WO1999031197A1 - Verfahren zur vergasung von organischen stoffen und stoffgemischen - Google Patents

Verfahren zur vergasung von organischen stoffen und stoffgemischen Download PDF

Info

Publication number
WO1999031197A1
WO1999031197A1 PCT/EP1998/008217 EP9808217W WO9931197A1 WO 1999031197 A1 WO1999031197 A1 WO 1999031197A1 EP 9808217 W EP9808217 W EP 9808217W WO 9931197 A1 WO9931197 A1 WO 9931197A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
heat transfer
furnace
transfer medium
gases
Prior art date
Application number
PCT/EP1998/008217
Other languages
German (de)
English (en)
French (fr)
Inventor
Heinz-Jürgen Mühlen
Christoph Schmid
Original Assignee
Dmt Gmbh
Muehlen Heinz Juergen
Christoph Schmid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmt Gmbh, Muehlen Heinz Juergen, Christoph Schmid filed Critical Dmt Gmbh
Priority to JP2000539104A priority Critical patent/JP2002508433A/ja
Priority to DE59809004T priority patent/DE59809004D1/de
Priority to HU0101001A priority patent/HUP0101001A3/hu
Priority to CA002314094A priority patent/CA2314094A1/en
Priority to AU25133/99A priority patent/AU2513399A/en
Priority to EP98966829A priority patent/EP1053291B1/de
Priority to PL98341225A priority patent/PL341225A1/xx
Priority to AT98966829T priority patent/ATE244746T1/de
Publication of WO1999031197A1 publication Critical patent/WO1999031197A1/de
Priority to BG104615A priority patent/BG104615A/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/18Modifying the properties of the distillation gases in the oven
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment

Definitions

  • the invention relates to a method for the gasification of organic substances and substance mixtures according to the preamble of claim 1.
  • Pyrolysis gases with condensable substances and solid carbonaceous residues are implemented.
  • the thermal energy required for pyrolysis is generated by burning the solid carbon-containing residue.
  • the tar-containing pyrolysis gases become like this in a second reaction zone
  • both the pyrolysis and the combustion of the solid carbon-containing residue take place in a fluidized bed.
  • a reaction zone for the tar-containing pyrolysis gases is provided in the upper part of the pyrolysis fluidized bed reactor.
  • the heat transfer medium, together with the solid carbon-containing residue, is discharged in part via the reactor head of the pyrolysis fluidized bed reactor and the remainder via a line which is arranged at the upper boundary of the fluidized bed and fed to the fluidized bed furnace. There the solid carbonaceous residue is burned and the heat transfer medium is heated.
  • the heated heat transfer medium and the ash are discharged together with the exhaust gas from the fluidized bed furnace and separated in a gas-solid separator arranged above the pyrolysis fluidized bed reactor and fed to the reaction zone of the pyrolysis reactor, from which they fall again into the fluidized bed of the pyrolysis reactor ( Heat transfer medium circuit).
  • the operation of the fluidized beds is very complex and it is hardly possible to control the reactions of the pyrolysis gases in the reaction zone.
  • the invention has for its object to provide an easy to perform method for generating a gas with a high calorific value. A low proportion of condensate is preferred. Another object of the invention is to provide a simple device for carrying out the method.
  • this object is achieved by the combination of features of claim 1.
  • a reactant such as water vapor
  • a reactant such as water vapor
  • they are passed into an indirect heat exchanger in which the pyrolysis gases react with the reactant.
  • the solid carbonaceous residue and the heat transfer medium are fed to a furnace.
  • the combustion gases are passed through the indirect heat exchanger in such a way that their content is used for the reaction of the pyrolysis gases with the reactant.
  • the ash of the solid carbon-containing residues drawn off from the furnace and the heat transfer medium are returned to the pyrolysis reactor at the end of the entry for the organic matter.
  • the invention is based on the basic idea of dividing the gasification process into three simple process steps.
  • a first process step the feed materials are rapidly pyrolysed.
  • the aim is to keep as few condensable substances in the pyrolysis gases as possible.
  • the rapid pyrolysis is ensured in that the pyrolysis of the starting materials is carried out at a temperature of 550 ° to 650 ° C.
  • the pyrolysis gases are heated and reacted with steam to adjust the product gas quality.
  • the reaction of the pyrolysis gases with water vapor is carried out at a temperature of 900 ° to 1000 ° C.
  • the solid carbon-containing pyrolysis residues are burned.
  • the heat generated is used for pyrolysis and the reaction of the pyrolysis gases with water vapor.
  • the heat transfer medium is also heated in the furnace, which is subsequently conveyed back into the pyrolysis reactor.
  • the heat transfer for the reaction of the pyrolysis gases with water vapor takes place in a heat exchanger which is heated by the exhaust gases from the furnace.
  • each process step and the combination of the process steps can be designed according to the objective of the product gas quality.
  • the primary goal in product gas quality is a high calorific value.
  • the hydrogen content is increased by the second process step, so that the product gas is very well suited for use as synthesis gas, and energetic use in connection with a fuel cell is also an option.
  • the use for energy generation via a gas engine or gas turbine is of course possible.
  • the reactant is water vapor.
  • the addition of water vapor can be dispensed with if there is sufficient water vapor in the feedstock, for example if the feedstock does not dry or only to a small extent. It is also possible that the pyrolysis gases formed contain enough water vapor if enough water vapor is generated by the nature of the starting material in the pyrolysis. It is also possible to add water vapor in the pyrolysis stage.
  • the feedstocks must be pretreated before they are sent to pyrolysis. Pretreatment is generally limited to drying and, if necessary, comminution. No great demands are made on the lumpiness of the starting material, since the pyrolysis is carried out in a moving bed with a heat transfer medium.
  • a catalyst can be provided in the reaction of the pyrolysis gases with water vapor.
  • Dolomite, calcite, nickel, nickel oxide, nickel aluminate or nickel spinel are preferably used as catalysts.
  • dolomite it is advantageous that the dolomite is calcined at the reaction temperature of 900 ° to 1000 ° C. and that the calcium / magnesium oxide formed has particularly high catalytic activity.
  • reaction temperature of 900 to 1000 ° C for the reaction of the pyrolysis gas with water vapor is advantageous because the sulfur sensitivity of the aforementioned catalysts is already greatly reduced in this temperature range. It is possible to regenerate the catalysts from time to time in situ by adding a little air at temperatures above 1000 ° C.
  • the catalysts can also be used as a heat transfer medium. This procedure has the advantage that the
  • Catalysts are periodically regenerated in the heat transfer circuit.
  • part of the pyrolysis gas can be burned for heat generation.
  • the combustion of part of the pyrolysis gas for heat generation is also necessary if the pyrolysis coke can be used as a material, e.g. B. for the production of activated carbon or charcoal or charcoal briquettes. So that the pyrolysis coke can be easily discharged, the grain size of the heat transfer medium is chosen so small that the heat transfer medium can be separated from the pyrolysis coke without any problems. Simple and inexpensive components which are known per se and are readily available can be used in the device according to the invention. The device according to the invention can be easily constructed with these components.
  • the pyrolysis takes place in a moving bed reactor with the aid of a heat transfer medium.
  • a shaft furnace is the first choice, to which the mixture of the feed material to be gasified and the heat transfer medium is fed from above. The mixture travels through the shaft furnace. Fast pyrolysis takes place due to the intimate contact of the feed material with the heat transfer medium.
  • the pyrolysis can also be carried out in a rotating drum or in a deck oven, but here too the outlay on equipment would be greater.
  • the mixture of the heat transfer medium and the pyrolysis residue can be transferred to the furnace using commercially available units such as screw conveyors, swivel gratings, rotary gratings or rotary feeders.
  • screw conveyors In connection with grate firing, however, the use of feed tappets is preferred.
  • underfeed firing the use of screw conveyors is preferred.
  • Grate firing is preferred as the firing.
  • the combustion gases are passed through an indirect heat exchanger, which also serves as a chemical reactor, in which the pyrolysis react with water vapor.
  • Such heat exchangers are known, for example, in refineries as tube cracking furnaces or reformers.
  • conveying elements such as vibrating troughs, bucket elevators or chain scraper conveyors can also be used to convey the heat transfer medium from the furnace into the shaft furnace.
  • the requirements for the conveyor technology correspond to the requirements that occur in the steel industry or in the coke oven sector, so that no additional effort is required for the design of the units.
  • the heat transfer medium must have sufficient mechanical, chemical and thermal stability in the temperature range from 600 to 1000 ° C. Fireproof materials such as sand, gravel, grit, aluminum silicates, corundum, greywacke, quartzite or cordierite are primarily used. The use of moldings made of metallic or non-metallic materials or combinations thereof, such as Steel or ceramic balls are also possible.
  • the heat transfer medium must be fine enough to make intimate contact with the feed so that good heat transfer can take place.
  • the particles of the heat transfer medium must be large enough that there is sufficient void volume through which the pyrolysis gases can flow.
  • the heat transfer medium has a grain size of 1 - 40 mm.
  • This grain size also has the advantage that the heat transfer medium can be easily separated from the ashes of the pyrolytic residue behind the furnace.
  • a catalyst can be provided in the reaction of the pyrolysis gases with water vapor.
  • a catalyst bed can be arranged in the heat exchanger.
  • the catalyst bed is arranged inside or outside the tubes of the heat exchanger.
  • a catalytically active material for the heat exchanger tubes such as. B. use corundum with nickel or nickel oxide. It is also possible behind the
  • Heat exchanger to provide a fixed bed reactor with catalyst bed.
  • reaction of the pyrolysis gases with steam is to be supported by a catalyst, it is recommended to dedust the hot pyrolysis gases with a filter before contact with the catalyst.
  • 1 shows a block diagram of the method according to the invention
  • 2 shows the mass and energy balance of the pyrolysis and reaction stages
  • Fig. 3 shows the mass and energy balance of the furnace
  • Fig. 4 is a schematic representation of an apparatus for performing the method according to the invention.
  • the starting material can be a drying and / or comminuting device in which the starting materials are processed for the subsequent pyrolysis.
  • the pretreated feed 1 is introduced into a pyrolysis 3.
  • the pyrolysis 3 leaves a pyrolysis gas 5 and a pyrolysis coke 5a.
  • the pyrolysis coke 5a is burned in a furnace 6.
  • the heat from the furnace 6 is fed to the pyrolysis 3 via a heat coupling 7 and to a reaction zone 4 for pyrolysis gas via a heat coupling 7a.
  • Furnace 6 are cooled and derived in a flue gas cleaning and cooling stage 17.
  • the waste heat obtained with the flue gas cleaning and cooling stage 17 can e.g. B. can be used for drying in pretreatment stage 2.
  • a feed water 9 is passed via a water treatment 10 and a pump 11 in a heat exchanger 12 which is arranged in the furnace 6.
  • the generated steam 16 is passed into the reaction zone 4.
  • a part that is not required can be expanded via a turbine 13 and further used as exhaust steam 16a.
  • the pyrolysis gas 5 is fed to the reaction zone 4 with the water vapor 16.
  • the pyrolysis gas and the cracked products of the condensables are reacted with steam to the desired product gas 15.
  • the product gas 15 is then cleaned in a dedusting 8 and a fine dedusting and quench 14. It is also possible to supply part 19 of the product gas 15 to the pyrolysis 3.
  • FIG. 2 shows the mass and energy balance of a pyrolysis stage 101 and a reaction stage 102 using the example of wood gasification.
  • Wood 104 and heat transfer medium 104a are introduced into pyrolysis stage 101.
  • the heat flow purple which results from the size and nature of the material flows from wood 104 and heat transfer medium 104a and the desired pyrolysis temperature, is added.
  • the pyrolysis stage 101 leaves a mixture 105 of charcoal and heat transfer medium and the pyrolysis gas 106.
  • the pyrolysis gas 106 enters the reaction stage 102.
  • Heat loss 108 also occurs.
  • the heat of reaction of charcoal formation 109 and water vapor 112 is also conducted into reaction stage 102.
  • the product gas 107 leaves the reaction stage 102.
  • a heat loss 110 also occurs.
  • the quantity of heat 111 still to be supplied results from the heat and material flows that are supplied or removed.
  • FIG. 3 shows the mass and energy balance of the charcoal furnace 103. The mixture flows
  • the heat flows that emerge are the heat flow 111, which is led into the reaction stage 102, the heat flow purple, which is led into the pyrolysis stage 101, the excess heat 114 and the heat loss 115.
  • FIG. 4 shows a device for carrying out the method according to the invention.
  • a feedstock 401 is metered into a shaft furnace 403 via a lock 402.
  • a heat transfer medium 414 is fed from a conveyor 409 to the shaft furnace 403 via a lock 410.
  • the feedstock 401 and the heat transfer medium 414 migrate downward and mix, the heat contained in the heat transfer medium 414
  • Feedstock 401 is pyrolyzed at about 600 ° C.
  • the mixture of the heat transfer medium 414 and the pyrolysis coke 426 formed from the insert material 401 by pyrolysis is passed through a loading device 404 onto a grate 405 of a bricked-up furnace 407.
  • the furnace 407 has a start-up burner 406.
  • the pyrolysis coke 426 burns out on the grate 405, giving off heat. This heats the heat transfer medium 414 to approx. 1000 ° C.
  • the heat transfer medium 414 consists of a coarse-grained material such as sand, gravel or split.
  • Part of this mixture of heat transfer medium 414 and ash is returned via conveyor 409 and lock 410 into shaft furnace 403, in which heat transfer medium 414 releases the heat absorbed in furnace 407 to feed 401.
  • a smaller part of the mixture of ash from the pyrolysis coke 426 and the heat transfer medium 414 is discharged via a cooling 411 and a sieve 412.
  • the ashes of the pyrolysis coke 426 are separated as fine material 413 by the sieve 412 from the coarser heat transfer medium 414, the heat transfer medium 414 being returned to the process. This removal is not necessary if the feed material to be gasified contains no ash-forming components.
  • Pyrolysis gas is withdrawn from the upper region of the shaft furnace 403 via a line 403a and passed into a heat exchanger 417.
  • the pyrolysis gas also contains higher hydrocarbons and tars and other organic, in particular aromatic, compounds as condensable constituents.
  • the heat exchanger 417 is heated to a temperature of approximately 950 ° C. by the exhaust gases from the furnace 407. At this temperature, the pyrolysis gas and the condensable substances react with water vapor contained in the pyrolysis gas.
  • water vapor 416 is fed into line 403a for the reactions in heat exchanger 417.
  • air 415 can also be supplied for a partial combustion of the pyrolysis gas.
  • a catalyst can be provided in the heat exchanger to improve the cracking of the tars carried along.
  • a product gas leaves the heat exchanger 417, the proportions of carbon monoxide and hydrogen have been maximized.
  • This gas is passed through a heat exchanger 421 for waste heat use and into a scrubber 422 for gas cleaning.
  • a product gas 425 is drawn off via an induced draft fan 423.
  • the waste heat from the heat exchanger 421 can be used to heat the pyrolysis gas to the reaction temperature for the reaction with water vapor.
  • Both the furnace 407 and the heat exchanger 417 are operated at a pressure which deviates only slightly from the atmospheric pressure and is generally somewhat lower than this.
  • the induced draft fans 423 for the product gas 425 and 420 for the exhaust gas 424 are regulated and matched to one another in such a way that the pyrolysis gas is passed through the heat exchanger 417 and not through the bed of the
  • the wood contains 3% ash (anhydrous) and otherwise consists essentially of 50% carbon, 6% hydrogen, 42% oxygen and 1.9% nitrogen, free of water and ash.
  • the upper calorific value is 17.9 MJ / kg when anhydrous.
  • the thermal carburetor output is 4.97 MW.
  • the pyrolysis is carried out at 600 ° C. and the reaction with steam at 950 ° C.
  • the working pressure is atmospheric pressure. Gravel with a grain size of 3 mm to 15 mm is used as the heat transfer medium. The gravel is heated from 600 ° C to 950 ° C.
  • the circulating volume of the heat transfer medium is 5 times the wood input, ie 5000 kg per hour.
  • the shaft furnace has a height of 4.5 m and a diameter of 1.5 m - this corresponds to a moving bed volume of 7.5 3 .
  • the dwell time in the shaft furnace is two hours.
  • the enthalpy current of the charcoal in the furnace is 1.86 MW. This is sufficient to generate a steam flow of 0.45 MW (360 kg / h at 950 ° C and atmospheric pressure) and to cover the heat requirement of the reaction of the pyrolysis gas with water vapor in the amount of 0.84 MW.
  • the firing efficiency is 85%. After taking into account the heat loss and the loss due to the exhaust gas flow, there remain 0.26 MW. This generated 324 kg / h of superheated steam, which was expanded via a turbine and used as heating steam. The cold gas efficiency is 79%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
PCT/EP1998/008217 1997-12-16 1998-12-15 Verfahren zur vergasung von organischen stoffen und stoffgemischen WO1999031197A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000539104A JP2002508433A (ja) 1997-12-16 1998-12-15 有機物質及び物質の混合物をガス化するための方法
DE59809004T DE59809004D1 (de) 1997-12-16 1998-12-15 Verfahren zur vergasung von organischen stoffen und stoffgemischen
HU0101001A HUP0101001A3 (en) 1997-12-16 1998-12-15 Method for gasifying organic substances and substance mixtures
CA002314094A CA2314094A1 (en) 1997-12-16 1998-12-15 Method for gasifying organic substances and substance mixtures
AU25133/99A AU2513399A (en) 1997-12-16 1998-12-15 Method for gasifying organic substances and substance mixtures
EP98966829A EP1053291B1 (de) 1997-12-16 1998-12-15 Verfahren zur vergasung von organischen stoffen und stoffgemischen
PL98341225A PL341225A1 (en) 1997-12-16 1998-12-15 Method of gasifying organic substances and their mixtures
AT98966829T ATE244746T1 (de) 1997-12-16 1998-12-15 Verfahren zur vergasung von organischen stoffen und stoffgemischen
BG104615A BG104615A (en) 1997-12-16 2000-07-14 Method for gasifying organic substances and substance mixtures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19755693.0 1997-12-16
DE19755693A DE19755693C1 (de) 1997-12-16 1997-12-16 Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen

Publications (1)

Publication Number Publication Date
WO1999031197A1 true WO1999031197A1 (de) 1999-06-24

Family

ID=7851970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008217 WO1999031197A1 (de) 1997-12-16 1998-12-15 Verfahren zur vergasung von organischen stoffen und stoffgemischen

Country Status (11)

Country Link
EP (1) EP1053291B1 (tr)
JP (1) JP2002508433A (tr)
AT (1) ATE244746T1 (tr)
AU (1) AU2513399A (tr)
BG (1) BG104615A (tr)
CA (1) CA2314094A1 (tr)
DE (2) DE19755693C1 (tr)
HU (1) HUP0101001A3 (tr)
PL (1) PL341225A1 (tr)
TR (1) TR200001777T2 (tr)
WO (1) WO1999031197A1 (tr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002513A1 (de) * 1999-06-30 2001-01-11 Herhof Umwelttechnik Gmbh Verfahren und vorrichtung zur pyrolyse und vergasung von organischen stoffen oder stoffgemischen
WO2001021730A1 (de) * 1999-09-24 2001-03-29 Dr. Mühlen Gmbh & Co. Kg Verfahren zur vergasung von organischen stoffen und stoffgemischen
JP2004502544A (ja) * 2000-07-10 2004-01-29 ヘルホフ ウムヴェルトテヒニック ゲーエムベーハー 有機成分を含有する物質混合物の熱分解及びガス化方法、及び装置
WO2008046578A2 (de) * 2006-10-18 2008-04-24 Muehlen Heinz-Juergen Verfahren zur erzeugung eines wasserstoffreichen produktgases
WO2012083979A1 (de) * 2010-12-20 2012-06-28 Thannhaeuser Goel Ip Ag Verfahren zur pyrolyse von organischem einsatzmaterial
CN106085481A (zh) * 2016-08-11 2016-11-09 北京神雾环境能源科技集团股份有限公司 一种煤热解反应器与气基竖炉联用系统及处理煤的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19946381C2 (de) * 1999-09-28 2001-09-06 Zsw Verfahren und Vorrichtung zur Erzeugung eines kohlendioxidarmen, wasserstoffreichen Gases oder eines konditionierten Synthesegases und Verwendung derselben
DE19956560C2 (de) * 1999-11-24 2003-05-22 Bodo Wolf Verfahren zur Erzeugung von erneuerbaren Brenn- und Kraftstoffen
DE10055360B4 (de) * 2000-11-08 2004-07-29 Mühlen, Heinz-Jürgen, Dr.rer.Nat. Verfahren zur Vergasung von flüssigen bis pastösen organischen Stoffen und Stoffgemischen
EP1399527B1 (de) * 2001-06-27 2013-02-20 Herhof Verwaltungsgesellschaft mbH Verfahren und vorrichtung zur pyrolyse und vergasung von stoffgemischen, die organische bestandteile enthalten
DE10228100B4 (de) * 2001-06-27 2008-04-03 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten
JP2005247930A (ja) * 2004-03-02 2005-09-15 Takuma Co Ltd ガス化システム、発電システム、ガス化方法および発電方法
DE102005005859B3 (de) * 2005-02-09 2006-09-28 Peter Oehler Verfahren und Vorrichtung zur thermischen Behandlung von Biomasse
JP2006225483A (ja) * 2005-02-16 2006-08-31 Nippon Steel Corp バイオマスの炭化方法
JP4682027B2 (ja) * 2005-11-25 2011-05-11 株式会社キンセイ産業 燃料ガス発生装置
JP2007169534A (ja) * 2005-12-26 2007-07-05 Ube Machinery Corporation Ltd バイオマス炭化装置
DE102007062414B4 (de) 2007-12-20 2009-12-24 Ecoloop Gmbh Autothermes Verfahren zur kontinuierlichen Vergasung von kohlenstoffreichen Substanzen
DE102007062413B3 (de) * 2007-12-20 2009-09-10 Conera Process Solutions Gmbh Verfahren und Vorrichtung zur Wiederaufbereitung von CO2-haltigen Abgasen
GR20080100647A (el) * 2008-10-06 2010-05-13 Διονυσιος Χαραλαμπους Χοϊδας Συσκευη θερμικης αποδομησης ενυδρων ανθρακουχων συμπυκνωματων
ATE543894T1 (de) 2009-03-26 2012-02-15 Marold Freimut Joachim Verfahren und vorrichtung zur vergasung von organischen materialien
RU2011153516A (ru) * 2009-05-28 2013-07-10 ТАННХОЙЗЕР ГЁЛЬ Айпи АГ Процесс получения энергии из органических материалов и/или биомассы
JP5512200B2 (ja) * 2009-09-01 2014-06-04 新日鉄住金エンジニアリング株式会社 高効率乾留炉およびガス化剤の調整方法
EP2851411B1 (en) * 2012-05-18 2018-10-10 Japan Blue Energy Co., Ltd. Gasification apparatus
DE102012025478A1 (de) 2012-12-29 2014-07-03 Robert Völkl Verfahren und Vorrichtung zur Verwertung kohlenstoffhaltiger Asche
CN103468322B (zh) 2013-07-25 2015-08-12 易高环保能源研究院有限公司 一种由固体有机物水蒸气气化制取富氢气体的方法
CN103438458A (zh) * 2013-08-21 2013-12-11 陈开宇 新型垃圾焚烧炉
DE102017106347A1 (de) * 2017-03-24 2018-09-27 Universität Stuttgart Verfahren und Vorrichtung zur allothermen Herstellung von Brenngasen
DE102021134442B4 (de) * 2021-12-23 2023-07-06 Concord Blue Patent Gmbh Anlage zur Erzeugung eines Synthesegases und Verfahren zum Betreiben derselben

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960892C (de) * 1951-03-25 1957-03-28 Ruhrgas Ag Verfahren zur thermischen Behandlung feinkoerniger bis staubfoermiger, insbesondere backender Kohlen
US4142867A (en) * 1974-07-04 1979-03-06 Karl Kiener Apparatus for the production of combustible gas
FR2426079A1 (fr) * 1978-05-17 1979-12-14 Charlier Etienne Procede et installation pour la production de gaz pauvre combustible
US4568362A (en) * 1982-11-05 1986-02-04 Tunzini-Nessi Entreprises D'equipements Gasification method and apparatus for lignocellulosic products
EP0271477A1 (de) * 1986-11-26 1988-06-15 VOEST-ALPINE Aktiengesellschaft Vorrichtung zur Ent- und Vergasung von festen Brennstoffen
EP0512305A1 (en) * 1991-05-08 1992-11-11 DANECO DANIELI ECOLOGIA SpA Method to convert refuse derived fuel into a combustible gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537732C3 (de) * 1975-08-25 1981-12-10 Gosudarstvennyj naučno-issledovatel'skij energetičeskij institut imeni G.M. Kržižanovskogo, Moskva Verfahren zur thermischen Verarbeitung von festen bituminösen Stoffen
DE3611429A1 (de) * 1985-02-15 1986-11-06 SKF Steel Engineering AB, Hofors Verfahren zur abfallzersetzung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960892C (de) * 1951-03-25 1957-03-28 Ruhrgas Ag Verfahren zur thermischen Behandlung feinkoerniger bis staubfoermiger, insbesondere backender Kohlen
US4142867A (en) * 1974-07-04 1979-03-06 Karl Kiener Apparatus for the production of combustible gas
FR2426079A1 (fr) * 1978-05-17 1979-12-14 Charlier Etienne Procede et installation pour la production de gaz pauvre combustible
US4568362A (en) * 1982-11-05 1986-02-04 Tunzini-Nessi Entreprises D'equipements Gasification method and apparatus for lignocellulosic products
EP0271477A1 (de) * 1986-11-26 1988-06-15 VOEST-ALPINE Aktiengesellschaft Vorrichtung zur Ent- und Vergasung von festen Brennstoffen
EP0512305A1 (en) * 1991-05-08 1992-11-11 DANECO DANIELI ECOLOGIA SpA Method to convert refuse derived fuel into a combustible gas

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707842B1 (ko) * 1999-06-30 2007-04-13 헤어호프-움벨트테크닉 게엠베하 유기 물질 또는 유기 물질 혼합물들의 열분해 및 기체화를위한 방법 및 장치
WO2001002513A1 (de) * 1999-06-30 2001-01-11 Herhof Umwelttechnik Gmbh Verfahren und vorrichtung zur pyrolyse und vergasung von organischen stoffen oder stoffgemischen
AU773356B2 (en) * 1999-06-30 2004-05-20 Herhof-Umwelttechnik Gmbh Method and device for pyrolyzing and gasifying organic substances or substance mixtures
AU773356C (en) * 1999-06-30 2004-12-16 Herhof-Umwelttechnik Gmbh Method and device for pyrolyzing and gasifying organic substances or substance mixtures
BG64909B1 (bg) * 1999-06-30 2006-08-31 Herhof Umwelttechnik Gmbh Метод и устройство за пиролиза и газифициране на органични вещества или смеси от органични вещества
JP2003504454A (ja) * 1999-06-30 2003-02-04 ヘルホフ ウムヴェルトテヒニック ゲーエムベーハー 有機物質又は有機物質混合物の熱分解ガス化方法及び装置
US7214252B1 (en) 1999-06-30 2007-05-08 Herhof Umwelttechnik Gmbh Method and device for pyrolyzing and gasifying organic substances or substance mixtures
HRP20010931B1 (hr) * 1999-06-30 2013-02-28 Herhof Umwelttechnik Gmbh POSTUPAK I UREĐAJ ZA PIROLIZU l PLINIFIKACIJU ORGANSKIH TVARI ILI MJEŠAVINA ORGANSKIH TVARI
CN100338177C (zh) * 1999-06-30 2007-09-19 赫尔霍夫环保技术股份有限公司 有机物或有机物混合物热解和气化的方法和设备
JP4713036B2 (ja) * 1999-06-30 2011-06-29 ヘルホフ ウムヴェルトテヒニック ゲーエムベーハー 有機物質又は有機物質混合物の熱分解ガス化方法及び装置
WO2001021730A1 (de) * 1999-09-24 2001-03-29 Dr. Mühlen Gmbh & Co. Kg Verfahren zur vergasung von organischen stoffen und stoffgemischen
US7077878B1 (en) 1999-09-24 2006-07-18 Dr. Mühlen Gmbh & Co. Kg Method for gasifying organic materials and mixtures of materials
JP2004502544A (ja) * 2000-07-10 2004-01-29 ヘルホフ ウムヴェルトテヒニック ゲーエムベーハー 有機成分を含有する物質混合物の熱分解及びガス化方法、及び装置
EA014523B1 (ru) * 2006-10-18 2010-12-30 Хайнц-Юрген Мюлен Способ получения богатого водородом генераторного газа
WO2008046578A3 (de) * 2006-10-18 2008-07-10 Heinz-Juergen Muehlen Verfahren zur erzeugung eines wasserstoffreichen produktgases
US8333951B2 (en) 2006-10-18 2012-12-18 Heinz-Juergen Muehlen Method for producing a product gas rich in hydrogen
WO2008046578A2 (de) * 2006-10-18 2008-04-24 Muehlen Heinz-Juergen Verfahren zur erzeugung eines wasserstoffreichen produktgases
WO2012083979A1 (de) * 2010-12-20 2012-06-28 Thannhaeuser Goel Ip Ag Verfahren zur pyrolyse von organischem einsatzmaterial
CN106085481A (zh) * 2016-08-11 2016-11-09 北京神雾环境能源科技集团股份有限公司 一种煤热解反应器与气基竖炉联用系统及处理煤的方法

Also Published As

Publication number Publication date
PL341225A1 (en) 2001-03-26
HUP0101001A3 (en) 2002-10-28
TR200001777T2 (tr) 2000-09-21
CA2314094A1 (en) 1999-06-24
JP2002508433A (ja) 2002-03-19
HUP0101001A2 (hu) 2001-09-28
ATE244746T1 (de) 2003-07-15
EP1053291B1 (de) 2003-07-09
DE19755693C1 (de) 1999-07-29
AU2513399A (en) 1999-07-05
EP1053291A1 (de) 2000-11-22
DE59809004D1 (de) 2003-08-14
BG104615A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP1053291B1 (de) Verfahren zur vergasung von organischen stoffen und stoffgemischen
EP1226222B1 (de) Verfahren zur vergasung von organischen stoffen und stoffgemischen
EP1192234B1 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von organischen stoffen oder stoffgemischen
DE3310534C2 (tr)
EP1913116B1 (de) Verfahren zur schnellpyrolyse von lignocellulose
EP2082013B1 (de) Verfahren zur erzeugung eines wasserstoffreichen produktgases
WO1981000112A1 (en) Process and plant for the gazification of solid fuels
EP1299502B1 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von stoffgemischen, die organische bestandteile enthalten
EP0745114A1 (de) Verfahren zur erzeugung von brenngas
DE3344847A1 (de) Schnell-pyrolyse von braunkohlen und anordnung zur durchfuehrung dieses verfahrens
DE19925316A1 (de) Verfahren und Anlage zur autothermen Vergasung von festen Brennstoffen
EP1337607B1 (de) Verfahren zur vergasung von flüssigen bis pastösen organischen stoffen und stoffgemischen
DE60026264T2 (de) Verfahren und Anlage für die Herstellung von brennbaren Gasen aus an organischen Materialien reichen Einsätzen
DE3220229A1 (de) Verfahren zur herstellung eines an wasserstoff und kohlenmonoxid reichen gasstroms aus kohle
DE10226862B3 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
DE10030778A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
DE102006049781A1 (de) Verfahren und Vorrichtung zur Vergasung von organischen Stoffen mit Hilfe von Luft
EP1399527A2 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von stoffgemischen, die organische bestandteile enthalten
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE2932399C2 (de) Verfahren zur Erzeugung von Schwelgas, Wassergas und Koks aus feinkörnigem festem Brennstoff
DE102005046347B4 (de) Vorrichtung und Verfahren zur Energiegewinnung aus Bioenergieträgern und anderen organischen Stoffen
DE10228100A1 (de) Verfahren und Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten
DE102006058673A1 (de) Vorrichtung und Verfahren zur Schwachgaserzeugung aus organischen Energieträgern
WO1995025248A1 (de) Verfahren zum abbau insbesondere zur vollständigen verbrennung
DE3337992A1 (de) Verfahren zur vergasung von kohlenstoffhaltigen materialien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV2000-2110

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2314094

Country of ref document: CA

Ref document number: 2314094

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09581384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998966829

Country of ref document: EP

Ref document number: 2000/01777

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1200000579

Country of ref document: VN

WWR Wipo information: refused in national office

Ref document number: PV2000-2110

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1998966829

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1998966829

Country of ref document: EP