WO1999042637A1 - Procede et dispositif pour revetir un substrat et substrat ainsi revetu - Google Patents

Procede et dispositif pour revetir un substrat et substrat ainsi revetu Download PDF

Info

Publication number
WO1999042637A1
WO1999042637A1 PCT/EP1999/001098 EP9901098W WO9942637A1 WO 1999042637 A1 WO1999042637 A1 WO 1999042637A1 EP 9901098 W EP9901098 W EP 9901098W WO 9942637 A1 WO9942637 A1 WO 9942637A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas phase
plasma
layer
substrate
electrodes
Prior art date
Application number
PCT/EP1999/001098
Other languages
German (de)
English (en)
Inventor
Claus-Peter Klages
Thomas Höing
Rudolf Thyen
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1999042637A1 publication Critical patent/WO1999042637A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45595Atmospheric CVD gas inlets with no enclosed reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Definitions

  • the invention relates to a method for coating surfaces of a substrate in a plasma-activated process at atmospheric pressure, a device for carrying out the method and a layer system produced by the method, in particular in the device, and a substrate coated therewith.
  • a plasma-activated deposition of layers is known. At low temperatures, it enables coating with materials that can be used without plasma, i.e. purely thermal, only at high temperature, especially in a CVD process (Chemical Vapor Deposition process) or not at all.
  • An example of a deposition in the CVD process is silicon oxide, example
  • a plasma polymer R.A. Haefer, surface and thin-film technology, Springer-Verlag, 1987. Mainly a direct current (DC), high frequency (HF) or a microwave plasma (MW) is used. These plasmas can only be operated as so-called cold plasmas at low pressures.
  • DC direct current
  • HF high frequency
  • MW microwave plasma
  • Melt 30 ceramic particles that are brought into the discharge and accelerate the melting drops in the hot gas stream to speeds of over 100 m / sec.
  • a high power is understood to mean 5 to 100 kW and a high temperature 4000 to a few 10,000 K. They are called Melt drops solidify on impact on the surface to be coated and form the desired layer there.
  • a plasma-activated deposition of layers in the so-called barrier or corona discharges at atmospheric pressure is also known, DE 195 05 449 C2. It is also known to deposit layers on the electrodes in a discharge between two electrodes separated by at least one dielectric barrier when an AC voltage of sufficient amplitude is applied from acetylene or other gases introduced (Salge, Proceedings der EMRS 1995, France). Such a method can also be used to coat webs of plastics or metals which are guided through the discharge.
  • the substrates (webs or components) to be coated usually lie on ground during the coating process and are therefore part of the counterelectrode.
  • the high-voltage electrode is arranged at a distance of in particular 1 to 2 mm above the substrate to be coated.
  • Both electrode surfaces are coated during the coating process.
  • the coating of the counterelectrode or the substrate surface to be coated is wanted, whereas the coating of the high-voltage electrode has a disruptive effect.
  • the coating process is influenced by the parasitic coating of the high-voltage electrode in such a way that a coating result that changes with the process time is achieved. In extreme cases, this can lead to the discharge gap becoming clogged.
  • the layer should consist of one or more gaseous coating Runner and / or an aerosol and / or a powdery solid are deposited on the substrate. As a result, the substrate should be coated without any defects or surfaces.
  • a first gas phase is brought into the plasma state by means of an electric field.
  • the plasma-activated first gas phase forms a plasma jet.
  • a second gas phase which contains one or more coating precursors (precursors), is introduced into the plasma jet.
  • Physico-chemical reactions between the plasma-activated first gas phase and the admixed second gas phase form suitable particle species for layer deposition.
  • the second gas phase is admixed with the activated first gas phase at a position which is downstream of the point of origin of the plasma.
  • the particle species suitable for layer deposition are transported with the plasma jet onto the substrate to be coated and form a layer thereon.
  • the object is achieved by means of a device for carrying out the method in that a hollow body for supplying a first gas phase, electrodes, a generator suitable for generating an electrical field and one or more means for supplying a second gas phase are provided.
  • the layer system deposited on the substrate is silicon and / or carbon and / or hydrogen and / or oxygen and / or nitrogen and / or phosphorus and / or boron and / or selenium and / the tin and / or has aluminum and / or titanium and / or zinc.
  • the object is achieved in a substrate which is coated with the layer system in that the layer thickness of the deposited layer system is 0.001 to 10 ⁇ m.
  • the high-voltage electrode is advantageously no longer co-coated during the coating process, which is why there is no impairment of the coating process or no clogging of the gap between the electrodes or no chipping of the applied layer even with a longer operating time.
  • Flow velocities in the range from 0.01 to 10 m / s can preferably be used.
  • the method according to the invention can advantageously be used to produce significantly thinner layer thicknesses than with the plasma spraying method.
  • the layer thickness there is 100 ⁇ m to a few millimeters, since the powder particles used for the production have a size of 5 to 10 ⁇ m.
  • layer thicknesses between 1 nm and 10 ⁇ m are produced, which is not possible with the plasma spraying method due to the system.
  • gaseous precursors i.e. chemical starting compounds, and / or aerosols and / or solid powdery particles are coated, with gaseous precursors and / or aerosols being preferred. This results in greater variation possibilities for the coating method according to the invention.
  • a first gas phase is preferably converted into the plasma state while flowing through the hollow body.
  • a plasma jet emerges activated at the end of the hollow body.
  • the first gas phase in the hollow body is particularly preferably converted into the plasma by electrodes provided therein.
  • One of the electrodes can preferably represent the electrically conductive wall of the hollow body itself.
  • the generator feeding the electrodes preferably emits an AC voltage with a predetermined suitable amplitude.
  • DC voltage can also be provided to generate a DC field.
  • the course of the AC voltage is preferably sinusoidal or can also be designed in a more complicated manner. For example a pulsed DC voltage or a pulsed sine voltage can also be provided.
  • the frequency range used is preferably from 0.01 Hz to 100 MHz, in particular from 50 Hz to 100 kHz.
  • the speed of the plasma jet after the mixing of the first and second gas phases is preferably greater than a critical speed.
  • the speed of the plasma jet after the mixing is particularly preferably above about 5 cm / s.
  • gases or gas mixtures are supplied as the first gas phase which do not allow deposition of layers with thicknesses of more than 10 nm or those which cannot cause any layer deposition on the electrodes or the hollow body walls.
  • Noble gases such as argon or oxygen, nitrogen, hydrogen, nitrous oxide, tetrafluoromethane, carbon dioxide, carbon monoxide, sulfur hexafluoride or suitable mixtures of these gases are therefore particularly suitable.
  • One or more mixture-promoting means arranged laterally of the hollow body are particularly preferably provided, through which the second gas phase flows into the plasma of the first gas phase emerging as a jet at the end of the hollow body.
  • the second gas phase preferably contains one or more gaseous precursors or gaseous precursors suitable for the deposition and / or fine droplets of a liquid when an aerosol is used Phase and / or the powder of a solid phase.
  • the second gas phase is activated by the emerging plasma jet of the first gas phase in order to thereby stimulate the desired chemical substances to deposit a layer.
  • the activation process can be an energy transfer from the plasma jet, an oxidation or another physico-chemical process.
  • This physicochemical reaction takes place behind the mixture-promoting agents used to supply the first and second gas phases, in particular in the form of nozzles, in free space.
  • the result of this is that the products suitable for deposition and formed by the physico-chemical reaction can no longer be deposited on the electrodes or in the mixture-promoting agents, but on the material to be coated as desired.
  • the speed of the plasma jet after the coincidence of the first and second gas phases is chosen to be greater than a critical speed which, at atmospheric pressure and a distance between the mixing point and the end of the mixture-promoting agent, has a preferred value of 1 cm is about 5 cm / s. If a different distance between the mixing point and this end is selected, other critical speeds may result.
  • the deposition process is preferably carried out in a normal air environment.
  • the environment is kept inert with respect to the layer that forms. It is preferable to work with a jacket flow of nitrogen or in a closed atmosphere flushed with nitrogen, in particular in a closed container.
  • the second gas phase particularly preferably contains hydrocarbon and / or an organosilicon compound and / or organometallic compound and / or organoboron, phosphorus or selenium compounds.
  • a tin and / or titanium and / or aluminum and / or zinc organic compound is provided as an organometallic compound.
  • a layer system consisting of silicon oxide or a hydrocarbon compound or a compound made of silicon, carbon and hydrogen or a compound made of silicon, carbon, oxygen and hydrogen or a compound made of silicon, carbon, nitrogen and hydrogen is preferably deposited on the substrate.
  • any compound of metals such as tin, titanium, aluminum, zinc and / or of selenium, boron, phosphorus, can be deposited.
  • the layer thickness is preferably 0.001 to 10 ⁇ m.
  • Such a layer is used as an adhesion-promoting layer or as a corrosion protection layer or for modifying the surface energy of the substrate.
  • the layer can also have a mechanical, electrical or optical function.
  • FIG. 1 shows a schematic diagram of the device according to the invention for coating with a plasma jet
  • Figure 2 is a schematic diagram of a second embodiment of an inventive device for coating with a plasma jet.
  • FIG. 1 describes a schematic diagram of a first embodiment of a device according to the invention for coating a substrate 70.
  • the device has a hollow body 10.
  • the hollow body can have an arbitrarily shaped cross section. It is preferably round, square or rectangular in cross section.
  • the wall 11 of the hollow body 10 delimits an interior space 12.
  • Two electrodes 40 are arranged in this interior space of the hollow body.
  • An electrode is preferably at ground potential. They are connected to a generator 50 via lines 41. This feeds the electrodes with an alternating voltage of a suitable amplitude.
  • the voltage curve can be sinusoidal or more complicated.
  • mixture-promoting means 20, 21 are provided. These are preferably cylindrical or tubular. They each have a wall 22, 23, which delimits a respective interior 24, 25.
  • the substrate 70 is arranged at a predetermined distance from the hollow body 10, essentially perpendicular to it. It is preferably moved past this at a constant speed.
  • a first gas phase 1 is introduced into the interior 12 of the hollow body 10 from its rear end 14.
  • the first gas phase 1 flows through the hollow body at a predetermined speed.
  • the alternating voltage applied to the electrodes 40 causes the first gas phase to be activated, as a result of which the desired plasma jet 30 is formed. This flows in the direction of the front end 13 of the hollow body 10. There it exits the hollow body 10.
  • the electrode 40 arranged in the hollow body is surrounded by a dielectric 44.
  • a second gas phase 2 is introduced from the rear ends 28, 29 by the two mixture-promoting means 20, 21.
  • the means 20, 21 are preferably nozzles.
  • the second gas phase 2 flows through the two means 20, 21 at a predetermined speed and exits at their respective front ends 26, 27.
  • the second gas phases 2 meet in the plasma jet 30 in the area of a mixing point 60.
  • a physical-chemical reaction occurs here, which leads to the coating of the surface 71 of the substrate 70.
  • the desired layer 72 is formed on the surface of the substrate 70.
  • FIG. 2 shows a second embodiment of a device according to the invention for coating a substrate 70 by means of the method according to the invention.
  • the coating device is moved past the resting substrate to be coated, in the direction of the arrow.
  • this device according to FIG. 2 serves for the deposition of silicon oxide.
  • an essentially cylindrical tube 15 with a tapered front end 16 is provided according to the second embodiment according to FIG.
  • the front end 16 forms a front opening 17.
  • the cylindrical tube 15 forms the required counter electrode and is at ground potential. It is therefore connected via line 41 to generator 50 generating the electric field.
  • the high-voltage electrode is formed by a pin-shaped element 42, which is provided essentially centrally in the cylindrical tube 15 and is connected to the high-voltage output of the generator 50 via the line 41.
  • the high-voltage electrode itself is surrounded by the dielectric 44. 10
  • the high-voltage electrode and dielectric are surrounded by the plasma formed.
  • the distance between the dielectric of the high-voltage electrode and the inner wall 19 of the cylindrical tube 15 is in the millimeter range.
  • the two mixture-promoting means 20, 21 arranged laterally at a distance from the central front opening 17 of the cylindrical tube 15 have a particularly small diameter. It in turn blows the second gas phase into the plasma jet that forms within the cylindrical tube 15.
  • the cylindrical tube 15 can be made of stainless steel and have a diameter of 1.2 cm.
  • the front end tapers, for example, to a diameter of the front opening 17 of 0.8 cm.
  • the electrode 42 can be, for example, a pin with a length of 2 cm and a diameter of 4 mm.
  • the thickness of the dielectric is 1 mm.
  • a sinusoidal alternating voltage of 12 kV (peak voltage) and a frequency of 20 kHz can be applied to the cylindrical tube 15 to operate the discharge.
  • the first gas phase 1 can be, for example, air with a volume flow of 12 liters per minute. This then flows through the cylindrical tube 15 at a gas velocity of about 400 cm / s in the region of the front opening 17 of the tube.
  • the two mixture-promoting means 20, 21 are arranged, for example, at a distance of 1 cm from the front opening 17 of the cylindrical tube 15. They have, for example, a diameter of 1 mm and are flowed through by a second gas phase in the form of a nitrogen stream loaded with about 1 volume percent HMDSO (hexamethyldisiloxane) of, for example, 0.8 l / min (total).
  • the gas velocity is about 850 cm / s.
  • the substrate 70 is, for example, a distance of 2 cm from the front opening 17 of the cylindrical tube 15. It is preferably made of metal, in particular aluminum.
  • the area covered by the plasma beam is then about 2 cm 2 . On an area of this size, with an alternatively selected station 1 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

L'invention concerne un procédé pour revêtir des surfaces d'un substrat (70) au cours d'un processus activé par du plasma, à la pression atmosphérique. Une première phase gazeuse (1) est mise dans un état plasmatique au moyen d'un champ électrique et cette première phase gazeuse activée par plasma forme un jet de plasma (30) dans lequel est introduite une deuxième phase gazeuse (2) renfermant un ou plusieurs précurseurs de revêtement. Les réactions physico-chimiques entre la première phase gazeuse activée par plasma et la deuxième phase gazeuse ajoutée forment des espèces particulaires appropriées pour déposer un revêtement. Ces espèces particulaires sont transportées sur le substrat (70) pour être revêtues par le jet de plasma et former un revêtement sur ledit substrat. L'invention concerne également un dispositif pour la mise en oeuvre du procédé, comportant un corps creux (10) pour acheminer une première phase gazeuse, des électrodes (40), un générateur (50) permettant de générer un champ électrique, ainsi qu'un ou plusieurs moyens pour acheminer une deuxième phase gazeuse. Un système de revêtement produit à l'aide de ce procédé et/ou dispositif comprend du silicium et/ou du carbone et/ou de l'hydrogène et/ou de l'oxygène et/ou de l'azote et/ou du phosphore et/ou du bore et/ou de l'étain et/ou de l'aluminium et/ou du titane et/ou du zinc et/ou du sélénium. Dans un substrat revêtu à l'aide dudit système, l'épaisseur du revêtement déposé est comprise entre 0,001 et 10 νm.
PCT/EP1999/001098 1998-02-20 1999-02-19 Procede et dispositif pour revetir un substrat et substrat ainsi revetu WO1999042637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998107086 DE19807086A1 (de) 1998-02-20 1998-02-20 Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19807086.1 1998-02-20

Publications (1)

Publication Number Publication Date
WO1999042637A1 true WO1999042637A1 (fr) 1999-08-26

Family

ID=7858353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001098 WO1999042637A1 (fr) 1998-02-20 1999-02-19 Procede et dispositif pour revetir un substrat et substrat ainsi revetu

Country Status (2)

Country Link
DE (1) DE19807086A1 (fr)
WO (1) WO1999042637A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404986B2 (en) 2004-05-07 2008-07-29 United Technologies Corporation Multi-component deposition
WO2010059896A2 (fr) 2008-11-24 2010-05-27 Corning Incorporated Dépôt électrostatique de films conducteurs durant un étirage de verre

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851579B4 (de) * 1998-11-09 2005-06-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallisierter Kunststoff und Verfahren zu dessen Herstellung
DE19924108B4 (de) * 1999-05-26 2007-05-03 Robert Bosch Gmbh Plasmapolymerbeschichtung und Verfahren zu deren Herstellung
DE29919142U1 (de) * 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik G Plasmadüse
DE19958474A1 (de) * 1999-12-04 2001-06-21 Bosch Gmbh Robert Verfahren zur Erzeugung von Funktionsschichten mit einer Plasmastrahlquelle
DE10011276A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Verwendung eines indirrekten atomosphärischen Plasmatrons zur Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe sowie ein Verfahren zur Behandlung oder Beschichtung bahnförmiger Werkstoffe
DE10011274A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Plasmabehandelte bahnförmige Werkstoffe
DE10011275A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe
GB0010684D0 (en) * 2000-05-03 2000-06-28 Int Aluminium Holdings Ltd Adhesive curing apparatus and method
DE10104611A1 (de) * 2001-02-02 2002-08-14 Bosch Gmbh Robert Vorrichtung zur keramikartigen Beschichtung eines Substrates
DE10116502B4 (de) * 2001-04-03 2004-02-19 Viöl, Wolfgang, Prof. Dr. Verfahren und Vorrichtung zur Ausbildung eines Plasmastrahls
WO2003107409A1 (fr) * 2002-06-01 2003-12-24 積水化学工業株式会社 Procede et appareil permettant de former un film d'oxyde
DE10239875B4 (de) * 2002-08-29 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur großflächigen Beschichtung von Substraten bei Atmosphärendruckbedingungen
DE102004029911B4 (de) * 2003-06-20 2006-11-23 Innovent E.V. Technologieentwicklung Verfahren und Anordnung zur Herstellung anorganischer Schichten
DE10342448A1 (de) * 2003-09-13 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Korrosionsschutzbeschichtung
CH696811A5 (de) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Verfahren zur Beschichtung einer Substratoberfläche unter Verwendung eines Plasmastrahles.
JP3659354B1 (ja) * 2004-02-02 2005-06-15 セイコーエプソン株式会社 装飾品、装飾品の製造方法および時計
DE102004013306A1 (de) * 2004-03-17 2005-10-06 Behr Gmbh & Co. Kg Beschichtungsverfahren
DE102005038698A1 (de) 2005-07-08 2007-01-18 Tridonic Optoelectronics Gmbh Optoelektronische Bauelemente mit Haftvermittler
DE102006038780A1 (de) * 2006-08-18 2008-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Herstellen einer Beschichtung
DE102006061435A1 (de) * 2006-12-23 2008-06-26 Leoni Ag Verfahren und Vorrichtung zum Aufspritzen insbesondere einer Leiterbahn, elektrisches Bauteil mit einer Leiterbahn sowie Dosiervorrichtung
DE102007025152B4 (de) * 2007-05-29 2012-02-09 Innovent E.V. Verfahren zum Beschichten eines Substrats
DE102007025151A1 (de) * 2007-05-29 2008-09-04 Innovent E.V. Verfahren zum Beschichten eines Substrats
DE102007046214B4 (de) * 2007-09-27 2012-05-31 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur Plasmabehandlung
DE102008011248A1 (de) * 2008-02-26 2009-09-03 Maschinenfabrik Reinhausen Gmbh Verfahren zur Herstellung von Leiterplatten mit bestückten Bauelementen
DE102008029681A1 (de) * 2008-06-23 2009-12-24 Plasma Treat Gmbh Verfahren und Vorrichtung zum Aufbringen einer Schicht, insbesondere einer selbstreinigend und/oder antimikrobiell wirkenden photokatalytischen Schicht, auf eine Oberfläche
DE102008060923B4 (de) * 2008-12-06 2012-09-27 Innovent E.V. Verwendung einer Schicht
DE102008064134B4 (de) * 2008-12-19 2016-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Beschichtung von Gegenständen mittels eines Niederdruckplasmas
DE102009010497A1 (de) * 2008-12-19 2010-08-05 J-Fiber Gmbh Mehrdüsiger rohrförmiger Plasma-Abscheidebrenner zur Herstellung von Vorformen als Halbzeuge für optische Fasern
PL2279801T3 (pl) * 2009-07-27 2015-06-30 Fraunhofer Ges Forschung Sposoby powlekania wykorzystujące strumień plazmy i powlekarka plazmowa
DE102009048397A1 (de) 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmosphärendruckplasmaverfahren zur Herstellung oberflächenmodifizierter Partikel und von Beschichtungen
DE102009054189A1 (de) * 2009-11-20 2011-05-26 Roman Cihar Neuartige, Stoß- gedämpfte Räder oder Rollen sowie Verfahren zu deren Herstellung
DE102010032187A1 (de) * 2010-07-23 2012-01-26 Reinhausen Plasma Gmbh Verfahren zur Herstellung einer Solarzelle und Solarzelle
DE102011052120A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien
DE102011052121A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Beschichtungsverfahren nutzend spezielle pulverförmige Beschichtungsmaterialien und Verwendung derartiger Beschichtungsmaterialien
US20140230692A1 (en) 2011-07-25 2014-08-21 Eckart Gmbh Methods for Substrate Coating and Use of Additive-Containing Powdered Coating Materials in Such Methods
DE102011052119A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
WO2013152805A1 (fr) * 2012-04-13 2013-10-17 European Space Agency Procédé et système de production et de fabrication additive de métaux et d'alliages
DE102013017109A1 (de) 2013-10-15 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Partikeln in einem Atmosphärendruckplasma
EP2959992A1 (fr) 2014-06-26 2015-12-30 Eckart GmbH Procédé de fabrication d'un aérosol contenant des particules
AT517694B1 (de) * 2015-11-12 2017-04-15 Inocon Tech Ges M B H Vorrichtung und Verfahren zum Aufbringen einer Beschichtung
DE102020119220A1 (de) 2020-07-21 2022-01-27 Plasmatreat Gmbh Verfahren zur Herstellung einer pressgeschweißten Komponente

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009261A1 (fr) * 1991-11-01 1993-05-13 Opa (Overseas Publishers Association) Procedes et appareil de traitement superficiel
US5474642A (en) * 1991-05-24 1995-12-12 Overseas Publishers Association Apparatus for the treatment of a solid body
EP0727508A1 (fr) * 1995-02-16 1996-08-21 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et appareil de traitement de surfaces de substrats
EP0762518A2 (fr) * 1995-09-11 1997-03-12 Texas Instruments Incorporated Améliorations relatives aux composants semi-conducteurs
DE19505449C2 (de) 1995-02-17 1997-04-30 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Schichtsystems auf Substraten und das mit diesem Verfahren hergestellte Schichtsystem

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356672A (en) * 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5260106A (en) * 1990-08-03 1993-11-09 Fujitsu Limited Method for forming diamond films by plasma jet CVD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474642A (en) * 1991-05-24 1995-12-12 Overseas Publishers Association Apparatus for the treatment of a solid body
WO1993009261A1 (fr) * 1991-11-01 1993-05-13 Opa (Overseas Publishers Association) Procedes et appareil de traitement superficiel
EP0727508A1 (fr) * 1995-02-16 1996-08-21 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et appareil de traitement de surfaces de substrats
DE19505449C2 (de) 1995-02-17 1997-04-30 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Schichtsystems auf Substraten und das mit diesem Verfahren hergestellte Schichtsystem
EP0762518A2 (fr) * 1995-09-11 1997-03-12 Texas Instruments Incorporated Améliorations relatives aux composants semi-conducteurs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.A. HAEFER: "oberflaechen-und duennschichttechnologie", 1987, SPRINGER-VERLAG
SALGE: "proceedings der emrs", 1995, STRASBOURG, FRANCE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404986B2 (en) 2004-05-07 2008-07-29 United Technologies Corporation Multi-component deposition
WO2010059896A2 (fr) 2008-11-24 2010-05-27 Corning Incorporated Dépôt électrostatique de films conducteurs durant un étirage de verre
WO2010059896A3 (fr) * 2008-11-24 2010-09-16 Corning Incorporated Dépôt électrostatique de films conducteurs durant un étirage de verre

Also Published As

Publication number Publication date
DE19807086A1 (de) 1999-08-26

Similar Documents

Publication Publication Date Title
WO1999042637A1 (fr) Procede et dispositif pour revetir un substrat et substrat ainsi revetu
EP2486163B1 (fr) Procédé à plasma à pression atmosphérique pour fabriquer des particules modifiées en surface et des revêtements
EP1230414B1 (fr) Procede et dispositif servant au revetement par plasma de surfaces
EP1132195B1 (fr) Traitement de surface ou revêtement de bandes utilisant un plasmatron atmosphérique à arc non transféré
EP1894449B1 (fr) Procede de traitement plasma en pression atmospherique continue de pieces d'usinage, notamment de materiau en plaque ou en bande
EP2104750B1 (fr) Procédé et dispositif pour pulvérer une piste conductrice
EP2054166B1 (fr) Procédé et dispositif pour la fabrication d'un revêtement
DE60015725T2 (de) Erzeugung von Werkstoffen
EP3094761B1 (fr) Procédé de revêtement par plasma pour déposer une couche fonctionnelle et dispositif de dépôt
CH664768A5 (de) Verfahren zur beschichtung von substraten in einer vakuumkammer.
DE102011076806A1 (de) Vorrichtung und Verfahren zur Erzeugung eines kalten, homogenen Plasmas unter Atmosphärendruckbedingungen
WO2009156390A1 (fr) Procédé et dispositif pour appliquer une couche, en particulier une couche photocatalytique à action autonettoyante et/ou antimicrobienne, sur une surface
EP1252365A1 (fr) Procede de production de couches fonctionnelles avec une source de jet de plasma
EP2631025A1 (fr) Procédé d'injection par plasma
EP1654397B1 (fr) Procede et dispositif de revetement ou de modification de surfaces
DE10223865B4 (de) Verfahren zur Plasmabeschichtung von Werkstücken
EP1872637B1 (fr) Dispositif et procede de revetement par jet de plasma
EP0425623B1 (fr) Procede pour appliquer un materiau ceramique
EP3374542B1 (fr) Dispositif d'application d'un revêtement
DE10322696B3 (de) Verfahren und Vorrichtung zur plasmagestützten Behandlung von vorgebbaren Oberflächenbereichen eines Substrates
EP2387456B1 (fr) Procédé pour modifier la surface de particules et dispositif correspondant
WO2001044539A1 (fr) Procede de revetement
DE102007006786B4 (de) Anlage und Verfahren zum Beschichten eines Substrates
EP2186922A1 (fr) Procédé de séparation d'une couche nanocomposite sur un substrat à l'aide d'une procédé de dépôt chimique en phase vapeur
DE19851579A1 (de) Metallisierter Kunststoff und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase