WO1999050882A1 - Tube a rayons x a longueurs d'ondes multiples - Google Patents

Tube a rayons x a longueurs d'ondes multiples Download PDF

Info

Publication number
WO1999050882A1
WO1999050882A1 PCT/US1999/005852 US9905852W WO9950882A1 WO 1999050882 A1 WO1999050882 A1 WO 1999050882A1 US 9905852 W US9905852 W US 9905852W WO 9950882 A1 WO9950882 A1 WO 9950882A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electron beam
ray tube
ray
spot
Prior art date
Application number
PCT/US1999/005852
Other languages
English (en)
Inventor
G. Yale Eastman
Donald M. Ernst
Martin Fruitman
Original Assignee
Thermal Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal Corp. filed Critical Thermal Corp.
Publication of WO1999050882A1 publication Critical patent/WO1999050882A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/26Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by rotation of the anode or anticathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/088Laminated targets, e.g. plurality of emitting layers of unique or differing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1287Heat pipes

Definitions

  • This invention deals generally with x-ray tubes and more specifically with an x-ray tube which can generate radiation of more than a single wavelength.
  • X-ray tubes function on the basis of an electron beam being generated by a cathode within the tube, and the electron beam bombarding a very small spot on an anode which is also within the tube.
  • the bombardment of the anode which is constructed of a suitable x-ray generating material, creates the x-rays along with a great deal of heat.
  • all x-ray tubes have generated radiation of a single wavelength, so that different machines, with different tubes, would be required if there was a need to generate radiation at different wavelengths. Yet all such machines would likely be quite similar except for the different x-ray tubes installed within them.
  • the present invention is an x-ray tube which can generate radiation at several different wavelengths.
  • the tube anode is divided into several sections constructed as thin layers on the anode, with each section made from a different x-ray generating material, and each section capable of generating x-rays of a different wavelength.
  • sections can be circumferential bands, radial wedges, or rectangular shaped sections of x-ray generating material.
  • the sections are attached to a heat dissipating anode
  • the variation in wavelength is then accomplished by either rotating the anode or scanning the electron beam. Both the rotation and the scanning can be done rapidly to yield a varying beam or more slowly to furnish different wavelengths for individual
  • the preferred embodiment of the invention has layers of pie or wedge shaped sections of x-ray generating material arranged on a surface, with the materials of adjacent sections being different.
  • the materials in the sections either alternate between two different materials or sequence through several different materials.
  • Conventional x-ray tube anodes are frequently constructed as rotating discs to essentially move the bombardment point of the anode out from under the electron beam before the anode material is damaged by heat.
  • Such an arrangement spreads the heat over the surface of the anode, not by conduction of heat, but by moving the heated portion of the anode away from the source of heat.
  • the preferred embodiment of the invention is rotated in such a manner, the result is that the electron beam hits the different materials in the wedge sections as the wedge shaped sections move under the electron beam.
  • the electron beam thus generates radiation of a different wavelength as it hits each section.
  • the x-ray beam is therefore composed of a sequence of pulses of radiation of different wavelengths, which creates an exposure of two or more wavelengths, depending upon the number of different materials in the wedge sections. Furthermore, the different wavelengths are created rapidly because of the high rotation speed of the disk.
  • the layers of different material are arranged as concentric bands located at different radii from the center of a disc shaped anode.
  • the electron beam is magnetically deflected to fall on any one of the bands, and thus the tube generates the particular wavelength produced by the specific band selected.
  • the combination of electron beam pulsing and deflection can even be used to generate a nonrepetitive pattern of pulsed wavelengths for the exposure.
  • the selection of wavelengths available is only limited by the number of bands of material which can be attached to the anode.
  • Another embodiment has a grid pattern of different materials attached to a stationary anode structure, a pattern which resembles a checker board. With such a structure the choice of wavelengths generated is completely controlled by the deflection of the electron beam.
  • the invention can be used with the conventional rotating anode, another type of anode, a stationary one, can. also be constructed.
  • Such an x-ray tube anode is constructed as a thin layer of x-ray generating material upon a high temperature heat pipe, such as a heat pipe with a tungsten casing and lithium or sodium heat transfer fluid.
  • the present invention thereby furnishes a unique x-ray tube which is capable of generating multiple wavelengths of radiation, and also furnishes an x-ray tube which does not require a complex arrangement to rotate the anode within a vacuum enclosure.
  • FIG. 1 is a simplified top view of the x-ray tube anode of the preferred embodiment of the invention shown with a pattern of wedge shaped sections around a center axis.
  • FIG. 2 is a simplified top view of the x-ray tube anode of an alternate embodiment of the invention shown with a pattern of concentric band sections around a center axis.
  • FIG. 3 is a schematic representation of a partial side cross section view of an x-ray tube within which the bombarded surface of the anode is cooled by a heat pipe.
  • FIG. 1 is a simplified top view of x-ray tube anode 10 of the preferred embodiment of the invention with base disc 11 having a pattern of wedge shaped sections 12, 14, 16, 18, and 20 around center axis 22 formed by attaching thin wedge shaped sections to the structure of base disc 11.
  • the wedge shaped sections on anode 10 continue fully around and back to section 24 adjacent to section 12, and at least alternate wedge shaped sections are constructed of different materials, so that such different materials generate x-rays of different wavelengths.
  • a conventionally generated electron beam bombards disc 11, at beam spot 26 on section 12, and as is well known in the art, generates an x-ray beam (not shown) by bombarding the material in the section upon which it impinges.
  • Disc 11 rotates in the direction shown by arrow A, and therefore, in the preferred embodiment, section 12 determines the wavelength for approximately one-eighth of the rotation time of disc 11, after which, section 14, section 16, section 18 and so forth determine the wavelength.
  • the rotation of anode 10 establishes a circular path 28 on anode 10 through which beam spot 26 always falls.
  • the radial distance between center axis 22 and beam spot 26 can be varied by either mechanical adjustment of the electron beam generator, or, preferably, by the electronic deflection of the electron bombardment beam. As the distance between beam spot 26 and axis 22 increases the effective beam spot speed increases which reduces the peak temperature to which the material beneath the spot is raised.
  • the wavelength of the resulting x-ray beam will vary with the speed of rotation of disc 11.
  • the rotation of anode 10 is 12,000 rpm, which is among the higher conventional rotation speeds, and the wedge shape sections of anode 10 include only two alternating materials
  • the x-ray wavelength will vary at 800 Hz.
  • Anode 10 is constructed as specified below.
  • Base disc 11 - material - tungsten diameter - 1.0 inch thickness - .060 to .125 inch Wedge section 12 - material - copper thickness - .001 inch Wedge Section 14 - material - platinum thickness - .001 inch
  • This structure and operation yields an x-ray output varying between wavelengths of 1.381 Angstrom (generated by copper at 8.977 KEV) and 0.158 Angstrom (generated by platinum at 78.341 KEV).
  • FIG. 1 can also be used to generate a conventional single wavelength x-ray exposure.
  • Conventional technology makes it a simple matter to modulate an electron beam, so that the beam only bombards beam spot 26 at certain regular intervals. It is then only necessary, again by conventional methods, to synchronize the rotation of anode 10 to the modulation of the electron beam so that beam spot 26 is only generated, for instance, on alternate wedge shaped sections 12, 16, 20 and so forth.
  • the resulting x-ray exposure would then be composed of pulses of a single wavelength.
  • FIG. 2 is a simplified top view of x-ray tube anode 30 of an alternate embodiment of the invention with a pattern of concentric band sections 32, 34, 36, and 38 around center axis 40 of base disc 42.
  • These bands are of different materials and can be used in the same manner as the sections of FIG. 1 to generate multiple wavelength x-rays, except that the electron beam is deflected radially among the bands to change wavelengths.
  • Such electron beam deflection can be accomplished by either mechanical, electrostatic, or magnetic means. Magnetic deflection coils conventionally accomplish such electron beam deflection in every television receiver.
  • anode 38 when electron beam spot 44 is held at one radius and disc 42 is rotated in direction B, anode 38 generates radiation of a single wavelength.
  • the wavelength generated will vary based upon the material of the other bands which the beam bombards. Such deflection can be mechanically controlled if the goal is simply to change the radiation output to a constant single wavelength.
  • the electron beam is electronically deflected radially on path D onto different bands, and the wavelength will vary based upon whatever pattern of deflection is used.
  • FIG. 3 is a schematic representation of a partial side cross section view of x-ray tube 50 within which bombarded surface 52 of anode 54 is attached to and cooled by heat pipe 56 while generating x-ray beam 61.
  • x-ray tube 50 is constructed as a conventional x-ray tube would be with cathode 58 which generates electron beam 60 mounted within evacuated envelope 62 and interconnected to suitable power supplies (not shown) by cathode connections 64 which penetrate envelope 62.
  • FIG. 3 also schematically depicts conventional structures which are used to control electron beam 60.
  • Magnetic coil 66 is the device which deflects electron beam 60 in any direction along bombarded surface 52, as indicated by beams 60A and 60B.
  • Control grid 68 is also mounted within evacuated envelope 62 and along electron beam 60 and is capable of modulating beam 60 to prevent it from bombarding surface 52, in effect to turn off electron beam 60.
  • Control grid 68 is also a conventional device used within other electronic tubes, and is controlled by power supplies and pulse generators (not shown) to which it is attached by connection 70 which penetrates envelope 62.
  • Cylindrical heat pipe 56 penetrates envelope 62 and is sealed to it at vacuum seals 72 by conventional means. Heat pipe 56 eliminates the need to rotate anode 56 because heat pipe 56 is capable of cooling bombarding surface 52 well enough to prevent thermal damage to surface 52.
  • heat pipe 56 in order to sufficiently cool bombarding surface 52, heat pipe 56 is constructed with a tungsten casing, lithium fluid, and a niobium powder wick for high power density operation. Heat pipe 56 removes the heat generated at the spots at which electron beam 60 bombards surface 52 which is attached to heat pipe 56 in any manner which promotes heat conduction. Cooling coil 74, located at the condenser end of heat pipe 56, and through which a cooling fluid is pumped, then moves the heat from heat pipe 56 to a remote heat exchanger (not shown).
  • the electron beam can be rotated around the center axis instead of rotating the base disc.
  • the invention is not restricted to circular layouts of x- ray generating sections, so it is quite practical to arrange the sections in a grid pattern, much like a checkerboard. Such a layout permits a vast number of x-ray pulse patterns to be generated, and, of course, permits a virtually unlimited number of wavelengths to be generated within a single x-ray tube, because each section of the grid can be constructed of a different material.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

L'invention concerne un tube à rayons X qui a des capacités de longueurs d'ondes multiples. L'anode (56) du tube à rayons X comporte plusieurs sections se présentant comme de minces couches (52) de différents matériaux, les sections pouvant être des bandes circulaires, des coins disposés radialement ou des sections de forme rectangulaire attachées à l'anode. On modifie la longueur d'ondes soit en faisant tourner l'anode, soit en balayant le faisceau d'électrons (60) de manière à ce que celui-ci bombarde des sections différentes. On peut effectuer la rotation et le balayage rapidement pour créer un faisceau variable ou plus lentement pour générer de différentes longueurs d'ondes et obtenir des expositions individuelles. Dans un mode de réalisation, l'anode en tube se présente sous la forme de minces couches de matériau recouvrant un tube de chauffage haute température (74) qui transmet la chaleur en dehors du point de génération des rayons X dans l'anode à une vitesse suffisamment élevée pour empêcher la fusion de la couche source des rayons X.
PCT/US1999/005852 1998-03-27 1999-03-15 Tube a rayons x a longueurs d'ondes multiples WO1999050882A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4952998A 1998-03-27 1998-03-27
US09/049,529 1998-03-27

Publications (1)

Publication Number Publication Date
WO1999050882A1 true WO1999050882A1 (fr) 1999-10-07

Family

ID=21960307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/005852 WO1999050882A1 (fr) 1998-03-27 1999-03-15 Tube a rayons x a longueurs d'ondes multiples

Country Status (1)

Country Link
WO (1) WO1999050882A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795864A1 (fr) * 1999-06-29 2001-01-05 Thomson Tubes Electroniques Generateur de rayons x a balayage pour systeme d'imagerie susceptible de fonctionner a grande vitesse
WO2001099478A1 (fr) * 2000-06-22 2001-12-27 Xrt Limited Source de rayons x micro-cible
WO2003065772A2 (fr) * 2002-01-31 2003-08-07 The Johns Hopkins University Source de rayons x et procede pour la production plus efficace de frequences de rayons x au choix
DE102010019286A1 (de) * 2010-05-04 2011-05-26 Siemens Aktiengesellschaft Röntgenquelle und Verfahren zum Betrieb einer Röntgenquelle mit mehreren Targets
CN102655071A (zh) * 2011-03-04 2012-09-05 西门子公司 阻止短x射线脉冲中焦斑移动的装置和方法
DE102012213605A1 (de) * 2012-08-01 2014-02-06 Siemens Aktiengesellschaft Verfahren zum asynchronen Betrieb einer Drehanode mit reduziertem Brennfleckwackeln und zugehörige Röntgenstrahleranordnung
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
GB2479701B (en) * 2009-03-12 2015-12-09 Cxr Ltd X-ray scanners and X-ray sources therefor
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
EA038599B1 (ru) * 2020-07-31 2021-09-21 Андрей Владимирович САРТОРИ Рентгеновская трубка для радиационной обработки объектов
DE102020134488A1 (de) 2020-12-21 2022-06-23 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Röntgenquelle und Betriebsverfahren hierfür
DE102020134487A1 (de) 2020-12-21 2022-06-23 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Röntgenquelle und Betriebsverfahren hierfür

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942126A (en) * 1957-10-12 1960-06-21 Siemens Reiniger Werke Ag Rotating anode X-ray tube
US3753020A (en) * 1971-11-26 1973-08-14 Philips Electronics And Pharm Multi-anode x-ray tube
US4007375A (en) * 1975-07-14 1977-02-08 Albert Richard D Multi-target X-ray source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942126A (en) * 1957-10-12 1960-06-21 Siemens Reiniger Werke Ag Rotating anode X-ray tube
US3753020A (en) * 1971-11-26 1973-08-14 Philips Electronics And Pharm Multi-anode x-ray tube
US4007375A (en) * 1975-07-14 1977-02-08 Albert Richard D Multi-target X-ray source

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795864A1 (fr) * 1999-06-29 2001-01-05 Thomson Tubes Electroniques Generateur de rayons x a balayage pour systeme d'imagerie susceptible de fonctionner a grande vitesse
WO2001099478A1 (fr) * 2000-06-22 2001-12-27 Xrt Limited Source de rayons x micro-cible
US7308078B2 (en) 2000-06-22 2007-12-11 Xrt Limited X-ray micro-target source
WO2003065772A2 (fr) * 2002-01-31 2003-08-07 The Johns Hopkins University Source de rayons x et procede pour la production plus efficace de frequences de rayons x au choix
WO2003065772A3 (fr) * 2002-01-31 2004-02-26 Univ Johns Hopkins Source de rayons x et procede pour la production plus efficace de frequences de rayons x au choix
US7186022B2 (en) 2002-01-31 2007-03-06 The Johns Hopkins University X-ray source and method for more efficiently producing selectable x-ray frequencies
US10175381B2 (en) 2003-04-25 2019-01-08 Rapiscan Systems, Inc. X-ray scanners having source points with less than a predefined variation in brightness
US9442082B2 (en) 2003-04-25 2016-09-13 Rapiscan Systems, Inc. X-ray inspection system and method
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8885794B2 (en) 2003-04-25 2014-11-11 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US9020095B2 (en) 2003-04-25 2015-04-28 Rapiscan Systems, Inc. X-ray scanners
US9675306B2 (en) 2003-04-25 2017-06-13 Rapiscan Systems, Inc. X-ray scanning system
US9618648B2 (en) 2003-04-25 2017-04-11 Rapiscan Systems, Inc. X-ray scanners
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US10295483B2 (en) 2005-12-16 2019-05-21 Rapiscan Systems, Inc. Data collection, processing and storage systems for X-ray tomographic images
US9638646B2 (en) 2005-12-16 2017-05-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9048061B2 (en) 2005-12-16 2015-06-02 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
GB2479701B (en) * 2009-03-12 2015-12-09 Cxr Ltd X-ray scanners and X-ray sources therefor
DE102010019286A1 (de) * 2010-05-04 2011-05-26 Siemens Aktiengesellschaft Röntgenquelle und Verfahren zum Betrieb einer Röntgenquelle mit mehreren Targets
DE102011005115A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Unterdrückung der Brennfleckbewegung bei kurzen Röntgenstrahlpulsen
DE102011005115B4 (de) * 2011-03-04 2017-06-14 Siemens Healthcare Gmbh Vorrichtung und Verfahren zur Unterdrückung der Brennfleckbewegung bei kurzen Röntgenstrahlpulsen
CN102655071A (zh) * 2011-03-04 2012-09-05 西门子公司 阻止短x射线脉冲中焦斑移动的装置和方法
US9042518B2 (en) 2012-08-01 2015-05-26 Siemens Aktiengesellschaft Asynchronous operation of a rotary anode with reduced focal spot shake
DE102012213605A1 (de) * 2012-08-01 2014-02-06 Siemens Aktiengesellschaft Verfahren zum asynchronen Betrieb einer Drehanode mit reduziertem Brennfleckwackeln und zugehörige Röntgenstrahleranordnung
CN103582275A (zh) * 2012-08-01 2014-02-12 西门子公司 异步运行焦斑抖动降低的旋转阳极的方法和x射线辐射器
DE102012213605B4 (de) * 2012-08-01 2015-09-10 Siemens Aktiengesellschaft Verfahren zum asynchronen Betrieb einer Drehanode mit reduziertem Brennfleckwackeln und zugehörige Röntgenstrahleranordnung
EA038599B1 (ru) * 2020-07-31 2021-09-21 Андрей Владимирович САРТОРИ Рентгеновская трубка для радиационной обработки объектов
DE102020134488A1 (de) 2020-12-21 2022-06-23 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Röntgenquelle und Betriebsverfahren hierfür
DE102020134487A1 (de) 2020-12-21 2022-06-23 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Röntgenquelle und Betriebsverfahren hierfür
WO2022136392A2 (fr) 2020-12-21 2022-06-30 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Source de rayons x et procédé pour la faire fonctionner

Similar Documents

Publication Publication Date Title
WO1999050882A1 (fr) Tube a rayons x a longueurs d'ondes multiples
JP4028601B2 (ja) X線管
US7012989B2 (en) Multiple grooved x-ray generator
EP0564292B1 (fr) Scanner CT avec tube annulaire
US8520803B2 (en) Multi-segment anode target for an X-ray tube of the rotary anode type with each anode disk segment having its own anode inclination angle with respect to a plane normal to the rotational axis of the rotary anode and X-ray tube comprising a rotary anode with such a multi-segment anode target
US4788705A (en) High-intensity X-ray source
US4993055A (en) Rotating X-ray tube with external bearings
JPH06188092A (ja) X線発生用タ−ゲットとx線源とx線撮像装置
JP3559974B2 (ja) X線管
JP2004528682A (ja) 2つのフィラメントにより焦点が静電制御されるx線管
JP4298826B2 (ja) ストラドルベアリングアセンブリー
US3900751A (en) Rotating anode x-ray tube
JPH0235417B2 (fr)
US5838762A (en) Rotating anode for x-ray tube using interference fit
JP2929506B2 (ja) 冷却可変の高強度x線源
US3790836A (en) Cooling means for electrodes
EP0030453A1 (fr) Tube à rayons X à anode rotative et procédé pour produire un faisceau de rayons X
US4072875A (en) X-ray tube
JP3030069B2 (ja) X線管
US3892989A (en) Convergent flow hollow beam X-ray gun construction
JP3410749B2 (ja) 回転対陰極x線発生装置
JPS6139351A (ja) X線発生装置
JP2004095196A (ja) X線管
RU2168791C1 (ru) Рентгеновская трубка
CA1273984A (fr) Source de rayons x a haute intensite comportant une chambre a vide tournante

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase