutrennen Ferner ist es möglich, Schleppmittel für Wasser, wie aromatische Kohlenwasserstoffe, zuzusetzen Der Wassergehalt nach der Veresterung liegt unter 1 Gew -%, bevorzugt unter 0,5%, besonders bevorzugt unter 0,2%
Aufgrund der Wahl der Veresterungsbedingungen ist der Gehalt an freien Sauren im Veresterungsaustrag gering Der Gehalt an freien Sauren (gemessen durch Titration) liegt vor der Hydrierung unter 30 mg KOH/g, bevorzugt unter 20 mg KOH/g, besonders bevorzugt unter 10 mg KOH/g
Die Hydrierung kann in Gegenwart eines inerten organischen Losungsmittels erfolgen, insbesondere wenn nur kleine Mengen hydriert werden sollen Beispielsweise kann der Veresterungsaustrag zur besseren Pumpbarkeit mit einem inerten organischen Losungsmittel, bevorzugt mit Ethylenglykoldimethylether, verdünnt werden Bei der technischen Umsetzung verzichtet man im allgemeinen auf ein zusatzliches Losungsmittel
Die Hydrierung erfolgt diskontinuierlich oder kontinuierlich in der Flussigphase an fest angeordneten oder suspendierten oder homogen, loslichen Katalysatoren Bevorzugt ist eine kontinuierliche Durchführung Bei fest angeordneten Katalysatoren kann in Rieseloder Sumpffahrweise, mit oder ohne Produktruckführung hydriert werden Es können ein oder mehrere Reaktoren hintereinander oder parallel betrieben werden Beispielsweise kann so gearbeitet werden, daß in einem ersten Reaktor überwiegend die C-C-Doppelbindung der Maleinsaureester hydriert wird, wobei Bernsteinsaureester entstehen und anschließend in einem zweiten Reaktor zu Butandiol, THF und GBL weiterhydriert wird 7
Es wird bei Temperaturen im allgemeinen zwischen 70°C und 350°C, bevorzugt zwischen 80°C und 300°C, besonders bevorzugt zwischen 80°C und 260°C und bei Drucken im allgemeinen zwischen 20 bar und 350 bar, bevorzugt zwischen 40 bar und 320 bar, besonders bevorzugt zwischen 60 bar und 300 bar hydriert. Als Hydrierkatalysatoren können im erfindungsgemäßen Verfahren im allgemeinen heterogene oder homogene zur Hydrierung von Carbonylgruppen geeignete Katalysatoren eingesetzt werden. Bevorzugt sind heterogene Katalysatoren. Beispiele hierfür sind in Houben-Weyl, Methoden der Organischen Chemie, Band IV/lc, S. 16 bis 26, Georg Thieme Verlag, 1980 beschrieben.
Von diesen Hydrierkatalysatoren sind solche bevorzugt, die mindestens ein Element der Gruppe Ib, VIb, Vllb und VHIb, sowie lila, IVa und Va des Periodensystems der Elemente, insbesondere Kupfer, Chrom, Rhenium, Kobalt, Rhodium, Nickel, Palladium, Eisen, Platin, Indium, Zinn und Antimon enthalten. Besonders bevorzugt sind Katalysatoren, die Kupfer, Kobalt, Palladium, Platin oder Rhenium enthalten. Aus dieser Gruppe sind solche ganz besonders bevorzugt, die Kupfer enthalten.
Ein Beispiel für die Art der Katalysatoren, die für das erfindungsgemäße Verfahren eingesetzt werden können, sind sog. Vollkatalysatoren. Dabei sind die katalytisch wirkenden Metalle ganz überwiegend ohne Trägermaterialien vorhanden. Beispiele hierzu sind die sog. Raney-Katalysatoren, z.B. auf Basis Ni, Cu oder Kobalt. Andere Beispiele sind Pd-Schwarz, Pt-Schwarz, Cu-Schwamm, Legierungen oder Mischungen aus z.B. Pd/Re, Pt/Re, Pd/Ni, Pd/Co oder Pd/Re/Ag. Die im erfindungsgemäßen Verfahren eingesetzten Katalysatoren können auch sogenannte Fällungskatalysatoren sein. Solche Katalysatoren können hergestellt werden, indem man ihre katalytisch aktiven Komponenten aus deren Salzlösungen, insbesondere aus deren Nitrat- und/oder Acetatlösungen, beispielsweise durch Zugabe von Alkalimetall- und/oder Erdalkalimetallhydroxid- und/oder Carbonat-Lösungen, z.B. als schwerlösliche Hydroxyde, Oxydhydrate, basische Salze oder Carbonate ausfällt. Die erhaltenen Niederschläge werden anschließend getrocknet und dann durch Calcinierung bei im allgemeinen 300 bis 700 °C, bevorzugt 400 bis 600 °C, in die entsprechenden 8
Oxide, Mischoxide und/oder gemischtvalentigen Oxide umgewandelt. Diese werden durch eine Behandlung mit Wasserstoff oder mit Wasserstoff enthaltenden Gasen bei in der Regel 50 bis 700 °C, bevorzugt 100 bis 400 °C zu den betreffenden Metallen und/oder oxidischen Verbindungen niederer Oxidationsstufe reduziert und in die eigentliche, katalytisch aktive Form überführt. Dabei wird in der Regel so lange reduziert, bis kein Wasser mehr gebildet wird.
Bei der Herstellung von Fällungskatalysatoren, die ein Trägermaterial enthalten, kann die Fällung der katalytisch aktiven Komponenten in Gegenwart des betreffenden Trägermaterials erfolgen. Die katalytisch aktiven Komponenten können bevorzugt auch gleichzeitig mit dem Trägermaterial aus den betreffenden Salzlösungen gefällt werden.
Bevorzugt werden im erfindungsgemäßen Verfahren Hydrierkatalysatoren eingesetzt, welche die die Hydrierung katalysierenden Metalle oder Metallverbindungen auf einem Trägermaterial abgeschieden enthalten. Außer den oben genannten Fällungskatalysatoren, die außer den katalytisch aktiven Komponenten zusätzlich ein Trägermaterial enthalten, eignen sich für das erfindungsgemäße Verfahren im allgemeinen solche Trägermaterialien, bei denen die katalytisch-hydrierend wirkenden Komponenten z.B. durch Imprägnierung auf ein Trägermaterial aufgebracht worden sind.
Die Art der Aufbringung der katalytisch aktiven Metalle auf den Träger ist in der Regel nicht kritisch und kann auf verschiedene Art und Weise durchgeführt werden. Die katalytisch aktiven Metalle können auf diesen Trägermaterialien z.B. durch Tränkung mit Lösungen oder Suspensionen der Salze oder Oxide der betreffenden Elemente, Trocknung und anschließende Reduktion der Metallverbindungen zu den betreffenden Metallen oder Verbindungen niederer Oxidationsstufe mittels eines Reduktionsmittels, bevorzugt mit Wasserstoff oder komplexen Hydriden, aufgebracht werden.
Eine andere Möglichkeit zur Aufbringung der katalytisch aktiven Metalle auf diese Träger besteht darin, die Träger mit Lösungen thermisch leicht zersetzbarer Salze, z.B. mit Nitraten oder thermisch leicht zersetzbaren Komplexverbindungen, z.B. Carbonyl- 9
oder Hydrido-Komplexen der katalytisch aktiven Metalle, zu imprägnieren und den so getränkten Träger zwecks thermischer Zersetzung der adsorbierten Metallverbindungen auf Temperaturen von 300 bis 600 °C zu erhitzen. Diese thermische Zersetzung wird bevorzugt unter einer Schutzgasatmosphäre vorgenommen. Geeignete Schutzgase sind z.B. Stickstoff, Kohlendioxid, Wasserstoff oder die Edelgase.
Weiterhin können die katalytisch aktiven Metalle auf dem Katalysatorträger durch Aufdampfen oder durch Flammspritzen abgeschieden werden.
Der Gehalt der katalytisch aktiven Metalle an den Trägerkatalysatoren ist prinzipiell für das Gelingen des erfindungsgemäßen Verfahrens nicht kritisch. Höhere Gehalte an katalytisch aktiven Metallen fuhren diese Trägerkatalysatoren im allgemeinen zu höheren Raum-Zeit-Umsätzen als niedrigere Gehalte.
Im allgemeinen werden Trägerkatalysatoren verwendet, deren Gehalt an katalytisch aktiven Metallen 0,1 bis 90 Gew.-%, bevorzugt 0,5 bis 40 Gew.-%, bezogen auf den gesamten Katalysator, beträgt. Da sich diese Gehaltsangaben auf den gesamten Katalysator inklusive Trägermaterial beziehen, die unterschiedlichen Trägermaterialien jedoch sehr unterschiedliche spezifische Gewichte und spezifische Oberflächen haben, können diese Angaben aber auch unter- oder überschritten werden, ohne daß sich dies nachteilig auf das Ergebnis des erfindungsgemäßen Verfahrens auswirkt. Es können auch mehrere der katalytisch aktiven Metalle auf dem jeweiligen Trägermaterial aufgebracht sein.
Weiterhin können die katalytisch aktiven Metalle beispielsweise nach den in DE-A 25 19 817, EP-A 0 147 219 und EP-A 0 285 420 beschriebenen Verfahren auf den Träger aufgebracht werden. In den Katalysatoren gemäß den vorgenannten Schriften liegen die katalytisch aktiven Metalle als Legierung vor. Diese werden der z.B. durch Tränkung mit einem Salz oder Komplex der zuvor genannten Metalle und anschließende thermische Behandlung und/oder Reduktion erzeugt. 10
Sowohl die Aktivierung der Fällungskatalysatoren als auch der Trägerkatalysatoren kann auch in situ zu Beginn der Reaktion durch den anwesenden Wasserstoff erfolgen, bevorzugt werden diese Katalysatoren jedoch vor ihrer Verwendung separat aktiviert.
Als Trägermaterialien können im allgemeinen die Oxide des Aluminiums und Titans, Zirkoniumdioxid, Siliciumdioxid, Tonerden, z.B. Montmorillonite, Silikate wie Magnesiumoder Aluminiumsilikate, Zeolithe wie ZSM-5 -oder ZSM-10-Zeolithe, sowie Aktivkohle verwendet werden. Bevorzugte Trägermaterialien sind Aluminiumoxide, Titandioxide, Siliciumdioxid, Zirkoniumdioxid und Aktivkohle. Es können auch Mischungen verschiedener Trägermaterialien als Träger für die im erfindungsgemäßen Verfahren anwendbaren Katalysatoren dienen.
Für im erfindungsgemäßen Verfahren einsetzbare Heterogenkatalysatoren seien die folgenden beispielhaft genannt: Kobalt auf Aktivkohle, Kobalt auf Siliciumdioxid, Kobalt auf Aluminiumoxid, Rhenium auf Aktivkohle, Rhenium auf Siliciumdioxid, Rhenium/Zinn auf Aktivkohle, Rhenium/Platin auf Aktivkohle, Kupfer auf Aktivkohle, Kupfer/Siliciumdioxid, Kupfer/Aluminiumoxid, Kupferchromit, Bariumkupferchromit, Kupfer/Aluminiumoxid/Manganoxid, Kupfer/Aluminiumoxid/Zinkoxid sowie die Katalysatoren gemäß DE-A 39 32 332, US-A 3 449 445, EP-A 0 044 444, EP-A 0 147 219, DE-A 39 04 083, DE-A 23 21 101, EP-A 0 415 202, DE-A 23 66 264, EP-A 0 552 463 und EP-A 0 100 406.
Bevorzugte Katalysatoren enthalten mindestens eines der Metalle Kupfer, Mangan, Rhenium, Kobalt, Chrom, Palladium, Platin oder Nickel. Besonders bevorzugt sind Kupfer, Kobalt, Palladium, Platin oder Rhenium.
Der Gehalt an den einzelnen Wertprodukten im Hydrieraustrag 1,4-Butandiol, THF und GBL zueinander kann schwanken. Beispielhaft sei folgendes molare Verhältnis der Produkte zueinander genannt, wobei die Summe der molaren Anteile von 1,4-Butandiol, THF und GBL 100 mol-% beträgt: Butandiol 50 bis 95 mol-%, THF 2 bis 40 mol.-%, GBL 0,1 bis 20 mol.-%. Das Verhältnis der Wertprodukte zueinander wird vorwiegend 11
bei der Hydrierung durch die Parameter Druck, Temperatur, Verweilzeit und Katalysator bestimmt. So kann der Gehalt an GBL beispielsweise fast auf 0 abgesenkt werden, wenn bei hohem Druck, niedriger Temperatur und langer Verweilzeit hydriert wird. Der Gehalt an THF kann hoch sein, wenn der Hydrierkatalysator saure Zentren aufweist.
Weitere Produkte, die im Hydrieraustrag enthalten sein können bzw. enhalten sind, sind beispielsweise Wasser, n-Butanol, n-Propanol und Bernsteinsäureester sowie der Absorptionsalkohol. Der Bernsteinsäureester kann dabei als Alkoholkomponente sowohl den zuvor eingesetzten Absorptionsalkohol als auch auch Butandiol enthalten. Der Bernsteinsäureester kann zusammen mit dem Absorptionsalkohol zurückgeführt werden.
Die Aufarbeitung der Reaktionsprodukte kann in einer für den Fachmann geläufigen Weise erfolgen. Bevorzugt ist eine destillative Aufarbeitung. Dabei kann beispielsweise so vorgegangen werden, daß zuerst Leichtsieder wie THF und eventuell vorhandenes Wasser, Butanol oder Propanol über dem Kopf einer Destillationskolonne, und die verbleibenden Produkte Butandiol und GBL dann vom zurückbleibenden Sumpfstrom abdestilliert werden. Der resultierende Sumpfstrom der ganz überwiegend den Absorptionsalkohol enthält, wird anschließend wieder in die MSA-Absorption zurückgeführt. Gegebenenfalls kann dabei ein kleiner Ausschleusestrom abgetrennt werden.
Die folgenden Beispiele erläutern die Erfindung zusätzlich.
Beispiel 1:
Ein Abgasstrom einer n-Butanoxidation, der aus ca. 1 Vol.-% MSA und 99 Vol.-% Luft bestand, wurde mit einer Temperatur von 100°C in den unteren Teil einer Füllkörperkolonne geleitet, die ca. 25 theoretische Trennstufen aufwies und mit Zwischenkühlern versehen war, um die Absorptionswärme abzuführen. Die Zwischenkühler wurden auf einer Temperatur von ca. 65°C gehalten. Auf den Kopf der Kolonne wurde 70°C warmes 1,4-Cyclohexandimethanol gepumpt. Am Kopf der 12
Kolonne stellte sich eine Temperatur von 87°C ein, am Sumpf der Kolonne eine Temperatur von 105°C.
Insgesamt wurden ca. 25 g MSA durch 144 g 1,4-Cyclohexandimethanol gebunden. Der Austrag der Absorption wurde anschließend in einem Verweilzeitgefäß 2,5 h auf 200°C und noch 30 Minuten auf 225°C erhitzt. Dabei wurde das Veresterungswasser abdestilliert. Der Austrag enthielt danach 0,19 Gew.-% Wasser und die Säurezahl lag bei 19,1 mg KOH/g. Der Austrag wurde zur besseren Pumpbarkeit mit der gleichen Menge Ethylenglycoldimethylether verdünnt und an 25 ml eines Cu-Katalysators der Süd- Chemie AG-München (T 4489) bei 220°C und 220 bar kontinuierlich hydriert (ca. 20 g Zulauf/h, Rohrreaktor, Rieselfahrweise ohne Produktrückführung).
Im farblosen Hydrieraustrag fanden sich - Cyclohexandimethanol und Ethylenglycoldimethylether herausgerechnet - 70 mol-% 1 ,4-Butandiol, 10 mol-% THF und unter 1 mol-% GBL. Der Rest bestand überwiegend aus n-Butanol und Bernsteinsäurediester. Der Austrag wurde destillativ aufgearbeitet, wobei THF, Butanol, Ethylenglycoldimethylether, GBL und 1,4-Butandiol abdestilliert wurden. Im Sumpf verblieben überwiegend Cyclohexandimethanol und Bernsteinsäurediester.
Beispiel 2:
Analog Beispiel 1 wurde MSA mit 1,6-Hexandiol absorbiert. Dabei wurden 73,5 g MSA mit 177 g Hexandiol umgesetzt. Die Nachveresterung wurde 1 h bei 200°C und 225°C vorgenommen. Der Veresterungsaustrag enthielt 0,27 Gew.-% Wasser und wies eine Säurezahl von 8,3 mg KOH/g auf. Vor der Hydrierung wurde wie in Beispiel 1 mit Ethylenglycoldimethylether verdünnt und wie in Beispiel 1 hydriert, allerdings diesmal bei 220 bar bzw. 110 bar. Bei 220 bar fanden sich im farblosen Hydrieraustrag - Hexandiol und Ethylenglycoldimethylether herausgerechnet - 85 mol-% 1,4-Butandiol, 3 mol-% THF und ca. 0,2 mol-% GBL. Der Rest bestand überwiegend aus Butanol und Bernsteinsäurediester. Bei 110 bar fanden sich im farblosen Hydrieraustrag - Hexandiol und Ethylenglycoldimethylether herausgerechnet - 68 mol-% 1,4-Butandiol, 2 mol-% THF 13
und 8 mol-% GBL. Der Rest bestand überwiegend aus Butanol und Bernsteinsäurediester.
Vergleichsbeispiel VI (DE-A 31 06 819)
Analog Beispiel 2 wurde MSA mit Hexandiol umgesetzt, die Veresterung aber 3 h bei 150°C durchgeführt. Der Veresterungsaustrag wies einen Wassergehalt von 0,2 % und eine Säurezahl von 49 mg KOH/g auf. Die Hydrierung wurde bei 110 bar wie in Beispiel 2 durchgeführt. Bereits nach kurzer Zeit verfärbte sich der zuvor farblose Hydrieraustrag (Kupfer/Mangan) rotbraun und die Hydrieraktivität sank ab.

Claims

14Patentansprüche
1. Verfahren zur Herstellung von 1,4-Butandiol, Tetrahydrofuran und γ-
Butyrolacton durch Oxidation von Butan zu einem Maleinsaureanhydrid enthaltenden Produktstrom, Absorption von Maleinsaureanhydrid aus dem Produktstrom mit einem hochsiedenden Alkohol, wobei ein flüssiger Absorptionsaustrag erhalten wird, der Maleinsäurehalb- und -diester sowie hochsiedenden Alkohol enthält, Nachveresterung des flüssigen
Absorptionsaustrages und anschließende Hydrierung des nachveresterten Austrages in der Flüssigphase, dadurch gekennzeichnet, daß der hochsiedende Alkohol ein mehrwertiger Alkohol mit einem Siedepunkt bei Normaldruck von über 233°C ist und der nachveresterte Austrag eine Säurezahl von unter 30 mg KOH/g und einen Wassergehalt von unter 1 Gew.-% aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Alkohol 1,6- Hexandiol oder 1,4-Cyclohexandimethanol eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die
Nachveresterung in der zur Absorption von Maleinsaureanhydrid verwendeten Apparatur durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Temperaturen von 160°C bis 300°C nachverestert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Nachveresterung bei einer Verweilzeit von maximal 3 Stunden erfolgt. 15
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Hydrierung bei Temperaturen zwischen 70°C und 350°C und bei einem Druck von 20 bis 350 bar durchgeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die
Hydrierung in Gegenwart eines Katalysators durchgeführt wird, der mindestens ein Element der Gruppe Ib, VIb, Vllb, Vlllb des Periodensystems der Elemente enthält.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Hydrierkatalysator Kupfer enthält.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Gehalt der einzelnen Wertprodukte im Hydrieraustrag 1,4-Butandiol, Tetrahydrofuran und γ-Butyrolacton zueinander 50 bis 95 mol-% 1,4-Butandiol,
2 bis 40 mol-% Tetrahydrofuran und 0, 1 bis 20 mol-% γ-Butyrolacton beträgt, wobei die Summe der molaren Anteile von 1,4-Butandiol, Tetrahydrof ran und γ- Butyrolacton 100 mol-% beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der hochsiedende Alkohol nach der Hydrierung wieder zur Absorption zurückgeführt wird.
PCT/EP1999/002685 1998-04-23 1999-04-21 VERFAHREN ZUR HERSTELLUNG VON GEMISCHEN AUS 1,4-BUTANDIOL, TETRAHYDROFURAN UND η-BUTYROLACTON WO1999055654A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/673,847 US6433192B1 (en) 1998-04-23 1999-04-21 Method for producing mixtures of 1,4-butanediol, tetrahydrofuran and γ-butyrolactone
CA 2329353 CA2329353C (en) 1998-04-23 1999-04-21 Method for producing mixtures of 1,4-butanediol, tetrahydrofuran and .gamma.-butyrolactone
JP2000545815A JP4555475B2 (ja) 1998-04-23 1999-04-21 1,4−ブタンジオール、テトラヒドロフランおよびγ−ブチロラクトンの混合物の製造方法
DE59906011T DE59906011D1 (de) 1998-04-23 1999-04-21 Verfahren zur herstellung von gemischen aus 1,4-butandiol, tetrahydrofuran und gamma-butyrolacton
EP19990920726 EP1080061B1 (de) 1998-04-23 1999-04-21 Verfahren zur herstellung von gemischen aus 1,4-butandiol, tetrahydrofuran und gamma-butyrolacton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19818340.2 1998-04-23
DE1998118340 DE19818340A1 (de) 1998-04-23 1998-04-23 Verfahren zur Herstellung von Gemischen aus 1,4-Butandiol, Tetrahydrofuran und gamma-Butyrolacton

Publications (1)

Publication Number Publication Date
WO1999055654A1 true WO1999055654A1 (de) 1999-11-04

Family

ID=7865668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002685 WO1999055654A1 (de) 1998-04-23 1999-04-21 VERFAHREN ZUR HERSTELLUNG VON GEMISCHEN AUS 1,4-BUTANDIOL, TETRAHYDROFURAN UND η-BUTYROLACTON

Country Status (10)

Country Link
US (1) US6433192B1 (de)
EP (1) EP1080061B1 (de)
JP (1) JP4555475B2 (de)
KR (1) KR100552358B1 (de)
CN (1) CN1139563C (de)
CA (1) CA2329353C (de)
DE (2) DE19818340A1 (de)
MY (1) MY118568A (de)
TW (1) TW518320B (de)
WO (1) WO1999055654A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846985B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8981130B2 (en) 2011-12-30 2015-03-17 E I Du Pont De Nemours And Company Process for the production of hexanediols
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490838B1 (ko) * 2002-08-30 2005-05-19 주식회사 엘지화학 귀금속 촉매를 이용한 감마부티로락톤의 제조방법
GB0325526D0 (en) 2003-10-31 2003-12-03 Davy Process Techn Ltd Process
IN2014MN01013A (de) 2011-11-25 2015-07-03 Conser Spa
US20130296585A1 (en) 2012-03-30 2013-11-07 Basf Corporation Catalyst For Tetrahydrofuran Synthesis
US8859810B2 (en) * 2012-08-21 2014-10-14 Celanese International Corporation Process for recovering permanganate reducing compounds from an acetic acid production process
CN103861616B (zh) * 2014-02-24 2016-03-09 万华化学集团股份有限公司 一种催化剂、其制备方法及采用该催化剂联产制备1,4-丁二醇、γ-丁内酯和四氢呋喃的方法
CN111018669B (zh) * 2018-10-09 2022-10-04 中国石油化工股份有限公司 一种1,4-丁二醇连续化制备方法
KR20230156824A (ko) 2021-03-12 2023-11-14 꼰세르 엣세.삐.아. 2개의 스테이지들에서 디알킬 말리에이트를 수소화함으로써 디알킬 숙시네이트 및 1,4-부탄디올의 공생산을 위한 공정

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106819A1 (de) * 1981-02-24 1982-09-09 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von 1,4-butandiol

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346134A1 (de) 1983-12-21 1985-07-04 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen abscheidung von maleinsaeureanhydrid aus gasfoermigen reaktionsgemischen
DE3521768A1 (de) 1985-06-19 1987-01-02 Basf Ag Verfahren zur kontinuierlichen abscheidung von maleinsaeureanhydrid aus gasfoermigen reaktionsgemischen
DE3521769A1 (de) 1985-06-19 1987-01-08 Basf Ag Verfahren zur kontinuierlichen abscheidung von maleinsaeureanhydrid aus gasfoermigen reaktionsgemischen
DE3870543D1 (de) * 1987-08-08 1992-06-04 Basf Ag Verfahren zur herstellung von 1,4-butandiol und/oder tetrahydrofuran.
DE4009029A1 (de) * 1990-03-21 1991-09-26 Basf Ag Verfahren zur herstellung von 1,4-butandiol
DE4431220A1 (de) * 1994-09-02 1996-03-07 Bayer Ag Verfahren zur Herstellung von Butandiol-1,4 aus Maleinsäureanhydrid
ZA973972B (en) * 1996-05-14 1998-03-23 Kvaerner Process Tech Ltd A process for the production of at least one C4 compound selected from butane-1,4-diol, gamma-butyrolactone and tetrahydrofuran.
US5981810A (en) * 1997-06-16 1999-11-09 Mitsubishi Chemical Corporation Process for preparing 1,4-butanediol
GB9724004D0 (en) * 1997-11-13 1998-10-21 Kvaerner Process Tech Ltd Process
GB9724195D0 (en) * 1997-11-14 1998-01-14 Kvaerner Process Tech Ltd Process
IT1298096B1 (it) * 1998-01-09 1999-12-20 Lonza Spa Procedimento per la produzione di gamma-butirrolattone
ES2158645T3 (es) * 1998-03-23 2001-09-01 Basf Ag Procedimiento para la preparacion de 1,4-butanodiol, butirolactona y tetrahidrofurano.
DE19818248A1 (de) * 1998-04-23 1999-10-28 Basf Ag Verfahren zur Herstellung von 1,4-Butandiol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106819A1 (de) * 1981-02-24 1982-09-09 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von 1,4-butandiol

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889912B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8865940B2 (en) 2011-12-30 2014-10-21 E I Du Pont De Nemours And Company Process for preparing 1,6-hexanediol
US8884036B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of hydroxymethylfurfural from levoglucosenone
US8884035B2 (en) 2011-12-30 2014-11-11 E I Du Pont De Nemours And Company Production of tetrahydrofuran-2, 5-dimethanol from isosorbide
US8889922B2 (en) 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8962894B2 (en) 2011-12-30 2015-02-24 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
US8981130B2 (en) 2011-12-30 2015-03-17 E I Du Pont De Nemours And Company Process for the production of hexanediols
US8846984B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of α,ω-diols
US8859826B2 (en) 2012-04-27 2014-10-14 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US8846985B2 (en) 2012-04-27 2014-09-30 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9018423B2 (en) 2012-04-27 2015-04-28 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9181157B2 (en) 2012-04-27 2015-11-10 E I Du Pont De Nemours And Company Production of alpha, omega-diols
US9670118B2 (en) 2012-04-27 2017-06-06 E I Du Pont De Nemours And Company Production of alpha, omega-diols

Also Published As

Publication number Publication date
EP1080061A1 (de) 2001-03-07
JP4555475B2 (ja) 2010-09-29
CN1139563C (zh) 2004-02-25
TW518320B (en) 2003-01-21
JP2002512993A (ja) 2002-05-08
CA2329353A1 (en) 1999-11-04
KR20010042926A (ko) 2001-05-25
US6433192B1 (en) 2002-08-13
DE59906011D1 (de) 2003-07-24
DE19818340A1 (de) 1999-10-28
CA2329353C (en) 2009-03-31
EP1080061B1 (de) 2003-06-18
CN1303362A (zh) 2001-07-11
MY118568A (en) 2004-12-31
KR100552358B1 (ko) 2006-02-20

Similar Documents

Publication Publication Date Title
EP0983219B1 (de) Verfahren zur herstellung von aliphatischen alkoholen
EP1080061B1 (de) Verfahren zur herstellung von gemischen aus 1,4-butandiol, tetrahydrofuran und gamma-butyrolacton
EP2417087B1 (de) Verfahren zur herstellung von 1,6-hexandiol durch hydrierung von oligo- und polyestern
EP0815097B1 (de) Verfahren zur Herstellung von 1,4-Butandiol und Tetrahydrofuran aus Furan
EP1030827B1 (de) Verfahren zur herstellung von 1,6-hexandiol und 6-hydroxycapronsäure bzw. deren estern
EP0883591A1 (de) Verfahren zur herstellung von 1,6-hexandiol und caprolacton
EP1042259A1 (de) Verfahren zur herstellung von 1,6-hexandiol
EP1073620B1 (de) Verfahren zur herstellung von 1,4-butandiol
EP1042260B1 (de) Verfahren zur hydrierung von carbonsäuren oder deren anhydriden oder estern zu alkoholen
WO2002085825A2 (de) Verfahren zur hydrierung von carbonylverbindungen
EP1343743A2 (de) Verfahren zur herstellung von tetrahydrofuran
EP1082282A1 (de) Verfahren zur herstellung von hexandiol
EP1208094B1 (de) Verfahren zur herstellung von gamma-butyrolacton
DE10225929A1 (de) Zweistufiges Verfahren zur Herstellung von Butandiol mit Zwischenabtrennung von Bernsteinsäureanhydrid
WO2021115813A1 (de) Verfahren zur herstellung von 1,4-butandiol, gamma-butyrolacton und tetrahydrofuran in der gasphase unter vermeidung von polymeren ablagerungen
EP2614056B1 (de) Verfahren zur herstellung von epsilon-caprolacton und 1,6-hexandiol
EP2356098A1 (de) Verfahren zur herstellung von tetrahydrofuran
DE10225927A1 (de) Verfahren zur Herstellung von Butandiol durch kombinierte Gasphasen- und Flüssigphasensynthese
DE19647349A1 (de) Verfahren zur Herstellung von 1,6-Hexandiol und Caprolacton

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806678.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2329353

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/010272

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007011746

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999920726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999920726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007011746

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09673847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999920726

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007011746

Country of ref document: KR