WO1999054401A1 - Thermoplastische formmassen - Google Patents

Thermoplastische formmassen Download PDF

Info

Publication number
WO1999054401A1
WO1999054401A1 PCT/EP1999/002318 EP9902318W WO9954401A1 WO 1999054401 A1 WO1999054401 A1 WO 1999054401A1 EP 9902318 W EP9902318 W EP 9902318W WO 9954401 A1 WO9954401 A1 WO 9954401A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
styrene
component
compositions according
Prior art date
Application number
PCT/EP1999/002318
Other languages
English (en)
French (fr)
Inventor
Norbert Güntherberg
Martin Weber
Gerhard Lindenschmidt
Hans Peter Rath
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP99914568A priority Critical patent/EP1086177A1/de
Priority to US09/647,674 priority patent/US6518361B1/en
Priority to AU33334/99A priority patent/AU3333499A/en
Publication of WO1999054401A1 publication Critical patent/WO1999054401A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to thermoplastic molding compositions
  • R 1 and R 2 are hydrogen or C -C 8 alkyl and n is 0, 1, 2 or 3,
  • R 1 and R 2 are hydrogen or -CC 8 alkyl and n is 0, 1, 2 or 3,
  • the invention further relates to the use of these molding compositions for the production of films and moldings, and films and moldings made from these molding compositions, and to a process for the production of the molding compositions.
  • Plastic films have a wide range of uses. They are usually made by calendering or extrusion.
  • EP-A 526 813 discloses thermoplastic molding compositions made from a highly crosslinked acrylate rubber with a graft shell made from methyl ethacrylate or styrene / acrylonitrile, a partially crosslinked acrylate rubber, an ethylene / vinyl acetate copolymer and, if appropriate, a further polymer based on styrene and / or acrylic compounds .
  • a highly crosslinked acrylate rubber with a graft shell made from methyl ethacrylate or styrene / acrylonitrile a partially crosslinked acrylate rubber
  • an ethylene / vinyl acetate copolymer ethylene / vinyl acetate copolymer
  • a further polymer based on styrene and / or acrylic compounds tend to undergo undesirable discoloration.
  • Thermoplastic molding compositions are known from EP-A 708 145 which contain an acrylate rubber with a graft cover made of styrene / acrylonitrile, a styrene-acrylonitrile hard matrix and a hydrogenated copolymer of styrene and butadiene.
  • the films available are very tough and tear-resistant.
  • the flowability of the molding compositions for processing by extrusion is not sufficient in all cases, so that the driving safety of the extrusion and the product quality of the extruded film can be improved.
  • EP-A 693 530 teaches that functionalized polyisobutylene polymers improve the impact resistance of mixtures of polycarbonate and diene or alkyl acrylate graft.
  • polyisobutene also known as polyisobutylene, is also used in thermoplastic plastics in order to improve the dielectric properties of the molding composition.
  • the task was to remedy the disadvantages described at the outset.
  • the object was to provide molding compositions which have good flowability and good extrusion properties and which can be extruded with high driving safety to give films or moldings of constant product quality and at the same time have good, balanced mechanical properties.
  • thermoplastic molding compositions defined at the outset are thermoplastic molding compositions defined at the outset.
  • Component A) is present in the molding compositions according to the invention, based on the sum of components A) to D), in a proportion of 20 to 98, preferably 40 to 90 and particularly preferably 50 to 82% by weight.
  • This component is a particulate graft copolymer which is composed of a rubber-elastic graft core a1) (“soft component”) and a shell a2) grafted thereon (“hard component”).
  • the graft core a1) is present in a proportion of 30 to 90, preferably 40 to 80 and in particular 50 to 75% by weight, based on component A).
  • the graft core a1) is obtained by polymerizing a monomer mixture, based on a1)
  • acrylic acid alkyl esters are ethyl acrylate, 2-ethylhexyl acrylate and especially n-butyl acrylate.
  • Crosslinking monomers al2) are bifunctional or polyfunctional comonomers, for example butadiene and isoprene, divinyl esters of dicarboxylic acids such as succinic acid and adipic acid, diallyl and divinyl ethers of bifunctional alcohols such as ethylene glycol and butane-l, 4-diol, diesters of acrylic acid and Methacrylic acid with the bifunctional alcohols mentioned, 1,4-divinylbenzene and triallyl cyanurate.
  • Particularly preferred are the acrylic acid ester of tricyclodecenyl alcohol, which is known under the name dihydrodicyclopentadienyl acrylate, and the allyl esters of acrylic acid and methacrylic acid.
  • the graft core al) of the molding compositions may also contain other monomers al3) at the expense of the monomers all) and al2), which vary the mechanical and thermal properties of the core within a certain range.
  • monoethylenically unsaturated comonomers are:
  • vinyl aromatic monomers such as styrene, styrene derivatives of the general formula IR 2
  • R 1 and R 2 are hydrogen or Ci-Cs-alkyl and n is 0, 1, 2 or 3;
  • Nitrogen-functional monomers such as dimethylaminoethyl acrylate, diethyla inoethyl acrylate, vinylimidazole, vinylpyrrolidone, vinylcaprolactam, vinylcarbazole, vinylaniline, acrylamide;
  • C ⁇ -C-alkyl esters of methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate and hydroxyethyl acrylate;
  • aromatic and araliphatic esters of acrylic acid and methacrylic acid such as phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, 2-phenylethyl acrylate, 2-phenylethyl methacrylate, 2-phenoxyethyl acrylate and 2-phenoxyethyl methacrylate; unsaturated ethers such as vinyl methyl ether
  • the graft shell a2) is present in a proportion of 10 to 70, preferably 20 to 60 and particularly preferably 25 to 50% by weight, based on component A).
  • the graft shell a2) is obtained by polymerizing a mixture of monomers, based on a2),
  • R n in the R 1 and R 2 are hydrogen or -CC 8 alkyl and n is 0, 1, 2 or 3
  • a22 0 to 50, preferably 0 to 40 and particularly preferably 5 to 35% by weight of at least one monoethylenically unsaturated nitrile compound, and
  • a23 0 to 40, preferably 0 to 20% by weight of one or more further monomers.
  • the styrene compound of the general formula (I) (component a21)) is preferably styrene, .alpha.-methylstyrene and, moreover, styrenes which are core-alkylated with C 1 -C 6 -alkyl, such as p-methylstyrene or tert.-butylstyrene. Styrene is particularly preferred.
  • Suitable monoethylenically unsaturated nitrile compound a22) are acrylonitrile, methacrylonitrile and mixtures thereof, in particular acrylonitrile.
  • the shell a2) can be constructed from further comonomers a23) at the expense of the monomers a21) and a22).
  • component a23) as for component al3), maleic anhydride and N-substituted maleimides such as N-methyl, N-phenyl and N-cyclohexylmaleimide being mentioned as further monomers.
  • the graft shell a2) is preferably composed of styrene, or of a mixture of 65 to 85% by weight of styrene and the rest of acrylonitrile.
  • the graft polymers A) are obtainable in a manner known per se, preferably by emulsion polymerization at 30 to 80 ° C.
  • Suitable emulsifiers for this purpose are, for example, alkali metal salts of alkyl or alkylarylsulfonic acids, alkyl sulfates, fatty alcohol sulfonates, salts of higher fatty acids with 10 to 30 carbon atoms, sulfosuccinates, ether sulfonates or resin soaps.
  • the alkali metal salts of alkyl sulfonates or fatty acids having 10 to 18 carbon atoms are preferably used.
  • Sufficient water is preferably used to prepare the dispersion so that the finished dispersion has a solids content of 20 to 50% by weight.
  • Free radical formers for example peroxides such as peroxosulfates such as potassium peroxodisulfate and azo compounds such as azodiisobutyronitrile, are preferably used as polymerization initiators.
  • peroxides such as peroxosulfates such as potassium peroxodisulfate and azo compounds such as azodiisobutyronitrile
  • redox systems in particular those based on hydroperoxides such as cumene hydroperoxide, can also be used.
  • Molecular weight regulators such as e.g. Use ethylhexylthioglycolate, t-dodecyl mercaptan, terpinols and dimeric ⁇ -methylstyrene.
  • buffer substances such as Na 2 HP0 / NaH 2 P0 4 or sodium bicarbonate can also be used.
  • Emulsifiers, initiators, regulators and buffer substances are used in the usual amounts, so that further details are not necessary.
  • the graft al) can particularly preferably also be prepared by polymerizing the monomers all) to al3) in the presence of a finely divided latex from rubber-elastic or hard polymers (so-called "seed latex procedure" of the polymerization).
  • a finely divided latex from rubber-elastic or hard polymers so-called "seed latex procedure" of the polymerization.
  • the seed latex made of cross-linked poly-n-butyl acrylate or made of polystyrene can be used.
  • the graft core a1) by a process other than that of emulsion polymerization, for example by bulk or solution polymerization, and to subsequently emulsify the polymers obtained.
  • Microsuspension polymerization is also suitable, with preference Oil-soluble initiators such as lauroyl peroxide and t-butyl perpivalate can be used. The procedures for this are known.
  • the graft shell a2) can be produced under the same conditions as the production of the graft core a1), the shell a2) being able to be produced in one or more process steps. For example, you can first polymerize styrene or ⁇ -methylstyrene alone and then styrene and acrylonitrile in two successive steps. Further details for the preparation of the graft polymers A) are described in DE-OS 12 60 135 and 31 49 358.
  • the reaction conditions are preferably matched to one another in a manner known per se so that the particulate graft polymers A have a diameter as uniform as possible dso in the range from 60 to 1500, particularly from 150 to 1000 and very particularly from 200 to 700 nm.
  • thermoplastic compositions according to the invention instead of a uniform graft polymer A), it is also possible to use various of these polymers for the production of the thermoplastic compositions according to the invention, especially those with significantly different particle sizes.
  • Mixtures of this type with a bimodal size distribution offer process engineering advantages in further processing. Suitable particle diameters are in the range from 60 to 200 nm on the one hand and 300 to 1000 nm on the other.
  • a bimodal particle size distribution can be achieved, for example, by partial agglomeration, as described in DE-AS 2 427 960.
  • non-grafted polymers are formed from the monomers a2) during the grafting, these amounts, which are generally below 10% by weight of a2), are assigned to the mass of component A) and not to component B) can be constructed from the same monomers.
  • Component B) of the molding composition according to the invention is present in a proportion of 0.5 to 78.5, preferably 5 to 50 and particularly preferably 10 to 30% by weight, based on the sum of components A) to D).
  • the component B) is a thermoplastic polymer that consists of bl) 50 to 100, preferably 60 to 95 and particularly preferably 65 to 85% by weight of a styrene compound of the general formula I.
  • R 1 and R 2 are hydrogen or -CC 8 alkyl and n is 0, 1, 2 or 3
  • Suitable mono-ethylenically unsaturated nitrile compound b2) are acrylonitrile, methacrylonitrile and mixtures thereof, in particular acrylonitrile.
  • Suitable monomers b3) are those which have been mentioned for components al3) and a23).
  • Molding compositions for the production of films preferably contain 0.5 to 50% by weight of component B, based on the sum of components A) to D).
  • the polymers B which are generally referred to as SAN polymers because of their main components styrene and acrylonitrile, are known and in some cases. also commercially available. They generally have a viscosity number VZ (determined in accordance with DIN 53 726 at 25 ° C., 0.5% by weight in dimethylformamide) of 40 to 160 ml / g, corresponding to an average molecular weight of about 40,000 to 2,000,000. They are obtained in a known manner by bulk, solution, suspension, precipitation or emulsion polymerization. Details of these methods are e.g. in the plastics handbook, ed. R. Vieweg and G. Daumiller, vol. V "Polystyrol", Carl-Hanser-Verlag Kunststoff 1969, pp. 118 ff.
  • cl 30 to 90, preferably 40 to 80 and particularly preferably 45 to 70% by weight of styrene and / or ⁇ -methylstyrene,
  • Component c 3 includes all compounds which can be polymerized anionically, and mixtures thereof, in particular isoprene, alkyl methacrylates such as methyl methacrylate and tert-butyl methacrylate, ⁇ -methyl styrene, dimethyl butadiene, and particularly preferably nucleus-substituted styrenes and 1, 1 -Diphenylethylene.
  • copolymers C) are known in some cases also commercially available (eg Kraton ® by Shell Chemicals and Glissoviscal ® from BASF) and in a conventional manner accessible.
  • the copolymers are preferably prepared by the anionic polymerization method in solution, the main initiators being organometallic compounds, such as, for example, sec-butyllithium.
  • Anionic polymerization as is generally desired, provides polymers which are essentially unbranched. If a mixture of styrene and butadiene is subjected to the polymerization, depending on the chosen copolymerization conditions, polymers with a characteristic distribution of the monomer units are obtained.
  • block copolymers are preferred, one end of which is formed by a block of styrene and the other end of which is formed by a block of butadiene. These blocks can be separated from each other by polymers with a statistical distribution, and the blocks can also contain units of the other monomer in minor amounts. If a mixture of styrene and butadiene is polymerized anionically with one of the initiators mentioned using small amounts of an ether, in particular tetrahydrofuran (THF) as cocatalyst, polymer chains are formed in which there are neither blocks nor a completely statistical distribution of the building blocks, but rather the proportion one component along the chain increases in one direction and the proportion of the other component decreases in the same direction:
  • THF tetrahydrofuran
  • butadiene is preferably incorporated into the resulting chains in addition to a little styrene. They are therefore rich in butadiene.
  • styrene monomers are polymerized to an increasing extent - the chain becomes richer in styrene - until after the complete consumption of the
  • An end segment of butadiene is formed from homo-polystyrene. Details of the process are described in DE-A 31 06 959.
  • Polymers with a star-shaped structure which are obtained by linking several polymer chains, mainly block polymers of the styrene block / butadiene block / styrene block (“three-block polymer”) type, via polyfunctional molecules, are also very suitable.
  • Suitable linking agents are, for example, polyepoxides, for example epoxidized linseed oil, polyisocyanates such as benzo-1,2,4-triisocyanate, polyketones such as 1,3,6-hexantrione and polyanhydrides, also dicarboxylic acid esters such as diethyl adipate, and silicon halides such as SiCl 4 , metal halides such as TiCl and polyvinyl aromatics such as divinylbenzenes. More information about the production of these polymers can be found, for example, in DE-A 26 10 068.
  • polymers C) mentioned can also be copolymerized with other monomers c 3 ), for which the anionically polymerizable compounds mentioned for c3) are suitable.
  • Anhydrous liquids such as alkanes and cycloaliphatic and aromatic hydrocarbons are suitable as solvents for the polymerization of the monomers cl) to c3).
  • Cyclohexane is preferably used.
  • the anionic polymerization is preferably carried out at from -20 to 150.degree.
  • the reaction is stopped in a manner known per se by adding a polar compound such as water or an alcohol.
  • a polar compound such as water or an alcohol.
  • the hydrogenation of the olefinic double bonds still present in the polymer, which originate from butadiene, is also carried out in a manner known per se, preferably in a homogeneous phase with hydrogen by means of a soluble, selectively acting hydrogenation catalyst such as a mixture of nickel (II) acetyl acetonate and aluminum triisobutyl in an inert solvent such as hexane.
  • the hydrogenation temperature is preferably 20 to 200 ° C, and a range of 6 to 30 bar is recommended for the hydrogen pressure.
  • a complete hydrogenation of the non-aromatic double bonds is not necessary, rather a degree of hydrogenation of 95% is sufficient. More information on hydrogenation can be found, for example, in DE-A 31 06 959, already mentioned.
  • the molar mass of which is preferably adjusted to 50,000 to 200,000, in particular 70,000 to 120,000, by varying the polymerization temperature and duration and the monomer amounts, is carried out as usual by removing the hydrogenation catalyst and removing the solvent, e.g. by means of direct degassing.
  • its proportion in component C) is 5 to 30, preferably 7 to 25,% by weight.
  • component D) is a copolymer consisting of
  • dl 50 to 100, preferably 70 to 100 and in particular 80 to 100% by weight of isobutene, and
  • Isobutene is also called isobutylene.
  • Possible comonomers d2) are: butene, styrene and styrene compounds of the general formula I, such as ⁇ -methylstyrene, isoprene, indene, butadiene, cyclopentadiene, and also vinyl- and vinylidene-terminated olefins and “internal olefins” with 3 to 14 C.
  • Atoms such as 2-methylpentene-2 and 2-methylpentene-1, 2,4,4-trimethylpentene-2 and 2,4,4-trimethylpentene-1, ice and trans-butene-2,1-butene, 1-hexene, 1-octene and 1-decene.
  • the polymers D) are usually referred to according to their main component isobutene (isobutylene) as polyisobutene (polyisobutylene) PIB. They are usually at room temperature structure, depending on the molecular weight, viscous-oily (average molecular weight M N about 300 to 600), oily-very sticky (M N about 700 to 2000), viscous-sticky (M N about 2000 to 10000), viscous-little sticky (M N about 10000 to 120000) to raw rubber-like rubber-elastic (M N about 300000 to 2500000).
  • polyisobutene homo- or copolymers can be used as component D).
  • the comonomer fraction d2) is preferably less than 20% by weight, based on D), and polyisobutene homopolymer is particularly preferably used.
  • the molar mass for example as a number average M N
  • M N the molar mass
  • Polyisobutenes of very different molecular weights can be used as component D), in particular those with average molecular weights M n in the range from 100 to 1,000,000, preferably 100 to 100,000, in particular 500 to 10,000.
  • copolymers D are known and commercially available, for example as Glissopal ® (BASF), Ultravis ® ® and Hyvis (BP) or Indopol ® (Amoco).
  • the polyisobutene homo- or copolymers (component D)) are generally produced by cationic polymerization at low temperatures. These methods are known to those skilled in the art and e.g. in US Pat. No. 5,286,823 and in the plastics handbook, vol. VI polyolefins, Carl Hanser Verlag Kunststoff 1969, and in Ullmanns Encyclopedia of Technical Chemistry, 4th edition, vol. 19, p. 216.
  • thermoplastic molding compositions can also contain additives such as lubricants and mold release agents, pigments, dyes, flame retardants, antioxidants, light stabilizers, fibrous and powdery fillers and reinforcing agents and antistatic agents in the amounts customary for these agents.
  • additives such as lubricants and mold release agents, pigments, dyes, flame retardants, antioxidants, light stabilizers, fibrous and powdery fillers and reinforcing agents and antistatic agents in the amounts customary for these agents.
  • the molding compositions according to the invention can be produced by mixing processes known per se, for example by melting in a mixing device, for example an extruder, Banbury mixer, kneader, roller mill or calender at temperatures of 150 to 300 ° C.
  • a mixing device for example an extruder, Banbury mixer, kneader, roller mill or calender at temperatures of 150 to 300 ° C.
  • the components can also be mixed "cold” without melting and the powdery or granular mixture is only melted and homogenized during processing.
  • Moldings of all kinds, in particular foils can be produced from the molding compositions.
  • the films can be produced by extrusion, rolling, calendering and other processes known to the person skilled in the art at usually 150 to 280 ° C. Films are preferably produced from the molding compositions by extrusion.
  • the molding compositions according to the invention are formed by heating and / or friction alone or with the use of softening or other additives to form a processable film, for which, for example, extruders with slot dies are suitable.
  • the foils usually have a thickness of 0.05 to 2 mm.
  • Such films are processed into finished products, for example by thermoforming or deep drawing at temperatures of usually 120 to 170 ° C.
  • the molding compositions according to the invention can also be used for coextrusion together with other polymers, whereby coextruded moldings or coextruded films are obtained.
  • other polymers are, for example, acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene-acrylic acid ester (ASA), polybutylene or ethylene terephthalate (PBT or PET), polyvinyl chloride (PVC), polystyrene acrylonitrile (SAN), methyl methacrylate ABS (MABS) and other common thermoplastic polymers.
  • the films have a wide range of uses, in particular in the automotive industry for the design of the car interior, for decorative purposes, as a leather substitute in the manufacture of suitcases and bags and in the furniture industry as a covering material for the lamination of furniture surfaces.
  • thermoplastic molding compositions according to the invention contain no halogen. They are largely free of evaporating or exuding components and show practically no adverse changes such as discoloration during processing. In particular, they already have excellent heat aging resistance and light resistance as well as good mechanical properties without the use of appropriate stabilizers or other additives.
  • the molding compositions according to the invention are notable in particular for good flowability, in particular when processed by extrusion.
  • the good extrusion properties of the molding compositions result in a very uniform product quality for the films. Examples
  • Particulate graft polymer made from cross-linked poly-n-butyl acrylate (core) and styrene / acrylonitrile copolymer (shell)
  • 150 g of this latex were mixed with 60 g of water, 0.03 g of potassium persulfate and 0.05 g of lauroyperoxide, after which 20 g of styrene were first applied to the latex particles over a period of 3 hours at 65 ° C. and then a mixture was added over a further 4 hours were grafted on from 15 g of styrene and 5 g of acrylonitrile.
  • the polymer was then precipitated with a calcium chloride solution at 95 ° C., separated off, washed with water and dried in a warm air stream. The degree of grafting of the polymer was 35% and the particles had an average diameter d 50 of 510 nm.
  • the graft polymer was composed as follows (rounded values):
  • a graft core made of polybutyl acrylate, crosslinked 20% by weight of an inner graft made of styrene polymer and 20% by weight of an outer graft made of styrene / acrylonitrile copolymer in the weight ratio S / AN 3: 1.
  • the seed polymer initially used was prepared by the process of EP-B 6503 (column 12, line 55, to column 13, line 22) by polymerizing n-butyl acrylate and tricyclodecenyl acrylate in aqueous emulsion and had a solids content of 40%.
  • the average particle size mentioned in the description of component A) is the weight average of the particle sizes.
  • the mean diameter corresponds to the d 50 value, according to which 50% by weight of all particles have a smaller diameter and 50% by weight a larger diameter than the diameter which corresponds to the d 5 corresponds to o value.
  • the d ⁇ o- and the d 9 o value may be specified in addition to the dso value.
  • 10 wt .-% of all particles are smaller and 90 wt .-% larger than the d ⁇ 0 diameter.
  • 90% by weight of all particles have a smaller and 10% by weight a larger diameter than that which corresponds to the d 90 value.
  • the quotient Q (d 90 -d ⁇ o) / d 5 o is a measure of the width of the particle size distribution. The smaller Q is, the narrower the distribution.
  • component B copolymer of styrene and acrylonitrile
  • a copolymer of 65% by weight of styrene and 35% by weight of acrylonitrile (component B) was produced by the process of continuous solution polymerization, as described in the plastics manual, ed. R. Vieweg and G. Daumiller, Vol. V "Polystyrene", Carl Hanser Verlag Kunststoff 1969, pages 122 to 124, is described.
  • the viscosity number VZ (determined according to DIN 53 726 at 25 ° C., 0.5% by weight in dimethylformamide) was 80 ml / g.
  • component C hydrogenated styrene-butadiene copolymer
  • the reaction mixture was worked up onto the hydrogenated polymer in a customary manner with removal of the nickel catalyst, the solvent advantageously being removed in a direct degassing unit.
  • the styrene content of the polymer contained which is available as Glissoviscal ® SG (Fa. BASF), was 52 wt .-%, based on the total mass of the polymer.
  • the proportion of the homo-polystyrene end block in the polymer was 13% by weight.
  • the average molecular weight of the product produced in the manner described was 80,000, determined by gel permeation chromatography.
  • Component D polyisobutene homopolymer
  • a commercially available polyisobutene homopolymer with an average molecular weight (number average M N ) of 2400 was used. The manufacture is described in U.S. Patent No. 5,286,823. It is commercially available as Glissopal ® 2300 from BASF.
  • Components A to D were intimately mixed, melted and discharged and granulated on a twin-screw extruder ZSK30 from Werner + Pfleiderer at 240 ° C. and 250 rpm.
  • the granules were extruded on a Rheocord 90 single shaft extruder / 3: 1 single shaft from Haake at 220 ° C. and 160 to 220 rpm to form a film 0.6 mm thick, for which purpose a slot die with a gap of 0.5 mm was used has been.
  • Tensile strength The tensile test was carried out in accordance with DIN 53 504 on strips which were punched out of the film.
  • Elongation at break the elongation when the tensile strength was applied was determined in accordance with DIN 53 504 in a tensile test and stated in% of the original dimension of the strip.
  • Shore hardness the Shore hardness was determined in accordance with DIN 43 505 using the test device D.
  • the flowability of the molding compositions was determined on the granulate by determining the melt flow volume index MVR (melt volume ratio) at 220 ° C. and a load of 10 kg or 21.6 kg.
  • MVR melt flow volume ratio
  • composition [wt. Parts]:
  • Component A 80 79.2 77.6 76 85
  • Component B 10 9.9 9.7 9.5 10
  • films made from molding compositions which do not contain component D showed reduced tear propagation resistance and, in particular, significantly lower flowability (MVR).
  • films made from the molding compositions according to the invention in addition to balanced mechanical properties, had good flowability (tests 1 to 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplastische Formmassen aus: A) 20 bis 98 Gew.-% eines partikelförmigen Pfropfpolymerisates aus a1) 30 bis 90 Gew.-% eines kautschukelastischen Pfropfkerns aus a11) 80 bis 99,99 Gew.-% eines (C1-C10-Alkyl)esters der Acrylsäure, a12) 0,01 bis 20 Gew.-% mindestens eines vernetzenden Monomeren, und a13) 0 bis 19,99 Gew.-% von einem oder mehreren weiteren Monomeren; a2) 10 bis 70 Gew.-% einer Pfropfschale aus a21) 50 bis 100 Gew.-% einer Styrolverbindung, a22) 0 bis 50 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und a23) 0 bis 40 Gew.-% von einem oder mehreren weiteren Monomeren; B) 0,5 bis 78,5 Gew.-% eines thermoplastischen Polymerisates aus b1) 50 bis 100 Gew.-% einer Styrolverbindung, b2) 0 bis 50 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und b3) 0 bis 40 Gew.-% von einem oder mehreren weiteren Monomeren; C) 1 bis 79 Gew.-% eines Copolymeren aus c1) 30 bis 90 Gew.-% Styrol und/oder α-Methylstyrol, c2) 10 bis 70 Gew.-% Butadien, und c3) 0 bis 30 Gew.-% von einem oder mehreren weiteren Monomeren, in welchem die olefinischen Doppelbindungen vollständig oder nahezu vollständig hydriert wurden; und D) 0,5 bis 30 Gew.-% eines Copolymeren aus d1) 50 bis 100 Gew.-% Isobuten, d2) 0 bis 50 Gew.-% von einem oder mehreren weiteren Monomeren.

Description

1 Thermoplastische Formmassen
Beschreibung
Die vorliegende Erfindung betrifft thermoplastische Formmassen aus
A) 20 bis 98 Gew.-% eines partikelförmigen Pfropfpolymerisates aus
al) 30 bis 90 Gew.-% eines kautschukelastischen Pfropfkerns aus
all) 80 bis 99,99 Gew.-% eines (Cι-C10-Alkyl)esters der
Acrylsäure,
al2) 0,01 bis 20 Gew.-% mindestens eines vernetzenden
Monomeren, und
al3) 0 bis 19,99 Ge .-% von einem oder mehreren weiteren
Monomeren,
a2) 10 bis 70 Gew.-% einer Pfropfschale aus
a21) 50 bis 100 Gew.-% einer Styrolverbindung der allgemeinen Formel I
R2 jfΛ-C=CH2 <*>
in der R1 und R2 für Wasserstoff oder C -C8-Alkyl und n für 0, 1, 2 oder 3 stehen,
a22) 0 bis 50 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und
a23) 0 bis 40 Gew.-% von einem oder mehreren weiteren
Monomeren, B) 0,5 bis 78,5 Gew.-% eines thermoplastischen Polymerisates aus
bl) 50 bis 100 Gew.-% einer Styrolverbindung der allgemeinen Formel
R2
CH2
Figure imgf000004_0001
in der R1 und R2 für Wasserstoff oder Cι-C8-Alkyl und n für 0, 1, 2 oder 3 stehen,
b2) 0 bis 50 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und
b3) 0 bis 40 Gew.-% von einem oder mehreren weiteren Monomeren,
C) 1 bis 79 Gew.-% eines Copolymeren aus
cl) 30 bis 90 Gew.-% Styrol und/oder α-Methylstyrol,
c2) 10 bis 70 Gew.-% Butadien, und
c3) 0 bis 30 Gew.-% von einem oder mehreren weiteren Monomeren
in welchem die olefinischen Doppelbindungen vollständig oder nahezu vollständig hydriert wurden,
und
D) 0,5 bis 30 Gew.-% eines Copolymeren aus
dl) 50 bis 100 Gew.-% Isobuten
d2) 0 bis 50 Gew.-% von einem oder mehreren weiteren Monomeren.
Des weiteren betrifft die Erfindung die Verwendung dieser Formmassen zur Herstellung von Folien und Formkörpern sowie Folien und Formkörper aus diesen Formmassen und ein Verfahren zur Herstellung der Formmassen.
Es versteht sich, daß sich die Summe der Komponenten A) bis D) zu 100 Gew.-% ergänzt. Kunststoffolien haben vielfältige Einsatzgebiete. Sie werden meist durch Kalandrieren oder Extrusion hergestellt.
Aus der EP-A 526 813 sind thermoplastische Formmassen aus einem hochvernetzten Acrylatkautschuk mit einer Pfropfhülle aus Methyl ethacrylat oder Styrol/Acrylnitril, einem teilvernetzten Acrylatkautschuk, einem Ethylen/Vinylacetat-Copoly erisat sowie gegebenenfalls einem weiteren Polymerisat auf Basis von Styrol und/oder Acrylverbindungen bekannt. Unter den Bedingungen der Formgebung, beispielsweise zu Folien, neigen diese Massen jedoch zu unerwünschten Verfärbungen.
In der DE-A 42 11 412 werden als Folienmaterial Mischungen aus Styrol/Acrylnitril-Polymerisaten und Thermoplasten empfohlen, die eine Pfropfhülle aus einem elastomeren Polymerisat haben. Die Herstellung derartiger Pfropfpolymerisate ist jedoch verfahrenstechnisch aufwendig, so daß es schwierig ist, gleichbleibende Produktqualitäten zu erhalten.
Aus der EP-A 708 145 sind thermoplastische Formmassen bekannt, die einen Acrylatkautschuk mit einer Pfropfhülle aus Styrol/ Acrylnitril, eine Styrol-Acrylnitril-Hartmatrix und ein hydriertes Copolymer aus Styrol und Butadien enthalten. Die daraus erhältlichen Folien sind sehr zäh und reißfest. Jedoch ist die Fließfähigkeit der Formmassen für eine Verarbeitung durch Extrusion nicht in allen Fällen ausreichend, so daß die Fahrsicherheit der Extrusion sowie die Produktqualität der extru- dierten Folie verbesserungsfähig ist.
Die EP-A 693 530 lehrt, daß funktionalisierte Polyisobutylen- Polymere die Schlagzähigkeit von Mischungen aus Polycarbonat und Dien- oder Alkylacrylat-Pfropf autschuken verbessern. In der DE-A 20 20 478 wird Polyisobuten (PIB) , auch als Polyisobutylen bezeichnet, in Elends aus thermoplastischen Kunststoffen mit- verwendet, um die dielektrischen Eigenschaften der Formmasse zu verbessern.
In einer Firmenschrift der Firma Amoco "Amoco Polybutene" erschienen 1994, wird auf S. 18 berichtet, daß Polybuten die Schlagzähigkeit und Elastizität vieler thermoplastischer Kunststoffe verbessert. Die Firmenschrift "Acrylonitrile-Butadiene- Styrene Modification Using Amoco Polybutene" der Firma Amoco vom Juni 1995 offenbart auf S. 5, daß durch Polybuten die Schlagzähigkeit von ABS (Acrylnitril-Butadien-Styrol) verbessert wird. Keine der genannten Schriften offenbart, daß Polybuten die Fließfähigkeit und damit das Extrusionsverhalten von Folien aus ASA (Acrylnitril-Styrol-Acrylatester) erheblich verbessert.
Es bestand die Aufgabe, den eingangs geschilderten Nachteilen abzuhelfen. Insbesondere bestand die Aufgabe, Formmassen bereitzustellen, die gute Fließfähigkeit und gute Extrusionseigen- schaften aufweisen und mit hoher Fahrsicherheit zu Folien oder Formkörpern in gleichbleibender Produktqualität extrudierbar sind und zugleich gute, ausgewogene mechanische Eigenschaften aufweisen.
Demgemäß wurden die eingangs definierten thermoplastischen Formmassen gefunden.
Außerdem wurde die Verwendung der Polymermischung zur Herstellung von Folien und Formkörpern gefunden, sowie Folien und Formkörper aus diesen Massen.
Die Komponente A) ist in den erfindungsgemäßen Formmassen, bezogen auf die Summe der Komponenten A) bis D), mit einem Anteil von 20 bis 98, bevorzugt 40 bis 90 und besonders bevorzugt 50 bis 82 Gew.-% enthalten. Bei dieser Komponente handelt es sich um ein partikelförmiges Pfropfcopolymerisat, das aus einem kautschuk- elastischen Pfropfkern al) ("Weichkomponente") und einer darauf gepfropften Schale a2 ) ("Hartkomponente") aufgebaut ist.
Der Pfropfkern al) ist mit einem Anteil von 30 bis 90, bevorzugt 40 bis 80 und insbesondere 50 bis 75 Gew.-%, bezogen auf die Komponente A) , enthalten.
Man erhält den Pfropfkern al) durch Polymerisation eines Monomerengemisches aus, bezogen auf al)
all) 80 bis 99,99, bevorzugt 85 bis 99,5 und besonders bevorzugt 90 bis 99 Gew.-% eines (Cχ-Cιo-Alkyl)esters der Acrylsäure,
al2) 0,01 bis 20, bevorzugt 0,5 bis 10 und besonders bevorzugt
1 bis 5 Gew.-% mindestens eines vernetzenden Monomeren, und
al3) 0 bis 19,99, bevorzugt 0 bis 5 Gew.-% von einem oder mehreren weiteren Monomeren.
Als Acrylsäurealkylester all) eignen sich vor allem Ethylacrylat, 2-Ethylhexylacrylat und besonders n-Butylacrylat. Vernetzende Monomere al2) sind bi- oder polyfunktionelle Comono- mere, beispielsweise Butadien und Isopren, Divinylester von Dicarbonsäuren wie der Bernsteinsäure und Adipinsäure, Diallyl- und Divinylether bifunktioneller Alkohole wie des Ethylenglycols und des Butan-l,4-diols, Diester der Acrylsaure und Methacrylsaure mit den genannten bifunktionellen Alkoholen, 1,4-Divinyl- benzol und Triallylcyanurat. Besonders bevorzugt sind der Acryl- säureester des Tricyclodecenylalkohols, der unter dem Namen Dihydrodicyclopentadienylacrylat bekannt ist, sowie die Allyl- ester der Acrylsaure und der Methacrylsaure.
Der Pfropfkern al) der Formmassen kann außerdem auf Kosten der Monomeren all) und al2) weitere Monomere al3) enthalten, welche die mechanischen und thermischen Eigenschaften des Kerns in einem gewissen Bereich variieren. Als Beispiele für solche monoethylenisch ungesättigten Comonomere seien genannt:
vinylaro atische Monomere wie Styrol, Styrolderivate der allgemeinen Formel I R2
in der R1 und R2 für Wasserstoff oder Ci-Cs-Alkyl und n für 0, 1, 2 oder 3 stehen;
Acrylnitril, Methacrylnitril;
Acrylsaure, Methacrylsaure, weiterhin Dicarbonsäuren wie Maleinsäure und Fumarsäure sowie deren Anhydride wie Maleinsäureanhydrid;
Stickstoff-funktionelle Monomere wie Dimethylaminoethylacrylat, Diethyla inoethylacrylat, Vinylimidazol, Vinylpyrrolidon, Vinyl- caprolactam, Vinylcarbazol, Vinylanilin, Acrylamid;
Cχ-C -Alkylester der Methacrylsaure wie Methylmethacrylat, Ethyl- methacrylat, n-Propylmethacrylat, i-Propylmethacrylat, n-Butyl- methacrylat, Isobutylmethacrylat, sek.-Butylmethacrylat, tert.- Butylmethacrylat sowie Hydroxyethylacrylat;
aromatische und araliphatische Ester der Acrylsaure und Methacrylsaure wie Phenylacrylat, Phenylmethacrylat, Benzylacrylat, Benzylmethacrylat, 2-Phenylethylacrylat, 2-Phenylethylmethacrylat, 2-Phenoxyethylacrylat und 2-Phenoxyethylmethacrylat; ungesättigte Ether wie Vinylmethylether
sowie Mischungen dieser Monomeren.
Die Pfropfschale a2) ist mit einem Anteil von 10 bis 70, bevorzugt 20 bis 60 und besonders bevorzugt 25 bis 50 Gew.-%, bezogen auf die Komponente A) , enthalten.
Die Pfropfschale a2 ) wird erhalten durch Polymerisation eines Monomerengemisches aus, bezogen auf a2 ) ,
a21) 50 bis 100, bevorzugt 60 bis 95 und besonders bevorzugt 65 bis 85 Gew.-% einer Styrolverbindung der allgemeinen Formel I R2
// \ = CH2 (I)
(R n in der R1 und R2 für Wasserstoff oder Cι-C8-Alkyl und n für 0, 1, 2 oder 3 stehen
a22) 0 bis 50, bevorzugt 0 bis 40 und besonders bevorzugt 5 bis 35 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und
a23) 0 bis 40, bevorzugt 0 bis 20 Gew.-% von einem oder mehreren weiteren Monomeren.
Als Styrolverbindung der allgemeinen Formel (I) (Komponente a21)) setzt man vorzugsweise Styrol, α-Methylstyrol sowie außerdem mit Ci-Cg-Alkyl kernalkylierte Styrole wie p-Methylstyrol oder tert.- Butylstyrol, ein. Styrol ist besonders bevorzugt.
Als monoethylenisch ungesättigte Nitrilverbindung a22) kommen Acrylnitril, Methacrylnitril und deren Mischungen in Betracht, insbesondere Acrylnitril.
Weiterhin kann die Schale a2) auf Kosten der Monomeren a21) und a22) aus weiteren Comonomeren a23) aufgebaut sein. Für die Komponente a23) gelten die gleichen Empfehlungen wie für die Komponente al3 ) , wobei Maleinsäureanhydrid sowie N-substituierte Maleinimide wie N-Methyl-, N-Phenyl- und N-Cyclohexylmaleinimid als weitere Monomere genannt seien. Diese werden bevorzugt verwendet . Vorzugsweise ist die Pfropfhülle a2 ) aus Styrol aufgebaut, oder aus einer Mischung aus 65 bis 85 Gew.-% Styrol und dem Rest Acrylnitril .
Die Pfropfpolymerisate A) sind in an sich bekannter Weise erhältlich, vorzugsweise durch Emulsionspolymerisation bei 30 bis 80°C. Hierfür eignen sich als Emulgatoren beispielsweise Alkalimetallsalze von Alkyl- oder Alkylarylsulfonsäuren, Alkylsulfate, Fettalkoholsulfonate, Salze höherer Fettsäuren mit 10 bis 30 Kohlen- Stoffatomen, Sulfosuccinate, Ethersulfonate oder Harzseifen. Vorzugsweise nimmt man die Alkalimetallsalze von Alkylsulfonaten oder Fettsäuren mit 10 bis 18 Kohlenstoffatomen.
Vorzugsweise verwendet man zur Herstellung der Dispersion soviel Wasser, daß die fertige Dispersion einen Feststoffgehalt von 20 bis 50 Gew.-% hat.
Als Polymerisationsinitiatoren kommen vorzugsweise Radikalbildner, beispielsweise Peroxide wie bevorzugt Peroxosulfate wie Kaliumperoxodisulfat und Azoverbindungen wie Azodiisobutyronitril in Betracht. Es können jedoch auch Redox-Systeme , insbesondere solche auf Basis von Hydroperoxiden wie Cumolhydroperoxid, eingesetzt werden. Ferner kann man Molekulargewichtsregler wie z.B. Ethylhexylthioglycolat, t-Dodecylmercaptan, Terpinole und dimeres α-Methylstyrol mitverwenden.
Zur Einhaltung eines konstant bleibenden pH-Wertes, der vorzugsweise bei 6 bis 9 liegt, kann man PufferSubstanzen wie Na2HP0 /NaH2P04 oder Natriumhydrogencarbonat mitverwenden.
Emulgatoren, Initiatoren, Regler und Puffersubstanzen werden in den üblichen Mengen eingesetzt, so daß sich nähere Angaben hierzu erübrigen.
Man kann den Pfropf ern al) besonders bevorzugt auch durch Polymerisation der Monomeren all) bis al3) in Gegenwart eines fein- teiligen Latex aus kautschukelastischen oder harten Polymeren herstellen (sog. "Saatlatex-Fahrweise" der Polymerisation). Beispielsweise kann die Saatlatex aus vernetztem Poly-n-butyl- acrylat oder aus Polystyrol verwendet werden.
Prinzipiell ist es auch möglich, den Pfropfkern al) nach einem anderen Verfahren als dem der Emulsionspolymerisation herzustellen, z.B. durch Masse- oder Lösungspolymerisation, und die erhaltenen Polymerisate nachträglich zu emulgieren. Auch die Mikrosuspensionspolymerisation ist geeignet, wobei bevorzugt öllösliche Initiatoren wie Lauroylperoxid und t-Butylperpivalat verwendet werden. Die Verfahren hierfür sind bekannt.
Die Herstellung der Pfropfschale a2) kann unter den gleichen Bedingungen wie die Herstellung des Pfropfkerns al) erfolgen, wobei man die Schale a2) in einem oder mehreren Verfahrensschritten herstellen kann. Beispielsweise kann man zunächst Styrol bzw. α-Methylstyrol alleine und danach Styrol und Acrylnitril in zwei aufeinander folgenden Schritten polymerisieren. Weitere Einzel- heiten zur Herstellung der Pfropfpolymerisate A) sind in den DE-OS 12 60 135 und 31 49 358 beschrieben.
Vorzugsweise stimmt man die Reaktionsbedingungen in an sich bekannter Weise so aufeinander ab, daß die partikelförmigen Pfropfpolymerisate A einen möglichst einheitlichen Durchmesser dso im Bereich von 60 bis 1500, besonders von 150 bis 1000 und ganz besonders 200 bis 700 nm haben.
Anstelle eines einheitlichen Pfropfpolymerisates A) kann man zur Herstellung der erfindungsgemäßen thermoplastischen Massen auch verschiedene dieser Polymerisate verwenden, vor allem solche mit deutlich unterschiedlicher Teilchengröße. Derartige Mischungen mit bimodaler Größenverteilung bieten verfahrenstechnische Vorteile bei der Weiterverarbeitung. Geeignete Teilchendurchmesser liegen im Bereich von 60 bis 200 nm einerseits und 300 bis 1000 nm andererseits. Eine bimodale Teilchengrößenverteilung kann beispielsweise durch partielle Agglomeration, wie sie in DE-AS 2 427 960 beschrieben ist, erzielt werden.
Weiterhin eignen sich auch Pfropfpolymerisate mit mehreren
"weichen" und "harten" Schalen, z.B. des Aufbaus al) -a2)-al) -a2) oder a2)-al)-a2), vor allem im Falle größerer Teilchen.
Soweit bei der Pfropfung nicht gepfropfte Polymere aus den Mono- meren a2) entstehen, werden diese Mengen, die in der Regel unter 10 Gew.-% von a2) liegen, der Masse der Komponente A) zugeordnet und nicht der Komponente B), die aus den gleichen Monomeren aufgebaut sein kann.
Die Komponente B) der erfindungsgemäßen Formmasse ist mit einem Anteil von 0,5 bis 78,5, bevorzugt 5 bis 50 und besonders bevorzugt 10 bis 30 Gew.-%, bezogen auf die Summe der Komponenten A) bis D), enthalten. Der Bestandteil B) ist ein thermoplastisches Polymerisat, das aus bl) 50 bis 100, bevorzugt 60 bis 95 und besonders bevorzugt 65 bis 85 Gew.-% einer Styrolverbindung der allgemeinen Formel I
R2
in der R1 und R2 für Wasserstoff oder Cι-C8-Alkyl und n für 0, 1, 2 oder 3 stehen
b2) 0 bis 50, bevorzugt 0 bis 40 und besonders bevorzugt 5 bis 35 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und
b3) 0 bis 40, bevorzugt 0 bis 20 Gew.-% von einem oder mehreren weiteren Monomeren.
jeweils bezogen auf die Komponente B) , besteht. Als mono- ethylenisch ungesättigte Nitrilverbindung b2) kommen Acrylnitril, Methacrylnitril und deren Mischungen in Betracht, insbesondere Acrylnitril. Als Monomere b3) kommen diejenigen in Betracht, die für die Komponente al3) und a23) genannt wurden.
Formmassen für die Herstellung von Folien enthalten bevorzugt 0,5 bis 50 Gew.-% der Komponente B, bezogen auf die Summe der Komponenten A) bis D) .
Die Polymeren B), die wegen ihrer Hauptkomponenten Styrol und Acrylnitril allgemein auch als SAN-Polymere bezeichnet werden, sind bekannt und z.T. auch handelsüblich. Sie haben in der Regel eine Viskositätszahl VZ (ermittelt nach DIN 53 726 bei 25°C, 0,5 Gew.-% in Dimethylformamid) von 40 bis 160 ml/g, entsprechend einer mittleren Molmasse von etwa 40000 bis 2000000. Man erhält sie in bekannter Weise durch Substanz-, Lösungs-, Suspensions-, Fällungs- oder Emulsionspolymerisation. Einzelheiten dieser Verfahren sind z.B. im Kunststoffhandbuch, Hrg. R. Vieweg und G. Daumiller, Bd. V "Polystyrol", Carl-Hanser-Verlag München 1969, S. 118 ff beschrieben.
Für die Monomeren a21) und/oder bl) gilt, daß anstelle der Styrolverbindungen oder in Mischung mit ihnen auch Cχ~ bis Cβ-Alkylester der Acrylsaure und/oder Methacrylsaure in Betracht kommen, besonders solche, die sich vom Methanol, Ethanol, n- und iso-Propanol, sek.-, tert.- und iso-Butanol, Pentanol, Hexanol, Heptanol, Octanol und 2-Ethylhexanol und vor allem vom n-Butanol ableiten. Besonders bevorzugt ist Methylmethacrylat . Der Anteil der Komponente C) an den Formmassen beträgt, bezogen auf die Summe der Komponenten A) bis D), 1 bis 79, bevorzugt 4,9 bis 50 und besonders bevorzugt 7,5 bis 39,5 Gew.-%. Komponente C) ist ein Copolymer, das aus
cl) 30 bis 90, bevorzugt 40 bis 80 und besonders bevorzugt 45 bis 70 Gew.-% Styrol und/oder α-Methylstyrol,
c2) 10 bis 70, bevorzugt 20 bis 60 und insbesondere bevorzugt 30 bis 55 Gew.-% Butadien, und
c3) 0 bis 20, bevorzugt 0 bis 10 Gew.-% von einem oder mehreren weiteren Monomeren
besteht, in dem die olefinischen Doppelbindungen vollständig oder nahezu vollständig hydriert wurden.
Als Komponente c3) kommen alle Verbindungen, die anionisch polymerisierbar sind, sowie deren Mischungen in Betracht, ins- besondere Isopren, Alkylmethacrylate wie z.B. Methylmethacrylat und tert.-Butylmethacrylat, α-Methylstyrol, Dimethylbutadien, sowie besonders bevorzugt kernsubstituierte Styrole und 1, 1-Diphenylethylen.
Die Copolymerisate C) sind bekannt, z.T. auch im Handel erhältlich (z.B. Kraton® von Shell Chemicals und Glissoviscal® von BASF) und in an sich bekannter Weise zugänglich.
Vorzugsweise stellt man die Copolymerisate nach der Methode der anionischen Polymerisation in Lösung her, wobei als Starter hauptsächlich metallorganische Verbindungen wie beispielsweise sek.-Butyllithium in Betracht kommen. Die anionische Polymerisation liefert, wie es in der Regel erwünscht ist, Polymerisate, die im wesentlichen unverzweigt sind. Unterwirft man ein Gemisch aus Styrol und Butadien der Polymerisation, so erhält man je nach den gewählten Copolymerisations-Bedingungen Polymerisate mit charakteristischer Verteilung der Monomereneinheiten.
In der Regel ist Blockcopolymerisaten der Vorzug zu geben, deren eines Kettenende von einem Block aus Styrol und deren anderes Kettenende von einem Block aus Butadien gebildet wird. Diese Blöcke können von Polymeren mit statistischer Verteilung voneinander getrennt sein, und ferner können die Blöcke auch in untergeordneten Mengen Einheiten des jeweils anderen Monomeren enthalten. Polymerisiert man ein Gemisch von Styrol und Butadien anionisch mit einem der genannten Initiatoren unter Mitverwendung geringer Mengen eines Ethers, insbesondere Tetrahydrofuran (THF) als Cokatalysator, so entstehen Polymerketten, in denen weder Blöcke noch eine vollständig statistische Verteilung der Bausteine vorhanden sind, sondern der Anteil der einen Komponente entlang der Kette in einer Richtung zunimmt und der Anteil der anderen Komponente in der gleichen Richtung abnimmt:
Zu Beginn der Polymerisation wird bevorzugt Butadien neben wenig Styrol in die entstehenden Ketten eingebaut. Sie sind demnach butadienreich. Mit Fortschreiten der Reaktion und dadurch sinkendem Gehalt der Reaktionsmischung an Butadienmonomeren werden vermehrt Styrolmonomere polymerisiert - die Kette wird styrol- reicher -, bis schließlich nach vollständigem Verbrauch des
Butadiens ein Endsegment aus Homo-Polystyrol gebildet wird. Einzelheiten des Verfahrens sind in der DE-A 31 06 959 beschrieben.
Gut geeignet sind auch Polymere mit sternförmiger Struktur, die man durch Verknüpfung mehrerer Polymerketten, hauptsächlich von Blockpolymerisaten des Typs Styrolblock/Butadienblock/Styrolblock ("Dreiblock-Polymer"), über polyfunktionelle Moleküle erhält. Geeignete Verknüpfungsmittel sind z.B. Polyepoxide, beispielsweise epoxidiertes Leinsamenöl, Polyisocyanate wie Benzo-1,2,4- triisocyanat, Polyketone wie 1,3,6-Hexantrion und Polyanhydride, außerdem Dicarbonsäureester wie Diethyladipat, sowie Silicium- halogenide wie SiCl4, Metallhalogenide wie TiCl und Polyvinyl- aromaten wie Divinylbenzole. Näheres über die Herstellung dieser Polymeren ist z.B. der DE-A 26 10 068 zu entnehmen.
Weiterhin können die genannten Polymere C) auch weitere Monomere c3) einpolymerisiert werden, wofür die für c3) genannten, anionisch polymerisierbaren Verbindungen in Betracht kommen.
Als Lösungsmittel für die Polymerisation der Monomeren cl) bis c3) eignen sich wasserfreie Flüssigkeiten wie Alkane und cyclo- aliphatische und aromatische Kohlenwasserstoffe. Bevorzugt wird Cyclohexan verwendet.
Vorzugsweise nimmt man die anionische Polymerisation bei -20 bis 150°C vor.
Die Reaktion wird in an sich bekannter Weise durch Zugabe einer polaren Verbindung wie Wasser oder eines Alkohols abgebrochen. Die Hydrierung der im Polymerisat noch vorhandenen olefinischen Doppelbindungen, die vom Butadien stammen, nimmt man ebenfalls in an sich bekannter Weise vor, und zwar bevorzugt in homogener Phase mit Wasserstoff mittels eines löslichen, selektiv wirkenden Hydrierkatalysators wie einer Mischung von Nickel(II)acetyl- acetonat und Aluminiumtriisobutyl in einem inerten Lösungsmittel wie Hexan. Die Hydriertemperatur beträgt vorzugsweise 20 bis 200°C, und für den Wasserstoffdruck empfiehlt sich ein Bereich von 6 bis 30 bar. Eine vollständige Hydrierung der nichtaromatischen Doppelbindungen ist nicht erforderlich, viel mehr genügt ein Hydrierungsgrad von 95 %. Näheres zur Hydrierung ist beispielsweise der bereits erwähnten DE-A 31 06 959 zu entnehmen.
Die Aufarbeitung auf die gewünschten Polymeren, deren Molmasse man durch Variation von Polymerisationstemperatur und -dauer sowie der Monomermengen vorzugsweise auf 50000 bis 200000, besonders 70000 bis 120000 einstellt, erfolgt wie üblich durch Abtrennen des Hydrierkatalysators und Entfernen des Lösungsmittels, z.B. mittels Direktentgasung.
Im Falle der Polymere mit Homo-Polystyrolendblock beträgt dessen Anteil an der Komponente C) 5 bis 30, vorzugsweise 7 bis 25 Gew.-%.
Der Anteil der Komponente D) an den Formmassen beträgt, bezogen auf die Summe der Komponenten A) bis D), 0,5 bis 30, bevorzugt 0,1 bis 20 und insbesondere 0,5 bis 10 Gew.-%. Komponente D) ist ein Copolymer, das aus
dl) 50 bis 100, bevorzugt 70 bis 100 und insbesondere 80 bis 100 Gew.-% Isobuten, und
d2) 0 bis 50, bevorzugt 0 bis 30 und insbesondere 0 bis 20 Gew.-% von einem oder mehreren weiteren Monomeren
besteht, jeweils bezogen auf D) . Isobuten wird auch als Iso- butylen bezeichnet. Als Comonomere d2 ) kommen in Betracht: Buten, Styrol und Styrolverbindungen der allgemeinen Formel I wie α-Methylstyrol, Isopren, Inden, Butadien, Cyclopentadien, außer- dem vinyl- und vinylidenterminierte Olefine sowie "internal ole- fins" mit 3 bis 14 C-Atomen wie 2-Methylpenten-2 und 2-Methy1- penten-1, 2,4,4-Trimethylpenten-2 und 2,4,4-Trimethylpenten-l, eis- und trans-Buten-2, 1-Buten, 1-Hexen, 1-Octen und 1-Decen.
Die Polymeren D) werden üblicherweise entsprechend ihrer Hauptkomponente Isobuten (Isobutylen) als Polyisobuten (Polyiso- butylen) PIB bezeichnet. Sie sind in der Regel bei Raumtempera- tur, je nach Molmasse, viskos-ölig (mittlere Molmasse MN etwa 300 bis 600), ölig-stark klebrig (MN etwa 700 bis 2000), zähflüssigstark klebrig (MN etwa 2000 bis 10000), zähflüssig-wenig klebrig (MN etwa 10000 bis 120000) bis rohgummiartig kautschukelastisch (MN etwa 300000 bis 2500000).
Je nach den angestrebten Produkteigenschaften können als Komponente D) Polyisobuten-Homo- oder Copolymere verwendet werden. Bevorzugt ist der Comonomeranteil d2 ) kleiner 20 Gew.-%, bezogen auf D), und besonders bevorzugt wird Polyisobuten-Homopolymer verwendet.
Zur Charakterisierung der Polyisobutene wird, wie zuvor erwähnt, üblicherweise die Molmasse (z.B. als Zahlenmittel MN) verwendet. Als Komponente D) können Polyisobutene verschiedenster Molmasse eingesetzt werden, insbesondere solche mit mittleren Molmassen Mn im Bereich von 100 bis 1000000, bevorzugt 100 bis 100000, insbesondere 500 bis 10000.
Die Copolymere D) sind bekannt und im Handel erhältlich, z.B. als Glissopal® (BASF), Hyvis® bzw. Ultravis® (BP) oder Indopol® (Amoco) .
Die Herstellung der Polyisobuten-Homo- bzw. Copolymere (Kompo- nente D) ) erfolgt in der Regel durch kationische Polymerisation bei tiefen Temperaturen. Diese Verfahren sind dem Fachmann bekannt und z.B. in US-PS 5 286 823 und im Kunststoff-Handbuch, Bd. VI Polyolefine, Carl Hanser Verlag München 1969, und in Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage, Bd. 19, S. 216, beschrieben.
Außer den Komponenten A) , B) , C) und D) können die thermoplastischen Formmassen noch Zusatzstoffe wie Gleit- und Ent- formungsmittel, Pigmente, Farbstoffe, Flammschutzmittel, Anti- oxidantien, Stabilisatoren gegen Lichteinwirkung, faser- und pulverförmige Füll- und Verstärkungsmittel und Antistatika in den für diese Mittel üblichen Mengen enthalten.
Die Herstellung der erfindungsgemäßen Formmassen kann nach an sich bekannten Mischverfahren erfolgen, beispielsweise unter Aufschmelzen in einer Mischvorrichtung, z.B. einem Extruder, Banbury-Mischer, Kneter, Walzenstuhl oder Kalander bei Temperaturen von 150 bis 300°C. Die Komponenten können jedoch auch ohne Schmelzen "kalt" vermischt werden und das pulvrige oder aus Granulaten bestehende Gemisch wird erst bei der Verarbeitung aufgeschmolzen und homogenisiert. Aus den Formmassen lassen sich Formkörper aller Art, insbesondere Folien, herstellen. Die Herstellung der Folien kann durch Extrudieren, Walzen, Kalandrieren und andere dem Fachmann bekannte Verfahren bei üblicherweise 150 bis 280°C erfolgen. Bevorzugt wer- den aus den Formmassen Folien durch Extrusion hergestellt. Die erfindungsgemäßen Formmassen werden dabei durch Erwärmen und/oder Friktion allein oder unter Mitverwendung von weichmachenden oder anderen Zusatzstoffen zu einer verarbeitungsfähigen Folie geformt, wozu beispielsweise Extruder mit Breitschlitzdüsen geeig- net sind. Üblicherweise haben die Folien eine Dicke von 0,05 bis 2 mm. Die Verarbeitung derartiger Folien zu Fertigprodukten erfolgt beispielsweise durch Warmformen oder Tiefziehen bei Temperaturen von üblicherweise 120 bis 170°C.
Die erfindungsgemäßen Formmassen können auch zur Coextrusion zusammen mit anderen Polymeren verwendet werden, wodurch coextrudierte Formkörper bzw. coextrudierte Folien erhalten werden. Solche anderen Polymere sind beispielsweise Acrylnitril- Butadien-Styrol (ABS), Acrylnitril-Styrol-Acrylsäureester (ASA) , Polybutylen- oder -ethylen-terephphtalat (PBT bzw. PET), Polyvinylchlorid (PVC), Polystyrolacrylnitril (SAN), Methylmethacrylat-ABS (MABS) und andere gebräuchliche thermoplastische Polymere .
Die Folien haben vielfältige Verwendungsmöglichkeiten, insbesondere in der Automobilindustrie zur Gestaltung des Autoinnenraumes, für Dekorationszwecke, als Lederersatz bei der Herstellung von Koffern und Taschen und in der Möbelindustrie als Überzugsmaterial zur Kaschierung von Möbeloberflächen.
Die erfindungsgemäßen thermoplastischen Formmassen enthalten kein Halogen. Sie sind weitestgehend frei von ausdünstenden oder ausschwitzenden Bestandteilen und zeigen bei der Verarbeitung praktisch keine nachteiligen Veränderungen wie Verfärbungen. Insbesondere haben sie bereits ohne Mitverwendung entsprechender Stabilisatoren oder anderer Zusätze eine hervorragende Wärmealterungsbeständigkeit und Lichtbeständigkeit sowie gute mechanische Eigenschaften.
Die erfindungsgemäßen Formmassen zeichnen sich insbesondere durch eine gute Fließfähigkeit, insbesondere bei einer Verarbeitung durch Extrusion, aus. Die guten Extrusionseigenschaften der Formmassen bewirken eine sehr gleichmäßige Produktqualität der Folien. Beispiele
Es wurden folgende Bestandteile hergestellt (alle %-Angaben sind Gew.-%)
Herstellung einer Komponente A:
Partikelförmiges Pfropfpolymerisat aus vernetztem Poly-n-Butyl- acrylat (Kern) und Styrol/Acrylnitril-Copolymer (Schale)
Zu einer Mischung aus 3 g eines Polybutylacrylat-Saatlatex, 100 g Wasser und 0,2 g Kaliumpersulfat wurden im Verlauf von 4 Stunden bei 60°C eine Mischung aus 98 g n-Butylacrylat und 2 g Dihydrodi- cyclopentadienylacrylat sowie getrennt davon eine Lösung von 1 g a-Cι2-Ci8-Paraffinsulfonat in 50 g Wasser gegeben. Die Polymeri- sation wurde danach noch für 3 Stunden fortgesetzt. Der mittlere Teilchendurchmesser d50 des entstandenen Latex betrug 430 nm bei enger Verteilung der Teilchengröße (Q = 0,1).
150 g dieses Latex wurden mit 60 g Wasser, 0,03 g Kaliumpersulfat und 0,05 g LauroyIperoxid vermischt, wonach auf die Latexteilchen im Laufe von 3 Stunden bei 65°C zunächst 20 g Styrol und danach im Laufe von weiteren 4 Stunden ein Gemisch aus 15 g Styrol und 5 g Acrylnitril aufgepfropft wurden. Anschließend wurde das Polymerisat mit einer Calciumchloridlösung bei 95°C ausgefällt, abge- trennt, mit Wasser gewaschen und im warmen Luftstrom getrocknet. Der Pfropfgrad des Polymerisates betrug 35 % und die Teilchen hatten einen mittleren Durchmesser d50 von 510 nm.
Das Pfropfpolymerisat setzte sich wie folgt zusammen (gerundete Werte) :
60 Gew.-% eines Pfropfkerns aus Polybutylacrylat, vernetzt, 20 Gew.-% einer inneren Pfropfstufe aus Styrol-Polymer und 20 Gew.-% einer äußeren Pfropfstufe aus Styrol/Acrylnitril- Copolymer im Gewichtsverhältnis S/AN 3:1.
Das anfangs eingesetzte Saat-Polymere wurde nach dem Verfahren der EP-B 6503 (Spalte 12, Zeile 55, bis Spalte 13, Zeile 22) durch Polymerisation von n-Butylacrylat und Tricyclodecenyl- acrylat in wäßriger Emulsion hergestellt und hatte einen Fest- stoffgehalt von 40 %.
Die bei der Beschreibung der Komponente A) erwähnte mittlere Teilchengröße ist das Gewichtsmittel der Teilchengrößen.
Der mittlere Durchmesser entspricht dem d50-Wert, demzufolge 50 Gew.-% aller Teilchen einen kleineren und 50 Gew.-% einen größeren Durchmesser haben als derjenige Durchmesser, der dem d5o-Wert entspricht. Um die Breite der Teilchengrößenverteilung zu charakterisieren, werden zusätzlich zum dso-Wert oftmals der dχo- sowie der d9o-Wert angegeben. 10 Gew.-% aller Teilchen sind kleiner und 90 Gew.-% größer als der dι0-Durchmesser. Analog haben 90 Gew.-% aller Teilchen einen kleineren und 10 Gew.-% einen größeren Durchmesser als denjenigen, der dem d90-Wert entspricht. Der Quotient Q = (d90-dιo) /d5o ist ein Maß für die Breite der Teilchengrößenverteilung. Je kleiner Q ist, desto enger ist die Verteilung.
Herstellung einer Komponente B: Copolymerisat aus Styrol und Acrylnitril
Es wurde ein Copolymerisat aus 65 Gew.-% Styrol und 35 Gew.-% Acrylnitril (Komponente B) nach dem Verfahren der kontinuierlichen Lösungspolymerisation hergestellt, wie es im Kunststoff- Handbuch, Hrg. R. Vieweg und G. Daumiller, Bd. V "Polystyrol", Carl-Hanser-Verlag München 1969, Seite 122 bis 124, beschrieben ist. Die Viskositätszahl VZ (ermittelt nach DIN 53 726 bei 25°C, 0,5 Gew.-% in Dimethylformamid) betrug 80 ml/g.
Herstellung einer Komponente C: hydriertes Styrol-Butadien-Copolymer
Eine Lösung von 520 g Styrol, 480 g Butadien und 20 ml Tetra- hydrofuran in 4 1 Cyclohexan wurde bei 0°C zunächst langsam mit sek.-Butyllithium versetzt, um auf diese Weise protonenaktive Verunreinigungen zu desaktivieren. Nach dem Anspringen der Polymerisationsreaktion, erkenntlich an einem Temperaturanstieg von 0,2°C, wurden sofort 0,8 g sek.-Butyllithium zugefügt. Die Polymerisationswärme wurde durch Siedekühlung abgeführt. Dabei wurde die Kühlleistung so eingestellt, daß die Temperatur innerhalb von 30 min auf 120°C anstieg. Diese Temperatur wurde weitere 10 min gehalten, wonach die Polymerisation durch Zugabe von 1 g Ethanol abgebrochen wurde.
Zur Hydrierung wurden der erhaltenen Polymerlösung eine Suspension von 1,5 g Nickel( II )acetylacetonat in 30 ml Toluol und 34 ml einer 20 gew.-%igen Lösung von Aluminiumtriisobutyl in Hexan zu- gefügt, wonach man sie 60 min lang bei 80 bis 110°C einem Wasserstoffdruck von 15 bar aussetzte.
Die Aufarbeitung des Reaktionsgemisches auf das hydrierte Polymerisat wurde wie üblich unter Abtrennung des Nickelkatalysators vorgenommen, wobei das Lösungsmittel zweckmäßigerweise in einer Direktentgasungsanlage entfernt wurde. Der Styrolgehalt des enthaltenen Polymeren, das als Glissoviscal® SG (Fa. BASF) im Handel erhältlich ist, betrug 52 Gew.-%, bezogen auf die Gesamtmasse des Polymeren. Der Anteil des Homo-Polystyrol-Endblocks am Polymeren betrug 13 Gew.-%. Die mittlere Molmasse des auf die beschriebene Weise hergestellten Produktes war 80000, ermittelt durch Gelpermeationschromatographie.
Komponente D: Polyisobuten-Homopolymer
Es wurde ein handelsübliches Polyisobuten-Homopolymer mit einer mittleren Molmasse (Zahlenmittel MN) von 2400 verwendet. Die Herstellung ist in US-PS 5 286 823 beschrieben. Es ist als Glissopal® 2300 von Fa. BASF im Handel erhältlich.
Hergestellte Formmassen und ihre Eigenschaften
Die Komponenten A bis D wurden bei 240°C und 250 Upm auf einem Zweischneckenextruder ZSK30 von Fa. Werner + Pfleiderer unter Aufschmelzen innig vermischt, ausgetragen und granuliert. Das Granulat wurde auf einem Einwellen-Extruder Typ Rheocord 90/Einwelle 3:1 von Fa. Haake bei 220°C und 160 bis 220 Upm zu einer Folie von 0,6 mm Dicke extrudiert, wozu eine Breitschlitzdüse mit 0,5 mm Spaltmaß verwendet wurde.
Folgende Eigenschaften der Folien wurden ermittelt:
Zugfestigkeit: Der Zugversuch wurde nach DIN 53 504 an Streifen vorgenommen, die aus der Folie ausgestanzt wurden.
Reißdehnung: die Dehnung bei Anlegen der Reißkraft wurde nach DIN 53 504 im Zugversuch bestimmt und in % der ursprünglichen Abmessung des Streifens angegeben.
- Weiterreißfestigkeit: es wurde ein Weiterreißversuch nach DIN 43 515 an ausgestanzten Streifen vorgenommen.
Shore-Härte: es wurde die Shore-Härte nach DIN 43 505 mit dem Prüfgerät D bestimmt.
Wärmeformbeständigkeit: sie wurde nach DIN 53 460 als Vicat- Zahl mit der Meßmethode A ermittelt.
Die Fließfähigkeit der Formmassen wurde am Granulat bestimmt, in dem der Schmelzfluß-Volumenindex MVR (melt volume ratio) bei 220°C und einer Belastung von 10 kg bzw. 21,6 kg ermittelt wurde. Die Zusammensetzungen der hergestellten Folien und die Versuchsergebnisse sind in der Tabelle 1 zusammengestellt.
Tabelle 1 O O
Versuch Nr. VI 1 2 3 V2
Zusammensetzung [Gew. -Teile] :
Komponente A 80 79,2 77,6 76 85
Komponente B 10 9,9 9,7 9,5 10
Komponente C 10 9,9 9,7 9,5 0
Komponente D 0 1 3 5 5
Eigenschaften:
Zugfestigkeit [N/mm2] 14 16 16 15 n .b.
Reißdehnung [ % ] 155 135 146 139 n .b.
Weiterreißfestigkeit [N/mm2] 44 54 60 47 n .b.
Härte Shore D 50 50 50 48 45
MVR (220°C/10 kg) 0,2 0,5 0,9 1,3 <0,2
MVR (220°C/21,6 kg)
Figure imgf000021_0001
12 18 25 32 13
V Vergleichsversuch n.b. nicht bestimmt, da keine verwertbaren Folien extrudiert werden konnten.
π
" H
P^J
Ό o ©
Folien aus Formmassen, die Komponente D nicht enthalten (Vergleichsversuch VI), zeigten eine verminderte Weiterreißfestigkeit und insbesondere eine erheblich geringere Fließfähig- keit (MVR). Dagegen wiesen Folien aus den erfindungsgemäßen Formmassen neben ausgewogenen mechanischen Eigenschaften eine gute Fließfähigkeit auf (Versuche 1 bis 3).
Es gelang nicht, Formmassen, die Komponente C nicht enthalten, zu verwertbaren Folien zu extrudieren, wie Vergleichsversuch V2 zeigt.

Claims

Patentansprüche
1. Thermoplastische Formmassen aus
A) 20 bis 98 Gew.-% eines partikelförmigen Pfropfpolymerisates aus
al) 30 bis 90 Gew.-% eines kautschukelastischen Pfropf- kerns aus
all) 80 bis 99,99 Gew.-% eines (Cι-Cι0-Alkyl)esters der Acrylsaure,
al2) 0,01 bis 20 Gew.-% mindestens eines vernetzenden Monomeren, und
al3) 0 bis 19,99 Gew.-% von einem oder mehreren weiteren Monomeren,
a2) 10 bis 70 Gew.-% einer Pfropfschale aus
a21) 50 bis 100 Gew.-% einer Styrolverbindung der allgemeinen Formel I
R2~Y_C=CH2 (I)
in der R1 und R2 für Wasserstoff oder Cι-C8-Alkyl und n für 0, 1, 2 oder 3 stehen,
a22) 0 bis 50 Gew.-% mindestens einer mono- ethylenisch ungesättigten Nitrilverbindung, und
a23) 0 bis 40 Gew.-% von einem oder mehreren weiteren Monomeren,
B) 0,5 bis 78,5 Gew.-% eines thermoplastischen Polymerisates aus
bl) 50 bis 100 Gew.-% einer Styrolverbindung der all- gemeinen Formel 99/54401 22
R2
- C = : CH2
Figure imgf000024_0001
( 1 ) !! in der R1 und R2 für Wasserstoff oder Cι-C8-Alkyl und n für 0, 1, 2 oder 3 stehen,
b2) 0 bis 50 Gew.-% mindestens einer monoethylenisch ungesättigten Nitrilverbindung, und
b3) 0 bis 40 Gew.-% von einem oder mehreren weiteren Monomeren,
C) 1 bis 79 Gew.-% eines Copolymeren aus
cl) 30 bis 90 Gew.-% Styrol und/oder α-Methylstyrol,
c2) 10 bis 70 Gew.-% Butadien, und
c3) 0 bis 30 Gew.-% von einem oder mehreren weiteren Monomeren
in welchem die olefinischen Doppelbindungen vollständig oder nahezu vollständig hydriert wurden,
und
D) 0,5 bis 30 Gew.-% eines Copolymeren aus
dl) 50 bis 100 Gew.-% Isobuten
d2) 0 bis 50 Gew.-% von einem oder mehreren weiteren Monomeren.
2. Thermoplastische Formmassen nach Anspruch 1, in denen die Komponente C) durch anionische Polymerisation und anschließende Hydrierung hergestellt wurde.
3. Thermoplastische Formmassen nach Anspruch 2, bei denen die anionische Polymerisation zur Herstellung der Komponente C) mit Hilfe von Alkyllithiumverbindungen sowie in Gegenwart von Tetrahydrofuran vorgenommen wurde.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente D) ein Polyisobuten-Homopolymer ist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente D) besteht aus
dl) 50 bis 100 Gew.-% Isobuten
d2) 0 bis 50 Gew.-% Olefinen oder Styrolverbindungen der allgemeinen Formel I .
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen das partikelförmige Pfropfpolymerisat A) einen mittleren Teilchendurchmesser d50 von 200 nm bis 700 nm aufweist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6 , in denen die Komponente a21) oder die Komponente bl) oder die
Komponenten a21) und bl) ganz oder teilweise durch einen (Cι-C8-Alkyl)ester der Acrylsaure oder Methacrylsaure ersetzt sind.
8. Verwendung der thermoplastischen Formmassen gemäß den
Ansprüchen 1 bis 7 zur Herstellung von Folien und Formkörpern.
9. Folien aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 7.
10. Verfahren zur Herstellung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man die Komponenten A) bis D) und gegebenenfalls übliche Zusatz- Stoffe bei 150 bis 300°C unter Aufschmelzen in einer Mischvorrichtung vermischt.
PCT/EP1999/002318 1998-04-17 1999-04-06 Thermoplastische formmassen WO1999054401A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99914568A EP1086177A1 (de) 1998-04-17 1999-04-06 Thermoplastische formmassen
US09/647,674 US6518361B1 (en) 1998-04-17 1999-04-06 Thermoplastic molding compositions
AU33334/99A AU3333499A (en) 1998-04-17 1999-04-06 Thermoplastic moulding materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19817218.4 1998-04-17
DE19817218A DE19817218A1 (de) 1998-04-17 1998-04-17 Thermoplastische Formmassen

Publications (1)

Publication Number Publication Date
WO1999054401A1 true WO1999054401A1 (de) 1999-10-28

Family

ID=7864937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002318 WO1999054401A1 (de) 1998-04-17 1999-04-06 Thermoplastische formmassen

Country Status (5)

Country Link
US (1) US6518361B1 (de)
EP (1) EP1086177A1 (de)
AU (1) AU3333499A (de)
DE (1) DE19817218A1 (de)
WO (1) WO1999054401A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152033A1 (de) * 2000-05-03 2001-11-07 Rohm And Haas Company Polymerzusammensetzungen und Verfahren zur Herstellung von Wetterfestfolien
SG88817A1 (en) * 2000-05-03 2002-05-21 Rohm & Haas Polymeric compositions and processes for providing weatherable film and sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906065A1 (de) * 1999-02-12 2000-08-17 Basf Ag Thermoplastische Formmassen
DE10142285A1 (de) * 2001-08-29 2003-03-20 Basf Ag Polymerzusammensetzung, enthaltend wenigstens ein mittelmolekulares reaktives Polyisobuten
KR100715712B1 (ko) * 2005-09-16 2007-05-08 쓰리엠 이노베이티브 프로퍼티즈 캄파니 제거가 용이한 녹방지 코팅용 조성물
CN100513430C (zh) * 2007-03-28 2009-07-15 北京化工大学 一种用于橡胶增强的核壳型乳胶粒子乳液的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708145A1 (de) * 1994-10-20 1996-04-24 Basf Aktiengesellschaft Thermoplastische Formmassen
EP0767213A2 (de) * 1995-10-02 1997-04-09 Basf Aktiengesellschaft Thermoplastische Formmassen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2020478A1 (de) 1970-04-27 1971-11-11 Basf Ag Thermoplastische Formmassen mit verbesserten dielektrischen Eigenschaften
DE4125981A1 (de) 1991-08-06 1993-02-11 Bayer Ag Ethylenpolymerisate enthaltende polymerlegierungen fuer flexible folien
DE4211412C2 (de) 1992-04-04 1998-06-04 Benecke Ag J H Ein- oder mehrschichtige Oberflächenfolie zum Aufkaschieren auf Substrate
DE4425620A1 (de) 1994-07-20 1996-01-25 Bayer Ag Schlagzähmodifizierte Formmassen auf Basis Polyisobutylen-haltigem Polycarbonat
US5760134A (en) 1995-10-02 1998-06-02 Basf Aktiengesellschaft Thermoplastic molding materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708145A1 (de) * 1994-10-20 1996-04-24 Basf Aktiengesellschaft Thermoplastische Formmassen
EP0767213A2 (de) * 1995-10-02 1997-04-09 Basf Aktiengesellschaft Thermoplastische Formmassen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152033A1 (de) * 2000-05-03 2001-11-07 Rohm And Haas Company Polymerzusammensetzungen und Verfahren zur Herstellung von Wetterfestfolien
SG88817A1 (en) * 2000-05-03 2002-05-21 Rohm & Haas Polymeric compositions and processes for providing weatherable film and sheet
US6673868B2 (en) 2000-05-03 2004-01-06 Rohm And Haas Company Polymeric compositions and processes for providing weatherable film and sheet

Also Published As

Publication number Publication date
AU3333499A (en) 1999-11-08
DE19817218A1 (de) 1999-10-21
US6518361B1 (en) 2003-02-11
EP1086177A1 (de) 2001-03-28

Similar Documents

Publication Publication Date Title
EP0164513B1 (de) Thermoplastische Formmassen
EP0708145B1 (de) Thermoplastische Formmassen
EP0769524B1 (de) Verwendung von Formteilen aus thermoplastischen Formmassen
DE2420358B2 (de) Formmassen
EP0244856A1 (de) Thermoplastische Formmasse auf Basis von Polycarbonat, ASA und Vinylaromaten/AN enthaltenden Copolymerisaten
EP0716101A2 (de) Partikelförmige, vernezte Copolymerisate, ihre Verwendung als Mattierungsmittel und Formmassen mit ihren
DE2533991B2 (de) Schlagzähe alterungsbestandige AES-Porymerisate
EP0927226B1 (de) Thermoplastische formmassen
DE2526246A1 (de) Polystyrolmasse mit hoher schlagfestigkeit und verfahren zu ihrer herstellung
WO1999054401A1 (de) Thermoplastische formmassen
DE3629150A1 (de) Thermoplastische formmasse auf basis von abs
DE19906066A1 (de) Thermoplastische Formmassen
EP0927227B1 (de) Thermoplastische formmassen
EP0711807B1 (de) Matte thermoplastische Formmassen
EP0767213B1 (de) Thermoplastische Formmassen
WO2000047675A1 (de) Thermoplastische formmassen
WO2000047674A1 (de) Thermoplastische formmassen
EP0261396B1 (de) Thermoplastische Formmasse auf Basis von ABS
DE2624656A1 (de) Verfahren zur herstellung von vinylchloridpolymerisat-folien
EP0960165A1 (de) Wärmeformbeständiges styrol-copolymerisat
DE19542519A1 (de) Thermoplastische Formmassen mit guter Haftfähigkeit
WO2000047673A1 (de) Thermoplastische formmassen
MXPA95004393A (en) Composite of molding termoplasti

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999914568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09647674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999914568

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999914568

Country of ref document: EP