WO1999050190A1 - Procede et dispositif permettant de traiter du manganese contenant de l'eau - Google Patents

Procede et dispositif permettant de traiter du manganese contenant de l'eau Download PDF

Info

Publication number
WO1999050190A1
WO1999050190A1 PCT/JP1999/001608 JP9901608W WO9950190A1 WO 1999050190 A1 WO1999050190 A1 WO 1999050190A1 JP 9901608 W JP9901608 W JP 9901608W WO 9950190 A1 WO9950190 A1 WO 9950190A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
manganese
treated
fluidized bed
treated water
Prior art date
Application number
PCT/JP1999/001608
Other languages
English (en)
French (fr)
Inventor
Junichi Nomura
Shinichiro Egawa
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP99910757A priority Critical patent/EP1095911A4/en
Publication of WO1999050190A1 publication Critical patent/WO1999050190A1/ja
Priority to US09/623,509 priority patent/US6495050B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/12Inert solids used as ballast for improving sedimentation

Definitions

  • the present invention relates to the treatment of manganese-containing water, and more particularly to a method and an apparatus for treating water containing high-concentration soluble manganese, such as water for use, industrial wastewater, and wastewater for treating sludge.
  • the method of removing manganese in the form of Fig. 5 is based on a method of removing water containing carbonate ions or water 11 containing carbonate ions in an upward flow into a fluidized bed reactor 1 using manganese sand as a fluid medium 2 without a support bed.
  • a method of removing water containing carbonate ions or water 11 containing carbonate ions in an upward flow into a fluidized bed reactor 1 using manganese sand as a fluid medium 2 without a support bed In addition to passing water through, and injecting an alkaline agent into the fluidized bed near the treated water inlet 4 or into the fluidized bed, and adjusting the treated water pH in the fluidized bed to 8 to 10 so that the water is dissolved in the water. It removes crystalline manganese by crystallization as manganese carbonate.
  • Manganese carbonate in the water to be treated decreases in solubility as the pH increases, and crystallizes through a metastable state. At this time, when manganese carbonate in a metastable state comes into contact with the crystallization medium, manganese carbonate crystallizes on the medium surface. At this time, crystallization does not occur if the pH of the water to be treated is low, and manganese hydroxide precipitates more than manganese carbonate if the pH is too high, so that pH control is important.
  • the present invention has as its first object to provide a method for treating manganese-containing water and an apparatus capable of suppressing the precipitation of manganese hydroxide even when the manganese concentration is high and injecting an alkali agent effectively. Make it an issue.
  • the present invention has been made in view of the above prior art, and has as its second object to provide a method and an apparatus for treating manganese-containing water that can remove both soluble manganese and suspended manganese in water. I do.
  • the present invention provides a method for treating manganese-containing water, which can easily cope with pH fluctuations of the water to be treated and can suppress the production of manganese hydroxide even when the manganese concentration increases.
  • a third object is to provide a method and an apparatus.
  • the present invention solves the first problem by passing treated water containing carbonate ions upward in a fluidized bed reactor having no support bed using manganese sand as a fluidized medium,
  • a plurality of the fluidized bed reaction towers are provided, and the treated water is supplied to the reaction tower. Water is passed in series to perform multi-stage treatment.
  • water to be treated containing carbonate ions is passed through a fluidized bed reaction tower having no supporting bed using manganese sand as a fluidized medium while flowing upward.
  • a method for treating manganese-containing water, wherein the soluble manganese in the water is crystallized and removed by adjusting the pH value of the treated water in the bed comprising: Forming a layer of suspended matter in the water to be treated that has passed through the layer, and removing the suspended substance layer to remove suspended manganese together with the soluble manganese in the treated water. It is what it was.
  • the pH of the treated water is preferably adjusted by adjusting the value of 18 to 8 to 10 by injecting an alkaline agent near the inlet of the water to be treated at the bottom of the reaction tower.
  • the horizontal cross-sectional area of the portion where the suspended solid layer is formed above the manganese sand fluidized bed is larger than the horizontal cross-sectional area of the manganese sand fluidized bed, and preferably 1.4. It is better to make it twice or more.
  • water to be treated containing carbonate ions is passed upward from the bottom of the tank to a fluidized bed reaction tank having no support bed using manganese sand as a fluid medium.
  • an alkaline agent is injected into the vicinity of the inlet of the water to be treated at the bottom of the reaction tank and / or into the fluidized bed, and the pH of the treated water in the fluidized bed is adjusted to 8 to 10 to obtain soluble manganese in the water.
  • a required amount of the treated water is introduced into the water to be treated, and the treated water is recycled.
  • a fluidized bed reactor having no support bed using manganese sand as a fluid medium, an inflow port provided at the bottom of the vessel for injecting water to be treated containing carbonate ions, and a treated water outflow port provided at the top of the vessel And the treated water at the bottom of the tank to adjust the treated water pH in the fluidized bed to 8 to 10
  • a manganese-containing water treatment apparatus for crystallizing and removing soluble manganese which has a vicinity of a water inlet and an injection port for an alkali agent provided in a fluidized bed, or a treatment water outlet for circulating a required amount of the treatment water. And a circulation passage connecting the inflow port of the water to be treated.
  • FIG. 1 is a schematic configuration diagram showing a processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a processing apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram illustrating a processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a conventional fluidized bed manganese removal apparatus.
  • FIG. 1 is a schematic configuration diagram illustrating a processing apparatus according to a first embodiment of the present invention.
  • the apparatus shown in FIG. 1 has a fluidized bed reaction tower arranged in series with 102 columns, has no support bed, holds a crystallization medium 102, and has a bottom treated water in the fluidized bed.
  • Two fluidized bed reactors 1 0 1, 1 0 1 ′ with an inlet for intake of 10 liters of water in the vicinity of the inlet 1 0 4, and the pH of the treated water in those fluidized bed reactors At least a pH measuring device 109 for measuring the pressure is provided, and the discharge amount of the alcohol injection pump 107 is adjusted according to the output signal of the pH measuring device 109.
  • each of the reaction towers has a treated water pump 103 for supplying treated water, a treated water inflow pipe 111 or 112, and a reverse flow for preventing the backflow of the crystallization medium when stopped.
  • Stop valve 105, medium discharge pipe 106, alkali agent injection pipe 114, treated water pipe for discharging treated water 113, water level gauge for measuring treated water level in fluidized bed 1 1 0 is provided.
  • the manganese sand as the manganese carbonate crystallization medium 102 used in the present invention, besides the manganese sand itself, a granular substance having a particle size of 0.1 to 5.0 mm can be used. Sand, anthracite, activated carbon, carbide, resin, etc. can be used as the particulate matter.
  • the material, particle size, shape, surface condition, packing density, etc. of the particulate matter can be selected according to the shape of the treatment equipment and the properties of the water to be treated.
  • manganese carbonate crystallization media such as the above media onto which manganese sand or manganese is adhered, or those that serve as raw materials for metal manganese such as electrolytic manganese dioxide are used. May be used.
  • To attach manganese to the surface of particulate matter there are methods such as spraying or immersing an aqueous solution of potassium permanganate or an aqueous solution of supersaturated manganese carbonate. Also, the particulate matter is transferred to a fluidized bed reactor.
  • the fluidized bed reactor 101, 10 ° of the present invention does not usually require a washing operation. However, when the water to be treated 111 contains organic S S ⁇ ⁇ which contaminates the medium 102, a washing operation may be performed.
  • the support bed is not intentionally provided, there is no flow abnormality of the medium 102 due to blockage of the support bed, etc., the introduction direction of the water to be treated 111, and the fluidized bed reaction tower 101, 100 1.
  • By optimizing the bottom structure it is possible to achieve an effective flow of the medium and thus an effective manganese crystallization reaction.
  • the medium 102 at the bottom of the thickened fluidized bed reaction tower is selectively discharged from the medium discharge pipe 106, and a new medium is added from the top of the fluidized bed reaction tower. I do.
  • the inlet port 108 is provided near the bottom treated water inlet 104 in the fluidized bed reactor.
  • the water to be treated in the present invention is at least 1.1 mg per manganese ion, Preferably, it contains 2.2 mg or more of carbonate ions or it is necessary to add carbonate ions.
  • the addition of carbonate ions is performed by adding sodium hydrogen carbonate, sodium carbonate, gas carbonate and the like.
  • the amount of normal water drainage does not specify the amount in particular, since it contains enough ion carbonate to produce manganese carbonate.
  • the pH of the treated water in the fluidized bed is preferably adjusted to be higher in the range of 8.0 to 10.0 in a later stage.
  • the pH of the treated water in the first column within the range of 8.0 to 9.5 and the pH of the treated water in the second column within the range of 8.5 to 10.0.
  • a crystallization reaction does not occur at pH 8.0 or less, and a crystallization reaction occurs at pHl 0.0 or more, but SS such as manganese hydroxide is generated, and the effect of the present invention is not sufficiently exerted.
  • the flow rate of the water to be treated into the reaction tower is preferably 200 to 200 OmZ in LV, but is not particularly specified as long as the medium flows and the target treated water quality can be obtained. Absent.
  • soluble manganese is crystallized and removed by a manganese sand fluidized bed in a fluidized bed reaction tower, and a sludge layer of suspended substances (sludge) contained in the water to be treated is formed above the fluidized bed.
  • sludge suspended substances
  • the suspended matter in the water to be treated forms a sludge layer as follows.
  • the flowing medium in the fluidized bed reaction tower when flowing water is flowing and repeatedly colliding with each other. Therefore, even when suspended substances are present in the water to be treated, the surface of the medium is always kept clean and the crystallization reaction can be maintained.
  • the suspended solids in the water to be treated are both smaller in particle size and density than the fluidized medium, flow out together with the water to be treated, and cannot remain in the fluidized bed reactor.
  • the suspended solids in the water to be treated like the fluid medium, repeatedly collide with each other, and some of the suspended solids coalesce, increasing the particle size. Suspended substances having an increased particle diameter can remain in the fluidized bed reactor, forming a suspended substance layer and further increasing the particle diameter.
  • the suspended manganese As the suspended manganese passes through this layer, it is coalesced with the suspended solids in the other water to be treated, or stays in the reaction tower taken up by the suspended substances having a large particle size, and is separated from the treated water. You.
  • FIG. 2 is a schematic configuration diagram of the processing apparatus of the present invention.
  • the apparatus shown in FIG. 2 has a crystallization medium fluidized bed 202 and a sludge layer 211 without a support bed, and is located near the bottom treated water inlet 211 in the fluidized bed reactor 201.
  • At least a fluidized bed reaction tower 201 equipped with an alcohol inlet 2 15 and a pH meter 208 installed in the treated water in the fluidized bed reaction tower 201 are provided.
  • the output of the pH metering tank 208 is adjusted by the output signal of the pH meter 208 to control the amount of discharge from the metering agent injection pump 206.
  • the treated water pump 203 for supplying the treated water, the treated water inflow pipe 204, and the dispersion plate 21 for uniformly distributing the treated water to the fluidized bed 202, It is equipped with a check valve 205 for preventing backflow of the crystallization medium when stopped, a medium discharge pipe 210, a sludge discharge pipe 211, and a treated water pipe 209 for discharging treated water.
  • manganese sand as a manganese carbonate crystallization medium used in the present invention, besides manganese sand itself, a granular material having a particle size of 0.1 to 5.0 mm can be used.c As the granular material, Sand, anthracite, activated carbon, carbide, resin, etc. can be used The material, particle size, shape, surface condition, packing density, etc. of the granular material can be selected according to the shape of the processing equipment and the nature of the water to be treated it can.
  • manganese carbonate crystallization media such as the above media onto which manganese sand or manganese is adhered, or those that serve as raw materials for metal manganese such as electrolytic manganese dioxide are used. May be used.
  • Man on the surface of particulate matter there are methods such as spraying or immersing an aqueous solution of potassium permanganate or an aqueous solution of supersaturated manganese carbonate. Also, the particulate matter is transferred to a fluidized bed reaction tower.
  • It may be filled in 1 and an aqueous solution containing manganese may be passed through.
  • the height of the packed bed of the crystallization medium into the fluidized bed reaction tower 201 is preferably 0.5 m to 2.0 m, and may be any value depending on the quality of the water to be treated, the flow rate, and the target treated water quality. Fill to height.
  • the fluidized bed reactor 201 of the present invention usually does not require a washing operation. However, in the case where the treated water 204 contains organic S S or a substance that contaminates the medium, a cleaning operation may be performed.
  • the support bed is not intentionally provided, there is no abnormal flow of the medium 202 due to blockage of the support bed, etc., and effective optimization by optimizing the introduction direction of the water to be treated and the bottom structure of the fluidized bed reaction tower The flow of the medium and, consequently, an effective manganese crystallization reaction can be performed. Furthermore, when the manganese carbonate crystallization reaction rate decreases, the medium at the bottom of the thickened fluidized bed reaction tower can be selectively discharged from the discharge pipe 210, and a new medium can be added from the top of the fluidized bed reaction tower. .
  • the sludge when the thickness of the sludge layer 2 12 in the fluidized bed reaction tower increases, the sludge is discharged from the sludge discharge pipe.
  • Sodium hydroxide, sodium carbonate and the like can be used as the alkali agent for adjusting ⁇ used in the present invention.
  • the inlet port for the alkaline agent is provided near the inlet for treated water at the bottom of the fluidized bed reactor.
  • the diameter of the upper sludge layer 211 is preferably at least 1.4 times the diameter of the lower portion of the crystallization medium fluidized bed 2 below.
  • the discharge amount of the alkali ij supply pump is adjusted by a pH measuring device provided in the treated water in the fluidized bed, and an arbitrary amount of the treated water is circulated and used. It becomes possible to cope with pH fluctuation, and even if the manganese concentration of the water to be treated increases, the crystallization speed of manganese can be adjusted by the dilution effect of the circulating water, and the precipitation of manganese hydroxide can be suppressed.
  • FIG. 3 and 4 show schematic configuration diagrams of processing apparatuses according to the third and fourth embodiments of the present invention.
  • the apparatus shown in FIG. 3 has no supporting bed, holds a manganese sand flowing medium 302, and is provided with multiple inlets 3 16 near the inlet 3 14 and in the vertical direction.
  • At least a fluidized bed reaction tank 301 and a pH meter 308 provided in the treated water in the fluidized bed are provided, and the supply agent is supplied by the output signal of the pH meter 308. This is for adjusting the discharge amount of the pump 303.
  • a raw water pump 303 to supply the water to be treated (raw water), a raw water inflow pipe 304, a check valve 305 to prevent the backflow of the crystallization medium when stopped, and an alkaline agent Alkaline agent tank 307 for supply, treated water pipe 309 for discharging treated water, circulating pump 310 for circulating part of treated water, treated water circulation pipe 310, and medium discharge A tube 3 13 is provided as appropriate. Further, a control mechanism for adjusting the total amount of the raw water pump 303 and the circulation pump 310 to a constant value may be provided.
  • the present invention will be described for each component.
  • a manganese carbonate crystallization medium used in the present invention, besides manganese sand itself, a granular substance having a particle size of 0.1 to 5.0 mm can be used.
  • Sand, anthracite, activated carbon, carbide, resin, etc. can be used as the particulate matter.
  • the material, particle size, shape, surface appearance, packing density, etc. of the particulate matter can be selected according to the shape of the treatment equipment and the properties of the water to be treated.
  • a manganese carbonate crystallization medium that uses manganese sand or the above-mentioned medium to which manganese is adhered, or a raw material of metal manganese such as electrolytic manganese dioxide is used.
  • Manganese can be attached to the surface of the particulate matter by spraying or dipping an aqueous solution of potassium permanganate or an aqueous solution of supersaturated manganese carbonate.
  • the granular substance may be filled in the fluidized bed reactor 1 and an aqueous solution containing manganese may be passed through.
  • the height of the filling bed of the fluidized bed reactor 301 for the crystallization medium is preferably 1 to 3 m, and the tank is filled to an arbitrary height depending on the quality of the water to be treated, the flow rate, and the target treated water quality.
  • the medium in the lower part of the thickened fluidized bed can be selectively discharged from the lower drain, and a new medium can be added from the upper part of the fluidized bed reactor.
  • sodium hydroxide, sodium carbonate and the like can be used as the alkaline agent for adjusting ⁇ ⁇ ⁇ ⁇ of the present invention.
  • a plurality of alkali agent injection ports are provided near the inlet of the water to be treated at the bottom of the reactor and in the fluidized bed. It is preferable to install the alkaline agent inlet in the height direction near the raw water inflow pipe at the lower part of the fluidized bed and at one or more places every 0.5 m from it.
  • an inlet port for the processing agent is provided near the inlet of the water to be treated in the fluidized bed reaction tank, a position where the water to be treated and the manganese carbonate fluid medium contact each other within 2 minutes is preferable.
  • horizontal position direction It is preferable that the distance between the injection points is between the wall of the reaction tank and each injection point and between each injection point is 100 mm or less.
  • the water to be treated that can be treated in the present invention must contain not less than 1.1 mg, preferably not less than 2.2 mg of carbonate ion for 1 mg of manganese ion, and if less than this, it is necessary to add carbonate ion. is there.
  • Carbonate ions are added by adding sodium bicarbonate, sodium carbonate, carbon dioxide gas and the like. However, the amount of ordinary water used is not specified, especially because the wastewater contains enough carbonate ions to produce manganese carbonate.
  • the flow rate of the water to be treated into the reaction tank is preferably 200 to 200 OmZ in LV, but it is particularly specified as long as the medium flows and the target water quality can be obtained. Not something.
  • the treatment water ⁇ in the fluidized bed reaction tank is preferably adjusted to 8.0 to 10.0. At pH 8.0 or lower, the crystallization reaction does not occur. At pH 10.0 or higher, the crystallization reaction occurs, but SS such as manganese hydroxide is generated, and the effect of the present invention is not sufficiently exhibited.
  • the injection amount of the alkaline agent is 50-80% of the total amount, and the remaining 20-50% from the injection point at the bottom of the reaction tank to half of the medium filling, and half of the medium filling height. Is preferably filled.
  • automatic control such as PID control based on the measured pH value of the treated water in the fluidized-bed reaction tank may be performed.
  • the crystallization reaction rate in the lower part of the reactor decreases according to the progress, so that the injection of the alkaline agent into the lower part of the reactor is stopped, and the injection point after the lower part of the fluidized bed is half the height of the medium filling.
  • the crystallization rate may be maintained by injecting 50-80% of the total volume up to the position.
  • the treatment water circulation which is a feature of the present invention will be described.
  • the flow rate of the raw water is small, the shortage is supplemented by the circulation of the treated water to maintain the flow velocity in the fluidized bed.
  • a control mechanism for keeping the total flow rate of the raw water pump and the circulation pump constant may be provided.
  • the manganese concentration can be reduced by circulating an arbitrary amount of the treated water and diluting the raw water, thereby suppressing the production of manganese hydroxide.
  • the circulating amount of the treated water varies depending on the pH fluctuation of the raw water and the manganese concentration, but is preferably 0.5 to 5 times the raw water flow rate.
  • a deposition tank may be installed in order to prevent the suspended substance in the water from staying in the fluidized bed for a long time.
  • the flow rate in the settling tank is preferably equal to or lower than the flow rate of the fluidized bed.
  • the treated water shown in Table 1 was treated using the two-tower treatment apparatus shown in FIG.
  • the apparatus of FIG. 1 used for this treatment uses the fluidized-bed reaction towers in series, and the treated water in the first column has a pH of 9.0 and the treated water in the second column has a pH of 9.5.
  • the apparatus of FIG. 1 used for this treatment uses the fluidized-bed reaction towers in series, and the treated water in the first column has a pH of 9.0 and the treated water in the second column has a pH of 9.5.
  • the treated water is stable in the first column pH: 8.8 to 9.1, the second column pH: 9.4 to 9.6, and the increase in T—Mn relative to the raw water is in the first column: 0.1 mgZ 1 to 0.4 mgZl.
  • the treated water has a large fluctuation of pH: 9.1 to 9.8, and the increase of T-Mn with respect to the raw water is 3. SmgZ lg. (Example 2)
  • the water to be treated shown in Table 2 was treated using the treatment apparatus shown in FIG.
  • the manganese carbonate crystallization medium uses 16 liters of manganese sand with an average particle size of 0.4 mm.
  • the fluidized bed reactor used was a column having a crystallization medium fluidized bed diameter of 100 mm and a sludge bed diameter of 140 mm, and the pH of the treated water was adjusted to 9.5.
  • the same water to be treated was treated using the conventional apparatus shown in FIG.
  • the reaction column was a column having a diameter of 100 mm, and the pH of the treated water was adjusted to 9.5.
  • the raw water shown in Table 3 was treated using the apparatus of the present invention shown in FIG. 3 and the conventional apparatus 1 shown in FIG. 5 for comparison.
  • manganese removal capable of suppressing the production of manganese hydroxide can be performed even when the pH of the water to be treated fluctuates or the Mn concentration of the water to be treated increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Description

明 細 書
マンガン含有水の処理方法及び装置
(発明の属する技術分野)
本発明は、 マンガン含有水の処理に係り、 特に、 用水、 工業排水、 上水汚泥処 理排水等の高濃度の溶解性マンガンを含む水の処理方法及び装置に関する。
(背景技術)
流動床によるマンガン除去方法としては、 特開平 1 0— 1 3 7 7 7 2号公報が 知られており、 その形態を図 5に示す。
図 5の形態のマンガン除去方法は、 マンガン砂を流動媒体 2とする支持床の無 い流動床反応塔 1に、 炭酸イオンを含有した水又は炭酸イオンを添加した水 1 1 を上向流で通水するとともに、 流動床の被処理水流入口 4近辺あるいは流動床内 にアル力リ剤を注入し、 流動床内の処理水 p Hを 8 ~ 1 0に調節することにより、 前記水中の溶解性マンガンを炭酸マンガンとして晶析除去するものである。
公知の流動床によるマンガン除去方法について詳しく説明する。
マンガンは中性付近の水中において、 2価態の場合は M n ( H C 0 3) や M n S〇4、 4価態の場合は M n 0 2 · mH 20の形態で存在する。 この場合、 晶析除 去の対象となるのは、 イオン状である 2価態のマンガンである。
2価態のマンガンは、 炭酸イオンと (1 ) 式のように反応し炭酸マンガンとな o
M n 2 + + H C〇3- + O H—→ M n C 03 + H 2〇 · · · (1 )
被処理水中の炭酸マンガンは、 p Hの上昇に従って溶解度が減少し、 準安定状 態を経て結晶化する。 この時、 準安定状態の炭酸マンガンと晶析用媒体が接触す ると、 媒体表面に炭酸マンガンが晶析する。 このとき、 被処理水の p Hが低いと 晶析が起こらず、 p Hが高すぎると炭酸マンガンよりも水酸化マンガンが多く析 出するため、 p H制御が重要である。
しかし、 従来の方法では、 被処理水のマンガン濃度が高い場合、 マンガンの準 安定状態がより短時間となり、 水酸化マンガンが多く析出し、 特に装置が大型化 した場合、 流動床内の複数箇所に任意量のアル力リ剤を効果的に注入することが 困難である等の問題点があった。 また、 水中の懸濁状マンガンは上記反応に関与 せず、 従来のマンガン除去方法では水中の懸濁状マンガンを除去することができ なかった。 更に、 上記の方法では被処理水の p H変動が大きい場合、 その制御が 難しく、 被処理水のマンガン濃度が高い場合、 マンガンの準安定状態はより短時 間となり、 水酸化マンガンが多く析出するという問題点があった。
(発明が解決しょうとする課題)
本発明は、 上記従来技術に鑑み、 マンガン濃度が高い場合でも水酸化マンガン の析出を抑え、 アルカリ剤を効果的に注入できるマンガン含有水の処理方法、 及 び装置を提供することを第 1の課題とする。 また、 本発明は、 上記従来技術に鑑 み、 水中の溶解性マンガンと懸濁状マンガンの両方を除去することができるマン ガン含有水の処理方法及び装置を提供することを第 2の課題とする。
更に、 本発明は、 上記従来技術に鑑み、 被処理水の p H変動に対して容易に対 処でき、 マンガン濃度の上昇に対しても水酸化マンガンの生成を抑制できるマン ガン含有水の処理方法及び装置を提供することを第 3の課題とする。
(課題を解決するための手段)
本発明は、 第 1の課題に対してはマンガン砂を流動媒体とする支持床の無い流 動床反応塔に、 炭酸イオンを含む被処理水を上向流で通水するとともに、 流動床 内の処理水 p H値を調節することにより、 前記水中の溶解性マンガンを晶析除去 するマンガン含有水の処理方法において、 前記流動床反応塔を複数塔設け、 被処 理水を該反応塔に直列に通水して多段処理することとしたものである。
また、 本発明では、 マンガン砂を流動媒体とする支持床の無い流動床反応塔と、 該反応塔の底部に設けた炭酸ィォンを含む被処理水の流入口及び反応塔上部に設 けた処理水流出口と、 流動床内の処理水 p H値を調節するためのアル力リ剤注入 口とを有する溶解性マンガンを晶析除去するマンガン含有水の処理装置において、 前記流動床反応塔を複数塔設け、 該複数の反応塔を直列に接続すると共に、 各塔 底部の被処理水流入口近辺にそれぞれアル力リ剤の注入口を設けることとしたも のである。
前記において、 流動床内の処理水 p H値の調節は、 アルカリ剤を注入して p H 8〜1 0の間で複数の反応塔の後段になるに従い高く設定するのが良く、 また、 前記複数の反応塔には、 流動床内の p H値を 8〜1 0の間で後段になるに従い高 く設定する p H調節機構を有するのが良い。
上記第 2の課題を解決するために、 本発明では、 マンガン砂を流動媒体とする 支持床の無い流動床反応塔に、 炭酸イオンを含む被処理水を上向流で通水すると ともに、 流動床内の処理水 p H値を調節することにより、 前記水中の溶解性マン ガンを晶析除去するマンガン含有水の処理方法において、 前記流動床反応塔のマ ンガン砂流動層上部に、 該流動層を通過した被処理水中の懸濁物質の層を形成さ せ、 該懸濁物質層を除去することにより、 前記被処理水中の溶解性マンガンと共 に、 懸濁状マンガンをも除去することとしたものである。
また、 本発明では、 マンガン砂を流動媒体とする支持床の無い流動床反応塔と、 該反応塔の底部に設けた炭酸ィォンを含む被処理水の流入口及び反応塔上部に設 けた処理水流出口と、 流動床内の処理水 p H値を調節するためのアル力リ剤注入 口とを有する溶解性マンガンを晶析除去するマンガン含有水の処理装置において、 前記流動床反応塔のマンガン砂流動層上部に、 披処理水中の懸濁物質の層を形成 させ、 該懸濁物質層内に懸濁物質を除去する排出管を備えることとしたものであ る o
本発明において、 前記処理水 p H値の調節は、 反応塔底部の被処理水流入口近 辺にアル力リ剤を注入することにより、 1^を8〜1 0に調節して行うのがよい。 また、 前記流動床反応塔は、 マンガン砂流動層上部の懸濁物質層が形成される 部分の水平方向断面積を、 マンガン砂流動層部の水平方向断面積よりも大きく、 好ましくは 1 . 4倍以上とするのがよい。
上記第 3の課題を解決するために、 本発明では、 マンガン砂を流動媒体とする 支持床の無い流動床反応槽に、 炭酸イオンを含む被処理水を槽底部から上向流で 通水するとともに、 反応槽底部の被処理水流入口近辺及び/又は流動床内にアル 力リ剤を注入し、 流動床内の処理水 P Hを 8〜1 0に調節することにより、 前記 水中の溶解性マンガンを晶析除去するマンガン含有水の処理方法において、 前記 処理水の所要量を被処理水に導入し、 循環使用することとしたものである。
また、 本発明では、 マンガン砂を流動媒体とする支持床の無い流動床反応槽と、 該槽底部に設けた炭酸イオンを含む被処理水を流入する流入口及び槽上部に設け た処理水流出口と、 流動床内の処理水 p Hを 8〜1 0に調節する槽底部の被処理 水流入口近辺及びノ又は流動床内に設けたアルカリ剤注入口とを有する溶解性マ ンガンを晶析除去するマンガン含有水の処理装置において、 前記処理水の所要量 を循環するための処理水流出口と被処理水流入口を接続する循環通路を設けるこ ととしたものである。
前記処理において、 処理水の循環は、 循環通路に沈殿槽を設け、 該槽の上澄水 の一部を用いるのが良い。
(図面の簡単な説明)
図 1は、 本発明の第 1の形態の処理装置を示す概略構成図。
図 2は、 本発明の第 2の形態の処理装置の概略構成図。
図 3は、 本発明の第 3の形態の処理装置を示す概略構成図。
図 4は、 本発明の第 4の形態の処理装置を示す概略構成図。
図 5は、 従来の流動床式マンガン除去装置の概略構成図である。
(発明の実施の形態)
本発明によれば、 流動床反応塔を複数塔設け、 各流動床内の処理水 p Hを後段 になるに従い高く設定するため、 被処理水のマンガン濃度が上昇しても、 晶析反 応が各塔で徐々に進行するため水酸化マンガンの析出を抑制でき、 装置を大型化 しても多段式のため、 各塔に任意の量のアル力リ剤を注入することができる。 次に、 本発明を図 1に用いて詳細に説明する。 図 1は本発明の第 1の形態の処 理装置を示す概略構成図である。
図 1に示す装置は、流動床反応塔を 1 0 2塔直列に配備したものであり、 支持 床を有さず晶析用媒体 1 0 2を保持し、 流動床内の底部被処理水の流入口 1 0 4 近辺にアル力リ剤注入口 1 0 8を備えた流動床反応塔 2基 1 0 1 , 1 0 1 ' と、そ れらの流動床反応塔内の処理水中の p Hを測定する p H測定器 1 0 9とを少なく とも配備し、 該 p H測定器 1 0 9の出力信号によりアル力リ剤注入ポンプ 1 0 7 の吐出量を加減するものである。 また、 同時にそれぞれの反応塔には、 被処理水 を供給するための被処理水ポンプ 1 0 3、 被処理水流入管 1 1 1又は 1 1 2、 停 止時に晶析媒体の逆流を防止する逆止弁 1 0 5、 媒体用移出管 1 0 6、 アルカリ 剤注入管 1 1 4、 処理水を排出するための処理水管 1 1 3、 流動床内の処理水水 位を測定するための水位計 1 1 0を備える。 次に、 本発明を各構成要件ごとに説明する。
本発明で用いる炭酸マンガンの晶析用媒体 1 0 2であるマンガン砂としては、 マンガン砂そのもの以外に、 粒径 0. 1〜5. 0 mmの粒状物質を使用することが できる。 粒状物質としては、 砂、 アンスラサイ ト、 活性炭、 炭化物、 樹脂等が使 用できる。 粒状物質の材質、 粒径、 形状、 表面状態、 充填密度等は、 処理装置の 形状、 被処理水の性質に合わせて選定することができる。
また、 マンガン晶析反応を早期に安定化させるために、 炭酸マンガン晶析用媒 体として、 マンガン砂やマンガンを付着させた上記媒体や、 電解二酸化マンガン のような金属マンガンの原料となるものを使用しても良い。 粒状物質表面にマン ガンを付着させるには、 過マンガン酸カリウム水溶液や過飽和の炭酸マンガン水 溶液を噴霧したり、 浸潰させる方法などがある。 また、 粒状物質を流動床反応塔
1 0 1, 1 0 1 ' に充填し、 マンガンを含む水溶液を通水しても良い ό
晶析用媒体 2の流動床反応塔 1 0 1 , 1 0 Γ の充填層高は、 0. 5 m〜2. 0 mが好ましく、 被処理水の水質、 通水速度、 目標の処理水質により任意の高さに 充填する。
本発明の流動床反応塔 1 0 1, 1 0 Γ は、 通常洗浄操作を必要としない。 し かし、 被処理水 1 1 1に有機性の S Sゃ該媒体 1 0 2を汚染するもの等が含まれ る場合、 洗浄操作を行っても良い。
また、 支持床をあえて設けていないので、 支持床の閉塞等に伴う媒体 1 0 2の 流動異常が無く、 被処理水 1 1 1の導入方向、 流動床反応塔 1 0 1 , 1 0 Γ の 底部構造の最適化により効果的な媒体の流動、 ひいては効果的なマンガン晶析反 応を行うことができる。
さらに、 炭酸マンガン晶析反応速度が低下した場合、 肥厚した流動床反応塔下 部の媒体 1 0 2を媒体用移出管 1 0 6より選択的に排出後、 新しい媒体を流動床 反応塔上部より追加する。
本発明で用いる p H調節用のアルカリ剤としては、 水酸化ナトリウム、 炭酸ナ トリウム等が使用できる。 アル力リ剤注入口 1 0 8は流動床反応塔内の底部被処 理水流入口 1 0 4近辺に設ける。
本発明で処理する被処理水は、 マンガンイオン 1 m gに対して 1 . I m g以上、 好ましくは 2.2 mg以上の炭酸イオンを含有するか、 炭酸イオンを添加する必 要がある。 炭酸イオンの添加は、 炭酸水素ナトリウム、 炭酸ナ ト リウム、 炭酸ガ ス等を添加することにより行う。 しかし、 通常の用水 '排水は、 炭酸マンガンの 生成に十分な炭酸ィオンを含むため、 特に存在量を規定するものではない。 本発明においては、 流動床内の処理水 pHは、 8.0〜10.0の範囲で、 後段 になるに従い高く調節することが好ましい。 例えば、 流動床反応塔を 102塔使 用する場合、 1塔目の処理水 pHを 8.0〜9.5、 2塔目の処理水 pHを 8.5〜 10. 0の範囲で調節する。 P H8.0以下では晶析反応は起こらず、 pHl 0.0 以上では晶析反応は起こるものの、 水酸化マンガン等の S Sが発生し、 本発明の 効果が十分に発揮されない。
被処理水の反応塔内への通水速度は、 LVで 200〜200 OmZ曰が好まし いが、 当該媒体が流動し目標とする処理水質が得られる流速であれば、 特に規定 するものではない。
本発明によれば、 流動床反応塔内のマンガン砂流動層により溶解性マンガンを 晶析除去し、 かつ、 前記流動層上部に被処理水に含まれる懸濁物質 (スラッジ) のスラッジ層を形成させることにより、 被処理水中の懸濁状マンガンを捕捉 ·除 去するものである。
被処理水中の懸濁物質は、 次のようにスラッジ層を形成する。
流動媒体であるマンガン砂
粒径 : 0.4 mm
粒子密度: 2.6 g/m 1
被処理水中の懸濁物質
粒径 : 0.01 mm〜0. 1 mm
粒子密度: 2.0 g/m 1
通水時の流動床反応塔内の流動媒体は、 流動するとともに媒体同士の衝突を繰 り返している。 よって、 被処理水中に懸濁物質が存在した場合でも、 媒体表面は 常に清浄に保たれ、 晶析反応が維持できる。
また、 被処理水中の懸濁物質は前記のように粒径 ·密度ともに流動媒体よりも 小さく、 被処理水とともに流出し、 流動床反応塔内に留まることはできない。 しかし、 被処理水中の懸濁物質も流動媒体と同じく、 粒子同士が衝突を繰り返 しており、 懸濁物質の一部は合一し、 粒子径を増大させる。 粒子径の増大した懸 濁物質は流動床反応塔に留まることができ、 懸濁物質層を形成、 さらに粒径が増 大する。
水平方向断面積を大きくすることにより、 より小粒径の懸濁物質も反応塔内に 滞留することができる。
懸濁状マンガンがこの層を通過するとき、 他の被処理水中の懸濁物質とともに 合一、 又は粒径の增大した懸濁物質に取り込まれた反応塔内に滞留、 処理水から 分離される。
次に、 本発明を図 2を用いて詳細に説明する。 図 2は、 本発明の処理装置の概 略構成図である。
図 2に示す装置は、 支持床を有さず晶析用媒体流動層 2 0 2及びスラッジ層 2 1 2を保持し、 流動床反応塔 2 0 1内の底部被処理水流入口 2 1 4近辺にアル 力リ剤注入口 2 1 5を備えた流動床反応塔 2 0 1と、 流動床反応塔 2 0 1内の処 理水中に設置された p H測定器 2 0 8を少なくとも配備し、 該 p H測定器 2 0 8 の出力信号により、 アル力リ剤槽 2 0 7からのアル力リ剤注入ポンプ 2 0 6の吐 出量を加減するものである。 また、 同時に被処理水を供給するための被処理水ポ ンプ 2 0 3、被処理水流入管 2 0 4、被処理水を流動層 2 0 2に均一に分散させる ための分散板 2 1 3、 停止時に晶析用媒体の逆流を防止する逆止弁 2 0 5、 媒体 排出管 2 1 0、 スラッジ排出管 2 1 1、 処理水を排出するための処理水管 2 0 9 を備える。
本発明で用いる炭酸マンガンの晶析用媒体であるマンガン砂としては、 マンガ ン砂そのもの以外に、 粒径 0. 1〜5 . 0 mmの粒状物質を使用することができる c 粒状物質としては、 砂、 アンスラサイ ト、 活性炭、 炭化物、 樹脂等が使用できる 粒状物質の材質、 粒径、 形状、 表面状態、 充填密度等は、 処理装置の形状、 被処 理水の性質に合わせて選定することができる。
また、 マンガン晶析反応を早期に安定化させるために、 炭酸マンガン晶析用媒 体として、 マンガン砂やマンガンを付着させた上記媒体や、 電解二酸化マンガン のような金属マンガンの原料となるものを使用しても良い。 粒状物質表面にマン ガンを付着させるには、 過マンガン酸力リウム水溶液や過飽和の炭酸マンガン水 溶液を噴霧したり、 浸潰させる方法などがある。 また、 粒状物質を流動床反応塔
1に充填し、 マンガンを含む水溶液を通水しても良い。
晶析用媒体の流動床反応塔 2 0 1への充填層高は、 0 . 5 m〜2. 0 mが好まし く、 被処理水の水質、 通水速度、 目標の処理水質により任意の高さに充填する。 本発明の流動床反応塔 2 0 1は、 通常洗浄操作を必要としない。 しかし、 被処 理水 2 0 4に有機性の S Sや当該媒体を汚染するもの等が含まれる場合、 洗浄操 作を行っても良い。
また、 支持床をあえて設けていないので、 支持床の閉塞等に伴う媒体 2 0 2の 流動異常が無く、 被処理水の導入方向、 流動床反応塔の底部構造の最適化により、 効果的な媒体の流動、 ひいては効果的なマンガン晶析反応を行うことができる。 さらに、 炭酸マンガン晶析反応速度が低下した場合、 肥厚した流動床反応塔下 部の媒体を排出管 2 1 0より選択的に排出後、 新しい媒体を流動床反応塔上部よ り追加することができる。
本発明では、 流動床反応塔内のスラッジ層 2 1 2厚が高くなつた場合、 スラッ ジ排出管よりスラッジを排出する。
本発明で用いる ρ Η調節用のアルカリ剤としては、 水酸化ナトリウム、 炭酸ナ トリゥム等が使用できる。 アル力リ剤注入口 2 1 5は流動床反応塔内の底部被処 理水流入口 2 1 4近辺に設ける。
本発明で処理できる被処理水 2 0 4は、 マンガンイオン l m gに対して 1 . 1 m g以上、 好ましくは 2. 2 m g以上の炭酸イオンを含有する必要があり、 これ 以下の場合は、 炭酸イオンを添加する必要がある。 炭酸イオンの添加は、 炭酸水 素ナトリウム、 炭酸ナトリウム、 炭酸ガス等を添加することにより行う。 しかし、 通常の用水 '排水は、 炭酸マンガンの生成に十分な炭酸イオンを含むため、 特に 存在量を規定するものではない。
流動床反応塔内の処理水 P Hは、 8 . 0〜1 0 . 0の範囲で調節するのが好まし い。 p H 8. 0以下では晶析反応は起こらず、 P H I 0. 0以上では晶析反応は起 こるものの、 水酸化マンガン等の S Sが発生し、 本発明の効果が十分に発揮され ない。 被処理水の反応塔内への通水速度は、 L Vで 2 0 0〜2 0 0 0 m/日が好まし いが、 当該媒体が流動し、 目標とする処理水質が得られる流速であれば、 特に規 定するものではない。
本発明の流動床反応塔は、 上部のスラッジ層 2 1 2部分の直径が、 それより下 部の晶析用媒体流動層 2部分の直径の 1 . 4倍以上が好ましい。
本発明によれば、 流動床内の処理水中に設けた p H測定器により、 アルカリ斉 ij 供給ポンプの吐出量を調整し、 処理水の任意の量を循環使用しており、 被処理水 の p H変動に対して対応可能となり、 被処理水のマンガン濃度の上昇に対しても 循環水の希釈効果によりマンガンの晶析速度を調節でき、 水酸化マンガンの析出 を抑制することができる。
次に、 本発明を図面を用いて詳細に説明する。
図 3及び図 4に本発明の第 3及び第 4の態様の処理装置の概略構成図を示す。 図 3に示す装置は、支持床を有さずマンガン砂の流動媒体 3 0 2を保持し、流入 口 3 1 4近辺及び鉛直方向に複数箇所のアル力リ剤注入口 3 1 6を備えた流動床 反応槽 3 0 1と、流動床内の処理水中に配備された p H測定器 3 0 8とを少なく とも配備し、 該 p H測定器 3 0 8の出力信号によりアル力リ剤供給ポンプ 3 0 6 の吐出量を加減するものである。 また、 同時に被処理水 (原水) を供給するため の原水ポンプ 3 0 3、 原水流入管 3 0 4、 停止時に晶析用媒体の逆流を防止する ための逆止弁 3 0 5、 アルカリ剤を供給するためのアルカリ剤槽 3 0 7、 処理水 を排出するための処理水管 3 0 9、 処理水の一部を循環するための循環ポンプ 3 1 0、 処理水循環用配管 3 1 1及び媒体排出管 3 1 3を適宜備えてなる。 また、 原水ポンプ 3 0 3と循環ポンプ 3 1 0の合計量を、 一定に調節する制御機構を備 えても良い。
図 4に示す装置は、図 3に示す装置の処理水循環用配管の途中に、沈殿槽 3 1 2 を備えたものである。 流動床反応槽からの流出水は、 沈殿槽の下部配管より流入 し、 上部配管 (処理水管 3 0 9 ) から上澄水が処理水として流出する。 流動床反 応槽からの流出水に含まれる懸濁物質は、 前記槽で沈殿分離され上澄水の任意の 量が流動床反応槽に循環される。
次に、 本発明を各構成要件ごとに説明する。 本発明で用いる炭酸マンガンの晶析用媒体であるマンガン砂としては、 マンガ ン砂そのもの以外に、 粒径 0. 1〜5. 0 mmの粒状物質を使用することができ る。 粒状物質としては、 砂、 アンスラサイ ト、 活性炭、 炭化物、 樹脂等が使用で きる。 粒状物質の材質、 粒径、 形状、 表面上態、 充填密度等は、 処理装置の形状、 被処理水の性質に合わせて選定することができる。
また、 マンガン晶析反応を早期に安定化させるために、 炭酸マンガン晶析用媒 体として、 マンガン砂やマンガンを付着させた上記媒体や電解二酸化マンガンの ような金属マンガンの原料としたものを使用しても良い。 粒状物質表面にマンガ ンを付着させるには、 過マンガン酸力リウム水溶液や過飽和の炭酸マンガン水溶 液を噴霧したり、 浸漬させる方法などがある。 また、 粒状物質を流動床反応槽 1 に充填し、 マンガンを含む水溶液を通水しても良い。
晶析用媒体の流動床反応槽 3 0 1の充填槽高は 1〜 3 mが好ましく、 被処理水 の水質、 通水速度、 目標の処理水質により、 任意の高さに充填する。
本発明で用いる図 3及び図 4の流動床反応槽は、 通常洗浄操作を必要としない。 しかし、 被処理水に有機性の S Sや当該媒体を汚染するもの等が含まれる場合、 洗浄操作を行っても良い。
また、 支持床を敢えて設けていないので、 支持床の閉塞等に伴う媒体の流動異 常が無く、 被処理水の導入方向、 流動床反応槽の底部構造の最適化により、 効果 的な媒体の流動、 ひいては効果的なマンガン晶析反応を行うことができる。
さらに、 炭酸マンガン晶析反応速度が低下した場合、 肥厚した流動床下部の媒 体を下端ドレーンより選択的に排出後、 新しい媒体を流動床反応槽上部より追加 することができる。
次に、 本発明の ρ Η調節用のアルカリ剤としては、 水酸化ナトリウム、 炭酸ナ トリウム等が使用できる。
アルカリ剤注入口は、 反応槽底部の被処理水の流入口近辺及び流動床に複数箇 所設ける。 アルカリ剤注入口の高さ方向の位置は、 流動床下部の原水流入管付近 と、 そこから 0 . 5 m置きに 1力所以上設置することが好ましい。 流動床反応槽 の被処理水の流入口近辺にアル力リ剤注入口を設ける場合は、 被処理水と炭酸マ ンガン流動媒体とが、 2分以内に接触する位置が好ましい。 また、 水平位置方向 の注入点は、 反応槽壁面と各注入点の間、 及び各注入点同志の間の距離が 100 mm以下であることが好ましい。 流動床に 1ケ所のみ、 アルカリ剤を注入する場 合は、 反応槽底部又は反応槽底部の被処理水流入口近辺が好ましい。
本発明で処理できる被処理水は、 マンガンイオン lmgに対して 1. lmg以 上、 好ましくは 2.2mg以上の炭酸イオンを含有する必要があり、 これ以下の 場合は、 炭酸イオンを添加する必要がある。 炭酸イオンの添加は炭酸水素ナトリ ゥム、 炭酸ナトリウム、 炭酸ガス等を添加することにより行う。 しカヽし、 通常の 用水 '排水は炭酸マンガンの生成に十分な炭酸イオンを含むために、 特には、 存 在量を規定しない。
被処理水の反応槽内への通水速度は、 L Vで 200~200 OmZ曰が好まし いが、 当該媒体が流動し、 目標とする処理水質が得られる流速であれば、 特に規 定するものではない。
本発明の処理方法においては、流動床反応槽内の処理水 ρΗは、 8.0〜10.0 に調節することが好ましい。 pH 8.0以下では、 晶析反応は起こらず、 pH 10.0以上では、 晶析反応は起こるものの、 水酸化マンガン等の S Sが発生し、 本発明の効果が十分に発揮されない。
アルカリ剤の注入量は、 全体量の 50〜 80%を、 反応槽下部の注入点から媒 体充填の半分の位置までに、 残りの 20〜50%を、 媒体充填高さの半分の位置 以降に充填することが好ましい。 アルカリ剤注入の全体量の調節は、 流動床反応 槽内処理水の pH測定値による P I D制御等自動制御を行っても良い。
さらに、 経過曰数に従い反応槽下部の晶析反応速度は低下するため、 反応槽下 部へのアル力リ剤注入を停止し、 流動床下部以降の注入点から媒体充填高さの半 分の位置までに、 全体量の 50〜80%を注入することにより、 晶析反応速度を 維持しても良い。
次に、 本発明の特徴である処理水循環について説明する。 本発明では、 原水の 流量が少ない場合、 不足分を処理水循環によって補い、 流動床内の流速を維持す る。 このとき、 原水ポンプと循環ポンプの合計流量を一定にする制御機構を設け ても良い。
原水の p H変動が大きい場合、 処理水の任意の量を循環することにより、 循環 水が緩衝剤の役割を果たし、 流動床内の p Hを安定させることができる。
原水の M n濃度が高くなつた場合、 処理水の任意の量を循環し、 原水を希釈す ることにより、 マンガン濃度を低下させ、 水酸化マンガンの生成を抑えることが できる。
処理水の循環量は、 原水の p H変動の大きさやマンガン濃度により異なるが、 原水流量の 0 . 5倍から 5倍が好ましい。
本発明では、 原水の懸濁物質が多く、 循環水量が多い場合、 水中の懸濁物質が 流動床内に長時間滞留する事を防ぐために、 沈着槽を設置しても良い。 沈殿槽内 の流速は、 流動床の流速以下が好ましい。
以下、 本発明を実施例により具体的に説明する。
(実施例 1 )
図 1の 2塔式の処理装置を用いて、 表 1に示す被処理水を処理した。
炭酸マンガン晶析用媒体は、 平均粒径 0. 4 mmのマンガン砂を使用した。 こ の媒体 1 6リッ トルを直径 1 0 0 mmの流動床反応塔に充填し、 流動床反応塔内 流速を L V 6 0 O m/ dで通水した。
本処理に用いた図 1の装置は、 前記流動床反応塔を直列に 1 0 2塔用い、 第 1 塔処理水 p Hを 9 . 0、 第 2塔処理水 p Hを 9 . 5になるように調節した。
一方、 比較例として、 図 2の従来装置である前記流動床反応塔を 1塔用いて、 処理水 p Hを 9 . 5になるように調節して、 前記本発明の処理と同様に処理した。 これらの結果を表 1に示す。
表 1
Figure imgf000015_0001
本発明においては、 処理水は第 1塔 pH: 8.8〜9.1、 第 2塔 pH: 9.4 〜9.6と安定しており、 原水に対する T— Mnの増加は第 1塔: 0. lmgZ 1 〜0.4mgZl、 第 2塔: 0.2mgZl〜0.6mgZ lと僅かであった。
—方、 比較例である従来例では、 処理水は pH: 9. 1〜9.8と変動が大きく 原水に対する T一 Mnの増加は 3. SmgZ l g. SmgZ lと多かった。 (実施例 2)
図 2の処理装置を用いて、 表 2の被処理水を処理した。
炭酸マンガン晶析用媒体は平均粒径 0.4 mmのマンガン砂を 16リッ トル使 口
用した。
用いた流動床反応塔は、 晶析用媒体流動層部分の直径が 100mm、 スラッジ 層部分の直径が 140mmのカラムを使用し、 処理水 pHを 9.5になるように 調節した。
比較例として、 従来例である図 5の装置を用いて、 同じ被処理水を処理した。 この場合反応塔は、 直径 100 mmのカラムを使用し、 処理水 p Hを 9.5にな るように調節した。
その結果を表 2に示す。
表 2
通水時間 50 60 90 120 150 く被処理水〉
p H (mg/l) 7.7 7.6 8.0 7.5 7.9
T-Mn (mg/l) 35.4 33.0 47.8 45.2 35.4 懸濁状 M (mg/l) 13.7 10.9 10.4 16.5 10.5 溶解性 Mn (mg/l) 21.7 22.1 37.4 28.7 24.9
<本発明 >
p H (mg/l) 9.5 9.7 9.5 9.6 9.4
T-Mn (mg/l) 6.2 3.8 0.9 1.2 0.7 懸濁状 MnOng八) 5.9 3.7 0.6 1.0 0.5 溶解性 Mn (mg/l) 0.3 0.1 0.3 0.2 0.2 ぐ従来例〉
p H (mg/l) 9.5 9.8 9.4 9.6 9.1
16.3 13.2 14.2 19.2 12.5 懸濁状 MnOng八) 15.8 13.1 13.8 19.0 12.2 溶解性 Mn (mg/l) 0.5 0.1 0.4 0.2 0.3 本発明においては、 処理水は pH: 9.4〜9.7、 懸濁状マンガンは時間経過 に従い次第に減少し、 150時間後には 0.5mgZ 1となった。
—方、 従来例においては、 処理水は pH : 9.1-9.8.懸濁状マンガンは l S. SmgZ l l S. OmgZlと被処理水の懸濁状マンガンよりも多くなつ た。
実施例 3
表 3に示す原水を、 図 3の本発明の装置と、 比較のための図 5の従来法の装置 1とを用いて処理した。
炭酸マンガン晶析用媒体は、 平均粒径 0.4 mmのマンガン砂を使用した。 この媒体 16リッ トルを直径 10 Ommの流動床に充填し、 流動床内流速を L V 60 OmZdで通水した。 本発明の装置 1には原水量と処理水循環量を 1対 1 で通水し、 従来例の装置 3には全量原水を通水した。 装置 1、 装置 3にはアル力 リ剤を流動床下部から注入し、 流動床内の処理水 pHが 9. 5になるように調節 した。
その結果を表 3に示す。
表 3
Figure imgf000018_0001
本発明の装置 301による処理は、 処理水 pH9.4~9.6、 T— Mnの増 加: O. SmgZL O. SmgZL 従来の装置 3による処理は、 処理水 pH 9.:!〜 9. 8、 T一 Mnの増加: 3.2mg/L~9. SmgZLであった。 本 発明の装置 301により、 pHが安定し、 T— Mnの増加が少ないマンガン除去 を行うことができた。
(発明の効果)
本発明によれば、 流動床反応塔を複数塔設け、 各流動床反応塔内の処理水 pH を後段になるに従って高く設定することにより、 被処理水のマンガン濃度が上昇 しても、 晶析反応が各塔で徐々に進行するため、 水酸化マンガンの析出を抑制で き、 装置を大型化しても多段式のため、 任意の量のアルカリ剤を効果的に注入す ることができた。 また、 本発明により、 T— M nの発生の少ない溶解性マンガン 除去を行うことができた。
本発明によれば、 流動床反応塔内のマンガン砂流動層により溶解性マンガンを 晶析除去し、 かつ前記流動層上部に被処理水に含まれる懸濁物質によるスラッジ 層を形成させ、 水中の懸濁物質の捕捉能力を付加することにより、 被処理水中の 懸濁状マンガンを除去できる。 本発明により、 懸濁状、 溶解性に関わらず、 マン ガンを処理することができた。
本発明により、 被処理水の p H変動や、 被処理水の M n濃度の上昇に対しても- 水酸化マンガンの生成を抑制できるマンガン除去を行うことができた。

Claims

請 求 の 範 囲
1 . マンガン砂を流動媒体とする支持床の無い流動床反応塔に、 炭酸イオンを 含む被害処理水を上向流で通水するとともに、 流動床内の処理水 P H値を調節す ることにより、 前記水中の溶解性マンガンを晶析除去するマンガン含有水の処理 方法において、
前記流動床反応塔のマンガン砂流動層上部に、 該流動層を通過した被処理水中 の懸濁物質層を除去することにより、 前記被処理水中の溶解性マンガンと共に、 懸濁マンガンをも除去するマンガン含有水の処理方法。
2 . マンガン砂を流動媒体とする支持床の無い流動床反応塔に、 炭酸イオンを 含む被害処理水を上向流で通水するとともに、 流動床内の処理水 P H値を調節す ることにより、 前記水中の溶解性マンガンを晶析除去するマンガン含有水の処理 方法において、
前記処理水の所要量を被処理水に導入し循環使用するマンガン含有水の処理方 法。
3 . 前記反応塔底部の被処理水流入口近辺又は流動床内にアルカリ剤を注入し て流動床内の処理水 P H値を調節する請求項 2のマンガン含有水の処理方法。
4 . 前記被処理水の循環は、 処理水から懸濁物質を除去した上澄液を使用する 請求項 2のマンガン含有水の処理方法。
5 . マンガン砂を流動媒体とする支持床の無い流動床反応塔と、 該反応塔の底 部に設けた炭酸イオンを含む被処理水の流入口及び反応塔上部に設けた処理水流 出口と、 流動床内の処理水 P H値を調節するためのアルカリ剤注入口とを有する 溶解性マンガンを晶析除去するマンガン含有水の処理装置において、
前記流動床反応塔のマンガン砂流動層上部に、 被処理水中の懸濁物質の層を形 成させ、 該懸濁物質の層内に懸濁物質を除去する排出管を備えたマンガン含有水 の処理装置。
6 . 前記流動床反応塔は、 マンガン砂流動層上部の懸濁物質の層が形成される 部分の水平方向断面積を、 マンガン砂流動層部の水平方向断面積よりも大きくし た請求項 5のマンガン含有水の処理装置。
7 . マンガン砂を流動媒体とする支持床の無い流動床反応塔と、 該反応塔の底 部に設けた炭酸イオンを含む被処理水を流入する流入口及び反応塔上部に設けた 処理水流出口と、 流動床内の処理水 P H値を調節するためのアル力リ剤注入口と を有する溶解性マンガンを晶析除去するマンガン含有水の処理装置において、 前記処理水の所要量を循環するための処理水流出口を接続する循環炉を設けた マンガン含有水の処理装置。
8 . 前記循環路には、 沈殿槽を設け、 該沈殿槽の上澄水の一部を被処理水流入 口に循環する請求項 7のマンガン含有水の処理装置。
PCT/JP1999/001608 1998-03-30 1999-03-30 Procede et dispositif permettant de traiter du manganese contenant de l'eau WO1999050190A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99910757A EP1095911A4 (en) 1998-03-30 1999-03-30 PROCESS AND DEVICE FOR TREATING WATER-CONTAINING MANGANESE
US09/623,509 US6495050B1 (en) 1998-03-30 2000-12-18 Method for treating manganese containing water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09986198A JP3659383B2 (ja) 1998-03-30 1998-03-30 マンガン含有水の処理方法及び装置
JP10/99861 1998-03-30

Publications (1)

Publication Number Publication Date
WO1999050190A1 true WO1999050190A1 (fr) 1999-10-07

Family

ID=14258594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001608 WO1999050190A1 (fr) 1998-03-30 1999-03-30 Procede et dispositif permettant de traiter du manganese contenant de l'eau

Country Status (5)

Country Link
EP (1) EP1095911A4 (ja)
JP (1) JP3659383B2 (ja)
KR (1) KR100566761B1 (ja)
CN (1) CN1167630C (ja)
WO (1) WO1999050190A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831799B2 (ja) * 2000-08-25 2011-12-07 三菱重工業株式会社 排水中のマンガンイオンを除去する方法
JP4001472B2 (ja) * 2001-09-06 2007-10-31 株式会社荏原製作所 金属含有水の処理方法及び処理装置
JP4013565B2 (ja) * 2002-01-30 2007-11-28 Jfeエンジニアリング株式会社 マンガン除去方法および装置
JP4599335B2 (ja) 2006-11-14 2010-12-15 メタウォーター株式会社 上向流式マンガン接触塔
BE1017007A3 (fr) * 2006-11-27 2007-11-06 Spadel N V Sociutu De Services Procede de traitement des eaux contenant des elements indesirables.
WO2009132688A1 (fr) * 2008-04-28 2009-11-05 S.A. Spadel N.V., Societe De Services,De Participations, De Direction Et D'elaboration Procede de traitement des eaux contenant des elements indesirables
CN103145263B (zh) * 2013-02-26 2014-06-25 天津理工大学 一种脱除水溶液中微量锰的方法
JP6797053B2 (ja) * 2017-03-27 2020-12-09 水ing株式会社 晶析方法及び晶析装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193892A (ja) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd 流動層式脱リン方法
JPH10137772A (ja) * 1996-11-07 1998-05-26 Ebara Corp マンガン含有水の処理方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2047432C (en) * 1990-07-20 2001-11-20 Johannes P. Maree Treatment of water
ATE156100T1 (de) * 1991-10-25 1997-08-15 Univ Queensland Methode und vorrichtung zur entfernung von mangan aus wasser.
JP2772612B2 (ja) * 1993-07-30 1998-07-02 水道機工株式会社 透過膜を利用した溶存マンガン含有水ろ過方法
JP3880190B2 (ja) * 1998-02-26 2007-02-14 株式会社荏原製作所 マンガン含有水の処理方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193892A (ja) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd 流動層式脱リン方法
JPH10137772A (ja) * 1996-11-07 1998-05-26 Ebara Corp マンガン含有水の処理方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITSUYOSHI UTOSAWA: "MANGANSA O MOCHIITA MANGAN JOKYO NI KANSURU JIKKEN (3)", DOBOKU GAKKAI HOKKAIDO SHIBU ROMBUN HOUKOKUSHUU, SN, JP, vol. 47, 1 January 1990 (1990-01-01), JP, pages 509 - 514, XP002920082 *
MITSUYOSHI UTOSAWA: "MANGANSA O MOCHIITA MANGAN JOKYO NI KANSURU JIKKEN-KA MANGAN SAN KALIUM SAISEIHOU", DOBOKU GAKKAI HOKKAIDO SHIBU ROMBUN HOUKOKUSHUU, SN, JP, vol. 45, 1 January 1988 (1988-01-01), JP, pages 397 - 400, XP002920083 *
See also references of EP1095911A4 *

Also Published As

Publication number Publication date
KR100566761B1 (ko) 2006-03-31
KR20010024968A (ko) 2001-03-26
CN1167630C (zh) 2004-09-22
EP1095911A1 (en) 2001-05-02
JP3659383B2 (ja) 2005-06-15
EP1095911A4 (en) 2003-04-23
CN1292768A (zh) 2001-04-25
JPH11277076A (ja) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4892212B2 (ja) 反応晶析処理装置
AU2012225140B2 (en) Reactor for precipitating solutes from wastewater and associated methods
JP4117106B2 (ja) マンガン含有水の処理方法及び装置
KR20010093838A (ko) 유출 기체류의 사용점 처리 장치 및 방법
WO1999050190A1 (fr) Procede et dispositif permettant de traiter du manganese contenant de l&#39;eau
JP4519485B2 (ja) リンの回収方法及び装置
JP2007319789A (ja) 水処理方法および水処理装置
JP2007326019A (ja) 水処理方法および水処理装置
JP4001472B2 (ja) 金属含有水の処理方法及び処理装置
JP4080046B2 (ja) 嫌気性処理方法および装置
JP3880190B2 (ja) マンガン含有水の処理方法及び装置
JP2000070962A (ja) フッ素含有排水処理方法
JP3729365B2 (ja) マンガン含有水の処理方法及び装置
JP2006142302A (ja) 嫌気性処理方法及び装置
JP3095600B2 (ja) 粒状活性炭充填塔による過酸化水素の除去方法
JP3955431B2 (ja) 嫌気性処理方法及び装置
JP4581430B2 (ja) フッ素含有排水の処理方法及び装置
JP2005239457A (ja) 消石灰水溶液の調製方法及び装置
JP2018161641A (ja) 晶析方法及び晶析装置
JPS622877B2 (ja)
JPH091160A (ja) 酸化性物質の除去方法及び湿式排煙脱硫装置
JPH10216740A (ja) フッ素含有排水の処理方法
JP2005177679A (ja) 脱リン方法
JP5145384B2 (ja) ろ過処理施設の運転方法
JP5276898B2 (ja) フッ素およびアンモニアの回収装置ならびに回収方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803669.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999910757

Country of ref document: EP

Ref document number: 1020007010890

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09623509

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007010890

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999910757

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007010890

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999910757

Country of ref document: EP