EP0425623B1 - Procede pour appliquer un materiau ceramique - Google Patents

Procede pour appliquer un materiau ceramique Download PDF

Info

Publication number
EP0425623B1
EP0425623B1 EP90906956A EP90906956A EP0425623B1 EP 0425623 B1 EP0425623 B1 EP 0425623B1 EP 90906956 A EP90906956 A EP 90906956A EP 90906956 A EP90906956 A EP 90906956A EP 0425623 B1 EP0425623 B1 EP 0425623B1
Authority
EP
European Patent Office
Prior art keywords
plasma
plasma jet
jet
metallic element
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90906956A
Other languages
German (de)
English (en)
Other versions
EP0425623A1 (fr
Inventor
Rudolf Henne
Winfried Weber
Günter Schiller
Werner Schnurnberger
Michael Kabs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG, Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical WC Heraus GmbH and Co KG
Publication of EP0425623A1 publication Critical patent/EP0425623A1/fr
Application granted granted Critical
Publication of EP0425623B1 publication Critical patent/EP0425623B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Definitions

  • the invention relates to a method for applying a layer of ceramic material to a substrate by plasma spraying, in which the material is added to the plasma jet as sprayed material, the material comprising a chemical compound, of which a component is a non-metallic element from the group N, C , B or from the sixth or seventh main group, which decomposes at least partially in an inert environment before reaching the melting point and which is in the solid state in the applied state, and in which, in addition to the spray material, the non-metallic element in the plasma jet does not free in the free state is carried in a form bound to a foreign element.
  • the bond between the applied layer and the substrate is not optimal and the internal strength of the outer layer is also limited. Furthermore, the coating yield is also very low, since when the spray material is thrown against the substrate by the plasma jet in the still solid state, an impact reflection occurs on the substrate and thus only a small part of the spray material remains adhering to the substrate.
  • a process for plasma spraying is known from US Pat. No. 3,640,757, in which powdery oxide, such as, for example, chromium oxide, zirconium oxide or spinels, such as Mg zirconate or Zr silicate, is sprayed on by means of a high temperature / high speed plasma.
  • powdery oxide such as, for example, chromium oxide, zirconium oxide or spinels, such as Mg zirconate or Zr silicate
  • an oxidizing agent for example oxygen
  • KMnO4, Na2O2 or organic peroxides can be used as a mixture with the oxides.
  • DE-A-20 38 894 discloses a method for producing electrodes coated with fire-resistant material by means of plasma spraying. It is further stated that good layers can be obtained by not significantly changing the composition of the material when sprayed on, which is achieved by the choice of the working gas in which the original chemical composition is stable. Accordingly, a gas containing nitrogen or ammonia is chosen for nitrides and a gas containing methane for carbides.
  • a process for plasma spraying is known from EP-A-0 288 711, in which coating of the substrates with superconducting materials, such as YBa2CU3O y or LA-Sr-Cu oxides, takes place.
  • the starting materials are supplied as powder.
  • a plasma spraying device with additional oxygen feeds at the burner outlet is disclosed, wherein additional oxygen losses which the particles suffer during their flight onto the substrate are compensated for by supplying the oxygen. This also makes the plasma gas more reactive.
  • argon is used as a carrier gas for the powders.
  • EP-A-0 202 077 discloses a method for plasma spraying with a plasma torch generating a laminar beam.
  • the object of the invention is to improve a method of the generic type in such a way that the chemical compound comprised by the material can be applied to the substrate stoichiometrically, that is to say not decomposed, and a dense one , firmly adhering and stable layer.
  • This object is achieved in a method of the type described at the outset in that a laminar steel produced by means of a plasma torch with a laminar jet-generating nozzle is used as the plasma jet, and in that the plasma spraying is carried out in a vacuum.
  • the advantage of the solution according to the invention can be seen in the fact that such a laminar jet offers the best prerequisites for the material to be sprayed being heated constantly and uniformly and for as long as possible in order to achieve a layer which is as uniform as possible on the substrate.
  • the layer properties are further improved in that the plasma spraying in a vacuum eliminates the problems which otherwise arise due to contamination or interactions due to the atmosphere surrounding the plasma jet.
  • the non-metallic element is carried in the plasma jet in dissociated or atomic form.
  • the non-metallic element is guided in the plasma jet. It is therefore expedient if the non-metallic element is guided in the core region of the plasma jet near the axis so that it interacts as intensively as possible with the plasma jet surrounding it, but at the same time also provides good shielding by the plasma jet surrounding it.
  • reaction equilibrium can be shifted particularly well in the manner according to the invention by carrying the non-metallic element in the plasma jet in ionized form.
  • the non-metallic element could be supplied to the plasma jet, for example with the plasma gas flow.
  • this would require electrode materials which are not attacked by the non-metallic element.
  • the non-metallic element is added to a primary plasma jet downstream of the high-current arc.
  • the non-metallic element is added to the plasma jet on its side facing the high-current arc and close to it.
  • the dissociation or ionization of the non-metallic element in the plasma jet can be achieved and maintained particularly easily when this is brought about by interaction with the primary plasma jet.
  • An embodiment of the method according to the invention has proven to be particularly suitable in which the non-metallic element is added to the plasma jet in a Laval nozzle serving as a laminar jet-generating nozzle.
  • a particularly simple embodiment provides that the non-metallic element with the sprayed material is added together to the plasma jet, so that no additional devices are necessary to add the non-metallic element to the plasma jet, but rather the devices that are usually suitable for plasma spraying can be used.
  • non-metallic element is introduced into the plasma jet in gaseous form, since this enables good, uniform distribution and easy dissociation or ionization of the non-metallic element.
  • the non-metallic element is introduced into the plasma jet by means of a gas which releases it.
  • a preferred solution provides that the non-metallic element is surrounded by a conveying medium for the spray material.
  • the delivery medium for the spray material is gaseous.
  • the spray material is in powder form.
  • a particularly preferred embodiment of the method according to the invention provides that the spray material is added to the plasma jet in the laminar jet-generating nozzle of the burner.
  • the plasma jet is essentially free of chemical elements which react with the non-metallic element to form stable chemical compounds. It is particularly expedient here if the plasma jet is essentially free of hydrogen.
  • the plasma jet used is that of a direct current plasma torch, with which a plasma jet with a temperature that is as constant as possible and a flow profile that is as constant as possible can be generated.
  • plasma gas it is expediently provided that it comprises a noble gas.
  • the primary plasma comprises argon gas, preferably a predominant component of which consists of argon.
  • the primary plasma gas comprises, in addition to the argon, enthalpy-increasing and toughness-increasing additional gases, these serving to provide the necessary energy once for heating the sprayed material and, if appropriate, for dissociating or ionizing the non-metallic element.
  • Advantageous parameters for the enthalpy of the primary plasma are enthalpies of> 20 MJ / kg at 10,000 ° C, it is even better if the enthalpy is> 30 MJ / kg at 10,000 ° C and optimal values are achieved when the Enthalpy is> 40 MJ / kg at 10,000 ° C.
  • Another preferred noble gas is helium.
  • helium as the additional enthalpy-increasing additional gas is added to the argon as the main plasma gas.
  • Another advantageous possibility is to add nitrogen instead of helium as the additional enthalpy-increasing gas to argon as the main plasma gas.
  • the gaseous, non-metallic element is carried in this with a proportion of more than 5% of the gases comprised by the plasma jet.
  • the plasma jet has an enthalpy and temperature causing the non-metallic element to dissociate.
  • the non-metallic element is also to be ionized, it is even better if the plasma jet has a temperature and free enthalpy which causes the non-metallic element to ionize.
  • a heater downstream of the high-current arc is additionally provided for the plasma jet.
  • the additional heating takes place via high-frequency coupling into the plasma beam, which can be an inductive or a capacitive coupling.
  • a chemical compound which comprises a metal as a further chemical element has proven to be particularly suitable for the use of the method according to the invention.
  • Preferred Materials are oxidic materials such as spinels and perovskites based on nickel or cobalt or nickel-cobalt. However, it is also conceivable to apply all possible types of spinels and perovskites in accordance with the method according to the invention.
  • All these compounds can preferably be characterized in that the chemical compound has a free enthalpy of formation in the region of its melting temperature, i.e. that it is a chemical compound which tends to decompose with increasing temperature.
  • the length of the laminar jet from the nozzle is at least 60 mm, even better results are achieved with 80 mm and very good results with a length of the laminar jet of 100 mm. Optimal results can be achieved with a length of the laminar jet of 150 mm.
  • a sufficient and uniform heating of the chemical compound required for a good layer formation on the substrate can advantageously be achieved in that the chemical compound interacts with the laminar plasma jet within the same over a length of at least 60 mm. Even better Values can be achieved if the length of the interaction is at least 80 mm, very good values if the length of the interaction is at least 100 mm and optimal values if the length of the interaction is at least 150 mm.
  • the chemical compound in the plasma jet is heated to at least about 500 ° C, it is even better if the chemical compound is at least 1,000 ° C, or even better at least 1,500 ° C or best is heated to at least 2,000 ° C.
  • the best adhesive properties of the layers are achieved when the chemical compound in the plasma jet is heated to at least a temperature in the region of its melting point.
  • the invention relates to the use of a layer of ceramic material, produced by a method according to one or more of the above features, as a catalytically active coating.
  • the invention further relates to the use of a layer of ceramic material, produced by a method according to one or more of the features mentioned above, as an electrocatalytically active coating.
  • the invention relates to the use of a layer of ceramic material, produced according to one or more of the features mentioned above, as a tribologically active coating.
  • the invention relates to the use of a layer of ceramic material, produced by a method according to one or more of the features mentioned above, as a superconducting coating.
  • a device for carrying out the method according to the invention comprises - as shown schematically in FIG. 1 - a vacuum chamber 10 which can be evacuated to a preselectable pressure by means of a vacuum pump system 12.
  • a plasma torch 14 which generates a plasma jet 16 which strikes a substrate 18 which is likewise arranged in the vacuum chamber 10 and which in turn is moved with a movement device 20 relative to the plasma jet 16 in a direction perpendicular to a longitudinal axis 22 of the plasma jet 16
  • a spray material jet 24 is carried from particles of a material to be applied, which produces a coating 26 of this material when it hits the substrate 18.
  • the plasma torch 14 operates as a direct current burner and in turn comprises a tubular housing 28, in which a sleeve-shaped anode 34 is arranged, which has a gas channel 32 conically narrowing towards an end 30 of the housing 18 facing the substrate 18.
  • a pin-shaped cathode 36 protrudes into the gas channel 32 from a rear side opposite the end 30, an annular gap 38 remaining between the anode 34 and the cathode 36, through which a plasma gas stream 40 can enter the gas channel 32.
  • the plasma gas stream 40 is fed to this annular gap 38 via an annular space 42 between the cathode 36 and the housing 28.
  • the gas supply to this annular space 42 takes place in a manner known per se via a plasma torch supply device, designated as a whole as 44, which also provides the necessary direct voltage between the anode 34 and the cathode 36 and also a cooling channel 46 in the cathode 36 with cooling liquid provided.
  • a plasma torch supply device designated as a whole as 44, which also provides the necessary direct voltage between the anode 34 and the cathode 36 and also a cooling channel 46 in the cathode 36 with cooling liquid provided.
  • the gas channel 32 of the anode continues toward the substrate 18 in a nozzle channel 48 of a Laval nozzle 50 directly adjoining the anode 34, from which the essentially parallel laminar plasma jet 16 emerges if the parameters are correctly selected.
  • the Laval nozzle 50 and the gas channel 32 are arranged coaxially to the longitudinal axis 22 of the plasma jet 16.
  • a first inlet duct 52 opening into the nozzle duct 48 of the Laval nozzle 50 is provided, which is supplied via a first supply device 54.
  • a second inlet duct 56 is also additionally possible to provide on the side of the first inlet duct 52 facing the substrate 18, which is supplied via a second feed device 58.
  • Plasma spraying with a plasma torch 14 in the vacuum chamber 10 is described in detail in DE-OS 35 38 390. There is also a detailed description of the function and mode of operation of the plasma torch in the article W. Mayr and R. Henne "Investigation of a VPS burner with laval nozzle by means of an automated laser doppler measuring equipment" Proc. 1st. Plasma technology symposium, Lucerne, 1988.
  • cobalt spinel (Co3O4)
  • This cobalt spinel is applied to a substrate as a coating.
  • the cobalt spinel can be added, for example, via the first feed device 54 and the first inlet channel 52, the cobalt spinel being in powder form and by means of a carrier gas from the first feed device 54 to the first inlet channel 52 and from there into the Laval nozzle.
  • a gas mixture of 80% O2 and 20% Ar is preferably used as the carrier gas for the powdered cobalt spinel.
  • This oxygen (O2) represents the non-metallic element carried in the plasma jet 16 in addition to the spray material in a free form not bound to a foreign element.
  • the burner is operated with a primary plasma gas stream, which preferably comprises argon as the main gas.
  • a primary plasma gas stream which preferably comprises argon as the main gas.
  • Helium can also be added to increase the enthalpy. It would also be possible to add nitrogen to increase the enthalpy.
  • the plasma torch 14 is preferably to be operated in such a way that a long, laminar plasma beam running parallel to the longitudinal axis 22 and having a length of at least 150 mm is formed, which in vacuum can have a speed of 2,000 to 3,000 meters per second.
  • the injection of the spray material ie the cobalt spinel, is to be carried out in such a way that a spray material jet 24, which runs near the longitudinal axis 22, also arises in the core region of the plasma jet, spray material speeds of up to approximately 1,000 m / sec then occurring and this spray material jet 24 then through the latter surrounding part of the plasma jet 16 is protected.
  • the time that the spray material spends between its injection into the Laval nozzle 50 and its impact on the substrate 18 in the plasma jet 16 is then less than 10 -3 seconds, with an interaction with the plasma jet over a length of more than 150 mm.
  • the spray material is heated to the melting temperature range, preferably the spray material is melted, so that it is in the molten state during the residence time in the plasma jet 16.
  • the sprayed material is only heated moderately to a surface temperature in the range from 0 to 1,000 degrees above its melting point.
  • the time available for the sprayed material to decompose is kept very short.
  • the oxygen entrained by the plasma jet during the plasma spraying of cobalt spinel counteracts the decomposition of the cobalt spinel, since it shifts the dissociation or decomposition equilibrium towards the undecomposed cobalt spinel.
  • the power of the plasma torch 14 is such that the plasma in the plasma jet is sufficiently hot and enthalpy-rich to dissociate and ionize the oxygen supplied downstream to the plasma jet 16, and thus particularly for shifting the reaction equilibrium of the cobalt spinel to the oxide, ie towards the undecomposed cobalt spinel, or to carry out a reoxidation of any oxides that have become unstoichiometric.
  • An enthalpy of the plasma of more than 40 MJ / kg at 10,000 ° C. is preferably used.
  • the layer of cobalt spinel whose X-ray diffractogram is shown in FIG. 2d, was achieved with the following parameters: power of the plasma torch 14, 30 kW, pressure in the vacuum chamber 10, 5000 Pa (50 mbar), plasma gas made of argon and helium and carrier gas for the powdered cobalt spinel from 80% O2 and 20% Ar.
  • the layer thickness was 200 ⁇ m and showed a very dense structure, whereby it was firmly bonded to nickel as the substrate.
  • the preferred size for the layer growth is 10 ⁇ m / sec based on a coating area of 10 cm2, so that the desired layer can be applied in a single operation in controllable thermal substrate application, without the need for post-treatment, for example.
  • the non-metallic element being able to be fed either in the carrier gas of one or the other or in both a non-metallic material suitable for the respective material Element.
  • a further modification of the method according to the invention provides that if the plasma torch 14 does not generate sufficient temperatures and enthalpies, the Plasma stream 16 downstream of the Laval nozzle is still heated by an additional heater 60, this heater being, for example, a device for coupling high frequency into the plasma jet 16 and this can be done capacitively or inductively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Est décrit un procédé pour appliquer un revêtement de matériau céramique sur un substrat par projection au plasma. Le matériau à projeter, lequel est incorporé dans le jet de plasma, renferme un composé chimique dont un constituant est un élément non métallique du groupe N, C, B, ou bien des groupes principaux VI ou VII de la classification périodique, qui se décompose, au moins partiellement, dans une atmosphère inerte avant d'atteindre le point de fusion et qui est présent dans la phase solide à l'état appliqué. Dans le but d'améliorer le procédé de sorte que le composé chimique contenu dans le matériau puisse être appliqué sur le substrat sous forme st÷chiométrique, c'est-à-dire non décomposée, et forme un revêtement stable, imperméable et adhérent, l'élément non métallique est incorporé dans le jet de plasma, en plus du matériau à projeter, sous une forme libre, non liée à un élément étranger.

Claims (48)

  1. Procédé pour l'application d'une couche de matériau céramique sur un substrat par projection au plasma, dans lequel le matériau en tant que produit injecté est introduit dans le jet de plasma, le matériau étant constitué par un composé chimique dont un constituant est un élément métalloïdique du groupe N, C, B ou du sixième ou septième groupe principal, lequel se décompose au moins en partie dans un environnement inerte avant d'atteindre le point de fusion et se trouve, à l'état déposé, dans la phase solide, et dans lequel, en plus du produit injecté, l'élément métalloïdique est entraîné dans le jet de plasma à l'état libre, non lié à un élément étranger, caractérisé en ce qu'un jet laminaire produit à l'aide d'un chalumeau à plasma avec une tuyère génératrice de jet laminaire est utilisée comme jet de plasma et que la projection au plasma s'effectue sous vide.
  2. Procédé selon la revendication 1, caractérisé en ce que l'élément métalloïdique est entraîné dans le jet de plasma à l'état dissocié.
  3. Procédé selon la revendcation 1 ou 2, caractérisé en ce que l'élément métalloïdique est entraîné dans le jet de plasma à l'état ionisé.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que, après son introduction, l'élément métalloïdique est entraîné au coeur du jet de plasma au voisinage de l'axe.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est introduit dans un jet de plasma primaire en aval de l'arc à haute intensité.
  6. Procédé selon la revendication 5, caractérisé en ce que l'élément métalloïdique est introduit dans le jet de plasma primaire sur le côté orienté vers l'arc à haute intensité et au voisinage de celui-ci.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que la dissociation ou l'ionisation de l'élément métalloïdique est provoquée par interaction avec le jet primaire.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est introduit dans le jet de plasma dans la tuyère génératrice de jet laminaire du chalumeau.
  9. Procédé selon la revendication 8, caractérisé en ce que l'élément métalloïdique est introduit das le jet de plasma dans une tuyère de Laval servant de tuyère génératrice de jet laminaire.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est introduit dans le jet de plasma conjointement avec le produit injecté.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est introduit dans le jet de plasma à l'état gazeux.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est introduit dans le jet de plasma par un gaz libérant cet élément.
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique est entouré d'un milieu pour le transport du produit injecté.
  14. Procédé selon la revendication 13, caractérisé en ce que le milieu pour le transport du produit injecté est gazeux.
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que le produit injecté introduit dans le jet de plasma est pulvérulent.
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce que, après son introduction, le produit injecté est entraîné au coeur du jet de plasma au voisinage de l'axe.
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que le produit injecté est introduit dans le jet de plasma primaire en aval de l'arc à haute intensité.
  18. Procédé selon la revendication 17, caractérisé en ce que le produit injecté dans la tuyère génératrice de jet laminaire du chalumeau est introduit dans le jet de plasma.
  19. Procédé selon la revendication 18, caractérisé en ce que le produit injecté est introduit dans le jet de plasma dans une tuyère de Laval servant de tuyère génératrice de jet laminaire.
  20. Procédé selon l'une des revendications précédentes, caractérisé en ce que le jet de plasma est essentiellement exempt d'éléments chimiques réagissant avec l'élément métalloïdique en formant des composés chimiques stables.
  21. Procédé selon la revendication 20, caractérisé en ce que le jet de plasma est essentiellement exempt d'hydrogène.
  22. Procédé selon l'une des revendications précédentes, caractérisé en ce que le jet de plasma est généré par un chalumeau à courant continu.
  23. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz plasmagène servant à la projection au plasma comprend un gaz rare.
  24. Procédé selon la revendication 23, caractérisé en ce que le gaz plasmagène primaire comprend de l'argon.
  25. Procédé selon la revendication 24, caractérisé en ce que le gaz plasmagène primaire comprend, outre l'argon, des gaz auxiliaires augmentant l'enthalpie et la viscosité.
  26. Procédé selon l'une des revendications précédentes, caractérisé en ce que le plasma primaire présente une enthalpie de plus de 20 MJ/kg à 10.000°C.
  27. Procédé selon la revendication 26, caractérisé en ce que le plasma primaire présente une enthalpie de plus de 30 MJ/ kg à 10.000°C.
  28. Procédé selon la revendication 27, caractérisé en ce que le plasma primaire présente une enthalpie de plus de 40 MJ/ kg à 10.000°C.
  29. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz plasmagène comprend de l'hélium.
  30. Procédé selon l'une des revendications précédentes, caractérisé en ce que de l'hélium ou de l'azote en tant que gaz auxiliaire augmentant l'enthalpie libre et la viscosité est ajouté à l'argon en tant que gaz plasmagène principal.
  31. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élément métalloïdique gazeux est entraîné dans le jet de plasma avec une fraction de plus de 5% des gaz englobés par le jet de plasma.
  32. Procédé selon la revendication 31, caractérisé en ce que l'élément métalloïdique gazeux est entraîné dans le jet de plasma avec une fraction de plus de 15% des gaz englobés par le jet de plasma.
  33. Procédé selon l'une des revendications précédentes, caractérisé en ce que le jet de plasma présente une enthalpie et une température induisant la dissociation de l'élément métalloïdique.
  34. Procédé selon les revendications 1 à 32, caractérisé en ce que le jet de plasma présente une enthalpie et une température induisant l'ionisation de l'élément métalloïdique.
  35. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est prévu un chauffage additionnel pour le jet de plasma, disposé après l'arc à haute intensité.
  36. Procédé selon la revendication 35, caractérisé en ce que le chauffage additionnel a lieu par l'intermédiaire d'un couplage haute fréquence dans le jet de plasma.
  37. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composé chimique comprend un métal comme élément chimique supplémentaire.
  38. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composé chimique présente, dans l'intervalle de sa température de fusion, une enthalpie libre de formation se situant dans le domaine de zéro et au-dessus.
  39. Procédé selon les revendications 1 à 38, caractérisé en ce que le composé chimique interagit avec le jet de plasma laminaire sur une distance d'au moins 60 mm.
  40. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composé chimique dans le jet de plasma est chauffé à au moins environ 500°C.
  41. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composé chimique dans le jet de plasma est chauffé au moins à une température dans le domaine de son point de fusion.
  42. Procédé selon la revendication 41, caractérisé en ce que le composé chimique est chauffé au moins à une température correspondant à son point de fusion.
  43. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composé chimique est chauffé à une température entre 0 et 1000° au-dessus de son point de fusion.
  44. Procédé selon l'une des revendications précédentes, caractérisé en ce que la projection au plasma s'effectue avec un faisceau d'ultrasons.
  45. Utilisation d'une couche de matériau céramique, réalisée selon l'une des revendications précédentes pour un revêtement catalytiquement actif.
  46. Utilisation d'une couche de matériau céramique, réalisée selon l'une des revendications précédentes, en tant que revêtement à activité électrocatalytique.
  47. Utilisation d'une couche de matériau céramique, réalisée selon une des revendications 1 à 44, en tant que revêtement à activité tribologique.
  48. Utilisation d'une couche de matériau céramique, réalisée selon une des revendicatins 1 à 44, en tant que revêtement supraconducteur.
EP90906956A 1989-05-04 1990-04-26 Procede pour appliquer un materiau ceramique Expired - Lifetime EP0425623B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3914722 1989-05-04
DE3914722A DE3914722A1 (de) 1989-05-04 1989-05-04 Verfahren zum auftragen von keramischen material

Publications (2)

Publication Number Publication Date
EP0425623A1 EP0425623A1 (fr) 1991-05-08
EP0425623B1 true EP0425623B1 (fr) 1994-03-16

Family

ID=6380075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90906956A Expired - Lifetime EP0425623B1 (fr) 1989-05-04 1990-04-26 Procede pour appliquer un materiau ceramique

Country Status (4)

Country Link
EP (1) EP0425623B1 (fr)
CA (1) CA2032172C (fr)
DE (2) DE3914722A1 (fr)
WO (1) WO1990013681A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237980A1 (de) * 1992-11-11 1994-05-19 Krupp Ag Hoesch Krupp Verfahren zur Erzeugung einer mehrlagigen nitrierten oder Nitrid-Beschichtung durch reaktives Plasmaspritzen
DE4406940A1 (de) * 1994-03-03 1995-09-07 Cerasiv Gmbh Verfahren zur Herstellung beschichteter Werkstoffe
GB9712801D0 (en) * 1997-06-19 1997-08-20 Boc Group Plc Improved plasma spraying
DE10001620A1 (de) * 2000-01-17 2001-07-19 Abb Alstom Power Ch Ag Beschichtungsverfahren
US7678428B2 (en) 2002-04-12 2010-03-16 Sulzer Metco Ag Plasma spraying method
DE102009037846A1 (de) * 2009-08-18 2011-02-24 Siemens Aktiengesellschaft Partikelgefüllte Beschichtungen, Verfahren zur Herstellung und Verwendungen dazu
RU2735385C1 (ru) * 2019-12-10 2020-10-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева" (СибГУ им. М.Ф. Решетнева) Плазмотрон для нанесения покрытий на внутренние поверхности изделий
CN116121691A (zh) * 2023-03-23 2023-05-16 西安稀有金属材料研究院有限公司 一种层流等离子喷涂耐磨涂层及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429278A (fr) * 1964-08-06 1966-02-25 Air Liquide Perfectionnement aux procédés de projection de carbures de métaux
GB1182242A (en) * 1966-02-11 1970-02-25 United States Borax Chem Improvements in or relating to Nitrides.
US3640757A (en) * 1968-08-09 1972-02-08 Avco Corp Flame deposited oxide coating and method of making same
DE2038894C3 (de) * 1970-08-05 1974-08-29 Bosch Gmbh Robert Verfahren zur Herstellung überzogener Elektroden für Funkenstrecken und Elektroden, hergestellt nach diesem Verfahren
LU71343A1 (fr) * 1974-11-22 1976-03-17
DD144426A1 (de) * 1979-06-21 1980-10-15 Norbert Dittmann Verfahren zur beschichtung von metalloberflaechen
JPS61259777A (ja) * 1985-05-13 1986-11-18 Onoda Cement Co Ltd 単ト−チ型プラズマ溶射方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters, volume 52, 21 March 1988, (New York, US) K. Tachikawa: "High Tc superconducting films of Y-Ba-Cu oxides prepared by low-pressure plasma spraying", pages 1011-1013, see page 1011, left-hand column; figure 1 *
International Metallurgical Reviews, volume 17, June 1972, Review 164, Metals Society (London, GB) I.A. Fischer: "Variables influencing the characteristics of plasma-sprayed coatings", pages 117-129, see page 122, right-hand column, lines 6-58 *
Welding Journal, volume 66, No. 2, February 1987, (Miami, Florida, US) G.M. Herterick: "Gas selection in plasma spraying", pages 27-30, right-hand column, lines 23-45; page 28, left hand column, right-hand column, page 30, left-hand column, line 16-end *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow

Also Published As

Publication number Publication date
DE3914722A1 (de) 1990-11-08
CA2032172A1 (fr) 1990-11-05
WO1990013681A1 (fr) 1990-11-15
CA2032172C (fr) 1997-12-16
EP0425623A1 (fr) 1991-05-08
DE59005005D1 (de) 1994-04-21

Similar Documents

Publication Publication Date Title
DE3820237C1 (fr)
DE3043830C3 (de) Lichtbogen-Plasma-Beschichtungssystem
EP0887438B1 (fr) Procédé d'amélioration de la surface inférieure de corps creux et dispositif de la mise en oeuvre du procédé
EP0223104A1 (fr) Revêtement pour un substrat et son procédé de fabrication
DE3319524C1 (de) Supraleitende Faser
EP0102489A2 (fr) Supra-conducteur à filaments multiples et procédé de fabrication
DE19807086A1 (de) Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE3923188C2 (fr)
DE4000690A1 (de) Verfahren zum herstellen von ultrafeinen partikeln und deren verwendung
EP1394283B1 (fr) Procédé et dispositif pour le revêtement de substrats de grande surface à pression atmospherique
US5356674A (en) Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element
EP2486163A1 (fr) Procédé à plasma à pression atmosphérique pour fabriquer des particules modifiées en surface et des revêtements
EP2394497B1 (fr) Installation de revêtement de plasma et procédé de revêtement ou de traitement de la surface d'un substrat
EP0727508A1 (fr) Procédé et appareil de traitement de surfaces de substrats
CH664768A5 (de) Verfahren zur beschichtung von substraten in einer vakuumkammer.
EP0425623B1 (fr) Procede pour appliquer un materiau ceramique
EP0317019A2 (fr) Procédé de déposition réactive de métal en phase gazeuse, déposition activée par décharge luminescente
DE3150591A1 (de) Verfahren zur herstellung von metallueberzuegen durch zerstaeubungsionenbeschichtung
EP2054166B1 (fr) Procédé et dispositif pour la fabrication d'un revêtement
EP2503018B1 (fr) Procédé de projection par plasma pour la fabrication d'une membrane conductrice d'ions
EP2030669A1 (fr) Procédé et matériau de sortie pour la fabrication d'une membrane perméable à l'hydrogène tout comme membrane perméable à l'hydrogène
EP1654397B1 (fr) Procede et dispositif de revetement ou de modification de surfaces
DE3834402C1 (fr)
DE19881726B4 (de) Verfahren zum Sprühen von Plasma
DE3620214A1 (de) Verfahren und vorrichtung zur schaffung eines chemisch aktiven milieus fuer plasmochemische reaktionen, vor allem fuer die abscheidung duenner schichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.C. HERAEUS GMBH

Owner name: DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940316

Ref country code: NL

Effective date: 19940316

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 59005005

Country of ref document: DE

Date of ref document: 19940421

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940609

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: W. C. HERAEUS GMBH;DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHRT E.V. TRANSFER- DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHRT E.V.;W.C. HERAEUS GMBH & CO. KG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000403

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000417

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000425

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010327

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010525

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010426

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050426