WO1999042777A1 - Four a lit fluidise divise en chambres multiples - Google Patents

Four a lit fluidise divise en chambres multiples Download PDF

Info

Publication number
WO1999042777A1
WO1999042777A1 PCT/JP1998/004300 JP9804300W WO9942777A1 WO 1999042777 A1 WO1999042777 A1 WO 1999042777A1 JP 9804300 W JP9804300 W JP 9804300W WO 9942777 A1 WO9942777 A1 WO 9942777A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication port
fluidized bed
bed furnace
upstream
downstream
Prior art date
Application number
PCT/JP1998/004300
Other languages
English (en)
French (fr)
Inventor
Hiroki Nomoto
Mitsuharu Kishimoto
Masaki Shimizu
Kazuo Tsutsumi
Masahide Kazari
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3897098A external-priority patent/JP2862863B2/ja
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to AU91852/98A priority Critical patent/AU727917B2/en
Priority to BR9813204-0A priority patent/BR9813204A/pt
Priority to EP98944237A priority patent/EP1072855B1/en
Priority to CA002303111A priority patent/CA2303111C/en
Priority to DE69836349T priority patent/DE69836349T2/de
Publication of WO1999042777A1 publication Critical patent/WO1999042777A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/44Fluidisation grids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles

Definitions

  • the present invention relates to a fluidized bed furnace for treating a granular material in a fluidized state. (Background technology)
  • the powder is charged into a container having a perforated plate or a diffuser tube, and gas is caused to flow through the perforated plate or a diffuser tube.
  • the granular material exhibits a so-called flowing state.
  • the granular material is actively moving due to the rising airflow, so that the temperature of the entire bed can be kept almost constant and its control is easy.
  • Furnaces are widely used in various industrial fields. For example, in recent years, fluidized bed manufacturing processes have been used to produce eye anchor binders, which have attracted attention as a raw material for iron and steelmaking in recent years.
  • a mixed gas of a reducing gas (hydrogen gas) and a carbonized gas (for example, methane gas) By reacting a mixed gas of a reducing gas (hydrogen gas) and a carbonized gas (for example, methane gas) at a predetermined temperature, iron oxide in iron ore is reduced and carbonized to produce eye anchors.
  • a mixed gas of a reducing gas hydrogen gas
  • Japanese Patent Application Laid-Open No. 1-17603 discloses a fluidized-bed furnace having a material input port 21 and a discharge port 22 as shown in FIG.
  • the inside of 23 is vertically divided by a fluidizing plate 24, a gas injection chamber 25 is provided below the fluidizing plate 24, and the fluidizing chamber 26 above the fluidizing plate 24 is divided into a partition plate 27.
  • a partition plate 27 Into two or more parts (26a to 26e), and a gap (communication port) between the partition plate 27 and the fluidizing plate 24.
  • a fluidized bed powder processing apparatus characterized in that the raw material charged into the fluidized bed furnace 23 through this communication port flows in a flowing state from the input port 21 to the discharge port 22 ''. I have.
  • the diameter of the furnace or the height of the ore layer retained in the furnace may be increased.However, the former method greatly increases the equipment cost, and the latter method requires the furnace. Not only will it become larger, but the power of the gas supply compressor will also increase significantly, increasing operating costs.
  • a fluidized bed furnace combining various known gas dispersers and partition plates has been devised.
  • a wind box 1 is provided at the bottom, and a number of gas blowing nozzles 3 provided in a gas disperser 2 (dispersing plate) above the wind box 1 are used.
  • a fluidized bed 4 of the granular material on the gas disperser 2 and divide the fluidized bed 4 into a plurality (4a, 4b, 4c) by the partition plate 5.
  • a divided multi-chamber fluidized bed furnace is known.
  • n 1 indicates the case where the fluidized bed was not divided.
  • the residence time in the furnace is several hours or more, such as an iron anchor production plant, it is inevitable that the fluidized bed be divided into multiple chambers (for example, 4 or 7 divisions). ).
  • the height of the fluidized bed in the upstream divided chamber must be higher than the height of the fluidized bed in the downstream divided chamber.
  • the difference is preferably smaller.
  • the fluidized bed height difference is 200 mm, the total value becomes 120 mm (200 mm X 6), which is a large value. It cannot be applied to processes with an average moving bed height of 100 Omm or 200 Omm. (If applied, extra consideration is needed. In other words, it is necessary to increase the furnace height.
  • One of the conventional methods for preventing back mixing in a multi-chamber split fluidized-bed furnace based on the above concept is to reduce the diameter of the communication port that connects the split chambers with each other. Then, the difference between the heights of the fluidized beds in the front and rear divided chambers becomes large, and the above-mentioned inconvenience occurs.
  • the pressure at each point in the fluidized bed fluctuates in a period shorter than 1 second, and ore moves due to the pressure difference between the inlet and outlet of the communication port.
  • the flow rate of ore passing through the connection fluctuates.
  • the symbol “10” indicates the flow from upstream to downstream
  • the symbol “1” indicates the flow from downstream to upstream (back mixing). Therefore, if the contact length is short (for example, 5 mm), back mixing easily occurs.
  • the present invention has been made in view of such problems of the prior art. It is an object of the present invention to provide a fluidized-bed furnace in which the difference between the heights of the fluidized beds in the front and rear divided chambers is appropriately large without causing back mixing. [Disclosure of the Invention]
  • the height of the communication port in the vertical direction is set to be equal to or less than a certain value
  • the length of the communication port for connecting the divided rooms is set to be a certain size or more
  • the distance between the outlet and the end of the gas outlet nozzle should be at least a certain value
  • the angle between the line connecting the corner of the upper surface of the connection port and the gas outlet with respect to the horizontal plane should be set to the rest of the powder material.
  • the gist of the present invention is that the powdery and granular raw materials input from one side are caused to flow by the reaction gas blown out from a number of gas blowout nozzles provided in a gas disperser arranged in the lower part of the furnace.
  • This is a publishing-type fluidized bed furnace that performs a reaction while discharging the product from the other side.
  • the fluidized bed is divided into a plurality of divided chambers by a partition plate.
  • a communication port for transferring raw materials to the division chamber is provided, and the following conditions are satisfied in a fluidized bed furnace in which the average moving speed of the raw material passing through the communication port is 500 mm Z seconds or less.
  • the vertical position of the communication port is 1/4 or less of the height of the fluidized bed, the communication port length is 100 mm or more,
  • the distance between the inlet of the communication port and the end face of the upstream nozzle is larger than 150 mm, and the distance between the communication port outlet and the end face of the downstream nozzle is 5 mm. 0 mm Larger
  • the distance between the inlet of the communication port and the end face of the upstream nozzle is larger than 200 mm, and the distance between the outlet of the communication port and the end face of the downstream nozzle is 100 O mm. Greater than ⁇ ,
  • the distance between the inlet of the communication port and the end face of the upstream nozzle is larger than 200 mm, and the distance between the outlet of the communication port and the end face of the downstream nozzle is 100 mm.
  • the angle between the line connecting the corner on the top surface of the connection port and the gas outlet forms an angle to the horizontal plane. Angle of repose larger than the angle of repose.
  • the communication port When gas flows through the communication port, the pressure loss increases, so the difference in the fluidized bed height between the front and rear division chambers increases (for the same powder flow rate), and back mixing occurs. In order to prevent this, it is necessary that the communication port is filled with granular material. That is, if only the granular material is present in the communication port, the entire granular material is pushed from the upstream side to the downstream side by the pressure difference between the upstream fluidized bed and the downstream fluidized bed. (Moving temporarily or momentarily from the downstream side to the upstream side is no problem as long as the moving distance is smaller than the length of the communication port).
  • the vertical position of the communication port should be 14 or less of the height of the fluidized bed.
  • the vertical position of the contact is too high. To This is because the density of the granular material in the fluidized bed is thin at the top, and the gas is more likely to flow into the communication port if the port is located at a high position. Therefore, it is preferable that the vertical position of the communication port is 1 Z4 or less of the height of the fluidized bed.
  • Fig. 9 (a) in the case of an upward nozzle 11a in which the gas blowing direction is almost vertically upward, the inlet of the communication port 9 shown in Fig. 8 (a) and the upward nozzle 1 It is preferable that the distance X from the end face of 1a be larger than 150 mm.
  • Fig. 9 (b) in the case of a horizontally oriented nozzle 11b in which the gas blowing direction is almost horizontal (note that the flow velocity in the nozzle is 10 to 8 Om / sec). It is preferable that the distance X between the entrance of the communication port 9 shown in (b) and the end face of the horizontal nozzle 11 b is larger than 20 O mm. Also, as shown in Fig.
  • the distance X between the entrance of the communication port 9 shown in (c) and the end face of the obliquely downward nozzle 11 c is larger than 200 mm.
  • the above limitation of the distance X is applied when the average moving speed of the granular material in the communication port is 500 mm, second or less. That is, when the average moving speed of the particles is higher than this, the distance X is not limited to a certain value or more, the back mixing does not occur at all, and the particles are transferred from the entrance to the exit of the communication port. Because they move toward.
  • the average moving speed of the powder is the flow rate Q (m Vhr) obtained by dividing the input amount A (tonZhr) of the powder by its bulk specific gravity ⁇ (ton / m 3 ).
  • the numerical value (mZhr) obtained by dividing by the cross-sectional area of the mouth (m 2 ).
  • a dense downward flow of the granular material should be formed near the outlet of the communication port. If a dense downward flow of the granular material is not formed near the outlet of the communication port, as shown in Fig. 10, the outlet portion in the communication port 9 is filled with the granular material without the presence of the granular material. The effective length of the contact that is being used becomes shorter. Then, as described above, back mixing is likely to occur. Therefore, it is preferable to form a dense downward flow near the outlet of the communication port as well as at the inlet. However, it is only necessary to press the powder at the outlet side so that the granular material in the communication port does not slip off, and the thickness of the descending flow may be smaller than that at the inlet side. Specifically, it is as follows.
  • the above-mentioned distance X be larger than 50 mm.
  • the same distance X be larger than 10 Omm. ,.
  • the same distance X is larger than 100 mm.
  • the angle formed by the line connecting the corner on the upper surface of the communication port 9 and the gas outlet with respect to the horizontal plane is larger than the angle of repose of the granular material.
  • the lower surface of the communication port is located above the tip of the gas outlet nozzle. This is because a stagnant part is less likely to occur in the contact.
  • the upstream opening of the communication port gradually decreases in diameter toward the downstream side. This is because the granules can easily enter the communication port.
  • the lower surface of the upstream opening of the communication port protrudes upstream from the end face of the partition plate. This is because a dense downward flow of the granular material is likely to occur near the entrance of the communication port. Also, the corner of the upper surface of the protruding part is obliquely cut. preferable. This is because a stagnation section is unlikely to occur near the entrance of the communication port.
  • the upper surface of the protruding portion is inclined downward from the upstream side to the downstream side. This is because the granules easily flow through the communication port.
  • the communication port is inclined downward from the upstream side to the downstream side. This is because it becomes easier for the powder to flow through the contact hole.
  • the inclination angle is larger than the angle of repose of the granular material. This is because stagnation is less likely to occur.
  • the lower surface of the downstream opening of the communication port protrudes downstream from the end face of the partition plate. This is because a dense downward flow of the granular material is formed near the outlet of the communication port. Also, it is preferable that the corner of the upper surface of the protruding portion is cut diagonally. This is because a stagnation section is unlikely to occur near the exit of the communication port.
  • the communication port protrudes from both end faces on the upstream and downstream sides of the partition plate. This is because, regardless of the thickness of the partition plate, a dense downward flow of the granular material is formed near the entrance side and the exit side of the communication port.
  • reaction gas a part of the gas introduced into the fluidized bed furnace or a gas introduced from the outside can be used.
  • a porous material for example, a porous refractory (brick) can be used at the tip of the gas blowing nozzle. If the tip of the gas blowing nozzle is bent diagonally from upstream to downstream, This is preferable because the effect of suppressing stagnation of the granules in the powder is further improved.
  • the powder and granules can be obtained without back mixing, and while maintaining the height difference between the fluidized beds of the upstream and downstream divided chambers at an appropriate level. It is possible to provide a fluidized bed furnace in which the raw material moves from the upstream side to the downstream side in the communication port. Therefore, it is possible to realize a fluidized bed furnace with low equipment cost and operation cost.
  • a fluidized bed furnace in which a dense downward flow of the granular material is easily formed near the entrance of the communication port can be provided.
  • a fluidized-bed furnace in which the granular material is hard to stay near the entrance of the communication port can be provided.
  • a fluidized bed furnace in which a dense downward flow of the granular material is easily formed near the outlet of the communication port can be provided.
  • a dense downward flow of the granular material is likely to be formed near the entrance and exit of the communication port, and back mixing is unlikely to occur. It is possible to provide a fluidized bed furnace in which the granular material can move from the upstream side to the downstream side in the communication port regardless of the thickness.
  • FIG. 1 is a longitudinal sectional view of a multi-chamber split type fluidized bed furnace of one embodiment.
  • FIG. 2 is a diagram showing the relationship between the amount of raw material ore and the residence time in the fluidized bed furnace.
  • FIG. 3 is a diagram schematically illustrating the movement of raw materials in a fluidized bed furnace.
  • Fig. 4 is a diagram showing the relationship between the amount of raw material ore and the residence time in the fluidized bed furnace
  • FIG. 5 is a diagram for explaining the movement of raw materials in a communication port that connects the divided rooms.
  • FIG. 6 is a view for explaining the flow of the granular material near the entrance of the communication port.
  • Fig. 7 (a) and (b) are other diagrams explaining the flow of the granular material near the entrance of the communication port.
  • Fig. 8 (a), (b) and (c) are diagrams for explaining the distance X between the inlet of the communication port and the end face of the gas blowing nozzle.
  • FIG. 9 (a) is a cross-sectional view of an upward nozzle
  • Fig. 9 (b) is a cross-sectional view of a horizontal nozzle
  • Fig. 9 (c) is a cross-sectional view of an obliquely downward nozzle.
  • FIG. 10 is a diagram for explaining the filling state of the granular material near the outlet of the communication port.
  • Fig. 11 is a diagram for explaining the stagnation state of the granular material near the entrance of the communication port.
  • FIG. 12 is a view for explaining the angle (h) formed by a line connecting the corner P on the lower surface of the opening on the upstream side of the communication port and the gas outlet Q with respect to the horizontal plane.
  • FIG. 13 is a diagram illustrating an angle ( ⁇ ) formed by a line connecting a corner R on the upper surface of the opening on the upstream side of the communication port and the gas outlet Q with respect to a horizontal plane.
  • FIGS. 14 (a) and (b) are cross-sectional views showing an example in which the upstream opening of the communication port gradually decreases in diameter toward the downstream side.
  • FIG. 15 is a cross-sectional view showing an example in which the lower surface portion of the upstream opening of the communication port protrudes from the end surface of the partition plate.
  • FIG. 16 is a cross-sectional view showing an example in which a corner of the upper surface of the protruding portion in FIG. 15 is cut obliquely.
  • FIG. 17 is a cross-sectional view showing an example in which the upper surface of the protruding portion in FIG. 15 is inclined downward from the upstream side to the downstream side.
  • FIG. 18 is a cross-sectional view showing an example in which the communication port is inclined downward from the upstream side to the downstream side.
  • FIG. 19 is a cross-sectional view showing an example in which the lower surface of the downstream opening of the communication port protrudes from the end face of the partition plate.
  • FIG. 20 is a cross-sectional view showing an example in which a corner of the upper surface of the protruding portion in FIG. 19 is cut obliquely.
  • FIG. 21 is a cross-sectional view showing an example in which the communication port protrudes from both end faces on the upstream and downstream sides of the partition plate.
  • FIG. 22 is a cross-sectional view showing an example in which a gas blowing nozzle is provided at an intermediate portion of the communication port.
  • FIG. 23 is a cross-sectional view showing an example in which a porous material is used for a tip end of a gas blowing nozzle provided at an intermediate portion of a communication port.
  • FIG. 24 is a cross-sectional view showing an example in which the tip end of a gas blowing nozzle provided at an intermediate portion of the communication port is obliquely bent from upstream to downstream.
  • FIG. 25 is a schematic configuration diagram showing an example of a conventional fluidized bed furnace.
  • the fluidized-bed furnace experimental equipment used a plastic cylindrical container from which the flow phenomena of the granular material inside could be clearly observed.
  • the major differences from the actual fluidized-bed furnace shown in Fig. 1 are that there is no support pipe 12 that supports the dispersion plate 2 and that the number of partition plates 5 that partition the fluidized bed 4 is one. is there.
  • the gas used was air, and the temperature was room temperature.
  • the height of the communication port provided at the lower part of the partition plate is less than about 1 Z4 of the height of the fluidized bed.
  • the diameter of the communication port is set to 150 mm.
  • the average moving speed of the granular material passing through the contact hole is 20 mmZ seconds for iron ore powder and 30 mmZ seconds for silica stone powder.
  • (2) Basic type (with the configuration shown in Fig. 8)
  • the length of the communication port 9 is 20 O mm.
  • the distance X on the inlet side was 200 mm and the distance X on the outlet side was 200 mm.
  • the blow-out direction of the gas blow-out nozzle was obliquely downward, the distance X on the inlet side was 25 O mm and the distance X on the outlet side was 20 O mm.
  • the angle see Fig.
  • the raw material passing through the communication port 9 was not affected by the pressure difference between the inlet and outlet of the communication port, regardless of the raw material. While moving a certain distance to the side and then moving slightly to the entrance side, it moved from the upstream division to the downstream division without backmixing.
  • Fig. 14 (a) curves the upstream opening of the communication port 9.
  • Fig. 14 (b) shows an oblique cut of the opening on the upstream side of the communication port. It was confirmed that the water smoothly flowed into the contact 9.
  • the communication port is inclined downward from upstream to downstream
  • the inclination angle in FIGS. 17 and 18 is preferably set to about 30 ° or more in order to promote the movement of the granular material.
  • FIG. 22 shows a gas outlet nozzle 14 provided in the middle of the connection port 9 and the gas outlet nozzle 14 A part of the reaction gas introduced into the fluidized bed furnace is blown out into the communication port 9. By doing so, it was confirmed that the stagnation portion of the granular material in the communication port 9 almost disappeared.
  • FIG. 23 shows a case where a porous material 15 (porous refractory (brick)) is used at the tip of the gas blowing nozzle 14. Thus, even when the nozzle tip was made of a porous material, the effect of suppressing the stagnation of the granular material in the communication port 9 was confirmed, as in the case of FIG.
  • a porous material 15 porous refractory (brick)
  • Fig. 24 three gas outlet nozzles 14a, 14b, 14c are provided at the communication port 9, and the tips of the gas outlet nozzles 14a, 14b, 14c are located upstream. It is bent diagonally from to the downstream side. By doing so, it was confirmed that the stagnation of the granular material in the communication port 9 was completely eliminated.
  • the present invention is configured as described above, it is possible to process a fluid particle in a fluidized state in which the difference between the heights of the fluidized beds in the front and rear divided chambers is an appropriate size without causing back mixing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Vending Machines For Individual Products (AREA)
  • Optical Integrated Circuits (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

明 細 書 多室分割型流動層炉 〔技術分野〕
本発明は流動状態にある粉粒体を処理する流動層炉に関する。 〔背景技術〕
多孔板または散気管を持つ容器に粉粒体を投入し、 気体を多 孔板または散気管を通して流入させ、 この気体の流速を増して、 気体の速度に対応した粉粒体に作用する上向きの力と粉粒体の 重力を釣り合った状態にさせると、 粉粒体はいわゆる流動状態 を呈する。 この流動層内では粉粒体は上昇する気流によつて活 発な運動を行っており、 層全体の温度をほとんど一定に保つこ とができると共に、 その制御も容易であることから、 流動層炉 は様々な工業分野において広く利用されている。 例えば、 近年、 製鉄、 製鋼用原料と して注目 されているアイアンカーバイ ドを 製造するために流動層による製造プロセスが使用されており、 鉄鉱石を粉体にして流動層炉に充填し、 還元ガス (水素ガス) と炭化ガス (例えばメ タンガスなど) の混合ガスと所定温度で 反応させることで、 鉄鉱石内の鉄酸化物を還元および炭化させ てアイアンカーバイ ドが製造されている。
この種の技術と して、 特開平 1 — 1 7 6 0 0 3号公報には、 第 2 5図に示すよ うに、 「原料投入口 2 1 と排出口 2 2を有す る流動層炉 2 3の内部を流動化板 2 4で上下に仕切り、 流動化 板 2 4の下方にガス吹込室 2 5 を設け、 流動化板 2 4の上方の 流動化室 2 6を仕切板 2 7によつて複数に分割し ( 2 6 a〜 2 6 e ) 、 仕切板 2 7 と流動化板 2 4の間には間隙 (連絡口) を 設け、 この連絡口を経て流動層炉 2 3に投入された原料が投入 口 2 1 から排出口 2 2に向かって流動状態で流れることを特徴 とする流動層粉体処理装置」 が記載されている。
しかし、 第 2 5図に示す流動層炉では、 分割室から分割室へ の移動は仕切板 2 7下部に設けた、 単なる孔である連絡口によ り行う方式であるため、 隣接する分割室の圧カバランスによつ てはバック ミ キシング (下流側分割室内の原料が上流側分割室 へ逆移動する現象) が生じることがあり、 そのため流動層を分 割するこ とによる効果が減殺されてしま う。 そこで、 本発明の 理解を容易なら しめるために、 バック ミキシング及びそれに関 連する従来の流動層炉の有する問題点について詳細に説明する。 一般に流動層炉では、 原料である粉粒体鉱石を焼成したり、 反応させたりする。 そのためには鉱石が炉内に滞留する時間を 長くすることが好ま しい。 滞留時間を長くするには、 炉径を大 きくするか又は炉内に滞留する鉱石層高を大き くすればよいが、 前者方法は設備コス トが大幅に上昇する し、 後者方法は炉が大 きく なるばかりでなく、 ガス供給用コンプレッサーの動力が大 幅にアップして運転コス トが増大する。
そこで考案されたのが、 公知の種々のガス分散器と仕切板を 組み合わせた流動層炉である。 例えば、 分散板方式の場合、 第 1 図に示すよ うに、 底部に風箱 1 を有し、 風箱 1 の上方のガス 分散器 2 (分散板) に設けた多数のガス吹出しノ ズル 3 よ りガ スを噴出してガス分散器 2上に粉粒体の流動層 4を形成し、 こ の流動層 4を仕切板 5によつて複数 ( 4 a、 4 b、 4 c ) に分 割した多室分割型流動層炉が知られている。 流動層を多室に分 割すると (流動層の分割数 nを大きくすると) 、 鉱石の炉内滞 留時間は第 2図に示すよ う に大幅に増大する。 第 2図において、 n = 1 は流動層を分割しなかった場合を示す。 特に、 アイアンカーバイ ド製造プラン トのよ うに、 数時間以 上の炉内滞留時間を必要とするものでは、 流動層を多室分割に することは避けられない (例えば、 4分割とか 7分割) 。 と こ ろで、 このよ う な特長を有する多室分割型流動層を実現するに は、 次の 2つの要点を満たすことが必須である。
① バック ミキシングが生じないこ と
すなわち、 第 3図に示すよ うに、 鉱石のほとんどが仕切板 6 によつて仕切られた上流側分割室 7から下流側分割室 8 へ連絡 口 9 を経て流れることが必要である。 その逆に下流側分割室 8 から上流側分割室 7 へ流れる現象 (バック ミ キシング) が生じ た場合には、 流動層を分割する効果が低減されてしま う。 例え ば、 4分割の場合でも、 バック ミキシングが生じると、 第 2図 に示す鉱石の炉内滞留時間分布曲線は、 第 4図に示すよ うに、 n = 4のそれではなく、 点線で示すよ う に、 n = 2に近い分布 の曲線になることがある。
② 上流側分割室と下流側分割室との間の流動層高差を適切 な大き さにすること
上流側から下流側に流れるためには、 上流側分割室の流動層 高が下流側分割室の流動層高よ り大き く なければならないが、 一方、 その差は小さい方が望ま しい。 例えば、 7分割室型流動 層炉の場合、 流動層高差が仮に 2 0 0 m mあるとすれば、 全部 で 1 2 0 0 m m ( 2 0 0 m m X 6 ) とレヽ ぅ大きい値となり、 流 動層高の平均が 1 0 0 O m mや 2 0 0 O m mのプロセスには適 用できなく なる (適用する場合は余分の配慮が必要となる。 即 ち炉の高さを大きくする必要があり、 かつ供給ガス圧力も最も 高い流動層高に適合させる必要があるため、 設備と運転の両コ ス トの上昇を招いてしま う。 また、 分割室間へのガスの分配が 困難となる。 即ち、 ガスを噴出するノ ズルでの圧損を適切に調 整しないと、 ガスが均等に分配されなく なってしま う) 。
以上の考え方に基づく、 従来の多室分割型流動層炉のバック ミ キシング防止方法の一つは、 分割室と分割室を連絡する連絡 口の口径を小さくする方法であるが、 連絡口を小さくすると、 前後の分割室の流動層高差が大き く なり、 上記したよ うな不都 合が生じる。
さ らに、 従来の流動層炉の欠点について説明する。
③ 連絡口の長さが 1 0 O m m以下である場合、 バック ミキ シングを生じる。
一般的に流動層内の各ポイ ン トの圧力は 1秒よ り短い時間周 期で変動し、 連絡口出入口の圧力差によ り鉱石が移動する。 例 えば、 第 5図に示すよ うに、 連絡口を通過する鉱石の流量は変 動する。 第 5図において、 記号 「十」 は上流から下流への流れ を示し、 記号 「一」 は下流から上流への流れ (バック ミキシン グ) を示す。 従って、 連絡口の長さが短いと (例えば、 5 m m ) 、 簡単にバック ミキシングが生じる。
しかし、 この場合、 連絡口の長さが長いと、 仮に 「一」 方向 の流れを生じても、 「一」 方向の流れの鉱石は連絡口内に留ま つており、 従って、 結果的に 「十」 方向への流れとなる。
④ 連絡口の入口付近および出口付近に鉱石の密な下降流が ない場合、 前後の分割室の流動層高差が大きく なり、 且つバッ ク ミキシングを生じる。
連絡口の入口付近および出口付近に鉱石の密な下降流がない 場合、 連絡口内に空隙部を生じて多量のガスが通過する。 この ことは流動層高差が大きく なることにつながる。 また、 ガスが 上流側と下流側の間を流れることによ り、 バック ミキシングを 生じてしま う。
本発明は従来の技術の有するこのよ うな問題点に鑑みてなさ れたものであって、 その目的は、 バック ミ キシングを生じさせ ずに、 前後の分割室の流動層高差が適正な大き さである流動層 炉を提供することにある。 〔発明の開示〕
上記目的を達成するために、 本発明は、 連絡口の上下方向の 高さを一定以下と し、 分割室と分割室を連絡する連絡口の長さ を一定以上の大き さと し、 連絡口入出口 とガス吹出しノ ズル端 面との距離を一定以上にし、 さ らに、 連絡口の上面の角部とガ ス吹出口 とを結ぶ線が水平面に対してなす角度を粉粒体原料の 安息角よ り大きくすることによ り、 連絡口の入口付近および出 口付近に原料が停滞せず、 バック ミ キシングを生じることなく、 上流側分割室の原料は連絡口を経て下流側分割室へ移動するこ とが可能になる。
すなわち、 本発明の要旨は、 一方の側面から投入された粉粒 体原料を炉内下部に配置したガス分散器に設けた多数のガス吹 出しノズルょ り吹出される反応ガスによ り流動させつつ反応を 行って他方の側面から成品を排出するパブリ ング型流動層炉で あって、 流動層を仕切板によって複数の分割室に分割し、 上記 仕切板の下部に上流側分割室から下流側分割室へ原料を移動さ せるための連絡口を設け、 該連絡口を通過する原料の平均移動 速度が 5 0 0 m m Z秒以下である流動層炉において、 以下の条 件を満たすことを特徴と している。
連絡口の上下方向の位置が流動層高の 1 / 4以下であり、 連絡口の長さが 1 0 0 m m以上であり、
ガス吹出しノ ズルの吹出し方向がほぼ垂直方向の上向きの場 合、 連絡口入口と上流側ノズル端面との距離が 1 5 0 m mよ り 大きく、 連絡口出口 と下流側ノズル端面との距離が 5 0 m mよ り大き く、
ガス吹出しノズルの吹出し方向がほぼ水平方向の場合、 連絡 口入口 と上流側ノズル端面との距離が 2 0 0 m mよ り大き く、 連絡口出口 と下流側ノズル端面との距離が 1 0 O m mよ り大き < 、
ガス吹出しノズルの吹出し方向が斜め下向きの場合、 連絡口 入口 と上流側ノズル端面との距離が 2 0 0 m mよ り大き く、 連 絡口出口 と下流側ノズル端面との距離が 1 0 0 m mよ り大き く、 連絡口の上流側おょぴ下流側のいずれの開口部においても、 連絡口の上面の角部とガス吹出口 とを結ぶ線が水平面に対して なす角度を粉粒体原料の安息角よ り大きく している。
上記のよ うに構成される流動層炉の各構成要素の限定理由に ついて、 本発明の作用との関係において以下に詳細に説明する。
( 1 ) 連絡口内をガスのみが流れないよ うにする。
連絡口内をガスが流れる と圧損が大きく なるので、 前後の分 割室の流動層高差は大き く なり (同じ粉粒体流量に対して) 、 且つバック ミキシングを生じてしま う。 これを防止するために は、 連絡口内に粉粒体が充満していることが必要である。 すな わち、 連絡口内に粉粒体のみが存在すれば、 上流側流動層と下 流側流動層の圧力差によ り、 粉粒体全体が上流側から下流側に 押し出されるよ うにして移動する (一時的または瞬間的に、 少 し下流側から上流側へ移動しても、 その移動距離が連絡口の長 さよ り も小さければ問題はない) 。
そこで、 連絡口内にガス流れが存在しないよ うにするために は、 以下の手段を採用することが好ましい。
① 連絡口の上下方向の位置を流動層高の 1 4以下とする こと。
連絡口の上下方向の位置が高すぎるのは好ま しく ない。 とい うのは、 流動層内の粉粒体の密度は上部では薄く、 連絡口の位 置が高いと ころにあると、 連絡口内にガスが流入しやすく なる からである。 従って、 連絡口の上下方向の位置は流動層高の 1 Z 4以下であるこ とが好ま しい。
② 連絡口入口付近に粉粒体の密な下降流を形成すること。 第 6図に示すよ うに、 分散板 1 0に設けるガス吹出しノズル 1 1 の位置を仕切板 6 よ り適正な距離だけ離すと、 第 6図に矢 印で示すよ うに粉粒体は移動して連絡口 9付近には密な下降流 が生じる。 この連絡口入口付近の密な下降流に阻止されて、 連 絡口内にガスが流入することはない。
③ 連絡口入口付近の粉粒体の密な下降流の厚さを大き くす ること。
連絡口内を経て粉粒体が上流側から下流側へ移動するとき、 第 7図 ( a ) に示すよ うに、 この粉粒体の下降流の一部が連絡 口 9内に流れ込む。 このとき、 下降流の厚さが薄いと、 第 7図 ( b ) に示すよ うに、 粉粒体 Pのみならず、 ガス Gまでも連絡 口 9内に多量吸い込まれてしま う。 多量のガスが連絡口内に吸 い込まれると、 上記したよ うな問題が生じる。 そこで、 連絡口 入口付近の粉粒体の密な下降流の厚さは大き く なければならな レ、ことになる。
以上、 連絡口入口付近に粉粒体の密な下降流を形成し、 しか も、 その下降流の厚さを大き くする要因について実験を行った 結果、 第 8図に示すよ うに、 連絡口 9 とガス吹出しノ ズル ( 1 l a、 l i b , 1 1 c ) の相対位置が重要であるこ とが判明し た。 すなわち、 ガス吹出しノ ズルが連絡口 9に近すぎる場合に は、 粉粒体の下降流の厚さは非常に薄く (または、 下降流は形 成されず) 、 連絡口内にガス流れが生じるので、 連絡口内を粉 粒体が移動し得ないこ とが分かった。 これに対して、 ガス吹出 しノズルの位置が連絡口 9から離れていればいるほど、 連絡口 入口付近の下降流の厚さは大き く なることが分かった。
すなわち、 第 9図 ( a ) に示すよ うに、 ガス吹出し方向がほ ぼ垂直方向の上向きである上向きノズル 1 1 a の場合、 第 8図 ( a ) に示す連絡口 9の入口 と上向きノズル 1 1 a の端面との 距離 Xを 1 5 0 mmよ り大きくするのが好ましい。 また、 第 9 図 ( b ) に示すよ うに、 ガス吹出し方向がほぼ水平方向である 水平向きノズル 1 1 bの場合 (なお、 ノズル内流速は 1 0〜 8 O m/秒) 、 第 8図 ( b ) に示す連絡口 9の入口 と水平向きノ ズル 1 1 bの端面との距離 Xを 2 0 O mmよ り大きくするのが 好ましい。 また、 第 9図 ( c ) に示すよ うに、 ガス吹出し方向 が斜め下向きである斜め下向きノ ズル 1 1 cの場合 (なお、 ノ ズル内流速は 1 0〜 8 0 mZ秒) 、 第 8図 ( c ) に示す連絡口 9の入口 と斜め下向きノ ズル 1 1 c の端面との距離 Xを 2 0 0 mmよ り大き くするのが好ましレ、。
但し、 距離 Xの上記限定は、 連絡口内の粉粒体の平均移動速 度が 5 0 0 mm,秒以下の場合に適用される。 というのは、 粉 粒体の平均移動速度がこれよ り も大きい場合、 距離 Xを一定以 上に限定するまでもなく、 バック ミキシングを一切生じること なく、 粉粒体は連絡口の入口から出口に向かって移動するから である。 なお、 粉粒体の平均移動速度とは、 粉粒体の投入量 A (tonZhr) をその嵩比重 γ (ton/m 3) で除することによ つて得られる流量 Q (m Vhr) を連絡口の断面積 (m2) で除 するこ とによって得られる数値 (mZhr) をいう。
④ 連絡口出口付近にも粉粒体の密な下降流を形成すること。 連絡口出口付近に粉粒体の密な下降流が形成されない場合、 第 1 0図に示すよ うに、 連絡口 9内の出口部分には粉粒体が存 在せずに粉粒体が充満している連絡口の有効長さが短く なる。 すると、 上記したよ うに、 バック ミキシングが生じやすく なる。 そこで、 連絡口出口付近にも入口 と同様に密な下降流を形成す ることが好ま しく、 そのための方法は入口の場合と同様にガス 吹出しノズル端面と連絡口出口 との距離 Xを一定以上にすれば よいが、 出口側では連絡口内の粉粒体がずれ落ちないよ うに押 圧する程度でよく、 下降流の厚さは入口側の場合よ り も薄く て よい。 具体的には、 以下のとおりである。
第 9図 ( a ) に示すよ う に、 ガス吹出し方向がほぼ垂直方向 の上向きである上向きノ ズル 1 1 a の場合、 同上距離 Xは 5 0 m mよ り大きくするのが好ましレヽ。
また、 第 9図 ( b ) に示すよ うに、 ガス吹出し方向がほぼ水 平方向である水平向きノズル 1 1 bの場合、 同上距離 Xは 1 0 O m mよ り大き くするのが好ま しレ、。
また、 第 9図 ( c ) に示すよ うに、 ガス吹出し方向が斜め下 向きである斜め下向きノズル 1 1 c の場合、 同上距離 Xは 1 0 0 m mよ り大きくするのが好ま しい。
( 2 ) 連絡口前後の粉粒体が停滞しないよ うにするこ と 連絡口前後の粉粒体が、 第 1 1 図に示すよ うに停滞すると、 連絡口内の粉粒体が移動しなく なってしま う。 この粉粒体を移 動させるには、 連絡口前後の分割室の流動層高差を非常に大き く しなければならない (例えば、 数 1 0 0 m mという非経済的 な値にしなければならない) 。 この停滞部分の発生の有無は、 連絡口 とガス吹出口 とを結ぶ線が水平面に対してなす角度に依 存する。 一般的には、 ガス吹出しノ ズル近傍の粉粒体はガス流 によ り持ち上げられるため、 第 1 2図に示すよ うに、 連絡口 9 の下面の角部 P とガス吹出口 Qを結ぶ線 Lが水平面に対してな す角度 αが粉粒体の安息角よ り大きいと、 連絡口 9入口付近に 粉粒体の停滞部は生じず、 連絡口 9内の粉粒体は入口から出口 に向けて移動する。 しかし、 実際には上記角度 ctは粉粒体の安 息角よ り多少小さ く ても連絡口 9内の粉粒体の移動に支障はな いことが分かった。 すなわち、 第 1 3図に示すよ うに、 連絡口 9の上面の角部 Rとガス吹出口 Qを結ぶ線 Mが水平面に対して なす角度 ]3が粉粒体の安息角よ り大きければ、 問題ないことが 分かった。 というのは、 ひ が粉粒体の安息角よ り小さく て連絡 口入口付近に多少停滞部が存在しても、 線 Mおよびその近傍の (線 Mよ り下方) のかなり の粉粒体は下降流に伴われて斜面上 をずり落ちていく ので、 連絡口内の粉粒体の移動を実質的に阻 止することはないからである。
従って、 連絡口 9の上面の角部とガス吹出口 とを結ぶ線が水 平面に対してなす角度は粉粒体の安息角よ り大きいことが好ま しい。
以上の角度ひ 、 β と粉粒体の安息角との関係は連絡口出口に おいても同様にするのが好ま しい。
なお、 このことは分散板のみならず、 公知の種々のガス分散 器に関しても同様である。
( 3 ) その他
① 連絡口下面がガス吹出しノ ズルの吹出し部先端よ り上方 に位置するこ とが好ましい。 連絡口内に停滞部が生じにく く な るからである。
② 連絡口の上流側開口部が下流側に向かって漸次径小とな ることが好ましい。 粉粒体が連絡口内に入りやすく なるからで ある。
③ 連絡口の上流側開口部の下面部分が仕切板端面よ り上流 側に向けて突出しているこ とが好ましい。 連絡口の入口付近に 粉粒体の密な下降流ができやすく なるからである。 また、 その 突出している部分の上面の角部が斜めに切断されているこ とが 好ましい。 連絡口入口付近に停滞部が生じにく く なるからであ る。
④ 突出している部分の上面が上流側から下流側に向けて下 方に傾斜しているこ とが好ましい。 連絡口内を粉粒体が流れや すく なるからである。
⑤ 連絡口が上流側から下流側に向かって下方に傾斜してい ることが好ましい。 連絡口内を粉粒体が流れやすく なるからで ある。
⑥ 上記傾斜角が粉粒体の安息角よ り大きいことが好ま しい。 停滞部が生じにく く なるからである。
⑦ 連絡口の下流側開口部の下面部分が仕切板端面よ り下流 側に向けて突出しているこ とが好ま しい。 連絡口出口付近に粉 粒体の密な下降流が形成されるからである。 また、 その突出し ている部分の上面の角部が斜めに切断されていることが好まし レ、。 連絡口出口付近に停滞部が生じにく く なるからである。
⑧ 連絡口が仕切板の上流側および下流側の両端面よ り突出 しているこ とが好ましい。 仕切板の厚みに関係なく、 連絡口の 入口側およぴ出口側付近に粉粒体の密な下降流が形成されるか らである。
⑨ 連絡口の中間部に 1個または複数個のガス吹出しノ ズル を設け、 そのガス吹出しノ ズルよ り連絡口内に反応ガスを吹出 すことが好ましい。 このよ うにすることで、 連絡口内に粉粒体 が停滞しないよ うにするこ とができるからである。 この反応ガ ス と しては、 流動層炉に導入されるガスの一部または外部よ り 導入したガスを使用するこ とができる。 また、 ガス吹出しノズ ルの先端部に多孔質の材料、 例えば、 多孔質の耐火物 (レンガ) を使用することもできる。 また、 ガス吹出しノ ズルの先端部が 上流側から下流側に向けて斜めに曲がっていれば、 連絡口内に おける粉粒体の停滞を抑止する効果はさ らに向上するので好ま しい。
本発明は上記のとおり構成されているので、 次に記載するよ うな効果を達成することができる。
① 請求の範囲第 1項記載の発明によれば、 バック ミ キシン グが生じることなく、 しかも上流側と下流側の分割室の流動層 高差を適正な大きさに維持しつつ、 粉粒体原料は連絡口内を上 流側から下流側に向けて移動しう る流動層炉を提供するこ とが できる。 従って、 設備コス ト と運転コス トの低い流動層炉を実 現するこ とができる。
② 請求の範囲第 2項記載の発明によれば、 連絡口内に粉粒 体原料が停滞しにく い流動層炉を提供することができる。
③ 請求の範囲第 3項記載の発明によれば、 連絡口内に粉粒 体原料が流入しやすい流動層炉を提供することができる。
④ 請求の範囲第 4項記載の発明によれば、 連絡口の入口付 近に粉粒体原料の密な下降流が形成されやすい流動層炉を提供 することができる。
⑤ 請求の範囲第 5項記載の発明によれば、 連絡口の入口付 近に粉粒体原料が停滞しにく い流動層炉を提供することができ る。
⑥ 請求の範囲第 6項、 第 7項、 第 8項記載の発明によれば、 連絡口内を粉粒体原料が移動しゃすい流動層炉を提供すること ができる。
⑦ 請求の範囲第 9項記載の発明によれば、 連絡口の出口付 近に粉粒体原料の密な下降流が形成されやすい流動層炉を提供 するこ とができる。
⑧ 請求の範囲第 1 0項記載の発明によれば、 連絡口の出口 付近に粉粒体原料が停滞しにく い流動層炉を提供することがで さる。
⑨ 請求の範囲第 1 1項記載の発明によれば、 連絡口の入 ' 出口付近に粉粒体原料の密な下降流が形成されやすく、 しかも バック ミキシングが生じにく く て、 仕切板の厚さに関係なく、 連絡口内を粉粒体原料が上流側から下流側に向けて移動しう る 流動層炉を提供することができる。
⑩ 請求の範囲第 1 2項、 第 1 3項、 第 1 4項記載の発明に よれば、 連絡口内に粉粒体原料が停滞しにく い流動層炉を提供 するこ とができる。
〔図面の簡単な説明〕
第 1 図は、 多室分割型流動層炉のー実施例の縦断面図である。 第 2図は、 流動層炉における原料鉱石量と炉内滞留時間との 関係を示す図である。
第 3図は、 流動層炉内の原料の移動の様子を模式的に説明す る図である。
第 4図は、 流動層炉における原料鉱石量と炉内滞留時間との 関係を示す図である
第 5図は、 分割室と分割室を連絡する連絡口内の原料の移動 の様子を説明する図である。
第 6図は連絡口入口付近の粉粒体の流れを説明する図である。 第 7図 ( a ) ( b ) は、 連絡口入口付近の粉粒体の流れを説 明する別の図である。
第 8図 ( a ) ( b ) ( c ) は、 連絡口入口とガス吹出しノ ズ ル端面との距離 Xを説明する図である。
第 9図 ( a ) は、 上向きノズルの断面図、 第 9図 ( b ) は水 平向きノ ズルの断面図、 第 9図 ( c ) は斜め下向きノ ズルの断 面図である。 第 1 0図は、 連絡口出口付近の粉粒体の充填状況を説明する 図である。
第 1 1 図は、 連絡口入口付近の粉粒体の停滞状況を説明する 図である。
第 1 2図は、 連絡口上流側の開口部の下面の角部 P とガス吹 出口 Qとを結ぶ線が水平面に対してなす角度 ( ひ) を説明する 図である。
第 1 3図は、 連絡口上流側の開口部の上面の角部 Rとガス吹 出口 Qとを結ぶ線が水平面に対してなす角度 ( β ) を説明する 図である。
第 1 4図 ( a ) ( b ) は、 連絡口の上流側開口部が下流側に 向かって漸次径小となる例を示す断面図である。
第 1 5図は、 連絡口の上流側開口部の下面部分が仕切板端面 よ り突出している例を示す断面図である。
第 1 6図は、 第 1 5図の突出している部分の上面の角部を斜 めに切断した例を示す断面図である。
第 1 7図は、 第 1 5図の突出している部分の上面が上流側か ら下流側に向けて下方に傾斜している例を示す断面図である。 第 1 8図は、 連絡口が上流側から下流側に向けて下方に傾斜 している例を示す断面図である。
第 1 9図は、 連絡口の下流側開口部の下面部分が仕切板端面 よ り突出している例を示す断面図である。
第 2 0図は、 第 1 9図の突出している部分の上面の角部を斜 めに切断した例を示す断面図である。
第 2 1 図は、 連絡口が仕切板の上流側および下流側の両端面 よ り突出している例を示す断面図である。
第 2 2図は、 連絡口の中間部にガス吹出しノズルを設けた例 を示す断面図である。 第 2 3図は、 連絡口の中間部に設けたガス吹出しノ ズルの先 端部に多孔質の材料を使用した例を示す断面図である。
第 2 4図は、 連絡口の中間部に設けたガス吹出しノズルの先 端部が上流側から下流側に向けて斜めに曲がっている例を示す 断面図である。
第 2 5図は、 従来の流動層炉の一例を示す概略構成図である。
〔発明を実施するための最良の形態〕
以下に本発明の実施例を実験条件と ともに図面を参照しなが ら説明する。
( 1 ) 実験条件 ( 1例)
① 粉粒体原料
a 嵩比重 2. 0 ton/m3 の鉄鉱石粉を流動層炉実験設備内 に 2. O tonZhr投入した。
b 嵩比重 1 . 5 tonZm3 の珪石粉を流動層炉実験設備内に 2. O tonZhr投入した。
なお、 流動層炉実験設備は内部の粉粒体原料の流動現象を明 瞭に観察しう るよ うなプラスチック製の円筒容器を使用した。 第 1 図に示す実際の流動層炉との大きな違いは、 分散板 2を支 持する支持パイプ 1 2がないこと と、 流動層 4 を仕切る仕切板 5の数を 1枚と したこ とである。 また、 使用したガスは空気で あり、 温度は常温である。
② 仕切板下部に設けた連絡口の高さは流動層高の約 1 Z 4 以下と した。
③ 連絡口の口径は 1 5 0 mmと した。
④ ①および③の条件よ り、 連絡口を通過する粉粒体原料の 平均移動速度は、 鉄鉱石粉の場合、 2 0 mmZ秒となり、 珪石 粉の場合、 3 0 mmZ秒となる。 ( 2 ) 基本形式 (第 8図に示す構成のもの) 連絡口 9の長さは 2 0 O mmである。 ガス吹出しノズノレの吹 出し方向がほぼ垂直方向の上向きの場合、 入口側の距離 Xは 2 0 0 mmと し、 出口側の距離 Xは 2 0 0 mmと した。 また、 ガ ス吹出しノズルの吹出し方向が斜め下向きの場合、 入口側の距 離 Xは 2 5 O mmと し、 出口側の距離 Xは 2 0 O mmと した。 また、 角度 (第 1 3図参照) は 4 5 ° と した (鉄鉱石粉の安 息角は 4 0 ° であり、 珪石粉の安息角は 3 0 ° である) 。 以上 の条件で鉄鉱石粉または珪石粉の流動化実験を行ったと ころ、 いずれの粉粒体原料においても、 連絡口 9 を通過する原料は連 絡口入出側の圧力差の影響によ り、 出口側へ一定距離移動した 後に入口側へ僅か移動する という運動を行いながら、 バック ミ キシングを生じることなく、 上流側の分割室から下流側の分割 室へ移動した。
なお、 ガス吹出しノズルの吹出し方向がほぼ垂直方向の上向 きの場合、 連絡口入口側の距離 Xが 1 5 0 mm以下で連絡口出 口側の距離 Xが 5 0 mm以下の場合には、 連絡口内にガスが流 れ、 上流側と下流側の分割室の流動層高差が異常に大きく なり (約 2 0 0 mm) 、 かつバック ミキシングを生じた。 また、 ガ ス吹出しノ ズルの吹出し方向が斜め下向きの場合、 連絡口入口 側の距離 Xが 2 0 0 mm以下で連絡口出口側の距離 Xが 1 0 0 mm以下の場合には、 同様の現象が生じた。
また、 角度 ]3が粉粒体の安息角以下の場合、 連絡口入口付近 に停滞部が生じ、 粉粒体原料は連絡口内を移動することができ なかった。
( 3 ) 連絡口の上流側開口部を下流側に向かって漸次径小化し たもの
第 1 4図 ( a ) に示すものは、 連絡口 9の上流側開口部を曲 面状に形成したものであり、 第 1 4図 ( b ) に示すものは、 連 絡口の上流側開口部を斜めに切断したものであり、 いずれの形 状のものも粉粒体原料がスムーズに連絡口 9に流入する様子が 確認できた。
( 4 ) 連絡口の上流側開口部の下面部分を仕切板端面よ り上流 側に向けて突出させたもの
第 1 5図に示すよ う に、 連絡口 9の上流側開口部の下面部分 1 3 を上流側に向けて突出させると、 連絡口 9の入口付近に粉 粒体の密な下降流が形成されるのが確認でき、 粉粒体は連絡口 9内を入口から出口に向けて、 ノ ック ミ キシングを生じること なく移動する様子が確認できた。
( 5 ) 第 1 5図に示す突出している部分の上面の角部を斜めに 切断したもの
第 1 5図に示す構成の場合、 下面部分 1 3上に粉粒体の停滞 部が若干発生したが、 第 1 6図に示すよ うに、 下面部分 1 3の 上面の角部を斜めに切断するこ とによ り、 この停滞部が殆ど存 在しなく なったことが確認できた。
( 6 ) 第 1 5図に示す突出している部分の上面を上流側から下 流側に向けて下方に 3 0 ° 傾斜させるよ うにしたもの
第 1 7図に示すよ うに、 下面部分 1 3を上流側から下流側に 向けて下方に 3 0 ° 傾斜させる と、 連絡口入出側の流動層圧力 差に加えて粉粒体の自重が付加されるので、 第 1 5図または第 1 6図に示す構成のものに比べて、 連絡口 9内の粉粒体の移動 がやや促進される様子が確認できた。
( 7 ) 連絡口が上流側から下流側に向けて下方に傾斜している もの
第 1 8図に示すよ うに、 連絡口 9 を上流側から下流側に向け て下方に 3 0 ° 傾斜させる と、 連絡口内の粉粒体の移動は第 8 図に示す構成のものに比べてやや促進される様子が確認できた。 なお、 第 1 7図と第 1 8図における傾斜角度は、 粉粒体の移 動を促進するために約 3 0 ° 以上とするのが好ましい。
( 8 ) 連絡口の下流側開口部の下面部分を仕切板端面よ り下流 側に向けて突出させたもの
第 1 9図に示すよ うに、 連絡口 9の下流側開口部の下面部分 1 3を下流側に向けて突出させると、 連絡口 9の出口付近に粉 粒体の密な下降流が形成されるのが確認でき、 粉粒体は連絡口 9内を入口から出口に向けて、 ノ ック ミ キシングを生じること なく移動する様子が確認できた。
( 9 ) 第 1 9図に示す突出している部分の角部を斜めに切断し たもの
第 1 9図に示す構成の場合、 下面部分 1 3上に粉粒体の停滞 部が若干発生したが、 第 2 0図に示すよ うに、 下面部分 1 3 の 上面の角部を斜めに切断することによ り、 この停滞部が殆ど存 在しなく なったことが確認できた。
( 1 0 ) 厚さ 1 0 0 m m以下の仕切板の下部に 1 0 O m m以上 の長さの連絡口を上流側と下流側に向けて突出させたもの 上記いずれの例においても、 仕切板をカツ ト して連絡ロを設 けてあるが、 第 2 1 図に示すよ うなパイプ状の連絡口 9 a を仕 切板 6 に設けることによつても同様な結果が得られることが確 認されている。
( 1 1 ) 連絡口の中間部にガス吹出しノ ズルを設けたもの 第 2 2図は、 連絡口 9 の中間部にガス吹出しノ ズル 1 4を設 け、 そのガス吹出しノ ズル 1 4 よ り連絡口 9内に、 流動層炉に 導入される反応ガスの一部を吹出すよ うにしたものである。 こ のよ うにするこ とで、 連絡口 9内における粉粒体の停滞部がほ とんど存在しなく なつたこ とが確認できた。 第 2 3図は、 ガス吹出しノズル 1 4の先端部に多孔質の材料 1 5 (多孔質の耐火物 (レンガ) ) を使用した場合を示す。 こ のよ う にノズル先端部を多孔質の材料にしても、 第 2 2図の場 合と同じよ うに、 連絡口 9内における粉粒体の停滞を抑制する 効果が確認できた。
第 2 4図は、 連絡口 9に 3個のガス吹出しノズル 1 4 a、 1 4 b、 1 4 c を設け、 ガス吹出しノズノレ 1 4 a 、 1 4 b、 1 4 cの先端部を上流側から下流側に向けて斜めに曲げたものであ る。 このよ う にするこ とで、 連絡口 9内における粉粒体の停滞 は完全になく なつたことを確認できた。
〔産業上の利用の可能性〕
本発明は以上説明したよ うに構成されているので、 バック ミ キシングを生じさせずに、 前後の分割室の流動層高差が適正な 大き さである、 流動状態にある粉粒体を処理する流動層炉と し て適している。

Claims

請 求 の 範 囲 . 一方の側面から投入された粉粒体原料を炉内下部に配置し たガス分散器に設けた多数のガス吹出しノズルよ り吹出され る反応ガスによ り流動させつつ反応を行って他方の側面から 成品を排出するバプリ ング型流動層炉であって、 流動層を仕 切板によつて複数の分割室に分割し、 上記仕切板の下部に上 流側分割室から下流側分割室へ原料を移動させるための連絡 口を設け、 該連絡口を通過する原料の平均移動速度が 5 0 0 m m Z秒以下である流動層炉において、 以下の条件を満たす ことを特徴とする多室分割型流動層炉。
連絡口の上下方向の位置が流動層高の 1 Z 4以下であり、 連絡口の長さが 1 0 O m m以上であり、
ガス吹出しノ ズルの吹出し方向がほぼ垂直方向の上向きの 場合、 連絡口入口 と上流側ノ ズル端面との距離が 1 5 0 m m よ り大き く、 連絡口出口 と下流側ノズル端面との距離が 5 0 m mよ り大き く、
ガス吹出しノズルの吹出し方向がほぼ水平方向の場合、 連 絡口入口 と上流側ノズル端面との距離が 2 0 0 m mよ り大き く、 連絡口出口 と下流側ノ ズル端面との距離が 1 0 0 m mよ り大き く、
ガス吹出しノ ズルの吹出し方向が斜め下向きの場合、 連絡 口入口 と上流側ノズル端面との距離が 2 0 0 m mよ り大き く、 連絡口出口 と下流側ノズル端面との距離が 1 0 0 m mよ り大 き く、
連絡口の上流側および下流側のいずれの開口部においても、 連絡口の上面の角部とガス吹出口 とを結ぶ線が水平面に対し てなす角度を粉粒体原料の安息角よ り大きく したこと。
2 . 連絡口下面がガス吹出しノズルの吹出し部よ り上方に位置 することを特徴とする請求の範囲第 1項記載の多室分割型流 動層炉。
3 . 連絡口の上流側開口部が下流側に向かって漸次径小となる ことを特徴とする請求の範囲第 1項または第 2項記載の多室 分割型流動層炉。
4 . 連絡口の上流側開口部の下面部分が仕切板端面よ り上流側 に向けて突出しているこ とを特徴とする請求の範囲第 1項ま たは第 2項記載の多室分割型流動層炉。
5 . 突出している部分の上面の角部が斜めに切断されているこ とを特徴とする請求の範囲第 4項記載の多室分割型流動層炉。
6 . 突出している部分の上面が上流側から下流側に向けて下方 に傾斜しているこ とを特徴とする請求の範囲第 4項記載の多 室分割型流動層炉。
7 . 連絡口が上流側から下流側に向けて下方に傾斜しているこ とを特徴とする請求の範囲第 1項、 第 2項または第 3項記載 の多室分割型流動層炉。
8 . 傾斜角が粉粒体原料の安息角よ り大きいこ とを特徴とする 請求の範囲第 6項または第 7項記載の多室分割型流動層炉。
9 . 連絡口の下流側開口部の下面部分が仕切板端面よ り下流側 に向けて突出しているこ とを特徴とする請求の範囲第 1項記 載の多室分割型流動層炉。
1 0 . 突出している部分の上面の角部が斜めに切断されている ことを特徴とする請求の範囲第 9項記載の多室分割型流動層 炉。
1 1 . 連絡口が仕切板の上流側および下流側の両端面よ り突出 していることを特徴とする請求の範囲の範囲第 1項記載の多 室分割型流動層炉。
1 2 . 連絡口の中間部に 1個または複数個のガス吹出しノ ズル を設け、 そのガス吹出しノ ズルよ り連絡口内に反応ガスを吹 出すこ とを特徴とする請求の範囲第 1項記載の多室分割型流 動層炉。
1 3 . ガス吹出しノ ズルの先端部に多孔質の材料を使用したこ とを特徴とする請求の範囲第 1 2項記載の多室分割型流動層 炉。
1 4 . ガス吹出しノ ズルの先端部が上流側から下流側に向けて 斜めに曲がっていることを特徴とする請求の範囲第 1 2項記 載の多室分割型流動層炉。
PCT/JP1998/004300 1998-02-20 1998-09-24 Four a lit fluidise divise en chambres multiples WO1999042777A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU91852/98A AU727917B2 (en) 1998-02-20 1998-09-24 Multi-partitioned fluidized bed reactor
BR9813204-0A BR9813204A (pt) 1998-02-20 1998-09-24 Reator de leito fluidizado multi-divisórias
EP98944237A EP1072855B1 (en) 1998-02-20 1998-09-24 Multichamber division type fluidized bed furnace
CA002303111A CA2303111C (en) 1998-02-20 1998-09-24 Multichamber division type fluidized bed furnace
DE69836349T DE69836349T2 (de) 1998-02-20 1998-09-24 Wirbelschichtofen des multikammerdivisionstypes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/38970 1998-02-20
JP3897098A JP2862863B2 (ja) 1997-03-31 1998-02-20 多室分割型流動層炉

Publications (1)

Publication Number Publication Date
WO1999042777A1 true WO1999042777A1 (fr) 1999-08-26

Family

ID=12540025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004300 WO1999042777A1 (fr) 1998-02-20 1998-09-24 Four a lit fluidise divise en chambres multiples

Country Status (10)

Country Link
EP (1) EP1072855B1 (ja)
CN (1) CN1166447C (ja)
AT (1) ATE344429T1 (ja)
AU (1) AU727917B2 (ja)
BR (1) BR9813204A (ja)
CA (1) CA2303111C (ja)
DE (1) DE69836349T2 (ja)
RU (1) RU2184915C2 (ja)
WO (1) WO1999042777A1 (ja)
ZA (1) ZA988798B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457971B2 (en) * 1999-06-17 2002-10-01 Btu International, Inc. Continuous furnace having traveling gas barrier
US7829031B2 (en) * 2007-11-16 2010-11-09 Brunob Ii B.V. Methods and systems for multistage processing of fluidized particulate solids
CN104096518B (zh) * 2013-04-08 2016-01-20 中国科学院大连化学物理研究所 一种多室流化床反应器
AT515810A1 (de) * 2014-05-15 2015-12-15 Tech Universität Wien Gasverteilungsvorrichtung
AT515683B1 (de) * 2014-06-10 2015-11-15 Tech Universität Wien Wirbelschichtreaktor
WO2017068599A1 (en) * 2015-10-21 2017-04-27 Hindustan Petroleum Corporation Limited Methods and apparatus for fluid catalytic cracking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500231A (ja) * 1980-02-07 1982-02-12

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517162A (en) * 1982-06-03 1985-05-14 Exxon Research And Engineering Co. Apparatus for use in processing a substance in a fluidized bed
GB2150854B (en) * 1983-12-06 1987-09-16 Coal Ind Hot gas generation
US5169913A (en) * 1991-05-31 1992-12-08 Procedyne Corp. Fluidized multistaged reaction system for polymerization
US5211985A (en) * 1991-10-09 1993-05-18 Ici Canada, Inc. Multi-stage process for continuous coating of fertilizer particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500231A (ja) * 1980-02-07 1982-02-12

Also Published As

Publication number Publication date
EP1072855B1 (en) 2006-11-02
RU2184915C2 (ru) 2002-07-10
EP1072855A1 (en) 2001-01-31
BR9813204A (pt) 2000-08-29
ATE344429T1 (de) 2006-11-15
CN1166447C (zh) 2004-09-15
CA2303111A1 (en) 1999-08-26
CN1276861A (zh) 2000-12-13
CA2303111C (en) 2003-10-28
DE69836349D1 (de) 2006-12-14
DE69836349T2 (de) 2007-06-21
AU727917B2 (en) 2001-01-04
ZA988798B (en) 1999-04-06
AU9185298A (en) 1999-09-06
EP1072855A4 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
CN100372593C (zh) 从废气中脱除气态污染物的方法和装置
US5386974A (en) Apparatus for treating gases and particulate solids in a fluid bed
CA2510791C (en) Method and plant for the conveyance of fine-grained solids
WO1999042777A1 (fr) Four a lit fluidise divise en chambres multiples
US7803268B2 (en) Method and plant for producing low-temperature coke
CN113544292B (zh) 流化床中的直接还原方法
JP2862863B2 (ja) 多室分割型流動層炉
CN105854739A (zh) 多组分颗粒体系床内分级流化反应器及其分级流化反应方法
JP3204917B2 (ja) 流動層炉
KR100321053B1 (ko) 유동반응로에서 역혼합 방지장치
JP3051371B2 (ja) 還元鉄または鉄カーバイドの製造装置
JP3157479B2 (ja) 流動層連絡管
AU2009315206B2 (en) Fluidized bed device
KR100321052B1 (ko) 용융가스화로에공급되는미분의분급장치및이를이용한미분의분급방법
JP2981015B2 (ja) 循環流動層反応装置の操業方法
US3774786A (en) Furnace feeding and delivery apparatus
CN104419797A (zh) 喷吹脱硫流态化室
JPH07275686A (ja) 循環流動反応装置
JPS6080075A (ja) 流動焼成炉の流動化方法
JPH03294410A (ja) 循環流動層還元装置のガス吹込み装置
JPS61127828A (ja) 非焼成ペレツトの製造方法および装置
JPH06256050A (ja) セメントクリンカの焼成装置
JPS628682B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810347.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN MX RU TT US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998944237

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2303111

Country of ref document: CA

Ref document number: 2303111

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 91852/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09622089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/008087

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1998944237

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 91852/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998944237

Country of ref document: EP