WO1999026040A1 - Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen - Google Patents

Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen Download PDF

Info

Publication number
WO1999026040A1
WO1999026040A1 PCT/EP1998/007515 EP9807515W WO9926040A1 WO 1999026040 A1 WO1999026040 A1 WO 1999026040A1 EP 9807515 W EP9807515 W EP 9807515W WO 9926040 A1 WO9926040 A1 WO 9926040A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
signals
tube
reflected
ultrasonic
Prior art date
Application number
PCT/EP1998/007515
Other languages
English (en)
French (fr)
Inventor
Torsten Schulze
Reinhard Klose
Original Assignee
Friedrich Theysohn Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Theysohn Gmbh filed Critical Friedrich Theysohn Gmbh
Priority to DE59810859T priority Critical patent/DE59810859D1/de
Priority to DK98962383T priority patent/DK1032804T3/da
Priority to AT98962383T priority patent/ATE260458T1/de
Priority to JP2000521359A priority patent/JP3477170B2/ja
Priority to EP98962383A priority patent/EP1032804B1/de
Priority to US09/554,774 priority patent/US6443011B1/en
Publication of WO1999026040A1 publication Critical patent/WO1999026040A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0235Plastics; polymers; soft materials, e.g. rubber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the invention relates to a device for error detection and / or wall thickness measurement in continuous bands, profiles or pipes made of plastic with ultrasonic signals which are distributed over the width of the band or profile or the circumference of the tube and stationary over the convexly curved surface of the band, profile or Rohres arranged measuring heads introduced vertically into the plastic and their signals reflected on the surface and rear wall recorded by them and fed to an evaluation unit.
  • measuring heads could form a closed ring.
  • a disadvantage of such a device is that it requires a large number of measuring heads.
  • a device for fault detection which introduces ultrasound signals into the pipe wall with two groups of measuring heads arranged on the outer circumference of the pipe and receives the signals reflected by faults.
  • the first group generates signals that propagate axially in the tube wall
  • the second group generates ultrasonic signals that propagate in the circumferential direction.
  • a statement can be made about the position of the error in the tube wall. The location and orientation of the error can be determined by several such measurements.
  • the measuring heads are controlled one after the other according to a multiplex method, so that several receiving measuring heads are each assigned to a measuring head emitting ultrasonic signals.
  • the invention has for its object to provide a device for the complete detection of the wall thickness and / or errors m bands, profiles or tubes with a convexly curved surface.
  • measuring heads are arranged next to one another and transversely to the direction of travel of the strip, profile or tube, taking into account the propagation of sound, scattering and refraction of the reflected signals on the strip, profile or tube such that they capture the wall of the strip, profile or tube without gaps by the signals reflected on the strip, profile or tube of a signal emitted by the transmitter of each measuring head from this measuring head and from and from and to its two sides neighboring measuring heads are received, the number of measuring heads ⁇ R
  • N number of measuring heads
  • R outer radius of curvature of the surface of the
  • the receiver of a measuring head While in conventional devices for error detection and / or wall thickness measurement with measuring heads operating according to the ultrasonic pulse echo method, the receiver of a measuring head only receives the signal emitted and reflected by the transmitter of this measuring head, but not the signal on the curved surface broken and thus "lost" signals for the measurement, these "lost" parts of the emitted and reflected ultrasound signal are additionally used for the measurement in the invention, in that these signals are received by the sensors of the adjacent measuring heads. This makes it possible to record the entire surface of the object to be measured with fewer ultrasonic measuring heads. Since the signal emitted by an ultrasonic measuring head thus covers a larger area, fewer measuring heads are required than in conventional devices.
  • bell curves are pushed into one another for the sound pressure of neighboring measuring heads. Due to the design of the measuring heads, these bell curves have to be pushed into each other so far that the sound pressure for the evaluation of echo signals is still sufficiently high up to the intersection of the bell curves.
  • measuring ranges are partially “mirrored” by the same measuring range between two adjacent measuring heads, first with the reflected signal emitted by one measuring head and received by the other neighboring measuring head and then with the is emitted by the other measuring head and received by the reflected measuring signal received by an adjacent measuring head.
  • Such “mirrored” measuring ranges ie recorded twice, only pay once.
  • the surface taking into account ⁇ er not broken, reflected Signals and the broken, reflected signals is detected without overlap.
  • the smallest number of measuring heads per measuring range unit can be used.
  • an overlap takes place, so that each section is examined not only with a reflected signal without refraction, but also with a broken, reflected signal.
  • there is the particular advantage that, with the broken signals, because of their different angle of incidence, errors are recognized which can hardly be recognized with an unbroken signal.
  • the invention comprises, on the one hand, measuring heads which are arranged in a certain geometrical relationship to the measurement object, for example a pipe, and on the other hand the control and evaluation unit.
  • the control and evaluation unit is not shown in the drawing.
  • the control unit cyclically controls the measuring heads in such a way that a measuring head emits and receives the reflected signal and only receives the two adjacent measuring heads.
  • the evaluation unit evaluates the reflected received signals taking into account the geometric arrangement of the measuring heads, in particular the natural sound pressure drop to the edges of the signal.
  • the special type of evaluation is not the subject of the invention.
  • the drawings show the geometric relationships of the complete detection of a pipe wall by means of measuring heads arranged next to one another, taking into account the non-scattered, reflected ultrasound signals and the scattered, reflected ultrasound signals.
  • “Not scattered” means such a reflection with refraction in which the signal emitted by the measuring head can also be received by this measuring head
  • “scattered” means such a reflection with refraction in which the signal emitted by the measuring head is not from this measuring head, but can only be received by measuring heads arranged on its sides.
  • a plurality of ultrasonic measuring heads A, B, C, D are positioned in a circle at a distance from one another around a half-drawn cylindrical tube 1.
  • the ultrasonic measuring heads A, B, C, D are directed perpendicular to the tube 1 and are arranged at a distance S from the surface of the tube.
  • Each ultrasonic measuring head A, B, C, D emits ultrasonic signals that spread out in a conical shape and not, as in the drawing, for the sake of simplicity of illustration, without opening angles.
  • the receiving surface with a diameter K 3 is available for receiving the entrance and back wall echoes of the ultrasonic signals.
  • the ultrasonic measuring heads A, B, C, D are controlled cyclically. If the ultrasonic measuring head B is controlled to transmit an ultrasonic signal, only a part of the transmitted signal, namely the non-scattered, reflected part, is received by its receiver. This part of the signal is shown hatched in Figure 1. On the inner tube wall 1, only an area b is thus directly detected by the measuring head B. The remaining part is scattered on the tube 1 and reflected to the sides. The receivers of the adjacent measuring heads A, C receive some of these scattered, reflected signals. These signal components are shown hatched in FIG. 2. On the inside of the pipe, these signals cover areas a and c. As FIG. 2 shows, uncovered areas remain between a and b on the one hand and b and c on the other. These areas not covered are covered by the measuring head C when an ultrasound signal is sent.
  • FIG. 3 shows, an area b 'is covered by the non-scattered, reflected signal emitted by the transmitter of the ultrasonic measuring head C on the inner tube wall.
  • the scattered, reflected signals of the ultrasonic signal emitted by the transmitter of the ultrasonic measuring head C cover areas a ', c' on the inner wall of the tube.
  • the area a 'thus detects the gap between the areas b and c which had not yet been detected in the signal emitted by the transmitter of the ultrasonic measuring head B.
  • measuring heads A, B, C, D for transmitting and receiving ultrasonic signals to also continuously capture a tube using the reflected ultrasonic signal that has broken away on the curved surface of the object to be measured.
  • the A small number of measuring heads makes it possible to work with a high measurement repetition frequency in the case of cyclical control in order to obtain complete coverage of the measurement object even in the longitudinal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Die Erfindung bezieht sich auf eine Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern, Profilen oder Rohren aus Kunststoff mit Ultraschallsignalen. Dafür sind über die Breite des Bandes oder Profils beziehungsweise den Umfang des Rohres verteilt mehrere Ultraschallmessköpfe (A, B, C, D) mit Sendern und Empfängern verteilt angeordnet. Das von einem Sender eines Ultraschallmesskopfes (3) ausgesandte und ohne Streuung reflektierte Signal wird vom Empfänger dieses Ultraschallmesskopfes (3) empfangen, während von den Empfängern seiner benachbarten Ultraschallmessköpfe (A, B) die am Rohr, Profil oder dergleichen gestreuten, reflektierten Signale empfangen werden. Durch die Einbeziehung der gestreuten, reflektierten Signale in die Messung wird die Messfläche pro Messung erheblich gegenüber einer Messung mit ausschliesslich dem direkt ohne Streuung reflektierten Signal vergrössert.

Description

Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern oder Rohren aus Kunststoff mit Ultraschallsignalen
Die Erfindung betrifft eine Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern, Profilen oder Rohren aus Kunststoff mit Ultraschallsignalen, die von über die Breite des Bandes oder Profils beziehungsweise den Umfang des Rohres verteilt und stationär über der konvex gekrümmten Oberfläche des Bandes, Profils oder Rohres angeordneten Meßköpfen senkrecht in den Kunststoff eingeleitet und deren an der Oberfläche und Rückwand reflektierte Signale von ihnen aufgenommen und einer Auswerteeinheit zugeführt werden.
Bei einer bekannten Einrichtung der eingangs genannten Art (US-PS 4,740,146) für zylindrische Rohre sind einige wenige Meßköpfe mit verhältnismäßig großem gegenseitigen Abstand stationär um das Rohr herum angeordnet und erfassen auf diese Art und Weise die Rohrwand an nur wenigen sich in Durchlaufrichtung des Rohres erstreckenden Streifen. Eine solche Einrichtung zur Wanddickenmessung mag in der Regel ausreichen, weil Dickenschwankungen über den Umfang sich meist nicht auf schmale Längsstreifen beschränken, sondern sich über einen größeren U fangsbereich erstrecken. Sofern die Dickenschwankungen aber von der Regel abweichen, ist keine fehlerfreie Wanddickenmessung gegeben. Für die Erfassung von Fehlern ist eine solche Einrichtung grundsätzlich nicht geeignet, weil Fehler häufig nur auf einen sehr kleinen Ort beschränkt sind.
Die Überprüfung der Rohrwand über ihren gesamten Umfang ist allerdings mit- einer anderen bekannten Einrichtung (DE 40 33 443 AI) möglich, die einen über den gesamten Umfang des Rohres umlaufenden Meßkopf aufweist. Der Antrieb eines solchen Meßkopfes und seine Führung machen jedoch einen erheblichen mechanischen Aufwand erforderlich. Hinzu kommt, daß mit einem solchen Meßkopf das durchlaufende Rohr nur auf Spiralbahnen erfaßt werden kann. Somit kann es auch hier Bereiche geben, die nicht erfaßt werden.
Um ein Rohr vollflächig erfassen zu können, könnten Meßköpfe einen geschlossenen Ring bilden. Nachteilig ist bei einer solchen Einrichtung allerdings, daß sie eine Vielzahl von Meßköpfen erforderlich macht.
Um in einer Rohrwand Fehler und deren Orientierung feststellen zu können, ist eine Einrichtung zur Fehlererfassung bekannt (US 4,523,468), die mit zwei hintereinander angeordneten Gruppen von am Außenumfang des Rohres angeordneten Meßköpfen Ultraschallsignale in die Rohrwand einleitet und die an Fehlern reflektierte Signale empfängt. Dafür erzeugt die erste Gruppe axial in der Rohrwand sich ausbreitende Signale, während die zweite Gruppe in Umfangsrichtung sich ausbreitende Ultraschallsignale erzeugt. Unter Berücksichtigung der Position des ein Ultraschallsignal aussendenden Meßkopfes und der Position des das reflektierte Signal empfangenden Meßkopfes sowie der Laufzeit läßt sich eine Aussage über die Lage des Fehlers in der Rohrwand machen. Lage und Orientierung des Fehlers lassen sich durch mehrere derartige Messungen bestimmen. Um eine Vermischung der von den einzelnen Meßkopfen ausgesandten Ultraschallsignale bei den empfangenden Meßkopfen zu vermeiden, ist vorgesehen, daß die Meßkopfe nach einem Multiplexverfahren nacheinander angesteuert werden, so daß einem Ultraschallsignal aussendenden Meßkopf mehrere empfangende Meßkopfe jeweils zugeordnet sind.
Bei einer solchen Einrichtung zur Fehlererfassung, bei der die Meßkopfe der einen Gruppe nur axiale Ultraschallsignale aussenden und die andere Gruppe der Meßkopfe nur m Umfangsrichtung des Rohres sich ausbreitet und Ultraschallsignale aussendet, laßt sich die Wanddicke von Rohren und dergleichen nicht bestimmen. Da es bei dieser Einrichtung auch nur um die Erfassung von verhältnismäßig großen Fehlern und deren Orientierung im Rohr geht, spielt das Problem der vollflachigen Erfassung des Rohres mit nur auf einem verhältnismäßig kleinen Bereich wirksamen Meßkopfen keine Rolle.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur lückenlosen Erfassung der Wanddicke und/oder von Fehlern m Bandern, Profilen oder Rohren mit konvex gekrümmter Oberflache zu schaffen.
Diese Aufgabe wird erfmdungsgemaß bei einer Einrichtung der eingangs genannten Art dadurch gelost, daß die Meßkopfe nebeneinander und quer zur Durchlaufrichtung des Bandes, Profils oder Rohres unter Berücksichtigung der Schallausbreitung, Streuung und Brechung der reflektierten Signale am Band, Profil oder Rohr derart angeordnet sind, daß sie die Wand des Bandes, Profils oder Rohres lückenlos erfassen, indem die am Band, Profil oder Rohr reflektierten Signale eines vom Sender eines jeden Meßkopfes ausgesandten Signals von diesem Meßkopf und von dem und von den zu seinen beiden Seiten benachbarten Meßköpfen empfangen werden, wobei die Anzahl der Meßköpfe π R
N ≥
S tanα
der Durchmesser der Empfangsfläche eines jeden Meßkopfes
2 π R
K ≥
N T
und die Wellenlänge des Ultraschallsignals
360 λ ≥ R 1 - cos
N T)
mit
N = Anzahl der Meßköpfe;
R = äußerer Krümmungsradius der Oberfläche des
Bandes, Profils oder Rohres; S = Abstand des Meßkopfes von der gekrümmten
Oberfläche; α = Öffnungswinkel des Ultraschallsenders des
Meßkopfes; K = Durchmesser der Empfangsfläche eines jeden
Meßkopfes und T = Anzahl der Meßbereiche je Meßkopf λ = Wellenlänge des Ultraschallsignals sind.
Während bei herkömmlichen Einrichtungen zur Fehlererfassung und/oder Wanddickenmessung mit nach dem Ultraschallimpulsechoverfahren arbeitenden Meßköpfen der Empfänger eines Meßkopfes nur das vom Sender dieses Meßkopfes ausgesandte und reflektierte Signal empfängt, nicht dagegen die an der gekrümmten Oberfläche gebrochenen und damit für die Messung „verlorenen" Signale, werden bei der Erfindung zusätzlich auch diese „verlorenen" Anteile des ausgesandten und reflektierten Ultraschallsignals für die Messung ausgenutzt, indem diese Signale von den Sensoren der benachbarten Meßkopfe empfangen werden. Dadurch wird es möglich, mit weniger Ultraschallmeßkopfen die gesamte Oberflache des Meßobjektes lückenlos zu erfassen. Da somit das von einem Ultraschallmeßkopf ausgesandte Signal eine größere Flache überstreicht, kommt man mit weniger Meßkopfen als bei herkömmlichen Einrichtungen aus.
Werden die erfmdungsgemaßen Regeln für die Auslegung der Meßkopfe eingehalten, dann ergeben sich für die von den Ultraschallmeßkopfen ausgesandten und am zu prüfenden Rohr, Band reflektierten Ultraschallsignale ineinandergeschobene Glockenkurven für den Schalldruck benachbarter Meßkopfe. Durch die Auslegung der Meßkopfe müssen diese Glockenkurven so weit ineinander geschoben sein, daß bis zum Schnittpunkt der Glockenkurven der Schalldruck für die Auswertung von Echosignalen noch ausreichend groß ist. Bei der Bestimmung der Anzahl der Meßbereiche e Meßkopf ist zu berücksichtigen, daß Meßbereiche teilweise „gespiegelt" werden, indem zwischen zwei benachbarten Meßkopfen derselbe Meßbereich zunächst mit dem von dem einen Meßkopf ausgesandten und von dem anderen benachbarten Meßkopf empfangenen, reflektierten Signal und dann mit dem von dem anderen Meßkopf ausgesandten und von dem einen benachbarten Meßkopf empfangenen, reflektierten Signal erfaßt wird. Solche „gespiegelten" Meßbereiche, d.h. zweimal erfaßte, zahlen nur einmal .
Grundsätzlich ist es möglich, daß die Oberflache unter Berücksichtigung αer nicht gebrochenen, reflektierten Signale und der gebrochenen, reflektierten Signale ohne Überlappung erfaßt wird. In diesem Fall kommt man mit der geringsten Anzahl von Meßkopfen pro Meßbereichseinheit aus. Man kann jedoch auch vorsehen, daß eine Überlappung stattfindet, so daß jeder Abschnitt nicht nur mit einem reflektierten Signal ohne Brechung, sondern auch mit einem gebrochenen, reflektierten Signal untersucht wird. Im letzeren Fall ergibt sich namlich der Vorteil, daß mit den gebrochenen Signalen wegen ihres anderen Einfallswinkels Fehler erkannt werden, die mit einem ungebrochenen Signal kaum erkannt werden können.
Um die Verarbeitung der Signale zu erleichtern, kann vorgesehen sein, daß nicht alle Signale parallel der Auswerteeinheit zugeführt werden, sondern daß die Ansteuerung der Meßkopfe zyklisch erfolgt. Dabei können allerdings mehrere Zyklen parallel laufen.
Im folgenden wird die Erfindung anhand einer ein Ausfuhrungsbeispiel darstellenden Zeichnung naher erläutert. Dabei ist zu berücksichtigen, daß die Darstellung nur modellhaften Charakter haben kann, weil der Strahlengang von Ultraschallsignalen physikalisch umfassend in einer Zeichnung nicht darstellbar ist.
Die Erfindung umfaßt zum einen Meßkopfe, die m bestimmter geometrischen Beziehung zu dem Meßobjekt, zum Beispiel einem Rohr angeordnet sind, und zum anderen die Ansteuer- und Auswerteeinheit. Die Ansteuer- und Auswerteeinheit ist in der Zeichnung nicht dargestellt. Die Ansteueremheit steuert die Meßkopfe zyklisch derart an, daß ein Meßkopf aussendet und das reflektierte Signal empfangt und die beiden benachbarten Meßkopfe nur empfangen. Die Auswerteeinheit wertet die reflektierten empfangenen Signale unter Berücksichtigung der geometrischen Anordnung der Meßkopfe aus, insbesondere des naturlichen Schalldruckabfalls zu den Randern des Signals. Die besondere Art der Auswertung ist nicht Gegenstand der Erfindung.
Die Zeichnungen zeigen die geometrischen Verhaltnisse der lückenlosen Erfassung einer Rohrwand mittels nebeneinander angeordneter Meßkopfe unter Berücksichtigung der nicht gestreuten, reflektierten Ultraschallsignale und der gestreuten, reflektierten Ultraschallsignale. Unter „nicht gestreut" wird eine solche Reflexion mit Brechung verstanden, bei der das vom Meßkopf ausgesandte Signal auch von diesem Meßkopf empfangen werden kann, wahrend unter „gestreut" eine solche Reflexion mit Brechung verstanden wird, bei der das vom Meßkopf ausgesandte Signal nicht von diesem Meßkopf, sondern nur von zu seinen Seiten angeordneten Meßkopfen empfangen werden kann.
Um ein hier nur halb gezeichnetes zylindrisches Rohr 1 sind im Kreis mit Abstand voneinander mehrere Ultraschallmeßkopfe A, B,C,D positioniert. Die Ultraschallmeßkopfe A, B,C,D, sind senkrecht auf das Rohr 1 gerichtet und mit einem Abstand S von der Oberflache des Rohres angeordnet. Jeder Ultraschallmeßkopf A, B,C,D sendet Ultraschallsignale aus, die sich kegelförmig und nicht wie m der Zeichnung aus Gründen der einfacheren Darstellung ohne Offnungswmkel ausbreiten. Für den Empfang der Eintritts- und Ruckwandechos der Ultraschallsignale steht die Aufnahmeflache mit einem Durchmesser K3 zur Verfugung.
Die Ultraschallmeßkopfe A, B,C,D werden zyklisch angesteuert. Sofern der Ultraschallmeßkopf B zum Senden eines Ultraschallsignals angesteuert wird, wird von seinem Empfänger nur ein Teil des ausgesandten Signals, und zwar der nicht gestreute, reflektierte Teil, empfangen. Dieser Teil des Signals ist in Figur 1 schraffiert dargestellt. An der Rohrinnenwand 1 wird somit nur ein Bereich b direkt vom Meßkopf B erfaßt. Der restliche Teil wird an dem Rohr 1 gestreut und zu den Seiten reflektiert. Die Empfänger der benachbarten Meßköpfe A, C empfangen einen Teil dieser gestreuten, reflektierten Signale. Diese Signalanteile sind in Figur 2 schraffiert dargestellt. An der Rohrinnenwand decken diese Signale die Bereiche a und c ab. Wie Figur 2 zeigt, verbleiben nicht abgedeckte Bereiche zwischen a und b einerseits und b und c andererseits. Diese nicht abgedeckten Bereiche werden aber beim Senden eines Ultraschallsignals vom Meßkopf C abgedeckt.
Wie Figur 3 zeigt, wird durch das vom Sender des Ultraschallmeßkopfes C ausgesandte nicht gestreute, reflektierte Signal an der Rohrinnenwand ein Bereich b' abgedeckt.
Wie Figur 4 zeigt, decken die gestreuten, reflektierten Signale des vom Sender des Ultraschallmeßkopfes C ausgesandten Ultraschallsignals an der Rohrinnenwand Bereiche a' , c' ab. Der Bereich a' erfaßt also die Lücke zwischen den Bereichen b und c, die bei dem vom Sender des Ultraschallmeßkopfes B ausgesandten Signal noch nicht erfaßt waren.
Mit der erfindungsgemäßen Einrichtung ist es also mit vergleichsweise wenigen Meßköpfen A, B,C,D zum Senden und Empfangen von Ultraschallsignalen möglich, unter Ausnutzung auch des an der gekrümmten Oberfläche des Meßobjektes zur Seite weggebrochenen reflektierten Ultraschallsignals ein Rohr lückenlos zu erfassen. Die geringe Anzahl der Meßköpfe ermöglicht es, bei zyklischer Ansteuerung mit einer hohen Meßfolgefrequenz zu arbeiten, um eine vollständige Abdeckung des Meßobjektes auch in Längsrichtung zu erhalten. Zwar ist es möglich, ohne Überlappung der ohne Streuung und mit Streuung reflektierten Ultraschallsignale Messungen durchzuführen, um mit möglichst wenig Ultraschallmeßkopfen auszukommen, doch ist es auch möglich, die Wand des Meßobjektes sowohl mit ohne Streuung reflektierten Ultraschallsignalen als auch mit durch Streuung reflektierten Ultraschallsignalen zu untersuchen. Letzteres hat den zusätzlichen Effekt, daß wegen des anderen Einfallswinkels der gebrochenen Ultraschallsignale auch Fehler erkannt werden, die sonst schwer zu erkennen sind.

Claims

PA T E N TAN S P RÜ C H E
1. Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern, Profilen oder Rohren aus Kunststoff mit Ultraschallsignalen, die von über die Breite des Bandes oder Profils beziehungsweise den Umfang des Rohres (1) verteilt und stationär über der konvex gekrümmten Oberfläche des Bandes, Profils oder Rohres angeordneten Meßköpfen (A, B,C,D) senkrecht in den Kunststoff eingeleitet und deren reflektierte Signale von ihnen aufgenommen und einer Auswerteeinheit zugeführt werden, d a d u r c h g e k e n n z e i c h n e t , daß die Meßköpfe (A,B,C,D) nebeneinander und quer zur Durchlaufrichtung des Bandes, Profils oder Rohres (1) unter Berücksichtigung der Schallausbreitung, Streuung und Brechung der reflektierten Signale am Band, Profil oder Rohr derart angeordnet sind, daß sie die Wand des Bandes, Profils oder Rohres lückenlos erfassen, indem die am Band, Profil oder Rohr reflektierten Signale eines vom Sender eines jeden Meßkopfes (B) ausgesandten Signals von diesem Meßkopf (B) und von den zu seinen beiden Seiten benachbarten Meßköpfen (A, C) empfangen werden.
2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Meßköpfe (A, B,C,D) zyklisch angesteuert werden.
PCT/EP1998/007515 1997-11-19 1998-11-13 Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen WO1999026040A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE59810859T DE59810859D1 (de) 1997-11-19 1998-11-13 Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen
DK98962383T DK1032804T3 (da) 1997-11-19 1998-11-13 Indretning til fejlregistrering og/eller vægtykkelsesmåling ved gennemløbende bånd eller rør af kunststof med hjælp af ultralydssignaler
AT98962383T ATE260458T1 (de) 1997-11-19 1998-11-13 Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen
JP2000521359A JP3477170B2 (ja) 1997-11-19 1998-11-13 超音波信号を用いて連続的に移動するプラスチックのストリップ又は管の中の欠陥を検出しかつ/又はそれらの壁厚を測定するための装置
EP98962383A EP1032804B1 (de) 1997-11-19 1998-11-13 Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen
US09/554,774 US6443011B1 (en) 1997-11-19 1998-11-13 Device for detecting errors and/or measuring wall thickness in continuous strips or tubes made of plastic using ultrasonic signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19751193.7 1997-11-19
DE19751193 1997-11-19

Publications (1)

Publication Number Publication Date
WO1999026040A1 true WO1999026040A1 (de) 1999-05-27

Family

ID=7849162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/007515 WO1999026040A1 (de) 1997-11-19 1998-11-13 Einrichtung zur fehlererfassung und/oder wanddickenmessung bei durchlaufenden bändern oder rohren aus kunststoff mit ultraschallsignalen

Country Status (7)

Country Link
US (1) US6443011B1 (de)
EP (1) EP1032804B1 (de)
JP (1) JP3477170B2 (de)
AT (1) ATE260458T1 (de)
DE (2) DE19852335C2 (de)
DK (1) DK1032804T3 (de)
WO (1) WO1999026040A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016020A (zh) * 2017-12-12 2018-05-11 河北天昱恒科技有限公司 塑料管自动检测装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US6920792B2 (en) * 2003-05-05 2005-07-26 John H. Flora Transducer guided wave electromagnetic acoustic
EP2402089A1 (de) 2003-07-31 2012-01-04 Handylab, Inc. Verarbeitung partikelhaltiger Proben
DE10335747B4 (de) * 2003-08-05 2014-09-04 Volkswagen Ag Verfahren zur Prüfung der Qualität einer Slushhaut
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
DE102006010010A1 (de) * 2006-03-04 2007-09-06 Intelligendt Systems & Services Gmbh & Co Kg Verfahren zur Ultraschallprüfung eines Werkstückes in einem gekrümmten Bereich seiner Oberfläche und zur Durchführung des Verfahrens geeignete Prüfanordnung
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
FR2907901B1 (fr) * 2006-10-31 2009-04-24 Airbus France Sas Procede de controle non destructif par ultrasons et sonde de mesure pour la mise en oeuvre du procede
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
DE102006056735A1 (de) * 2006-12-01 2008-06-05 Inoex Gmbh Messverfahren zur Bestimmung der Wanddicke eines extrudierten Kunststoffprofils
EP2171460B1 (de) 2007-07-13 2017-08-30 Handylab, Inc. Materialien zur erfassung von polynukleotiden und verfahren zu ihrer verwendung
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9360309B2 (en) * 2008-03-14 2016-06-07 Cidra Corporate Services Inc. Method and apparatus for monitoring of component housing wall thickness and wear monitoring
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
CA3082652A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
CN103959070B (zh) 2011-09-30 2017-05-10 贝克顿·迪金森公司 组合试剂条
AT512647B1 (de) * 2012-09-12 2013-10-15 Engel Austria Gmbh Temperaturverlaufermittlung im Schmelzeraum
DE102014214046B3 (de) * 2014-07-18 2015-10-01 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten
DE102016111044A1 (de) * 2016-06-16 2017-12-21 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Terahertz-Messvorrichtung und ein Terahertz-Messverfahren, zur Vermessung eines Prüfobjektes mittels einer Laufzeitmessung
DE102017125740B4 (de) * 2017-11-03 2021-05-27 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Terahertz-Messverfahren und Terahertz-Messvorrichtung zur Vermessung von Rohren
DE102017125753A1 (de) * 2017-11-03 2019-05-09 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Messen mindestens einer Wanddicke eines rohrförmigen Messobjektes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778757A (en) * 1972-09-01 1973-12-11 Gen Electric Method and apparatus for visual imaging ultrasonic echo signals utilizing multiple transmitters for reduced specular reflection effects
FR2298921A5 (fr) * 1973-01-29 1976-08-20 Commissariat Energie Atomique Procede de controle par ultrasons des soudures en forte epaisseur et dispositifs de mise en oeuvr
DE2828643A1 (de) * 1978-06-27 1980-01-10 Mannesmann Ag Verfahren und vorrichtung zum ultraschallpruefen von rohren und stangen im geradlinigen durchlauf durch eine anlage mit feststehenden pruefkoepfen
GB2033579A (en) * 1978-10-05 1980-05-21 Babcock Power Ltd Ultrasonic probes
US4435984A (en) * 1980-04-21 1984-03-13 Southwest Research Institute Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
JPS60235055A (ja) * 1984-05-08 1985-11-21 Sumitomo Metal Ind Ltd 異形棒鋼の超音波探傷方法
JPH04291149A (ja) * 1991-03-20 1992-10-15 Nkk Corp 鋼管の超音波探傷方法及びその装置
EP0538110A1 (de) * 1991-10-14 1993-04-21 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung zur Ultraschallprüfung von Verbundmaterialien
JPH05126803A (ja) * 1991-10-31 1993-05-21 Hitachi Cable Ltd 自動超音波探傷装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806550C2 (de) * 1978-02-16 1982-10-28 Karl Deutsch Prüf- und Meßgerätebau, 5600 Wuppertal Vorrichtung zur automatischen Ultraschall-Prüfung von Rundmaterial
DE2852768C2 (de) * 1978-12-04 1982-10-28 Mannesmann AG, 4000 Düsseldorf Ultraschall-Prüfanlage
US4523468A (en) * 1983-10-03 1985-06-18 Trw Inc. Phased array inspection of cylindrical objects
JPS6193952A (ja) * 1984-10-04 1986-05-12 Mitsubishi Electric Corp 厚肉管の超音波斜角探傷法
US4740146A (en) * 1986-07-25 1988-04-26 Peter Angelbeck Apparatus for measuring and controlling the wall thickness of plastic pipes
US4905527A (en) * 1988-05-25 1990-03-06 The Babcock & Wilcox Company Boiler tube wall inspection system
US5085082A (en) * 1990-10-24 1992-02-04 The Babcock & Wilcox Company Apparatus and method of discriminating flaw depths in the inspection of tubular products
DE9214948U1 (de) * 1992-11-03 1994-03-10 Siemens AG, 80333 München Ultraschallwandler-Anordnung
US6070832A (en) * 1994-02-08 2000-06-06 The United States Of America As Represented By The Secretary Of The Air Force Ultrasonic angular measurement system
US5460046A (en) 1994-05-25 1995-10-24 Tdw Delaware, Inc. Method and apparatus for ultrasonic pipeline inspection
US5535628A (en) * 1994-11-14 1996-07-16 Rohrback Cosasco Systems, Inc. Ultrasonic scanner head and method
DE19509290C1 (de) * 1995-03-15 1996-05-02 Bbc Reaktor Gmbh Prüfkopf zum Ultraschallprüfen einer eingebauten Innenmehrkantschraube
US6266983B1 (en) * 1998-12-09 2001-07-31 Kawasaki Steel Corporation Method and apparatus for detecting flaws in strip, method of manufacturing cold-rolled steel sheet and pickling equipment for hot-rolled steel strip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778757A (en) * 1972-09-01 1973-12-11 Gen Electric Method and apparatus for visual imaging ultrasonic echo signals utilizing multiple transmitters for reduced specular reflection effects
FR2298921A5 (fr) * 1973-01-29 1976-08-20 Commissariat Energie Atomique Procede de controle par ultrasons des soudures en forte epaisseur et dispositifs de mise en oeuvr
DE2828643A1 (de) * 1978-06-27 1980-01-10 Mannesmann Ag Verfahren und vorrichtung zum ultraschallpruefen von rohren und stangen im geradlinigen durchlauf durch eine anlage mit feststehenden pruefkoepfen
GB2033579A (en) * 1978-10-05 1980-05-21 Babcock Power Ltd Ultrasonic probes
US4435984A (en) * 1980-04-21 1984-03-13 Southwest Research Institute Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
JPS60235055A (ja) * 1984-05-08 1985-11-21 Sumitomo Metal Ind Ltd 異形棒鋼の超音波探傷方法
JPH04291149A (ja) * 1991-03-20 1992-10-15 Nkk Corp 鋼管の超音波探傷方法及びその装置
EP0538110A1 (de) * 1991-10-14 1993-04-21 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung zur Ultraschallprüfung von Verbundmaterialien
JPH05126803A (ja) * 1991-10-31 1993-05-21 Hitachi Cable Ltd 自動超音波探傷装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 102 (P - 448) 18 April 1986 (1986-04-18) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 095 (P - 1493) 25 February 1993 (1993-02-25) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 495 (P - 1608) 7 September 1993 (1993-09-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016020A (zh) * 2017-12-12 2018-05-11 河北天昱恒科技有限公司 塑料管自动检测装置
CN108016020B (zh) * 2017-12-12 2023-10-24 河北天昱恒科技有限公司 塑料管自动检测装置

Also Published As

Publication number Publication date
US6443011B1 (en) 2002-09-03
DK1032804T3 (da) 2004-05-24
EP1032804A1 (de) 2000-09-06
EP1032804B1 (de) 2004-02-25
JP2001523813A (ja) 2001-11-27
ATE260458T1 (de) 2004-03-15
JP3477170B2 (ja) 2003-12-10
DE19852335A1 (de) 1999-06-02
DE59810859D1 (de) 2004-04-01
DE19852335C2 (de) 2002-05-29

Similar Documents

Publication Publication Date Title
DE19852335C2 (de) Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern oder Rohren aus Kunststoff mit Ultraschallsignalen
EP0685068B1 (de) Ultraschall-prüfvorrichtung für schweissnähte bei rohren, blechen und behältern
DE2713921C2 (de) Vorrichtung zum Messen der radialen Abmessungen eines Rohres mittels Ultraschall
EP2386835B1 (de) Ultraschallmessung der Strömungsgeschwindigkeit eines Fluids in einer Rohrleitung
EP3704442B1 (de) Terahertz-messverfahren und terahertz-messvorrichtung zur vermessung von rohren
DE3751714T2 (de) Verfahren und Apparatur zum Ultraschallnachweis von Rissen
DE20207684U1 (de) Vorrichtung zur Ultraschalldickenmessung innerhalb von Rohren
DE3515977A1 (de) Verfahren und vorrichtung zur zerstoerungsfreien pruefung ferromagnetischer koerper
DE3319068C2 (de)
DE112016000885T5 (de) Eine Vorrichtung und Verfahren zur Inspektion einer Pipeline
EP3940346B1 (de) Durchflussmessgerät und verfahren zur messung des durchflusses eines fluids
DE10224294A1 (de) Verfahren zur Ultraschall-Laufzeit-Mengenmessung
DE3622500C2 (de)
DE2429324A1 (de) Vorrichtung und verfahren zur untersuchung von gegenstaenden
DE19535848C1 (de) Vorrichtung zur Messung der akustischen Impedanz von flüssigen Medien
EP0704700B1 (de) Ultraschallwandler zur Prüfung von Eisenbahnrädern
DE1905213A1 (de) Verfahren und Einrichtung zur Fehlerpruefung von Rohren mittels Ultraschall
EP0735366B1 (de) Verfahren und Vorrichtung zur Erfassung von Ungänzen an langgestreckten Werkstücken, insbesondere Rohre und Stangen
DE102018125923A1 (de) Verfahren und Vorrichtung zur nichtinvasiven Bestimmung von Eigenschaften eines Multiphasenstroms
DE29823695U1 (de) Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern oder Rohren aus Kunststoff mit Ultraschallsignalen
DE19747637C2 (de) Einrichtung zur Fehlererfassung bei durchlaufenden Bändern, Profilen oder Rohren aus Kunststoff mit Ultraschallsignalen
DE10115329A1 (de) Ultraschallverfahren zur Dickenmessung von schwach reflektierenden Teilschichten eines Mehrschichtbauteils
DE102010037981B4 (de) Ultraschallmessverfahren und -vorrichtung, insbesondere zur Aushärtungsüberwachung und Laminatdickenbestimmung bei der Faserverbundteilfertigung
WO2019201804A1 (de) Vorrichtung und verfahren zur bestimmung der ausdehnung von fehlstellen mittels v-durchschallung
DE3203862A1 (de) Ultraschall-pruefkopfanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998962383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09554774

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998962383

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998962383

Country of ref document: EP