WO1999034010A1 - Procede pour produire des alcools optiquement actifs - Google Patents

Procede pour produire des alcools optiquement actifs Download PDF

Info

Publication number
WO1999034010A1
WO1999034010A1 PCT/JP1998/006005 JP9806005W WO9934010A1 WO 1999034010 A1 WO1999034010 A1 WO 1999034010A1 JP 9806005 W JP9806005 W JP 9806005W WO 9934010 A1 WO9934010 A1 WO 9934010A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
ethanol
reaction
substrate
protein
Prior art date
Application number
PCT/JP1998/006005
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagaoka
Original Assignee
Sanyo Shokuhin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Shokuhin Co., Ltd. filed Critical Sanyo Shokuhin Co., Ltd.
Priority to JP53483799A priority Critical patent/JP3294860B2/ja
Priority to EP98961644A priority patent/EP0978567B1/en
Priority to DE69829282T priority patent/DE69829282T2/de
Priority to US09/367,137 priority patent/US6218581B1/en
Publication of WO1999034010A1 publication Critical patent/WO1999034010A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/004Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group

Definitions

  • the present invention relates to a method for producing an optically active alcohol from a substrate using a catalyst in which a water-soluble protein component extracted from plant resources such as cereals and beans is immobilized as a catalyst.
  • Optically active alcohols are extremely important substances as raw materials or intermediate raw materials for pharmaceuticals and agricultural chemicals, and synthetic intermediates in the field of fine chemicals such as strongly dielectric liquid crystals.
  • optically active substances as optically active alcohols.
  • Methods for producing optically active alcohols are known.
  • the method of 1) above using microbial cells is a method of reacting the cultured cells with a substrate to obtain an optically active alcohol.
  • Japanese Patent No. 27484578 discloses an optically active 1,2-diol. Is known.
  • the method of 2) using an enzyme derived from a microbial cell is a method of obtaining an optically active alcohol by reacting a pulverized liquid of a cell obtained by introducing a gene and culturing the cell with a substrate.
  • No. 981 (a novel protein that catalyzes the conversion of Haguchi hydrin into an optically active diol) is known.
  • the method using enzyme derived from animal tissue in 3) is separated from animal tissue. This is a technique for reacting the protein with a substrate to obtain an optically active alcohol.
  • Japanese Patent No. 2756970 is known.
  • the reaction 4) using cultured plant cells is a method of reacting plant cells with a substrate to obtain an optically active alcohol.
  • the literature Chem. Ph.rm.Bull., 43, pp. 1458-1461 Has been reported to.
  • this method is to produce optically active epipihhydrin hydrin and optically active diol using a transformed microorganism in which a large number of genes cloned by the gene recombination method are present in the cells.
  • microbial cells a transformed microorganism in which a large number of genes cloned by the gene recombination method are present in the cells.
  • transgenic strains are different varieties in nature and have the risk of adversely affecting human and other ecosystems. It is necessary to bear the cost of facilities to insulate them from incineration and incineration of reaction residue.
  • “Animal tissue-derived enzyme” is asymmetric hydrolysis of porcine knee lipase, as known in Japanese Patent No. 2756970 (a method for producing an optically active cyclopentenol derivative). There is a method for producing optically active cyclopentenol derivatives using a reaction, which is described in Kazuto Satake, “Organic Chemistry for Biology, 3 Proteins”, pages 114-172 (published by Asakura Shoten). As described above, since the enzyme derived from animal tissue is a crude enzyme, it cannot be denied that a side reaction occurs and the yield decreases as in 1) and 2) above.
  • An object of the present invention is to apply a water-soluble protein extracted from inexpensive cereals or pulses produced in countries around the world to solve the above-mentioned problems to organic synthetic chemistry as an optical resolution catalyst.
  • Another object of the present invention is to provide a method for producing an optically active alcohol having high optical purity, which is eco-friendly and enables a drastic reduction in reaction cost.
  • a method for producing an optically active alcohol having a high optical purity using the above-mentioned optical resolution catalyst generally includes the following method.
  • the present inventors have conducted intensive studies on a method for solving the above problems and obtaining a highly pure optically active alcohol by a safe and simple method, and as a result, a first step of extracting a water-soluble protein from cereals or beans, A second step of immobilizing the protein, a third step of performing a substrate enzymatic conversion reaction using the immobilized protein as a catalyst, and the reaction substrate converted in the third step; A fourth step of extracting the reaction product mixture with an organic solvent, and a fifth step of isolating and purifying the optically active alcohol or an acylated form of the optically active alcohol from the extract of the fourth step.
  • grains or beans examples include grains such as barley, amaranthus, rice, wheat, barley, corn, embak, rye, millet, hee, millet, oats, sorghum, and the like. Or beans such as red beans, kidney beans, peas, liquorice, soybeans, etc., but are not limited thereto.
  • the cereal or beans are crushed to remove large portions and shells of the grains, and the thus obtained crushed cereal and beans are added to about 20 to 6 parts. At 0 ° C, preferably at about 40 ° C, at a pH of about 6-8, preferably at pH 7.0, about the amount of ground cereal or legume powder?
  • Extract with water at 15 times the weight for 30 minutes or more Extracting in about 45 minutes is the most efficient, and longer extractions do not change the amount of extract.
  • food grade acids such as H 2 SO 4, HC 1, and H 3 PO 4 or food grade alcohol such as Na0H to adjust the pH.
  • the powder may be dried, vacuum dried, etc., and then redissolved and transferred to the second step.
  • the purpose of selection of the pH for isoelectric precipitation is to select a fraction with a large amount of sedimentation, which is around pH 4.5 for soybean and pea protein and about pH 9 for oats. It is around 5. Add 5 to 10 times by weight of water to this card, crush it with a mixer, stirrer, etc. to prepare a protein slurry, neutralize it (pH 6-8), and neutralize the slurry. And This slurry is made into a powder by spray drying, freeze drying, vacuum drying or the like in the same manner as described above, and then redissolved and transferred to the second step.
  • the heating conditions during spray drying must be set at a temperature that does not exceed 80 ° C for the extracted protein itself in order to prevent inactivation of the protein, that is, the enzyme involved in the conversion reaction due to thermal denaturation. No.
  • the method for immobilizing the extracted protein is as follows: 1) The extracted protein is immobilized on a water-insoluble carrier, for example, a derivative of a polysaccharide such as cellulose, dextran, or agarose; and a polyacrylamide. A carrier binding method for binding to a gel or the like; 2) a cross-linking method in which a cross-link is formed between the extracted proteins by using a reagent having two or more functional groups to fix the extracted proteins; 3) The extracted protein is incorporated into a fine grid of gels, such as alginate, starch, konjac, polyacrylamide gels and polyvinyl alcohol gels (lattice type).
  • an enzymatic conversion method for obtaining an optically active alcohol or an acylated form of an optically active alcohol from a substrate as a raw material includes:
  • the asymmetric reduction reaction of the enzymatic conversion does not reach 100% and stops on the way. If the reaction solution is not extracted, the optical purity will decrease over time.Therefore, it is necessary to determine the reaction stop time according to the type of cereals and beans, but if the reaction is terminated at a conversion rate of about 20%
  • the configuration and optical purity of the resulting optically active alcohol are the same as those when racemic alcohol is used as the substrate in (1).
  • the asymmetric hydrolysis reaction decreases the optical purity when the conversion exceeds about 20%. It is necessary to determine the reaction stop time depending on the type of beans, and the yield is low, but when the reaction is completed at a conversion of about 20%, the configuration and optical purity of the optically active alcohol produced are as follows:
  • an optically active alcohol is obtained by further hydrolyzing the acylated product obtained by the asymmetric acylation reaction.
  • the optical purity of the asymmetric acylation reaction decreases when the conversion exceeds about 20%, it is necessary to determine the reaction stop time according to the type of grains and beans, and the conversion is 20%.
  • the configuration and optical purity of the resulting optically active alcohol obtained by the subsequent hydrolysis are the same as those in the case where racemic alcohol is used as the substrate of (1).
  • the method of (1) using a racemic alcohol as a substrate and selectively oxidizing one of the enantiomers to obtain an optically active alcohol is most preferred from the viewpoint of yield and the like.
  • the reaction temperature of the above (1) to (4) is A temperature of about 25 to 45 ° C, preferably 30 to 40 ° C, is suitable, and a temperature of about 35 ° C is most preferable.
  • water is used as the polar solvent, and water, which is a polar solvent capable of using acetonitrile, methanol, ethanol, or the like, as the nonpolar solvent. Is also preferred.
  • benzene which has the ability to use an organic solvent such as benzene, toluene, heptane, or isopropyl alcohol (dry).
  • the reaction time varies depending on the substrate, the origin of the water-soluble protein, and the type of reaction, but is about 2 to 15 days.
  • the conversion rate is 20%.
  • the reaction is terminated.
  • optically active alcohol obtained by the reaction becomes S-form or R-form under the influence of the substituent of the substrate.
  • the extraction organic solvent may be a non-reactive solvent such as ethyl acetate, getyl ether, dichloromethane and the like.
  • FIG. 1 shows the 2-acetone naphthol accompanying the stereoselective oxidation of the substrate racemic form 1- (2-naphthyl) ethanol to the (R) -triol (2-naphthyl) ethanol.
  • FIG. 3 is a graph showing the relationship between the reaction time of (S) -1_ (2-naphthyl) ethanol via the bioconversion to thiophene and the production conversion rate.
  • FIG. 2 shows the effectiveness of the immobilized water-soluble protein of the present invention when continuously used.
  • the reaction time and the production time of the first to third times when the reaction shown in FIG. 1 was performed. It is a graph which shows the relationship of a conversion rate.
  • Example 1 pea aqueous protein
  • peas are pulverized to remove their shells, and the peas protein components dissolved in distilled water (about 40 ° C) near PH 7.0 by 9 times by weight for about 45 minutes are removed.
  • the pH is adjusted to 7.0 using an aqueous NaOH solution to remove dietary fiber as a precipitated component, the protein is subjected to isoelectric focusing under acidic conditions (around pH 4.5), and the protein precipitated portion is adjusted to pH 7.0.
  • the pea protein aqueous solution (sample concentration 5.0%) obtained by re-dissolving in distilled water is spray-dried to prepare powdered pea protein.
  • the sodium alginate aqueous solution was in autoclave conditions and at a temperature of 121. C. In 20 minutes, dissolve sodium alginate in aqueous solution.
  • 200 ml of 10 times equivalent volume of distilled water was added to 20 g of peas protein powder, and 1.5 times equivalent of 250 ml of 5% sodium alginate aqueous solution was added. Stir until uniform, and add the obtained mixed solution of peas and sodium alginate to a 0.6% calcium chloride aqueous solution using a syringe or the like. To form immobilized pea protein-containing calcium alginate gel beads.
  • the beads are left to stand in a 0.6% calcium chloride aqueous solution for 5 hours or more to strengthen the bead membrane.
  • the pea's calcium alginate gel beads were sufficiently washed with distilled water to remove the aqueous calcium chloride solution, and the distilled water (400 ml) was used 20 times equivalent to the pea protein powder used.
  • the temperature of the distilled water was brought to 35 ° C using a constant temperature shaking incubator.
  • 1.1 (2-promophenyl) ethanol was added as the substrate racemic alcohol.
  • the getyl ether layer was washed with a saturated saline solution, dehydrated and dried with sodium sulfate, and allowed to stand.
  • the getyl ether layer is removed using an evaporator, and the reaction substrate and the reaction product are separated using a 70-230 mesh silica gel chromatograph, and hexane to ethyl acetate 9: 1 is used. Isolate and purify the desired optically active alcohol with the developing solvent.
  • the isolated optically active alcohol has a literature value of J. CHEM. SOC. P (+ Or 1) value obtained by referring to ERKIN TRANS 1 1995 pp. 1295-1298 and Phytochemistry, Vol. 30, No. 11, pp.
  • the biochemical conversion reaction of immobilized pea protein on the substrate ( ⁇ ) -1- (4-bromophenyl) ethanol is as follows: Stereoselective reaction of (R) -l- (4-promophenyl) ethanol It takes 8 days via biotransformation to 4-promosetophonone following a severe oxidation, yielding 114 mg and 57% yield of (S) -1- (4-promophenyl). ) Ethanol was obtained. Optical purity was obtained at 8 Me. E. GC conditions were HITACHI G-3500 gas chromatograph, carrier gas, He 0.48 ml / min; spirit ratio: 1/55, oven temperature; 150 ° C, inlet temperature; 250 ° C, outlet temperature.
  • the biochemical conversion reaction of the immobilized pea protein to the substrate ( ⁇ ) _1- (4-chlorophenyl) ethanol (200 mg) is as follows: (R) -1- (4-chlorophenyl) ethanol It takes 8 days via biotransformation to 4-cloacetophenonone following the stereoselective oxidation of, with a yield of 84 mg and a 42% yield of (S) _l- (4-Chlorophenyl) ethanol was obtained. Optical purity was obtained at 873 ⁇ 4! E.e.
  • the biochemical conversion reaction of immobilized pea protein on the substrate (P)-(4-methoxyphenyl) ethanol is as follows: (R) -1- (4-Methoxyphenyl) ethanol 4-met with the stereoselective oxidation of It takes 7 days via biotransformation to xyacetophenone, yielding 96 mg in 48% yield of (S) -1-(4-methoxyphenyl) ethanol. Obtained. Optical purity was obtained at 95% ee.
  • the HPLC conditions were set at a flow rate of 1.0 ml / min, and the GC conditions were set at an oven temperature of 190 ° C.
  • the biochemical conversion reaction of the immobilized pea protein on the substrate ( ⁇ ) -1_ (4-nitrophenyl) ethanol (200 mg) is as follows: (S) -1- (4-nitrophenyl) ethanol Via the biotransformation to 4-nitroacetophenone following the stereoselective oxidation of toluene, takes 4 days, yields 76 mg, 38% yield of (R) -1- (4-Nitrophenyl) ethanol was obtained. Optical purity was obtained at 54% e.e.
  • the HPLC conditions were set at a flow rate of 0.5 ml / min, and the GC conditions were set at an oven temperature of 190 ° C.
  • the biochemical conversion reaction of the immobilized pea protein on the substrate ( ⁇ ) -1 -phenylethanol (201 mg) is as follows, to the acetate phenone accompanying the stereoselective oxidation of (R) -1 -phenylethanol. It took 6 days via the biotransformation of (S) -1 -phenylenylethanol in a yield of 61% (122 mg) with an optical purity of 9 Me. E.
  • the biochemical conversion reaction of the immobilized pea protein on the substrate 1- (2-naphthyl) ethanol is as follows, with the stereoselective oxidation of (R) -1- (2-naphthyl) ethanol as follows: It takes 4 days via biotransformation to setnaphthone, and (S) -1- (2-naphthyl) ethanol has an optical yield of 99% ee or more with a yield of 50% (100 mg). Obtained in purity.
  • Figure Next, the following table shows the synthesis results of the above-mentioned optically active alcohols using the immobilized pea protein as an optical resolution catalyst.
  • the water-soluble protein of peas is effective as an optical resolution catalyst for synthesizing synthetic intermediates in the field of fine chemicals, and high-purity R- or S-form optically active alcohols can be obtained safely and easily. I found something.
  • Example 2 Soy protein
  • the water-soluble extraction of soybean protein in the first step and the immobilization in the second step are the same as the conditions in Example 1, and in the third step, the soybean / calcium alginate gel beads were heated to a distilled water temperature of 3%.
  • the substrate racemic alcohols were 1- (2-bromophenyl) ethanol, 1- (2-cyclophenyl) ethanol, and 1- (2-methyl alcohol).
  • H 1- (2-Methoxyphenyl) ethanol, 1- (2-nitrophenyl) ethanol, and 1- (2-naphthinole) ethanol are added.
  • the substrate was converted by setting the shaking incubator to 55 rpm, and the optically active alcohol obtained through the fourth and fifth steps was evaluated in the same manner as the conditions used for the pea protein. Was carried out in the same manner as in the case of the pea protein.
  • the biochemical conversion reaction of immobilized soybean protein on the substrate ( ⁇ ) -1- (4-bromophenyl) ethanol is as follows: Stereoselective conversion of (S) -toluene (4-butamorphinyl) ethanol It takes 2 days via biotransformation to 4-bromoacetophenone due to strong oxidation, yielding 108 mg in 54 mg yield of (R) -1_ (4_promophenyl) ethanol in 108 mg. Was done. Optical purity was obtained at 883 ⁇ 4! E.e. The equipment conditions are the same as for the immobilized pea protein.
  • Immobilized soybean protein substrate ( ⁇ ) -1- (4-chlorophenyl) ethanol The biochemical conversion reaction for 200 mg is as follows: (S) -l- (4-chlorophenyl) ethanol It takes 3 days via biotransformation to 4-chloroacetophenone following the stereoselective oxidation of phenol, yielding 102 mg in 51% yield of (R) -1- ( 4-Chlorophenyl) ethanol was obtained. Optical purity was obtained at 963 ⁇ 4! E.e.
  • the biochemical conversion reaction for immobilized soybean protein substrate ( ⁇ ) -1- (4-methoxyphenyl) ethanol; 200 mg is as follows (S) -1- (4-methyl It takes 5 days through the bioconversion of ethanol to 4-methoxyacetophenone following the stereoselective oxidation of ethanol. It takes 5 days, yields 96 mg, and yields of 48 mg (R )-(4-Methoxyphenyl) ethanol was obtained. Optical purity was obtained with 97% ee.
  • the substrate for immobilized soybean protein ( ⁇ ) -1- (4-nitrophenyl) ethanol The biochemical conversion reaction for 200 mg is as follows: (R) -l- (4-nitrophenyl) ethanol It takes 4 days via biotransformation to 4-nitroacetophenonone with selective oxidation, yielding 90 mg in 45% yield of (S) -toluene (4-ni). (Trofanil) ethanol was obtained. Optical purity was obtained at 993 ⁇ 4e.e. Next, the results of the synthesis of the above-mentioned optically active alcohol using immobilized soybean protein as an optical resolution catalyst are shown below.
  • soybean water-soluble protein is effective as an optical resolution catalyst for synthesizing synthetic intermediates in the field of fine chemicals, and high-purity R-form Or, it has been found that S-form optically active alcohol can be obtained safely and easily.
  • Example 3 (wheat protein)
  • the same treatment as in the pea protein of Example 1 was carried out to remove dietary fiber, and then set to alkaline conditions (around PH9.5) and subjected to isoelectric precipitation. Then, the barley water-soluble protein was obtained by the same operation as the pea protein, the operation of Example 1 was performed in the second step, and the oat protein 'calcium alginate gel beads were obtained. The distilled water was obtained in the third step. After adjusting the temperature to 35 ° C, the substrate racemic alcohol is added with the substrate racemic alcohol in the same manner as in Example 2, and the optical solution obtained through the fourth and fifth steps is obtained. An evaluation of active alcohol was performed.
  • the biochemical conversion reaction of the immobilized barley protein on the substrate ( ⁇ ) -1- (4-methoxyphenyl) ethanol (200 mg) is as follows (S) -1- (4-methoxyphenyl). ) Via the biotransformation of 4-ethanol into 4-methoxacetophenone following the stereoselective oxidation of ethanol, it takes 6 days, yielding 112 mg in 46% yield ( R) -l- (4-Methoxyphenyl) ethanol was obtained. Optical purity was obtained at 99% e.e.
  • the biochemical conversion reaction of the immobilized barley protein on the substrate ( ⁇ ) -1- (4-nitrophenyl) ethanol is as follows: (R) -1- (4-nitrophenyl) It takes 17 days via biotransformation of 4-ethanol to 4-nitroacetophenone following the stereoselective oxidation of ethanol, yielding 50 mg in 25% yield of (S) -toluene. (4-Nitrophenyl) ethanol was obtained. Optical purity was obtained at 99! 3 ⁇ 4e.e. Next, the following table shows the results of synthesizing optically active alcohols using the immobilized barley protein as an optical resolution catalyst.
  • oat protein is effective as an optical resolution catalyst for synthesizing synthetic intermediates in the field of fine chemicals, and high-purity R- or S-form optically active alcohols can be obtained safely and easily.
  • Example 4 (Effectiveness of Continuous Recycling of Pea, Soy, and Barley Proteins) Second to Second Using the Pea, Soy, and Barley Proteins Prepared in the First Step as in Examples 1 to 3 Regarding the first efficacy in step 5, it is effective as an optical resolution catalyst that can be sufficiently used as a synthetic intermediate in the field of fine chemicals, and it is highly purified R-form or It was found that S-form optically active alcohol was obtained safely and easily.
  • Example 4 describes the results of the effectiveness of continuous reuse of immobilized pea, soybean, and barley proteins.
  • Example 2 the results of Example 1 show that the immobilized pea protein immobilized in the first round was able to stereoselectively oxidize the R-isomer of racemic 1- (2-naphthyl) ethanol to 2-acetonaphthone. And the remaining one of the S-body E) Ethanol was biosynthesized with a high optical purity of 99! 3 ⁇ 4e.e. After the completion of the reaction, the immobilized pea protein used in the fourth step was continuously reused, and the same reaction was attempted from the third step. As a result, as shown in FIG. 2, about half of the first reaction was performed.
  • the pea protein is effective as an optical resolution catalyst for synthesizing synthetic intermediates in the fine chemical field, and can be continuously reused Therefore, it was found that high-purity R- or S-form optically active alcohols can be safely and easily obtained.
  • the biochemical conversion reaction of the immobilized soybean protein with the substrate ( ⁇ ) -1- (4-methoxyphenyl) ethanol (200 mg) was as follows. Toxinil) Via the bioconversion of ethanol to 4-methoxyacetphanon following the stereoselective oxidation of ethanol, it takes 2 days, yields lOOmg, 50% yield and optical purity of 99!
  • soy protein is effective as an optical resolution catalyst for synthesizing synthetic intermediates in the field of fine chemicals. It has been found that R-form or S-form optically active alcohols can be obtained safely and easily.
  • the biochemical conversion reaction of the immobilized oat protein on the substrate ( ⁇ ) -1- (2-naphthyl) ethanol (200 mg) was as follows: (R) -1- (2-naphthyl) ethanol It takes 4 days via biotransformation of 2-nor-acetonaphthone due to the stereoselective oxidation of ethanol, yields lOOmg, 50% yield and 99% ee optical purity.
  • Example 4 shows the immobilization used in this fourth step.
  • the oat protein was continuously reused again from the third step and reacted with the substrate ( ⁇ ) -1- (2-naphthyl) ethanol.
  • (R) -1- (2-naphthyl) Through a conversion mechanism that stereoselectively oxidizes ethanol to 2-acetonaphthone, optically active (S) -1- (2-naphthyl) ethanol is obtained with an optical purity of 99% ee. Was done.
  • Example 5 (Bitter wheat protein). The ground powder of bitter wheat is sieved through a 12-mesh sieve to remove large grains and shells. The pulverized powder thus obtained was extracted with water at about 40 ° C. and pH 7.0 using about 9 weight times of distilled water for 45 minutes. The dietary fiber portion was separated from the extract using a decanter to obtain a protein card. This tanno ,. Weigh out 20 g of a card and disintegrate it in a 10-fold volume of distilled water 200 with a mixer to prepare a protein slurry. Made.
  • distilled water 400 which is 20 times the volume of bitter wheat protein card, as a reaction solvent, and use a constant temperature shaking incubator to set the distilled water temperature. After the temperature was raised to 35 ° C, 201 mg of ⁇ 1-phenylethanol was added as a substrate, the incubator was set at 55 rpm, and the substrate was converted for 8 days. Via the 4th and 5th steps, under the same conditions as those used for the pea protein, (S) —1-phenyl with 50% conversion, 95% ee optical purity and 42% yield Ethanol was obtained. The yield of the produced acetophenone was 51% (102 mg).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 光学活性アルコールの製造方法 技術分野
本発明は、 穀類及び豆類等の植物資源から抽出した水溶性蛋白成 分を固定化したものを触媒と して基質から光学活性アルコールを製 造する方法に関する。 背景技術
光学活性アルコールは医薬品や農薬等の原料又は中間原料、 強誘 電性液晶等のフ ァイ ンケミ カル分野における合成中間体と して極め て重要な物質である。
このよ うな光学活性アルコール等の光学活性物質を生合成するた めに、 従来から 1 )微生物菌体及び微生物菌体由来酵素、 2 ) 動物組 織由来酵素、 3 ) 植物培養細胞を基質と反応させて光学活性アルコ —ルを製造する方法が知られている。
前記 1 ) の微生物菌体を用いる方法は培養した菌体を基質と反応 させて光学活性アルコールを得る手法であり、 例えば特許第 2 7 8 4 5 7 8号公報 (光学活性 1, 2 —ジオール類の製造方法) が公知 でめ 。
また、 2 ) の微生物菌体由来酵素を用いる方法は遺伝子を導入し て培養した菌体の粉砕液を基質と反応させて光学活性アルコールを 得る手法であり、 例えば特開平 1 0 — 2 1 0 9 8 1号公報 (ハ口 ヒ ドリ ンよ り光学活性ジオールへの変換を触媒する新規なタンパク質 ) が公知である。
また、 3 ) の動物組織由来酵素を用いる方法は動物組織より分離 した蛋白を基質と反応させて光学活性アルコールを得る手法であり 、 例えば特許第 2 7 5 6 7 9 0号公報が公知である。
また、 4 ) の植物培養細胞を用いる反応は植物細胞を基質と反応 させて光学活性アルコールを得る手法であり、 例えば文献 Chem. Ph a rm. Bu l l . , 43, p p. 1 458 - 1461に報告されている。
1 ) 「微生物菌体」 を用いる方法は、 特許第 2 7 8 4 5 7 8号公 報 (光学活性 1, 2 —ジオール類の製造方法) 、 特許第 2 7 7 4 3 4 1 号公報 (光学活性 2 —ヒ ドロキシ酸誘導体の製造法) で公知の ように、 微生物菌体は培養条件を適切に設定することにより培養溶 液中で増殖し、 この培養液を遠心分離又は濾過により処理して菌体 を集め、 菌体を 0. 1 Mリ ン酸緩衝液 (pH6. 5 ) 又は蒸留水等に懸濁し た液中にて基質のケ ト ン体を不斉還元させて光学活性アルコールを 合成するものであるが、 菌体含有酵素の種類が多様であることが原 因で、 基質変換反応以外の副反応が同時に起こるため、 目的とする 光学活性アルコールの収率が低く、 又、 反応生成物を含む溶媒中か ら単離 · 精製作業を行っても、 得られる光学活性アルコールの純度 が低い為、 フ ァイ ンケ ミ カル分野での合成中間体と して利用 しにく い点がある。 2 ) 「微生物菌体由来酵素」 を用いる方法は特開平 1 0 - 2 1 0 9 8 1号公報 (ハロ ヒ ドリ ンより光学活性ジオールへの 変換を触媒する新規なタ ンパク質) に開示されているように遺伝子 組替えの方法でクロー ン化された遺伝子を菌体内に多数存在する形 質転換微生物を用いて光学活性ェピハ口 ヒ ドリ ン及び光学活性ジォ ールを製造する方法であるが、 これも微生物菌体を用いる方法と反 応工程自体に大きな違いはないために基質反応の際に生じる副反応 は制御できず、 「微生物菌体」 を用いる方法と同様の問題点を有し ている。 更に、 遺伝子導入菌株は自然界では異品種であり、 ヒ トを はじめとする生態系へ悪影響を与える危険性があるため、 外部環境 から隔離する設備や反応残査等の焼却処理等の経費負担が必要であ る。 また、 3 ) 「動物組織由来酵素」 は、 特許第 2 7 5 6 7 9 0号 公報 (光学活性なシクロペンテノ ール誘導体の製造方法) で公知の とおり、 豚の膝臓リパーゼの不斉加水分解反応を用いた光学活性シ クロペンテノ ール誘導体の製造方法があるが、 佐竹一夫薯 「生物学 のための有機化学 3 タ ンパク質」 第 1 1 4 — 1 7 2頁 (朝倉書店 発行) に記載されているよう に動物組織由来酵素は粗酵素である為 、 前述 1 ) 、 2 ) と同様に副反応が生じて収率の低下を生ずること は否めない。 また、 4 ) 「植物培養細胞」 を用いる方法は植物含有 酵素の種類が多様であることが原因で生ずる基質変換反応以外の副 反応を理由とする光学活性アルコールの収率の低さの問題である。 又、 植物細胞の培養は全行程における無菌操作の必要性のように育 種が難しく 、 更に 1 年から 2年間の継体培養を繰り返す期間や基質 と反応させる反応栄養培地液 (M S培地等) の作製が必要であり反 応操作の煩雑さが問題である。 発明の開示
本発明の目的は、 上述の問題点を解消するために世界各国で生産 されている購入安価な穀類や豆類から抽出した水溶性蛋白質を光学 分割触媒と して有機合成化学に応用する ものであり、 生態系に優し く、 反応コス トの大幅低減化を可能にし、 更には高光学純度の光学 活性アルコールを得る製造法を提供する点にある。
本発明において、 前記光学分割触媒を用いて、 高光学純度の光学 活性アルコールを得る製造法は、 概略、 次のような方法を包含する ものである。
( 1 ) 基質と してのラセ ミ体アルコールの一方の鏡像体を選択的 に酸化してケ ト ンと し、 他方の鏡像体を未反応のまま残留させ、 光 学活性アルコールと して分離する光学活性アルコールを製造する方 o
( 2 ) 基質と してのケ ト ン分子の不斉還元により光学活性アルコ ールを製造する方法。
( 3 ) 基質と してのラセミ体アルコールのァシル化体の不斉加水 分解により光学活性アルコールを製造する方法。
( 4 ) 有機溶媒中でラセ ミ体アルコールの一方の鏡像体を立体選 択的にァシル化し、 得られたそのァシル化された鏡像体を加水分解 して、 光学活性アルコールと して分離する光学活性アルコールを製 造する方法。
本発明者は上記問題点を解決し安全かつ平易な方法で高純度の光 学活性アルコールを得る方法について鋭意研究を行った結果、 穀類 又は豆類から水溶性蛋白質を抽出する第 1 の工程と、 前記蛋白質を 固定化する第 2の工程と、 前記固定化された蛋白質を触媒と して基 質の酵素変換反応を行う第 3の工程と、 該第 3の工程により変換し た前記反応基質及び反応生成物の混合物を有機溶媒により抽出する 第 4の工程と、 該第 4の工程の抽出物から光学活性アルコール又は 光学活性アルコールのァシル化体を単離 · 精製する第 5 の工程を組 み合わせ、 必要によりさ らに加水分解することにより、 フ ァイ ンケ ミ カル分野における合成中間体を合成する原料と して充分に利用可 能な高純度の R体又は S体の光学活性アルコールが安全かつ平易に 得られることを見出し本発明を完成するに至った。
本発明において用い得る穀類または豆類と しては、 薷麦、 アマラ ンサス、 米、 小麦、 大麦、 ト ウモロ コ シ、 ェンバク、 ライ麦、 粟、 ヒェ、 キビ、 ヽ ト麦、 モロコ シ等の穀類、 又は小豆、 イ ンゲン豆、 豌豆、 リ ヨ ク トウ、 大豆等の豆類が挙げられるが、 これらに限定す る ものではない。 本発明の第 1 の工程における水溶性蛋白質の抽出においては、 穀 類又は豆類を砕き粒の大きい部分と殻部を取り除き、 このようにし て得られた穀類及び豆類粉砕粉を約 2 0〜 6 0 °C、 好ま しく は約 4 0 °Cで、 p H約 6〜 8、 好ま しく は p H 7 . 0 において、 穀類また は豆類粉砕粉の約?〜 1 5重量倍の水で、 3 0分以上抽出する。 約 4 5分で抽出するのが最も効率的であって、 これ以上長く抽出して も抽出物の量は変わらない。 p Hの調整が必要なときは、 H 2 S O 4 、 H C 1 、 H 3 P O 4 などの食品級酸、 又は N a 0 Hなどの食品 級アル力 リを用いて上記適正範囲に合わせてもよい。 上記水溶性蛋 白質抽出液、 又はこの抽出液から、 デカ ンター、 遠心分離機などに より食物繊維部を分離した、 タ ンパクカー ドをそのまま第 2工程に 移すか、 必要に応じて噴霧乾燥、 凍結乾燥、 真空乾燥などにより粉 末と してから、 再溶解して第 2工程に移してもよい。
しかしながら、 多量の蛋白質の処理が必要なときには、 上記タ ン パクカー ドを H 2 S 0 4 、 H C 1 s H 3 P 0 4 などの食品級酸、 又 は N a 0 Hなどの食品級アル力 リを用いて等電点処理し、 次いでデ カ ンター、 遠心分離機などによりホエイを分離してタ ンパクカー ド を得る。 この等電点沈殿等は、 水溶性蛋白質の濃縮を目的と したも のであって、 処理後においても水溶性蛋白質抽出液をそのまま噴霧 乾燥などにより粉末化した場合と同様な効果を奏するものである。 等電点沈殿の P Hの選定は沈殿量の多い画分の選定が目的であって 、 大豆や豌豆蛋白質の場合には p H 4 . 5付近であり、 薷麦の場合 には約 p H 9 . 5付近である。 このカー ドに 5〜 1 0重量倍の水を 加え、 ミ キサー、 攪拌機などにより解砕して、 蛋白質スラ リ ーを調 製し、 中和 ( p H 6〜 8 ) し、 中和スラ リーとする。 このスラ リー を、 前記と同様に噴霧乾燥、 凍結乾燥、 真空乾燥などにより粉末と してから、 再溶解して第 2工程に移す。 但し、 噴霧乾燥を行う際の加熱条件については蛋白質、 すなわち 変換反応に関わる酵素の熱変性による失活を防ぐため、 該抽出蛋白 質自体が 8 0 °Cを越えない温度に設定しなくてはならない。
第 2の工程において、 該抽出蛋白質を固定化する方法は 1 ) 該抽 出蛋白質を水不溶性の担体、 例えば、 セルロース、 デキス ト ラ ン、 ァガロース等の多糖類の誘導体、 及びポ リ アク リルア ミ ドゲル等に 結合させる担体結合法、 2 ) 該抽出蛋白質を 2個も しく はそれ以上 の官能基を有する試薬を用いて該抽出蛋白質間に架橋結合を形成さ せて固定する架橋法、 3 ) 該抽出蛋白質を、 ゲル、 例えば、 アルギ ン酸塩、 デンプン、 コンニヤク、 ポリ アク リルア ミ ドゲル及びポリ ビニルアルコール等のゲルの細かい格子の中に取り入れる (格子型
) 力、、 半透膜性の皮膜によって被覆する (マイ ク ロカプセル型) 包 括法があり、 いずれの固定化法も本願発明において用いることがで きる。 しかしながら、 海草より抽出するアルギン酸の塩を用いた包 括固定化法が環境に優しく、 かつ、 固定化操作が平易な点で最も好 ま しい。
第 3 の工程において、 原料である基質から光学活性アルコール又 は光学活性アルコールのァ シル化体を得るための酵素変換方法は、
( 1 ) 基質と してのラセミ体アルコールの一方の鏡像体を選択的 に酸化してケ ト ンと し、 他方の鏡像体を未反応のままの光学活性ァ ルコールと して残留させる方法、
( 2 ) 基質と してのケ ト ン分子の不斉還元により光学活性アルコ —ルを得る方法、
( 3 ) 基質と してのラセ ミ体アルコールのァ シル化体の不斉加水 分解により光学活性アルコールを得る方法、
( 4 ) 有機溶媒中で基質と してのラセ ミ体アルコールの一方の鏡 像体をハロゲン化ァシル又は酢酸ビニルにより立体選択的ァシル化 する方法を包含する。
これらの反応では、
( 2 ) のケ ト ン分子を基質と して用いる不斉還元反応では、 酵素変 換の不斉還元反応は 1 0 0 %に至らず途中で止まってしまうので、 止まった時点あるいは止まる前に反応溶液を抽出処理しないと時間 の経過に伴い光学純度が低下するので、 穀類、 豆類の種類により反 応停止時間を決定する必要があるが、 変換率 2 0 %程度で反応を終 了させると、 その生成光学活性アルコールの立体配置と光学純度は 、 ( 1 ) の基質にラセミ アルコールを用いた場合と同様であり、
( 3 ) の基質と してラセ ミ アルコ一ルのァシル化体を用いる反応に おいては、 不斉加水分解反応は、 変換率 2 0 %程度を越えると光学 純度が低下するので、 穀類、 豆類の種類により反応停止時間を決定 する必要があり、 収率が低いが、 変換率 2 0 %程度で反応を終了さ せた場合、 その生成光学活性アルコールの立体配置と光学純度は、
( 1 ) の基質にラセミ アルコールを用いた場合と同様であり、 また
( 4 ) の有機溶媒中のラセミ体アルコールの不斉ァシル化を用いる 反応は、 不斉ァシル化反応により得られたァシル化体を、 さ らに加 水分解することにより、 光学活性アルコールを得るものであるが、 不斉ァシル化反応は変換率 2 0 %程度を越えると光学純度が低下す るので、 穀類、 豆類の種類により反応停止時間を決定する必要があ り、 変換率 2 0 %程度でァシル化反応を終了させたとき、 その後の 加水分解により得られた生成光学活性アルコールの立体配置と光学 純度は、 ( 1 ) の基質にラセミ アルコールを用いた場合と同様であ る。 本発明においては、 ( 1 ) のラセ ミ体アルコールを基質とする 一方の鏡像体を選択的に酸化して光学活性アルコールを得る方法が 収率などの点から最も好ま しい。 上記 ( 1 ) 〜 ( 4 ) の反応温度は 、 約 2 5〜 4 5 °C、 好ま しく は 3 0〜 4 0 °Cが適当であって、 約 3 5 °Cで行う ことが最も好ま しい。 また、 上記 ( 1 ) 〜 ( 3 ) の反応 においては、 極性溶媒と して水、 非極性溶媒と してアセ ト ン、 メ タ ノール、 エタノール等を用いることができる力 極性溶媒の水が最 も好ま しい。 ( 4 ) の反応においては、 ベンゼン、 トルエン、 ヘプ タ ン、 イ ソプロ ピルアルコール ( ドライ) などの有機溶媒を用い得 る力 <、 ベンゼンを用いることが好ま しい。 反応時間は、 基質、 水溶 性蛋白質の由来、 反応の種類により異なるが、 約 2〜 1 5 日位であ り、 前記のように ( 2 ) 〜 ( 4 ) の反応では、 変換率が 2 0 %程度 に達した時点で反応を終了させる。
また、 反応により得られる光学活性アルコールは、 基質の置換基 の影響により、 S体又は R体となる。
第 4の工程において抽出有機溶媒は非反応性溶媒の酢酸ェチル、 ジェチルェ一テル、 ジク ロロメ タ ン等を用いることができる。
第 5の工程において、 単離 · 精製を行う操作と してはシ リ 力ゲル クロマ トグラフ又はシリ 力ゲル薄層クロマ トグラフを用いるのが最 も好ま しいが、 特許第 2 8 0 4 2 4 7号公報 (固定化生体触媒を用 いる反応) に記載されているような、 反応槽から生成物に富む反応 液の一部を抜き出し、 生成物の析出温度に設定した晶析槽に移送し て生成物を析出させ、 濾過により分離後、 その母液に基質を添加し 、 反応槽に戻して反応させる一連の操作を繰り返し、 晶析槽に懸濁 状の生成物を蓄積させる単離 · 精製方法などの本出願前公知の単離 • 精製方法を用い得る。 図面の簡単な説明
図 1 は、 基質ラセ ミ体 1 - ( 2 - ナフチル) エタノ ールの(R) -卜(2 - ナフチル) エタノ ールの立体選択的酸化に伴う 2 - ァセ 卜ナフ 卜 ンへの生変換を経由する(S) - 1 _ (2 - ナフチル) エタ ノ ールの反応時 間と生成変換率の関係を示すグラフ図である。
図 2 は、 本発明の固定化水溶性蛋白質を連続使用 したときの有効 性を示すものであって、 図 1 の反応を行ったときの 1 〜 3 回目のそ れぞれの反応時間と生成変換率の関係を示すグラフ図である。 発明を実施するための最良の形態
次に、 本発明を実施例に基づき具体的に説明するが、 これは説明 のためのものであって、 これにより、 本発明を限定して解すべきで はない。
( 1 ) の基質と してのラセ ミ体アルコールの一方の鏡像体を選択 的に酸化して、 光学活性アルコールを製造する方法
実施例 1 (豌豆水性蛋白質)
先ず第 1 の工程と して、 豌豆を粉砕して殻を取り除き、 PH7. 0 付 近の蒸留水 (約 40°C ) 9重量倍にて、 約 4 5分間に溶解される豌豆 蛋白質成分を NaOH水溶液を用いて pH7. 0 にして沈殿成分の食物繊維 を除去し、 水溶性蛋白部分を酸性条件 (PH4. 5 付近) にして蛋白を 等電点沈殿させ、 蛋白沈殿部を PH7. 0 の蒸留水にて再溶解して得ら れる豌豆蛋白水溶液 (試料濃度 5. 0%) を噴霧乾燥処理を行い、 粉体 の豌豆蛋白を調製する。 また、 アルギン酸ナ ト リ ウム水溶液はォー ト ク レーブの条件、 温度 121 。C、 時間 2 0分で、 アルギン酸ナ ト リ ゥムを水溶液中に溶解して調製する。 次に、 第 2の工程において、 豌豆蛋白粉 20 g に 10倍等量の蒸留水 200m l を加え、 5%のアルギン酸ナ ト リ ウム水溶液を 1. 5 倍等量の 25 0m l を加えて均一になるまで攪拌し、 得られた豌豆 · アルギン酸ナ ト リ ウム混合溶液を、 0. 6 %の塩化カルシウム水溶液中に注射器等 を用いて滴下して固定化状態の豌豆蛋白含有 ' アルギン酸カルシゥ ムゲルビーズを作製する。 更に 0. 6 %塩化カルシウム水溶液中で 5 時間以上放置してビーズ膜を強固にする。 続いて、 第 3の工程において、 豌豆 ' アルギン酸カルシウムゲル ビーズを蒸留水にて十分に洗浄し、 塩化カルシゥム水溶液を除去し た後に用いた豌豆蛋白粉の 20倍等量の蒸留水 (400m l ) を反応溶液 と して添加し、 恒温振とう培養器を用いて蒸留水の温度を 3 5 °Cに した後、 基質ラセ ミ アルコールと して、 1 一 ( 2 —プロモフ ヱニル ) エタ ノ ール、 1 一 ( 2 —クロロフヱニル) エタノ ール、 1 一 ( 2 —メ チルフ エニル) エタ ノ ール、 1 一 ( 2 —メ トキシフ ヱニル) ェ タ ノ 一ル、 1 _ ( 2 —ニ ト ロフ エニル) エタ ノ ール、 1 ーフ ヱニル エタノール、 1 — ( 2 —ナフチル) エタノールを添加し、 それぞれ 振とう培養器 5 5 rpm の条件に設定し、 基質変換させた。 反応終了後に第 4の工程において、 ビーズと反応溶媒部分を概略 分離してビーズを十分に蒸留水等の溶媒で洗浄した後、 その洗浄溶 媒液と反応基質及び反応生成物を含む反応溶媒部分をジェチルエー テルで抽出した。 更に、 そのエーテル層を飽和食塩水で洗浄した後 、 硫酸ナ ト リ ウムにより脱水乾燥して放置した。 最後に第 5の工程において、 ジェチルエーテル層をエバポレータ を用いて除去し、 反応基質及び反応生成物を 70〜230 メ ッ シュのシ リ カゲルクロマ トグラフを用いて、 へキサン対酢酸ェチル 9 対 1 の 展開溶媒で目的物の光学活性アルコールを単離 · 精製する。 単離した光学活性アルコールは、 文献値と して J . CHEM. SOC. P ERKIN TRANS 1 1995 pp.1295-1298 と Phy tochemi s try, Vol.30, No .11, pp. 3595-3597 を参照して得られる (+又は一) 値と得られ る光学活性アルコールの旋光度との比較から立体配置が決定でき、 高速液体ク 口マ ト グラフ (HPLC) の分析条件、 キラルセル 0B 0.46 cm0 X 25cm (ダイセル化学株式会社製) : 30° , UV254nm, 溶離液: へキサン: 2-プロパノール: 9 : 1 、 流速 0.5ml/分によって、 基質 ( 土)-卜(4- ブロモフ ヱニル) エタ ノ ール、 ( ±)-1 -(4- ク ロ ロフ ヱニル) エタ ノ ール、 ( ±)-1-フ ヱニルエタ ノ ール、 ( 土) - (2- ナフチル) エタ ノ ールの、 又、 キラルセル 0B 0.46 cm ø X 25 cm (ダ ィセル化学株式会社製) : 30° , UV254nm, 溶離液: へキサン: 2-プ ロノ、。ノ ール = 9 : 1 、 流速 1.0ml/分によ って基質( 土) -卜(4- メ ト キシフ ヱニル) エタ ノ ール、 ( ±)- 1- (4- ニ ト ロ フ ヱニル) ェタ ノ —ルの立体配置 S体と R体のリテ ンシ ョ ンタイムが確認でき、 HPLC に現れる立体配置 S体と R体両鏡像体の積分比率の差を光学純度 ( e. e. = enant i omer excess ) と して求めた 0
以上の機器分析にて、 ( ±)-1-(4- プロモフ ヱニル) エタノール の リ テンシ ョ ンタイ ム、 S体 ; 10.447、 R体 ; 11.031、 ( ±)_1- (4 - ク ロ 口フ エニル) エタ ノ ールの リ テンシ ョ ンタイ ム、 S体 ; 9.93 6 、 R体 ; 10.355、 ( 土)-卜フ エニルエタ ノ ールの リ テ ンシ ョ ンタ ィ ム、 S体 ; 11.958、 R体 ; 13.133、 ( ±)- 1- (2- ナフチル) エタ ノ 一ルの リ テンシ ョ ンタイ ム、 S体 ; 15.693、 R体 ; Π.049、 ( 土 )-1- (4- メ トキシフ エ二ル) エタ ノ ールの リ テンシ ョ ンタイ ム、 S 体 ; 9.165 、 R体 ; 10.781、 ( ± ) - 1 - (4- ニ ト ロフ ヱニル) ェタノ 一ルの リ テ ンシ ョ ンタイ ム、 R体 ; 18.923、 S体 ; 19.562をそれぞ れ確認した。 また、 各基質の酸化にて生じる生成 4 -プロモアセ ト フ ェ ノ ン、 4-ク ロ ロアセ ト フ エ ノ ン、 4-メ トキシァセ ト フ エ ノ ン、 4- ニ ト ロァセ ト フ エ ノ ンも同様に、 リ テンシ ョ ンタイ ム ; 13.112、 10 304、 17.169、 37.208を確認した。
(S)-l- (4- ブロモフ ヱニル) エタ ノ ールの合成
固定化豌豆蛋白質の基質 (±)- 1-(4- ブロモフ エニル) エタノー ル ( 200mg ) に対する生化学変換反応は以下の通り、 ( R)-l- (4- プロモフ ヱニル) エタノールの立体選択的な酸化に伴う 4 -プロモア セ ト フ ヱ ノ ンへの生変換を経由して、 8 日を要し、 収量 114mg で、 57% の収率にて( S )- 1- (4- プロモフ ヱニル) エタノールが得られ た。 光学純度は 8Me. e. で得られた。 GC条件は HITACHI G-3500ガス ク ロマ ト グラ フ, キャ リ アーガス, He 0.48 ml/ 分; スピ リ ッ ト比 ; 1/55, オーブン温度; 150 °C, 入口温度; 250 °C , 出口温度; 25 0 °C ,圧力. 136., 流量値. 42. ,分析カラム : TC- 5HT 0.25mm I. D X 30M df (ジーエルサイエンス株式会社製) で、 反応追跡と反応終 了時の時間を決定した。
(S)-l-(4- ク ロ ロフ ヱニル) エタ ノ ールの合成
固定化豌豆蛋白質の基質( ±)_1- (4- ク ロ口フエニル) エタノー ル (200mg ) に対する生化学変換反応は以下の通り、 ( R)- 1- (4 - クロ ロフ ヱニル) エタノ 一ルの立体選択的な酸化に伴う 4-ク口 ロア セ ト フ ヱ ノ ンへの生変換を経由して、 8 日を要し、 収量 84mgで、 42 % の収率にて( S )_l- (4- クロロフヱニル) エタノールが得られた 。 光学純度は 87¾!e. e. で得られた。
(S)- 1 -(4- メ トキシフ ヱニル) エタ ノ ールの合成
固定化豌豆蛋白質の基質( 士)-卜(4- メ トキシフ エニル) ェタノ ール (200mg ) に対する生化学変換反応は以下の通り、 ( R)- 1- (4 - メ トキシフ ヱニル) エタ ノ ールの立体選択的な酸化に伴う 4-メ ト キシァセ ト フ ヱ ノ ンへの生変換を経由 して、 7 日を要し、 収量 96mg で、 48% の収率にて( S ) - 1 -(4- メ トキシフ ヱニル) エタ ノ ールが 得られた。 光学純度は 95%e. e. で得られた。 尚、 HPLC条件は流速 1. 0 ml/ 分、 GC条件はオーブン温度を 190 °Cに設定した。
(R) - 1- (4- ニ ト ロフ ヱニル) エタ ノ ールの合成
固定化豌豆蛋白質の基質( ±)- 1_(4- ニ ト ロ フェニル) ェタノ一 ル (200mg ) に対する生化学変換反応は以下の通り、 (S)- 1- (4- 二 トロフ ヱニル) エタノ ールの立体選択的な酸化に伴う 4-二 トロアセ ト フ ェ ノ ンへの生変換を経由して、 4 日を要し、 収量 76mgで、 38% の収率にて(R)- 1- (4- ニ トロフ ヱニル) エタノールが得られた。 光 学純度は 54%e. e. で得られた。 HPLC条件は流速 0.5ml/分、 GC条件は オーブン温度 190 °Cに設定した。
(S)- 1 -フ ヱニルエタ ノ ールの合成
固定化豌豆蛋白質の基質( ±)- 1 - フ ヱニルエタノール (201mg ) に対する生化学変換反応は以下の通り、 (R ) ― 1 - フ ニルェ タノールの立体選択的酸化に伴うァセ トフエノ ンへの生変換を経由 して、 6 日を要し、 収率 61% (122mg ) で (S ) - 1 - フエニルェ タノールが 9Me. e. の光学純度で得られた。
(R)- 1 一 (2 -ナフチル) エタ ノ ールの合成
固定化豌豆蛋白質の基質 1 -(2 - ナフチル) エタノール (201mg ) に対する生化学変換反応は以下の通り、 (R ) - 1 - ( 2 - ナフチ ル) エタノールの立体選択的酸化に伴う 2-ァセ 卜ナフ ト ンへの生変 換を経由して、 4 日を要し、 収率 50% (lOOmg ) で (S ) - 1 -(2 - ナフチル) ェタノ 一ルが 99%ee 以上の光学純度で得られた。 (図 1 参照) 次に、 固定化豌豆蛋白質を光学分割触媒と して用いた上記の光学 活性アルコールの合成結果を以下の表に示す。
Figure imgf000016_0001
以上から、 豌豆水溶性蛋白質がフ アイ ンケミ カル分野における合 成中間体を合成する光学分割触媒と して有効であり、 高純度の R体 又は S体の光学活性アルコールが安全かつ平易に得られることを見 出した。 実施例 2 (大豆蛋白質)
第 1 の工程の大豆蛋白質の水溶性抽出と第 2の工程の固定化につ いては実施例 1 の条件と同じであり、 第 3の工程において、 大豆 · アルギン酸カルシウムゲルビーズを蒸留水温度を 3 5 °Cにした後に 、 基質ラセ ミ アルコールと して、 1 一 ( 2 —ブロモフ エニル) エタ ノ ール、 1 — ( 2 — ク ロ 口フ エニル) エタ ノ ール、 1 — ( 2 —メ チ ルフ エニル) エタ ノ ール、 1 — ( 2 —メ トキシフ ヱニル) エタ ノ ー ル、 1 一 ( 2 —二 ト ロフ エニル) エタ ノ ール、 1 一 ( 2 —ナフチノレ ) エタノ ールを添加し、 それぞれ振と う培養器 5 5 rpm の条件に設 定し基質変換させ、 豌豆蛋白質で用いた条件と同様に第 4の工程と 第 5 の工程を経由して得られた光学活性アルコールの評価を豌豆蛋 白質の時と同様に行った。
(R)- 1- (4- プロモフ ヱニル) エタ ノ ールの合成
固定化大豆蛋白質の基質 (±)- 1- (4- ブロモフ ニル) エタノー ル (200mg ) に対する生化学変換反応は以下の通り、 (S)-卜(4- ブ 口モフヱニル) エタノールの立体選択的な酸化に伴う 4-ブロモアセ ト フ ヱノ ンへの生変換を経由して、 2 日を要し、 収量 108mg で、 54 ¾ の収率にて(R)- 1_(4_ プロモフ ヱニル) エタノール得られた。 光 学純度は 88¾!e. e. で得られた。 機器条件は固定化豌豆蛋白質と同様 である。
(R)-l-(4- ク ロ ロフ ヱニル) エタ ノ ールの合成
固定化大豆蛋白質の基質( ±)-1-(4- ク ロ 口 フ エニル) エタノ ー ル ; 200mg に対する生化学変換反応は以下の通り、 (S)-l-(4- ク ロ ロフヱニル) ェタノ 一ルの立体選択的な酸化に伴う 4-ク ロロァセ ト フヱノ ンへの生変換を経由して、 3 日を要し、 収量 102mg で、 51% の収率にて(R)- 1- (4- ク ロロフ ヱニル) エタノ ールが得られた。 光 学純度は 96¾!e. e. で得られた。
(R)-l-(4- メ トキシフ ヱニル) エタ ノ ールの合成
固定化大豆蛋白質の基質( ±)- 1-(4- メ トキシフ ヱニル) ェタノ —ル ; 200mg に対する生化学変換反応は以下の通り、 (S)- 1- (4- メ トキシフ ヱニル) エタノールの立体選択的な酸化に伴う 4-メ トキシ ァセ ト フ ヱ ノ ンへの生変換を経由して、 5 日を要し、 収量 96mgで、 48¾ の収率にて(R)- (4- メ トキシフ ヱニル) エタノールが得られ た。 光学純度は 97%e. e. で得られた。
(S)-l- (4- ニ ト ロフ ヱニル) エタ ノ ールの合成
固定化大豆蛋白質の基質( ±)-1- (4- ニ トロフ ヱニル) エタノー ル ; 200mg に対する生化学変換反応は以下の通り、 (R)-l- (4- 二 ト ロフ ヱニル) エタノールの立体選択的な酸化に伴う 4-二 トロアセ ト フ ヱ ノ ンへの生変換を経由して、 4 日を要し、 収量 90mgで、 45% の 収率にて(S)-卜(4- ニ トロフヱニル) エタノールが得られた。 光学 純度は 99¾e. e. で得られた。 次に、 固定化大豆蛋白質を光学分割触媒と して用いた上記の光学 活性アルコールの合成結果を以下に示す。
Figure imgf000018_0001
以上から、 大豆水溶性蛋白質がフ アイ ンケ ミ カル分野における合 成中間体を合成する光学分割触媒と して有効であり、 高純度の R体 又は S体の光学活性アルコールが安全かつ平易に得られることを見 出した。 実施例 3 (養麦蛋白質)
第 1 の工程の薷麦の水溶性蛋白質の抽出において、 実施例 1 の豌 豆蛋白質と同様に処理して食物繊維を除去した後、 アルカ リ条件 ( PH9.5 付近) にして等電点沈殿させ、 以下豌豆蛋白質と同様の操作 にて薷麦水溶性蛋白質を得、 第 2 の工程において実施例 1 の操作を 行い、 薷麦蛋白質 ' アルギン酸カルシウムゲルビーズを得、 第 3 の 工程において、 蒸留水温度を 3 5 °Cにした後に、 基質ラセミ アルコ —ルと して、 実施例 2 と同様に基質ラセ ミ体アルコールを添加し、 第 4の工程と第 5の工程を経由して得られる光学活性アルコールの 評価を行つた。
(R)-l-(4- ブロモフ ヱニル) エタノ ールの合成
固定化薷麦蛋白質の基質 (土) -卜(4- ブロモフ エニル) エタ ノ ー ル (200mg ) に対する生化学変換反応は以下の通り、 (S)- 1-(4- ブ 口モフ ヱニル) エタ ノ ールの立体選択的な酸化に伴う 4 -プロモアセ ト フヱノ ンへの生変換を経由して、 11日を要し、 収量 114mg で、 57 % の収率にて(R)- (4- プロモフ ヱニル) エタノール得られた。 光 学純度は 82!¾e. e. で得られた。
(R)-l_(4- ク ロ ロフ ヱニル) エタ ノ ールの合成
固定化薷麦蛋白質の基質( ±)- 1- (4- ク ロ口フエニル) エタノ ー ル ( 200mg ) に対する生化学変換反応は以下の通り、 (S)-l- (4- ク ロロフヱニル) ェタノ ールの立体選択的な酸化に伴う 4-ク ロロァセ ト フ ヱ ノ ンへの生変換を経由 して、 13日を要し、 収量 116mg で、 58 % の収率にて(R)-l-(4- ク ロロフヱニル) エタノールが得られた。 光学純度は 91!¾e. e. で得られた。
(R)-l-(4- メ トキシフ ヱニル) エタ ノ ールの合成
固定化薷麦蛋白質の基質( ±)- 1-(4- メ トキシフ ニル) ェタ ノ —ル ( 200mg ) に対する生化学変換反応は以下の通り、 (S)- 1- (4- メ トキシフ ヱニル) エタ ノ ールの立体選択的な酸化に伴う 4-メ トキ シァセ ト フ ヱノ ンへの生変換を経由して、 6 日を要し、 収量 112mg で、 46% の収率にて(R)-l -(4- メ トキシフ ヱニル) エタノールが得 られた。 光学純度は 99%e. e. で得られた。
(S)_l -(4- ニ ト ロフ ヱニル) エタ ノ ールの合成
固定化薷麦蛋白質の基質( ±)-1- (4- ニ ト ロフ エニル) エタ ノ ー ル (200mg ) に対する生化学変換反応は以下の通り、 (R)- 1- (4- 二 トロフヱニル) エタノールの立体選択的な酸化に伴う 4-二 ト ロアセ ト フ ヱ ノ ンへの生変換を経由して、 17日を要し、 収量 50mgで、 25% の収率にて(S)-卜(4- ニ ト ロフ ヱニル) エタノールが得られた。 光 学純度は 99!¾e. e. で得られた。 次に、 固定化薷麦蛋白質を光学分割触媒と して用いる以上の光学 活性アルコールの合成結果を下記の表に示す。
¾¾¾ ^ひ ass虽日買 ΰ ^Τϋ ιΞΐ . ,ノレコーノレ 半 薷麦 (Chiral Product) (%) (%e. e. ) 丄 1 r gopyrum escuientunL Kノ 上 ¾ ノ uてノ ェ一ノレノ 01 C50
エタノール
Δ o ragopyrum escuieniun fr K>ヽ—丄 1— 4— ン Λ πロ "ノ7ェ ^一―ノレノヽソ DO yo
エタノール
Q
ϋ r ago y ruin escineruuni 、 ノ 丄 、 4 , Γ卞ノ ノ エ一ノレ QQ
) エタノール
4 Fagopyrum esculentum (S)- 1 - (4- ニトロフヱニル) 25 99
エタノール
5 Fagopyrum esculentum. (S)-l-(2- ナフチル) ェタノ 62 99
ール 以上から、 薷麦蛋白質がフ アイ ンケ ミ カル分野における合成中間 体を合成する光学分割触媒と して有効であり、 高純度の R体又は S 体の光学活性アルコールが安全かつ平易に得られることを見出した
実施例 4 (豌豆、 大豆、 薷麦蛋白質の連続再利用の有効性) 実施例 1 〜実施例 3のように第 1 の工程で調製した豌豆、 大豆、 薷麦蛋白質を用いた第 2〜第 5 の工程における 1 回目の有効性につ いては、 フ ァイ ンケ ミ カル分野における合成中間体と して充分に利 用可能な光学分割触媒と して有効であり、 高純度の R体又は S体の 光学活性アルコールが安全かつ平易に得られたことを見出した。 実 施例 4 は、 固定化豌豆、 大豆、 養麦蛋白質の連続再利用の有効性に ついての結果を記す。 実施例 1 の結果は図 2 に示すよ う に、 1 回目で固定化豌豆蛋白質 はラセミ体の 1 — ( 2 —ナフチル) エタノールの R体を立体選択的 に 2 —ァセ トナフ ト ンに酸化し、 残存する S体の 1 一 ( 2 —ナフチ ル) エタノ ールを 99!¾e. e. 以上の高光学純度で生合成した。 反応終 了後の第 4の工程で使用済みの固定化豌豆蛋白質を連続再利用 して 、 第 3の工程から同様の反応を試みた結果は図 2のように、 1 回目 の約半分の反応時間で 99%e. e. 以上の高光学純度の (S ) - 1 - (2 - ナフチル) エタノールを生合成した。 更に 3回目の同様の反応を 試みた結果、 その 8分の 3の反応時間で 99¾e. e. 以上の高光学純度 の (S ) - 1 -( 2 - ナフチル) エタノールを生合成した。 次に、 固定化豌豆蛋白質の連続再利用による基質 1 _(2 - ナフチ ル) エタノールの合成結果を以下に示す。 連続再利用 反応時間 (時間) 立体配置 光学純度 化学収率
1st 96 S 99 50 2nd 48 S 99 50 3ed 36 S 99 50 以上から、 豌豆蛋白質がフ アイ ンケ ミ カル分野における合成中間 体を合成する光学分割触媒と して有効であり、 連続再利用が可能な ので大量に合成でき、 高純度の R体又は S体の光学活性アルコール が安全かつ平易に得られることを見出した。 更に実施例 2 にて固定化大豆蛋白質の基質( ±)-1- (4- メ トキシ フ エニル) エタノール (200mg ) に対する生化学変換反応は以下の 通り、 ( R)- 1- (4- メ トキシフヱニル) エタノールの立体選択的な 酸化に伴う 4-メ トキシァセ トフヱノ ンへの生変換を経由して、 2日 を要し、 収量 lOOmg で、 50% の収率、 光学純度は 99!¾e. e. 以上にて (R)-l-(4- メ トキシフ ヱニル) エタノールが得られた。 実施例 4は 、 第 4の工程で使用済みの固定化大豆蛋白質を基質( ±)-1- (4- メ トキシフ ヱニル) エタノールを用いて、 再度第 3の工程から同様の 反応を検討した結果、 1 回目の約半分の反応時間で 99!¾e. e. 以上の 高光学純度の( R)- 1-(4- メ トキシフ エ二ル) エタノールを生合成 した。 更に、 3回目の同様の反応を試みた結果、 1 回目の半分の反 応時間で 99¾!e. e. 以上の高光学純度の(R)_l- (4- メ トキシフ エ二ル ) ェタノ一ルを生合成した。 次に、 固定化大豆蛋白質の連続再利用による基質 1 -(4-メ トキシ フ ニル) エタノ ールの合成結果を以下に示す。 連続再利用 反応時間 立体配置 光学純度 化学収率
1st 48 R 99 50
2nd 24 R 99 50
3ed 24 R 99 49 以上から、 大豆蛋白質がフ ァイ ンケ ミ カル分野における合成中間 体を合成する光学分割触媒と して有効であり、 連続再利用が可能な ので大量に合成でき、 高純度の R体又は S体の光学活性アルコール が安全かつ平易に得られることを見出した。 実施例 3 にて、 固定化薷麦蛋白質の基質( ±)-1-(2- ナフチル) エタノール ( 200mg ) に対する生化学変換反応は以下の通り、 ( R )-1- (2- ナフチル) エタ ノ ールの立体選択的な酸化に伴う 2-ァセ ト ナフ ト ンへの生変換を経由して、 4 日を要し、 収量 lOOmg で、 50% の収率、 光学純度は 99%e. e. 以上にて( S )-卜(2- ナフチル) エタ ノ一ルが得られた。 実施例 4 はこの第 4 の工程で使用済みの固定化 薷麦蛋白質を第 3の工程から再度連続再利用 して基質( ±)-1- (2 - ナフチル) エタノールと反応させた結果、 一回目と同様に、 ( R) - 1 -(2- ナフチル) エタノールを立体選択的に 2-ァセ トナフ ト ンに酸 化する変換機構を経由し、 光学活性(S)- 1- (2- ナフチル) ェタノ一 ルが 99%e. e. の光学純度にて得られた。 固定化薷麦蛋白質の連続再 利用は少なく とも 3回の有効性を持ち反応時間、 化学収率、 光学純 度は共に変化が見られなかった。 次に、 固定化薷麦蛋白質の連続再利用による基質 1 -(2-ナフチル ) エタノールの合成結果を以下に示す。 以上から、 養麦蛋白質がフ アイ ンケミ カル分野における合成中間体を合成するための光学分割 触媒と して有効であり、 連続再利用が可能なので大量に合成できる ため高純度の R体又は S体の光学活性アルコールが安全かつ平易に 得られることが分かる。 連続再利用 反応時間 (時間) 立体配置 光学純度 化学収率
1st 96 99 50 2nd 96 99 50 3ed 96 99 50 実施例 5 (苦薷麦蛋白質) . 苦薷麦の粉碎粉を 1 2 メ ッ シュの篩にかけて粒の大きな部分と殻 部を取り除き、 このようにして得られた粉砕粉を約 4 0 °C、 p H7. 0 で、 約 9重量倍の蒸留水を用いて、 4 5分かけて水溶性蛋白質を 抽出した。 この抽出液からデカンターを用いて食物繊維部を分離し 、 タンパクカー ドを得た。 このタ ンノ、。クカー ド 20 gを計り取り、 10 倍等量の蒸留水 200 中でミ キサーで解砕して蛋白質スラ リ ーを調 製した。
このスラ リ ーを用いて、 実施例 1 の第 2工程と同様にして、 固定 化ビーズを得た。
±— 1 —フ ヱニルエタノ ールからの ( S ) — 1 ーフ ヱニルェタ ノ ールの合成
続いて、 この固定化ビーズを触媒と して、 苦薷麦タ ンパクカー ド の 2 0倍等量の蒸留水 400 を反応溶媒と して添加し、 恒温振とう 培養器を用いて、 蒸留水温度 35°Cにした後、 基質と して ±— 1 —フ ヱニルエタ ノ ール 201 mgを添加し、 培養器を 5 5 rpm の条件に設定 し、 8 日間基質転換させた。 豌豆蛋白質で用いた条件と同様に第 4 と第 5 の工程を経由して、 変換率 5 0 %で、 光学純度 9 5 %e. e.、 収率 4 2 %で ( S ) — 1 —フ ヱニルエタノールが得られた。 生成ァ セ トフエノ ンは収率 5 1 % ( 1 0 2 m g ) であった。
( 2 ) のケ ト ン分子を基質と して用いる不斉還元反応により、 光学 活性アルコールを製造する方法
実施例 6 (薷麦蛋白質)
実施例 5 と同様にして、 薷麦の粉砕粉から固定化ビーズを得た。 ァセ ト フ ヱ ノ ンからの ( S ) — 1 —フ ヱニルエタ ノ ールの合成 続いて、 この固定化ビーズを触媒と して、 薷麦タ ンパクカー ドの 2 0倍等量の蒸留水 400 を反応溶媒と して添加し、 恒温振とう培 養器を用いて、 蒸留水温度 35°Cにした後、 基質と してァセ トフ エノ ン 202 mgを添加し、 培養器 5 5 rpm の条件に設定し、 基質転換させ た。 第 4工程と して、 ジェチルェ一テルで抽出し、 第 5工程と して シリ カゲルク ロマ トグラフ ( 7 0〜 2 3 0 メ ッ シュ) を用いて、 展 開溶媒と して、 へキサン : 酢酸ェチル = 9 : 1 を用いて、 単離精製 した。 残留ァセ トフヱノ ンは 5 0 %であった。 反応条件、 変換率、 光学純度、 収率、 及び得られたフ ニルエタノ ールの立体配置を下 表に示す。 実施例 7〜 1 2
ァセ ト フ ヱ ノ ンからの ( S ) — 1 ーフ ヱニルエタ ノ ールの合成 アマラ ンサス粉、 紅花隠元粉、 キビ粉、 栗粉、 苦薷麦粉を用いて 、 実施例 6 と同様にして、 ァセ トフヱノ ンを基質転換させた。 残留 ァセ ト フ ヱ ノ ンは、 それぞれ、 5 5 %、 5 1 %、 4 5 %、 1 1 %及 び 5 1 %であった。 反応条件、 変換率、 光学純度、 収率、 及び得ら れたフヱニルエタノールの立体配置を下表に示す。
Figure imgf000026_0001
2 —ァセ トナフ ト ンからの ( S ) — 1 一 ( 2 —ナフチル) ェタノ ールの合成
実施例 1 3 (苦薷麦粉蛋白質)
苦薷麦粉 3 0 0 gを約 4 0 °Cで、 4 5分間、 2 0 0 0 の水で抽 出し、 水溶性成分を 7 0 0 0 r p mZ分で、 2 0分間遠心分離し、 得られた沈殿物 (固体) を、 実施例 1 と同様に固定化しビーズを調 製した。 基質と して、 2 —ァセチルナフ ト ン 2 0 3 m gを用い、 実 施例 5 と同様にして、 4 日間反応させると、 収率 1 1 % ( 1 0 5 m g ) で ( S ) — 1 — ( 2 —ナフチル) エタノールが生合成された。 キラルセル O B (ダイセル株式会社製) を用いた ( S ) — 1 一 ( 2 一ナフチル) エタノールの H L P C分析を、 へキサン対 2 —プロパ ノ ール 9対 1 の展開溶媒で、 流速 0 . 5 cnfZ分、 吸光度 2 5 4 n m に設定して行った結果、 リ テンシ ョ ンタイ ム 2 0 . 8 分に 9 9 . 9 %の 3 アルコールの吸収、 2 3 . 8 分に 0 . 1 %の Rアルコールの 吸収が確認できた。 産業上の利用可能性
穀類又は豆類から水溶性蛋白質を抽出する第 1 の工程と、 該蛋白 質を固定化する第 2の工程と、 前記蛋白質を触媒と して原料である 基質の酵素変換反応を行う第 3の工程と、 該第 3の工程により変換 した前記反応基質及び反応生成物を有機溶媒により抽出する第 4の 工程と、 該第 4の工程で抽出した反応基質及び反応生成物から光学 活性アルコール又は光学活性アルコールのァシル化体を単離 · 精製 する第 5 の工程を組み合わせ、 必要により加水分解することにより 、 フ ァイ ンケ ミ カル分野における合成中間体を合成する触媒と して 充分に利用可能な高純度の R体又は S体の光学活性アルコールが安 全かつ平易に得られる。

Claims

請 求 の 範 囲
1 . 穀類又は豆類から水溶性蛋白質を抽出する第 1 の工程と、 該 蛋白質を固定化する第 2の工程と、 該蛋白質を触媒と して原料であ る基質の酵素変換を非極性溶媒又は極性溶媒で行う第 3の工程と、 該第 3 の工程により変換した反応混合物を有機溶媒を用いて抽出す る第 4の工程、 該第 4の工程における抽出物から光学活性アルコー ル又は光学活性アルコールのァシル化体を単離、 精製する第 5 のェ 程及び必要により加水分解工程とからなることを特徴とする光学活 性アルコールの製造方法。
2 . 触媒が薷麦、 アマラ ンサス、 米、 小麦、 大麦、 ト ウモロ コ シ 、 ェンパク、 ライ麦、 粟、 ヒェ、 キビ、 ハ ト麦、 モロコシ等の穀類 、 又は小豆、 イ ンゲン豆、 豌豆、 リ ヨ ク トウ、 大豆等の豆類より抽 出した水溶性蛋白質である請求項 1 に記載の光学活性アルコールの 製造方法。
3 . 第 3工程における酵素変換の基質がラセミ体アルコールであ つて、 その一方の鏡像体を選択的に酸化することを特徴とする請求 項 1 に記載の光学活性アルコールの製造方法。
4 . 第 3工程における酵素変換の基質がケ ト ンであって、 不斉還 元反応によることを特徴とする請求項 1 に記載の光学活性アルコ一 ルの製造方法。
5 . 第 3工程における酵素変換の基質がラセミ アルコールのアン ル化体であって、 不斉加水分解反応によることを特徴とする請求項 1 に記載の光学活性アルコールの製造方法。
6 . 第 3工程における酵素変換が基質ラセ ミ体アルコールのハロ ゲン化ァシル又は酢酸ビニルによる不斉ァシル化反応であり、 第 4 の工程における抽出物が光学活性アルコ一ルのァシル化体であり、 第 5工程の後に加水分解工程を含むことを特徴とする請求項 1 に記 載の光学活性アルコールの製造方法。
PCT/JP1998/006005 1997-12-29 1998-12-28 Procede pour produire des alcools optiquement actifs WO1999034010A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53483799A JP3294860B2 (ja) 1997-12-29 1998-12-28 光学活性アルコールの製造方法
EP98961644A EP0978567B1 (en) 1997-12-29 1998-12-28 Process for producing optically active alcohols
DE69829282T DE69829282T2 (de) 1997-12-29 1998-12-28 Verfahren zur herstellung von optisch aktiven alkoholen
US09/367,137 US6218581B1 (en) 1997-12-29 1998-12-28 Process of producing optically active alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36949997 1997-12-29
JP9/369499 1997-12-29

Publications (1)

Publication Number Publication Date
WO1999034010A1 true WO1999034010A1 (fr) 1999-07-08

Family

ID=18494580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/006005 WO1999034010A1 (fr) 1997-12-29 1998-12-28 Procede pour produire des alcools optiquement actifs

Country Status (5)

Country Link
US (1) US6218581B1 (ja)
EP (1) EP0978567B1 (ja)
JP (1) JP3294860B2 (ja)
DE (1) DE69829282T2 (ja)
WO (1) WO1999034010A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096029A (ja) * 2001-09-21 2003-04-03 Mitsubishi Rayon Co Ltd 光学活性アルコール及びその製造方法
WO2010134642A1 (ja) * 2009-05-22 2010-11-25 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法
WO2014073673A1 (ja) * 2012-11-09 2014-05-15 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法
WO2015194508A1 (ja) * 2014-06-17 2015-12-23 第一ファインケミカル株式会社 光学活性体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179624B2 (en) * 2003-03-25 2007-02-20 Council Of Scientific And Industrial Research Eco friendly process for the preparation of chiral alcohols by asymmetric reduction of prochiral ketones in water using soaked Phaseolus aureus L (green grams)
CN108220348A (zh) * 2017-10-25 2018-06-29 浙江工业大学 水稻愈伤组织不对称还原p-苯丙酮类化合物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222592A (ja) * 1990-12-21 1992-08-12 Chugai Pharmaceut Co Ltd 植物培養細胞を用いる光学活性イナベンフィドの製造方法
JPH08103289A (ja) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc 植物細胞による立体選択的なα−アルキル−β−ヒドロキシカルボン酸エステルの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784578B2 (ja) 1987-11-25 1998-08-06 鐘淵化学工業株式会社 光学活性1,2−ジオール類の製造方法
JP2774341B2 (ja) 1988-02-12 1998-07-09 ダイセル化学工業株式会社 光学活性2―ヒドロキシ酸誘導体の製造法
JP2756790B2 (ja) 1988-07-18 1998-05-25 富士薬品工業株式会社 光学活性なシクロペンテノール誘導体の製造方法
DE4205391A1 (de) * 1992-02-21 1993-08-26 Basf Ag Verfahren zur enzymatischen oxidation von (d)-2-hydroxycarbonsaeuren zu 2-ketocarbonsaeuren
JP3574682B2 (ja) * 1993-09-24 2004-10-06 ダイセル化学工業株式会社 新規な酵素、該酵素を製造する方法、該酵素をコードするdna、該dnaを含む形質転換体、該酵素による光学活性アルコール等の製造方法
JP2804247B2 (ja) 1995-11-27 1998-09-24 田辺製薬株式会社 固定化生体触媒を用いる反応方法
JP3728045B2 (ja) 1997-01-31 2005-12-21 三菱レイヨン株式会社 ハロヒドリンより光学活性ジオールへの変換を触媒する新規なタンパク質

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222592A (ja) * 1990-12-21 1992-08-12 Chugai Pharmaceut Co Ltd 植物培養細胞を用いる光学活性イナベンフィドの製造方法
JPH08103289A (ja) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc 植物細胞による立体選択的なα−アルキル−β−ヒドロキシカルボン酸エステルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0978567A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096029A (ja) * 2001-09-21 2003-04-03 Mitsubishi Rayon Co Ltd 光学活性アルコール及びその製造方法
WO2010134642A1 (ja) * 2009-05-22 2010-11-25 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法
JP2013099353A (ja) * 2009-05-22 2013-05-23 Sanyo Shokuhin Kk 不斉酸化反応を有する蛋白質複合体およびその製造方法
JP5248676B2 (ja) * 2009-05-22 2013-07-31 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法
US8852904B2 (en) 2009-05-22 2014-10-07 Sanyo Foods Co., Ltd. Protein complex having activity catalyzing asymmetric oxidation reaction and process for producing the same
US9556457B2 (en) 2009-05-22 2017-01-31 Sanyo Foods Co., Ltd. Protein complex having activity catalyzing asymmetric oxidation reaction and process for producing the same
US9631205B2 (en) 2009-05-22 2017-04-25 Sanyo Foods Co., Ltd. Protein complex having activity catalyzing asymmetric oxidation reaction and process for producing the same
WO2014073673A1 (ja) * 2012-11-09 2014-05-15 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法
US9982242B2 (en) 2012-11-09 2018-05-29 Sanyo Foods Co., Ltd. Protein complex capable of catalyzing asymmetric oxidation reaction and method for producing same
WO2015194508A1 (ja) * 2014-06-17 2015-12-23 第一ファインケミカル株式会社 光学活性体の製造方法

Also Published As

Publication number Publication date
EP0978567A1 (en) 2000-02-09
EP0978567A4 (en) 2001-06-13
US6218581B1 (en) 2001-04-17
DE69829282T2 (de) 2006-03-30
EP0978567B1 (en) 2005-03-09
DE69829282D1 (de) 2005-04-14
JP3294860B2 (ja) 2002-06-24

Similar Documents

Publication Publication Date Title
US7481890B2 (en) Corn oil and dextrose extraction apparatus and method
WO1999034010A1 (fr) Procede pour produire des alcools optiquement actifs
Wu et al. Reversible enantioselectivity of enzymatic reactions by media
JP3683129B2 (ja) 光学活性アルコールの製造方法
JP3891324B2 (ja) 微生物によるレボディオンの製造
JP2008000136A (ja) ホールセル−生体内変換からの反応溶液の後処理
US5034325A (en) 5&#39;-phosphodiesterase enzyme preparation and method for its production
JP4170624B2 (ja) L−メントールの製造方法
AU729928B2 (en) Immobilized esterases from crude extract and their use
EP0297944B1 (fr) Production d&#39;une enzyme du type beta-glucuronidase, hydrolyse de la glycyrrhizine et production d&#39;acide 18 beta-glycyrrhétinique
Nagaoka et al. Resolution and synthesis of optically active alcohols with immobilized ovalbumin and pea protein as new bio-catalysts
JP3006615B2 (ja) D―β―ヒドロキシアミノ酸の製造法
AU625555B2 (en) 5&#39;-phosphodiesterase enzyme preparation and method for its production
JPS62107791A (ja) 脂肪酸エステルの製造方法
EP1074630B1 (en) Microbial production of levodione
Nagaoka et al. Resolution and synthesis of optically active alcohols with immobilized water-soluble proteins from green pea, soybean and buckwheat as new bio-catalysts
US5011775A (en) Enzymatic process for the preparation of rosmarinic acid
CN106636292B (zh) (1r,4s)-(-)-2-氮杂双环[2.2.1]庚-5-烯-3-酮的制备方法
Conceição et al. Regio-and enantioselective reduction of a α-methyleneketone by Rhodotorula glutinis
JPS5813395A (ja) サイクリツク−3′,5′−グアニル酸の製造法
RU2230119C1 (ru) Способ получения дисахарида
JP2005000164A (ja) 光学活性エステル誘導体および/または光学活性カルボン酸誘導体の製造方法
CN118369147A (zh) 从生物质中提取和纯化天然阿魏酸并转化为香兰素
JPH01277494A (ja) 光学活性アルコールの製造方法
Verpoorte et al. Plant cell biotechnology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09367137

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998961644

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998961644

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998961644

Country of ref document: EP