WO1999034213A1 - Analyseur pour echantillons liquides - Google Patents

Analyseur pour echantillons liquides Download PDF

Info

Publication number
WO1999034213A1
WO1999034213A1 PCT/JP1998/005946 JP9805946W WO9934213A1 WO 1999034213 A1 WO1999034213 A1 WO 1999034213A1 JP 9805946 W JP9805946 W JP 9805946W WO 9934213 A1 WO9934213 A1 WO 9934213A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid sample
filter
liquid
specific binding
analyzer
Prior art date
Application number
PCT/JP1998/005946
Other languages
English (en)
French (fr)
Inventor
Hideyuki Terasawa
Tadakazu Yamauchi
Original Assignee
Mochida Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mochida Pharmaceutical Co., Ltd. filed Critical Mochida Pharmaceutical Co., Ltd.
Priority to CA002316193A priority Critical patent/CA2316193A1/en
Priority to EP98961590A priority patent/EP1043588A4/en
Publication of WO1999034213A1 publication Critical patent/WO1999034213A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions

Definitions

  • the present invention relates to a liquid sample analyzer, a specific binding analyzer, and a specific binding analysis method, and in particular, to analyze a liquid sample that may contain a solid component such as a blood cell component, a tissue component, and dust.
  • a liquid sample analyzer capable of accurately and efficiently analyzing an analyte in a liquid component, and a specific binding analysis method and a specific binding analyzer using the liquid sample analyzer.
  • the solid component in the liquid sample which is a factor that hinders the analysis of the liquid component or hinders its efficient analysis, is determined in advance. After being captured and removed by a filter or the like, only the liquid component that has passed through the filter or the like is subjected to analysis.
  • a method or an apparatus using a liquid permeable material such as a glass fiber integrated material or a non-woven fabric as a filter for capturing blood cells has been known (Japanese Patent Publication No. Hei 6 (1994)).
  • Japanese Patent Application Laid-Open No. 6-50454 Japanese Unexamined Patent Application Publication No.
  • an apparatus or method for removing blood cell components from a whole blood sample by using an absorptive material impregnated with a blood cell capturing substance such as lectin as agglutinin in a part of the filter Japanese Patent Application Laid-Open (Japanese Patent Application Laid-Open No. 611-161861, Japanese Patent Application Laid-Open No. Sho 61-1987696) or stabilization of agglutinated erythrocytes such as erythrocyte binding components such as lectins and polycationic polymer components
  • an apparatus or a method using a chemical component Japanese Patent Application Laid-Open No. 61-118661, Japanese Patent Application Laid-Open No. 7-51773 is known.
  • These devices or methods also provide a liquid component from captured blood cell components. The problem of penetration impediment remains.
  • the specific binding reaction of the analyte in the liquid sample is used to adjust the amount of the analyte in the liquid sample.
  • a distribution of the distance between the signal substance generator and the detector is formed, and this distribution is detected by the detector as the mass transfer of the signal substance generated by the signal substance generator, that is, the signal intensity controlled by the diffusion distance.
  • the present inventors have developed an analysis method called the “Mediator D iffusi on— controlled Immu no ass ay” method, and have previously proposed the method (Japanese Patent Application Laid-Open Nos. Hei 5-26464552 and Hei 8). — See, for example, Japanese Patent Application Laid-Open No. 75748, JP-A-9-123497) According to this method, an analyte in a liquid sample can be measured with high sensitivity simply and quickly without removing unreacted substances.
  • interference of solid components such as blood cells may affect the signal intensity at the detection unit, which may cause errors in the measurement results of the amount of the analyte in the sample. Disclosure of the invention
  • an object of the present invention is to provide a filter unit provided in order to capture a solid component in advance when analyzing a liquid component in a liquid sample that may contain a solid component.
  • the permeation of the water-soluble components through the filter section is not hindered by the captured solid components, and the analysis accuracy of the analyte in the liquid component in the analysis section downstream of the filter section can be improved.
  • Another object of the present invention is to provide a specific binding analysis method and a specific binding analysis device for measuring an analyte in a liquid sample by a specific binding reaction using the liquid sample analyzer. I do.
  • the present invention provides a liquid sample introduction unit, a filter unit that captures a solid component in a liquid sample introduced from the liquid sample introduction unit, and a liquid that has passed through the filter unit.
  • a liquid sample analyzer having an analysis unit for analyzing an analyte in a neutral sample, wherein a solid component captured and accumulated in the filter unit is disposed between the filter unit and a member disposed above the filter unit. It is an object of the present invention to provide a liquid sample analyzer characterized by including a flow path securing portion having a gap configured so that the permeation of the liquid component in the liquid sample is not inhibited by the component.
  • An object is provided which is constituted by a gap formed between a concave portion formed on the lower surface of the material and an upper surface of the filter portion.
  • the present invention provides a configuration in which the flow path securing section is configured by an insertion member having a liquid flow path inserted between a member disposed above a part of the filter and the filter section.
  • the present invention provides a specific binding analysis method and a specific binding analyzer for measuring an analyte in a liquid sample by a specific binding reaction using the liquid sample analyzer. is there.
  • FIG. 1A is a schematic diagram illustrating a configuration example of a specific binding analysis device of the present invention
  • FIG. 1B is a cross-sectional view illustrating an assembled state thereof.
  • FIG. 2A is a sectional view showing the structure of the upper cover of the specific binding analyzer of the present invention
  • FIG. 2B is its bottom view.
  • FIG. 3A is a cross-sectional view showing the structure of the upper cover of the specific binding analyzer of the present invention
  • FIG. 3B is a bottom view
  • FIG. 3C is a side view.
  • FIG. 4A is a sectional view showing another structure of the upper cover of the specific binding analyzer of the present invention
  • FIG. 4B is a bottom view thereof.
  • FIG. 5A is a cross-sectional view showing another structure of the upper cover of the specific binding analyzer of the present invention
  • FIG. 5B is a bottom view thereof.
  • FIG. 6A is a cross-sectional view showing another structure of the upper cover of the specific binding analyzer of the present invention, and FIG. 6B is a bottom view thereof.
  • FIG. 7 is a sectional view showing another structure of the upper cover of the specific binding analyzer of the present invention, and FIG. 7B is a bottom view thereof.
  • 8A to 8D are bottom views each showing another structure of the upper cover of the specific binding analyzer of the present invention.
  • FIG. 9A is a sectional view showing another structure of the upper cover of the specific binding analyzer of the present invention
  • FIG. 9B is a bottom view thereof.
  • FIG. 10A is a cross-sectional view showing the structure of the lower substrate of the specific binding analyzer of the present invention
  • FIG. 10B is a bottom view
  • FIG. 10C is a side view.
  • FIG. 11A is a schematic diagram illustrating another configuration example of the specific binding analysis device of the present invention
  • FIG. 11B is a cross-sectional view illustrating an assembled state thereof.
  • FIGS. 12A to 12I are diagrams each showing another configuration example of the liquid impermeable member of the specific binding analyzer of the present invention shown in FIG. 10.
  • FIG. 13 is a schematic diagram showing another configuration example of the specific binding analyzer of the present invention.
  • FIGS. 14A to 14D are schematic cross-sectional views showing another configuration example of the channel securing section of the specific binding analyzer of the present invention.
  • FIGS. 15A to 15C are diagrams showing a configuration example of the specific binding analyzer of the present invention having the channel securing section shown in FIG. 14D.
  • FIG. 16 is a diagram showing the results of Example 1.
  • FIG. 17 is a diagram showing the results of Example 2.
  • FIGS. 18A and 18B are diagrams showing the results of Example 3, respectively.
  • FIG. 19 is a diagram showing the results of Example 4.
  • FIG. 20 is a diagram showing the results of Example 5.
  • FIGS. 21A and B show the results of Example 6, respectively (FIGS. 22A and B show the results of Example 7, respectively) (FIG. 23 shows the results of Example 8).
  • FIG. 21A and B show the results of Example 6, respectively (FIGS. 22A and B show the results of Example 7, respectively) (FIG. 23 shows the results of Example 8).
  • FIG. 21A and B show the results of Example 6, respectively (FIGS. 22A and B show the results of Example 7, respectively)
  • FIG. 23 shows the results of Example 8).
  • the liquid sample analyzer of the present invention (hereinafter, referred to as “the device of the present invention”), the specific binding analysis method and the specific binding analyzer will be described in detail.
  • the apparatus of the present invention comprises: a liquid sample introduction section; a filter section for capturing a solid component in the liquid sample introduced from the liquid sample introduction section; and an analysis in the liquid sample transmitted through the filter section. And an analysis unit for analyzing the object.
  • the liquid sample introduced from the liquid sample introduction unit includes an analyte whose physical property, chemical composition, or content of a specific substance is analyzed or measured in the analysis unit. It is expected to be a liquid.
  • This humoral sample is, specifically, urine, serum, plasma, whole blood, saliva, tears, cerebrospinal fluid, or secretions from body organs such as nipples, and mucus, body tissues or cells. , Such as bacteria or solid Or a sol, or a suspension or solution of these in a liquid such as a buffer, extract, or dissolution solution.
  • the solid components contained in the liquid sample and captured by a part of the filter include blood cells, cell components, tissue components, artificial fine particles (latex, polystyrene microspheres, etc.), dust, etc., or their crushed parts and decomposition
  • the liquid component of the liquid sample is the remaining liquid component from which the solid component has been substantially removed, and is a fraction to be analyzed in the analysis unit.
  • the analyte is a substance to be measured in the device of the present invention. Specifically, metabolites, enzyme substrates, enzyme inhibitors, enzyme activators, enzyme molecules, or various proteins that function as antibody molecules or antigens, polypeptides, glycoproteins, polysaccharides, complex glycolipids, etc. Or nucleic acids, effector molecules, receptor molecules and the like.
  • enzyme substrates or metabolites such as creatinine, uric acid, glucose, cholesterol, and neutral fats, acute-phase proteins such as C-reactive protein (CRP), human protein, carcinoembryonic antigen (CEA) , CA125, CA19_9 and other tumor markers, / 32-microglobulin ⁇ 2 m), ferritin and other proteins; estradiol (E2), estriol (E3), human villi Various hormones such as gonadotropin (hCG), luteinizing hormone (LH) and human placental lactogen (hPL); HBs antigen, HBs antibody, HBe antigen, HBe antibody, HBc antibody Various virus-related antigens, such as HCV antibody, HIV antibody or Virus-related antibodies; various allergens and IgE antibodies specific thereto; narcotic drugs, medicinal drugs and their metabolites; nucleic acids of virus and disease-related polynucleotide sequences, and the like.
  • CRP C-reactive protein
  • the liquid sample introduction section is an inlet for introducing a liquid sample into the apparatus, and is an opening communicating with a thin tubular flow path and a thin-layer flow path communicating with a part of a filter in the apparatus.
  • the device may be constituted by an opening formed in the upper part of the apparatus main body.
  • those constituted by an opening formed in the upper part of the apparatus main body are preferable because they are advantageous in miniaturizing the apparatus, speeding up the measurement, simplifying the measurement, and the like.
  • a part of the filter is constituted by a member that captures a solid component contained in the liquid sample introduced from the liquid sample introduction part.
  • a material constituting a part of the filter that captures such a solid component include glass fiber filter paper, cellulose filter paper, nonwoven fabric, and nylon cloth.
  • the filter portion may be composed of, for example, a plurality of members as long as it captures a solid component contained in the liquid sample.
  • the solid component contained in the liquid sample is blood cells, it is preferable to use a glass fiber filter or a Nymouth cloth as a material.
  • the flow channel securing section is disposed between the liquid sample introduction section and a part of the filter, and the liquid component in the liquid sample is collected and accumulated in the filter section by the solid component. Having a gap configured so as not to hinder the transmission of light.
  • the liquid sample to be analyzed generally tends to flow the shortest distance in a permeable area such as a filter, so that solid components are localized in the local area of the filter. Easy to be caught.
  • liquid samples As the solids pass through the filter, the captured solids locally fill the filter, or accumulate locally on the filter, leading to local blockage of the liquid sample.
  • the flow path securing section acts as a bypass for the liquid flow, enables efficient capture of solid components, and allows the liquid to flow downstream of the filter section in which the analysis section exists.
  • a sufficient amount of the permeating component can be secured. That is, in the device of the present invention, even if a part of the filter is substantially buried by the accumulation of the solid components, the flow path securing part secures a space around the filter and the liquid property in the filter part It has an effect of guiding the liquid flow of the liquid sample to a region through which the sample can pass, that is, a region where the accumulation of solid components has not yet caused flow path obstruction.
  • the channel securing portion may be, for example, a gap formed between a concave portion formed on the lower surface of the liquid sample introduction portion formed on the upper portion of the device main body and the upper surface of the filter portion. It is composed of For example, Fig. 1 shows an outline, Fig. 2A shows a cross-sectional view, and Fig. 2B shows a bottom view. Circular trapezoidal liquid inlet holding section
  • FIGS. 4 to 7 which are a cross-sectional view and a bottom view, respectively, and FIGS. 8A to 8D, which show only the bottom view of the liquid inlet, the bottom of the circular trapezoidal liquid inlet holding section 12.
  • a MEDIA analyzer described later is a stack type analyzer in which a membrane member or a filter paper member sandwiches an electrode substrate having a communication hole at the center. A working electrode and a counter electrode as an analysis section are arranged in a ring shape around the communication hole in the center of the electrode substrate. Therefore, it is important that the membrane member or the filter paper member hold these working electrodes and counter electrodes reliably and with appropriate strength in order to ensure the analysis accuracy.
  • the flow channel securing portions formed in the upper cover illustrated in FIGS. 1, 2, 4 to 7 form a channel securing portion at the upper portion of the filter portion and can securely hold the filter portion. Preferred.
  • the channel securing portion a device configured by an insertion member having a liquid channel inserted between the upper cover of the device main body and the filter portion is also exemplified.
  • the flow path securing portion of this embodiment includes a cross-sectional view in FIG. 3A, a bottom view in FIG. 3B, and a side view in FIG. 3C.
  • the inlet member 57 is, as shown in FIG. 13, a lower sheet member 59 a in which liquid inlets 58 a, 58 b, 58 c.
  • the lower sheet member 59a and the upper sheet member 59 are formed by the upper sheet member 59b and the spacers 60a, 60b arranged in the longitudinal direction of both members. between b and the liquid sample Are formed in a form in which a thin-layer flow channel 61 through which the fluid flows is formed.
  • the insertion member having the channel securing portion is made of a plastic sheet punched out of the channel securing portion, a water-impermeable paper, a porous member such as a nonwoven fabric, a natural fiber and / or a synthetic resin fiber. Examples thereof include a woven fabric, a mesh material, and a filter material formed by combining one or more of these.
  • a plastic thin plate punched out of the channel securing portion a silicon rubber sheet, a vinyl chloride sheet, a PET film, etc.
  • punched out of the channel securing portion can be exemplified as those which are easy to process.
  • porous member, mesh, or filter material examples include a net made of vinyl chloride having a mesh of 5 to 40 mesh and a nonwoven fabric having a pore size of 10 to 100 zm.
  • the material of the nonwoven fabric described here is not limited.
  • the pore size of the channel securing section is preferably 5 or more.
  • a thin-layer flow path or a one-way flow path made by laminating a plastic thin plate, water-impermeable paper, or the like through a spacer can also be exemplified as a preferable example. Since such an insertion member also has appropriate hardness, it can not only constitute a flow path securing portion but also play a role of securely holding a member such as a filter portion.
  • the above configuration allows the passage securing section to be formed on one surface of the filter.
  • the liquid sample introduced from the liquid sample introduction part flows into the filter so as to pass through the shortest distance, and is locally clogged with solid components.
  • the liquid sample can avoid the locally clogged part and easily reach another area on the filter where no clogging has occurred.
  • at least two or more inflow ports 45a and the like are provided between the flow channel securing section and the filter section, and the liquid impermeable section 46 is provided. May be arranged.
  • the filter at the inlet when there are a plurality of inlets, a part of the filter at the inlet closer to the sample inlet, or, in the case of one inlet, the solids from the sample inlet side of the inlet. Component capture begins. However, even if the initial capture area is filled with solid components and the liquid flow resistance increases, the liquid sample still passes through the channel securing section on the liquid impermeable layer around the inflow port, and It can easily flow to another inlet that is not filled with solid components or to another area of one inlet.
  • the inflow port is an opening through which the liquid sample flows from the channel securing section to the filter section, and can be easily formed by punching out the liquid impermeable member.
  • a liquid-impermeable member having an inflow port as shown in FIGS. 12A to 12I can be exemplified as a suitable one.
  • an embodiment in which the surface of the filter is coated or pressed with a liquid-impermeable material to form a liquid-impermeable portion having an inflow port on the upper surface of the filter You can also.
  • the apparatus main body or the above-mentioned insertion member is formed by cutting or molding a mold made of various materials such as acrylic resin, polyvinyl chloride, glass, polystyrene, ABS resin, epoxy resin, and paper. Alternatively, it can be formed from a molded product of various materials such as a sheet laminate.
  • the liquid impermeable member is made of various materials such as PET film and PVC Are exemplified.
  • the analysis section is a section for analyzing a liquid component in a liquid sample, and is emitted from, or associated with, the analyte, or
  • the analyzer measures the signal that is no longer emitted and analyzes the amount of the analyte in the liquid sample based on the amount of the signal.
  • the method of analyzing the liquid components in this analysis unit is appropriately selected according to the type of the analyte, the purpose of the analysis, the properties of the liquid components, and the like.
  • physical analysis such as conductivity measurement and refractive index measurement, chemical analysis based on chemical reactions such as complex formation reaction and coloring reaction, enzyme analysis using enzymes such as enzyme sensors, and the analyte itself is an enzyme Enzyme analysis, electrochemical analysis using electron transfer that can be measured with electrodes, fluorescence analysis that can be measured with a fluorimeter, luminescence analysis that can be measured with a luminescence photometer, color analysis that can be measured visually or with a color difference meter, Specific binding analysis using a specific binding reaction such as an antigen-antibody binding reaction and a receptor-ligand binding reaction is exemplified.
  • the flow path securing section provided between the liquid sample introduction section and a part of the filter avoids obstruction of the flow of the liquid component due to the capture of the solid component in the filter section. Therefore, it may be effective to promote the capture of solid components in a part of the filter or to suppress the collapse of the captured solid components.
  • a hemagglutination promoting agent or a blood cell stabilizing agent is added to a part of the filter and the flow path in order to effectively avoid flow path obstruction due to blood cell capture.
  • the filter in the securing section or the sample introduction section it is preferable to dispose the filter in the securing section or the sample introduction section to promote the collection of blood cells in the filter section or to suppress the collapse of the captured blood cells.
  • the hemagglutination promoter used include lectins, anti-hemocyte antibodies, ionic polymers and the like.
  • the blood cell stabilizer include ionic polymers and the like. You.
  • a blood coagulation inhibitor is introduced into a part of the filter, the flow path securing section, and the liquid sample.
  • the filter in the filter section or downstream analysis section to suppress blood coagulation in the filter section or downstream analysis section.
  • the blood coagulation inhibitor include chelating agents such as heparin and EDTA, citrate, sodium fluoride and the like.
  • an enzyme such as peroxidase may be used as a label. Enzymatic reactions are also involved in enzyme analysis or enzyme sensor analysis. If the enzyme in the whole blood sample or the enzyme released from the blood cell interferes with the analysis, place the enzyme inhibitor in a part of the filter, the channel, the sample introduction part, or the analysis part downstream of the sample introduction part. In some cases, however, it may be preferable to suppress the activity of the assay-interfering enzyme in a part of the filter or in the downstream analyzer.
  • an enzyme capable of generating oxygen by consuming hydrogen peroxide which is an enzyme substrate
  • the interfering enzyme an enzyme capable of generating oxygen by consuming hydrogen peroxide, which is an enzyme substrate
  • the power cod inhibitor include heavy metal ions such as NaN 3 (sodium azide), hydroxylamine, alkylhydroxylamine, cyanide, and lead ion.
  • the device of the present invention is suitable for analyzing a liquid sample which may contain a solid component, and is particularly suitable as a device for analyzing a whole blood sample in which the solid component is blood cells.
  • the device of the present invention is disclosed in more detail in Japanese Patent Application Laid-Open Nos. Hei 5-264642, Hei 8-75748, Hei 9-2434097, etc.
  • MEDI It can be particularly preferably applied when specific binding analysis is performed in a matrix or a channel composed of a porous membrane or the like as in the specific binding analysis method abbreviated as Method A.
  • the MEDIA method performed using the apparatus of the present invention is a specific binding analysis method for measuring an analyte in a liquid sample by its specific binding reaction, and is involved in the specific binding reaction and emits a signal substance.
  • the signal substance generator and the liquid sample are caused to flow in a predetermined flow path in a predetermined direction, and a specific binding reaction of the analyte is generated.
  • the distribution of the signal substance generator according to the concentration of the analyte in the liquid sample is formed, the signal substance is generated by the signal substance generator distributed in the flow path, and the generated signal substance is detected. This is a method characterized by detecting by
  • the present invention also provides, as an apparatus for performing the MEDIA method, a liquid sample introduction section, a flow path securing section, a part of a filter, and an analysis section, wherein the analysis section includes the filter.
  • a flow path for a liquid sample which is connected to the portion, and a specific binding reaction between an analyte in the liquid sample and a specific binding substance that specifically binds to the analyte.
  • a specific binding analyzer characterized by comprising:
  • the specific binding substance is a substance that specifically binds to a specific substance such as an analyte or the like, that is, a substance capable of a specific binding reaction with the specific substance.
  • specific fragments such as abbreviated antibody Fab, Fab, (Fab) 2, etc.
  • Substances fragmented so as not to damage the binding site can also be specific binding substances.
  • the combination of the specific substance and its specific binding substance include an antigen and an antibody thereto, a complementary nucleic acid sequence, an effector molecule and a receptor molecule, an enzyme and an inhibitor, an enzyme and a cofactor, an enzyme and a substrate, and a sugar chain.
  • the specific binding substance examples include a substance chemically modified to the extent that the specific binding activity is not lost, and a complex substance formed by binding to another component.
  • examples of such a specific binding substance include an antibody chemically modified with biotin, a polynucleotide, and an avidin covalently bound antibody.
  • a fusion protein of an antibody and an enzyme or an antibody and a receptor prepared by a gene recombination method is also exemplified.
  • a substance having a part that functions as a specific binding substance such as a signal substance generator described below, may also be referred to as a specific binding substance.
  • the signal substance generator forms a distribution having a correlation with the amount of the analyte in the flow channel, and contributes to the generation of the signal substance, which will be described later, with a portion acting as a specific binding substance.
  • Ie a labeled specific binding substance.
  • This signal substance generator performs a specific binding reaction, such as binding to a specific binding substance in competition with the analyte or binding specifically to the analyte, and at the same time, directly or indirectly signals. Generates substances.
  • the signal substance generator participates in the specific binding reaction between the analyte and the specific binding substance to the analyte, and the distribution in the flow path changes according to the amount of the analyte, and the signal substance generation reaction Is the one that governs.
  • the part that functions as a specific binding substance is a structure that becomes a specific binding substance to the analyte, or a part that has the structure of the analyte or the analyte-related substance.
  • the portion contributing to the generation of the signal substance is, specifically, a portion composed of various enzymes used as a labeling agent in a normal immune reaction or the like.
  • the signal substance is a substance generated by a reaction involving a signal substance generator, and is a substance that itself emits a predetermined signal or generates a signal to another substance in a detection unit described later.
  • the substance involved in the generation of a signal substance includes the above-mentioned signal substance generator.
  • the substance other than the signal substance generator is mainly a precursor of the signal substance or a precursor of the signal substance.
  • a substance that contributes to change into a substance For example, a substance that generates an electron mediator or an electron mediator described later, an enzyme substrate, an enzyme cofactor, a hydrogen donor, and the like.
  • a substance involved in the generation of a signal substance is a substance that does not directly generate a signal but generates a signal to another substance, or that a signal substance is present in the presence of another substance. Or a substance that generates a signal in cooperation with another substance, and refers to a substance that contributes to the generation of a signal, excluding the signal substance.
  • the flow path is a path through which the liquid sample introduced from the liquid sample introduction section flows, where the analyte and the signal substance generator are developed, and a specific binding reaction depending on the analyte concentration is performed. The place where it happens.
  • the liquid sample introduced from the liquid sample inlet is introduced into the flow channel by external pressure such as a pump, external force such as gravity, or spontaneous osmotic force.
  • external pressure such as a pump, external force such as gravity, or spontaneous osmotic force.
  • FIG. 1 shows an example of the configuration of the specific binding analyzer of the present invention, which basically has an upper cover 1, a filter part 2, an analyzer 3, and a lower substrate 4.
  • the upper cover 1 constitutes a liquid sample introduction part, and penetrates from the upper surface to the bottom surface of the upper cover 1 to form a liquid sample introduction path as shown in a cross-sectional view in Fig. 2A and a bottom view in Fig. 2B.
  • the liquid sample inlet 11 to be formed, and the circular trapezoidal liquid inlet holding part 12 cut in the lower part of the cover 1 The bottom surface 13 of the liquid inlet 2 3 a, 14 b, 14 c ⁇ Depressed in a fan shape between the plurality of protrusions 14 a, 14 b, 14 c ...
  • the channel securing section is configured in the form of a, 15b, 15c, ....
  • this channel securing portion has a circular trapezoidal shape as shown in FIGS. 4 to 6, which are sectional views and bottom views, respectively, and FIGS.
  • the bottom surface 13 of the holding portion 12 of the slash-shaped liquid introduction port is provided around the bottom opening 16 of the liquid introduction port.
  • the filter section 2 is provided with a glass fiber filter medium 21 impregnated with an enzyme-labeled specific binding substance and an electron mediator, and the glass fiber filter paper 21a, and a liquid impermeable seal section 22 provided on the upper surface. is composed of an N a N 3 glass fiber filter 2 1 b which are impregnated.
  • the analysis unit 3 includes an electrode substrate 32 having a communication hole 31 penetrating from the upper surface to the lower surface, an antibody-insolubilized porous membrane 33 disposed below the electrode substrate, and a transparent membrane sealing unit on the upper surface. And a water-absorbing part glass fiber filter paper 35 impregnated with an enzyme substrate.
  • an annular working electrode (detector) 37 concentrically surrounding the lower opening of the communication hole 36 and a working electrode terminal 38 connected to the working electrode 37 are formed.
  • an annular counter electrode 39 concentrically surrounding the working electrode 37 and a counter electrode terminal 41 connected to the counter electrode 39 are formed on the lower surface of the electrode substrate.
  • the lower substrate 4 is provided on the base 81 for fixing the electrode plate. It has a column-shaped pedestal 42 protruding into the concave portion 82 and on which the glass fiber filter paper 35 of the water absorption portion of the analysis portion is placed. Drill at the four corners of the upper cover 1 at the four corners of the base 8 1 Assembled holes 44a, 44b, 44c and 44d are formed corresponding to the assembled holes 43a, 43b, 43c and 43d.
  • the lower substrate 4 is not limited to these exemplified forms, but may be any as long as the arrangement of the laminated members and the laminating interval can be defined.
  • a dialysis membrane seal portion 34 is provided on the upper surface of the lower substrate 4, and a water-absorbing portion glass fiber filter paper 35 impregnated with the enzyme is specially bonded.
  • Bolts (shown in FIG. 4) are inserted into 43 a, 43 b, 43 c and 43 d and to the assembly holes 44 a, 44 b, 44 c and 44 d provided for the lower substrate 4. ⁇ ), and fix it with nuts (not shown).
  • a liquid sample for example, a whole blood sample
  • the introduced liquid sample passes through the channel securing section and captures solid components, for example, solid components such as erythrocytes, in a part of the filter, and only the liquid component binds specifically to the analyte in the analysis section.
  • the channel securing portion composed of the concave portions 15a, 15b, 15c, ... carved between the plurality of convex portions 14a, 14b, 14c, ...
  • a liquid sample to be analyzed generally has a tendency to flow through the shortest distance in a permeable area such as a filter, and as a result, solid components are removed from the filter. Almost trapped in local areas.
  • the captured solid component locally fills the filter, or accumulates locally on the filter, and the liquid sample is collected. Local flow obstruction may result.
  • the flow path securing section acts as a liquid flow bypass, enabling efficient capture of solid components, and the liquid property downstream of the filter section where the analysis section exists.
  • the flow path securing section secures a space around the filter even if a part of the filter is substantially buried by accumulation of solid components, and the liquid sample in the part of the filter passes therethrough.
  • the liquid sample flow of the liquid sample is guided to a possible region, that is, a region where the accumulation of solid components has not yet caused flow path obstruction.
  • the device shown in FIG. 11 has the same configuration as the device shown in FIG. 1, and includes a plurality of convex portions 14 a formed on the bottom surface 13 of the holding portion 12 of the liquid inlet of the upper cover 1. , 14 b, 14 c... and the filter part 2, a plurality of inlets 45 a, 45 b, 4 that allow the liquid sample to flow from the channel securing section to the filter section.
  • the liquid impermeable member 46 having 5 c... Is provided.
  • the liquid impermeable member 46 is not limited to the structure shown in FIG. 11, and may be, for example, in the form shown in FIGS.
  • a whole blood sample for example, is introduced as a liquid sample from the liquid sample inlet 11 of the upper cover having a role of a liquid sample introduction unit.
  • the introduced liquid sample passes through the channel securing section, where a solid component, for example, a solid component such as red blood cells, is captured in a part of the filter, and only the liquid component is specifically bound to the analyte in the analysis section.
  • a solid component for example, a solid component such as red blood cells
  • the concave portions 15a, 15b, 15c, ... formed between 14a, 14b, 14c, ... and the liquid impermeable member 46 are shown in FIG.
  • the liquid impermeable member 46 When the liquid impermeable member 46 has a plurality of inlets, a part of the filter at the inlet closer to the sample inlet or one inlet is provided. In the case of, the capture of solid components starts from the sample inlet side of the inlet. However, even if the initial trapping area is filled with solid components and the liquid flow resistance rises, the liquid sample still passes through the channel securing portion on the liquid impermeable layer around the inlet, and the liquid sample is still solid.
  • the advantage is that it can easily flow to another inlet which is not filled with components or to another area of one inlet.
  • the apparatus shown in FIG. 13 is another configuration example of the specific binding analyzer of the present invention, and basically includes an upper cover 51, a filter part 52, an analyzer 53, and a lower substrate 54.
  • the filter part 52, the analyzer 53, and the lower substrate 54 have the same configuration as the device shown in FIG. 1 described above, and are the same as those in FIG.
  • the parts denoted by reference numerals indicate the parts shown in FIG.
  • the upper cover 51 is a flat member having no liquid sample inlet unlike the apparatus shown in FIG. 1, and FIG. 3A is a sectional view, and FIG. Fig. 3C shows a bottom view, and Fig. 3C shows a side view.
  • a rectangular parallelepiped insertion member holding part 56 having an insertion member abutting part 55 at one end is formed by engraving on the lower part.
  • the channel securing portion in this device includes a rectangular parallelepiped insertion member holding portion 56 engraved at a lower portion of the upper cover 51 and having an insertion member abutting portion 55 at one end.
  • the inlet member 57 is composed of a lower sheet member 59 a having liquid inlets 58 a, 58 b, 58 c... 9 b and the long side of both members
  • the filter part 52 includes two stacked nonwoven fabrics 62a and 62b and a filter medium 63 disposed below the nonwoven fabrics 62a and 62b, for example, It is composed of blood cell filter paper.
  • the analysis section 53 includes an electrode substrate 32 having a communication hole 31 penetrating from the upper surface to the lower surface, an antibody-insolubilized porous membrane 33 disposed below the electrode substrate, and a dialysis membrane seal portion on the upper surface. And a water-absorbing part cellulose filter paper 35 impregnated with an enzyme substrate.
  • an annular working electrode (detector) 39 concentrically surrounding the upper opening of the communication hole 31 and a working electrode terminal 41 connected to the working electrode 39 are formed.
  • an annular counter electrode 37 concentrically surrounding the lower opening of the communication hole 31 and a counter electrode terminal 38 connected to the counter electrode 37 are formed.
  • the lower substrate 54 has a columnar pedestal 42 on which the water-absorbing-portion cellulose filter paper 35 of the analysis section is placed so as to protrude (FIG. 10).
  • the dialysis membrane seal portion 34 is provided on the pedestal of the lower substrate 54, and the water-absorbing portion is impregnated with an enzyme substrate.
  • the assembly holes (not shown) and the assembly holes (not shown) provided corresponding to the lower substrate 54 can be fixed and assembled using bolts and nuts.
  • a liquid sample for example, a whole blood sample
  • a liquid sample is introduced into the thin-layer flow channel 61 from the end opening 64 of the insertion member 57 serving as a flow channel securing portion.
  • the introduced liquid sample passes through the thin-layer flow channel 61 and the liquid inlets 58a, 58b, 58c ..., and in a part of the filter, solid components, for example, solid components such as erythrocytes are removed. Only the captured and liquid components are subjected to analysis by a specific binding reaction of the analyte in the analysis section.
  • the flow path securing portion constituted by the inlet member 57 having the liquid inlets 58a, 58b, 58c,...
  • the captured solid components locally fill the filter or accumulate locally on the filter, and the thin-layer flow path 6 1 And the liquid inlets 58a, 58b, 58c — act as a bypass for the liquid flow, enabling efficient capture of solid components, as well as downstream of the filter where the analysis unit is located. A sufficient amount of liquid component permeation can be secured.
  • a clogging prevention filter As a preferable example of the insertion member having the role of the flow path securing portion, there is a clogging prevention filter. For example, those having the following configuration are mentioned.
  • Impregnated and dried reagent components (label, enzyme substrate, electron media, buffer solution, surfactant, etc.) in a blood cell capture filter made of glass fiber filter paper, and placed a flow channel securing section on the top. With a filter to prevent clogging.
  • reagent components labels, electronic mediators, buffer components, surfactants, enzyme inhibitors, blood coagulation inhibitors, blood coagulation promoters, etc.
  • the reagent components are dried and disposed without a carrier at the sample introduction port upstream of the clogging prevention filter.
  • blood cell capture Reagent components surfactants, enzyme inhibitors, blood coagulation inhibitors, blood coagulation promoters, etc.
  • blood cell capture Reagent components surfactants, enzyme inhibitors, blood coagulation inhibitors, blood coagulation promoters, etc.
  • blood cell capture Reagent components that are preferably added beforehand are preferably arranged in this form.
  • a blood cell trapping filter (cellulose filter paper) An anti-clogging filter is placed on top, and some reagent components are placed dry upstream of the blood cell trap filter, and some reagent components are placed dry on the water absorbing filter. Configuration. In particular, it is preferable that reagent components (enzyme substrates, etc.) that are desired not to come into contact with the captured blood cells are arranged on the filter paper in the water absorbing section.
  • FIGS. 14A to 14D show a preferred example of an analyzer having a flow path securing section (clogging prevention filter) and a trapping filter according to the present invention.
  • the positional relationship and the arrangement of reagent components incorporated in the analyzer in a dry state are illustrated as cross-sectional views of a specific binding analyzer similar to the device shown in Fig. 1B or Fig. 11B. .
  • Members similar to those shown in FIG. 1B or FIG. 11B are denoted by the same reference numerals as those shown in FIG. 1B or FIG. 11B.
  • FIGS. 14A to 14D are schematic cross-sectional views showing specific examples of the analyzer having the above-described configurations a) to d) .
  • the upper cover 1 It has a part 3 and a lower substrate 4.
  • the analysis section 3 includes an electrode substrate 32 having a communication hole 31 penetrating from the upper surface to the lower surface, and an antibody insolubilization disposed at a lower portion of the electrode substrate. It comprises a membrane 33 and a dialysis membrane seal section 34 on the upper surface, and a water absorption section cellulose filter paper 35.
  • an annular working electrode (detecting portion) concentrically surrounding the lower opening of the communication hole 36 and a working electrode terminal connected to the working electrode are formed.
  • an annular counter electrode concentrically surrounding the working electrode and a counter electrode terminal connected to the counter electrode are formed.
  • the device shown in Fig. 14A is a filter between the upper cover 1 and the electrode substrate 32, in order from the upper cover 1 side, as a clogging prevention filter 83 as a channel securing part, and the clogging prevention filter. It has a structure in which a blood cell trapping filter made of glass fiber filter paper is laminated below the filter.
  • the blood cell trapping filter 84 has a liquid-impermeable seal part 22 therebetween, a label-impregnated part 84a in which a label is impregnated as a main reagent component at an upper part, and an enzyme substrate at a lower part which is an enzyme substrate.
  • An enzyme substrate impregnated portion 84b impregnated as a component is provided.
  • the device shown in FIG. 14B has a clogging prevention filter 83 as a channel securing portion and a clogging prevention filter 1 between the upper cover 1 and the electrode substrate 32 in order from the upper cover 1 side. It has a configuration in which a blood cell capturing filter 18 made of glass fiber filter paper is stacked underneath. In addition, a carrier-free dried label 85 is provided in the sample inlet 11 of the upper cover 1, and the blood cell capture filter 84 is impregnated with an enzyme substrate as a main reagent component. It has a structure in which 84b is formed.
  • This device is particularly suitable for disposing reagent components (surfactants, enzyme inhibitors, blood coagulation inhibitors, blood coagulation promoters, etc.) that are desirably added before capturing blood cells.
  • reagent components surfactants, enzyme inhibitors, blood coagulation inhibitors, blood coagulation promoters, etc.
  • the device shown in Fig. 14C has an upper cover 1 between the upper cover 1 and the electrode substrate 32.
  • the filter has a configuration in which a clogging prevention filter 83 serving as a channel securing section and a blood cell capturing filter 84 made of cellulose filter paper are stacked below the clogging prevention filter 83. is there.
  • a carrier-free dry body 86 containing a label and a hemagglutinin is disposed in the sample inlet 11 of the upper cover 1, and the filter substrate 35 is impregnated with the enzyme substrate, and the enzyme substrate impregnated section 8 7 Are formed.
  • This device is particularly suitable when a reagent component (such as an enzyme substrate) that is desired not to come into contact with the captured blood cells is placed.
  • the device shown in Fig. 14D has a clogging prevention filter 83 as a channel securing section and a clogging prevention filter between the upper cover 1 and the electrode substrate 32 in order from the upper cover 1 side.
  • a blood cell trapping filter made of glass fiber filter paper is stacked under the filter, and a sample and a blood cell agglutinating substance are placed in the sample inlet as in the device shown in Fig. 14C.
  • Carrier-free dried material 86 is provided, and the filter substrate 35 is impregnated with the enzyme substrate in the filter paper 35, and the enzyme substrate-impregnated portion 87 is formed. It has a configuration in which the relative position in the horizontal direction with respect to the communication hole 31 with the section is shifted. In this device, by displacing the sample introduction port 11 and the communication part (communication hole or communication end), it is possible to effectively avoid the flow path obstruction by the trapped particles.
  • FIGS. 14A to 14D is a preferred example, and the positional relationship between the clogging prevention filter and the capture filter as a flow channel securing unit, the arrangement of reagent components, and the like are different. It is not limited to the examples.
  • FIGS. 15A to 15C show examples of the configuration of the specific binding analyzer in which the arrangement of the sample inlet 11 and the communicating part with the analyzer 3 are shifted from the configuration shown in FIG. 14D.
  • FIG. 15A is a diagram showing a configuration of each member
  • FIG. 15B shows an example of an assembling configuration
  • FIG. 15C is an enlarged view of the back surface of the electrode substrate.
  • the analysis unit 3 includes an electrode substrate 32 having a communication hole or a communication end penetrating from the upper surface to the lower surface, and an antibody-insolubilized porous membrane 33 provided below the electrode substrate. It has a dialysis membrane seal part 34 on the upper surface, and is composed of a cellulose filter paper 35 and a water absorption part impregnated with an enzyme substrate.
  • a working electrode (detector) 39 in contact with the communication hole or the communication end 36 and a working electrode terminal 41 connected to the working electrode 39 are formed.
  • a counter electrode 37 in contact with the communication hole or the communication end, and a counter electrode terminal 38 connected to the counter electrode 37 are formed on the upper surface of the device.
  • the detection unit near the communication unit can be more securely held by separating the sample introduction port, which is an open unit, from the communication unit. become.
  • A is the direction perpendicular to the liquid flow
  • B is the liquid flow. It is described as a direction parallel to the direction.
  • HRPO horseradish oxidase
  • a PET film (thickness: 0.1 mm) is cut into 12 mm x 25 mm, and adhesive tapes with a width of 2 mm are attached to both ends in the direction parallel to the liquid flow.
  • a 2-mm-wide vinyl chloride film (thickness: 3 mm) was fixed as an input member.
  • the channel securing member having the concave portion for placing the lyophilized body was placed on a cooled tray, and the 111-0 labeled anti-pure antibody 1-2 mM THE PD—5 mgZm 1 anti-erythroid antibody 5% NRS— 5% maltose-160 U / m1 to parin-100 mM NaC1-4OmMPB (H6.0) solution Freeze and freeze dry, 11 feet? A freeze-dried product was obtained from a 0-labeled antibody-d 1111? 0.
  • the adhesive tape forming the concave portion of the channel securing part having the HRP0-labeled antibody-THEPD freeze-dried body was peeled off.
  • the PET film having the inflow port and the channel securing member having the HRPO-labeled antibody-THEPD freeze-dried body are bonded together, and the freeze-dried body is A thin-layer flow path having a flow path securing section disposed in the section was formed.
  • a cellulose filter paper 35 (8mm0), which is an enzyme substrate-impregnated part impregnated with hydrogen peroxide, is fixed to an acrylic resin lower substrate 54, and the dialysis membrane seal part is 5mm.
  • a circular liquid-impermeable seal 34 of ⁇ was attached to the center of the upper surface of the enzyme substrate-impregnated portion.
  • the antigen-insolubilized membrane 33 was placed on top of it, and the electrode substrate (electrode A) 32 was stacked so that the center of the communication hole was centered.
  • Cellulose filter paper 5C manufactured by ADVANTEC
  • cellulose filter paper 5C (10 ⁇ 14 mm, manufactured by ADVANTE C) 63 was fixed on the electrode plate.
  • a double-sided adhesive tape was attached to the lower surface of the upper cover 51 made of acrylic resin to fix the thin-layer cavities one channel prepared earlier (see Fig. 3). Also, three spacers (thickness 0.5 mm) were inserted into the screw position of the upper cover so as to be parallel to the liquid flow.
  • the upper cover 51 was replaced with the cellulose fiber filter paper 35, the antigen-insolubilized membrane 33, the electrode substrate (electrode A) 32, the cellulose filter paper 5C (10 ⁇ 14 mm) 63, and N a N 3 Freeze-dried non-woven Cloth (10 x 14 mm)
  • the lower substrate 54 made of acryl resin laminated with 62a and 62b, 3 x 4 holes of one thin labyrinth flow passage are on the lower side (nonwoven fabric surface) Then, the upper cover and the four corners of the lower substrate were screwed together to assemble the analyzer shown in Fig. 13.
  • the analyzer was assembled without incorporating the lyophilized HR PO-labeled antibody-THEPD into the input member.
  • the lyophilized HRPO-labeled antibody-THEPD was added to whole blood to which E2 at each concentration was added. After dissolution, the sample 1401 was injected into the thin-layer flow path to measure the current. Immediately before the addition of the sample solution, a voltage of ⁇ 15 OmV was applied to the working electrode with respect to the counter electrode. The current was measured using a current measurement circuit (Mochida Pharmaceutical Co., Ltd.), and the current value was measured at 1-second intervals.
  • the analyzer assembled by incorporating the lyophilized HRPO-labeled antibody-THEPD into the import member and the analyzer assembled without incorporating the lyophilized HRPII-labeled antibody-THEPD into the import member had the following effects: Without clogging, a good current response to E 2 concentration was obtained as shown in FIG. (Example 2)
  • Glass fiber filter paper GA100 (manufactured by AD VANTE C) was immersed in a 0.2% Tween 20 aqueous solution at room temperature overnight. After washing with distilled water, it was dried by heating at 80 ° C.
  • HRP0 into which a sulfhydryl group was introduced by Traut's reagent (PI ERC E) and maleimide group introduced by Sulfo-SMC C (PIE RC E), was bonded to CRP. Purified by Superdex 200 column (Pharmacia Biotech) was used as HRP0-labeled CRP.
  • phosphate buffered saline 76 mM B—76 mM NaC1, H6.4, hereafter abbreviated as “PBS”.
  • PBS phosphate buffered saline
  • An anti-CRP antibody solution was prepared.
  • the antibody was insolubilized by immersing a 10 mm ⁇ disk-shaped porous membrane in the antibody solution. Next, after washing the membrane, the membrane was immersed in a 1% casein ZPBS solution at 25 ° C. for 30 minutes to perform blocking. Further, the membrane was washed and dried under reduced pressure to obtain a mouse monoclonal anti-CRP antibody insolubilized membrane.
  • An analyzer having the configuration shown in FIG. 11 was manufactured in the same manner as in Example 1. That is, a hydrogen peroxide glass fiber filter paper (1 Omm0) is fixed on an acrylic resin lower substrate, and an 8mm0 dialysis membrane (18/3/2, Sanko Junyaku Co., Ltd.) is placed in the center of the surface of the filter paper. Was adhered with a 1.6 mm0 disk-shaped double-sided tape. Next, an anti-CRP antibody insolubilized membrane (1 Omm0) was laminated centered on the dialysis membrane. The center of the communication hole coincides with the center of the anti-CRP antibody insolubilized membrane (1 Omm0). Fixed to the lower substrate.
  • Carbon working electrode 4-7 mm ⁇ -ring electrode
  • Silver counter electrode 8—10 mm ⁇ -ring electrode
  • Diameter of communication hole 4 mm ⁇
  • the PET film provided with the inflow port was dried, and the center thereof was aligned with the center of the HRP0-labeled CRP-THEPD glass fiber filter paper (1 lmm0) and stacked.
  • an analyzer with the configuration shown in Fig. 11 was fabricated by covering the upper cover with the PET film provided with the inlet and fixing the four corners with screws.
  • Samples obtained by adding each concentration of CRP to 200 ⁇ 1 fresh whole blood were injected into the sample inlet of the analyzer, and the current was measured. Before the sample solution is added, the working electrode A voltage of 15 OmV was applied. The current was measured using a current measurement circuit (manufactured by Mochida Pharmaceutical Co., Ltd.) and measured as current values at 1-second intervals. The average value of the current values for 270 to 330 seconds from the time of addition of the sample solution was defined as the current value of the working electrode.
  • Example 2 In the same manner as in Example 2, an analyzer having a thin-layer flow path was manufactured. That is, a hydrogen peroxide freeze-dried glass fiber filter paper GB100R (10 mm0) was fixed to an acrylic resin lower substrate. An 8 mm0 disk-shaped dialysis membrane (18Z32, manufactured by Sanko Junyaku Co., Ltd.) was attached to the center of the hydrogen peroxide glass fiber filter paper. Further, the membranes (1 Omm0) in which the anti-CRP antibody was insolubilized were piled up on a freeze-dried glass fiber filter paper (1 Omm0) with hydrogen peroxide so that the centers were aligned. Next, the electrode substrate was fixed to the lower substrate such that the center of the communication hole was aligned with the center of the anti-CRP antibody insolubilized membrane (1 Omm0).
  • Carbon working electrode 4-7 mm ⁇ -ring electrode
  • Silver counter electrode 8—10 mm ⁇ -ring electrode
  • a N a N 3 freeze-dried glass fiber filter paper (1 lmm0) with a 7 mm ⁇ disc-shaped liquid-impermeable seal affixed to the center, with the liquid-impermeable seal affixed to the top , Lamination was performed so that the center was aligned with the center of the electrode communication hole.
  • 1 ⁇ ? 0-labeled 1 ⁇ ? — THE PD freeze-dried glass fiber filter paper (1 lmm0) was laminated on NaN 3 freeze-dried glass fiber filter paper with the center aligned.
  • top cover made of acryl resin with eight radial protrusions to form the gaps that make up the flow path securing part, and screw the four corners to freeze the top cover and NaN 3
  • An analyzer having a configuration shown in FIG. 1 having a channel securing portion formed by a gap formed between the filter and the dried glass fiber filter paper was manufactured.
  • a sample 200 a1 in which fresh whole blood was added to each concentration of CRP was injected into the sample inlet of the analyzer having the configuration shown in FIG. 1 and a current was measured.
  • a voltage of 15 OmV was applied to the working electrode with respect to the counter electrode.
  • the current was measured using a current measurement circuit (manufactured by Mochida Pharmaceutical Co., Ltd.) and measured as current values at 1-second intervals. The average value of the current values for 360 to 420 seconds from the time of addition of the sample solution was defined as the current value of the working electrode.
  • An analyzer having the configuration shown in FIG. 1 was manufactured. That is, a hydrogen peroxide freeze-dried glass fiber filter paper GB 100 R (100 Omm) was fixed to a lower substrate made of acryl resin. An 8 mm ⁇ disk-shaped dialysis membrane (1/8/3, manufactured by Sanko Junyaku Co., Ltd.) Attached to the center of lath fiber filter paper. Further, the membranes (10 mm0) in which the anti-CRP antibody was insolubilized were piled up on a lyophilized glass fiber filter (10 mm0) with hydrogen peroxide, with the centers aligned. Next, the electrode substrate was fixed to the lower substrate such that the center of the communication hole coincided with the center of the anti-CRP antibody insolubilized membrane (1 Omm0).
  • Silver counter electrode 8—10 mm ⁇ -ring electrode
  • a Persian polyclonal anti-CRP antibody RC3 (manufactured by Mochida Pharmaceutical Co., Ltd.) solution was prepared.
  • a 1 Omm0 mixed cellulose porous membrane (manufactured by Mi11ip0re) was immersed in the antibody solution for 10 minutes to insolubilize the antibody. After washing, immerse in 1% casein (Wako Pure Chemical Industries) / PBS solution Locking was performed. Next, the membrane was washed and dried under reduced pressure to obtain an antibody-insoluble membrane.
  • An analyzer having the configuration shown in FIG. 1 was produced in the same manner as in Example 4. That is, a hydrogen peroxide freeze-dried glass fiber filter paper GB100R (100 mm0) was fixed to a lower substrate made of acrylic resin. An 8 mm0 disk-shaped dialysis membrane (18/32, manufactured by Sanko Junyaku Co., Ltd.) was attached to the center of a hydrogen peroxide glass fiber filter paper. Further, the membranes (1 Omm0) in which the anti-CRP antibody was insolubilized were piled up on a freeze-dried glass fiber filter paper (1 Omm0) with hydrogen peroxide so that the centers were aligned. Next, the electrode substrate was fixed to the lower substrate such that the center of the communication hole was aligned with the center of the anti-CRP antibody insolubilized membrane (1 Omm0).
  • Carbon working electrode 4-6 mm ⁇ -ring electrode
  • Silver counter electrode 9-10 mm0 ring-shaped electrode
  • Fig. 6 with a 0.5 mm high protrusion (No. 2 in Table 2)
  • Fig. 6 Cover the top cover with a height of 1. O mm as shown below (numbers 5, 6, and 7 in Table 2), and screw the four corners together to fix the top cover and NaN 3.
  • Four types of analyzers having a channel securing portion constituted by a gap formed between the freeze-dried glass fiber filter and the filter paper were manufactured.
  • a 200 ⁇ l or 180 ⁇ l sample containing 1 ml of fresh whole blood to which each concentration of CRP was added was injected into the sample inlet of each of the four types of analyzers prepared above, and the current was measured.
  • the current was measured.
  • the current was measured using a current measurement circuit (manufactured by Mochida Pharmaceutical Co., Ltd.), and the current was measured as a current value at one-second intervals.
  • the average of the current values for 360 to 420 seconds from the time of addition of the sample solution was defined as the current value of the working electrode.
  • An analyzer having the configuration shown in FIG. 1 was produced in the same manner as in Example 4. That is, a hydrogen peroxide glass fiber filter paper (1 Omm0) is fixed on an acrylic resin lower substrate, and an 8 mm dia dialysis membrane (18Z32, manufactured by Sanko Junyaku) is attached to the center of the surface of the filter paper. I attached. Next, a membrane (1 Omm0) insolubilized with an anti-CRP antibody was laminated on the dialysis membrane with its center aligned. The electrode was fixed to the lower substrate so that the center of the communication hole was aligned with the center of the anti-CRP antibody insolubilizing membrane (1 Omm ⁇ ).
  • Carbon working electrode 4-6mm 0 ring electrode
  • Silver counter electrode 9_10 mm0 ring-shaped electrode
  • a sample 1801 in which each concentration of CRP was added to fresh whole blood, was injected into the sample inlet of the analyzer prepared as described above, and current was measured. Immediately before the addition of the sample solution, a voltage of 15 OmV was applied to the working electrode with respect to the counter electrode. The current was measured using a current measurement circuit (manufactured by Mochida Pharmaceutical Co., Ltd.), and the current was measured at 1-second intervals. The average value of the current values for 420 to 480 seconds from the time of addition of the sample liquid was defined as the current value of the working electrode.
  • the analysis was performed using whole blood samples having hematocrit values of 40% and 49%. As shown in FIG. 21, the effect of the hematocrit value was not recognized by this analyzer. Also, regarding the accuracy of the current value, no difference was observed between the two different samples having different hematocrit values in this analyzer.
  • a plurality of cylindrical projections 14a, 14b, 14c,... are surrounded by a circumferential frame 72. Except for the above, analysis was carried out in the same manner as in Example 4 using whole blood samples having hematocrit values of 43% and 46%. As a result, as shown in Fig. 22, this analyzer did not show any effect of the hematocrit value. Regarding the accuracy of the current value, no difference was observed between the two samples having different hematocrit values in this analyzer.
  • the upper cover used was one in which a plurality of cylindrical projections 14a, 14b, 14c ... were surrounded by a circumferential frame 72.
  • Species hematocrit values were analyzed using whole blood samples. As a result, this analyzer also showed a good current response as shown in FIG. 23, and was not affected by hematocrit.
  • the liquid sample analyzer of the present invention is characterized in that, when a liquid component in a liquid sample that may contain a solid component is analyzed, a filter portion provided for previously capturing the solid component includes a liquid sample.
  • the permeation of the liquid components in the filter component through the filter is not hindered by the captured solid components, which can improve the analysis accuracy of the analytes in the liquid components in the analyzer downstream of the filter, It is an object of the present invention to provide a liquid sample analyzer capable of efficiently capturing solid components in a part thereof, performing a rapid analysis, and reducing the size of the entire apparatus including a part of a filter.
  • the specific binding analysis method of the present invention can accurately and efficiently measure an analyte in a liquid sample by the specific binding reaction using the analyzer.
  • the specific binding analyzer of the present invention can accurately and efficiently analyze and measure an analyte in a liquid sample by its specific binding reaction by the specific binding analysis method.

Description

明 細 書 液性試料分析装置 技術分野
本発明は、 液性試料分析装置、 特異結合分析装置および特異結合分析方法に関 し、 特に、 血球成分、 組織成分、 塵埃等の固形成分を含有する可能性のある液性 試料を分析するための装置であって、 導入された液性試料がフィルター部におい て捕捉された固形成分によって、 液性試料中の液性成分の透過が妨害され ず、 フィルター部より下流に設けられた分析部における液性成分中の分析対象物 の分析を正確かつ効率的に行うことができる液性試料分析装置、 ならびにその液 性試料分析装置を用 、る特異結合分析方法および特異結合分析装置に関する。 背景技術
液性試料中に液性成分として含有される成分を分析する際に、 該液性成分の分 析を妨害またはその効率的な分析を阻害する要因となる、 液性試料中の固形成分 を予めフィルター等によって捕捉 ·除去した後、 フィルター等を透過した液性成 分のみを分析に供することが行われる。 例えば、 全血試料を分析するための分析 装置として、 ガラス繊維集積材、 不織布等の液透過性の素材を血球捕捉のための フィルタ一として使用する方法または装置が知られていた (特公平 6— 6 4 0 5 4号公報、 特開平 8— 5 4 3 8 7号公報、 特開平 3— 1 3 1 7 5 7号公報、 特開 平 3— 1 3 1 7 5 9号公報、 特開平 3— 1 6 3 3 6 1号公報) 。 しかし、 これら の方法または装置は、 フィルターで捕捉される血球成分が液性成分の浸透を 妨げ、 液性成分中の分析対象物の分析精度の低下を招き、 また、 迅速な分析が妨 害されてしまうという欠点を有していた。 これは、 一般的に、 液性試料が、 フィ ルター等の浸透可能な領域では、 最短距離を流通する傾向があり、 その結果とし て、 液性試料中の固形成分は、 フィルターの局所的な領域に捕捉されやすい。 そ のため、 従来の装置においては、 液性試料がフィルタ一を通過するにつれて、 捕 捉された固形成分がフィルタ一内に局所的に充満するか、 あるいは、 フィルタ一 上に局所的に蓄積し、 液性試料の局所的な流通が妨害されるに至ることに起因す る問題である。
そこで、 異なる孔径を有する 2種類以上の微多孔性の膜からなる血球分離層を 積層した分析要素 (特開平 5— 2 6 4 5 3 9号公報) 、 また、 多孔性展開層を有 する分析要素 (特開平 5— 2 6 8 7 5号公報) が提案された。 しかし、 これらの 分析要素においても、 液性試料は最短距離を浸透するため、 血球分離層または多 孔性展開層で捕捉された血球成分によって、 液性成分の浸透が妨害される問題を 十分に解決することができない。
さらに、 血球捕捉能を向上させるために、 フィルタ一部に凝集素としてレクチ ン等の血球捕捉物質を含浸した吸収性材料を用いて全血試料から血球成分を除去 する装置または方法 (特開昭 6 1 - 1 1 8 6 6 1号公報、 特開昭 6 1 - 2 0 7 9 6 6号公報) 、 あるいは、 レクチン等の赤血球結合成分とポリカチオン性 ポリマ一成分等の凝集した赤血球の安定化成分とを用いる装置または方法 (特開 B召 6 1 — 1 1 8 6 6 1号公報、 特開平 7— 5 1 7 3号公報) も知られている。 し 力、し、 これらの装置または方法によっても、 捕捉された血球成分による液性成分 の浸透妨害の問題は残されている。
以上のとおり、 従来の装置または方法においては、 捕捉された血球成分によつ て液' f生成分の浸透が妨害されるという欠点のために、 分析部での分析が不可能と なったり、 あるいは、 不正確となり、 さらには分析装置の性能や分析結果が液性 試料中に占める固形成分の量 (例えばへマトクリツ ト値) に大きく依存するとい う悪影響が問題となっていた。
ところで、 診療時検査、 診療前検査、 在宅検査等の普及、 また、 緊急性の高い 臨床検査等の増加に伴ない、 遠心分離機等の機器を用いて予め血漿分離あるいは 血清分離を行わなくても、 全血をそのまま分析することができる分析装置、 特に 臨床検査の専門家でなくても迅速簡便で確実に血液の分析 ·測定を行うことがで きる分析装置の開発が切望されるようになつてきた。
そこで、 このような要望に応えることができる分析方法または分析装置と して、 液性試料中の分析対象物の特異結合反応を利用して、 液性試料中の分析対 象物の量に応じた信号物質発生体の検出部に対する距離の分布を形成させ、 この 分布を信号物質発生体が発生した信号物質の物質移動、 すなわち拡散距離 に律速される信号強度として検出部で検出する ME D I A (Me d i a t o r D i f f u s i on— c on t r o l l e d I mmu no a s s ay) 法と呼 ばれる分析方法を、 本発明者らは開発し、 先に提案した (特開平 5— 2 6 4 552号公報、 特開平 8— 75 748号公報、 特開平 9一 234097号公報等 参照) 。 この方法によれば、 未反応物の除去操作なしに簡便かつ迅速に液性試料 中の分析対象物を高感度に測定できる。
しかしながら、 この分析方法でも、 他のホモジニァス法と同様に、 全血試料中 の血球などの固形成分の妨害が検出部における信号強度に対して影響を与えるこ とがあり、 試料中の分析対象物量の測定結果に誤差を生ずる場合があつた。 発明の開示
そこで、 本発明の目的は、 固形成分を含有する可能性のある液性試料中の液性 成分の分析に際して、 該固形成分を予め捕捉するために設けられるフィルター部 において、 液性試料中の液性成分のフィルター部の透過が捕捉された固形成分に よつて妨害されず、 フィルター部下流の分析部における液性成分中の分析対象物 の分析精度を向上させることができるとともに、 フィルター部における固形成分 の捕捉が効率よく行われ、 迅速な分析を行うことができ、 フィルタ一部を含めた 装置全体を小型化することができる液性試料分析装置を提供することにある。 また、 本発明は、 前記液性試料分析装置を用いて、 液性試料中の分析対象 物を、 その特異結合反応によって測定する特異結合分析方法および特異結合分析 装置を提供することをも目的とする。
前記目的を達成するために、 本発明は、 液性試料導入部と、 該液性試料導入部 から導入された液性試料中の固形成分を捕捉するフィルター部と、 該フィルター 部を透過した液性試料中の分析対象物を分析する分析部とを有する液性試料分析 装置であって、 フィルター部の上方に配置される部材とフィルター部との間に、 フィルター部に捕捉 ·集積された固形成分によって液性試料中の液性成分の透過 が阻害されないように構成された間隙を有する流路確保部を配設したことを特徴 とする液性試料分析装置を提供するものである。
前記流路確保部が、 装置本体に形設されたフィルター部の上方に配置される部 材の下面に形成された凹部と、 フィルター部の上面との間に形成された間隙 によって構成されものが提供される。
さらに、 前記流路確保部が、 フィルタ一部の上方に配置される部材と、 フィル ター部との間に挿入される、 液流路を有する揷入部材によって構成されるものが 提供される。
さらにまた、 本発明は、 前記液性試料分析装置を用いて、 液性試料中の分析対 象物を、 その特異結合反応によって測定する特異結合分析方法、 および特異結合 分析装置を提供するものである。 図面の簡単な説明
図 1 Aは、 本発明の特異結合分析装置の構成例を示す模式図であり、 図 1 Bは その組立てた状態を示す断面図である。
図 2 Aは本発明の特異結合分析装置の上部カバーの構造を示す断面図であり図 2 Bはその底面図である。
図 3 Aは、 本発明の特異結合分析装置の上部カバーの構造を示す断面図で あり、 図 3 Bはその底面図であり、 図 3 Cは側面図である。
図 4 Aは本発明の特異結合分析装置の上部カバ一の他の構造を示す断面図であ り、 図 4 Bはその底面図である。
図 5 Aは本発明の特異結合分析装置の上部カバーの他の構造を示す断面図であ り、 図 5 Bはその底面図である。
図 6 Aは本発明の特異結合分析装置の上部カバーの他の構造を示す断面図であ り、 図 6 Bはその底面図である。 図 Ί Αは本発明の特異結合分析装置の上部カバーの他の構造を示す断面図であ り、 図 7 Bはその底面図である。
図 8 A~ Dは、 それぞれ本発明の特異結合分析装置の上部カバーの他の構造を 示す底面図である。
図 9 Aは本発明の特異結合分析装置の上部カバ一の他の構造を示す断面図であ り、 図 9 Bはその底面図である。
図 1 O Aは、 本発明の特異結合分析装置の下部基板の構造を示す断面図で あり、 図 1 0 Bはその底面図、 図 1 0 Cはその側面図である。
図 1 1 Aは、 本発明の特異結合分析装置の他の構成例を示す模式図であり、 図 1 1 Bはその組立てた状態を示す断面図である。
図 1 2 A〜 Iは、 それぞれ図 1 0に示す、 本発明の特異結合分析装置の液不透 過性部材の他の構成例を示す図である。
図 1 3は、 本発明の特異結合分析装置の他の構成例を示す模式図である。 図 1 4 A〜Dは、 本発明の特異結合分析装置の流路確保部の別の構成例を示す 模式断面図である。
図 1 5 A〜Cは、 図 1 4 Dに示す流路確保部を有する本発明の特異結合分析装 置の構成例を示す図である。
図 1 6は、 実施例 1の結果を示す図である。
図 1 7は、 実施例 2の結果を示す図である。
図 1 8 Aおよび Bは、 それぞれ実施例 3の結果を示す図である。
図 1 9は、 実施例 4の結果を示す図である。
図 2 0は、 実施例 5の結果を示す図である。 図 2 1 Aおよび Bは、 それぞれ実施例 6の結果を示す図である ( 図 2 2 Aおよび Bは、 それぞれ実施例 7の結果を示す図である ( 図 2 3は、 実施例 8の結果を示す図である (
符号の説明
1 上部カバ- 2 フィルタ
3 分析部 4 下部基板
1 1 液性試料導入口 1 2 液導入口の保持部
1 3 底面 1 4 a, 1 4 b, 1 4 c 凸部
1 5 a, 1 5 b, 1 5 c 凹部 2 1 a, 2 1 b ガラス繊維ろ紙 2 2 液体不透過性シール部 3 1 連通孔
3 2 電極基板 3 3 抗体不溶化多孔性メ
3 4 透析膜シール部 3 5 吸水部ガラス繊維ろ紙
3 6 連通部 (連通孔または連通端)
3 7 作用極 (検出部)
3 8 作用極端子 3 9 対極
4 1 対極端子 4 2 基台
4 3 a, 4 3 b, 4 3 c, 4 3 d 組立孔
4 4 a, 4 4 b, 4 4 c, 4 4 d 組立孔
4 5 a, 4 5 b 流入口 4 6 液不透過性部材
5 1 上部カバ- 5 2 フィルタ一部
5 3 分析部 5 4 下部基板
5 5 揷入部材突当部 5 6 揷入部材保持部 5 7 揷入部材 5 8 a , 5 8 b, 5 8 c 液流入口
5 9 a 下部シ一ト部材 5 9 b 上部シート部材
6 0 スぺ一サ一 6 1 薄層流路
6 2 a , 6 2 b 不織布 6 3 ろ材
7 2 枠 7 3 溝
8 1 基台 8 2 凹部
8 3 目詰まり防止フィノレ夕 8 4 血球捕捉フィルタ一
8 4 a 標識物含浸部 8 4 b 酵素基質含浸部
8 5 標識物 8 6 無担体乾燥体
8 7 酵素基質含浸部 発明を実施するための最良の形態
以下、 本発明の液性試料分析装置 (以下、 「本発明の装置」 という) 、 ならび に特異結合分析方法および特異結合分析装置につ 、て詳細に説明する。
本発明の装置は、 液性試料導入部と、 該液性試料導入部から導入された液性試 料中の固形成分を捕捉するフィルター部と、 該フィルター部を透過した液性試料 中の分析対象物を分析する分析部とを有するものである。
本発明において、 液性試料導入部から導入される液性試料は、 分析部において その物理的性質、 化学的組成、 あるいは特定の物質の含有量等が分析または測定 される分析対象物が含まれると予想される液体である。 この液性試料は、 具体的 には、 尿、 血清、 血漿、 全血、 唾液、 涙液、 髄液、 あるいは乳頭等の体器官から の分泌液などであり、 また、 粘液、 体組織あるいは細胞、 菌体等の固形またはゲ ル状もしくはゾル状物、 さらにはこれらを、 緩衝液、 抽出液あるいは溶解液等の 液体に懸濁もしくは溶解させたものであってもよい。
液生試料中に含まれ、 フィルタ一部で捕捉される固形成分は、 血球成分、 細胞 成分、 組織成分、 人工的微粒子 (ラテックス、 ポリスチレン微小球など) 、 塵埃 等、 あるいはそれらの破砕部、 分解物等の分析部における分析に関与しないか、 あるいは、 分析部における分析を妨害し得る成分で、 フィルタ一部において実質 的に捕捉される成分である。
また、 液性試料の液性成分とは、 前記固形成分を実質的に除去した残りの液性 成分であり、 分析部における分析の対象となる分画である。
さらに、 本発明において、 分析対象物とは、 本発明の装置において、 測定され る物質である。 具体的には、 代謝生成物、 酵素基質、 酵素阻害剤、 酵素賦活剤、 酵素分子、 あるいは、 抗体分子や抗原として機能する各種蛋白質、 ポリぺプ チド、 糖蛋白質、 多糖類、 複合糖脂質など、 あるいは核酸、 エフェクター分子、 レセプター分子等が例示される。
さらに具体的には、 クレアチニン、 尿酸、 グルコース、 コレステロール、 中性 脂肪等の酵素基質あるいは代謝物、 C反応性蛋白質 (C R P) 等の急性期蛋 白質、 ひ—フヱトプロティン、 癌胎児性抗原 (CEA) 、 CA 1 2 5、 CA 1 9 _ 9等の腫瘍マーカ一、 /32—ミクログロブリン β 2 m) 、 フェリチン等の各 種蛋白質; エストラジオール (E 2) 、 ェストリオール (E 3) 、 ヒ ト絨毛性性 腺刺激ホルモン (h C G) 、 黄体形成ホルモン (LH) 、 ヒ ト胎盤ラク トゲ ン (hPL) 等の各種ホルモン ; HB s抗原、 HB s抗体、 HB e抗原、 HB e 抗体、 HB c抗体、 HCV抗体、 H I V抗体等の各種ウィルス関連抗原あるいは ウィルス関連抗体;各種ァレルゲンおよびこれに特異的な I g E抗体;麻薬性薬 物、 医療用薬物およびこれらの代謝産物; ウィルスおよび疾患関連ポリヌクレオ チド配列の核酸等が例示される。
本発明の装置において、 液性試料導入部は、 装置内へ液性試料を導入する入口 であり、 装置内のフィルタ一部に連通する細管状の流路、 薄層流路に連絡する開 口、 また、 装置本体の上部に形成された開口部で構成されたものでもよい。 これ らの中でも、 装置の小型化、 測定の迅速化、 測定の簡便化等に有利である点で、 装置本体の上部に形成された開口部で構成されるものが好ましい。
本発明の装置において、 フィルタ一部は、 液性試料導入部から導入された液性 試料中に含まれる固形成分を捕捉する部材で構成される。 このような固形成分を 捕捉するフィルタ一部を構成する素材として、 例えば、 ガラス繊維ろ紙、 セ ルロースろ紙、 不織布、 ナイロン布等が例示される。 本発明において、 このフィ ルター部は、 液性試料中に含まれる固形成分を捕捉するものであれば、 例えば、 複数の部材で構成されていても構わない。 特に、 液性試料中に含まれる固形成分 が血球の場合には、 ガラス繊維ろ材またはナイ口ン布を素材とするものが好まし い。
また、 本発明の装置において、 流路確保部は、 液性試料導入部とフィルタ一部 との間に配設され、 フィルター部に捕捉 ·集積された固形成分によって液性試料 中の液性成分の透過が阻害されないように構成された間隙を有するものである。 分析対象である液性試料は、 フィルタ一等の浸透可能な領域では、 一般的に、 最 短距離を流れて通過する傾向があり、 その結果として、 固形成分はそのフィ ルターの局所的な領域に捕捉されやすい。 従来の装置においては、 液性試料 がフィルターを通過するにつれて、 捕捉された固形成分がフィルター内に局所的 に充満する力、、 あるいは、 フィルタ一上に局所的に蓄積し、 液性試料の局所的な 流路妨害に至る。 これに対して、 本発明の装置においては、 流路確保部が、 液流 のバイパスとして作用し、 効率よい固形成分の捕捉を可能にすると共に、 分析部 が存在するフィルター部の下流への液性成分の透過が充分量確保できる。 すなわ ち、 本発明の装置において、 流路確保部は、 フィルターの一部分が固形成分の蓄 積によっても実質的に埋まっても、 その周囲に空間を確保し、 フィルタ一部にお ける液性試料が通過可能な領域、 すなわち、 未だ固形成分の蓄積が流路妨害を生 じていな 、領域まで液性試料の液流を導く作用を有するものである。
本発明の装置において、 流路確保部は、 例えば、 装置本体の上部に形設された 液性試料導入部の下面に形成された凹部と、 フィルター部の上面との間に形成さ れた間隙によって構成されるものである。 この態様の流路確保部としては、 例え ば、 図 1に概要を示し、 図 2 Aにその断面図、 図 2 Bにその底面図を示すと おり、 装置本体の上部カバー 1の下部に刻成された円形台状の液導入口の保持部
1 2の底面 1 3に放射状に複数の直方体状の凸部 1 4 a, 1 4 b , 1 4 c……が 突設され、 該複数の凸部 1 4 a, 1 4 b , 1 4 c……の間に扇状に刻成された凹 部 1 5 a, 1 5 b , 1 5 c……の形態で構成されるものが挙げられる。
また、 図 4〜7にそれぞれ断面図および底面図、 また、 図 8 A〜Dに液導入口 の底面図のみを示した形態のごとく、 円形台形状の液導入口の保持部 1 2の底面
1 3に液導入口の底部開口部 1 6を中心として同心円状または放射状に突設され た、 複数の円柱状あるいは円錐状の突部 1 4 a , 1 4 b, 1 4 c……の間に刻成 された凹部凹部 1 5 a , 1 5 b, 1 5 c……の形態で構成されるものが挙げられ る。
また、 これらの上部カバ一に形成された凸部あるいは凹部は、 流路確保部を構 成するだけでなく、 フィルター部などの部材を確実に保持する役割も果たし うる。 例えば、 後記する M E D I A分析装置は、 連通孔を中央に有する電極基板 をメンブレン部材あるいはろ紙部材が挟み込む重積型の分析装置である。 電極基 板中央の連通孔の周囲に分析部としての作用極および対極がリング状に配置され ている。 従って、 これら作用極および対極をメンブレン部材あるいはろ紙部材が 確実にかつ適切な強度で保持していることが、 分析精度を担保する上で重要とな る。 図 1、 2、 4 ~ 7に例示する上部カバーに形成された流路確保部は、 フィル ター部の上部に流路確保部を形成するとともに、 確実にフィルター部を保持する ことができる点で、 好ましい。
また、 本発明の装置において、 流路確保部として、 装置本体の上部カバーと、 フィルター部との間に挿入される、 液流路を有する挿入部材によって構成される ものも例示される。 この態様の流路確保部としては、 例えば、 図 1 3に概要が示 されるとおり、 図 3 Aに断面図、 図 3 Bに底面図、 および図 3 Cに側面図を 示す、 装置本体の上部カバー 5 1の下部に刻成され、 一端に揷入部材突当部 5 5 を有する、 直方体状の揷入部材保持部 5 6と、 該揷入部材保持部 5 6と、 その下 部に配設されるフィルタ一部との間に挿入される揷入部材 5 7とで構成される。 この流路確保部においては、 揷入部材 5 7は、 図 1 3に示すとおり、 液流入 口 5 8 a, 5 8 b , 5 8 c……が穿設された下部シート部材 5 9 aと、 上部シー ト部材 5 9 bと、 両部材の長辺方向に配設されたスぺ一サ一 6 0 a, 6 0 b によって、 該下部シート部材 5 9 aと上部シ一ト部材 5 9 bとの間に、 液性試料 が流通する薄層流路 6 1が形成される形態で構成されるものである。
この流路確保部を有する揷入部材は、 流路確保部を打ち抜いたプラスチック薄 板、 水不透過処理を施した紙、 不織布などの多孔性部材、 天然繊維および/また は合成樹脂繊維からなる織布、 網状物あるいは、 これらの 1種または 2種以上を 組み合わせて形成されるフィルタ一材などが例示できる。 例えば、 流路確保部を 打ち抜いたプラスチック薄板としては、 流路確保部を打ち抜いたシリコンゴ ムシート、 塩化ビニルシート、 P E Tフィルムなどが加工容易なものとして例示 できる。 また、 多孔性部材、 網状物あるいはフィルタ一材と しては、 5〜 4 0メッシュの塩化ビニル製のネッ ト、 ポアサイズ 1 0 ~ 1 0 0 z mの不織布な どが例示できる。 ここに記載する不織布の材質は限定されない。 一般に、 捕捉粒 子が血球の場合、 流路確保部のポアサイズは 5 以上が好適である。 また、 プ ラスチック薄板、 水不透過処理を施した紙などを、 スぺーサ一を介して貼り合わ せて作製された薄層流路あるいはキヤビラリ一流路も好適なものとして例示でき る。 このような挿入部材も、 適度な堅さを有していることによって、 流路確保部 を構成するだけでなく、 フィルター部などの部材を確実に保持する役割も果たし うる。
本発明の装置において、 前記構成によって、 フィルタ一表面に流路確保部を形 成することができる。 一般に、 液性試料導入部から導入された液性試料は、 最短 距離を通過するようにフィルターに流入し、 局所的な固形成分による目詰まりが 生じる。 しかし、 フィルター表面に流路確保部が存在するため、 液性試料はその 局所的な目詰まり部分を回避して、 フィルター上の目詰まりが生じていない別の 領域に容易に到達することができる。 さらに、 本発明の装置において、 図 1 1に示すように、 流路確保部とフィ ルター部の間に、 少なくとも 2以上の流入口 4 5 a等が穿設された液不透過性部 4 6を配置してもよい。 この液不透過性部材を有する態様では、 複数の流入口が ある場合には試料導入口により近い流入口のフィルタ一部分、 あるいは、 1つの 流入口の場合には流入口の試料導入口側から固形成分の捕捉が始まる。 しかし、 その初期の捕捉領域が固形成分で満たされて液流抵抗が上昇しても、 流入口の周 囲の液不透過層上の流路確保部を通過して、 液性試料は、 未だ固形成分で満たさ れていない別の流入口あるいは 1つの流入口の別の領域に容易に流れることがで さる。
この液不透過性部材において、 流入口は、 液性試料を流路確保部からフィ ルター部へ流れ込ませる開口であり、 液不透過部材を打ち抜くことによって容易 に形成することができる。 例えば、 後記する M E D I A分析装置で円形のフィル ター部に対応する例では、 図 1 2 A〜Iに示すような流入口を有する液不透過性 部材が好適なものとして例示できる。
また、 本発明の装置において.. フィルタ一部の表面を液不透過性材料で コ一ティングあるいは圧着させて、 フィルタ一部の上面に流入口を有する液不透 過性部を形成した態様とすることもできる。
本発明の装置において、 装置本体あるいは前記の揷入部材は、 アクリル樹脂、 ポリ塩化ビニル、 ガラス、 ポリスチレン、 A B S樹脂、 ェポキシ樹脂、 紙等の各 種の素材からなる切削成形品、 金型成形品、 あるいはシート積層品などの各種素 材の成形品で形成することができる。
また、 液不透過性部材は、 P E Tフィルム、 塩ィヒビニル薄板等の各種素材から なるものが例示される。
本発明の装置において、 分析部は、 液性試料中の液性成分を分析する部分であ り、 分析対象物に由来して、 あるいは、 分析対象物に関連して発せられる、 ある いは、 発せられなくなる信号を分析部で計測し、 その信号量によって、 液性試料 中の分析対象物量を分析する部分である。 この分析部における液性成分の分析方 法は、 分析対象物の種類、 分析目的、 液性成分の性状等に応じて適宜選択さ れる。 例えば、 電導度測定、 屈折率測定等の物理分析、 錯体形成反応、 着色反応 等の化学反応に基づいた化学分析、 酵素センサ等の酵素を利用した酵素分析、 分 析対象物自体が酵素である酵素分析、 電極で計測可能な電子移動を利用した電気 化学分析、 蛍光光度計で計測可能な蛍光分析、 発光光度計で計測可能な発光 分析、 目視判定または色差計で計測可能な呈色分析、 抗原抗体結合反応、 受容体 リガンド結合反応等の特異結合反応を利用した特異結合分析等が例示される。 また、 本発明の装置においては、 液性試料導入部とフィルタ一部の間に設けら れた流路確保部が、 フィルター部における固形成分の捕捉に起因する液性成分の 流通の妨害を回避するため、 フィルタ一部における固形成分の捕捉を促進、 ある いは捕捉された固形成分の崩壊を抑制することが有効な場合がある。 例えば、 液 性試料として全血試料を分析対象とする場合には、 血球捕捉に起因する流路妨害 を有効に回避するため、 血球凝集促進剤または血球安定化剤を、 フィルタ一部、 流路確保部または試料導入部に配置し、 フィルター部における血球捕捉を促進す る、 あるいは、 捕捉血球の崩壊を抑制することが好ましい場合がある。 用いられ る血球凝集促進剤としては、 例えば、 レクチン類、 抗血球抗体、 イオン性ポ リマー等が例示される。 血球安定化剤としては、 イオン性ポリマ一等が例示され る。
また、 液性試料中の液性成分自体に起因する流路妨害反応、 例えば、 血液凝固 反応等を抑制するために、 血液凝固阻害剤を、 フィルタ一部、 流路確保部、 液性 試料導入部または下流の分析部などに配置し、 フィルター部または下流の分析部 における血液凝固を抑制することが好ましい場合がある。 血液凝固阻害剤として は、 へパリン、 E D T A等のキレート剤、 クェン酸塩、 フッ化ナトリウムなどが 例示される。
さらに、 後記の M E D I A法等に代表される特異結合分析方法では、 標識とし てバーオキシダ一ゼなどの酵素を利用する場合がある。 また、 酵素分析あるいは 酵素センサ一でも、 分析に酵素反応が関わる。 全血試料中の酵素、 あるいは、 血 球から遊離する酵素が、 分析に干渉する場合には、 酵素阻害剤をフィルタ一部、 流路確保部、 試料導入部またはその下流の分析部などに配置し、 フィルタ一部あ るいは下流の分析部における分析干渉性の酵素活性を抑制することが好ましい場 合がある。 パーォキシダーゼを標識酵素として利用する特異結合分析の場合 には、 酵素基質である過酸化水素を消費して酸素を発生する力タラ一ゼが、 分析 干渉性の酵素として例示できる。 力タラ一ゼ阻害剤としては、 N a N 3 (アジィ匕 ナトリウム) 、 ヒ ドロキシルァミン、 アルキルヒ ドロキシルァミン、 シアン化合 物、 あるいは鉛ィォン等の重金属イオンなどが例示される。
本発明の装置は、 固形成分を含有する可能性のある液性試料の分析に好適であ り、 特に、 固形成分が血球である全血試料の分析装置として好適である。
さらに、 本発明の装置は、 特開平 5— 2 6 4 5 5 2号公報、 特開平 8— 7 5 7 4 8号公報、 特開平 9一 2 3 4 0 9 7号公報等により詳細に開示される M E D I A法と略記される特異結合分析方法のように、 多孔性メンブレン等からなるマト リクスあるいは流路中で特異結合分析を行う場合に、 特に好ましく適用でき る。
本発明の装置を用いて行う M E D I A法は、 液性試料中の分析対象物を、 その 特異結合反応によつて測定する特異結合分析方法であつて、 特異結合反応に関与 しかつ信号物質を発する信号物質発生体および前記液性試料を、 所定の流路にお いて所定方向に流動させると共に、 前記分析対象物の特異結合反応を発生させ、 この特異結合反応を利用して、 前記流路中に液性試料中の分析対象物濃度に応じ た信号物質発生体の分布を形成し、 流路内に分布する信号物質発生体によつて信 号物質を発生させ、 発生した信号物質を検出手段によって検出することを特徴と する方法である。
また、 本発明は、 M E D I A法を実施するための装置として、 液性試料導入部 と、 流路確保部と、 フィルタ一部と、 分析部とを有し、 該分析部が、 前記フィル 夕一部に連結して配置される液性試料の流路と、 液性試料中の分析対象物と、 該 分析対象物に特異的に結合する特異結合物質との特異結合反応により、 前記流路 内に形成された液性試料中の分析対象物量に応じた信号物質発生体の分布を、 前 記信号物質発生体から発生される信号物質の拡散による物質移動に応じた信号強 度として検出するための検出部とを有することを特徴とする特異結合分析装置を 提供するものである。
本発明において、 特異結合物質とは、 分析対象物等の特定の物質に特異的に結 合する、 すなわち、 特定の物質と特異結合反応が可能な物質である。 また、 抗体 の F a b、 F a b、 ( F a b ) 2 などと略記されるフラグメントのように、 特異 結合部位を損なわないようにフラグメン卜化された物質も特異結合物質となり得 る。 前記特定の物質とそれに対する特異結合物質との組合せとしては、 抗原とそ れに対する抗体、 相補的核酸配列、 エフェクター分子とレセプター分子、 酵素と インヒビタ一、 酵素と補因子、 酵素と基質、 糖鎖を有する化合物とレクチン、 あ るし、は抗体とその抗体に対する抗体、 レセプター分子とそれに対する抗体等の組 み合わせが例示される。 また、 これらの組合せは、 相互に相手方の物質に対する 特異結合物質となり得るものの組み合わせである。
また、 特異結合物質として、 特異結合活性が消失しない程度に化学修飾された もの、 あるいは、 他の成分と結合してなる複合性物質もあげられる。 このような 特異結合物質としては、 ピオチンで化学修飾された抗体もしくはポリヌクレオチ ド、 アビジン共有結合抗体等が例示される。 また、 遺伝子組換法で作成した抗体 と酵素、 あるいは抗体とレセプターとの融合蛋白質等も例示される。
なお、 本明細書では、 次に説明する信号物質発生体のように、 その一部に特異 結合物質として働く部分を有する物質も、 特異結合物質と称することがある。 本発明において、 信号物質発生体とは、 流路内で、 分析対象物の量と相関関係 を有する分布を形成するものであり、 特異結合物質として働く部分と、 後記する 信号物質の生成に寄与する部分とを有する物質、 すなわち、 標識特異結合物質で ある。 この信号物質発生体は、 分析対象物と競合して特異結合物質と結合、 ある いは分析対象物に特異的に結合する等の、 特異結合反応を行うと同時に、 直接ま たは間接に信号物質を発生する。 すなわち、 信号物質発生体は、 分析対象物とそ れに対する特異結合物質との特異結合反応に参加し、 その流路内での分布が分析 対象物量に応じて変化し、 信号物質の生成反応を司るものである。 特異結合物質として働く部分とは、 分析対象物に対して特異結合物質となる構 造、 あるいは、 分析対象物もしくは分析対象物類縁物質の構造を有する部分であ る。
また、 信号物質の生成に寄与する部分とは、 具体的には、 通常の免疫反応等で 標識剤として使用されている各種酵素等により構成される部分である。
信号物質とは、 信号物質発生体の関与する反応によつて生成される物質で あり、 後記する検出部において、 自身が所定の信号を発する、 あるいは他の物質 に信号を発生させる物質である。
また、 信号物質の発生に関与する物質とは、 前述の信号物質発生体も含むが、 本発明においては、 信号物質発生体以外の、 主に、 信号物質の前駆物質や、 この 前駆物質を信号物質に変化させるに寄与する物質を指す。 例えば後述する電子メ ディエー夕あるいは電子メディエータを発生させる物質、 酵素基質、 酵素補 因子、 水素供与体等である。
また、 信号物質の発生に関与する物質とは、 信号物質が直接には信号を発生せ ず、 他の物質に信号を発生させる物質である場合、 あるいは、 信号物質が他の物 質の存在下でもしくは他の物質と協同して信号を発生する物質である場合に、 信 号の発生に寄与する物質のうち、 信号物質を除いた物質をいう。
さらに、 流路とは、 液性試料導入部から導入された液性試料が流れる経路であ り、 分析対象物および信号物質発生体が展開され、 分析対象物濃度に依存した特 異結合反応が起こる場をいう。
液性試料導入部から導入された液性試料は、 ポンプなどの外圧、 重力などの外 力あるいは自発的な浸透力によって、 流路内へ導入される。 簡便な装置構成で、 再現性ある液性試料の流路内への導入を可能とするために は、 流路を細管 (キヤビラリ) あるいは狭い流路確保部で構成する力、、 あるいは 流路を多孔性部材で構成して、 液性試料の自発的な浸透力によって液性試料を流 路中へ導入するのが望ましい。
発明の実施の形態
以下、 本発明を適用して特異結合分析を行う装置の構成例に基づいて、 本発明 の装置、 特異結合分析方法および特異結合分析装置につ 、て説明する。
図 1は、 本発明の特異結合分析装置の一構成例を示し、 基本的に、 上部カバ一 1と、 フィルタ一部 2と、 分析部 3、 下部基板 4とを有するものである。
上部カバー 1は、 液性試料導入部を構成し、 図 2 Aに断面図、 図 2 Bに底面図 を示すとおり、 該上部カバー 1の上面から底面まで貫通して液試料の導入路を形 成する液性試料導入口 1 1 と、 該カバ一 1の下部に刻成された円形台状の 液導入口の保持部 1 2の底面 1 3に放射状に複数の直方体状の凸部 1 4 a , 1 4 b , 1 4 c ······が突設され、 該複数の凸部 1 4 a, 1 4 b, 1 4 c……の間 に扇状に刻成された凹部 1 5 a, 1 5 b , 1 5 c……の形態で流路確保部が構成 される。
また、 本発明において、 この流路確保部は、 図 4〜6にそれぞれ断面図および 底面図、 また、 図 8 A〜Dに液導入口の底面図のみを示した形態のごとく、 円形 台形状の液導入口の保持部 1 の底面 1 3に液導入口の底部開口部 1 6を中心と して同心円状または放射状に突設された、 複数の円柱状あるいは円錐状の 突部 1 4 a , 1 4 b, 1 4 c……の間に刻成された凹部 1 5 a, 1 5 b, 1 5 c ……の形態で構成されるものでもよい。
さらに、 図 7および図 9 Aに断面図、 図 9 Bに底面図を示すごとく、 すりばち 状の液導入口の保持部 1 2の底面 1 3に液導入口の底部開口部 1 6を中心として
3つの同心円状に突設された、 複数の円柱状の突部 1 4 a, 1 4 b , 1 4 c…… の間に刻成された凹部 1 5 a , 1 5 b , 1 5 c……を有し、 さらに、 突部
1 4 a , 1 4 b , 1 4 c……が、 底面 1 3の端縁に沿って複数の溝 7 3を介して 形成された複数の円弧状の枠 7 2によって囲まれている形態のものでもよい。 フィルター部 2は、 酵素標識特異結合物質および電子メディエーターが含浸さ れたガラス繊維ろ材 2 1と、 該ガラス繊維ろ紙 2 1 aが載置される、 上面に液体 不透過性シール部 2 2が設けられ、 N a N 3 が含浸されたガラス繊維ろ紙 2 1 b とから構成される。
また、 分析部 3は、 上面から下面に貫通する連通孔 3 1を有する電極基板 3 2 と、 該電極基板下部に配設された抗体不溶化多孔性メンブレン 3 3と、 上面に透 析膜シール部 3 4を有し、 酵素基質が含浸された吸水部ガラス繊維ろ紙 3 5とか ら構成される。 電極基板 3 2の下面には、 連通孔 3 6の下部開口を同心円状に囲 む環状の作用極 (検出部) 3 7と、 該作用極 3 7に連結する作用極端子 3 8が形 設され、 さらに、 電極基板の下面には、 作用極 3 7を同心円状に囲む環状の対極 3 9と、 該対極 3 9に連結する対極端子 4 1が形設されている。
さらに、 下部基板 4は、 図 1 0 Aに正面図、 図 1 0 Bに底面図、 および図 1 0 Cに側面図を示すとおり、 基台 8 1上に刻成された電極板固定用の凹部 8 2 内に突設された、 前記分析部の吸水部ガラス繊維ろ紙 3 5が載置される円柱状の 台座 4 2を有するものである。 基台 8 1の 4隅には、 上部カバ一 1の 4隅に穿設 された組立孔 4 3 a , 4 3 b , 4 3 cおよび 4 3 dに対応して、 組立孔 4 4 a , 4 4 b , 4 4 cおよび 4 4 dが穿設されている。 下部基板 4は、 これら例示され た形態に限定されるものではなく、 積層される部材の配置と積層間隔が規定でき るものであればよい。
この図 1に示す装置においては、 図 1 Bに示すとおり、 下部基板 4上に、 上面 に透析膜シール部 3 4を有し、 酵素が含浸された吸水部ガラス繊維ろ紙 3 5、 特 異結合物質不溶化多孔性メ ンブレン 3 3、 電極基板 3 2、 ガラス繊維ろ紙 2 1 b、 ガラス繊維ろ紙 2 1 a、 上部カバ一 1の順で積み重ね、 上部カバー 1の 4隅に穿設された組立孔 4 3 a, 4 3 b , 4 3 cおよび 4 3 dと、 下部基板 4に 対応して設けられた組立孔 4 4 a , 4 4 b , 4 4 cおよび 4 4 dとにボルト (図 示せず) を揷通して、 ナツ ト等 (図示せず) で固定して、 組立てることがで さる o
この図 1 に示す装置においては、 液性試料導入部の役割を有する上部力 バー (図 2 ) の液性試料導入口 1 1から、 液性試料として、 例えば、 全血試料等 が導入される。 導入された液性試料は、 流路確保部を通り、 フィルタ一部におい て、 固形成分、 例えば、 赤血球等の固形成分が捕捉され、 液性成分のみが、 分析 部において分析対象物の特異結合反応による分析に供される。 このとき、 複数の 凸部 1 4 a , 1 4 b, 1 4 c……の間に刻成された凹部 1 5 a, 1 5 b , 1 5 c ……から構成される流路確保部は、 フィルター部に捕捉 ·集積された固形成分に よって液性試料中の液性成分の透過が阻害されないように機能する。 一般に、 分 析対象である液性試料は、 フィルタ一等の浸透可能な領域では、 一般的に、 最短 距離を流れて通過する傾向があり、 その結果として、 固形成分はそのフィルタ一 の局所的な領域に捕捉されやすい。 従来の装置においては、 液性試料がフィ ルターを通過するにつれて、 捕捉された固形成分がフィルター内に局所的に充満 する力、、 あるいは、 フィルタ一上に局所的に蓄積し、 液性試料の局所的な流路妨 害に至る。 これに対して、 この装置においては、 流路確保部が、 液流のバイパス として作用し、 効率よい固形成分の捕捉を可能にすると共に、 分析部が存在する フィルタ—部の下流への液性成分の透過が充分量確保できる。 すなわち、 本発明 の装置において、 流路確保部は、 フィルタ一の一部分が固形成分の蓄積によって も実質的に埋まっても、 その周囲に空間を確保し、 フィルタ一部における液性試 料が通過可能な領域、 すなわち、 未だ固形成分の蓄積が流路妨害を生じていない 領域まで液性試料の液性試料の液流が導かれる。
また、 図 1 1に示す装置は、 図 1に示す装置と同様の構成を有し、 上部カバー 1の液導入口の保持部 1 2の底面 1 3に形成された複数の凸部 1 4 a, 1 4 b, 1 4 c……と、 フィルタ一部 2との間に、 さらに液性試料を流路確保部からフィ ルター部へ流れ込ませる複数の流入口 4 5 a, 4 5 b , 4 5 c……を有する液不 透過部材 4 6が配設された構成を有するものである。
この液不透過性部材 4 6は、 図 1 1に示す構成のものに限定されず、 例えば、 図 1 2 A〜 Iに示す形態のものでもよい。
この図 1 1に示す装置においては、 液性試料導入部の役割を有する上部カバ一 の液性試料導入口 1 1から、 液性試料として、 例えば、 全血試料等が導入さ れる。 導入された液性試料は、 流路確保部を通り、 フィルタ一部において、 固形 成分、 例えば、 赤血球等の固形成分が捕捉され、 液性成分のみが、 分析部におい て分析対象物の特異結合反応による分析に供される。 このとき、 複数の凸部 1 4 a , 1 4 b , 1 4 c……の間に刻成された凹部 1 5 a, 1 5 b , 1 5 c…… と、 前記液不透過性部材 4 6とは、 前記図 1に示す流路確保部の作用をなすとと もに、 液不透過性部材 4 6が複数の流入口を有する場合には、 試料導入口により 近い流入口のフィルタ一部分、 あるいは、 1つの流入口の場合には流入口の試料 導入口側から固形成分の捕捉が始まる。 しかし、 その初期の捕捉領域が固形成分 で満たされて液流抵抗が上昇しても、 流入口の周囲の液不透過層上の流路確保部 を通過して、 液性試料は、 未だ固形成分で満たされていない別の流入口あるいは 1つの流入口の別の領域に容易に流れることができる利点がある。
さらに、 図 1 3に示す装置は、 本発明の特異結合分析装置の他の構成例で あり、 基本的に上部カバー 5 1と、 フィルタ一部 5 2と、 分析部 5 3、 下部基板 5 4とを有するものであり、 基本的に、 フィルタ一部 5 2、 分析部 5 3および下 部基板 5 4は、 前記の図 1に示す装置と同様の構成を有するものであり、 図 1と 同じ符号を付した部位は、 図 1に示す部位を示す。
この図 1 3に示す装置において、 上部カバ一 5 1は、 図 1に示す装置とは異な り、 液性試料導入口を有しない平板状部材であり、 図 3 Aに断面図、 図 3 Bに底 面図、 および図 3 Cに側面図を示す、 一端に揷入部材突当部 5 5を有する、 直方 体状の挿入部材保持部 5 6力く、 下部に刻成されたものである。 この装置における 流路確保部は、 上部カバ一 5 1の下部に刻成された、 一端に揷入部材突当部 5 5 を有する、 直方体状の揷入部材保持部 5 6と、 該揷入部材保持部 5 6と、 その下 部に配設されるフィルタ一部との間に挿入される揷入部材 5 7とで構成される。 揷入部材 5 7は、 図 1 3に示すとおり、 液流入口 5 8 a, 5 8 b , 5 8 c……が 穿設された下部シ一卜部材 5 9 aと、 上部シー卜部材 5 9 bと、 両部材の長辺方 向に配設されたスぺ一サ一 6 0 a , 6 0 bによって、 該下部シ一ト部材 5 9 aと 上部シート部材 5 9 bとの間に、 液性試料が流通する薄層流路 6 1が形成される 形態で構成されるものである。
また、 この装置において、 フィルタ一部 5 2は、 積み重ねられた 2枚の不織布 6 2 aおよび 6 2 bと、 該不織布 6 2 aおよび 6 2 bの下部に配設されたろ 材 6 3、 例えば、 血球ろ紙とから構成されるものである。
また、 分析部 5 3は、 上面から下面に貫通する連通孔 3 1を有する電極 基板 3 2と、 該電極基板下部に配設された抗体不溶化多孔性メンブレン 3 3と、 上面に透析膜シール部 3 4を有し、 酵素基質が含浸された吸水部セルロースろ紙 3 5とから構成される。 電極基板 3 2の下面には、 連通孔 3 1の上部開口を同心 円状に囲む環状の作用極 (検出部) 3 9と、 該作用極 3 9に連結する作用極端子 4 1が形設され、 電極基板の上面には、 連通孔 3 1の下部開口を同心円状に囲む 環状の対極 3 7と、 該対極 3 7に連結する対極端子 3 8が形設されている。 さらに、 下部基板 5 4は、 突設された、 前記分析部の吸水部セルロースろ 紙 3 5が載置される円柱状の台座 4 2を有するものである (図 1 0 ) 。
この図 1 3に示す装置においては、 下部基板 5 4の台座上に、 上面に透析 膜シール部 3 4を有し、 酵素基質が含浸された吸水部セルロースろ紙 3 5、 抗体 不溶化多孔性メンブレン 3 3、 電極基板 3 2、 ろ材 6 3、 不織布 6 2 aお よび 6 2 b、 さらに、 揷入部材 5 7および上部カバ一 5 1の順で積み重ね、 上部 カバ一 5 1の 4隅に穿設された組立孔 (図示せず) と、 下部基板 5 4に対応して 設けられた組立孔 (図示せず) において、 ボルトおよびナツ ト等を用いて固定し て、 組立てることができる。 この図 1 3に示す装置においては、 流路確保部の役割を有する挿入部材 5 7の 端部開口部 6 4から薄層流路 6 1に液性試料、 例えば、 全血試料等が導入 される。 導入された液性試料は、 薄層流路 6 1および液流入口 5 8 a , 5 8 b, 5 8 c……を通り、 フィルタ一部において、 固形成分、 例えば、 赤血球等の固形 成分が捕捉され、 液性成分のみが、 分析部において分析対象物の特異結合反応に よる分析に供される。 このとき、 液流入口 5 8 a, 5 8 b , 5 8 c……が穿設さ れた揷入部材 5 7によって構成される流路確保部は、 フィルタ一部に捕捉'集積 された固形成分によって液性試料中の液性成分の透過が阻害されないように機能 する。 すなわち、 液性試料がフィルタ一を通過するにつれて、 捕捉された固形成 分がフィルタ一内に局所的に充満するか、 あるいは、 フィルタ一上に局所的に蓄 積すると、 薄層流路 6 1および液流入口 5 8 a, 5 8 b , 5 8 c……が、 液流の バイパスとして作用し、 効率よい固形成分の捕捉を可能にすると共に、 分析部が 存在するフィルター部の下流への液性成分の透過量が充分に確保できる。
また、 流路確保部の役割を有する揷入部材の好適例として、 目詰まり防止フィ ルターがある。 例えば、 下記の構成を有するものが挙げられる。
a ) ガラス繊維ろ紙からなる血球捕捉フィルター内に試薬成分 (標識物、 酵素基 質、 電子メディエー夕、 緩衝液成分、 界面活性剤など) を含浸乾燥して配置し、 その上部に流路確保部としての目詰まり防止フィルターを配置した構成。
b ) 血球捕捉フィルター (ガラス繊維ろ紙) 上流に一部の試薬成分 (標識物、 電 子メディエータ、 緩衝液成分、 界面活性剤、 酵素阻害剤、 血液凝固阻害剤、 血液 凝固促進剤など) を乾燥して配置した構成。 この構成では、 目詰まり防止フィル ター上流の試料導入口に無担体で試薬成分を乾燥配置している。 特に、 血球捕捉 前に添加する方が望ましい試薬成分 (界面活性剤、 酵素阻害剤、 血液凝固阻 害剤、 血液凝固促進剤など) はこの形態で配置することが好ましい。
C ) 血球捕捉フィルタ一 (セルロースろ紙) 上部に目詰まり防止フィルタ一を配 置し、 一部の試薬成分を血球捕捉フィルタ一上流に乾燥配置し、 一部の試薬成分 を吸水部ろ紙に乾燥配置した構成。 特に、 捕捉血球と接触しないことが望ましい 試薬成分 (酵素基質など) はこのように吸水部ろ紙に配置することが好まし い。
d ) 試料導入口と分析部への連通部との上下方向の配置をずらした構成。 この構 成では、 試料導入口と連通部 (連通孔あるいは連通端) の配置をずらせることに より、 捕捉粒子による流路妨害を効果的に回避できる。
これらの構成 a ) 〜d ) の具体例を、 それぞれ図 1 4 A〜Dに示す。 図 1 4 A〜Dは、 本発明における流路確保部 (目詰まり防止フィルター) と捕 捉フィルターを有する分析装置の好適例を示し、 目詰まり防止フィルターを用い た流路確保部と捕捉フィルターの位置関係、 および、 乾燥状態で分析装置内に組 み込まれる試薬成分の配置を、 図 1 Bまたは図 1 1 Bに示す装置と同様の特異結 合分析装置の断面図として例示したものである。 なお、 図 1 Bまたは図 1 1 Bに 示す装置と同様の部材には、 図 1 Bまたは図 1 1 Bに示す符号と同一の符号を付 した。
図 1 4 A〜Dは、 前記 a ) ~ d ) の構成を有する分析装置の具体例を示す模式 断面図であり、 前記図 1または 1 1に示す装置と同様に、 上部カバー 1と、 分析 部 3と、 下部基板 4とを有するものである。 分析部 3は、 上面から下面に貫通す る連通孔 3 1を有する電極基板 3 2と、 該電極基板下部に配設された抗体不溶化 メンブレン 3 3と、 上面に透析膜シール部 3 4を有し、 吸水部セルロースろ 紙 3 5とから構成される。 電極基板 3 2の下面には、 連通孔 3 6の下部開口を同 心円状に囲む環状の作用極 (検出部) と、 該作用極に連結する作用極端子が形設 され、 さらに、 電極基板の下面には、 作用極を同心円状に囲む環状の対極と、 該 対極に連結する対極端子が形設されている。
図 1 4 Aに示す装置は、 上部カバー 1と電極基板 3 2との間に、 上部カバー 1 側から順に、 流路確保部としての目詰まり防止フィルタ一 8 3と、 該目詰まり防 止フィルター 8 3の下にガラス繊維ろ紙からなる血球捕捉フィルタ一 8 4とを積 層した構造を有するものである。 血球捕捉フィルター 8 4は、 液体不透過性シ一 ル部 2 2を間にして、 上部に標識物が主試薬成分として含浸された標識物含浸部 8 4 aと、 下部に酵素基質が主試薬成分として含浸された酵素基質含浸部 8 4 b とが配設された構成を有する。
図 1 4 Bに示す装置は、 上部カバー 1と電極基板 3 2との間に、 上部カバー 1 側から順に、 流路確保部としての目詰まり防止フィルター 8 3と、 該目詰まり防 止フィルタ一 8 3の下にガラス繊維ろ紙からなる血球捕捉フィルタ一 8 4とを積 層した構成を有するものである。 また、 上部カバ一 1の試料導入口 1 1には、 無 担体乾燥した標識物 8 5が配設され、 血球捕捉フィルター 8 4には、 主試薬成分 として酵素基質が含浸されて酵素基質含浸部 8 4 bが形成された構成を有するも のである。 この装置は、 特に、 血球捕捉前に添加する方が望ましい試薬成分 (界 面活性剤、 酵素阻害剤、 血液凝固阻害剤、 血液凝固促進剤など) を配置する場合 に好適である。
図 1 4 Cに示す装置は、 上部カバー 1と電極基板 3 2との間に、 上部カバ一 1 側から順に、 流路確保部としての目詰まり防止フィルター 8 3と、 該目詰まり防 止フィルタ一 8 3の下にセルロースろ紙からなる血球捕捉フィルタ一 8 4とを積 層した構成を有するものである。 上部カバー 1の試料導入口 1 1には、 標識物お よび血球凝集素を含む無担体乾燥体 8 6が配設され、 吸水部ろ紙 3 5に酵素基質 が含浸され、 酵素基質含浸部 8 7が形成された構成を有するものである。 この装 置は、 特に、 捕捉血球と接触しないことが望ましい試薬成分 (酵素基質など) を 配置する場合に好適である。
図 1 4 Dに示す装置は、 上部カバー 1と電極基板 3 2との間に、 上部カバ一 1 側から順に、 流路確保部としての目詰まり防止フィルター 8 3と、 該目詰まり防 止フィルタ一 8 3の下にガラス繊維ろ紙からなる血球捕捉フィルタ一 8 4とを積 層し、 図 1 4 Cに示す装置と同様に、 試料導入口 1 1には、 標識物および血球凝 集素を含む無担体乾燥体 8 6が配設され、 吸水部ろ紙 3 5に酵素基質が含浸 され、 酵素基質含浸部 8 7が形成された構成を有するとともに、 試料導入口 1 1 の下開口部と分析部との連通孔 3 1との水平方向の相対位置をずらした構成を有 するものである。 この装置においては、 試料導入口 1 1と連通部 (連通孔あるい は連通端) の配置をずらせることにより、 捕捉粒子による流路妨害を効果的に回 避できる。
なお、 前記図 1 4 A〜Dに示す装置は、 好適例であって、 流路確保部としての 目詰まり防止フィルターと捕捉フィルタ一との位置関係、 および、 試薬成分の配 置などがこれらの例示に限定されるものではな 、。
また、 図 1 5 A〜Cに、 図 1 4 Dに示す構成の、 試料導入口 1 1と分析部 3へ の連通部との配置をずらした特異結合分析装置の構成例を示す。 図 1 5 Aは、 各部材の構成を示す図であり、 図 1 5 Bは、 組み立て構成例を示 し、 図 1 5 Cは、 電極基板裏面を拡大した図である。
この図 1 5に示す装置において、 分析部 3は、 上面から下面に貫通する連通孔 または連通端を有する電極基板 3 2と、 該電極基板下部に配設された抗体不溶化 多孔性メンブレン 3 3と、 上面に透析膜シール部 3 4を有し、 酵素基質が含浸さ れた吸水部セルロースろ紙 3 5と力、ら構成される。 電極基板 3 2の下面には、 連 通孔または連通端 3 6と接する作用極 (検出部) 3 9と、 該作用極 3 9に連結す る作用極端子 4 1が形設され、 電極基板の上面には、 連通孔または連通端と接す る対極 3 7と、 該対極 3 7に連結する対極端子 3 8が形設されている。
このように、 試料導入口と連通部 (連通孔あるいは連通端) の配置をずらせる ことにより、 試料導入口直下での捕捉粒子による流路妨害を回避できる。 さ らに、 試料導入口と連通部の配置がずれていると、 捕捉フィルターの表面積が増 犬し、 また、 矢印 X、 Yおよび Zで示される流路が長く構成され、 捕捉効率と流 路妨害回避効率の両者が向上し、 流路内での試料と試薬の混合効率も向上する。 また、 検出部としての電極を連通部周囲に配置した特異結合分析装置の場合 には、 開放部である試料導入口が連通部から離れることによって、 連通部近傍の 検出部をより確実に保持できることになる。
以下、 本発明の実施例を挙げ、 本発明をより具体的に説明するが、 本発明は、 これらの実施例に限定されるものではな 、。
(実施例 1 )
ぐ部材の調製〉
以下、 方形部材の寸法 (A X B ) は、 Aを液流に対し垂直な方向、 Bを液流に 対し平行な方向として記載した。
<西洋ヮサビバ一ォキシダ一ゼ (HRPO) 標識抗 E 2抗体の作製 >
西洋ヮサビバーオキシダ一ゼ (HRPO) (東洋紡績社製) とマウスモノクロ 一ナル抗 E 2抗体とを用い、 An a l y t i c a l B i o c h emi s t r y 1 94, 1 56— 1 62 ( 1 99 1 ) に記載された J a n e J. Za r aら の方法に基づいて、 西洋ヮサビバーオキシダ一ゼ (HRPO) 標識抗 E 2抗体を 調製した。
く E 2— 6 C M〇一ァ—グロプリンの作製〉
N—ヒ ドロキシスクシンイ ミ ド (和光純薬社製) と、 1ーェチルー 3—
( 3—ジメチルァミノプロピル) 一カルボジィミ ド塩酸塩 (和光純薬社製) で活 性化した E 2— 6 CM0 (シグマ社製) を、 ァ—グロブリ ン (シグマ社製) 溶液に添加して 4 °Cでー晚攪拌した。 次いで、 S e p h a d e x— G 2 5
(Ph a rma c i a B i o t e c h社製) を用いて、 E 2— 6 CMO- r一 グロプリンを精製した。
<抗原不溶化メンブレンの作製 >
リン酸緩衝生理食塩水 ( 7 6 mMP B— 7 6 mMN a C し p H 6. 4、 以下、 「PBS」 と略す) を用いて、 2. OmgZm 1の E 2— 6 CM〇ーァー グロブリン抗原溶液を調製した。 1 Omm0の混合セルロース多孔質メンブレン
(M i 1 1 i p o r e社製) を、 抗原溶液に浸潰し、 25 °Cで一晩振とうして抗 原を不溶化した。 抗原不溶化メンブレンを洗浄後、 1 %カゼイン (和光純薬 社製) /PBS溶液に浸潰し、 ブロッキングを行った。 次いで、 メンブレンを洗 浄し、 減圧乾燥して、 抗原不溶化メンブレンを得た。 <HRPO標識抗 E 2抗体一電子メディエータ THEPD凍結乾燥体の作製 > 電子メデイエ一夕として、 N, N, N' , N' ーテトラキスー (2—ヒドロキ シェチル) 一 p_フヱニレンジァミ ン (持田製薬社製、 略号: THEPD) を使 用した。
1 2 mMTHE PD- 5 mg/m 1抗赤血球抗体 (O r ga non Te kn i k a社製) 一 5 %正常家兎血清 (日本生物材料社製、 略号: NR S) — 5 %マ ノレトース (和光純薬社製) 一 1 60 U/m 1へパリン (和光純薬社製) 一 1 00 mM塩化ナトリウム一 40 mMリン酸緩衝液 (略号 P B) ( H: 6. 0 ) 溶液 を用いて、 HRPO標識抗 E 2抗体希釈液を調製した。 この HRPO標識抗 E 2 抗体希釈液を 30 1ずつトレィに滴下して凍結乾燥した。
くカタラーゼ阻害剤 (NaN3 ) 凍結乾燥体の作製 >
1 0mMNaN3 (和光純薬社製) 一 1 60 U/m 1へパリン一 1 OmMPB (pH: 6. 0) を調製した。 この溶液を、 1 0 X 1 4 mmにカッティングした 不織布に 70 n 1点着した。 次いで、 トレィ上で凍結し凍結乾燥し、 力タラ一ゼ 阻害剤 (NaN3 ) 凍結乾燥体を得た。
ぐ酵素基質 (過酸化水素) 凍結乾燥体の作製 >
300 mM過酸化水素 (和光純薬社製) 一 300 mMヒダントイン酸 (東京化 成社製) (PH6. 0) — 2 OmMグァヤコ一ルスルホン酸カリウム塩 (東京化 成社製) 一 1 60 U/m 1へパリン溶液を調製し、 トレィ上に並べた 8 mm «6の セルロースろ紙 (Wh a t ma n社製、 3MMCh r) に、 1枚当たり 1 5〃 1 ずつ点着した。 卜レイ上で凍結し凍結乾燥して過酸化水素凍結乾燥体とした。 <HRP 0標識抗体一 TH E P D凍結乾燥体を有する流路確保部部材の作製〉
PETフィルム (厚さ : 0. 1mm) を 1 2mmx 25 mmに切り、 液流に対 し平行な方向の両端部に 2 mm幅の接着テープを貼り付け、 流路確保部形成のた めの揷入部材として 2 mm幅の塩化ビニルフィルム (厚さ 3 mm) を固定し た。
さらに、 塩化ビニルフィルムに対して直角の方向に 2枚の接着テ一プを貼り付 け、 2枚の接着テープの間に、 凍結乾燥体設置のための凹部を形成した。
凍結乾燥体設置のための凹部を有する前記流路確保部部材を冷却したトレイに 置き、 111 ?0標識抗£ 2抗体一 1 2 mMTHE PD— 5 mgZm 1抗赤血 球抗体一 5 %NRS— 5 %マルトース— 1 6 0 U/m 1へパリ ン— 1 0 0 mMNa C 1 - 4 OmMPB ( H 6. 0 ) 溶液を、 凍結乾燥体設置のための凹 部に 30 1ずつ分注して凍結させ凍結乾燥し、 11尺?0標識抗体ー丁11£?0 凍結乾燥体を得た。
<HRP 0標識抗体一 TH E P D凍結乾燥体を組み込んだ流路確保部を有する分 析装置の作製 >
HRP 0標識抗体 - T H E P D凍結乾燥体を有する流路確保部部品の凹部を形 成していた接着テープを剥がした。
次いで、 液流に対し平行方向に 2 mm幅の両面テープを貼り付けた。
一方、 1 2 mmx 35 mmにカッ トした P ETフィルム (厚さ 0. 1 mm) に 2 mm øの流入口の穴 1 2個 ( 3 x 4個) 開けた。
次いで、 この流入口を有する PETフィルムと前記の HRPO標識抗体— TH EPD凍結乾燥体を有する流路確保部部材とを、 貼り合わせて、 凍結乾燥体が内 部に配置された流路確保部を有する薄層流路を形成した。
<全血ドライ系分析装置の作製 >
図 1 3に示すとおり、 アクリル樹脂製の下部基板 5 4に、 過酸化水素を含浸さ せてなる酵素基質含浸部となるセルロースろ紙 3 5 (8mm0) を固定し、 透析 膜シール部として 5 mm øの円形の液不透過性シール 3 4を酵素基質含浸部の上 面の中央部に貼り付けた。 その上に、 中心を合わせて抗原不溶化メンブレン 3 3 を載置し、 さらに、 連通孔の中心を合わせるように電極基板 (電極 A) 3 2を重 積した。 電極の連通孔 3 1には 3 mm Φに力ッ トしたセルロースろ紙 5 C (ADVANTEC社製) を挿入した。 次いで、 両面接着テープを貼り付け、 電 極板上にセルロースろ紙 5 C ( 1 0 X 1 4 mm、 AD V ANTE C社製) 6 3を固定した。 また、 セルロースろ紙 5 Cの上に N a N3 凍結乾燥不織布 ( 1 0 X 1 4 mm) 6 2 aおよび 6 2 bを 2層積層した。
電極 Aの諸元
力―ボン作用極 3〜 5 mm øリング状電極 (下面)
銀対極 3. 5〜 7 mm øリング状電極 (上面)
連通孑し 3 mm φ
この装置において、 アクリル樹脂製の上部カバ一 5 1の下面に、 両面接着 テープを貼り付け、 先に作製した薄層キヤビラリ一流路を固定した (図 3参 照) 。 また、 上部カバ一のネジ位置に液流と平行になるようにスぺ一サ一 (厚さ 0. 5 mm) を 3枚ずつ挿入した。 この上部カバ一 5 1を、 前記したセルロース 繊維ろ紙 3 5、 抗原不溶化メ ンブレン 3 3、 電極基板 (電極 A) 3 2、 セ ルロースろ紙 5 C ( 1 0 X 1 4 mm) 6 3、 および N a N 3 凍結乾燥不織 布 ( 1 0 x 1 4 mm) 62 aおよび 62 bを積層したァクリル樹脂製の下部基板 54の上に、 薄層キヤビラリ一流路の 3 X 4個の流入口の穴が下側 (不織布面) を向くようにかぶせ、 上部カバ一および下部基板の四隅をネジ留めして、 図 1 3 に示す分析装置を組立てた。
また、 揷入部材に、 HR PO標識抗体一 THE PD凍結乾燥体を組み込まない で、 分析装置を組み立てた。
<全血試料の分析〉
揷入部材に、 H R P 0標識抗体一 T H E P D凍結乾燥体を組み込んで組立られ た分析装置においては、 へパリン採血管を用いて採血した全血に各濃度の E 2を 添加した試料 1 4 0 1を薄層キヤビラリ一流路に注入して電流測定を行つ た。
また、 揷入部材に、 HR PO標識抗体一 THE PD凍結乾燥体を組み込まない で組立られた分析装置においては、 各濃度の E 2を添加した全血で HRPO標識 抗体一 THE PD凍結乾燥体を溶解した後に、 試料 1 40 1を薄層流路に注入 して電流測定を行った。 作用極には、 試料液添加直前から、 対極に対して - 1 5 OmVの電圧を印加した。 電流測定は電流計測回路 (持田製薬社製) を用 いて行い、 1秒間隔で電流値を測定した。
(結果)
その結果、 揷入部材に、 HRPO標識抗体一 THEPD凍結乾燥体を組み込ん で組立られた分析装置、 および H R P〇標識抗体— T H E P D凍結乾燥体を組み 込まないで組立られた分析装置においては、 血球の目詰まりを起こさず、 図 1 6 に示すとおり、 E 2濃度に対して良好な電流応答が得られた。 (実施例 2 )
<Twe e n 20処理 GA 1 00ガラス繊維ろ紙の調製 >
ガラス繊維ろ紙 GA 1 00 (AD V ANTE C社製) を、 0. 2%Twe e n 20水溶液に室温で一晩浸潰した。 さらに、 蒸留水で洗浄した後、 80°Cで加熱 乾燥した。
<HRPO標識 CRP作製 >
T r a u t 's試薬 (P I ERC E社製) によりスルフヒ ドリル基を導 入した CRPに、 S u l f o— SMC C (P I E RC E社製) によりマレ ィ ミ ド基を導入した H R P 0を結合させ、 S u p e r d e x 2 0 0カラム (Ph a rma c i a B i o t e c h社製) で精製したものを H R P 0標 識 CRPとした。
<HRPO標識 CRP— THEPDガラス繊維ろ紙の作製〉
2 mMTHE PD- 5 %NRS - 1 0%ラク トースー 1 60 U/m 1へパリン 一 1 00 mMN a C 1一 5 OmMピぺラジン一 1, 4一ビス (2—エタンスルホ ン酸) (以下、 「 P I P E S」 と略す。 和光純薬社製) ( p H : 7 · 4) 溶液を 用いて、 11尺?0標識じ!^?希釈液を調製した。 この希釈液 1 20 μ 1を、 1 1 mm øの円形に力ッティングした T we e n 20処理 GA 1 00ガラス繊維ろ紙 に点着し、 凍結乾燥して、 HRPO標識 CRP— THEPDガラス繊維ろ紙を得 た。
<マウスモノクローナル抗 CRP抗体不溶化メンブレンの作製 >
リ ン酸緩衝生理食塩水 ( 7 6 mMP B— 7 6 mMN a C 1、 H 6. 4、 以下、 「PBS」 と略す) を用いて、 0. 2 mg/m 1のマウスモノクローナル 抗 CRP抗体溶液を調製した。 1 0 mm øの円板状多孔質メンブレンを抗体溶液 に浸漬して、 抗体を不溶化した。 次に、 メンブレンを洗浄後、 1 %カゼイン ZP B S溶液に 2 5°Cで 3 0分浸漬し、 ブロッキングを行った。 さらに、 メンブレン を洗浄後、 減圧乾燥して、 マウスモノクローナル抗 CRP抗体不溶化メンブレン を得た。
<過酸化水素凍結乾燥体の作製 >
5 OmM過酸化水素一 1 0 OmMヒダン卜イン酸 (pH6. 0) 一 2 0 mMグ ァヤコ一ルスルホン酸力リウム塩ー 1 6 0 U/m 1へパリン溶液を調製し、 1 0 mm øのガラス繊維ろ紙 G B 1 0 0 R (ADVANTE C社製) に 1枚当た り 7 5 1ずつ点着し、 凍結乾燥して過酸化水素凍結乾燥体を得た。
<NaN3 ガラス繊維ろ材の作製〉
3 0 mMN aN3 - 1 6 0 U/m 1一 1 OmM P I PES (p H 7. 4) 溶液 を調製した。 この溶液 1 2 0〃 1を、 1 1 mm øの円扳状に力ッティ ングし た Tw e e n 2 0処理 G A 1 0 0ガラス繊維ろ紙に点着し、 凍結乾燥して、 NaN3 ガラス繊維ろ紙を得た。
ぐ分析装置の作製 >
実施例 1と同様にして、 図 1 1に示す構成の分析装置を作製した。 すなわち、 過酸化水素ガラス繊維ろ紙 (1 Omm0) を、 アクリル樹脂製の下部基板上に固 定し、 そのろ紙の表面中央に、 8mm0の透析膜 (1 8/3 2、 三光純薬社製) を 1. 6 mm0の円板状に成形した両面テープで貼り付けた。 次に、 抗 CRP抗 体不溶化メンブレン (1 Omm0) を透析膜の上に中心を合わせて積層した。 電 極を連通孔の中心と抗 CRP抗体不溶化メンブレン (1 Omm0) の中心が一致 するように下部基板に固定した。
電極の諸元
カーボン作用極: 4一 7 mm øリング状電極
銀対極: 8— 1 0 mm øリング状電極
連通孔の孔径: 4 mm Φ
7 mm øの円板状の液不透過性シールを表面中央部に貼り付けた N aN3 ガラ ス繊維ろ紙 (1 lmm0) を、 液不透過性シールを貼付した面を上にして、 中心 を電極基板の連通孔の中心に合うように積層した。 さらに、 HRP〇標識CRP 一 THE PDガラス繊維ろ紙 (1 lmm0) を、 NaN3 ガラス繊維ろ紙の上に 積層した。 また、 揷入部材として流入口 (中央 3mm0、 周囲 2mm0) を設け た PETフィルム (1 2mm0) を 0. 5%Twe e n 20水溶液に約 1時間浸 漬した。 次いで、 流入口を設けた PETフィルムを乾燥させ、 その中心を HRP 0標識 CRP— THEPDガラス繊維ろ紙 (1 l mm0) の中心に合わせて重積 した。 また、 この流入口を設けた PETフィルムの重積時には、 その上に被せる ァクリル樹脂製の上部カバーの液性試料導入口の中心に、 流入口を設けた PET フィルムの中心を合わせ、 かつ、 上部カバーの下部に設けられた凸部がこの P E Tフィルムの流入口を塞がないように配置した。 最後に、 流入口を設けた PET フィルムを固定した上部カバーをかぶせ、 四隅をネジ止めして、 図 1 1に示す構 成の分析装置を作製した。
く電流測定 >
新鮮全血 200 ^ 1に各濃度の CRPを添加した試料を、 分析装置の試料導入 口に注入して電流測定を行った。 作用極には、 試料液添加前から、 対極に対して 一 1 5 OmVの電圧を印加した。 電流測定は電流計測回路 (持田製薬社製) を用 いて行い、 1秒間隔の電流値として測定した。 試料液添加時から 2 7 0〜 3 3 0 秒の電流値の平均値を、 作用極の電流値とした。
(結果)
図 1 7に示すとおり、 全血球中の CR P濃度に対して良好な応答が得られ た。
(実施例 3 )
<薄層流路を有する分析装置の作製方法〉
実施例 2と同様にして、 薄層流路を有する分析装置を作製した。 すなわち、 ァ クリル樹脂製の下部基板に、 過酸化水素凍結乾燥ガラス繊維ろ紙 GB 1 0 0 R (1 0 mm0) を固定した。 8 mm0の円板状の透析膜 (1 8Z32、 三光純 薬社製) を、 過酸化水素ガラス繊維ろ紙の中央部に貼り付けた。 さらに、 中心を 一致させて、 抗 CRP抗体不溶化メンブレン (1 Omm0) を過酸化水素凍結乾 燥ガラス繊維ろ紙 (1 Omm0) に重積した。 次いで、 連通孔の中心と抗 CRP 抗体不溶化メンブレン (1 Omm0) の中心が一致するように、 電極基板を下部 基板に固定した。
電極の諸元
カーボン作用極: 4一 7 mm øリング状電極
銀対極: 8— 1 0 mm øリング状電極
連通孔の孔径: 4 mm0
7 mm øの円板状の液不透過性シ―ルを中心部に貼り付けた N a N 3 凍結乾燥 ガラス繊維ろ紙 (1 lmm0) を、 液不透過性シールを貼付した面を上にして、 中心が電極連通孔の中心に合うように積層した。 さらに、 1^尺?0標識じ1^?— THE PD凍結乾燥ガラス繊維ろ紙 (1 lmm0) を、 NaN3 凍結乾燥ガラス 繊維ろ紙の上に中心を一致させて積層した。 流路確保部を構成する間隙を形成す るための 8本の放射状の突部を有するァクリル樹脂製の上部カバ一をかぶせ、 さ らに、 四隅をネジ止めして、 上部カバーと NaN3 凍結乾燥ガラス繊維ろ紙との 間に形成された間隙によって構成された流路確保部を有する、 図 1に示す構成の 分析装置を作製した。
<電流測定〉
前記に作製された図 1に示す構成の分析装置の試料導入口に、 新鮮全血に各濃 度の CRPを添加した試料 2 0 0 a 1を注入して電流測定を行った。 作用極 には、 試料液添加直前から、 対極に対して一 1 5 OmVの電圧を印加した。 電流 測定は電流計測回路 (持田製薬社製) を用いて行い、 1秒間隔の電流値として測 定した。 試料液添加時から 3 6 0〜4 2 0秒の電流値の平均値を、 作用極の電流 値とした。
(結果)
へマトクリツ ト値 4 1 %および 5 2 %の全血検体を用いて分析したが、 へマ卜 クリツ ト値の影響は抑制されていた。 また、 図 1 8に示すとおり、 電流値の精度 に関しても、 へマトクリッ ト値の異なる両検体で差はなかった。
(実施例 4 )
図 1に示す構成の分析装置を作製した。 すなわち、 ァクリル樹脂製の下部基板 に、 過酸化水素凍結乾燥ガラス繊維ろ紙 GB 1 0 0 R ( 1 0 Omm ) を固定し た。 8 mm øの円板状の透析膜 (1 8/3 2、 三光純薬社製) を、 過酸化水素ガ ラス繊維ろ紙の中央部に貼り付けた。 さらに、 中心を一致させて、 抗 CRP 抗体不溶化メンブレン ( 1 O mm0) を過酸化水素凍結乾燥ガラス繊維ろ紙 (1 0 mm0) に重積した。 次いで、 連通孔の中心と抗 CRP抗体不溶化メンブ レン ( 1 Omm0) の中心が一致するように、 電極基板を下部基板に固定し た。
電極の諸元
カーボン作用極 4一 7 mm øリング状電極
銀対極: 8— 1 0 mm øリング状電極
連通孔の孔径: 4 mm0
7 mm øの円扳状の液不透過性シールを中心部に貼り付けた N aN3 凍結乾燥 ガラス繊維ろ紙 (1 lmm0) を、 液不透過性シールを貼付した面を上にして、 中心が電極連通孔の中心に合うように積層した。 さらに、 HRPO標識 CRP— THEPD凍結乾燥ガラス繊維ろ紙 (1 lmm0) を、 NaN3 凍結乾燥ガラス 繊維ろ紙の上に中心を一致させて積層した。 図 2に示す上部カバーで高さ : 0. 5 mmの凸部を有するもの (表 1中の番号 1) 、 図 2に示す上部カバーで高 さ 1. 0 mmの凸部を有するもの (表 1中の番号 2 ) 、 図 4に示す上部カバーで 高さ 0. 5 mmの凸部を有するもの (表 1中の番号 3) 、 および図 5に示す上部 カバ一で高さ 0. 5の凸部を有するもの (表 1中の番号 4) をそれぞれかぶせ、 さらに、 四隅をネジ止めして、 上部カバーと NaN3 凍結乾燥ガラス繊維ろ紙と の間に形成された間隙によって構成された流路確保部を有する、 4種の分析装置 を作製した。 <電流測定 >
前記に作製された 4種の分析装置のそれぞれの試料導入口に、 新鮮全血に各濃 度の CRPを添加した試料 2 0 0 n 1を注入して電流測定を行った。 作用極 には、 試料液添加直前から、 対極に対して一 1 5 O mVの電圧を印加した。 電流 測定は電流計測回路 (持田製薬社製) を用いて行い、 1秒間隔の電流値として測 定した。 試料液添加時から 3 6 0〜4 2 0秒の電流値の平均値を、 作用極の電流 値とした。
4種の分析装置は、 表 1および図 1 9に示すとおり、 いずれも良好な全血球検 体性能を示した。 また、 各上部カバ一を比較すると、 高さ 0. 5 mmの円柱状凸 部を有する図 4に示す形態の上部カバ一を用いた場合に最も電流値の CV%が小 さかった。
表 1
Figure imgf000045_0001
(実施例 5 )
<ゥサギポリクローナル抗 CRP抗体不溶化メンブレンの作製〉
P B Sを用いて、 4. 0 mg/m 1のゥサギポリクロ一ナル抗 C R P抗体 RC 3 (持田製薬社製) 溶液を調製した。 1 Omm0の混合セルロース多孔質メ ンブレン (M i 1 1 i p 0 r e社製) を、 抗体溶液に一晚浸漬浸透して、 抗体を 不溶化した。 洗浄後、 1 %カゼイン (和光純薬社製) /PB S溶液に浸漬し、 ブ ロッキングを行った。 次いで、 洗浄し、 減圧乾燥して、 抗体不溶化メンブレンを 得た。
実施例 4と同様に、 図 1に示す構成の分析装置を作製した。 すなわち、 ァクリ ル樹脂製の下部基板に、 過酸化水素凍結乾燥ガラス繊維ろ紙 GB 1 0 0 R (1 00 mm0) を固定した。 8mm0の円板状の透析膜 (1 8/32、 三光純 薬社製) を、 過酸化水素ガラス繊維ろ紙の中央部に貼り付けた。 さらに、 中心を 一致させて、 抗 CRP抗体不溶化メンブレン (1 Omm0) を過酸化水素凍結乾 燥ガラス繊維ろ紙 (1 Omm0) に重積した。 次いで、 連通孔の中心と抗 CRP 抗体不溶化メンブレン (1 Omm0) の中心が一致するように、 電極基板を下部 基板に固定した。
電極の諸元
カーボン作用極: 4一 6 mm øリング状電極
銀対極: 9— 1 0 mm0リング状電極
連通孔の孔径: 4 mm0
7 mm øの円板状の液不透過性シールを中心部に貼り付けた N aN3 凍結乾燥 ガラス繊維ろ紙 (1 lmm0) を、 液不透過性シールを貼付した面を上にして、 中心が電極連通孔の中心に合うように積層した。 さらに、 HRPO標識 CRP— THE PD凍結乾燥ガラス繊維ろ紙 (1 lmm0) を、 NaN3 凍結乾燥ガラス 繊維ろ紙の上に中心を一致させて積層した。 次に、 図 4に示す上部カバ一で高さ 0. 5 mmの凸部を有するもの (表 2中の番号 1) 、 図 6に示す上部カバーで高 さ 0. 7 mmの凸部を有するもの (表 2中の番号 3および 4) 、 図 6に示す上部 カバーで高さ 0. 5 mmの凸部を有するもの (表 2中の番号 2) 、 および図 6に 示す上部カバ一で高さ 1. O mmの凸部を有するもの (表 2中の番号 5、 6およ び 7) をそれぞれかぶせ、 さらに、 四隅をネジ止めして、 上部カバ一と NaN3 凍結乾燥ガラス繊維ろ紙との間に形成された間隙によって構成された流路確保部 を有する、 4種の分析装置を作製した。
く電流測定〉
新鮮全血 1 m 1に各濃度の C R Pを添加した試料 2 0 0〃 1または 1 8 0〃 1 を、 前記に作製された 4種の分析装置のそれぞれの試料導入口に注入して電流測 定を行った。 作用極には、 試料液添加直前から、 対極に対して一 1 5 O mVの電 圧を印加した。 電流測定は電流計測回路 (持田製薬社製) を用いて行い、 1秒間 隔の電流値として測定した。 試料液添加時から 3 6 0〜4 2 0秒の電流値の平均 値を、 作用極の電流値とした。
4種の分析装置は、 図 2 0に示すとおり、 いずれも良好な全血球検体性能を示 した。 また、 各上部カバ一を比較すると、 高さ 1. 0 mmの円柱状凸部を有する 図 6に示す形態の上部カバーを用い、 液量を 1 8 0 /z lに設定した場合 (表 2中 の番号 7) に最も電流値の CV気が小さかった。
表 2 上部カバ一凸部高さ 作用極
番"^ (mm)
添加液量 ( / 1 )
CRP添加濃度 平均 0. 1 mg/d 1 SD 電流値 ( /A) CV (%)
0. 5 - 1 1. 8 5 - 1 0. 4 6
1 一 9. 8 0 0. 9 4 9 9
2 0 0 一 9. 9 0 9. 1
- 1 0. 3 0
0. 5 一 8. 8 0 一 9. 1 0
2 一 9. 5 0 0. 7 9 0 6
2 0 0 一 8. 1 5 8. 7 一 9. 9 5
0. 7 一 9. 9 0 一 9. 6 0
3 一 9. 5 0 0. 2 5 8 2
2 0 0 一 9. 7 0 2. 7 一 9. 3 0
0. 7 一 9. 1 5 一 9. 5 1
4 一 9. 5 0 0. 5 9 0 7
1 8 0 一 9. 0 5 6. 2
- 1 0. 3 5
1. 0 一 9. 2 0 - 8. 8 6
5 - 8. 9 5 0. 2 6 8 9
2 0 0 一 8. 6 0 3. 0
- 8. 7 0
1. 0 - 1 0. 6 0 - 1 0. 2 1
6 - 1 0. 6 5 0. 4 9 2 2
1 6 0 一 9. 6 5 4. 8 一 9. 6 5
1. 0 一 9. 7 0 - 9. 8 4
7 - 1 0. 0 0 0. 1 8 8 7
1 8 0 - 1 0. 0 0 1. 9 一 9. 6 5 (実施例 6 )
ぐ薄層流路を有する分析装置の作製 >
実施例 4と同様にして、 図 1に示す構成の分析装置を作製した。 すなわち、 過 酸化水素ガラス繊維ろ紙 (1 Omm0) を、 アクリル樹脂製の下部基板上に固定 し、 そのろ紙の表面中央に、 8 mm øの透析膜 (1 8Z32、 三光純薬社製) を 貼り付けた。 次に、 抗 CRP抗体不溶化メンブレン (1 Omm0) を透析膜の上 に中心を合わせて積層した。 電極を連通孔の中心と抗 CRP抗体不溶化メンブレ ン (1 Omm ø) の中心が一致するように下部基板に固定した。
電極の諸元
カーボン作用極: 4一 6mm0リング状電極
銀対極: 9 _ 1 0 mm0リング状電極
連通孔の孔径: 4 mm0
7 mm øの円板状の液不透過性シールを表面中央部に貼り付けた N aN3 ガラ ス繊維ろ紙 (1 lmm0) を、 液不透過性シールを貼付した面を上にして、 中心 を電極基板の連通孔の中心に合うように積層した。 さらに、 111¾?0標識じ1 ? — THEPDガラス繊維ろ紙 (1 lmm0) を、 NaN3 ガラス繊維ろ紙の上に 積層した。 次に、 さらに、 HRPO標識 CRP— THEPD凍結乾燥ガラス繊維 ろ紙 (1 lmm0) を、 NaN3 凍結乾燥ガラス繊維ろ紙の上に中心を一致させ て積層した。 次に、 図 6に示す上部カバーで高さ 1. 0 mmの凸部を有するもの をそれぞれかぶせ、 さらに、 四隅をネジ止めして、 上部カバーと NaN3 凍結乾 燥ガラス繊維ろ紙との間に形成された間隙によって構成された流路確保部を有す る、 分析装置を作製した。 ぐ電流測定〉
新鮮全血に各濃度の C R Pを添加した試料 1 8 0 1を、 前記に作製された分 析装置の試料導入口に注入して電流測定を行った。 作用極には、 試料液添加直前 から、 対極に対して一 1 5 O m Vの電圧を印加した。 電流測定は電流計測回 路 (持田製薬社製) を用いて行い、 1秒間隔の電流値として測定した。 試料液添 加時から 4 2 0〜4 8 0秒の電流値の平均値を、 作用極の電流値とした。
へマトクリツ ト値 4 0 %および 4 9 %の全血検体を用いて分析したが、 この分 析装置は、 図 2 1に示すとおり、 へマトクリット値の影響は認められなかった。 また、 電流値の精度に関しても、 この分析装置では、 へマトクリッ 卜値の異なる 異なる両検体で差は認められなかった。
(実施例 7 )
上部カバーとして、 図 7に示すとおり、 複数の円柱状の凸部 1 4 a, 1 4 b , 1 4 c……が円周状の枠 7 2によって囲まれている形態のものを使用した以 外は、 実施例 4と同様にして、 へマトクリッ ト値 4 3 %および 4 6 %の全血検体 を用いて分析した。 その結果、 この分析装置は、 図 2 2に示すとおり、 へマトク リツ ト値の影響は認められなかった。 また、 電流値の精度に関しても、 この分析 装置では、 へマトクリッ ト値の異なる両検体で差は認められなかった。
(実施例 8 )
上部カバーとして、 図 9に示すとおり、 複数の円柱状の凸部 1 4 a, 1 4 b, 1 4 c……が円周状の枠 7 2によって囲まれている形態のものを使用したこと、 及び N a N 3 凍結乾燥ガラス繊維ろ紙と H R P O標識 C R P— T H E P D凍結乾 燥ガラス繊維ろ紙の積層順序が逆であること以外は、 実施例 4と同様にして、 各 種へマトクリッ ト値の全血検体を用いて分析した。 その結果、 この分析装置も、 図 2 3に示すとおり、 良好な電流応答を示し、 へマトクリ ツ 卜の影響も受け なかった。 産業上の利用可能性
本発明の液性試料分析装置は、 固形成分を含有する可能性のある液性試料中の 液性成分の分析に際して、 該固形成分を予め捕捉するために設けられるフィ ルター部において、 液性試料中の液性成分のフィルター部の透過が捕捉された固 形成分によって妨害されず、 フィルター部下流の分析部における液性成分中の分 析対象物の分析精度を向上させることができるとともに、 フィルタ一部における 固形成分の捕捉が効率よく行われ、 迅速な分析を行うことができ、 フィルタ一部 を含めた装置全体を小型化することができる液性試料分析装置を提供することに ある。
また、 本発明の特異結合分析方法は、 前記分析装置を用いて、 液性試料中の分 析対象物を、 その特異結合反応によって、 正確かつ効率的に測定することができ 。
さらに、 本発明の特異結合分析装置は、 前記特異結合分析方法によって、 液性 試料中の分析対象物を、 その特異結合反応によって正確かつ効率的に分析 ·測定 できるものである。

Claims

請求の範囲
1 . 液性試料導入部と、 該液性試料導入部から導入された液性試料中の固形成 分を捕捉するフィルター部と、 該フィルター部を透過した液性試料中の分析対象 物を分析する分析部とを有する液性試料分析装置であって、 フィルター部の上方 に配置される部材とフィルタ一部との間に、 フィルタ一部に捕捉 ·集積された固 形成分によって液性試料中の液性成分の透過が阻害されないように構成された間 隙を有する流路確保部を配設したことを特徴とする液性試料分析装置。
2 . 前記流路確保部が、 装置本体に形設されたフィルター部の上方に配置され る部材の下面に形成された凹部と、 フィルター部の上面との間に形成された間隙 によって構成されたことを特徴とする請求項 1に記載の液性試料分析装置。
3 . 前記流路確保部が、 フィルタ一部の上方に配置される部材と、 フィルタ一 部との間に挿入される、 液流路を有する揷入部材によつて構成されることを特徴 する請求項 1に記載の液性試料分析装置
4 . 前記流路確保部とフィルタ一部の間に、 少なくとも 1つ以上の液流通孔が 穿設された液不透過性部材を配置したことを特徴とする請求項 1〜 3のいずれか に記載の液性試料分析装置。
5 . 酵素阻害剤、 血液凝固阻害剤または血球凝集促進剤からなる試薬成分が、 液性試料導入部、 流路確保部およびフィルター部の少なくとも 1つに配置される 請求項 1 ~ 4のいずれかに記載の液性試料分析装置。
6 . 液性試料中に含まれる固形成分が血球成分である請求項 1〜 5のいずれか に記載の液性試料分析装置。
7 . 請求項 1〜 4のいずれかに記載の液性試料分析装置を用 、て、 液性試料中 の分析対象物を、 その特異結合反応によって測定する特異結合分析方法で あって、 特異結合反応に関与しかつ信号物質を発する信号物質発生体および前記 液性試料を、 所定の流路において所定方向に流動させると共に、 前記分析対象物 の特異結合反応を発生させ、 この特異結合反応を利用して、 前記流路中に液性試 料中の分析対象物濃度に応じた信号物質発生体の分布を形成し、 流路内に分布す る信号物質発生体によって信号物質を発生させ、 発生した信号物質を検出手段に よって検出することを特徴とする特異結合分析方法。
8 . 請求項 7に記載の特異結合分析方法に用いられる分析装置であって、 液性 試料導入部と、 流路確保部と、 フィルタ一部と、 分析部とを有し、 該分析部が、 前記フィルタ一部に連結して配置される液性試料の流路と、 液性試料中の分析対 象物と、 該分析対象物に特異的に結合する特異結合物質との特異結合反応に より、 前記流路内に形成された液性試料中の分析対象物量に応じた信号物質発生 体の分布を、 前記信号物質発生体から発生される信号物質の拡散による物質移動 に応じた信号強度として検出するための検出部とを有することを特徴とする特異 結合分析装置。
9 . 前記検出部が、 電気化学的信号の検出を行なう電極である請求項 8に記載 の特異結合分析装置。
1 0 . 酵素阻害剤、 血液凝固阻害剤または血球凝集促進剤からなる試薬成分が、 液性試料導入部、 流路確保部およびフィルター部の少なくとも 1つに配置される 請求項 8または 9に記載の特異結合分析装置。
1 1 . 液性試料中に含まれる固形成分が血球成分である請求項 8〜 1 0のいずれ かに記載の液性試料分析装置。
PCT/JP1998/005946 1997-12-25 1998-12-25 Analyseur pour echantillons liquides WO1999034213A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002316193A CA2316193A1 (en) 1997-12-25 1998-12-25 Analyzer for liquid samples
EP98961590A EP1043588A4 (en) 1997-12-25 1998-12-25 LIQUID SAMPLE ANALYZER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/358629 1997-12-25
JP35862997 1997-12-25

Publications (1)

Publication Number Publication Date
WO1999034213A1 true WO1999034213A1 (fr) 1999-07-08

Family

ID=18460309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005946 WO1999034213A1 (fr) 1997-12-25 1998-12-25 Analyseur pour echantillons liquides

Country Status (3)

Country Link
EP (1) EP1043588A4 (ja)
CA (1) CA2316193A1 (ja)
WO (1) WO1999034213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283380A (ja) * 2004-03-30 2005-10-13 Teikoku Hormone Mfg Co Ltd バイオアベイラブルステロイドホルモンの測定方法
JP2007187677A (ja) * 2000-01-11 2007-07-26 Clinical Micro Sensors Inc バイオチップ多重化デバイスおよび方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427271A (en) 2005-06-16 2006-12-20 Porvair Filtration Group Ltd Diagnostic device
CN101393158B (zh) * 2008-10-23 2012-01-04 上海交通大学 过氧化氢的生物传感酶检测电极及其的检测方法
WO2012081940A2 (ko) * 2010-12-16 2012-06-21 한국생명공학연구원 프린팅을 이용한 멤브레인 상 전극 및 이를 활용한 생체물질 검출
KR101335246B1 (ko) 2010-12-16 2013-11-29 한국생명공학연구원 프린팅을 이용한 멤브레인 상 전극 및 이를 활용한 생체물질 검출
US9399986B2 (en) 2012-07-31 2016-07-26 General Electric Company Devices and systems for isolating biomolecules and associated methods thereof
CN103267839B (zh) * 2013-04-28 2015-09-23 上海快灵生物科技有限公司 封闭式的层析试纸塑料卡盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179461A (ja) * 1988-12-30 1990-07-12 Chemo Sero Therapeut Res Inst 酵素免疫センサ用膜
JPH0341359A (ja) * 1989-07-10 1991-02-21 Terumo Corp 試験具
JPH04118554A (ja) * 1989-12-28 1992-04-20 Tosoh Corp 電気化学的酵素測定方法およびバイオセンサ
JPH05273207A (ja) * 1992-03-25 1993-10-22 Fuji Photo Film Co Ltd 全血分析要素及びそれを用いた測定方法
JPH06504621A (ja) * 1991-01-06 1994-05-26 オルジェニクス リミテッド 流体の乾式化学分析用装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179461A (ja) * 1988-12-30 1990-07-12 Chemo Sero Therapeut Res Inst 酵素免疫センサ用膜
JPH0341359A (ja) * 1989-07-10 1991-02-21 Terumo Corp 試験具
JPH04118554A (ja) * 1989-12-28 1992-04-20 Tosoh Corp 電気化学的酵素測定方法およびバイオセンサ
JPH06504621A (ja) * 1991-01-06 1994-05-26 オルジェニクス リミテッド 流体の乾式化学分析用装置
JPH05273207A (ja) * 1992-03-25 1993-10-22 Fuji Photo Film Co Ltd 全血分析要素及びそれを用いた測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1043588A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187677A (ja) * 2000-01-11 2007-07-26 Clinical Micro Sensors Inc バイオチップ多重化デバイスおよび方法
JP2005283380A (ja) * 2004-03-30 2005-10-13 Teikoku Hormone Mfg Co Ltd バイオアベイラブルステロイドホルモンの測定方法

Also Published As

Publication number Publication date
CA2316193A1 (en) 1999-07-08
EP1043588A1 (en) 2000-10-11
EP1043588A4 (en) 2001-08-22

Similar Documents

Publication Publication Date Title
KR101481189B1 (ko) 분석 장치에의 지시약 고정
US9671398B2 (en) Apparatus and method for identifying a hook effect and expanding the dynamic range in point of care immunoassays
US11391747B2 (en) Cartridge device with fluidic junctions for coagulation assays in fluid samples
US5478751A (en) Self-venting immunodiagnositic devices and methods of performing assays
EP3198280B1 (en) Sensors for assaying coagulation in fluid samples
KR100305306B1 (ko) 건식화학캐스케이드면역분석법및친화도분석법
CA2457930C (en) Diagnostic testing process and apparatus
US20180361385A1 (en) Sample Metering Device and Assay Device with Integrated Sample Dilution
JP5769620B2 (ja) 改良型免疫測定センサ
US20150247840A1 (en) Sample Metering Device and Assay Device with Integrated Sample Dilution
US10048281B2 (en) Cartridge device with segmented fluidics for assaying coagulation in fluid samples
US20150233909A1 (en) Assay Devices with Integrated Sample Dilution and Dilution Verification and Methods of Using Same
EP2284538B1 (en) Biosensor
US20110008776A1 (en) Integrated separation and detection cartridge using magnetic particles with bimodal size distribution
US20100081216A1 (en) Method and device for rapid parallel microfluidic molecular affinity assays
WO2014051033A1 (ja) 多孔質媒体を利用したアッセイ装置
JP2012083356A (ja) アッセイ装置及び方法
KR20080003941A (ko) 면역센서
US20210378567A1 (en) Biological fluid separation device
US20150247842A1 (en) Ratiometric Immunoassay Method and Blood Testing Device
CN105241870A (zh) 检测全血中氮末端脑钠肽的磁微粒化学发光微流控芯片
WO1999034213A1 (fr) Analyseur pour echantillons liquides
CN102472751B (zh) 带有改良流体结构的自动化免疫横向流动测试盒
JP2001091512A (ja) 血液成分分析装置
EP0283613A2 (en) Dry test strip suitable for oxygen demanding detection system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2316193

Country of ref document: CA

Ref country code: CA

Ref document number: 2316193

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09582330

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998961590

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998961590

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998961590

Country of ref document: EP